Sample records for lactobacilli differentially modulate

  1. Immune-modulating effects in mouse dendritic cells of lactobacilli and bifidobacteria isolated from individuals following omnivorous, vegetarian and vegan diets.

    PubMed

    Luongo, Diomira; Treppiccione, Lucia; Sorrentino, Alida; Ferrocino, Ilario; Turroni, Silvia; Gatti, Monica; Di Cagno, Raffaella; Sanz, Yolanda; Rossi, Mauro

    2017-09-01

    Lactobacilli and bifidobacteria play a primary role in modulation of gut immunity. By considering that microbiota composition depends on various factors, including diet, we asked whether functional differences could characterize faecal populations of lactobacilli and bifidobacteria isolated from individuals with different dietary habits. 155 healthy volunteers who followed omnivorous, ovo-lacto-vegetarian or vegan diets were recruited at four Italian centres (Turin, Parma, Bologna and Bari). Faecal samples were collected; lactobacilli and bifidobacteria were isolated on selective media and their immunomodulatory activity was tested in mouse dendritic cells (DCs). Pre-incubation with lactobacilli increased LPS-induced expression of the maturation markers CD80 and CD86, whereas pre-incubation with bifidobacteria decreased such expression. Analysis of the cytokine profile indicated that strains of both genera induced down-regulation of IL-12 and up-regulation of IL-10, whereas expression of TNF-α was not modulated. Notably, analysis of anti-inflammatory potential (IL-10/IL-12 ratio) showed that lactobacilli evoked a greater anti-inflammatory effect than did bifidobacteria in the omnivorous group (P<0.05). We also found significantly reduced anti-inflammatory potential in the bacterial strains isolated from Bari's volunteers in comparison with those from the cognate groups from the other centres. In conclusion, lactobacilli and bifidobacteria showed a genus-specific ability of modulating in vitro innate immunity associated with a specific dietary habit. Furthermore, the geographical area had a significant impact on the anti-inflammatory potential of some components of faecal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Genomic View of Lactobacilli and Pediococci Demonstrates that Phylogeny Matches Ecology and Physiology

    PubMed Central

    Zheng, Jinshui; Ruan, Lifang; Sun, Ming

    2015-01-01

    Lactobacilli are used widely in food, feed, and health applications. The taxonomy of the genus Lactobacillus, however, is confounded by the apparent lack of physiological markers for phylogenetic groups of lactobacilli and the unclear relationships between the diverse phylogenetic groups. This study used the core and pan-genomes of 174 type strains of Lactobacillus and Pediococcus to establish phylogenetic relationships and to identify metabolic properties differentiating phylogenetic groups. The core genome phylogenetic tree separated homofermentative lactobacilli and pediococci from heterofermentative lactobacilli. Aldolase and phosphofructokinase were generally present in homofermentative but not in heterofermentative lactobacilli; a two-domain alcohol dehydrogenase and mannitol dehydrogenase were present in most heterofermentative lactobacilli but absent in most homofermentative organisms. Other genes were predominantly present in homofermentative lactobacilli (pyruvate formate lyase) or heterofermentative lactobacilli (lactaldehyde dehydrogenase and glycerol dehydratase). Cluster analysis of the phylogenomic tree and the average nucleotide identity grouped the genus Lactobacillus sensu lato into 24 phylogenetic groups, including pediococci, with stable intra- and intergroup relationships. Individual groups may be differentiated by characteristic metabolic properties. The link between phylogeny and physiology that is proposed in this study facilitates future studies on the ecology, physiology, and industrial applications of lactobacilli. PMID:26253671

  3. Metabolism of Oligosaccharides and Starch in Lactobacilli: A Review

    PubMed Central

    Gänzle, Michael G.; Follador, Rainer

    2012-01-01

    Oligosaccharides, compounds that are composed of 2–10 monosaccharide residues, are major carbohydrate sources in habitats populated by lactobacilli. Moreover, oligosaccharide metabolism is essential for ecological fitness of lactobacilli. Disaccharide metabolism by lactobacilli is well understood; however, few data on the metabolism of higher oligosaccharides are available. Research on the ecology of intestinal microbiota as well as the commercial application of prebiotics has shifted the interest from (digestible) disaccharides to (indigestible) higher oligosaccharides. This review provides an overview on oligosaccharide metabolism in lactobacilli. Emphasis is placed on maltodextrins, isomalto-oligosaccharides, fructo-oligosaccharides, galacto-oligosaccharides, and raffinose-family oligosaccharides. Starch is also considered. Metabolism is discussed on the basis of metabolic studies related to oligosaccharide metabolism, information on the cellular location and substrate specificity of carbohydrate transport systems, glycosyl hydrolases and phosphorylases, and the presence of metabolic genes in genomes of 38 strains of lactobacilli. Metabolic pathways for disaccharide metabolism often also enable the metabolism of tri- and tetrasaccharides. However, with the exception of amylase and levansucrase, metabolic enzymes for oligosaccharide conversion are intracellular and oligosaccharide metabolism is limited by transport. This general restriction to intracellular glycosyl hydrolases differentiates lactobacilli from other bacteria that adapted to intestinal habitats, particularly Bifidobacterium spp. PMID:23055996

  4. Oral Lactobacilli and Dental Caries

    PubMed Central

    Caufield, P.W.; Schön, C.N.; Saraithong, P.; Li, Y.; Argimón, S.

    2015-01-01

    Lactobacilli have been associated with dental caries for over a century. Here, we review the pertinent literature along with findings from our own study to formulate a working hypothesis about the natural history and role of lactobacilli. Unlike most indigenous microbes that stably colonize a host, lactobacilli appear to be planktonic, opportunistic settlers that can gather and multiply only in certain restrictive niches of the host, at least within the oral cavity. We postulate that the following essential requirements are necessary for sustained colonization of lactobacilli in humans: 1) a stagnant, retentive niche that is mostly anaerobic; 2) a low pH milieu; and 3) ready access to carbohydrates. Three sites on the human body meet these specifications: caries lesions, the stomach, and the vagina. Only a handful of Lactobacillus species is found in caries lesions, but they are largely absent in caries-free children. Lactobacilli present in caries lesions represent both a major contributor to caries progression and a major reservoir to the gastrointestinal (GI) tract. We extend the assertion from other investigators that lactobacilli found in the GI tract originate in the oral cavity by proposing that lactobacilli in the oral cavity arise from caries lesions. This, in turn, leads us to reflect on the health implications of the lactobacilli in the mouth and downstream GI and to ponder whether these or any of the Lactobacillus species are truly indigenous to the human GI tract or the oral cavity. PMID:25758458

  5. RAPD-PCR characterization of lactobacilli isolated from artisanal meat plants and traditional fermented sausages of Veneto region (Italy).

    PubMed

    Andrighetto, C; Zampese, L; Lombardi, A

    2001-07-01

    The study was carried out to evaluate the use of randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) as a method for the identification of lactobacilli isolated from meat products. RAPD-PCR with primers M13 and D8635 was applied to the identification and intraspecific differentiation of 53 lactobacilli isolates originating from traditional fermented sausages and artisanal meat plants of the Veneto region (Italy). Most of the isolates were assigned to the species Lactobacillus sakei and Lact. curvatus; differentiation of groups of strains within the species was also possible. RAPD-PCR could be applied to the identification of lactobacilli species most commonly found in meat products. The method, which is easy and rapid to perform, could be useful for the study of the lactobacilli populations present in fermented sausages, and could help in the selection of candidate strains to use as starter cultures in meat fermentation.

  6. Mechanisms and therapeutic effectiveness of lactobacilli

    PubMed Central

    Di Cerbo, Alessandro; Palmieri, Beniamino; Aponte, Maria; Morales-Medina, Julio Cesar; Iannitti, Tommaso

    2016-01-01

    The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword ‘Lactobacillus’. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects. PMID:26578541

  7. Effect of three lactobacilli with strain-specific activities on the growth performance, faecal microbiota and ileum mucosa proteomics of piglets.

    PubMed

    Su, Yating; Chen, Xingjie; Liu, Ming; Guo, Xiaohua

    2017-01-01

    The beneficial effects of Lactobacillus probiotics in animal production are often strain-related. Different strains from the same species may exert different weight-gain effect on hosts in vivo. Most lactobacilli are selected based on their in vitro activities, and their metabolism and regulation on the intestine based on strain-related characters are largely unexplored. The objective of the present study was to study the in vivo effects of the three lactobacilli on growth performance and to compare the differential effects of the strains on the faecal microbiota and ileum mucosa proteomics of piglets. Three hundred and sixty piglets were assigned to one of four treatments, which included an antibiotics-treated control and three experimental groups supplemented with the three lactobacilli, L. salivarius G1-1, L. reuteri G8-5 and L. reuteri G22-2, respectively. Piglets were weighed and the feed intake was recorded to compare the growth performance. The faecal lactobacilli and coliform was quantified using quantitative PCR and the faecal microbiota was profiled by denaturing gradient gel electrophoresis (DGGE). The proteomic approach was applied to compare the differential expression of proteins in the ileum mucosa. No statistical difference was found among the three Lactobacillus -treated groups in animal growth performance compared with the antibiotics-treated group ( P  > 0.05). Supplementation of lactobacilli in diets significantly increased the relative 16S rRNA gene copies of Lactobacillus genus on both d 14 and d 28 ( P  < 0.05)., and the bacterial community profiles based on DGGE from the lactobacilli-treated groups were distinctly different from the antibiotics-treated group ( P  < 0.05). The ileum mucosa of piglets responded to all Lactobacillus supplementation by producing more newly expressed proteins and the identified proteins were all associated with the functions beneficial for stabilization of cell structure. Besides, some other up

  8. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo.

    PubMed

    Harlow, Brittany E; Lawrence, Laurie M; Harris, Patricia A; Aiken, Glen E; Flythe, Michael D

    2017-01-01

    Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of exogenous lactobacilli on pH and the growth of amylolytic and lactate-utilizing bacteria. Feces were collected from 3 mature geldings fed grass hay with access to pasture. Fecal microbes were harvested by differential centrifugation, washed, and re-suspended in anaerobic media containing ground corn, wheat, or oats at 1.6% (w/v) starch and one of five treatments: Control (substrate only), L. acidophilus, L. buchneri, L. reuteri, or an equal mixture of all three (107 cells/mL, final concentration). After 24 h of incubation (37°C, 160 rpm), samples were collected for pH and enumerations of total amylolytics, Group D Gram-positive cocci (GPC; Enterococci, Streptococci), lactobacilli, and lactate-utilizing bacteria. Enumeration data were log transformed prior to ANOVA (SAS, v. 9.3). Lactobacilli inhibited pH decline in corn and wheat fermentations (P < 0.0001). Specifically, addition of either L. reuteri or L. acidophilus was most effective at mitigating pH decline with both corn and wheat fermentation, in which the greatest acidification occurred (P < 0.05). Exogenous lactobacilli decreased amylolytics, while increasing lactate-utilizers in corn and wheat fermentations (P < 0.0001). In oat fermentations, L. acidophilus and L. reuteri inhibited pH decline and increased lactate-utilizers while decreasing amylolytics (P < 0.0001). For all substrates, L. reuteri additions (regardless of viability) had the lowest number of GPC and the highest number of lactobacilli and lactate-utilizers (P < 0.05). There were no additive effects when lactobacilli were mixed. Exogenous lactobacilli decreased the initial (first 8 h) rate of starch catalysis when wheat was the substrate, but did not

  9. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis.

    PubMed

    Razzak, Mohammad Sabri A; Al-Charrakh, Alaa H; Al-Greitty, Bara Hamid

    2011-04-01

    Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria

  10. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis

    PubMed Central

    Razzak, Mohammad Sabri A.; Al-Charrakh, Alaa H.; AL-Greitty, Bara Hamid

    2011-01-01

    Background: Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. Aim: The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. Materials and Methods: In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results: Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. Conclusion: The types of antibiotics used to treat vaginitis must be very

  11. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo

    PubMed Central

    Harlow, Brittany E.; Lawrence, Laurie M.; Harris, Patricia A.; Aiken, Glen E.

    2017-01-01

    Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of exogenous lactobacilli on pH and the growth of amylolytic and lactate-utilizing bacteria. Feces were collected from 3 mature geldings fed grass hay with access to pasture. Fecal microbes were harvested by differential centrifugation, washed, and re-suspended in anaerobic media containing ground corn, wheat, or oats at 1.6% (w/v) starch and one of five treatments: Control (substrate only), L. acidophilus, L. buchneri, L. reuteri, or an equal mixture of all three (107 cells/mL, final concentration). After 24 h of incubation (37°C, 160 rpm), samples were collected for pH and enumerations of total amylolytics, Group D Gram-positive cocci (GPC; Enterococci, Streptococci), lactobacilli, and lactate-utilizing bacteria. Enumeration data were log transformed prior to ANOVA (SAS, v. 9.3). Lactobacilli inhibited pH decline in corn and wheat fermentations (P < 0.0001). Specifically, addition of either L. reuteri or L. acidophilus was most effective at mitigating pH decline with both corn and wheat fermentation, in which the greatest acidification occurred (P < 0.05). Exogenous lactobacilli decreased amylolytics, while increasing lactate-utilizers in corn and wheat fermentations (P < 0.0001). In oat fermentations, L. acidophilus and L. reuteri inhibited pH decline and increased lactate-utilizers while decreasing amylolytics (P < 0.0001). For all substrates, L. reuteri additions (regardless of viability) had the lowest number of GPC and the highest number of lactobacilli and lactate-utilizers (P < 0.05). There were no additive effects when lactobacilli were mixed. Exogenous lactobacilli decreased the initial (first 8 h) rate of starch catalysis when wheat was the substrate, but did not

  12. Effect of storage time and temperature of equine feces on the subsequent enumeration of lactobacilli and cellulolytic bacteria

    USDA-ARS?s Scientific Manuscript database

    Cellulolytic bacteria and lactobacilli are beneficial microbes in the equine hindgut. There are several existing methodologies for the enumeration of these bacteria, which vary based on selective and differential media and sample handling procedures including storage time and temperature. The object...

  13. Effects of vaginal lactobacilli in Chlamydia trachomatis infection.

    PubMed

    Mastromarino, Paola; Di Pietro, Marisa; Schiavoni, Giovanna; Nardis, Chiara; Gentile, Massimo; Sessa, Rosa

    2014-07-01

    Increasing evidence indicates that abnormal vaginal flora lacking lactobacilli facilitates the acquisition of several sexually transmitted diseases including Chlamydia trachomatis. C. trachomatis, the most common bacterial agent of genital infections worldwide, can progress from the lower to upper reproductive tract and induce severe sequelae. The ability of C. trachomatis to develop into a persistent form has been suggested as key pathogenetic mechanism underlying chronic infections and sequelae. The aim of our study was to investigate the C. trachomatis interaction with vaginal microbiota analyzing the effects of Lactobacillus strains (L. brevis and L. salivarius) on the different phases of C. trachomatis developmental cycle. In addition, the effect of lactobacilli on persistent chlamydial forms induced by HSV-2 coinfection has also been evaluated. Our results demonstrated significant inhibition of C. trachomatis multiplication by vaginal lactobacilli. L. brevis was significantly more effective than L. salivarius (p<0.05) on all the steps of chlamydial infection cycle suggesting that the ability of lactobacilli to protect from infection is strain-dependent. Lactobacilli had an adverse effect on elementary chlamydial bodies (p<0.05), on chlamydial adsorption to epithelial cells (p<0.001) and on intracellular phases of chlamydial replication (p<0.0001). Our study also demonstrated a protective effect of lactobacilli toward persistent C. trachomatis forms induced by HSV-2 coinfection. A significant increase in the production of C. trachomatis infectious progeny was observed in C. trachomatis/HSV-2 coinfection in the presence of L. brevis (p=0.01) despite a significant inhibition of C. trachomatis multiplication (p=0.028). Our data suggest that a healthy vaginal microbiota can reduce the risk of acquiring C. trachomatis infection and counteract the development of persistent chlamydial forms. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Low-voltage differentially-signaled modulators.

    PubMed

    Zortman, William A; Lentine, Anthony L; Trotter, Douglas C; Watts, Michael R

    2011-12-19

    For exascale computing applications, viable optical solutions will need to operate using low voltage signaling and with low power consumption. In this work, the first differentially signaled silicon resonator is demonstrated which can provide a 5dB extinction ratio using 3fJ/bit and 500mV signal amplitude at 10Gbps. Modulation with asymmetric voltage amplitudes as low as 150mV with 3dB extinction are demonstrated at 10Gbps as well. Differentially signaled resonators simplify and expand the design space for modulator implementation and require no special drivers.

  15. Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila melanogaster Insect Model.

    PubMed

    Daisley, Brendan A; Trinder, Mark; McDowell, Tim W; Collins, Stephanie L; Sumarah, Mark W; Reid, Gregor

    2018-05-01

    metabolism and toxic outcomes of environmental pollutants such as pesticides. This study focused specifically on how the microbial biotransformation of chlorpyrifos (CP; a common organophosphate insecticide) affected host exposure and toxicity parameters in a Drosophila melanogaster insect model. Our results demonstrate that the biotransformation of CP by the gut microbiota had biologically relevant and toxic consequences on host health and that certain probiotic lactobacilli may be beneficial in reducing CP toxicity. Since inadvertent pesticide exposure is suspected to negatively impact the health of off-target species, these findings may provide useful information for wildlife conservation and environmental sustainability planning. Furthermore, the results highlight the need to consider microbiota composition differences between beneficial and pest insects in future insecticide designs. More broadly, this study supports the use of beneficial microorganisms to modulate the microbiota-mediated biotransformation of xenobiotics. Copyright © 2018 American Society for Microbiology.

  16. [Symbiotic interactions of corynebacteria and lactobacilli in realization of oxidative mechanisms of antagonism].

    PubMed

    Cherkasov, S V; Gladysheva, I V; Bukharin, O V

    2012-01-01

    Study the interaction of vaginal corynebacteria and lactobacilli in realization of oxidative mechanism of antagonistic relations of bacteria. Effect of supernatants of corynebacteria inhibiting catalase on antagonism of peroxide producing lactobacilli to Staphylococcus aureus was studied. High frequency (55.5 - 72.7%) of potentiating of antagonism of lactobacilli with medium and high level of hydrogen peroxide production under the effect of supernatants of corynebacteria inhibiting catalase was established. The frequency of potentiation of antagonism of lactobacilli and corynebacteriae depended on the intensity of hydrogen peroxide production and on the ability of corynebacteria to suppress catalase of staphylococci. Potentiation of antagonism to S. aureus of peroxide producing lactobacilli and corynebacteria with catalase inhibitors gives evidence on realization of oxidative bacterial mechanism of colonization resistance in human organism.

  17. Prophylactic co-trimoxazole and lactobacilli preparation in neutropenic patients.

    PubMed

    Ekert, H; Jurk, I H; Waters, K D; Tiedemann, K

    1980-01-01

    A randomized study of intestinal decontamination was undertaken in 68 children with leukemia and solid tumours. Framycetin, colymycin, nystatin, and metronidazole were given in 35 neutropenic episodes in 33 children, while co-trimoxazole and lactobacilli preparation were administered in 35 episodes in 35 children. The diseases, severity of neutropenia, and incidence of infection at entry into study were comparable in the two groups. There was no significant difference in the incidence of infections developing during the phase of neutropenia. The median and range of time required to recover from neutropenia were also not different. Co-trimoxazole and lactobacilli were significantly better tolerated, there being no nausea and vomiting, no refusal to take medication, no dose reduction or change to an alternative regimen. We conclude that co-trimoxazole and lactobacilli preparation improve quality of life during a neutropenic episode and have the additional advantage of being relatively inexpensive.

  18. Catabolic flexibility of mammalian-associated lactobacilli

    PubMed Central

    2013-01-01

    Metabolic flexibility may be generally defined as “the capacity for the organism to adapt fuel oxidation to fuel availability”. The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus. PMID:23680304

  19. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response.

    PubMed

    Younes, Jessica A; Reid, Gregor; van der Mei, Henny C; Busscher, Henk J

    2016-06-01

    ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Specificity between Lactobacilli and Hymenopteran Hosts Is the Exception Rather than the Rule

    PubMed Central

    Cannone, Jamie J.; Gutell, Robin R.; Kellner, Katrin; Plowes, Robert M.; Mueller, Ulrich G.

    2013-01-01

    Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice. PMID:23291551

  1. Impact of oral Lactobacillus acidophilus gavage on rooster seminal and cloacal Lactobacilli concentrations.

    PubMed

    Kiess, A S; Hirai, J H; Triplett, M D; Parker, H M; McDaniel, C D

    2016-08-01

    The use of antibiotics in poultry is being heavily scrutinized, therefore alternatives such as probiotics are being investigated. Lactobacilli spp. are a commonly used bacteria in formulating probiotics, and the addition of Lactobacilli to broiler diets has demonstrated increased growth rates, stimulated immune systems, and reduced pathogen loads in the gastro-intestinal tract ( GI: ) tract. However, previous research has shown that when rooster semen is directly exposed to Lactobacillus acidophilus (L. acidophilus) sperm quality is reduced. Therefore, the objective of the current study was to determine if oral administration of L. acidophilus increases the concentration of Lactobacilli in semen as well as the cloaca. A total of 30 roosters were used: 15 roosters were gavaged with 1X PBS (Control) and 15 roosters were gavaged with 10(7) cfu/mL of L. acidophilus (Treated). All roosters were gavaged for 14 consecutive days. Semen was collected on a 3 d interval, and cloacal swabs were collected on a 2 d interval, beginning on the first day prior to oral administration. Semen and cloacal swabs were serial diluted, and 100 μL of each dilution was then plated on Man, Rogosa, Sharpe ( MRS: ) agar plates. All plates were incubated for 48 h at 37°C under anaerobic conditions and counted. All Lactobacilli counts were first log transformed, then log transformed (day 0) pre-counts were subtracted from the log transformed day counts providing log differences for the analysis. Seminal Lactobacilli counts were not altered by treatments. However, the main effect of treatment (P = 0.026) for cloacal counts indicated that roosters gavaged with Lactobacilli yielded higher counts than the controls. Additionally, cloaca samples also demonstrated a treatment by day interaction trend (P = 0.082), where Lactobacilli was higher in the L. acidophilus gavaged roosters than the controls only on days 3, 5, 13, and 15. In conclusion, the addition of L. acidophilus to the male breeder diet

  2. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique?

    PubMed

    Miller, Elizabeth A; Beasley, DeAnna E; Dunn, Robert R; Archie, Elizabeth A

    2016-01-01

    The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus , which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies ( N = 21 mammals for pH and 14 mammals for lactobacilli relative abundance). We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4-7.8). Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli relative abundance and multiple metrics of STD or birth injury risk ( P -values ranged from 0.13 to 0.99). Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non

  3. (GTG)(5)-PCR fingerprinting of lactobacilli isolated from cervix of healthy women.

    PubMed

    Svec, P; Sedláček, I; Chrápavá, M; Vandamme, P

    2011-01-01

    A group of lactobacilli isolated from the cervix of 31 healthy women was characterized by (GTG)(5)-polymerase chain reaction (PCR) fingerprinting in order to evaluate this method for identification of vaginal lactobacilli. Obtained fingerprints were compared with profiles available in an in-house database of the CCM bacteria collection covering type and reference strains of multiple lactic acid bacteria including lactobacilli. Selected strains representing individual clusters were further identified by pheS gene sequencing. In total, six lactobacillus species were found among lactobacilli isolated from the cervix of healthy women. The (GTG)(5)-PCR method identified Lactobacillus gasseri (11 strains), Lactobacillus fermentum (one), and some of the Lactobacillus jensenii strains (eight out of 11), but failed to identify the remaining strains, including the Lactobacillus crispatus (18), Lactobacillus mucosae (one), and Lactobacillus vaginalis (one) species. L. jensenii strains were distributed over two fingerprint clusters. The majority of samples was dominated by one (GTG)(5)-PCR type. The rep-PCR fingerprinting using the (GTG)(5) primer allowed straightforward identification of many, but not all, isolates. This method has been shown to be a useful tool for fast screening and grouping of vaginal lactobacilli, but its combination with another identification method is needed to obtain reliable identification results. In addition, Lactobacillus acidophilus was not shown to be the most common inhabitant of the female genital tract as generally assumed.

  4. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique?

    PubMed Central

    Miller, Elizabeth A.; Beasley, DeAnna E.; Dunn, Robert R.; Archie, Elizabeth A.

    2016-01-01

    The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus, which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies (N = 21 mammals for pH and 14 mammals for lactobacilli relative abundance). We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4–7.8). Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli relative abundance and multiple metrics of STD or birth injury risk (P-values ranged from 0.13 to 0.99). Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non

  5. Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon.

    PubMed

    Al Kassaa, Imad; Hamze, Monzer; Hober, Didier; Chihib, Nour-Eddine; Drider, Djamel

    2014-04-01

    The aim of this work was to study the diversity of vaginal lactobacilli in Lebanese women and to evaluate the antagonism, hydrophobicity, and safety characteristics of these strains. This study was performed on samples from 135 women who visited a gynecology clinic in the north of Lebanon, between September 2012 and January 2013. From these samples, 53 different isolates of vaginal lactobacilli were collected from vaginal swabs and identified using biochemical and molecular methods. The use of genotypic Rep-PCR fingerprinting allowed for the organization of these isolates into 23 different groups. Seven of the isolated lactobacilli were antagonistic against the following vaginal pathogens: Gardnerella vaginalis CIP7074T, Staphylococcus aureus ATCC33862, Escherichia coli CIP103982, and Candida albicans ATCC10231. The antagonistic lactobacilli strains were then identified using 16S rDNA sequence. The data of this study show that the antagonistic lactobacilli were non-hemolytic, sensitive to most antibiotic tests, free of plasmid DNA, and exhibited interesting hydrophobicity and autoaggregation properties positioning them as potential candidates for probiotic design.

  6. Differential Effect of Lactobacillus johnsonii BFE 6128 on Expression of Genes Related to TLR Pathways and Innate Immunity in Intestinal Epithelial Cells.

    PubMed

    Seifert, Stephanie; Rodriguez Gómez, Manuel; Watzl, Bernhard; Holzapfel, Wilhelm H; Franz, Charles M A P; Vizoso Pinto, María G

    2010-12-01

    Probiotics have been shown to enhance immune defenses, but their mechanisms of action are only partially understood. We investigated the modulation of signal pathways involved in innate immunity in enterocytes by Lactobacillus johnsonii BFE 6128 isolated from 'Kule naoto', a Maasai traditional fermented milk product. This lactobacillus sensitized HT29 intestinal epithelial cells toward recognition of Salmonella enterica serovar Typhimurium by increasing the IL-8 levels released after challenge with this pathogen and by differentially modulating genes related to toll-like receptor (TLR) pathways and innate immunity. Thus, the modulation of pro-inflammatory mediators and TLR-pathway-related molecules may be an important mechanism contributing to the potential stimulation of innate immunity by lactobacilli at the intestinal epithelial level.

  7. Antibiotic resistances of intestinal lactobacilli isolated from wild boars.

    PubMed

    Klose, Viviana; Bayer, Katharina; Kern, Corinna; Goelß, Florian; Fibi, Silvia; Wegl, Gertrude

    2014-01-10

    Acquired antibiotic resistances have been reported in lactobacilli of various animal and food sources, but there are no data from wild boar. The objective was a preliminary examination of the antibiotic resistance prevalence of intrinsically vancomycin-resistant lactobacilli isolated from wild boar intestines and analysis of the genetic determinants implicated. Out of three wild boars, 121 lactobacilli were recovered and grouped according to their whole cell protein patterns. Initial phenotypic screening revealed that all were susceptible to erythromycin (2 μg/ml), but 30 were resistant to tetracycline (32 μg/ml). Based on Randomly Amplified Polymorphic DNA-PCR clustering, 64 strains were selected as representative genotypes for identification and minimum inhibitory concentration (MIC) determination. Partial 16S rRNA gene sequencing identified four species: (i) L. mucosae (n=57), (ii) L. reuteri (n=47), (iii) L. fermentum (n=12), and (iv) L. murinus (n=5). Most heterofermentative strains displayed low MICs for ampicillin (AMP), chloramphenicol (CHL), streptomycin (STR), kanamycin (KAN), gentamicin (GEN), erythromycin (ERY), quinupristin/dalfopristin (Q/D), and clindamycin (CLI). Atypical MICs were found mainly in L. mucosae and L. reuteri for TET, KAN, STR, AMP and CHL, but except the TET MICs of L. mucosae mostly at low level. L. murinus strains revealed atypical MICs for aminoglycosides, and/or CHL, AMP, CLI. PCR screening detected tet(W) in 12 and tet(M) in one of heterofermentative strains, as well as the aph(3')-III kanamycin gene in L. murinus. This is the first report showing acquired antibiotic resistance determinants in intestinal lactobacilli of wild boar origin. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Characterization of homofermentative lactobacilli isolated from kefir grains: potential use as probiotic.

    PubMed

    Golowczyc, Marina A; Gugliada, Maria J; Hollmann, Axel; Delfederico, Lucrecia; Garrote, Graciela L; Abraham, Analía G; Semorile, Liliana; De Antoni, Graciela

    2008-05-01

    Considering that several health promoting properties are associated with kefir consumption and a reliable probiotic product requires a complete identification of the bacterial species, the present work evaluates several proved markers of probiotic potential of eleven isolates of homofermentative lactobacilli isolated from kefir grains and molecular identification and genotypic diversity. Using restriction analysis of amplified ribosomal DNA (ARDRA) and analysis of the 16S-23S rRNA internal spacer region we confirmed that all homofermentative lactobacilli belong to the species Lactobacillus plantarum. RAPD-PCR analysis allowed the discrimination of lactobacilli in five clusters. All isolates exhibited high resistance to bile salt. High survival after one hour of exposure to pH 2.5 was observed in Lb. plantarum CIDCA 8313, 83210, 8327 and 8338. All isolates were hydrophilic and non autoaggregative. Isolate CIDCA 8337 showed the highest percentage of adhesion among strains. All tested lactobacilli had strong inhibitory power against Salmonella typhimurium and Escherichia coli. Seven out of eleven isolates showed inhibition against Sal. enterica and five isolates were effective against Sal. gallinarum. Only CIDCA 8323 and CIDCA 8327 were able to inhibit Sal. sonnei. We did not find any correlation between the five clusters based on RAPD-PCR and the probiotic properties, suggesting that these isolates have unique characteristics.

  9. Association between salivary level of infection with Streptococcus mutans/Lactobacilli and caries-risk factors in mothers.

    PubMed

    Latifi-Xhemajli, B; Véronneau, J; Begzati, A; Bytyci, A; Kutllovci, T; Rexhepi, A

    2016-03-01

    Understanding factors in mothers associated with high and low salivary levels of Streptococcus mutans and Lactobacilli is an important strategy for early childhood caries prevention. Aim of the study was to identify the association between salivary levels of Streptococcus mutans/Lactobacillus and potential caries risk factors in mothers. Cross-sectional design used a voluntary sample of 300 mothers of young children. Close-ended questions and observations were used to identify mothers' potential caries risk factors. The presence of Streptococcus mutans and Lactobacilli was determined using the CRT bacteria test (Ivoclar Vivadent). All collected information was converted into frequency and proportion describing the prevalence factor in correlation with Streptococcus mutans and Lactobacilli cariogenic bacteria levels of infection. Results Sample participants showed a high caries risk based on socioeconomic, behavioural and clinical factors. also showed high levels (>105) of Streptococcus mutans and Lactobacilli infections among 28% of mothers. Three factors were significantly associated with Streptococcus mutans infection: level of education, past caries experiences, and observable dental plaque, whereas, a fourth factor, frequency of daily tooth brushing, was associated to Lactobacilli infection. This study showed that easily collectible informations such as maternal level of education, frequency of daily tooth brushing and past clinical factors tend to be associated with high level of Streptococcus mutans and Lactobacilli infections in caregivers.

  10. Lactobacilli in the female genital tract in relation to other genital microbes and vaginal pH.

    PubMed

    Rönnqvist, Per Daniel Johannes; Forsgren-Brusk, Ulla Birgitta; Grahn-Håkansson, Eva Elisabeth

    2006-01-01

    The relationship between lactobacilli and other microbes and the association with vaginal pH in the female genital tract were examined. The study also included evaluation of the possibility of supplying probiotics to the genital tract by using panty liners impregnated with the probiotic strain Lactobacillus plantarum LB931. This was a randomized, placebo-controlled, double-blind, multicenter study involving 191 healthy fertile women. Specified microbes were counted and vaginal pH was measured once a month for five consecutive months. Major individual variations in the genital microflora composition and the vaginal pH were found among the women. The number of lactobacilli was significantly related to vaginal pH (p<0.001) and approximately 70% of the women were permanent carriers of individual lactobacilli strains. Women with high numbers of lactobacilli were less prevalent with Group B streptococci than women with low numbers (p=0.036), and these women had a lower mean vaginal pH. The number of lactobacilli also correlated with the prevalence of yeast. LB931 could be found in 86% of the labial samples and 54% of the vaginal samples. High numbers of lactobacilli may contribute to a low vaginal pH and seem to have a negative influence on Group B streptococci. LB931 could be transferred from the panty liners to both the vagina and the labial fold.

  11. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-14-1-0292 TITLE: Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters PRINCIPAL...Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and...29 Jul 2016 4. TITLE AND SUBTITLE Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters 5a. CONTRACT NUMBER

  12. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera.

    PubMed

    Sun, Zhihong; Harris, Hugh M B; McCann, Angela; Guo, Chenyi; Argimón, Silvia; Zhang, Wenyi; Yang, Xianwei; Jeffery, Ian B; Cooney, Jakki C; Kagawa, Todd F; Liu, Wenjun; Song, Yuqin; Salvetti, Elisa; Wrobel, Agnieszka; Rasinkangas, Pia; Parkhill, Julian; Rea, Mary C; O'Sullivan, Orla; Ritari, Jarmo; Douillard, François P; Paul Ross, R; Yang, Ruifu; Briner, Alexandra E; Felis, Giovanna E; de Vos, Willem M; Barrangou, Rodolphe; Klaenhammer, Todd R; Caufield, Page W; Cui, Yujun; Zhang, Heping; O'Toole, Paul W

    2015-09-29

    Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.

  13. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera

    PubMed Central

    Sun, Zhihong; Harris, Hugh M. B.; McCann, Angela; Guo, Chenyi; Argimón, Silvia; Zhang, Wenyi; Yang, Xianwei; Jeffery, Ian B; Cooney, Jakki C.; Kagawa, Todd F.; Liu, Wenjun; Song, Yuqin; Salvetti, Elisa; Wrobel, Agnieszka; Rasinkangas, Pia; Parkhill, Julian; Rea, Mary C.; O'Sullivan, Orla; Ritari, Jarmo; Douillard, François P.; Paul Ross, R.; Yang, Ruifu; Briner, Alexandra E.; Felis, Giovanna E.; de Vos, Willem M.; Barrangou, Rodolphe; Klaenhammer, Todd R.; Caufield, Page W.; Cui, Yujun; Zhang, Heping; O'Toole, Paul W.

    2015-01-01

    Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species. PMID:26415554

  14. Role of Indigenous Lactobacilli in Gastrin-Mediated Acid Production in the Mouse Stomach ▿

    PubMed Central

    Takahashi, Hidenori; Nakano, Yasuhiro; Matsuoka, Takashi; Kumaki, Nobue; Asami, Yukio; Koga, Yasuhiro

    2011-01-01

    It is known that the stomach is colonized by indigenous lactobacilli in mice. The aim of this study was to examine the role of such lactobacilli in the development of the stomach. For a DNA microarray analysis, germ-free BALB/c mice were orally inoculated with 109 CFU lactobacilli, and their stomachs were excised after 10 days to extract RNA. As a result, lactobacillus-associated gnotobiotic mice showed dramatically decreased expression of the gastrin gene in comparison to germ-free mice. The mean of the log2 fold change in the gastrin gene was −4.3. Immunohistochemistry also demonstrated the number of gastrin-positive (gastrin+) cells to be significantly lower in the lactobacillus-associated gnotobiotic mice than in the germ-free mice. However, there was no significant difference in the number of somatostatin+ cells in these groups of mice. Consequently, gastric acid secretion also decreased in the mice colonized by lactobacilli. In addition, an increase in the expression of the genes related to muscle system development, such as nebulin and troponin genes, was observed in lactobacillus-associated mice. Moreover, infection of germ-free mice with Helicobacter pylori also showed the down- and upregulation of gastrin and muscle genes, respectively, in the stomach. These results thus suggested that indigenous lactobacilli in the stomach significantly affect the regulation of gastrin-mediated gastric acid secretion without affecting somatostatin secretion in mice, while H. pylori also exerts such an effect on the stomach. PMID:21803885

  15. Effect of Lactobacilli on Paracellular Permeability in the Gut

    PubMed Central

    Ahrne, Siv; Hagslatt, Marie-Louise Johansson

    2011-01-01

    Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells. PMID:22254077

  16. Effect of lactobacilli on paracellular permeability in the gut.

    PubMed

    Ahrne, Siv; Hagslatt, Marie-Louise Johansson

    2011-01-01

    Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells.

  17. In Vitro Activity of Lactobacilli with Probiotic Potential Isolated from Cocoa Fermentation against Gardnerella vaginalis

    PubMed Central

    Pessoa, Wallace Felipe Blohem; Melgaço, Ana Clara Correia; Ramos, Louise Pereira; Rezende, Rachel Passos

    2017-01-01

    Study of the probiotic potential of microorganisms isolated from fermented foods has been increasing, especially studies related to lactobacilli. In intestinal models, lactobacilli have demonstrated beneficial properties, such as anti-inflammatory activity and increased antibody production, but the molecular mechanisms involving probiotic and antagonistic action as well as their effect on human vaginal cells have not yet been fully elucidated. The aim of this study was to evaluate the functional and antagonistic properties of three strains of lactobacilli isolated from cocoa fermentation (Lactobacillus fermentum 5.2, L. plantarum 6.2, and L. plantarum 7.1) against Gardnerella vaginalis. Our results show that the lactobacilli have potential use as probiotics, since they have high hydrophobicity and autoaggregation properties and effectively adhere to vaginal cells. Metabolites secreted into the culture medium and whole cells of the strains under study are capable of interfering with the growth of G. vaginalis to different degrees. The elucidation of the antagonistic mechanisms as well as their effect on human cells may be useful in the development of a product containing such microorganisms or products secreted by them. PMID:29226130

  18. The role of lactobacilli and probiotics in maintaining vaginal health.

    PubMed

    Borges, Sandra; Silva, Joana; Teixeira, Paula

    2014-03-01

    The vaginal microbiota of healthy women consists typically of a diversity of anaerobic and aerobic microorganisms. Lactobacilli are the most prevalent and often numerically dominant microorganisms and are relevant as a barrier to infection. The capacity of lactobacilli to adhere and compete for adhesion sites in the vaginal epithelium and the capacity to produce antimicrobial compounds (hydrogen peroxide, lactic acid, bacteriocin-like substances), are important in the impairment of colonization by pathogens. This review summarizes the role of lactic acid bacteria in preventing illness of the host, including bacterial vaginosis, yeast vaginitis, urinary tract infection and sexually transmitted diseases. The administration of probiotics that colonize the vaginal tract can be important in maintaining a normal urogenital health and also to prevent or treat infections.

  19. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  20. Characterisation of probiotic properties in human vaginal lactobacilli strains

    PubMed Central

    Hütt, Pirje; Lapp, Eleri; Štšepetova, Jelena; Smidt, Imbi; Taelma, Heleri; Borovkova, Natalja; Oopkaup, Helen; Ahelik, Ave; Rööp, Tiiu; Hoidmets, Dagmar; Samuel, Külli; Salumets, Andres; Mändar, Reet

    2016-01-01

    Background Vaginal lactobacilli offer protection against recurrent urinary infections, bacterial vaginosis, and vaginal candidiasis. Objective To characterise the isolated vaginal lactobacilli strains for their probiotic properties and to compare their probiotic potential. Methods The Lactobacillus strains were isolated from vaginal samples by conventional culturing and identified by sequencing of the 16S rDNA fragment. Several functional properties were detected (production of hydrogen peroxide and lactic acid; antagonistic activity against Escherichia coli, Candida albicans, Candida glabrata, and Gardnerella vaginalis; auto-aggregation and adhesiveness) as well as safety (haemolytic activity, antibiotic susceptibility, presence of transferrable resistance genes). Results A total of 135 vaginal lactobacilli strains of three species, Lactobacillus crispatus (56%), Lactobacillus jensenii (26%), and Lactobacillus gasseri (18%) were characterised using several functional and safety tests. Most of L. crispatus (89%) and L. jensenii (86%) strains produced H2O2. The best lactic acid producers were L. gasseri (18.2±2.2 mg/ml) compared to L. crispatus (15.6±2.8 mg/ml) and L. jensenii (11.6±2.6 mg/ml) (p<0.0001; p<0.0001, respectively). L. crispatus strains showed significantly higher anti-E. coli activity compared to L. jensenii. L. gasseri strains expressed significantly lower anticandidal activity compared to L. crispatus and L. jensenii (p<0.0001). There was no significant difference between the species in antagonistic activity against G. vaginalis. Nearly a third of the strains were able to auto-aggregate while all the tested strains showed a good ability to adhere to HeLa cells. None of the tested lactobacilli caused haemolysis. Although phenotypical resistance was not found to ampicillin, chloramphenicol, erythromycin, gentamycin, tetracycline, and vancomycin, the erm(B), tet(M), and tet(K) were detected in some strains. All strains were resistant to metronidazole

  1. [Lectins, adhesins, and lectin-like substances of lactobacilli and bifidobacteria].

    PubMed

    Lakhtin, V M; Aleshkin, V A; Lakhtin, M V; Afanas'ev, S S; Pospelova, V V; Shenderov, B A

    2006-01-01

    Cell-surface adhesion factors of lactobacilli and bifidobacteria, such as lectin/adhesin proteins of S-layers, secreted lectin-like bacteriocins, and lectin-like complexes, are considered and classified in the article. Certain general and specific properties of these factors are noted, such as in vitro and in vivo adhesion, cell co(aggregation), participation in the forming of microbial biofilms and colonization of mammalian alimentary tract, as well as complexation with biopolymers and bioeffectors, specificity to glycanes and natural glycoconjugates, domain and spatial organization of adhesion factors, co-functioning with other cytokines (pro- and anti-inflammatory ones), regulation of target cell properties, and other biological and physiological activities. The authors also note possibilities of application of lectins and lectin-like proteins of probiotic strains of lactobacilli and bifidobacteria in medicine and biotechnology.

  2. Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli

    PubMed Central

    Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Sato, Nana; Nochi, Tomonori; Aso, Hisashi; Salva, Susana; Alvarez, Susana; Kitazawa, Haruki; Villena, Julio

    2017-01-01

    Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host–immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN-α and IFN-β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors (IFN-α, IFN-β, NPLR3, OAS1, OASL, MX2, and RNASEL) and cytokines/chemokines (IL-1β, IL-6, CCL4, CCL5, and CXCL10) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES, and PTGS2 that are involved in prostaglandin E2 biosynthesis. L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo. These results provided valuable information for the deeper understanding of the host–immunobiotic interaction and their

  3. Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli.

    PubMed

    Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Sato, Nana; Nochi, Tomonori; Aso, Hisashi; Salva, Susana; Alvarez, Susana; Kitazawa, Haruki; Villena, Julio

    2017-01-01

    Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host-immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN- α and IFN- β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors ( IFN- α, IFN- β, NPLR3, OAS1, OASL, MX2 , and RNASEL ) and cytokines/chemokines ( IL-1 β, IL-6, CCL4, CCL5 , and CXCL10 ) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES , and PTGS2 that are involved in prostaglandin E2 biosynthesis . L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo . These results provided valuable information for the deeper understanding of the host-immunobiotic interaction

  4. Lactobacilli-lactoferrin interplay in Chlamydia trachomatis infection.

    PubMed

    Sessa, Rosa; Di Pietro, Marisa; Filardo, Simone; Bressan, Alessia; Mastromarino, Paola; Biasucci, Alessandra Vittoria; Rosa, Luigi; Cutone, Antimo; Berlutti, Francesca; Paesano, Rosalba; Valenti, Piera

    2017-07-31

    In the cervicovaginal microenvironment, lactobacilli are known to protect against genital infections and, amongst the host defence compounds, lactoferrin has recently acquired importance for its anti-microbial and anti-inflammatory properties. An abnormal genital microenvironment facilitates the acquisition of pathogens like Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections worldwide. The aim of our study is to investigate the effects of Lactobacillus crispatus, Lactobacillus brevis and bovine lactoferrin on chlamydial infection, in order to shed light on the complex interplay between host defence mechanisms and C. trachomatis. We have also evaluated the effect of these defence factors to modulate the chlamydia-mediated inflammatory state. To this purpose, we have determined the infectivity and progeny production of C. trachomatis as well as interleukin-8 and interleukin-6 synthesis. The main result of our study is that the combination of L. brevis and bovine lactoferrin is the most effective in inhibiting the early phases (adhesion and invasion) of C. trachomatis infection of cervical epithelial cells and in decreasing the levels of both cytokines. In conclusion, the interaction between L. brevis and lactoferrin seems to play a role in the protection against C. trachomatis, reducing the infection and regulating the immunomodulatory activity, thus decreasing the risk of severe complications. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The Role of Cell Surface Architecture of Lactobacilli in Host-Microbe Interactions in the Gastrointestinal Tract

    PubMed Central

    Altermann, Eric; Anderson, Rachel C.; McNabb, Warren C.; Moughan, Paul J.; Roy, Nicole C.

    2013-01-01

    Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health. PMID:23576850

  6. Antagonistic activities of some probiotic lactobacilli culture supernatant on Serratia marcescens swarming motility and antibiotic resistance.

    PubMed

    Vahedi-Shahandashti, Roya; Kasra-Kermanshahi, Rouha; Shokouhfard, Maliheh; Ghadam, Parinaz; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2017-12-01

    Serratia marcescens , a potentially pathogenic bacterium, benefits from its swarming motility and resistance to antibiotic as two important virulence factors. Inappropriate use of antibiotics often results in drug resistance phenomenon in bacterial population. Use of probiotic bacteria has been recommended as partial replacement. In this study, we investigated the effects of some lactobacilli culture supernatant on swarming, motility and antibiotic resistance of S. marcescens . Antimicrobial activity of lactobacilli supernatant and susceptibility testing carried out on S. marcescens isolates. Pretreatment effect of lactobacilli culture supernatant on antibiotic - resistance pattern in S. marcescens was determined by comparison of the MIC of bacteria before and after the treatment. Our results showed that pretreatment with L. acidophilus ATCC 4356 supernatant can affect the resistance of Serratia strains against ceftriaxone, but it had no effect on the resistance to other antibiotics. Furthermore, culture supernatant of lactobacilli with concentrations greater than 2%, had an effect on the swarming ability of S. marcescens ATCC 13880 and inhibited it. Probiotic bacteria and their metabolites have the ability to inhibit virulence factors such as antibiotic resistance and swarming motility and can be used as alternatives to antibiotics.

  7. Vaginal pH and Microbicidal Lactic Acid When Lactobacilli Dominate the Microbiota

    PubMed Central

    O’Hanlon, Deirdre E.; Moench, Thomas R.; Cone, Richard A.

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid. PMID:24223212

  8. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    PubMed

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  9. [Influence of corynebacteria metabolites on antagonistic activity of H2O2 producing lactobacilli].

    PubMed

    Bukharin, O V; Sgibnev, A V

    2012-01-01

    Study combined influence of Corynebacterium genus bacteria metabolites and H2O2 producing lactobacilli on survival rate of Staphylococcus aureus, Escherichia coli and Lactobacillus acidophilus. The ability to inhibit catalase of the test strains used and to reduce bactericidal effect of hydroxyl radical were determined in corynebacteria. H2O2 containing metabolites were obtained by cultivating lactobacilli in mineral medium, the amount of H2O2 was determined by oxidation of TMB by peroxidase. Bactericidal effect of lactobacilli metabolites for test strains treated by corynebacteria metabolites was evaluated by seeding results. Results. Inhibitio by corynebacteria metabolites of S. aureus catalase activity by 30-40% and E. coli catalase activ ity by 40-70% was shown. A reduction of bactericidal effect of hydroxyl radicals by corynebacteria metabolites by 30-35% for S. aureus, 38-42% for E. coli and 70-73% for L. acidophilus was noted. The enchantment of bactericidal effect of lactobacilli after treatment of the test strain by corynebacteria metabolites against S. aureus and E. coli manifested by reduction of the numbe of viable cells by 2-3 lg CFU. For L. acidophilus the bactericidal effect oflactobacilli metabolite in the same conditions reduced, and that led to the increase ofviability by 2-4 lg PFU. A conclusion on the possibility of regulation by associative bacteria the manifestations of antagonistic activity of H2O2 producing dominant microorganisms is made based on the data obtained.

  10. Stimulation of indigenous lactobacilli by fermented milk prepared with probiotic bacterium, Lactobacillus delbrueckii subsp. bulgaricus strain 2038, in the pigs.

    PubMed

    Ohashi, Yuji; Tokunaga, Makoto; Taketomo, Naoki; Ushida, Kazunari

    2007-02-01

    The aim of this study was to evaluate the effect of feeding yoghurt, prepared with Lactobacillus delbrueckii subsp. bulgaricus strain 2038, on indigenous lactobacilli in the pig cecum. Three female pigs fistulated at the cecum were fed 250 g of this yoghurt that contained over 10(11) colony-forming units of L. delbrueckii subsp. bulgaricus strain 2038 with their daily meal for 2 wk. The relative abundance and the composition of cecal lactobacilli was monitored by analysis of bacterial 16S rDNA with real time PCR and amplified bacterial rDNA restriction analysis using Lactobacillus-group specific primers, respectively, for 2 wk prior to, at the end of 2 wk of and 2 wk after the administration of this yoghurt. The relative abundance of lactobacilli was significantly increased by feeding yoghurt (p<0.01), although the bacterial 16S rDNA matching L. delbrueckii subsp. bulgaricus strain 2038 was not detected by amplified bacterial rDNA restriction analysis during this study. The number of operational taxonomic units (OTUs) detected was increased with feeding of the yoghurt in all pigs. At the same time, the estimated cell number of each OTU was increased with feeding of the yoghurt. It is demonstrated that continuous consumption of the probiotic lactobacilli will stimulate the growth of some indigenous lactobacilli and alter the composition of the lactobacilli.

  11. Dynamic Network-Based Relevance Score Reveals Essential Proteins and Functional Modules in Directed Differentiation

    PubMed Central

    Wu, Chia-Chou; Lin, Che

    2015-01-01

    The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693

  12. Salivary mutans streptococci and lactobacilli modulations in young children on consumption of probiotic ice-cream containing Bifidobacterium lactis Bb12 and Lactobacillus acidophilus La5.

    PubMed

    Singh, Richa Polka; Damle, Satyawan Gangaram; Chawla, Amrita

    2011-11-01

    To compare the levels of mutans streptococci and lactobacilli in saliva of school children, before and after consumption of probiotic and control ice-cream. A double-blind, cross-over, placebo-controlled trial was carried out in forty, 12-14 year-old children, with no clinically detectable caries. The selected children were randomized equally into two groups I and II. Following an initial run-in period of 1 week, children in group I and II were given ice-creams 'A' and 'B', respectively, for 10 days. Being a cross-over study, the ice-creams were interchanged in the two groups after a 2-week wash-out period. Saliva samples at baseline and follow-up were assessed using Dentocult SM and Dentocult LB kits. On statistical evaluation, it was seen that probiotic ice-cream brought about a statistically significant reduction (p-value = 0.003) in salivary mutans streptococci levels with no significant effect on lactobacilli levels. In conclusion, probiotic ice-cream containing Bifidobacterium lactis Bb-12 ATCC27536 and Lactobacillus acidophilus La-5 can reduce the levels of certain caries-associated micro-organisms in saliva.

  13. Human lactobacilli as supplementation of clindamycin to patients with bacterial vaginosis reduce the recurrence rate; a 6-month, double-blind, randomized, placebo-controlled study

    PubMed Central

    2008-01-01

    Background The primary objective of this study was to investigate if supplementary lactobacilli treatment could improve the initial cure rate after vaginal clindamycin therapy, and secondly, if lactobacilli as repeated adjunct treatment during 3 menstrual cycles could lengthen the time to relapse after initial cure. Methods Women (n = 100) with bacterial vaginosis diagnosed by Amsel criteria were after informed consent offered vaginal clindamycin therapy followed by vaginal gelatine capsules containing either 109 freeze-dried lactobacilli or identical placebo capsules for 10 days during 3 menstrual cycles in a double-blind, randomized, placebo-controlled trial. Results The initial intent to treat (ITT) analysis for the one-month cure rate was 64% in the lactobacilli group and 78% in the placebo group (p > 0.05). However, any patient with missing or unclassified smears at the initial visit who continued the study and whose next smear indicated a cure was included in the cured group; the study also excluded two of the patients in the lactobacilli group who reported that they did not take any vaginal capsules. With consideration to these population changes, the initial cure rate would be 77% in the lactobacilli group. The 76 cured women were followed for 6 menstrual cycles or until relapse within that time span. At the end of the study, 64.9% (24/37) of the lactobacilli treated women were still BV-free compared to 46.2% (18/39) of the placebo treated women. Comparison of the two groups regarding "Time from cure to relapse" was statistically significant (p = 0.027) in favour of the lactobacilli treatment. Adjuvant therapy with lactobacilli contributed significantly to avoidance of relapse with a proportional Hazard Risk ratio (HR) of 0.73 (0.54–0.98) (p < 0.05) Conclusion The study shows that supplementary treatment combining two different strains of probiotic lactobacilli does not improve the efficacy of BV therapy during the first month of treatment, but for women

  14. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation

    USDA-ARS?s Scientific Manuscript database

    The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...

  15. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    PubMed

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).

  16. Higher-order differential phase shift keyed modulation

    NASA Astrophysics Data System (ADS)

    Vanalphen, Deborah K.; Lindsey, William C.

    1994-02-01

    Advanced modulation/demodulation techniques which are robust in the presence of phase and frequency uncertainties continue to be of interest to communication engineers. We are particularly interested in techniques which accommodate slow channel phase and frequency variations with minimal performance degradation and which alleviate the need for phase and frequency tracking loops in the receiver. We investigate the performance sensitivity to frequency offsets of a modulation technique known as binary Double Differential Phase Shift Keying (DDPSK) and compare it to that of classical binary Differential Phase Shift Keying (DPSK). We also generalize our analytical results to include n(sup -th) order, M-ary DPSK. The DDPSK (n = 2) technique was first introduced in the Russian literature circa 1972 and was studied more thoroughly in the late 1970's by Pent and Okunev. Here, we present an expression for the symbol error probability that is easy to derive and to evaluate numerically. We also present graphical results that establish when, as a function of signal energy-to-noise ratio and normalized frequency offset, binary DDPSK is preferable to binary DPSK with respect to performance in additive white Gaussian noise. Finally, we provide insight into the optimum receiver from a detection theory viewpoint.

  17. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    PubMed

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  18. Shelf life stability of lactobacilli encapsulated in raspberry powder: insights into non-dairy probiotics.

    PubMed

    Anekella, Kartheek; Orsat, Valérie

    2014-06-01

    Study the shelf-life quality changes in raspberry juice with encapsulated lactobacilli (Lactobacillus rhamnosus NRRL B-4495 and Lactobacillus acidophilus NRRL B-442) obtained by spray drying and understand the various factors involved. Raspberry powder was obtained from spray drying lactobacilli and raspberry juice with maltodextrin as an additive. Shelf life of the powder was analyzed over a period of 30 d. Acid and bile tolerance and antibiotic resistance was compared before and after spray drying. Water activity, survival, and scanning electron microscope images were also measured during the shelf life. A combination of processing conditions: inlet temperature (°C), maltodextrin to juice solids ratio and inlet feed rate (ml/min) during spray drying had a significant role on the survival of lactobacilli during shelf life. Refrigerated storage provided a higher shelf-life stability with regards to CFU/g (as high as 84% on day 0 and 98% retention by the end of 30 d) compared to room temperature storage. Probiotic properties during shelf life are affected by the processing conditions and encapsulated food matrix. Thus, understanding these aspects in vitro during shelf life gives us a brief insight into the future of non-dairy probiotics.

  19. Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607

  20. Isolation of Tannin-Degrading Lactobacilli from Humans and Fermented Foods

    PubMed Central

    Osawa, Ro; Kuroiso, Keiko; Goto, Satoshi; Shimizu, Akira

    2000-01-01

    Lactobacilli with tannase activity were isolated from human feces and fermented foods. A PCR-based taxonomic assay revealed that the isolates belong to Lactobacillus plantarum, L. paraplantarum, and L. pentosus. Additional studies on a range of Lactobacillus species from established culture collections confirmed that this enzymatic activity is a phenotypic property common to these three species. PMID:10877812

  1. Modulation of the Isoprenoid/Cholesterol Biosynthetic Pathway During Neuronal Differentiation In Vitro.

    PubMed

    Cartocci, Veronica; Segatto, Marco; Di Tunno, Ilenia; Leone, Stefano; Pfrieger, Frank W; Pallottini, Valentina

    2016-09-01

    During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1 (SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins. Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 117: 2036-2044, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation in vitro

    USDA-ARS?s Scientific Manuscript database

    Cereal grains are often included in equine diets. Sugars and starch in grains can be digested and absorbed in the small intestine, but a high proportion of grain in the diet can allow starch to reach the hindgut, disturbing the microbial ecology. Streptococci and lactobacilli both catabolize starch ...

  3. Effect of Chocobar Ice Cream Containing Bifidobacterium on Salivary Streptococcus mutans and Lactobacilli: A Randomised Controlled Trial.

    PubMed

    Nagarajappa, Ramesh; Daryani, Hemasha; Sharda, Archana J; Asawa, Kailash; Batra, Mehak; Sanadhya, Sudhanshu; Ramesh, Gayathri

    2015-01-01

    To examine the effect of chocobar ice cream containing bifidobacteria on salivary mutans streptococci and lactobacilli. A double-blind, randomised controlled trial was conducted with 30 subjects (18 to 22 years of age) divided into 2 groups, test (chocobar ice cream with probiotics) and control (chocobar ice cream without probiotics). The subjects were instructed to eat the allotted chocobar ice cream once daily for 18 days. Saliva samples collected at intervals were cultured on Mitis Salivarius agar and Rogosa agar and examined for salivary mutans streptococci and lactobacilli, respectively. The Mann-Whitney U-test, Friedman and Wilcoxon signed-rank tests were used for statistical analysis. Postingestion in the test group, a statistically significant reduction (p < 0.05) of salivary mutans streptococci was recorded, but a non-significant trend was seen for lactobacilli. Significant differences were was also observed between follow-ups. Short-term daily ingestion of ice cream containing probiotic bifidobacteria may reduce salivary levels of mutans streptococci in young adults.

  4. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    PubMed

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  5. New hybrid reverse differential pulse position width modulation scheme for wireless optical communication

    NASA Astrophysics Data System (ADS)

    Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun

    2014-05-01

    In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.

  6. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors.

    PubMed

    Soto, Ana; Martín, Virginia; Jiménez, Esther; Mader, Isabelle; Rodríguez, Juan M; Fernández, Leonides

    2014-07-01

    The objective of this work was to study the lactobacilli and bifidobacteria population in human milk of healthy women, and to investigate the influence that several factors (including antibioteraphy during pregnancy and lactation, country and date of birth, delivery mode, or infant age) may exert on such population. A total of 160 women living in Germany or Austria provided the breast milk samples. Initially, 66 samples were randomly selected and cultured on MRS-Cys agar plates. Then, the presence of DNA from the genera Lactobacillus and Bifidobacterium, and from most of the Lactobacillus and Bifidobacterium species that were isolated, was assessed by qualitative polymerase chain reaction (PCR) using genus- and species-specific primers. Lactobacilli and bifidobacteria could be isolated from the milk of 27 (40.91%) and 7 (10.61%), respectively, of the 66 cultured samples. On the contrary, Lactobacillus and Bifidobacterium sequences were detected by PCR in 108 (67.50%) and 41 (25.62%), respectively, of the 160 samples analyzed. The Lactobacillus species most frequently isolated and detected was L salivarius (35.00%), followed by L fermentum (25.00%) and L gasseri (21.88%), whereas B breve (13.75%) was the bifidobacterial species most commonly recovered and whose DNA was most regularly found. The number of lactobacilli- or bifidobacteria-positive samples was significantly lower in women who had received antibiotherapy during pregnancy or lactation. Our results suggest that either the presence of lactobacilli and/or bifidobacteria or their DNA may constitute good markers of a healthy human milk microbiota that has not been altered by the use of antibiotics.

  7. Anti-Helicobacter pylori activity of non-living, heat-killed form of lactobacilli including Lactobacillus johnsonii No.1088.

    PubMed

    Aiba, Yuji; Ishikawa, Hiroki; Tokunaga, Masayoshi; Komatsu, Yasuhiko

    2017-06-15

    Some strains of lactic acid bacteria are reported to inhibit the growth of Helicobacter pylori and proposed to be useful to support so-called triple therapy for H. pylori. Although most strains must be alive to exert their anti-H. pylori activity, some lactobacilli strains are effective even when dead. One possible underlying mechanism of such an activity of non-living lactobacilli is reportedly co-aggregation with H. pylori. In this study, we found that a non-living heat-killed form of Lactobacillus johnsonii No.1088 (HK-LJ88) and also that of some other lactobacilli inhibited the growth of H. pylori in vitro. Furthermore, the number of H. pylori in the infected stomach of germ-free mice was significantly decreased by the repeated oral administration of HK-LJ88. Observation by scanning electron microscopy revealed that no co-aggregation had occurred between H. pylori and HK-LJ88; instead, deformations of H. pylori (e.g. disappearance of spiral, bending of cell body, coccoid formation, degradations, etc.) appeared after incubation for 24 h with HK-LJ88. These results suggest that HK-LJ88 inhibited H. pylori activity probably not by co-aggregation but by some unknown mechanism involving HK-LJ88's cell surface molecules and that even non-living lactobacilli are possibly useful to support H. pylori eradication therapy. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Bacteriocins and other bioactive substances of probiotic lactobacilli as biological weapons against Neisseria gonorrhoeae.

    PubMed

    Ruíz, Francisco O; Pascual, Liliana; Giordano, Walter; Barberis, Lucila

    2015-04-01

    In the search of new antimicrobial agents against Neisseria gonorrhoeae, the bacteriocins-producing probiotic lactobacilli deserve special attention. The inhibitory effects of biosubstances such as organic acids, hydrogen peroxide and each bacteriocin-like inhibitory substance (BLIS) L23 and L60 on the growth of different gonococcal strains were investigated. Different non-treated and treated cell-free supernatants of two probiotic lactobacilli containing these metabolites were used. The aims of this work were (i) to evaluate the antimicrobial activity of the biosubstances produced by two probiotic lactobacilli, estimating the proportion in which each of them is responsible for the inhibitory effect, (ii) to define their minimum inhibitory concentrations (MICs) and, (iii) to determine the potential interactions between these biosubstances against N. gonorrhoeae. The main antimicrobial metabolites were the BLIS-es L23 and L60 in comparison with other biosubstances. Proportionally, their contributions to the inhibition on the gonococcal growth were 87.28% and 80.66%, respectively. The MIC values of bacteriocins were promising since these substances, when diluted, showed considerable inhibitory activity for all gonococci. In the interaction between bacteriocins, 100% of synergism was found on the gonococcal growth. In summary, this study indicates that both L23 and L60 could potentially serve to design new bioproducts against N. gonorrhoeae. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Wafer defect detection by a polarization-insensitive external differential interference contrast module.

    PubMed

    Nativ, Amit; Feldman, Haim; Shaked, Natan T

    2018-05-01

    We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

  10. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli - an in vitro study

    PubMed Central

    2010-01-01

    Background Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available probiotic products, to inhibit growth of oral mutans streptococci and C. albicans in vitro. Methods Eight probiotic lactobacilli strains were tested for growth inhibition on three reference strains and two clinical isolates of mutans streptococci as well as two reference strains and three clinical isolates of Candida albicans with an agar overlay method. Results At concentrations ranging from 109 to 105 CFU/ml, all lactobacilli strains inhibited the growth of the mutans streptococci completely with the exception of L. acidophilus La5 that executed only a slight inhibition of some strains at concentrations corresponding to 107 and 105 CFU/ml. At the lowest cell concentration (103 CFU/ml), only L. plantarum 299v and L. plantarum 931 displayed a total growth inhibition while a slight inhibition was seen for all five mutans streptococci strains by L. rhamnosus LB21, L. paracasei F19, L. reuteri PTA 5289 and L. reuteri ATCC 55730. All the tested lactobacilli strains reduced candida growth but the effect was generally weaker than for mutans streptococci. The two L. plantarum strains and L. reuteri ATCC 55730 displayed the strongest inhibition on Candida albicans. No significant differences were observed between the reference strains and the clinical isolates. Conclusion The selected probiotic strains showed a significant but somewhat varying ability to inhibit growth of oral mutans streptococci and Candida albicans in vitro. PMID:20598145

  11. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli--an in vitro study.

    PubMed

    Hasslöf, Pamela; Hedberg, Maria; Twetman, Svante; Stecksén-Blicks, Christina

    2010-07-02

    Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available probiotic products, to inhibit growth of oral mutans streptococci and C. albicans in vitro. Eight probiotic lactobacilli strains were tested for growth inhibition on three reference strains and two clinical isolates of mutans streptococci as well as two reference strains and three clinical isolates of Candida albicans with an agar overlay method. At concentrations ranging from 109 to 105 CFU/ml, all lactobacilli strains inhibited the growth of the mutans streptococci completely with the exception of L. acidophilus La5 that executed only a slight inhibition of some strains at concentrations corresponding to 107 and 105 CFU/ml. At the lowest cell concentration (103 CFU/ml), only L. plantarum 299v and L. plantarum 931 displayed a total growth inhibition while a slight inhibition was seen for all five mutans streptococci strains by L. rhamnosus LB21, L. paracasei F19, L. reuteri PTA 5289 and L. reuteri ATCC 55730. All the tested lactobacilli strains reduced candida growth but the effect was generally weaker than for mutans streptococci. The two L. plantarum strains and L. reuteri ATCC 55730 displayed the strongest inhibition on Candida albicans. No significant differences were observed between the reference strains and the clinical isolates. The selected probiotic strains showed a significant but somewhat varying ability to inhibit growth of oral mutans streptococci and Candida albicans in vitro.

  12. Lactobacilli and Bifidobacteria in Human Breast Milk: Influence of Antibiotherapy and Other Host and Clinical Factors

    PubMed Central

    Soto, Ana; Martín, Virginia; Jiménez, Esther; Mader, Isabelle; Rodríguez, Juan M.; Fernández, Leonides

    2014-01-01

    ABSTRACT Objective: The objective of this work was to study the lactobacilli and bifidobacteria population in human milk of healthy women, and to investigate the influence that several factors (including antibioteraphy during pregnancy and lactation, country and date of birth, delivery mode, or infant age) may exert on such population. Methods: A total of 160 women living in Germany or Austria provided the breast milk samples. Initially, 66 samples were randomly selected and cultured on MRS-Cys agar plates. Then, the presence of DNA from the genera Lactobacillus and Bifidobacterium, and from most of the Lactobacillus and Bifidobacterium species that were isolated, was assessed by qualitative polymerase chain reaction (PCR) using genus- and species-specific primers. Results: Lactobacilli and bifidobacteria could be isolated from the milk of 27 (40.91%) and 7 (10.61%), respectively, of the 66 cultured samples. On the contrary, Lactobacillus and Bifidobacterium sequences were detected by PCR in 108 (67.50%) and 41 (25.62%), respectively, of the 160 samples analyzed. The Lactobacillus species most frequently isolated and detected was L salivarius (35.00%), followed by L fermentum (25.00%) and L gasseri (21.88%), whereas B breve (13.75%) was the bifidobacterial species most commonly recovered and whose DNA was most regularly found. The number of lactobacilli- or bifidobacteria-positive samples was significantly lower in women who had received antibiotherapy during pregnancy or lactation. Conclusions: Our results suggest that either the presence of lactobacilli and/or bifidobacteria or their DNA may constitute good markers of a healthy human milk microbiota that has not been altered by the use of antibiotics. PMID:24590211

  13. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    PubMed

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

    PubMed

    LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O

    2006-03-15

    The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.

  15. Crossed Module Bundle Gerbes; Classification, String Group and Differential Geometry

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    We discuss nonabelian bundle gerbes and their differential geometry using simplicial methods. Associated to any crossed module there is a simplicial group NC, the nerve of the 1-category defined by the crossed module and its geometric realization |NC|. Equivalence classes of principal bundles with structure group |NC| are shown to be one-to-one with stable equivalence classes of what we call crossed module gerbes bundle gerbes. We can also associate to a crossed module a 2-category C'. Then there are two equivalent ways how to view classifying spaces of NC-bundles and hence of |NC|-bundles and crossed module bundle gerbes. We can either apply the W-construction to NC or take the nerve of the 2-category C'. We discuss the string group and string structures from this point of view. Also a simplicial principal bundle can be equipped with a simplicial connection and a B-field. It is shown how in the case of a simplicial principal NC-bundle these simplicial objects give the bundle gerbe connection and the bundle gerbe B-field.

  16. Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli

    PubMed Central

    Rask, C; Adlerberth, I; Berggren, A; Ahrén, I L; Wold, A E

    2013-01-01

    Probiotics are live microorganisms which have beneficial effects on the host when ingested in adequate amounts. Probiotic bacteria may stimulate immune effector functions in a strain-specific manner. In this blind placebo-controlled trial, we investigated the effects on the immune system following daily intake of six different strains of lactobacilli or the Gram-negative bacterium Pseudomonas lundensis for 2 or 5 weeks. Blood lymphocyte subsets were quantified by fluorescence activated cell sorter and the expression of activation and memory markers was determined. The bacterial strains were also examined for their capacity to adhere to human intestinal cells and to be phagocytosed by human peripheral blood mononuclear cells. Intake of Lactobacillus plantarum strain 299v increased the expression of the activation marker CD25 (P = 0·01) on CD8+ T cells and the memory cell marker CD45RO on CD4+ T cells (P = 0·03), whereas intake of L. paracasei tended to expand the natural killer T (NK T) cell population (P = 0·06). The phagocytic activity of granulocytes was increased following intake of L. plantarum 299v, L. plantarum HEAL, L. paracasei or L. fermentum. In contrast, ingestion of L. rhamnosus decreased the expression of CD25 and CD45RO significantly within the CD4+ cell population. The observed immune effects after in-vivo administration of the probiotic bacteria could not be predicted by either their adherence capacity or the in-vitro-induced cytokine production. The stimulation of CD8+ T cells and NK T cells suggests that intake of probiotic bacteria may enhance the immune defence against, e.g. viral infections or tumours. PMID:23574328

  17. Glucosamine Modulates T Cell Differentiation through Down-regulating N-Linked Glycosylation of CD25*

    PubMed Central

    Chien, Ming-Wei; Lin, Ming-Hong; Huang, Shing-Hwa; Fu, Shin-Huei; Hsu, Chao-Yuan; Yen, B. Lin-Ju; Chen, Jiann-Torng; Chang, Deh-Ming; Sytwu, Huey-Kang

    2015-01-01

    Glucosamine has immunomodulatory effects on autoimmune diseases. However, the mechanism(s) through which glucosamine modulates different T cell subsets and diseases remain unclear. We demonstrate that glucosamine impedes Th1, Th2, and iTreg but promotes Th17 differentiation through down-regulating N-linked glycosylation of CD25 and subsequently inhibiting its downstream Stat5 signaling in a dose-dependent manner. The effect of glucosamine on T helper cell differentiation was similar to that induced by anti-IL-2 treatment, further supporting an IL-2 signaling-dependent modulation. Interestingly, excess glucose rescued this glucosamine-mediated regulation, suggesting a functional competition between glucose and glucosamine. High-dose glucosamine significantly decreased Glut1 N-glycosylation in Th1-polarized cells. This finding suggests that both down-regulated IL-2 signaling and Glut1-dependent glycolytic metabolism contribute to the inhibition of Th1 differentiation by glucosamine. Finally, glucosamine treatment inhibited Th1 cells in vivo, prolonged the survival of islet grafts in diabetic recipients, and exacerbated the severity of EAE. Taken together, our results indicate that glucosamine interferes with N-glycosylation of CD25, and thereby attenuates IL-2 downstream signaling. These effects suggest that glucosamine may be an important modulator of T cell differentiation and immune homeostasis. PMID:26468284

  18. Correlation between chronic treatment with proton pump inhibitors and bacterial overgrowth in the stomach: any possible beneficial role for selected lactobacilli?

    PubMed

    Del Piano, Mario; Pagliarulo, Michela; Tari, Roberto; Carmagnola, Stefania; Balzarini, Marco; Lorenzini, Paola; Pane, Marco

    2014-01-01

    The inhibition of physiological gastric acid secretion induced by proton pump inhibitors (PPIs), the most widely used drugs in the world, may cause a significant bacterial overgrowth in the gastrointestinal tract as a side effect. This study was undertaken firstly to correlate PPI intake with concentration of specific bacterial groups in the stomach as well as possible Helicobacter pylori infection, and secondly to assess the efficacy of the 4 lactobacilli L. rhamnosus LR06 (DSM 21981), L. pentosus LPS01 (DSM 21980), L. plantarum LP01 (LMG P-21021), and L. delbrueckii subsp. delbrueckii LDD01 (DSM 22106) in the restoration of a physiological gastric barrier. Total bacteria, sulphite-reducing bacteria (SRB), total coliforms, and total lactobacilli were quantified in samples of gastric juice from 29 subjects taking PPIs for at least 3 months compared with 36 control subjects. The presence of H. pylori was also assessed.The subjects treated with PPIs with a concentration of total bacteria in the gastric juice higher than 10(5) cells/mL were selected for an intervention study with the 4 lactobacilli L. rhamnosus LR06, L. pentosus LPS01, L. plantarum LP01, and L. delbrueckii subsp. delbrueckii LDD01. After 15 days of supplementation, the same bacterial groups were quantified to compare these values with the baseline. No significant correlation was found between the presence of H. pylori and PPI intake. The baseline quantification of bacterial groups (log10 CFU/mL of gastric juice, PPI group vs. control) showed: total bacteria 8.35 versus 3.95 (P<0.001); total coliforms 4.98 versus 2.35 (P<0.001); SRB 5.71 versus 2.28 (P=0.065); and total lactobacilli 3.85 versus 2.20 (P=0.005). After 15 days of treatment with the 4 lactobacilli, the quantification of bacterial groups gave the following results: total bacteria 7.91 versus 8.35 at time zero (P=0.002); total coliforms 4.21 versus 4.98 at time zero (P<0.001); SRB 4.94 versus 5.71 at baseline (P=0.060); and total

  19. Adhesive Properties and Acid-Forming Activity of Lactobacilli and Streptococci Under Inhibitory Substances, Such as Nitrates.

    PubMed

    Hakobyan, L; Harutyunyan, K; Harutyunyan, N; Melik-Andreasyan, G; Trchounian, A

    2016-06-01

    One of the main requirements for probiotics is their ability to survive during passage through gastrointestinal tract and to maintain their activity at different adverse conditions. The aim of the study was to look for the strains of lactobacilli and streptococci with high adhesive properties even affected by inhibitory substances, such as nitrates (NO3 (-)). To study the adhesion properties hemagglutination reaction of bacterial cells with red blood cells of different animals and humans was used. The acid formation ability of bacteria was determined by the method of titration after 7 days of incubation in the sterile milk. These properties were investigated at different concentrations of NO3 (-). The high concentration (mostly ≥2.0 %) NO3 (-) inhibited the growth of both lactobacilli and streptococci, but compared with streptococcal cultures lactobacilli, especially Lactobacillus acidophilus Ep 317/402, have shown more stability and higher adhesive properties. In addition, the concentrations of NO3 (-) of 0.5-2.0 % decreased the acid-forming activity of the strains, but even under these conditions they coagulated milk and, in comparison to control, formed low acidity in milk. Thus, the L. acidophilus Ep 317/402 with high adhesive properties has demonstrated a higher activity of NO3 (-) transformation.

  20. Colonization of the Stratified Squamous Epithelium of the Nonsecreting Area of Horse Stomach by Lactobacilli

    PubMed Central

    Yuki, Norikatsu; Shimazaki, Tomoko; Kushiro, Akira; Watanabe, Koichi; Uchida, Kazumi; Yuyama, Teruhiko; Morotomi, Masami

    2000-01-01

    Selective adhesion to only certain epithelia is particularly common among the bacterial members of the indigenous microflora of mammals. We have found that the stratified squamous epithelium of the nonsecreting area of horse stomach is colonized by gram-positive rods. The microscopic features of a dense layer of these bacteria on the epithelium were found to be similar to those reported in mice, rats, and swine. Adhering microorganisms were isolated and identified as Lactobacillus salivarius, L. crispatus, L. reuteri, and L. agilis by DNA-DNA hybridization and 16S rRNA gene sequencing techniques. These lactobacilli associated with the horse, except for L. reuteri, were found to adhere to horse epithelial cells in vitro but not to those of rats. A symbiotic relationship of these lactobacilli with the horse is suggested. PMID:11055960

  1. Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion.

    PubMed

    Francavilla, Ruggiero; De Angelis, Maria; Rizzello, Carlo Giuseppe; Cavallo, Noemi; Dal Bello, Fabio; Gobbetti, Marco

    2017-07-15

    The aim of this study was to demonstrate the capacity of probiotic lactobacilli to hydrolyze immunogenic gluten peptides. Eighteen commercial strains of probiotic lactobacilli with highly variable peptidase activity (i.e., aminopeptidase N, iminopeptidase, prolyl endopeptidyl peptidase, tripeptidase, prolidase, prolinase, and dipeptidase), including toward Pro-rich peptides, were tested in this study. Ten probiotic strains were selected on the basis of their specific enzyme activity. When pooled, these 10 strains provided the peptidase portfolio that is required to completely degrade the immunogenic gluten peptides involved in celiac disease (CD). The selected probiotic mixture was able to completely hydrolyze well-known immunogenic epitopes, including the gliadin 33-mer peptide, the peptide spanning residues 57 to 68 of the α9-gliadin (α9-gliadin peptide 57-68), A-gliadin peptide 62-75, and γ-gliadin peptide 62-75. During digestion under simulated gastrointestinal conditions, the pool of 10 selected probiotic lactobacilli strongly hydrolyzed the wheat bread gluten (ca. 18,000 ppm) to less than 10 ppm after 360 min of treatment. As determined by multidimensional chromatography (MDLC) coupled to nanoelectrospray ionization (nano-ESI)-tandem mass spectrometry (MS/MS), no known immunogenic peptides were detected in wheat bread that was digested in the presence of the probiotics. Accordingly, the level of cytokines (interleukin 2 [IL-2], IL-10, and interferon gamma [IFN-γ]) produced by duodenal biopsy specimens from CD patients who consumed wheat bread digested by probiotics was similar to the baseline value (negative control). Probiotics that specifically hydrolyze gluten polypeptides could also be used to hydrolyze immunogenic peptides that contaminate gluten-free products. This could provide a new and safe adjunctive therapy alternative to the gluten-free diet (GFD). IMPORTANCE This study confirmed that probiotic Lactobacillus strains have different enzymatic

  2. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer.

    PubMed

    Gov, Esra; Arga, Kazim Yalcin

    2017-07-10

    Ovarian cancer is one of the most significant disease among gynecological disorders that women suffered from over the centuries. However, disease-specific and effective biomarkers were still not available, since studies have focused on individual genes associated with ovarian cancer, ignoring the interactions and associations among the gene products. Here, ovarian cancer differential co-expression networks were reconstructed via meta-analysis of gene expression data and co-expressed gene modules were identified in epithelial cells from ovarian tumor and healthy ovarian surface epithelial samples to propose ovarian cancer associated genes and their interactions. We propose a novel, highly interconnected, differentially co-expressed, and co-regulated gene module in ovarian cancer consisting of 84 prognostic genes. Furthermore, the specificity of the module to ovarian cancer was shown through analyses of datasets in nine other cancers. These observations underscore the importance of transcriptome based systems biomarkers research in deciphering the elusive pathophysiology of ovarian cancer, and here, we present reciprocal interplay between candidate ovarian cancer genes and their transcriptional regulatory dynamics. The corresponding gene module might provide new insights on ovarian cancer prognosis and treatment strategies that continue to place a significant burden on global health.

  3. Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli.

    PubMed

    Rask, C; Adlerberth, I; Berggren, A; Ahrén, I L; Wold, A E

    2013-05-01

    Probiotics are live microorganisms which have beneficial effects on the host when ingested in adequate amounts. Probiotic bacteria may stimulate immune effector functions in a strain-specific manner. In this blind placebo-controlled trial, we investigated the effects on the immune system following daily intake of six different strains of lactobacilli or the Gram-negative bacterium Pseudomonas lundensis for 2 or 5 weeks. Blood lymphocyte subsets were quantified by fluorescence activated cell sorter and the expression of activation and memory markers was determined. The bacterial strains were also examined for their capacity to adhere to human intestinal cells and to be phagocytosed by human peripheral blood mononuclear cells. Intake of Lactobacillus plantarum strain 299v increased the expression of the activation marker CD25 (P = 0·01) on CD8(+) T cells and the memory cell marker CD45RO on CD4(+) T cells (P = 0·03), whereas intake of L. paracasei tended to expand the natural killer T (NK T) cell population (P = 0·06). The phagocytic activity of granulocytes was increased following intake of L. plantarum 299v, L. plantarum HEAL, L. paracasei or L. fermentum. In contrast, ingestion of L. rhamnosus decreased the expression of CD25 and CD45RO significantly within the CD4(+) cell population. The observed immune effects after in-vivo administration of the probiotic bacteria could not be predicted by either their adherence capacity or the in-vitro-induced cytokine production. The stimulation of CD8(+) T cells and NK T cells suggests that intake of probiotic bacteria may enhance the immune defence against, e.g. viral infections or tumours. © 2012 British Society for Immunology.

  4. Characterization and stability of lactobacilli and yeast microbiota in kefir grains.

    PubMed

    Vardjan, T; Mohar Lorbeg, P; Rogelj, I; Čanžek Majhenič, A

    2013-05-01

    Characterization and stability of lactobacilli and yeasts from kefir grains using culture-dependent and culture-independent methods were investigated in this study. Culture-dependent analysis, followed by sequencing of 16S ribosomal DNA for bacteria and 26S rRNA gene for yeasts, revealed 3 different species of lactobacilli and yeasts, respectively. The most frequently isolated bacterial species were Lactobacillus kefiranofaciens ssp. kefirgranum, Lb. parakefiri, and Lb. kefiri, whereas yeasts belonged to Kluyveromyces marxianus, Kazachstania exigua, and Rhodosporidium kratochvilovae. This study is the first to report on the presence of R. kratochvilovae in kefir grains. On the other hand, PCR-denaturing gradient gel electrophoresis in the culture-independent method showed that the dominant microorganisms were Lb. kefiranofaciens ssp. kefirgranum, Kl. marxianus and Ka. exigua, but did not reveal bands corresponding to Lb. parakefiri, Lb. kefiri, or R. kratochvilovae. Our results support the necessity of combining more techniques for detailed and reliable study of microbial communities in kefir grains. Another interesting finding confirmed that the detected dominant microbiota of kefir grains is very stable and did not change over experimental time. This finding is important to ensure consistent product quality. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Antagonistic potential against pathogenic microorganisms and hydrogen peroxide production of indigenous lactobacilli isolated from vagina of Chinese pregnant women.

    PubMed

    Xu, Heng-Yi; Tian, Wan-Hong; Wan, Cui-Xiang; Jia, Li-Jun; Wang, Lan-Yin; Yuan, Jing; Liu, Chun-Mei; Zeng, Ming; Wei, Hua

    2008-10-01

    To investigate the indigenous lactobacilli from the vagina of pregnant women and to screen the isolates with antagonistic potential against pathogenic microorganisms. The strains were isolated from pregnant women's vagina and identified using the API50CH system. The ability of the isolates to produce hydrogen peroxide was analyzed semi-quantitatively using the TMB-HRP-MRS agar. The antagonistic effects of the isolates on pathogenic microorganisms were determined with a double layer agar plate. One hundred and three lactobacilli strains were isolated from 60 samples of vaginal secretion from healthy pregnant women. Among them, 78 strains could produce hydrogen peroxide, in which 68%, 80%, 80%, and 88% had antagonistic effects against Candida albicans CMCC98001, Staphylococcus aureus CMCC26003, Escherichia coli CMCC44113, and Pseudomonas aeruginosa CMCC10110, respectively. The recovery of hydrogen peroxide-producing lactobacilli decreases with the increasing pregnant age and time. The most commonly isolated species from vagina of Chinese pregnant women are Lactobacillus acidophilus and Lactobacillus crispatus. Most of L. acidophilus and L. crispatus produce a high H2O2 level.

  6. Salivary Streptococcus mutans and Lactobacilli levels following probiotic cheese consumption in adults: A double blind randomized clinical trial*

    PubMed Central

    Mortazavi, Shiva; Akhlaghi, Najme

    2012-01-01

    BACKGROUND: The beneficial effects of Lactobacillus species have been reported but the role of these species including Lactobacillus casei (L. casei) on oral health is not well documented. The purpose of this study was to evaluate the effects of conventional or probiotic cheese containing L.casei on salivary Streptococcus mutans (SM) and Lactobacilli levels. METHODS: In this double-blind controlled trial (IRCT201009144745N1), 60 adults were randomly allocated in 2 parallel blocks. SM and Lactobacilli count assessment were performed three times. Subjects consumed either cheese containing L. casei (1×106Cfu/g) (probiotic block, n=29) or cheese without any probiotic (control block, n=31) twice daily for two weeks. Bacterial levels changes were compared using Wilcoxon and Mann-Whitney Tests. Logistic regression compared changes in number of subjects with lowest and highest SM or Lactobacilli levels. RESULTS: Statistically significant (p = 0.001) reduction of salivary SM was found in probiotic group. SM levels reduction was not significant between placebo and trial groups (p = 0.46, 62% in probiotic vs. 32% in placebo group). Lacto-bacilli count changes during trial were not statistically significant inter and intra blocks (p = 0.12). Probiotic intervention was significantly effective in high levels (> 105cfu/ml) of SM (Odds Ratio 11.6, 95% CI 1.56–86.17, p = 0.017). CONCLUSIONS: Probiotic cheese containing L. casei was not effective in salivary SM levels reduction comparing to conventional cheese. Adding L. casei to cheese could be useful in decreasing SM counts in adults 18-37 years old with highest level of SM. PMID:23248658

  7. Factors Which Increase Acid Production in Milk by Lactobacilli

    PubMed Central

    Huhtanen, C. N.; Williams, W. L.

    1963-01-01

    The stimulation by yeast extract of acid production in milk by various lactobacilli was studied. It was found that supplementing milk with purine and pyrimidine bases and amino acids allowed nearly maximal acid production by Lactobacillus bulgaricus strain 7994, L. acidophilus 4796, 4356, and 4357, and L. leichmannii 326 and 327. Further supplementation with deoxyribotides allowed maximal acid production by L. acidophilus 204, but L. acidophilus 207 required adenosine or adenylic acid. L. casei strain 7469 showed no appreciable response to the amino acids or purine and pyrimidine bases, and is presumed to require an unidentified factor in corn steep liquor. PMID:13955610

  8. Lactobacilli Inactivate Chlamydia trachomatis through Lactic Acid but Not H2O2

    PubMed Central

    Gong, Zheng; Luna, Yesmin; Yu, Ping; Fan, Huizhou

    2014-01-01

    Lactobacillus species dominate the microbiome in the lower genital tract of most reproductive-age women. Producing lactic acid and H2O2, lactobacilli are believed to play an important role in prevention of colonization by and growth of pathogens. However, to date, there have been no reported studies characterizing how lactobacilli interact with Chlamydia trachomatis, a leading sexually transmitted bacterium. In this report, we demonstrate inactivation of C. trachomatis infectivity by culture media conditioned by Lactobacillus crispatus, L. gasseri and L. jensenii, known to be dominating organisms in the human vaginal microbiome. Lactobacillus still cultures produced lactic acid, leading to time- and concentration-dependent killing of C. trachomatis. Neutralization of the acidic media completely reversed chlamydia killing. Addition of lactic acid into Lactobacillus-unconditioned growth medium recapitulated the chlamydiacidal activity of conditioned media. The H2O2 concentrations in the still cultures were found to be comparable to those reported for the cervicovaginal fluid, but insufficient to inactivate chlamydiae. Aeration of Lactobacillus cultures by shaking markedly induced H2O2 production, but strongly inhibited Lactobacillus growth and lactic acid production, and thus severely affected acidification, leading to significantly reduced chlamydiacidal efficiency. These observations indicate lactobacilli inactivate chlamydiae primarily through maintaining acidity in a relatively hypoxic environment in the vaginal lumen with limited H2O2, which is consistent with the notion that women with higher vaginal pH are more prone to sexually transmitted C. trachomatis infection. In addition to lactic acid, formic acid and acetic acid also exhibited potent chlamydiacidal activities. Taken together, our findings imply that lowering the vaginal pH through engineering of the vaginal microbiome and other means will make women less susceptible to C. trachomatis infection. PMID

  9. Differential impact of lactose/lactase phenotype on colonic microflora

    PubMed Central

    Szilagyi, Andrew; Shrier, Ian; Heilpern, Debra; Je, Jung Sung; Park, Sunghoon; Chong, George; Lalonde, Catherine; Cote, Louis-Francois; Lee, Byong

    2010-01-01

    BACKGROUND: The ability to digest lactose divides the world’s population into two phenotypes that may be risk variability markers for several diseases. Prebiotic effects likely favour lactose maldigesters who experience lactose spilling into their colon. OBJECTIVE: To evaluate the effects of fixed-dose lactose solutions on fecal bifidobacteria and lactobacilli in digesters and maldigesters, and to determine whether the concept of a difference in ability to digest lactose is supported. METHODS: A four-week study was performed in 23 lactose mal-digesters and 18 digesters. Following two weeks of dairy food withdrawal, subjects ingested 25 g of lactose twice a day for two weeks. Stool bifidobacteria and lactobacilli counts pre- and postintervention were measured as the primary outcome. For secondary outcomes, total anaerobes, Enterobacteriaceae, beta-galactosidase and N-acetyl-beta-D-glucosaminidase activity in stool, as well as breath hydrogen and symptoms following lactose challenge tests, were measured. RESULTS: Lactose maldigesters had a mean change difference (0.72 log10 colony forming units/g stool; P=0.04) in bifidobacteria counts compared with lactose digesters. Lactobacilli counts were increased, but not significantly. Nevertheless, reduced breath hydrogen after lactose ingestion correlated with lactobacilli (r=−0.5; P<0.001). Reduced total breath hydrogen and symptom scores together, with a rise in fecal enzymes after intervention, were appropriate, but not significant. CONCLUSIONS: Despite failure to achieve full colonic adaptation, the present study provided evidence for a differential impact of lactose on microflora depending on genetic lactase status. A prebiotic effect was evident in lactose maldigesters but not in lactose digesters. This may play a role in modifying the mechanisms of certain disease risks related to dairy food consumption between the two phenotypes. PMID:20559580

  10. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  11. Lactobacillus rhamnosus CNCMI-4317 Modulates Fiaf/Angptl4 in Intestinal Epithelial Cells and Circulating Level in Mice

    PubMed Central

    Jacouton, Elsa; Mach, Núria; Cadiou, Julie; Lapaque, Nicolas; Clément, Karine; Doré, Joël; van Hylckama Vlieg, Johan E. T.; Smokvina, Tamara; Blottière, Hervé M

    2015-01-01

    Background and Objectives Identification of new targets for metabolic diseases treatment or prevention is required. In this context, FIAF/ANGPTL4 appears as a crucial regulator of energy homeostasis. Lactobacilli are often considered to display beneficial effect for their hosts, acting on different regulatory pathways. The aim of the present work was to study the effect of several lactobacilli strains on Fiaf gene expression in human intestinal epithelial cells (IECs) and on mice tissues to decipher the underlying mechanisms. Subjects and Methods Nineteen lactobacilli strains have been tested on HT–29 human intestinal epithelial cells for their ability to regulate Fiaf gene expression by RT-qPCR. In order to determine regulated pathways, we analysed the whole genome transcriptome of IECs. We then validated in vivo bacterial effects using C57BL/6 mono-colonized mice fed with normal chow. Results We identified one strain (Lactobacillus rhamnosus CNCMI–4317) that modulated Fiaf expression in IECs. This regulation relied potentially on bacterial surface-exposed molecules and seemed to be PPAR-γ independent but PPAR-α dependent. Transcriptome functional analysis revealed that multiple pathways including cellular function and maintenance, lymphoid tissue structure and development, as well as lipid metabolism were regulated by this strain. The regulation of immune system and lipid and carbohydrate metabolism was also confirmed by overrepresentation of Gene Ontology terms analysis. In vivo, circulating FIAF protein was increased by the strain but this phenomenon was not correlated with modulation Fiaf expression in tissues (except a trend in distal small intestine). Conclusion We showed that Lactobacillus rhamnosus CNCMI–4317 induced Fiaf expression in human IECs, and increased circulating FIAF protein level in mice. Moreover, this effect was accompanied by transcriptome modulation of several pathways including immune response and metabolism in vitro. PMID:26439630

  12. Characterization of the Intestinal Lactobacilli Community following Galactooligosaccharides and Polydextrose Supplementation in the Neonatal Piglet

    PubMed Central

    Hoeflinger, Jennifer L.; Kashtanov, Dimitri O.; Cox, Stephen B.; Dowd, Scot E.; Jouni, Zeina E.; Donovan, Sharon M.; Miller, Michael J.

    2015-01-01

    Recently, prebiotic supplementation of infant formula has become common practice; however the impact on the intestinal microbiota has not been completely elucidated. In this study, neonatal piglets were randomized to: formula (FORM, n = 8), formula supplemented with 2 g/L each galactooligosaccharides (GOS) and polydextrose (PDX, F+GP, n = 9) or a sow-reared (SOW, n = 12) reference group for 19 days. The ileal (IL) and ascending colon (AC) microbiota were characterized using culture-dependent and -independent methods. 16S amplicon sequencing identified no differences at the genera level in the IL. Interestingly, six genera in the AC were significantly different between FORM and F+GP (P<0.05): Lactobacillus, Ruminococcus, Parabacteroides, Oscillospira, Hydrogenoanaerobacterium and Catabacter. In particular, the relative abundance of AC Lactobacillus was higher (P = 0.04) in F+GP as compared to FORM. Culture-dependent analysis of the IL and AC lactobacilli communities of FORM and F+GP revealed a Lactobacillus spp. composition similar to 16S amplicon sequencing. Additional analysis demonstrated individual Lactobacillus isolates were unable to ferment PDX. Conversely, a majority of lactobacilli isolates could ferment GOS, regardless of piglet diet. In addition, the ability of lactobacilli isolates to ferment the longer chain GOS fragments (DP 3 or greater), which are expected to be present in the distal intestine, was not different between FORM and F+GP. In conclusion, prebiotic supplementation of formula impacted the AC microbiota; however, direct utilization of GOS or PDX does not lead to an increase in Lactobacillus spp. PMID:26275147

  13. [Isolation and characterization of vaginal lactobacilli producing hydrogen peroxide].

    PubMed

    Pashaian, M M; Oganesian, G G

    2011-01-01

    Isolation and characteristics of vaginal lactobacilli that actively generate H2O2 and have high antagonistic activity. Staphylococcus aureus 8956, Escherichia coli 8852, Klebsiella pneumoniae 8795 and Candida albicans 5646 were used as target-strains. Skim milk and MRS medium were used for lactobacilli isolation and cultivation. Antagonism was studied in complete agar and Saburo medium. Merckoquant peroxide test (Merck) stripes were used for the determination of H2O2. Antibacterial activity was determined by diffusion into agar. Specific culture growth rate was determined by conventional method, acidification of the culture medium--by pH-meter. 12 strains were isolated from vaginal smears of healthy women. These strains have an ability to ferment milk among which a highly active H2O2 producer was isolated and attributed to Lactobacillus delbrueckii by the results of 16S rRNA and alpha-subunit RNA polymerase gene sequence analysis (16S rDNA and rpoA genes are registered in GenBank, numbers HQ379171 and HQ379180 respectively). L. delbrueckii MH-10 bacterial cells were characterized by specific growth speed 1.26 per hour, reaching a maximum titer of 2 x 10(9) PFU/ml with lowering medium pH to 4.0. Under aerated conditions H2O2 concentration reached 100 microg/ml or more. L. delbrueckii MH-10 has high antibacterial activity against S. aureus, E. coli, K. pneumoniae. L. delbrueckii MH-10 isolate is an active H2O2 producer, has high growth speed and broad antibacterial activity spectrum, is a perspective candidate for the development of probiotic preparation for the prophylaxis and therapy of vaginoses.

  14. Vaginal lactobacilli profile in pregnant women with normal & abnormal vaginal flora.

    PubMed

    Yeruva, Thirupathaiah; Rajkumar, Hemalatha; Donugama, Vasundhara

    2017-10-01

    Lactobacilli species that are better adapted to vaginal environment of women may colonize better and offer protection against vaginal pathogenic bacteria. In this study, the distribution of common Lactobacillus species was investigated in pregnant women. Sixty seven pregnant women were included in the study and vaginal samples were collected for Gram staining. Women were classified as normal vaginal flora, intermediate flora and bacterial vaginosis (BV) based on Nugent's score. Vaginal samples were also collected for the identification of Lactobacillus spp. by multiplex polymerase chain reaction (PCR) profiling of 16S rDNA amplification method. Lactobacillus crispatus (100%) was the most predominant Lactobacillus spp. present in pregnant women with normal flora, followed by L. iners (77%), L. jensenii (74%) and L. helveticus (60%). While, L. iners was commonly present across groups in women with normal, intermediate or BV flora, L. crispatus, L. jensenii and L. helveticus decreased significantly as the vaginal flora changed to intermediate and BV. In women with BV, except L. iners other species of lactobacilli was less frequently prevalent. Species such as L. rhamnosus, L. fermentum, L. paracasei and L. casei were not detected in any vaginal sample. L. crispatus, L. jensinii and L. helveticus were predominant species in women with normal flora. L. crispatus alone or in combination with L. jensinii and L. helveticus may be evaluated for probiotic properties for the prevention and treatment of BV.

  15. Life in the littoral zone: lactobacilli losing the plot.

    PubMed

    Hay, P

    2005-04-01

    Recurrent bacterial vaginosis is a challenge for those affected by it, and their physicians. Our inability to prevent relapse after treatment, may be because of the flawed approach of using antibiotics to treat a condition that is an imbalance rather than an infection. The maintenance of a healthy lactobacillus population offers an approach to preventing relapse: the problem is how best to do this. Physiological approaches such as the use of hydrogen peroxide, lactic acid, and exogenous lactobacilli need to be explored further. The role of bacterial vaginosis as a risk factor for acquisition of HIV and other STIs is a further impetus to attempting to prevent bacterial vaginosis from recurring.

  16. Effect of mesophilic lactobacilli and enterococci adjunct cultures on the final characteristics of a microfiltered milk Swiss-type cheese.

    PubMed

    Bouton, Yvette; Buchin, Solange; Duboz, Gabriel; Pochet, Sylvie; Beuvier, Eric

    2009-04-01

    The effect of four associations of adjunct cultures composed of mesophilic lactobacilli and enterococci, either solely or combined, on the microbiological, biochemical and sensory characteristics of Swiss-type cheese made using microfiltered cows' milk and supplemented with propionibacteria was studied. The global pattern of growth was similar to that generally observed in raw milk cheese and interactions between microflora were highlighted during ripening. Enterococci, which negatively affected the survival of streptococci starters, seemed to play a limited role in the formation of volatile compounds, probably due to their low levels throughout ripening. On the contrary, mesophilic lactobacilli, which affected the evolution of propionibacteria, enterococci and L. delbrueckii subsp. lactis starter counts, modified free amino acid content, production of volatile compounds and organoleptic properties of mature cheese. This population appeared to be of major importance in the formation of cheese flavor as it was positively related to numerous potential flavor compounds such as alcohols and their corresponding esters, acetaldehyde and 4-methyl-4-heptanone. The original mesophilic lactobacilli present in milk could play an important role in the sensorial diversity of raw milk Swiss-type cheeses such as Comte.

  17. Effects of Lactobacilli and lactose on Salmonella typhimurium colonisation and microbial fermentation in the crop of the young turkey.

    PubMed

    Cutler, S A; Rasmussen, M A; Hensley, M J; Wilhelms, K W; Griffith, R W; Scanes, C G

    2005-12-01

    1. Three experiments were performed to examine the effects of Lactobacilli and lactose on microbial fermentation and Salmonella enterica serovar Typhimurium colonisation in the crop of the young turkey. 2. The following carboxylic acids were detected in the crop ingesta: formic, acetic, butyric, lactic, valeric, caproic, oxalic, phenyl acetic, succinic and fumaric; propionic, isobutyric and isovaleric acids were not detectable. 3. At the beginning of the night, there were considerable quantities of ingesta in the crop of young turkeys. During the scotophase, there were progressive reductions in the contents and pH. Moreover, there were linear increases in the concentration of lactic, valeric and caproic acids (by approximately 7-fold over 8 h). Much smaller changes in crop pH were observed in the study where dietary treatments of Lactobacilli were not included. 4. Chronic addition of lactose or Lactobacilli to the diet exerted modest effects on the carboxylic acid concentration in the crop contents but did not consistently influence colonisation of the crop by Salmonella enterica serovar Typhimurium. 5. Young turkeys confine eating to the hours of illumination (photophase) with a peak in consumption prior to the subjective dusk.

  18. Sample handling factors affecting the enumeration of lactobacilli and cellulolytic bacteria in equine feces

    USDA-ARS?s Scientific Manuscript database

    The objectives were to compare media types and evaluate the effects of fecal storage time and temperature on the enumeration of cellulolytic bacteria and lactobacilli from horses. Fecal samples were collected from horses (n = 3) and transported to the lab (CO2, 37 ºC, 0.5 h). The samples were assign...

  19. The influence of mutant lactobacilli on serum creatinine and urea nitrogen concentrations and renal pathology in 5/6 nephrectomized rats.

    PubMed

    Wang, Fang; Jiang, Yun-Sheng; Liu, Fang

    2016-10-01

    To explore the capacity of mutant lactobacilli to remove creatinine (Cr) and urea nitrogen (UN) via the gastrointestinal tract and its effects on renal pathology in the 5/6 nephrectomized rat model of chronic renal failure. Sixty Sprague-Dawley rats were randomly divided into a Sham group, a Model group, a wide-type Lactobacilli group (L.B group), and a Mutant Lactobacilli group (Mut-L.B group). The rats in the Model, LB and Mut-L.B groups underwent 5/6 nephrectomy. Eight weeks after administration, 24-h urine, orbital blood and digestive secretions were collected to analyze Cr and UN levels. Pathological changes in nephridial tissues were observed by hematoxylin and eosin and Masson trichrome staining, and the expression of TGF-β1 and FN was detected by immunohistochemistry. There were no significant differences in urinary Cr and UN levels among the Sham, L.B and Mut-L.B groups (p > .05), while serum and digestive Cr and UN levels were significantly decreased in the Mut-L.B group (p < .01). Furthermore, renal tubular injury and interstitial fibrosis were significantly reduced and TGF-β1 and FN expression was decreased (p < .05) in the Mut-L.B group. Mutant lactobacilli decreased serum Cr and UN levels, reduced the expression of TGF-β1 and FN in renal tissues and alleviated renal interstitial injury and fibrosis in a rat model of chronic renal failure in a mechanism that may involve decomposition and not just excretion of small molecule toxins in the gastrointestinal tract.

  20. Research on channel characteristics of differential multi pulse position modulation without background noise

    NASA Astrophysics Data System (ADS)

    Gao, Zhuo; Zhan, Weida; Sun, Quan; Hao, Ziqiang

    2018-04-01

    Differential multi-pulse position modulation (DMPPM) is a new type of modulation technology. There is a fast transmission rate, high bandwidth utilization, high modulation rate characteristics. The study of DMPPM modulation has important scientific value and practical significance. Channel capacity is one of the important indexes to measure the communication capability of communication system, and studying the channel capacity of DMPPM without background noise is the key to analyze the characteristics of DMPPM. The DMPPM theoretical model is established. The symbol structure of DMPPM with guard time slot is analyzed, and the channel capacity expression of DMPPM is deduced. Simulation analysis by MATLAB. The curves of unit channel capacity and capacity efficiency at different pulse and photon counting rates are analyzed. The results show that DMPPM is more advantageous than multi-pulse position modulation (MPPM), and is more suitable for future wireless optical communication system.

  1. Subthalamic stimulation differentially modulates declarative and nondeclarative memory.

    PubMed

    Hälbig, Thomas D; Gruber, Doreen; Kopp, Ute A; Scherer, Peter; Schneider, Gerd-Helge; Trottenberg, Thomas; Arnold, Guy; Kupsch, Andreas

    2004-03-01

    Declarative memory has been reported to rely on the medial temporal lobe system, whereas non-declarative memory depends on basal ganglia structures. We investigated the functional role of the subthalamic nucleus (STN), a structure closely connected with the basal ganglia for both types of memory. Via deep brain high frequency stimulation (DBS) we manipulated neural activity of the STN in humans. We found that DBS-STN differentially modulated memory performance: declarative memory was impaired, whereas non-declarative memory was improved in the presence of STN-DBS indicating a specific role of the STN in the activation of memory systems. Copyright 2004 Lippincott Williams & Wilkins

  2. The regulation of immune cells by Lactobacilli: a potential therapeutic target for anti-atherosclerosis therapy

    PubMed Central

    Ding, Ya-Hui; Qian, Lin-Yan; Pang, Jie; Lin, Jing-Yang; Xu, Qiang; Wang, Li-Hong; Huang, Dong-Sheng; Zou, Hai

    2017-01-01

    Atherosclerosis is an inflammatory disease regulated by several immune cells including lymphocytes, macrophages and dendritic cells. Gut probiotic bacteria like Lactobacilli have been shown immunomodificatory effects in the progression of atherogenesis. Some Lactobacillus stains can upregulate the activity of regulatory T-lymphocytes, suppress T-lymphocyte helper (Th) cells Th1, Th17, alter the Th1/Th2 ratio, influence the subsets ratio of M1/M2 macrophages, inhibit foam cell formation by suppressing macrophage phagocytosis of oxidized low-density lipoprotein, block the activation of the immune system with dendritic cells, which are expected to suppress the atherosclerosis-related inflammation. However, various strains can have various effects on inflammation. Some other Lactobacillus strains were found have potential pro-atherogenic effect through promote Th1 cell activity, increase pro-inflammatory cytokines levels as well as decrease anti-inflammatory cytokines levels. Thus, identifying the appropriate strains is essential to the therapeutic potential of Lactobacilli as an anti-atherosclerotic therapy. PMID:28938693

  3. Perceived state of self during motion can differentially modulate numerical magnitude allocation.

    PubMed

    Arshad, Q; Nigmatullina, Y; Roberts, R E; Goga, U; Pikovsky, M; Khan, S; Lobo, R; Flury, A-S; Pettorossi, V E; Cohen-Kadosh, R; Malhotra, P A; Bronstein, A M

    2016-09-01

    Although a direct relationship between numerical allocation and spatial attention has been proposed, recent research suggests that these processes are not directly coupled. In keeping with this, spatial attention shifts induced either via visual or vestibular motion can modulate numerical allocation in some circumstances but not in others. In addition to shifting spatial attention, visual or vestibular motion paradigms also (i) elicit compensatory eye movements which themselves can influence numerical processing and (ii) alter the perceptual state of 'self', inducing changes in bodily self-consciousness impacting upon cognitive mechanisms. Thus, the precise mechanism by which motion modulates numerical allocation remains unknown. We sought to investigate the influence that different perceptual experiences of motion have upon numerical magnitude allocation while controlling for both eye movements and task-related effects. We first used optokinetic visual motion stimulation (OKS) to elicit the perceptual experience of either 'visual world' or 'self'-motion during which eye movements were identical. In a second experiment, we used a vestibular protocol examining the effects of perceived and subliminal angular rotations in darkness, which also provoked identical eye movements. We observed that during the perceptual experience of 'visual world' motion, rightward OKS-biased judgments towards smaller numbers, whereas leftward OKS-biased judgments towards larger numbers. During the perceptual experience of 'self-motion', judgments were biased towards larger numbers irrespective of the OKS direction. Contrastingly, vestibular motion perception was found not to modulate numerical magnitude allocation, nor was there any differential modulation when comparing 'perceived' vs. 'subliminal' rotations. We provide a novel demonstration that numerical magnitude allocation can be differentially modulated by the perceptual state of self during visual but not vestibular mediated motion

  4. Adrenal-Derived Hormones Differentially Modulate Intestinal Immunity in Experimental Colitis

    PubMed Central

    de Souza, Patrícia Reis; Basso, Paulo José; Nardini, Viviani; Silva, Angelica; Banquieri, Fernanda

    2016-01-01

    The adrenal glands are able to modulate immune responses through neuroimmunoendocrine interactions and cortisol secretion that could suppress exacerbated inflammation such as in inflammatory bowel disease (IBD). Therefore, here we evaluated the role of these glands in experimental colitis induced by 3% dextran sulfate sodium (DSS) in C57BL/6 mice subjected to adrenalectomy, with or without glucocorticoid (GC) replacement. Mice succumbed to colitis without adrenals with a higher clinical score and augmented systemic levels of IL-6 and lower LPS. Furthermore, adrenalectomy negatively modulated systemic regulatory markers. The absence of adrenals resulted in augmented tolerogenic lamina propria dendritic cells but no compensatory local production of corticosterone and decreased mucosal inflammation associated with increased IFN-γ and FasL in the intestine. To clarify the importance of GC in this scenario, GC replacement in adrenalectomized mice restored different markers to the same degree of that observed in DSS group. Finally, this is the first time that adrenal-derived hormones, especially GC, were associated with the differential local modulation of the gut infiltrate, also pointing to a relationship between adrenalectomy and the modulation of systemic regulatory markers. These findings may elucidate some neuroimmunoendocrine mechanisms that dictate colitis outcome. PMID:27403034

  5. Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells

    PubMed Central

    Suhane, Sonal; Ramanujan, V Krishnan

    2011-01-01

    Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435

  6. The APC/C Coordinates Retinal Differentiation with G1 Arrest through the Nek2-Dependent Modulation of Wingless Signaling.

    PubMed

    Martins, Torcato; Meghini, Francesco; Florio, Francesca; Kimata, Yuu

    2017-01-09

    The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Determination of Antibacterial and Technological Properties of Vaginal Lactobacilli for Their Potential Application in Dairy Products

    PubMed Central

    Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I.; Parolin, Carola; Ñahui Palomino, Rogers A.; Vitali, Beatrice; Lanciotti, Rosalba

    2017-01-01

    Functional foods could differently affect human health in relation to the gender. Recent studies have highlighted the anti-Candida and anti-Chlamydia activities of some Lactobacillus strains isolated from the vagina of healthy women. Considering these important beneficial activities on women's health, the preparation of functional food containing active vaginal lactobacilli can represent a great scientific challenge for the female gender. In this context, the aim of this work was to study some functional and technological properties of 17 vaginal strains belonging to the species Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus vaginalis in the perspective to include them in dairy products. The antagonistic activities against the pathogenic and spoilage species associated to food products and against the principal etiological agents of the genitourinary tract infections were evaluated. Moreover, the vaginal lactobacilli were characterized for their antibiotic resistance, and for their fermentation kinetics and viability during the refrigerated storage in milk. Finally, the volatile molecule profiles of the obtained fermented milks were determined. The results showed that several strains, mainly belonging to the species Lactobacillus crispatus, exhibited a significant antagonistic activity against spoilage and pathogenic microorganisms of food interest, as well as against urogenital pathogens. All the vaginal lactobacilli showed antimicrobial activity against strains belonging to the foodborne pathogenic species Listeria monocytogenes, Listeria innocua, Eenterococcus faecalis and Escherichia coli. In addition, most of the Lactobacillus strains were active toward the main pathogens responsible of vaginal and urinary tract infections including Staphylococcus aureus, Enterococcus faecium, Gardnerella vaginalis, and Proteus mirabilis. The antimicrobial activity can be attributed to the high production of organic acids. The fermentation kinetics in milk

  8. Mechanism of degradation of immunogenic gluten epitopes from Triticum turgidum L. var. durum by sourdough lactobacilli and fungal proteases.

    PubMed

    De Angelis, Maria; Cassone, Angela; Rizzello, Carlo G; Gagliardi, Francesca; Minervini, Fabio; Calasso, Maria; Di Cagno, Raffaella; Francavilla, Ruggero; Gobbetti, Marco

    2010-01-01

    As shown by R5 antibody-based sandwich and competitive enzyme-linked immunosorbent assay (ELISA), selected sourdough lactobacilli, in combination with fungal proteases, hydrolyzed gluten (72 h at 37 degrees C) of various cultivars of Triticum turgidum L. var. durum to less than 20 ppm. Complementary electrophoretic, chromatography, and mass spectrometry techniques were used to characterize the gluten and epitope hydrolysis. Nine peptidases were partially purified from the pooled cytoplasmic extract of the sourdough lactobacilli and used to hydrolyze the 33-mer epitope, the most immunogenic peptide generated during digestion of Triticum species. At least three peptidases (general aminopeptidase type N [PepN], X-prolyl dipeptidyl aminopeptidase [PepX], and endopeptidase PepO) were necessary to detoxify the 33-mer without generation of related immunogenic epitopes. After 14 h of incubation, the combination of all or at least six different peptidases totally hydrolyzed the 33-mer (200 mM) into free amino acids. The same results were found for other immunogenic epitopes, such as fragments 57-68 of alpha 9-gliadin, 62-75 of A-gliadin, and 134-153 of gamma-gliadin. When peptidases were used for fermentation of durum wheat semolina, they caused the hydrolysis of gluten to ca. 2 ppm. The in vivo digestion was simulated, and proteins/peptides extracted from pepsin-trypsin (PT) digestion of durum wheat semolina fermented with selected sourdough lactobacilli induced the expression of gamma interferon and interleukin 2 at levels comparable to those of the negative control. Durum wheat semolina fermented with sourdough lactobacilli was freeze-dried and used for making Italian-type pasta. The scores for cooking and sensory properties for this pasta were higher that those of conventional gluten-free pasta.

  9. Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli Is Tolerated in Celiac Sprue Patients

    PubMed Central

    Di Cagno, Raffaella; De Angelis, Maria; Auricchio, Salvatore; Greco, Luigi; Clarke, Charmaine; De Vincenzi, Massimo; Giovannini, Claudio; D'Archivio, Massimo; Landolfo, Francesca; Parrilli, Giampaolo; Minervini, Fabio; Arendt, Elke; Gobbetti, Marco

    2004-01-01

    This work was aimed at producing a sourdough bread that is tolerated by celiac sprue (CS) patients. Selected sourdough lactobacilli had specialized peptidases capable of hydrolyzing Pro-rich peptides, including the 33-mer peptide, the most potent inducer of gut-derived human T-cell lines in CS patients. This epitope, the most important in CS, was hydrolyzed completely after treatment with cells and their cytoplasmic extracts (CE). A sourdough made from a mixture of wheat (30%) and nontoxic oat, millet, and buckwheat flours was started with lactobacilli. After 24 h of fermentation, wheat gliadins and low-molecular-mass, alcohol-soluble polypeptides were hydrolyzed almost totally. Proteins were extracted from sourdough and used to produce a peptic-tryptic digest for in vitro agglutination tests on K 562(S) subclone cells of human origin. The minimal agglutinating activity was ca. 250 times higher than that of doughs chemically acidified or started with baker's yeast. Two types of bread, containing ca. 2 g of gluten, were produced with baker's yeast or lactobacilli and CE and used for an in vivo double-blind acute challenge of CS patients. Thirteen of the 17 patients showed a marked alteration of intestinal permeability after ingestion of baker's yeast bread. When fed the sourdough bread, the same 13 patients had values for excreted rhamnose and lactulose that did not differ significantly from the baseline values. The other 4 of the 17 CS patients did not respond to gluten after ingesting the baker's yeast or sourdough bread. These results showed that a bread biotechnology that uses selected lactobacilli, nontoxic flours, and a long fermentation time is a novel tool for decreasing the level of gluten intolerance in humans. PMID:14766592

  10. Mechanism of Degradation of Immunogenic Gluten Epitopes from Triticum turgidum L. var. durum by Sourdough Lactobacilli and Fungal Proteases▿

    PubMed Central

    De Angelis, Maria; Cassone, Angela; Rizzello, Carlo G.; Gagliardi, Francesca; Minervini, Fabio; Calasso, Maria; Di Cagno, Raffaella; Francavilla, Ruggero; Gobbetti, Marco

    2010-01-01

    As shown by R5 antibody-based sandwich and competitive enzyme-linked immunosorbent assay (ELISA), selected sourdough lactobacilli, in combination with fungal proteases, hydrolyzed gluten (72 h at 37°C) of various cultivars of Triticum turgidum L. var. durum to less than 20 ppm. Complementary electrophoretic, chromatography, and mass spectrometry techniques were used to characterize the gluten and epitope hydrolysis. Nine peptidases were partially purified from the pooled cytoplasmic extract of the sourdough lactobacilli and used to hydrolyze the 33-mer epitope, the most immunogenic peptide generated during digestion of Triticum species. At least three peptidases (general aminopeptidase type N [PepN], X-prolyl dipeptidyl aminopeptidase [PepX], and endopeptidase PepO) were necessary to detoxify the 33-mer without generation of related immunogenic epitopes. After 14 h of incubation, the combination of all or at least six different peptidases totally hydrolyzed the 33-mer (200 mM) into free amino acids. The same results were found for other immunogenic epitopes, such as fragments 57-68 of α9-gliadin, 62-75 of A-gliadin, and 134-153 of γ-gliadin. When peptidases were used for fermentation of durum wheat semolina, they caused the hydrolysis of gluten to ca. 2 ppm. The in vivo digestion was simulated, and proteins/peptides extracted from pepsin-trypsin (PT) digestion of durum wheat semolina fermented with selected sourdough lactobacilli induced the expression of gamma interferon and interleukin 2 at levels comparable to those of the negative control. Durum wheat semolina fermented with sourdough lactobacilli was freeze-dried and used for making Italian-type pasta. The scores for cooking and sensory properties for this pasta were higher that those of conventional gluten-free pasta. PMID:19948868

  11. The Antibacterial Effect of Ethanol Extract of Polish Propolis on Mutans Streptococci and Lactobacilli Isolated from Saliva

    PubMed Central

    Dziedzic, Arkadiusz; Kubina, Robert; Wojtyczka, Robert D.; Kabała-Dzik, Agata; Tanasiewicz, Marta; Morawiec, Tadeusz

    2013-01-01

    Dental caries occurrence is caused by the colonization of oral microorganisms and accumulation of extracellular polysaccharides synthesized by Streptococcus mutans with the synergistic influence of Lactobacillus spp. bacteria. The aim of this study was to determine ex vivo the antibacterial properties of ethanol extract of propolis (EEP), collected in Poland, against the main cariogenic bacteria: salivary mutans streptococci and lactobacilli. The isolation of mutans streptococci group bacteria (MS) and Lactobacillus spp. (LB) from stimulated saliva was performed by in-office CRT bacteria dip slide test. The broth diffusion method and AlamarBlue assay were used to evaluate the antimicrobial activity of EEP, with the estimation of its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The biochemical composition of propolis components was assessed. The mean MIC and MBC values of EEP, in concentrations ranging from 25 mg/mL to 0.025 mg/mL, for the MS and LB were found to be 1.10 mg/mL versus 0.7 mg/mL and 9.01 mg/mL versus 5.91 mg/mL, respectively. The exposure to an extract of Polish propolis affected mutans streptococci and Lactobacillus spp. viability, exhibiting an antibacterial efficacy on mutans streptococci group bacteria and lactobacilli saliva residents, while lactobacilli were more susceptible to EEP. Antibacterial measures containing propolis could be the local agents acting against cariogenic bacteria. PMID:23606887

  12. Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment

    PubMed Central

    Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J.

    2014-01-01

    Lactobacilli are found in a wide variety of habitats. Four species, Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii, are common and abundant in the human vagina and absent from other habitats. These may be adapted to the vagina and possess characteristics enabling them to thrive in that environment. Furthermore, stable codominance of multiple Lactobacillus species in a single community is infrequently observed. Thus, it is possible that individual vaginal Lactobacillus species possess unique characteristics that confer to them host-specific competitive advantages. We performed comparative functional genomic analyses of representatives of 25 species of Lactobacillus, searching for habitat-specific traits in the genomes of the vaginal lactobacilli. We found that the genomes of the vaginal species were significantly smaller and had significantly lower GC content than those of the nonvaginal species. No protein families were found to be specific to the vaginal species analyzed, but some were either over- or underrepresented relative to nonvaginal species. We also found that within the vaginal species, each genome coded for species-specific protein families. Our results suggest that even though the vaginal species show no general signatures of adaptation to the vaginal environment, each species has specific and perhaps unique ways of interacting with its environment, be it the host or other microbes in the community. These findings will serve as a foundation for further exploring the role of lactobacilli in the ecological dynamics of vaginal microbial communities and their ultimate impact on host health. PMID:24488312

  13. Molecular Detection of Two Potential Probiotic Lactobacilli Strains and Evaluation of Their Performance as Starter Adjuncts in Yogurt Production.

    PubMed

    Saxami, Georgia; Papadopoulou, Olga S; Chorianopoulos, Nikos; Kourkoutas, Yiannis; Tassou, Chrysoula C; Galanis, Alex

    2016-05-04

    A molecular method for efficient and accurate detection and identification of two potential probiotic lactobacilli strains isolated from fermented olives, namely Lactobacillus pentosus B281 and Lb. plantarum B282, was developed in the present study. Random Amplified Polymorphic DNA (RAPD) analysis was performed, and strain specific primers were designed and applied in a multiplex polymerase chain reaction (PCR) assay. The specificity of the assay was tested and successfully confirmed in 27 and 22 lactobacilli strains for Lb. pentosus B281 and Lb. plantarum B282, respectively. Moreover, the two strains were used as starter cultures in yogurt production. Cell enumeration followed by multiplex PCR analysis demonstrated that the two strains were present in yogurt samples at levels ≥6 log CFU/g even after 35 days of storage at 4 °C. Microbiological analysis showed that lactobacilli and streptococci were present within usual levels, whereas enterobacteriaceae and yeast/mold counts were not detected as expected. Although the pH values of the novel products were slightly lower than the control ones, the yogurt containing the probiotic cultures scored similar values compared to the control in a series of sensory tests. Overall, these results demonstrated the possible use of the two strains as starter adjuncts in the production of yogurt with potential probiotic properties.

  14. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus.

    PubMed

    Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M

    2016-11-30

    It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of

  15. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    PubMed Central

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  16. Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.

    PubMed

    Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline

    2008-03-01

    The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.

  17. Influence of Hydrogen Peroxide, Lactic Acid, and Surfactants from Vaginal Lactobacilli on the Antibiotic Sensitivity of Opportunistic Bacteria.

    PubMed

    Sgibnev, Andrey; Kremleva, Elena

    2017-06-01

    We studied as hydrogen peroxide, lactic acid, or surfactants from clinical isolates of vaginal lactobacilli and cell-free supernatants from probiotic strain LCR35 can influence on the sensitivity of opportunistic bacteria to antibiotics. We found that the most effective in increasing sensitivity to antibiotics were hydrogen peroxide and surfactants or their combination but no lactic acid. In some cases, the effect of the composition of hydrogen peroxide and surfactants was clearly higher than the sum of effects of these substances alone. With using of the supernatant of LCR35 was shown that the combination of surfactant and lactate has greater effect compared with surfactants alone. In concluding, metabolites of vaginal lactobacilli are suitable for the role of "antibiotic assistants" and it can help solve the problems the antibiotic resistance.

  18. Wavelength-modulated differential photothermal radiometry: Theory and experimental applications to glucose detection in water

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas; Guo, Xinxin

    2011-10-01

    A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR.

  19. Molecular identification and cluster analysis of homofermentative thermophilic lactobacilli isolated from dairy products.

    PubMed

    Andrighetto, C; De Dea, P; Lombardi, A; Neviani, E; Rossetti, L; Giraffa, G

    1998-10-01

    Twenty-five strains of thermophilic lactobacilli isolated from yoghurt and from semi-hard and hard cheeses (in parallel with nine type or reference strains) were identified and grouped according to their genetic relatedness. Strains were identified by sugar fermentation patterns using the "API 50 CHL" galleries, by species-specific DNA probes in dot-blot hybridization experiments, by amplification and restriction analysis of the 16S rRNA gene (ARDRA) and by polymerase chain reaction (PCR) using species-specific oligonucleotide primers. Strains were classified as Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus, L. helveticus, and L. acidophilus. Strains which were atypical by sugar fermentation patterns were also identified. Most of the strains could not be grouped using carbohydrate fermentation profiles. PCR fingerprinting was used to identify DNA profiles for the 25 lactobacilli. Experimentally obtained PCR profiles enabled discrimination of all strains, which were grouped according to the similarities in their combined patterns. In general, the clustering of the strains corresponded well with species delineation obtained by molecular identification. The dendrogram of genetic relatedness enabled the unambiguous identification of most of the strains which were shown to be atypical by the sugar fermentation profile, except for a discrepancy in one L. delbrueckii subsp. lactis strain and one atypical Lactobacillus sp. strain.

  20. Differential heating in the Indian Ocean differentially modulates precipitation in the Ganges and Brahmaputra basins

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2016-01-01

    Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Two interactive climate modes of the Indo-Pacific—the El Niño/Southern Oscillation (ENSO) and the Indian Ocean dipole mode—modulate the amount of precipitation over India, in addition to precipitation over Africa, Indonesia, and Australia. However, this modulation is not spatially uniform. The precipitation in southern India is strongly forced by the Indian Ocean dipole mode and ENSO. In contrast, across northern India, encompassing the Ganges and Brahmaputra basins, the climate mode influence on precipitation is much less. Understanding the forcing of precipitation in these river basins is vital for food security and ecosystem services for over half a billion people. Using 28 years of remote sensing observations, we demonstrate that (i) the tropical west-east differential heating in the Indian Ocean influences the Ganges precipitation and (ii) the north-south differential heating in the Indian Ocean influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the Indian Ocean and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature anomalies in the Indian Ocean are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. These new indices have the potential to aid forecasting of drought and flooding, to contextualize land cover and land use change, and to assess the regional impacts of climate change.

  1. Antioxidant lactobacilli could protect gingival fibroblasts against hydrogen peroxide: a preliminary in vitro study.

    PubMed

    Mendi, Ayşegül; Aslım, Belma

    2014-12-01

    Oxidative stress and tissue destruction are at the heart of periodontal diseases. The dental research area is geared toward the prevention of free radicals by nutrient antioxidants. Lactic acid bacteria (LAB) have recently attracted attention in alternative dental therapies. We aimed at highlighting the antioxidative property of Lactobacilli and Bifidobacterium strains and at determining their protective effect on gingival fibroblasts (GFs). Two Lactobacilli and 2 Bifidobacterium strains were screened for their exopolysaccharide (EPSs) production. Antioxidative assays were conducted by spectrophotometer analysis. Resistance to different concentrations of hydrogen peroxide (H2O2) was determined by the serial dilution technique. The protective effect of strains on GFs on hydrogen peroxide exposure was also examined by a new trypan blue exclusion assay method. Bifidobacterium breve A28 showed the highest EPS production (122 mg/l) and remarkable antioxidant activity, which were demonstrated by its ability to scavenge 72% α,α-diphenyl-1-picrylhydrazyl free radical and chelate 88% of iron ion, respectively. Inhibition of lipid peroxidation was determined as 71% for the A28 strain. We suggest that LAB with antioxidative activity could be a good natural therapy agent for periodontal disorders.

  2. Screening of Probiotic Activities of Lactobacilli Strains Isolated from Traditional Tibetan Qula, A Raw Yak Milk Cheese

    PubMed Central

    Zhang, Bei; Wang, Yanping; Tan, Zhongfang; Li, Zongwei; Jiao, Zhen; Huang, Qunce

    2016-01-01

    In this study, 69 lactobacilli isolated from Tibetan Qula, a raw yak milk cheese, were screened for their potential use as probiotics. The isolates were tested in terms of: Their ability to survive at pH 2.0, pH 3.0, and in the presence of 0.3% bile salts; tolerance of simulated gastric and intestinal juices; antimicrobial activity; sensitivity against 11 specific antibiotics; and their cell surface hydrophobicity. The results show that out of the 69 strains, 29 strains (42%) had survival rates above 90% after 2 h of incubation at pH values of 2.0 or 3.0. Of these 29 strains, 21 strains showed a tolerance for 0.3% bile salt. Incubation of these 21 isolates in simulated gastrointestinal fluid for 3 h revealed survival rates above 90%; the survival rate for 20 of these isolates remained above 90% after 4 h of incubation in simulated intestinal fluid. The viable counts of bacteria after incubation in simulated gastric fluid for 3 h and simulated intestinal fluid for 4 h were both significantly different compared with the counts at 0 h (p<0.001). Further screening performed on the above 20 isolates indicated that all 20 lactobacilli strains exhibited inhibitory activity against Micrococcus luteus ATCC 4698, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 19115, and Salmonella enterica ATCC 43971. Moreover, all of the strains were resistant to vancomycin and streptomycin. Of the 20 strains, three were resistant to all 11 elected antibiotics (ciprofloxacin, erythromycin, tetracycline, penicillin G, ampicillin, streptomycin, polymyxin B, vancomycin, chloramphenicol, rifampicin, and gentamicin) in this study, and five were sensitive to more than half of the antibiotics. Additionally, the cell surface hydrophobicity of seven of the 20 lactobacilli strains was above 70%, including strains Lactobacillus casei 1,133 (92%), Lactobacillus plantarum 1086-1 (82%), Lactobacillus casei 1089 (81%), Lactobacillus casei 1138 (79%), Lactobacillus buchneri 1059 (78

  3. DIFFERENTIAL MODULATION OF CATECHOLAMINES BY CHLOROTRIAZINE HERBICIDES IN PHEOCHROMOCYTOMA (PC12) CELLS IN VITRO

    EPA Science Inventory

    Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro.

    Das PC, McElroy WK, Cooper RL.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599, USA.

    Epidemiological, wildlife, and lab...

  4. CANNABINOID AND OPIOID MODULATION OF SOCIAL PLAY BEHAVIOR IN ADOLESCENT RATS: DIFFERENTIAL BEHAVIORAL MECHANISMS

    PubMed Central

    Trezza, Viviana; Vanderschuren, Louk J.M.J.

    2008-01-01

    We have recently shown that the pharmacological mechanisms through which cannabinoid and opioid drugs influence social play behavior in adolescent rats can be partially dissociated. Here, we characterize the effects of the direct cannabinoid agonist WIN55,212-2, the indirect cannabinoid agonist URB597 and the opioid agonist morphine on social play at the behavioral level. By treating either one or both partners of the test dyad, we show that these drugs differentially affect play solicitation and play responsiveness. By testing these drugs in animals which were either familiar or unfamiliar to the test cage, we show that environmental factors differentially modulate the effects of cannabinoid and opioid drugs on social play. These results support and extend our previous findings suggesting that, although cannabinoid and opioid systems interact in the modulation of social play behavior in adolescent rats, they do so through partially dissociable behavioral and pharmacological mechanisms. PMID:18434104

  5. Lactobacilli Antagonize the Growth, Motility, and Adherence of Brachyspira pilosicoli: a Potential Intervention against Avian Intestinal Spirochetosis ▿

    PubMed Central

    Mappley, Luke J.; Tchórzewska, Monika A.; Cooley, William A.; Woodward, Martin J.; La Ragione, Roberto M.

    2011-01-01

    Avian intestinal spirochetosis (AIS) results from the colonization of the ceca and colorectum of poultry by pathogenic Brachyspira species. The number of cases of AIS has increased since the 2006 European Union ban on the use of antibiotic growth promoters, which, together with emerging antimicrobial resistance in Brachyspira, has driven renewed interest in alternative intervention strategies. Probiotics have been reported as protecting livestock against infection with common enteric pathogens, and here we investigate which aspects of the biology of Brachyspira they antagonize in order to identify possible interventions against AIS. The cell-free supernatants (CFS) of two Lactobacillus strains, Lactobacillus reuteri LM1 and Lactobacillus salivarius LM2, suppressed the growth of Brachyspira pilosicoli B2904 in a pH-dependent manner. In in vitro adherence and invasion assays with HT29-16E three-dimensional (3D) cells and in a novel avian cecal in vitro organ culture (IVOC) model, the adherence and invasion of B. pilosicoli in epithelial cells were reduced significantly by the presence of lactobacilli (P < 0.001). In addition, live and heat-inactivated lactobacilli inhibited the motility of B. pilosicoli, and electron microscopic observations indicated that contact between the lactobacilli and Brachyspira was crucial in inhibiting both adherence and motility. These data suggest that motility is essential for B. pilosicoli to adhere to and invade the gut epithelium and that any interference of motility may be a useful tool for the development of control strategies. PMID:21666022

  6. Molecular Detection of Two Potential Probiotic Lactobacilli Strains and Evaluation of Their Performance as Starter Adjuncts in Yogurt Production

    PubMed Central

    Saxami, Georgia; Papadopoulou, Olga S.; Chorianopoulos, Nikos; Kourkoutas, Yiannis; Tassou, Chrysoula C.; Galanis, Alex

    2016-01-01

    A molecular method for efficient and accurate detection and identification of two potential probiotic lactobacilli strains isolated from fermented olives, namely Lactobacillus pentosus B281 and Lb. plantarum B282, was developed in the present study. Random Amplified Polymorphic DNA (RAPD) analysis was performed, and strain specific primers were designed and applied in a multiplex polymerase chain reaction (PCR) assay. The specificity of the assay was tested and successfully confirmed in 27 and 22 lactobacilli strains for Lb. pentosus B281 and Lb. plantarum B282, respectively. Moreover, the two strains were used as starter cultures in yogurt production. Cell enumeration followed by multiplex PCR analysis demonstrated that the two strains were present in yogurt samples at levels ≥6 log CFU/g even after 35 days of storage at 4 °C. Microbiological analysis showed that lactobacilli and streptococci were present within usual levels, whereas enterobacteriaceae and yeast/mold counts were not detected as expected. Although the pH values of the novel products were slightly lower than the control ones, the yogurt containing the probiotic cultures scored similar values compared to the control in a series of sensory tests. Overall, these results demonstrated the possible use of the two strains as starter adjuncts in the production of yogurt with potential probiotic properties. PMID:27153065

  7. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.

    PubMed

    Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P

    2012-01-01

    Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.

  8. Influence of In Vitro and In Vivo Oxygen Modulation on β Cell Differentiation From Human Embryonic Stem Cells

    PubMed Central

    Cechin, Sirlene; Álvarez-Cubela, Silvia; Giraldo, Jaime A.; Molano, Ruth D.; Villate, Susana; Ricordi, Camillo; Pileggi, Antonello; Inverardi, Luca

    2014-01-01

    The possibility of using human embryonic stem (hES) cell-derived β cells as an alternative to cadaveric islets for the treatment of type 1 diabetes is now widely acknowledged. However, current differentiation methods consistently fail to generate meaningful numbers of mature, functional β cells. In order to address this issue, we set out to explore the role of oxygen modulation in the maturation of pancreatic progenitor (PP) cells differentiated from hES cells. We have previously determined that oxygenation is a powerful driver of murine PP differentiation along the endocrine lineage of the pancreas. We hypothesized that targeting physiological oxygen partial pressure (pO2) levels seen in mature islets would help the differentiation of PP cells along the β-cell lineage. This hypothesis was tested both in vivo (by exposing PP-transplanted immunodeficient mice to a daily hyperbaric oxygen regimen) and in vitro (by allowing PP cells to mature in a perfluorocarbon-based culture device designed to carefully adjust pO2 to a desired range). Our results show that oxygen modulation does indeed contribute to enhanced maturation of PP cells, as evidenced by improved engraftment, segregation of α and β cells, body weight maintenance, and rate of diabetes reversal in vivo, and by elevated expression of pancreatic endocrine makers, β-cell differentiation yield, and insulin production in vitro. Our studies confirm the importance of oxygen modulation as a key variable to consider in the design of β-cell differentiation protocols and open the door to future strategies for the transplantation of fully mature β cells. PMID:24375542

  9. [EFFECT OF LACTOBACILLI EXOPOLYSACCHARIDES ON PHAGOCYTE AND CYTOKINE ACTIVITY IN VITRO AND IN ANIMAL ORGANISM DURING INFECTIOUS PROCESS MODELING].

    PubMed

    Gorelnikova, E A; Karpunina, L V

    2015-01-01

    Study the effect of lactobacilli exopolysaccharides (EPS)on cytokine and phagocyte activity in vitro and in mice organism during modelling of an infectious process. Lactobacillus delbrueckii subsp. delbrueckii B-1596 (laksaran 1596), L. delbrueckii B-1936 (laksaran 1936) and L. delbrueckii ssp. bulgaricus (laksaran Z) were used in the study. EPS were administered into white mice 1 hour after the Staphylococcus aureus 209-P infection. Index of phagocyte completion and index of killing activation (IKA) were calculated during phagocyte activity study. IL-1α, TNF-α, IFN-γ and IL-4 cytokine content was determined in blood sera and macrophage supernatants. Laksaran 1596, 1936 and Z had ambiguous effect on cytokine production. Laksaran: Z and 1936, 6 hours after mice infection increased IL-1 content in blood sera. Laksaran Z had the most pronounced effect on macrophages, resulting in an increase of active macrophages, facilitating increased digestion of S. aureus 209-P and IKA increase, stimulated cytokine production. The results obtained allow to speak about a possibility of using laksaran Z as a prophylaxis immune modulating preparation for correction of animal cytokine status.

  10. MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis[W

    PubMed Central

    Dombrecht, Bruno; Xue, Gang Ping; Sprague, Susan J.; Kirkegaard, John A.; Ross, John J.; Reid, James B.; Fitt, Gary P.; Sewelam, Nasser; Schenk, Peer M.; Manners, John M.; Kazan, Kemal

    2007-01-01

    The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2–regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway. PMID:17616737

  11. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acidmore » binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.« less

  12. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    PubMed

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-10-05

    Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of

  13. In vitro effect of vaginal lactobacilli on the growth and adhesion abilities of uropathogenic Escherichia coli.

    PubMed

    Leccese Terraf, María Cecilia; Juarez Tomás, María Silvina; Rault, Lucie; Le Loir, Yves; Even, Sergine; Nader-Macías, María Elena Fátima

    2017-07-01

    Escherichia coli is one of the main causes of uncomplicated urinary tract infections and responsible of vaginal infections. Lactobacilli can inhibit this pathogen by the production of antimicrobial substances as organic acids, hydrogen peroxide and/or bacteriocins. The aim of this work was to study the effects of beneficial vaginal lactobacilli on E. coli through in vitro experiments. The inhibitory activity of three vaginal Lactobacillus strains against E. coli was assessed using the agar plate diffusion. Moreover, the effect of Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 on the adhesion and internalization capabilities of E. coli was studied on HeLa cells. Two Lactobacillus strains inhibited the growth of the pathogens by production of organic acids. L. reuteri CRL 1324 reduced the adhesion and internalization of E. coli 275 into HeLa cells. The results obtained suggest that L. reuteri CRL 1324 can be considered as a probiotic candidate for further in vivo studies for the prevention or treatment of urinary tract infections caused by E. coli.

  14. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    NASA Astrophysics Data System (ADS)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  15. Maple sap as a rich medium to grow probiotic lactobacilli and to produce lactic acid.

    PubMed

    Cochu, A; Fourmier, D; Halasz, A; Hawari, J

    2008-12-01

    To demonstrate the feasibility of growing lactobacilli and producing lactic acid using maple sap as a sugar source and to show the importance of oligosaccharides in the processes. Two maple sap samples (Cetta and Pinnacle) and purified sucrose were used as carbon sources in the preparation of three culture media. Compared with the sucrose-based medium, both maple sap-based media produced increased viable counts in two strains out of five by a factor of four to seven. Maple sap-based media also enhanced lactic acid production in three strains. Cetta sap was found to be more efficient than Pinnacle sap in stimulating lactic acid production and, was also found to be richer in various oligosaccharides. The amendment of the Pinnacle-based medium with trisaccharides significantly stimulated Lactobacillus acidophilus AC-10 to grow and produce lactic acid. Maple sap, particularly if rich in oligosaccharides, represents a good carbon source for the growth of lactobacilli and the production of lactic acid. This study provides a proof-of-concept, using maple sap as a substrate for lactic acid production and for the development of a nondairy probiotic drink.

  16. In Vitro Evaluation of the Probiotic Potential of Halotolerant Lactobacilli Isolated from a Ripened Tropical Mexican Cheese.

    PubMed

    Melgar-Lalanne, Guiomar; Rivera-Espinoza, Yadira; Reyes Méndez, Ana Itzel; Hernández-Sánchez, Humberto

    2013-12-01

    Three halotolerant lactobacilli (Lactobacillus plantarum, L. pentosus, and L. acidipiscis) isolated from a ripened Mexican tropical cheese (double cream Chiapas cheese) were evaluated as potential probiotics and compared with two commercial probiotic strains (L. casei Shirota and L. plantarum 299v) from human origin. All the strains survived the in vitro gastrointestinal simulation from the oral cavity to the ileum. During the stomach simulation, all the strains survived in satiety conditions (60 min, pH 3.0, 3 g/L pepsin, 150 rpm) and only L. pentosus could not survive under fasting conditions (60 min, pH 2.0, 3 g/L pepsin, 150 rpm). All the strains showed a strong hydrophilic character with low n-hexadecane and a variable chloroform affinity. L. plantarum showed a mucin adhesion rate similar to that of L. plantarum 299v and L. casei Shirota, while L. pentosus and L. acidipiscis had a lower mucin adhesion. The isolated halotolerant lactobacilli exhibited similar antimicrobial activity against some gram-positive and gram-negative pathogens in comparison with the two commercial strains. In addition, the proteinaceous character of the antimicrobial agents against the most pathogenic strains was demonstrated. The compounds showed a low molecular weight (less than 10 kDa). Besides, L. plantarum and L. acidipiscis were able to produce the enzyme β-galactosidase. Finally, L. pentosus was able to deconjugate taurocholic, taurodeoxycholic, glycocholic, and glycodeoxycholic acids better than the two commercial strains analyzed. All these results suggest that the halotolerant lactobacilli isolated from this ripened Mexican cheese could be potentially probiotic. This is the first time that halotolerant lactic acid bacteria have been shown to have probiotic properties.

  17. Glycerol Monolaurate Does Not Alter Rhesus Macaque (Macaca mulatta) Vaginal Lactobacilli and Is Safe for Chronic Use▿

    PubMed Central

    Schlievert, Patrick M.; Strandberg, Kristi L.; Brosnahan, Amanda J.; Peterson, Marnie L.; Pambuccian, Stefan E.; Nephew, Karla R.; Brunner, Kevin G.; Schultz-Darken, Nancy J.; Haase, Ashley T.

    2008-01-01

    Glycerol monolaurate (GML) is a fatty acid monoester that inhibits growth and exotoxin production of vaginal pathogens and cytokine production by vaginal epithelial cells. Because of these activities, and because of the importance of cytokine-mediated immune activation in human immunodeficiency virus type 1 (HIV-1) transmission to women, our laboratories are performing studies on the potential efficacy of GML as a topical microbicide to interfere with HIV-1 transmission in the simian immunodeficiency virus-rhesus macaque model. While GML is generally recognized as safe by the FDA for topical use, its safety for chronic use and effects on normal vaginal microflora in this animal model have not been evaluated. GML was therefore tested both in vitro for its effects on vaginal flora lactobacilli and in vivo as a 5% gel administered vaginally to monkeys. In vitro studies demonstrated that lactobacilli are not killed by GML; GML blocks the loss of their viability in stationary phase and does not interfere with lactic acid production. GML (5% gel) does not quantitatively alter monkey aerobic vaginal microflora compared to vehicle control gel. Lactobacilli and coagulase-negative staphylococci are the dominant vaginal aerobic microflora, with beta-hemolytic streptococci, Staphylococcus aureus, and yeasts sporadically present; gram-negative rods are not part of their vaginal flora. Colposcopy and biopsy studies indicate that GML does not alter normal mucosal integrity and does not induce inflammation; instead, GML reduces epithelial cell production of interleukin 8. The studies suggest that GML is safe for chronic use in monkeys when applied vaginally; it does not alter either mucosal microflora or integrity. PMID:18838587

  18. NPH4, a Conditional Modulator of Auxin-Dependent Differential Growth Responses in Arabidopsis1

    PubMed Central

    Stowe-Evans, Emily L.; Harper, Reneé M.; Motchoulski, Andrei V.; Liscum, Emmanuel

    1998-01-01

    Although sessile in nature, plants are able to use a number of mechanisms to modify their morphology in response to changing environmental conditions. Differential growth is one such mechanism. Despite its importance in plant development, little is known about the molecular events regulating the establishment of differential growth. Here we report analyses of the nph4 (nonphototropic hypocotyl) mutants of Arabidopsis that suggest that the NPH4 protein plays a central role in the modulation of auxin-dependent differential growth. Results from physiological studies demonstrate that NPH4 activity is conditionally required for a number of differential growth responses, including phototropism, gravitropism, phytochrome-dependent hypocotyl curvature, apical hook maintenance, and abaxial/adaxial leaf-blade expansion. The nph4 mutants exhibited auxin resistance and severely impaired auxin-dependent gene expression, indicating that the defects associated with differential growth likely arise because of altered auxin responsiveness. Moreover, the auxin signaling events mediating phototropism are genetically correlated with the abundance of the NPH4 protein. PMID:9847100

  19. Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation

    PubMed Central

    García, Andrés J.; Vega, María D.; Boettiger, David

    1999-01-01

    Integrin-mediated cell adhesion to extracellular matrices provides signals essential for cell cycle progression and differentiation. We demonstrate that substrate-dependent changes in the conformation of adsorbed fibronectin (Fn) modulated integrin binding and controlled switching between proliferation and differentiation. Adsorption of Fn onto bacterial polystyrene (B), tissue culture polystyrene (T), and collagen (C) resulted in differences in Fn conformation as indicated by antibody binding. Using a biochemical method to quantify bound integrins in cultured cells, we found that differences in Fn conformation altered the quantity of bound α5 and β1 integrin subunits but not αv or β3. C2C12 myoblasts grown on these Fn-coated substrates proliferated to different levels (B > T > C). Immunostaining for muscle-specific myosin revealed minimal differentiation on B, significant levels on T, and extensive differentiation on C. Differentiation required binding to the RGD cell binding site in Fn and was blocked by antibodies specific for this site. Switching between proliferation and differentiation was controlled by the levels of α5β1 integrin bound to Fn, and differentiation was inhibited by anti-α5, but not anti-αv, antibodies, suggesting distinct integrin-mediated signaling pathways. Control of cell proliferation and differentiation through conformational changes in extracellular matrix proteins represents a versatile mechanism to elicit specific cellular responses for biological and biotechnological applications. PMID:10069818

  20. Manufacture of Fior di Latte cheese by incorporation of probiotic lactobacilli.

    PubMed

    Minervini, F; Siragusa, S; Faccia, M; Dal Bello, F; Gobbetti, M; De Angelis, M

    2012-02-01

    This work aimed to select heat-resistant probiotic lactobacilli to be added to Fior di Latte (high-moisture cow milk Mozzarella) cheese. First, 18 probiotic strains belonging to Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus reuteri were screened. Resistance to heating (65 or 55°C for 10 min) varied markedly between strains. Adaptation at 42°C for 10 min increased the heat resistance at 55°C for 10 min of all probiotic lactobacilli. Heat-adapted L. delbrueckii ssp. bulgaricus SP5 (decimal reduction time at 55°C of 227.4 min) and L. paracasei BGP1 (decimal reduction time at 55°C of 40.8 min) showed the highest survival under heat conditions that mimicked the stretching of the curd and were used for the manufacture of Fior di Latte cheese. Two technology options were chosen: chemical (addition of lactic acid to milk) or biological (Streptococcus thermophilus as starter culture) acidification with or without addition of probiotics. As determined by random amplified polymorphic DNA-PCR and 16S rRNA gene analyses, the cell density of L. delbrueckii ssp. bulgaricus SP5 and L. paracasei BGP1 in chemically or biologically acidified Fior di Latte cheese was approximately 8.0 log(10)cfu/g. Microbiological, compositional, biochemical, and sensory analyses (panel test by 30 untrained judges) showed that the use of L. delbrueckii ssp. bulgaricus SP5 and L. paracasei BGP1 enhanced flavor formation and shelf-life of Fior di Latte cheeses. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-environment for Pathogen Defense.

    PubMed

    Yang, Jiajun; Qian, Kun; Wang, Chonglong; Wu, Yijing

    2018-06-01

    The gastrointestinal tract of pigs is densely populated with microorganisms that closely interact with the host and with ingested feed. Gut microbiota benefits the host by providing nutrients from dietary substrates and modulating the development and function of the digestive and immune systems. An optimized gastrointestinal microbiome is crucial for pigs' health, and establishment of the microbiome in piglets is especially important for growth and disease resistance. However, the microbiome in the gastrointestinal tract of piglets is immature and easily influenced by the environment. Supplementing the microbiome of piglets with probiotic bacteria such as Lactobacillus could help create an optimized microbiome by improving the abundance and number of lactobacilli and other indigenous probiotic bacteria. Dominant indigenous probiotic bacteria could improve piglets' growth and immunity through certain cascade signal transduction pathways. The piglet body provides a permissive habitat and nutrients for bacterial colonization and growth. In return, probiotic bacteria produce prebiotics such as short-chain fatty acids and bacteriocins that benefit piglets by enhancing their growth and reducing their risk of enteric infection by pathogens. A comprehensive understanding of the interactions between piglets and members of their gut microbiota will help develop new dietary interventions that can enhance piglets' growth, protect piglets from enteric diseases caused by pathogenic bacteria, and maximize host feed utilization.

  2. The Role of Antibiotics in Gut Microbiota Modulation: The Eubiotic Effects of Rifaximin.

    PubMed

    Ponziani, Francesca Romana; Scaldaferri, Franco; Petito, Valentina; Paroni Sterbini, Francesco; Pecere, Silvia; Lopetuso, Loris R; Palladini, Alessandra; Gerardi, Viviana; Masucci, Luca; Pompili, Maurizio; Cammarota, Giovanni; Sanguinetti, Maurizio; Gasbarrini, Antonio

    2016-01-01

    Antibiotics are mainly used in clinical practice for their activity against pathogens, but they also alter the composition of commensal gut microbial community. Rifaximin is a non-absorbable antibiotic with additional effects on the gut microbiota about which very little is known. It is still not clear to what extent rifaximin can be able to modulate gut microbiota composition and diversity in different clinical settings. Studies based on culture-dependent techniques revealed that rifaximin treatment promotes the growth of beneficial bacteria, such as Bifidobacteria and Lactobacilli. Accordingly, our metagenomic analysis carried out on patients with different gastrointestinal and liver diseases highlighted a significant increase in Lactobacilli after rifaximin treatment, persisting in the short time period. This result was independent of the disease background and was not accompanied by a significant alteration of the overall gut microbial ecology. This suggests that rifaximin can exert important eubiotic effects independently of the original disease, producing a favorable gut microbiota perturbation without changing its overall composition and diversity. © 2016 S. Karger AG, Basel.

  3. EFFECT OF DIETARY ANTIBIOTICS UPON COLIFORM BACTERIA AND LACTOBACILLI IN THE INTESTINAL TRACT OF URIC ACID-FED CHICKS.

    PubMed

    BARE, L N; WISEMAN, R F; ABBOTT, O J

    1964-02-01

    Bare, L. N. (University of Kentucky, Lexington), R. F. Wiseman, and O. J. Abbott. Effect of dietary antibiotics upon coliform bacteria and lactobacilli in the intestinal tract of uric acid-fed chicks. J. Bacteriol. 87:329-331. 1964.-Male chicks (1-day-old; Vantress X Arbor Acre) were fed a basal glucose-soybean oil meal diet, a 2% uric acid-containing diet with and without 5 mg/lb of zinc bacitracin and 20 mg/lb of procaine penicillin G, and one supplemented with the antibiotics only. After 4 weeks, the chicks receiving the uric acid without antibiotics showed a weight depression. The presence of antibiotics in the ration with the uric acid reversed this growth depression. Bacteriological and chemical analyses of the contents of the small intestine revealed an increase in numbers of uricolytic Aerobacter spp. and an increased degradation of uric acid in the tract of the "uric-antibiotic"-fed chicks. The counts of lactobacilli were always lowest in this group of chicks

  4. Mesenchymal Stem Cells Modulate Differentiation of Myeloid Progenitor Cells During Inflammation.

    PubMed

    Amouzegar, Afsaneh; Mittal, Sharad K; Sahu, Anuradha; Sahu, Srikant K; Chauhan, Sunil K

    2017-06-01

    Mesenchymal stem cells (MSCs) possess distinct immunomodulatory properties and have tremendous potential for use in therapeutic applications in various inflammatory diseases. MSCs have been shown to regulate pathogenic functions of mature myeloid inflammatory cells, such as macrophages and neutrophils. Intriguingly, the capacity of MSCs to modulate differentiation of myeloid progenitors (MPs) to mature inflammatory cells remains unknown to date. Here, we report the novel finding that MSCs inhibit the expression of differentiation markers on MPs under inflammatory conditions. We demonstrate that the inhibitory effect of MSCs is dependent on direct cell-cell contact and that this intercellular contact is mediated through interaction of CD200 expressed by MSCs and CD200R1 expressed by MPs. Furthermore, using an injury model of sterile inflammation, we show that MSCs promote MP frequencies and suppress infiltration of inflammatory cells in the inflamed tissue. We also find that downregulation of CD200 in MSCs correlates with abrogation of their immunoregulatory function. Collectively, our study provides unequivocal evidence that MSCs inhibit differentiation of MPs in the inflammatory environment via CD200-CD200R1 interaction. Stem Cells 2017;35:1532-1541. © 2017 AlphaMed Press.

  5. Highly Efficient Gluten Degradation by Lactobacilli and Fungal Proteases during Food Processing: New Perspectives for Celiac Disease▿

    PubMed Central

    Rizzello, Carlo G.; De Angelis, Maria; Di Cagno, Raffaella; Camarca, Alessandra; Silano, Marco; Losito, Ilario; De Vincenzi, Massimo; De Bari, Maria D.; Palmisano, Francesco; Maurano, Francesco; Gianfrani, Carmen; Gobbetti, Marco

    2007-01-01

    Presently, the only effective treatment for celiac disease is a life-long gluten-free diet. In this work, we used a new mixture of selected sourdough lactobacilli and fungal proteases to eliminate the toxicity of wheat flour during long-time fermentation. Immunological (R5 antibody-based sandwich and competitive enzyme-linked immunosorbent assay [ELISA] and R5 antibody-based Western blot), two-dimensional electrophoresis, and mass spectrometry (matrix-assisted laser desorption ionization-time of flight, strong-cation-exchange-liquid chromatography/capillary liquid chromatography-electrospray ionization-quadrupole-time of flight [SCX-LC/CapLC-ESI-Q-TOF], and high-pressure liquid chromatography-electrospray ionization-ion trap mass spectrometry) analyses were used to determine the gluten concentration. Assays based on the proliferation of peripheral blood mononuclear cells (PBMCs) and gamma interferon production by PBMCs and intestinal T-cell lines (iTCLs) from 12 celiac disease patients were used to determine the protein toxicity of the pepsin-trypsin digests from fermented wheat dough (sourdough). As determined by R5-based sandwich and competitive ELISAs, the residual concentration of gluten in sourdough was 12 ppm. Albumins, globulins, and gliadins were completely hydrolyzed, while ca. 20% of glutenins persisted. Low-molecular-weight epitopes were not detectable by SCX-LC/CapLC-ESI-Q-TOF mass spectrometry and R5-based Western blot analyses. The kinetics of the hydrolysis of the 33-mer by lactobacilli were highly efficient. All proteins extracted from sourdough activated PBMCs and induced gamma interferon production at levels comparable to the negative control. None of the iTCLs demonstrated immunoreactivity towards pepsin-trypsin digests. Bread making was standardized to show the suitability of the detoxified wheat flour. Food processing by selected sourdough lactobacilli and fungal proteases may be considered an efficient approach to eliminate gluten toxicity

  6. Yeast fermentation affected by homo- and hetero-fermentative Lactobacilli isolated from fuel ethanol distilleries with sugarcane products as substrates

    USDA-ARS?s Scientific Manuscript database

    The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...

  7. Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation.

    PubMed

    Nasiri Esfahani, Behnaz; Kadivar, Mahdi; Shahedi, Mohammad; Soleimanian-Zad, Sabihe

    2017-11-01

    This study mainly focuses on a strategy for reducing acrylamide content in whole-wheat bread by combining lactobacilli and yeast in sourdough breadmaking. Combinations of sourdough (fermented dough using different Lactobacillus strains including Lactobacillus plantarum PTCC 1896 [probiotic], L. sakei DSM 20,017, L. rhamnosus DSM 20,021, and L. delbrueckii DSM 20,081) and yeast, in comparison with yeast alone, were used for breadmaking. The results showed that acrylamide levels in breads fermented using sourdough+yeast were in all cases much lower (6.9-20 μg/kg on a dry weight basis [d.b.]) than those in the yeast-only fermented bread (47.6 μg/kg d.b.). Significant (p < 0.05) correlations were also found between pH, total titratable acids (TTA) and lactic acid, and acrylamide content. Furthermore, the obtained results showed that the moisture content of dough directly influenced the formation of acrylamide in bread (r = 0.925, p < 0.0001). In addition, no significant correlations were observed between acrylamide content in breads and either the reducing sugar or free amino acid contents in dough samples. According to the different effects of Lactobacillus strains, it could be concluded that the acrylamide reducing potential of lactobacilli was strain-specific, with L. rhamnosus being the most effective. This suggests that sourdough fermentation with appropriate Lactobacillus strains can be used as an advantageous technology to reduce the acrylamide content of whole-wheat breads.

  8. Ureaplasma urealyticum and Mycoplasma hominis sensitivity to bacteriocins produced by two Lactobacilli strains.

    PubMed

    Daniele, M; Ruiz, F; Pascual, L; Barberis, L

    2011-10-01

    The purpose of the present study was to determine the inhibitory activities of two bacteriocins, produced by lactobacilli, against genital mycoplasmas. In this study, infections produced by genital mycoplasmas were studied; of these, 1.3% were caused by Mycoplasma hominis, 10.7% by Ureaplasma urealyticum and 5.6% by U. urealyticum + M. hominis. U. urealyticum was isolated from 75 out of 123 patients with genital mycoplasmas, while M. hominis was isolated from 9 patients (7.3%) and both U. urealyticum and M. hominis from 39 patients (31.7%). Bacteriocins, L23 and L60, produced by Lactobacillus fermentum and L. rhamnosus, respectively, appear to be two novel inhibitors of bacterial infection with potential antibacterial activity. Both bacteriocins proved to be active against 100% of strains tested; MICs of bacteriocin L23 ranged between 320 and 160 UA ml(-1) for 78% of the M. hominis strains and between 320 and 80 UA ml(-1) for 95% of the U. urealyticum strains. In addition, bacteriocin L60 was still active at 160 UA ml(-1) for a high percentage (56%) of M. hominis strains, and at 80 UA ml(-1) for 53% of the U. urealyticum strains. Interestingly, these antimicrobial substances produced by lactobacilli showed an inhibitory activity against genital mycoplasmas even when diluted. Altogether, our study indicates that the bacteriocins, L23 and L60, are good candidates for the treatment or prevention of genital infections in women.

  9. TNF-alpha sensitizes HT-29 colonic epithelial cells to intestinal lactobacilli.

    PubMed

    McCracken, Vance J; Chun, Taehoon; Baldeón, Manuel E; Ahrné, Siv; Molin, Göran; Mackie, Roderick I; Gaskins, H Rex

    2002-09-01

    The ability of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) to influence epithelial interleukin (IL)-8 responses to the intestinal bacterium Lactobacillus plantarum 299v was analyzed in the human HT-29 colonic epithelial cell line. In the absence of TNF-alpha, IL-8 mRNA expression was not detectable by Northern blot analysis in HT-29 cells alone or in HT-29 cells co-cultured with L. plantarum 299v. However, TNF-alpha induced IL-8 mRNA expression, and co-culture of TNF-alpha-treated HT-29 cells with L. plantarum 299v significantly increased IL-8 mRNA expression above levels induced by TNF-alpha alone in an adhesion-dependent manner. The increase in IL-8 mRNA expression was not observed in TNF-alpha-treated HT-29/L. plantarum 299v co-cultures using heat-killed lactobacilli or when L. plantarum adhesion was prevented using mannoside or a trans-well membrane. Paradoxically, IL-8 secretion was decreased in TNF-alpha-treated HT-29 cells with L. plantarum 299v relative to cells treated with TNF-alpha alone. TNF-alpha-mediated responsiveness to L. plantarum 299v was further investigated by analyzing expression of a coreceptor for bacterial cell wall products CD14. HT-29 cells expressed CD14 mRNA and cell-surface CD14; however, TNF-alpha did not alter CD14 mRNA or cell-surface expression, and blockade of CD14 with monoclonal antibody MY4 did not alter the IL-8 response to L. plantarum 299v in TNF-alpha-treated HT-29 cells. These results indicate that although TNF-alpha sensitizes HT-29 epithelial cells to intestinal lactobacilli, the bacteria exert a protective effect by downregulating IL-8 secretion.

  10. Curcumin and its synthetic analogue dimethoxycurcumin differentially modulates antioxidant status of normal human peripheral blood mononuclear cells.

    PubMed

    Simon, Emmanuel; Aswini, P; Sameer Kumar, V B; Mankadath, Gokuldas

    2018-05-01

    Curcumin is a polyphenol derived from the herb Curcuma longa, which has been extensively studied in terms of its antitumour, antioxidant, and chemopreventive activity as well as various other effects. In the present work we compared curcumin with its synthetic analogue dimethoxycurcumin (dimc) in terms of its antioxidant enzyme-modulating effects in human peripheral blood mononuclear cells (PBMC). We found that these compounds modulate antioxidant enzymes differentially. Both curcumin and dimethoxycurcumin effected a decrease in lipid peroxidation status in PBMC, however, curcumin had better activity in this regard. An increase in the activity of catalase was seen in the case of curcumin-treated PBMC, whereas dimc increased catalase activity significantly to almost twofold level. Real time-polymerase chain reaction (RT-PCR) analysis revealed significant up-regulation of catalase at mRNA level post treatment with curcumin as well as dimc, however, dimc had better activity in this regard. Glutathione reductase (GR) activity and reduced glutathione levels increased in the case of peripheral blood mononuclear cells (PBMC) treated with curcumin, however, the trend was reversed with dimethoxycurcumin where, both glutathione reductase activity and reduced glutathione levels were significantly reduced. RT-PCR analysis of glutathione reductase mRNA levels showed decrease in mRNA levels post treatment with dimethoxycurcumin (dimc) further corroborating GR enzyme assay results, however, we could not obtain significant result post curcumin treatment. NFkB reporter assay and western blot analysis of nuclear as well as cytosolic fractions of NFkB revealed that curcumin inhibits NFkB activation whereas inhibition was much less with dimc. It has been reported that curcumin and dimc exerts differential cytotoxicity in normal and tumour cells and the reason for this had been attributed to the differential uptake of these compounds by normal cells and tumour cells. Based on our

  11. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    PubMed

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  12. Reactive oxygen species modulator 1, a novel protein, combined with carcinoembryonic antigen in differentiating malignant from benign pleural effusion.

    PubMed

    Chen, Xianmeng; Zhang, Na; Dong, Jiahui; Sun, Gengyun

    2017-05-01

    The differential diagnosis of malignant pleural effusion and benign pleural effusion remains a clinical problem. Reactive oxygen species modulator 1 is a novel protein overexpressed in various human tumors. The objective of this study was to evaluate the diagnostic value of joint detection of reactive oxygen species modulator 1 and carcinoembryonic antigen in the differential diagnosis of malignant pleural effusion and benign pleural effusion. One hundred two consecutive patients with pleural effusion (including 52 malignant pleural effusion and 50 benign pleural effusion) were registered in this study. Levels of reactive oxygen species modulator 1 and carcinoembryonic antigen were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Results showed that the concentrations of reactive oxygen species modulator 1 both in pleural fluid and serum of patients with malignant pleural effusion were significantly higher than those of benign pleural effusion (both p < 0.05). The diagnostic sensitivity and specificity of pleural fluid reactive oxygen species modulator 1 were 61.54% and 82.00%, respectively, with the optimized cutoff value of 589.70 pg/mL. However, the diagnostic sensitivity and specificity of serum reactive oxygen species modulator 1 were only 41.38% and 86.21%, respectively, with the cutoff value of 27.22 ng/mL, indicating that serum reactive oxygen species modulator 1 may not be a good option in the differential diagnosis of malignant pleural effusion and benign pleural effusion. The sensitivity and specificity of pleural fluid carcinoembryonic antigen were 69.23% and 88.00%, respectively, at the cutoff value of 3.05 ng/mL, while serum carcinoembryonic antigen were 80.77% and 72.00% at the cutoff value of 2.60 ng/mL. The sensitivity could be raised to 88.17% in parallel detection of plural fluid reactive oxygen species modulator 1 and carcinoembryonic antigen concentration, and the specificity could be improved to 97

  13. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo

    USDA-ARS?s Scientific Manuscript database

    Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of star...

  14. Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses

    PubMed Central

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-01-01

    Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour

  15. Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Munoz, Rafael; Villarreal-Silva, Marcela; Gonzalez-Ramirez, Ricardo

    The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrixmore » observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.« less

  16. A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2.

    PubMed

    Annibali, Daniela; Gioia, Ubaldo; Savino, Mauro; Laneve, Pietro; Caffarelli, Elisa; Nasi, Sergio

    2012-01-01

    The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs) are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells--miR-9 and miR-103--restrain ID2 expression by directly targeting the coding sequence and 3' untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development.

  17. An in vitro protocol for direct isolation of potential probiotic lactobacilli from raw bovine milk and traditional fermented milks.

    PubMed

    Baruzzi, Federico; Poltronieri, Palmiro; Quero, Grazia Marina; Morea, Maria; Morelli, Lorenzo

    2011-04-01

    A method for isolating potential probiotic lactobacilli directly from traditional milk-based foods was developed. The novel digestion/enrichment protocol was set up taking care to minimize the protective effect of milk proteins and fats and was validated testing three commercial fermented milks containing well-known probiotic Lactobacillus strains. Only probiotic bacteria claimed in the label were isolated from two out of three commercial fermented milks. The application of the new protocol to 15 raw milk samples and 6 traditional fermented milk samples made it feasible to isolate 11 potential probiotic Lactobacillus strains belonging to Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus vaginalis species. Even though further analyses need to ascertain functional properties of these lactobacilli, the novel protocol set-up makes it feasible to isolate quickly potential probiotic strains from traditional milk-based foods reducing the amount of time required by traditional procedures that, in addition, do not allow to isolate microorganisms occurring as sub-dominant populations.

  18. Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair.

    PubMed

    Clark, Tobias; Hapiak, Vera; Oakes, Mitchell; Mills, Holly; Komuniecki, Richard

    2018-01-01

    Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system.

  19. Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair

    PubMed Central

    Oakes, Mitchell; Mills, Holly; Komuniecki, Richard

    2018-01-01

    Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system. PMID:29723289

  20. Symptomatic candidiasis: Using self sampled vaginal smears to establish the presence of Candida, lactobacilli, and Gardnerella vaginalis.

    PubMed

    Engberts, M K; Boon, M E; van Haaften, M; Heintz, A P M

    2007-10-01

    In a prospective cohort study, 10 symptomatic women with recurrent vulvovaginal candidiasis were taught how to prepare vaginal smears of their own vaginal fluids on days 7, 14, 21, and 28. The 40 smears were stained with the PAS-method and examined by three different cytopathologists for presence of Candida. Thereafter, the smears were restained with Giemsa-stain to determine presence of lactobacilli, Gardnerella vaginalis ("clue cells") and neutrophils. All three cytopathologists unequivocally established Candida blastospores and (pseudo)hyphae in 27 out of the 40 PAS-stained vaginal smears, whereas in the remaining 13 smears Candida was not found. All 10 patients had Candida in their smears during the second half of their menstrual cycle.Self sampled smears prove to be reliable for establishing the presence of Candida in symptomatic patients with candidiasis. Candida is associated with a lactobacillus-predominated vaginal flora, but with the absence of Gardnerella vaginalis. Further studies may be directed towards the interaction between the various members of the vaginal flora. This study should open molecular methodology for determining the possible interactions of lactobacilli and Candida. (c) 2007 Wiley-Liss, Inc.

  1. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xin; Dai, Hui; Zhuang, Binyu

    The effects and the underlying mechanisms of hydrogen sulfide (H{sub 2}S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H{sub 2}S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H{sub 2}S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagicmore » vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H{sub 2}S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H{sub 2}S promotes keratinocyte proliferation and differentiation. • The effects of H{sub 2}S on proliferation and differentiation is modulated by autophagy. • Exogenous H{sub 2}S has no effect on keratinocyte apoptosis.« less

  2. A New Module in Neural Differentiation Control: Two MicroRNAs Upregulated by Retinoic Acid, miR-9 and -103, Target the Differentiation Inhibitor ID2

    PubMed Central

    Savino, Mauro; Laneve, Pietro; Caffarelli, Elisa; Nasi, Sergio

    2012-01-01

    The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs) are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells – miR-9 and miR-103 – restrain ID2 expression by directly targeting the coding sequence and 3′ untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development. PMID:22848373

  3. Nouns referring to tools and natural objects differentially modulate the motor system.

    PubMed

    Gough, Patricia M; Riggio, Lucia; Chersi, Fabian; Sato, Marc; Fogassi, Leonardo; Buccino, Giovanni

    2012-01-01

    While increasing evidence points to a critical role for the motor system in language processing, the focus of previous work has been on the linguistic category of verbs. Here we tested whether nouns are effective in modulating the motor system and further whether different kinds of nouns - those referring to artifacts or natural items, and items that are graspable or ungraspable - would differentially modulate the system. A Transcranial Magnetic Stimulation (TMS) study was carried out to compare modulation of the motor system when subjects read nouns referring to objects which are Artificial or Natural and which are Graspable or Ungraspable. TMS was applied to the primary motor cortex representation of the first dorsal interosseous (FDI) muscle of the right hand at 150 ms after noun presentation. Analyses of Motor Evoked Potentials (MEPs) revealed that across the duration of the task, nouns referring to graspable artifacts (tools) were associated with significantly greater MEP areas. Analyses of the initial presentation of items revealed a main effect of graspability. The findings are in line with an embodied view of nouns, with MEP measures modulated according to whether nouns referred to natural objects or artifacts (tools), confirming tools as a special class of items in motor terms. Additionally our data support a difference for graspable versus non graspable objects, an effect which for natural objects is restricted to initial presentation of items. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines

    PubMed Central

    2011-01-01

    Food-grade Lactic Acid Bacteria (LAB) have been safely consumed for centuries by humans in fermented foods. Thus, they are good candidates to develop novel oral vectors, constituting attractive alternatives to attenuated pathogens, for mucosal delivery strategies. Herein, this review summarizes our research, up until now, on the use of LAB as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Most of our work has been based on the model LAB Lactococcus lactis, for which we have developed efficient genetic tools, including expression signals and host strains, for the heterologous expression of therapeutic proteins such as antigens, cytokines and enzymes. Resulting recombinant lactococci strains have been tested successfully for their prophylactic and therapeutic effects in different animal models: i) against human papillomavirus type 16 (HPV-16)-induced tumors in mice, ii) to partially prevent a bovine β-lactoglobulin (BLG)-allergic reaction in mice and iii) to regulate body weight and food consumption in obese mice. Strikingly, all of these tools have been successfully transposed to the Lactobacillus genus, in recent years, within our laboratory. Notably, anti-oxidative Lactobacillus casei strains were constructed and tested in two chemically-induced colitis models. In parallel, we also developed a strategy based on the use of L. lactis to deliver DNA at the mucosal level, and were able to show that L. lactis is able to modulate the host response through DNA delivery. Today, we consider that all of our consistent data, together with those obtained by other groups, demonstrate and reinforce the interest of using LAB, particularly lactococci and lactobacilli strains, to develop novel therapeutic protein mucosal delivery vectors which should be tested now in human clinical trials. PMID:21995317

  5. Extended antimicrobial treatment of bacterial vaginosis combined with human lactobacilli to find the best treatment and minimize the risk of relapses

    PubMed Central

    2011-01-01

    Background The primary objective of this study was to investigate if extended antibiotic treatment against bacterial vaginosis (BV) together with adjuvant lactobacilli treatment could cure BV and, furthermore, to investigate factors that could cause relapse. Methods In all, 63 consecutive women with bacterial vaginosis diagnosed by Amsel criteria were offered a much more aggressive treatment of BV than used in normal clinical practice with repeated antibiotic treatment with clindamycin and metronidazole together with vaginal gelatine capsules containing different strains of lactobacilli both newly characterised and a commercial one (109 freeze-dried bacteria per capsule). Oral clindamycin treatment was also given to the patient's sexual partner. Results The cure rate was 74.6% after 6 months. The patients were then followed as long as possible or until a relapse. The cure rate was 65.1% at 12 months and 55.6% after 24 months. There was no significant difference in cure rate depending on which Lactobacillus strains were given to the women or if the women were colonised by lactobacilli. The most striking factor was a new sex partner during the follow up period where the Odds Ratio of having a relapse was 9.3 (2.8-31.2) if the patients had a new sex partner during the observation period. Conclusions The study shows that aggressive treatment of the patient with antibiotics combined with specific Lactobacillus strain administration and partner treatment can provide long lasting cure. A striking result of our study is that change of partner is strongly associated with relapse of BV. Trial registration ClinicalTrials.gov: NCT01245322 PMID:21854593

  6. β-Glucuronidase and β-glucosidase activity and human fecal water genotoxicity in the presence of probiotic lactobacilli and the heterocyclic aromatic amine IQ in vitro.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna

    2014-01-01

    The aim of the study was to assess the genotoxicity of fecal water (FW) and the activity of fecal enzymes (β-glucuronidase and β-glucosidase) after incubation with 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) and probiotic lactobacilli: Lb. casei 0900, Lb. casei 0908, and Lb. paracasei 0919. Our results show that the carcinogen IQ greatly increased FW genotoxicity (up to 16.92 ± 3.03 U/mg) and the activity of fecal enzymes (up to even 1.4 ± 0.16 U/mg) in 15 individuals (children, adults and elderly). After incubation with IQ, the activity of β-glucuronidase was reduced by Lactobacillus bacteria by 76.0% (Lb. paracasei 0908) in the FW of children, and by 82.0% (Lb. paracasei 0919) in the elderly; while that of β-glucosidase was reduced by 55.0% in children (Lb. casei 0908) and 90.0% (Lb. paracasei 0919) in elderly subjects. Lactobacilli decreased the genotoxicity of FW after incubation with IQ to the greatest extent in adults (by 64.5%). Probiotic lactobacilli, in the presence of IQ, efficiently inhibits activity of fecal enzymes to the level of control. Genotoxicity inhibition depends on the person's age, its individual microbiota and diet. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of lyophilized lactobacilli and 0.03 mg estriol (Gynoflor®) on vaginitis and vaginosis with disrupted vaginal microflora: a multicenter, randomized, single-blind, active-controlled pilot study.

    PubMed

    Donders, G G G; Van Bulck, B; Van de Walle, P; Kaiser, R R; Pohlig, G; Gonser, S; Graf, F

    2010-01-01

    To evaluate the efficacy of lyophilized lactobacilli in combination with 0.03 mg estriol when compared to metronidazole in the treatment of bacterial vaginal infections. Multicenter, randomized, single-blind, active-controlled pilot study in 3 independent gynecological practices in Belgium. Forty-six, 18- to 50-year-old premenopausal women with a disrupted vaginal flora due to a bacterial vaginal infection (bacterial vaginosis, aerobic vaginitis) were included, provided that fresh phase-contrast microscopy of the vaginal fluid showed lactobacillary flora grade 2B or 3. Patients were given a blinded box with either 12 vaginal tablets of Gynoflor® (study medication) or 6 vaginal suppositories containing 500 mg metronidazole (control medication). Eight efficacy variables were studied to assess the status of the vaginal flora at entry, 3-7 days (control 1), 4-6 (control 2) weeks and 4 months after the end of therapy. At control 1, the combined variables equally improved in the lactobacilli group as in the metronidazole group. At control 2, the lactobacillus preparation showed slightly inferior results when compared to metronidazole. At 4 months, this analysis could not be performed due to low numbers, but analysis of recurrence rate and extra medication needed was not different between both groups. Lyophilized lactobacilli in combination with low-dose estriol are equivalent to metronidazole in the short-term treatment of bacterial vaginal infections, but have less effect after 1 month. Further studies are required to evaluate the long-term efficacy of lactobacilli when applied repeatedly. Copyright © 2010 S. Karger AG, Basel.

  8. Structural and immunomodulatory differences among lactobacilli exopolysaccharides isolated from intestines of mice with experimentally induced inflammatory bowel disease.

    PubMed

    Górska, Sabina; Sandstrőm, Corine; Wojas-Turek, Justyna; Rossowska, Joanna; Pajtasz-Piasecka, Elżbieta; Brzozowska, Ewa; Gamian, Andrzej

    2016-11-21

    Characteristic changes in the microbiota biostructure and a decreased tolerance to intestinal bacteria have been associated with inflammatory bowel disease (IBD). However, few studies have examined the constituents of the intestinal microbiota, including the surface molecules of the bacteria, in healthy and IBD subsets. Here, we compare the chemical structures and immunomodulatory properties of the exopolysaccharides (EPS) of lactobacilli isolated from mice with induced IBD (IBD "+") versus those of healthy mice (IBD "-"). Classical structural analyses were performed using nuclear magnetic resonance spectroscopy and mass spectrometry. Immunomodulatory properties were assessed by stimulation of dendritic cells derived from mouse bone marrow or human peripheral mononuclear blood cells. Our results revealed that EPS produced by IBD "+" species are structurally different from those isolated from IBD "-". Moreover, the structurally different EPS generate different immune responses by dendritic cells. We speculate that resident strains could, upon gut inflammation, switch to producing EPS with specific motifs that are absent from lactobacilli IBD "-", and/or that bacteria with a particular EPS structure might inhabit the inflamed intestinal mucosa. This study may shed light on the role of EPS in IBD and help the development of a specific probiotic therapy for this disease.

  9. Adhesion of lactobacilli to urinary catheters and diapers: effect of surface properties.

    PubMed

    Reid, G; Lam, D; Bruce, A W; van der Mei, H C; Busscher, H J

    1994-06-01

    Thirteen strains of lactobacilli were tested for their ability to adhere to commercial devices used in the urinary tract. Although it appeared that the most hydrophilic organisms adhered in highest numbers, there was no significant correlation between water contact angle and adhesiveness to catheters. Five organisms tested were found to be highly adherent to Huggies commercial diapers. Loss in hydrophobicity upon serial culture of Lactobacillus fermentum B-54 was not due to a proteinaceous S layer, although protein involvement per se cannot be ruled out. It was evident that, not only can members of the normal female urogenital flora adhere to commonly used commercial prostheses, but their ability to attach is related to hydrophilic as well as hydrophobic surface components.

  10. Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors

    PubMed Central

    Karlskås, Ingrid Lea; Maudal, Kristina; Axelsson, Lars; Rud, Ida; Eijsink, Vincent G. H.; Mathiesen, Geir

    2014-01-01

    We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species. PMID:24614815

  11. Nucleic acid-based diagnosis of bacterial vaginosis and improved management using probiotic lactobacilli.

    PubMed

    Reid, Gregor; Burton, Jeremy; Hammond, Jo-Anne; Bruce, Andrew W

    2004-01-01

    Bacterial vaginosis (BV) is a common condition in women that represents an imbalance of the vaginal microflora, lactobacilli depletion, and excess growth of mainly anaerobic Gram-negative pathogens. Diagnosis is made using a series of tests or a Gram stain of a vaginal smear. Treatment with antibiotics is quite effective, but recurrences are common. A study of 55 vaginal samples from 11 postmenopausal women showed the presence of BV by the Gram stain-based Nugent scoring system, and polymerase chain reaction-denaturing gradient gel electrophoresis showed that Bacteroides or Prevotella species were the most common isolates recovered (24 of 25), with Escherichia coli, Staphylococcus aureus, and Streptococcus agalactiae also found in some samples. In one case, only Gardnerella vaginalis was found. These findings illustrate that BV remains common even among otherwise healthy women, but it is not caused solely by either Gardnerella or Mobiluncus. Use of a FemExam system (Cooper Surgical, Shelton, CT), based upon elevated pH and trimethylamine levels, to screen vaginal smears from 59 healthy women showed poor correlation with the Gram stain method. A randomized, placebo-controlled trial of these subjects showed that the lactobacilli-dominant microbiota was restored in subjects with BV but not in controls, following 2 months of daily oral intake of Lactobacillus rhamnosus GR-1 and Lactobacillus fermentum RC-14. These studies show that nucleic acid-based methods are effective at identifying bacteria responsible for BV. If such methods could be used to develop a commercially available, self-use kit, women would be much better placed to take control of their own health, for example, using medicinal food or dietary supplement products such as the clinically proven probiotic strains L. rhamnosus GR-1 and L. fermentum RC-14.

  12. Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile.

    PubMed

    Joules, R; Doyle, O M; Schwarz, A J; O'Daly, O G; Brammer, M; Williams, S C; Mehta, M A

    2015-11-01

    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain.

  13. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    PubMed

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2017-09-01

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO 2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO 2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Technological and Probiotic Traits of the Lactobacilli Isolated From Vaginal Tract of the Healthy Women for Probiotic Use.

    PubMed

    Bouridane, Hamida; Sifour, Mohamed; Idoui, Tayeb; Annick, Lejeune; Thonard, Philip

    2016-09-01

    For biotechnological application, selected lactic acid bacteria strains belonging to the genera Lactobacillus (Lb) are proposed as an alternative to the antibiotics for the prevention and treatment of urogenital tract infections. Isolating and selecting vaginal lactobacilli strains for probiotic use based on their technological and probiotic aptitudes. The vaginal isolates were examined for their essential characteristics as the potential probiotic such as low pH tolerance, bile-salt and simulated human intestinal fluid (SIF) resistance, adhesion to the vaginal epithelial cells (VECs), aggregation and coaggregation, surface hydrophobicity, antimicrobial activity, acid production, antibiotic resistance, and resistance to spermicides. The best strain was identified by PCR. From 70 lactobacilli isolates and according to the 16 rDNA sequences, isolates B6 and B10 showed the closest homology (99%) to the Lb. gasseri and Lb. plantarum respectively. They produced hydrogen peroxide (H 2 O 2 ), tolerant to acid, bile, simulated human intestinal fluid, present a strong adhesion, highest percentages of aggregation, and antibacterial activity. These strains are resistant to the spermicide and actively acidify the growth medium. Strains Lb. plantarum B10 and Lb. gasseri B6 have a strong potential probiotic confirming their value as a tool for prevention against urinary and vaginal infections.

  15. Technological and Probiotic Traits of the Lactobacilli Isolated From Vaginal Tract of the Healthy Women for Probiotic Use

    PubMed Central

    Bouridane, Hamida; Sifour, Mohamed; Idoui, Tayeb; Annick, Lejeune; Thonard, Philip

    2016-01-01

    Background For biotechnological application, selected lactic acid bacteria strains belonging to the genera Lactobacillus (Lb) are proposed as an alternative to the antibiotics for the prevention and treatment of urogenital tract infections. Objectives Isolating and selecting vaginal lactobacilli strains for probiotic use based on their technological and probiotic aptitudes. Materials and Methods The vaginal isolates were examined for their essential characteristics as the potential probiotic such as low pH tolerance, bile-salt and simulated human intestinal fluid (SIF) resistance, adhesion to the vaginal epithelial cells (VECs), aggregation and coaggregation, surface hydrophobicity, antimicrobial activity, acid production, antibiotic resistance, and resistance to spermicides. The best strain was identified by PCR. Results From 70 lactobacilli isolates and according to the 16 rDNA sequences, isolates B6 and B10 showed the closest homology (99%) to the Lb. gasseri and Lb. plantarum respectively. They produced hydrogen peroxide (H2O2), tolerant to acid, bile, simulated human intestinal fluid, present a strong adhesion, highest percentages of aggregation, and antibacterial activity. These strains are resistant to the spermicide and actively acidify the growth medium. Conclusions Strains Lb. plantarum B10 and Lb. gasseri B6 have a strong potential probiotic confirming their value as a tool for prevention against urinary and vaginal infections. PMID:28959336

  16. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast

    PubMed Central

    Lu, Hangwen; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei

    2016-01-01

    Differential phase contrast (DPC) is a non-interferometric quantitative phase imaging method achieved by using an asymmetric imaging procedure. We report a pupil modulation differential phase contrast (PMDPC) imaging method by filtering a sample’s Fourier domain with half-circle pupils. A phase gradient image is captured with each half-circle pupil, and a quantitative high resolution phase image is obtained after a deconvolution process with a minimum of two phase gradient images. Here, we introduce PMDPC quantitative phase image reconstruction algorithm and realize it experimentally in a 4f system with an SLM placed at the pupil plane. In our current experimental setup with the numerical aperture of 0.36, we obtain a quantitative phase image with a resolution of 1.73μm after computationally removing system aberrations and refocusing. We also extend the depth of field digitally by 20 times to ±50μm with a resolution of 1.76μm. PMID:27828473

  17. Immunomodulatory effects and anti-Candida activity of lactobacilli in macrophages and in invertebrate model of Galleria mellonella.

    PubMed

    de Oliveira, Felipe Eduardo; Rossoni, Rodnei Dennis; de Barros, Patricia Pimentel; Begnini, Barbara Evelyn; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso; Leão, Mariella Vieira Pereira; de Oliveira, Luciane Dias

    2017-09-01

    Due to the growing number of multi-resistant Candida spp., adjuvant treatments that may help combat these fungal pathogens are relevant and useful. This study evaluated the immunomodulation and anti-Candida activity of Lactobacillus rhamnosus (LR), Lactobacillus acidophilus and Lactobacillus paracasei suspensions, either single- or multiple-strain, in mouse macrophages (RAW 264.7) and Galleria mellonella (GM). Mouse macrophages were activated by different lactobacilli suspensions and challenged with C. albicans (CA). Tumor necrosis factor (TNF)-α, interleukin IL-1β, IL-6 and IL-17 production and cell viability were investigated. LR was the best suspension for stimulating all evaluated cytokines and thus was used in subsequent in vivo assays. Two C. albicans clinical strains, CA21 and CA60, were then added to the GM assays to further confirm the results. LR suspension was injected into the larvae 24 h before challenging with CA. Survival curve, CFU per larva and hemocytes were counted. In the GM, the LR suspension increased the survival rate and hemocyte counts and decreased the CFU per larva counts for all groups. Lactobacilli suspensions presented strain-dependent immunomodulation; however, single suspensions showed better results. Anti-Candida activity was demonstrated by decreased Candida counts in the GM with the use of LR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Daphnoretin modulates differentiation and maturation of human dendritic cells through down-regulation of c-Jun N-terminal kinase.

    PubMed

    Chen, Chien-An; Liu, Chien-Kuo; Hsu, Ming-Ling; Chi, Chih-Wen; Ko, Chun-Chuan; Chen, Jian-Syun; Lai, Cheng-Ta; Chang, Hen-Hong; Lee, Tzung-Yan; Lai, Yuen-Liang; Chen, Yu-Jen

    2017-10-01

    Daphnoretin, an active constituent of Wikstroemia indica C.A. Meys, has been shown possessing anti-cancer activity. In this study, we examined the effect of daphnoretin on differentiation and maturation of human myeloid dendritic cells (DCs). After treatment with daphnoretin (0, 1.1, 3.3, 10 and 30μM) to initiate monocytes, the recovery rate of DCs was reduced in a dose-dependent manner. The mature DCs differentiated in the presence of daphnoretin had fewer and shorter dendrites. Daphnoretin modulated DCs differentiation and maturation in terms of lower expression of CD1a, CD40, CD83, DC-SIGN, and HLA-DR. Daphnoretin inhibited the allostimulatory activity of DCs on proliferation of naive CD4 + CD45 + RA + T cell. On the mitogen-activated protein kinase, daphnoretin down-regulated the lipopolysaccharide-augmented expression of phosphorylated c-Jun N-terminal kinase (pJNK), but not p38 and extracellular signal-regulated kinase 1/2 (ERK1/2). Activation of JNK by anisomycin reversed the effect of daphnoretin on daphnoretin-inhibited pJNK expression and dendrite formation of DCs. In disease model related to maturation of DCs, daphnoretin suppressed the acute rejection of skin allografts in mice. Our results suggest that daphnoretin modulated differentiation and maturation of DCs toward a state of atypical maturation with impaired allostimulatory function and this effect may go through down-regulation of phosphorylated JNK. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocytes.

    PubMed

    Hirzel, Estelle; Lindinger, Peter W; Maseneni, Swarna; Giese, Maria; Rhein, Véronique Virginie; Eckert, Anne; Hoch, Matthias; Krähenbühl, Stephan; Eberle, Alex N

    2013-10-01

    Mitochondrial reactive oxygen species (ROS) have been demonstrated to play an important role as signaling and regulating molecules in human adipocytes. In order to evaluate the differential modulating roles of antioxidants, we treated human adipocytes differentiated from human bone marrow-derived mesenchymal stem cells with MitoQ, resveratrol and curcumin. The effects on ROS, viability, mitochondrial respiration and intracellular ATP levels were examined. MitoQ lowered both oxidizing and reducing ROS. Resveratrol decreased reducing and curcumin oxidizing radicals only. All three substances slightly decreased state III respiration immediately after addition. After 24 h of treatment, MitoQ inhibited both basal and uncoupled oxygen consumption, whereas curcumin and resveratrol had no effect. Intracellular ATP levels were not altered. This demonstrates that MitoQ, resveratrol and curcumin exert potent modulating effects on ROS signaling in human adipocyte with marginal effects on metabolic parameters.

  20. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    PubMed

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed

  1. Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production

    PubMed Central

    Narendranath, Neelakantam V.; Power, Ronan

    2005-01-01

    The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast. PMID:15870306

  2. Malt sprout, an underused beer by-product with promising potential for the growth and dehydration of lactobacilli strains.

    PubMed

    Cejas, Luján; Romano, Nelson; Moretti, Ana; Mobili, Pablo; Golowczyc, Marina; Gómez-Zavaglia, Andrea

    2017-12-01

    Malt sprout (MS), a by-product of the malt industry obtained by removing rootlets and sprouts from the seed of germinated barley ( Hordeum vulgare L.), was used as culture, dehydration and storage medium of three strains of lactobacilli: Lactobacillus salivarius CM-CIDCA 1231B and CM-CIDCA 1232Y and Lactobacillus plantarum CIDCA 83114. The three strains were grown in MS and MS supplemented with 20% w/v fructo-oligosaccharides (MS FOS). Bacterial growth was determined by registering the decrease of pH and by plate counting. Comparable results with those of microorganisms grown in MRS (controls) were observed in terms of lag times, ΔpH and acidification rates. Furthermore, during fermentation, a significant increase of DP6 (FOS with degree of polymerization 6) was observed at expenses of inulin and DP7, probably indicating their hydrolysis. A concomitant decrease of DP3, sucrose and monosaccharides was also observed, as result of their bacterial consumption during growth. The presence of FOS in the fermented media protected microorganisms during freeze-drying and storage, as no decrease of culturability was observed after 60 days at 4 °C (> 10 8 CFU/mL). Using MS appears as an innovative strategy for the production of lactobacilli at large scale, supporting their use for the elaboration of functional foods containing prebiotics and probiotics.

  3. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism.

    PubMed

    Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.

  4. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism

    PubMed Central

    Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  5. CPEB1 modulates differentiation of glioma stem cells via downregulation of HES1 and SIRT1 expression

    PubMed Central

    Lee, Jeong Eun; Park, Ju Young; Kim, Tae-Hoon; Kim, Youn-Jae; Lee, Seung-Hoon; Yoo, Heon; Kim, Jong Heon; Park, Jong Bae

    2014-01-01

    Glioma stemness has been recognized as the most important reason for glioma relapse and drug resistance. Differentiation of glioma stem cells (GSCs) has been implicated as a novel approach to target recurrent glioma. However, the detailed molecular mechanism involved in the differentiation of GSCs has not yet been elucidated. This study identified CPEB1 as the key modulator that induces the differentiation of GSCs at the post-transcriptional level. Gain and loss of function experiments showed that CPEB1 expression reduced sphere formation ability and the expression of stemness markers such as Nestin and Notch. To elucidate the detailed molecular mechanism underlying the action of CPEB1, we investigated the interacting ribonome of the CPEB1 complex using a Ribonomics approach. CPEB1 specifically suppressed the translation of HES1 and SIRT1 by interacting with a cytoplasmic polyadenylation element. The expression profile of CPEB1 negatively correlated with overall survival in glioma patients. Overexpression of CPEB1 decreased the number of GSCs in an orthotopically implanted glioma animal model. These results suggest that CPEB1-mediated translational control is essential for the differentiation of GSCs and provides novel therapeutic concepts for differentiation therapy. PMID:25216517

  6. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration.

    PubMed

    Busilacchi, Alberto; Gigante, Antonio; Mattioli-Belmonte, Monica; Manzotti, Sandra; Muzzarelli, Riccardo A A

    2013-10-15

    The idea of using chitosan as a functional delivery aid to support simultaneously PRP, stem cells and growth factors (GF) is associated with the intention to use morphogenic biomaterials to modulate the natural healing sequence in bone and other tissues. For example, chitosan-chondroitin sulfate loaded with platelet lysate was included in a poly(D,L-lactate) foam that was then seeded with human adipose-derived stem cells and cultured in vitro under osteogenic stimulus: the platelet lysate provided to the bone tissue the most suitable assortment of GF which induces the osteogenic differentiation of the mesenchymal stem cells. PDGF, FGF, IGF and TGF-β were protagonists in the repair of callus fractures. The release of GF from the composites of chitosan-PRP and either nano-hydroxyapatite or tricalcium phosphate was highly beneficial for enhancing MSC proliferation and differentiation, thus qualifying chitosan as an excellent vehicle. A number of biochemical characteristics of chitosan exert synergism with stem cells in the regeneration of soft tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Rho differentially regulates the Hippo pathway by modulating the interaction between Amot and Nf2 in the blastocyst.

    PubMed

    Shi, Xianle; Yin, Zixi; Ling, Bin; Wang, Lingling; Liu, Chang; Ruan, Xianhui; Zhang, Weiyu; Chen, Lingyi

    2017-11-01

    The Hippo pathway modulates the transcriptional activity of Yap to regulate the differentiation of the inner cell mass (ICM) and the trophectoderm (TE) in blastocysts. Yet how Hippo signaling is differentially regulated in ICM and TE cells is poorly understood. Through an inhibitor/activator screen, we have identified Rho as a negative regulator of Hippo in TE cells, and PKA as a positive regulator of Hippo in ICM cells. We further elucidated a novel mechanism by which Rho suppresses Hippo, distinct from the prevailing view that Rho inhibits Hippo signaling through modulating cytoskeleton remodeling and/or cell polarity. Active Rho prevents the phosphorylation of Amot Ser176, thus stabilizing the interaction between Amot and F-actin, and restricting the binding between Amot and Nf2. Moreover, Rho attenuates the interaction between Amot and Nf2 by binding to the coiled-coil domain of Amot. By blocking the association of Nf2 and Amot, Rho suppresses Hippo in TE cells. © 2017. Published by The Company of Biologists Ltd.

  8. Method translation and full metadata transfer from thermal to differential flow modulated comprehensive two dimensional gas chromatography: Profiling of suspected fragrance allergens.

    PubMed

    Cordero, Chiara; Rubiolo, Patrizia; Reichenbach, Stephen E; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo

    2017-01-13

    The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms is of high interest to improve GC×GC flexibility and increase the compatibility of results from different platforms. The principles of method translation are here applied to an original method, developed for a loop-type thermal modulated GC×GC-MS/FID system, suitable for quali-quantitative screening of suspected fragrance allergens. The analysis conditions were translated to a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. The experimental results, for a model mixture of suspected volatile allergens and for raw fragrance mixtures of different composition, confirmed the feasibility of translating methods by preserving 1 D elution order, as well as the relative alignment of resulting 2D peak patterns. A correct translation produced several benefits including an effective transfer of metadata (compound names, MS fragmentation pattern, response factors) by automatic template transformation and matching from the original/reference method to its translated counterpart. The correct translation provided: (a) 2D pattern repeatability, (b) MS fragmentation pattern reliability for identity confirmation, and (c) comparable response factors and quantitation accuracy within a concentration range of three orders of magnitude. The adoption of a narrow bore (i.e. 0.1mm d c ) first-dimension column to operate under close-to-optimal conditions with the differential-flow modulation GC×GC platform was also advantageous in halving the total analysis under the translated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression

    PubMed Central

    Hao, Tong; Zhou, Jin; Lü, Shuanghong; Yang, Boguang; Wang, Yan; Fang, Wancai; Jiang, Xiaoxia; Lin, Qiuxia; Li, Junjie; Wang, Changyong

    2016-01-01

    Zero-dimensional fullerenes can modulate the biological behavior of a variety of cell lines. However, the effects and molecular mechanisms of proliferation and cardiomyogenic differentiation in brown adipose-derived stem cells (BADSCs) are still unclear. In this study, we report the initial biological effects of fullerene-C60 on BADSCs at different concentrations. Results suggest that fullerene-C60 has no cytotoxic effects on BADSCs even at a concentration of 100 μg/mL. Fullerene-C60 improves the MAPK expression level and stem cell survival, proliferation, and cardiomyogenesis. Further, we found that the fullerene-C60 modulates cardiomyogenic differentiation. Fullerene-C60 improves the expression of cardiomyocyte-specific proteins (cTnT and α-sarcomeric actinin). At elevated concentration, fullerene-C60 reduces the incidence of diminished spontaneous cardiac differentiation of BADSCs with time. At the genetic level, fullerene-C60 (5 μg/mL) also improves the expression of cTnT. In addition, fullerene-C60 promotes the formation of gap junction among cells. These findings have important implications for clinical application of fullerenes in the treatment of myocardial infarction. PMID:26848263

  10. Stable integration and expression of heterologous genes in several lactobacilli using an integration vector constructed from the integrase and attP sequences of phage ΦAT3 isolated from Lactobacillus casei ATCC 393.

    PubMed

    Lin, Chao-Fen; Lo, Ta-Chun; Kuo, Yang-Cheng; Lin, Thy-Hou

    2013-04-01

    An integration vector capable of stably integrating and maintaining in the chromosomes of several lactobacilli over hundreds of generations has been constructed. The major integration machinery used is based on the ΦAT3 integrase (int) and attP sequences determined previously. A novel core sequence located at the 3' end of the tRNA(leu) gene is identified in Lactobacillus fermentum ATCC 14931 as the integration target by the integration vector though most of such sequences found in other lactobacilli are similar to that determined previously. Due to the lack of an appropriate attB site in Lactococcus lactis MG1363, the integration vector is found to be unable to integrate into the chromosome of the strain. However, such integration can be successfully restored by cotransforming the integration vector with a replicative one harboring both attB and erythromycin resistance sequences into the strain. Furthermore, the integration vector constructed carries a promoter region of placT from the chromosome of Lactobacillus rhamnosus TCELL-1 which is used to express green fluorescence and luminance protein genes in the lactobacilli studied.

  11. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  12. Immune Reactions against Gene Gun Vaccines Are Differentially Modulated by Distinct Dendritic Cell Subsets in the Skin

    PubMed Central

    Deressa, Tekalign; Strandt, Helen; Florindo Pinheiro, Douglas; Mittermair, Roberta; Pizarro Pesado, Jennifer; Thalhamer, Josef; Hammerl, Peter; Stoecklinger, Angelika

    2015-01-01

    The skin accommodates multiple dendritic cell (DC) subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal) and chicken ovalbumin (OVA) under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC) as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation. PMID:26030383

  13. Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling.

    PubMed

    Zhu, Wanqu; Yao, Xiao; Liang, Yan; Liang, Dan; Song, Lu; Jing, Naihe; Li, Jinsong; Wang, Gang

    2015-02-01

    Unraveling the mechanisms underlying early neural differentiation of embryonic stem cells (ESCs) is crucial to developing cell-based therapies of neurodegenerative diseases. Neural fate acquisition is proposed to be controlled by a 'default' mechanism, for which the molecular regulation is not well understood. In this study, we investigated the functional roles of Mediator Med23 in pluripotency and lineage commitment of murine ESCs. Unexpectedly, we found that, despite the largely unchanged pluripotency and self-renewal of ESCs, Med23 depletion rendered the cells prone to neural differentiation in different differentiation assays. Knockdown of two other Mediator subunits, Med1 and Med15, did not alter the neural differentiation of ESCs. Med15 knockdown selectively inhibited endoderm differentiation, suggesting the specificity of cell fate control by distinctive Mediator subunits. Gene profiling revealed that Med23 depletion attenuated BMP signaling in ESCs. Mechanistically, MED23 modulated Bmp4 expression by controlling the activity of ETS1, which is involved in Bmp4 promoter-enhancer communication. Interestingly, med23 knockdown in zebrafish embryos also enhanced neural development at early embryogenesis, which could be reversed by co-injection of bmp4 mRNA. Taken together, our study reveals an intrinsic, restrictive role of MED23 in early neural development, thus providing new molecular insights for neural fate determination. © 2015. Published by The Company of Biologists Ltd.

  14. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  15. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  16. Ligature wires and elastomeric rings: two methods of ligation, and their association with microbial colonization of Streptococcus mutans and lactobacilli.

    PubMed

    Forsberg, C M; Brattström, V; Malmberg, E; Nord, C E

    1991-10-01

    Twelve orthodontic patients undergoing treatment with fixed appliances took part in the present study. In all patients elastomeric rings were used for ligation on one side of the dental arch midline, whereas steel wires were used on the opposite side. The number of micro-organisms in samples of plaque, taken from the labial surface of the upper lateral incisors, was recorded on five occasions during treatment. In samples of saliva, the numbers of Streptococcus mutans and lactobacilli were recorded on the same occasions. This registration was also made on two occasions before insertion of the fixed appliance, and 6 weeks after the period of active treatment. The results showed that, in the majority of patients, the incisor which was attached to the arch-wire with an elastomeric ring, exhibited a greater number of micro-organisms in the plaque than the incisor ligated with steel wire. Following insertion of fixed appliances the number of S. mutans and lactobacilli in saliva increased significantly. Variations in the number of micro-organisms in the saliva during active treatment were not reflected in any relative increase or decrease in microbial colonization on either steel ligatures or elastomeric rings. The use of retainers after active treatment was not associated with increased numbers of micro-organisms in the saliva.

  17. Loss of Cbl-PI3K Interaction Modulates the Periosteal Response to Fracture by Enhancing Osteogenic Commitment and Differentiation

    PubMed Central

    Scanlon, Vanessa; Walia, Bhavita; Yu, Jungeun; Hansen, Marc; Drissi, Hicham; Maye, Peter; Sanjay, Archana

    2018-01-01

    The periosteum contains multipotent skeletal progenitors that contribute to bone repair. The signaling pathways regulating the response of periosteal cells to fracture are largely unknown. Phosphatidylinositol-3 Kinase (PI3K), a prominent lipid kinase, is a major signaling protein downstream of several factors that regulate osteoblast differentiation. Cbl is an E3 ubiquitin ligase and a major adaptor protein that binds to the p85 regulatory subunit and modulates PI3K activity. Substitution of tyrosine 737 to phenylalanine (Y737F) in Cbl abolishes the interaction between Cbl and the p85 subunit without affecting the Cbl’s ubiquitin ligase function. Here, we investigated the role of PI3K signaling during the very early stages of fracture healing using OsterixRFP reporter mice. We found that the absence of PI3K regulation by Cbl resulted in robust periosteal thickening, with increased proliferation of periosteal cells. While the multipotent properties of periosteal progenitors to differentiate into chondrocytes and adipocytes did not change, osteogenic differentiation in the absence of Cbl-PI3K interaction was highly augmented. The increased stability and nuclear localization of Osterix observed in periosteal cells lacking Cbl-PI3K interaction may explain this enhanced osteogenic differentiation since the expression of Osterix transcriptional target genes including osteocalcin and BSP are increased in YF cells. Overall, our findings highlight a hitherto unexplored and novel role for Cbl and PI3K in modulating the osteogenic response of periosteal cells during the early stages of fracture repair. PMID:27884787

  18. Loss of Cbl-PI3K interaction modulates the periosteal response to fracture by enhancing osteogenic commitment and differentiation.

    PubMed

    Scanlon, Vanessa; Walia, Bhavita; Yu, Jungeun; Hansen, Marc; Drissi, Hicham; Maye, Peter; Sanjay, Archana

    2017-02-01

    The periosteum contains multipotent skeletal progenitors that contribute to bone repair. The signaling pathways regulating the response of periosteal cells to fracture are largely unknown. Phosphatidylinositol-3 Kinase (PI3K), a prominent lipid kinase, is a major signaling protein downstream of several factors that regulate osteoblast differentiation. Cbl is an E3 ubiquitin ligase and a major adaptor protein that binds to the p85 regulatory subunit and modulates PI3K activity. Substitution of tyrosine 737 to phenylalanine (Y737F) in Cbl abolishes the interaction between Cbl and p85 subunit without affecting the Cbl's ubiquitin ligase function. Here, we investigated the role of PI3K signaling during the very early stages of fracture healing using Osterix RFP reporter mice. We found that the absence of PI3K regulation by Cbl resulted in robust periosteal thickening, with increased proliferation of periosteal cells. While the multipotent properties of periosteal progenitors to differentiate into chondrocytes and adipocytes did not change, osteogenic differentiation in the absence of Cbl-PI3K interaction was highly augmented. The increased stability and nuclear localization of Osterix observed in periosteal cells lacking Cbl-PI3K interaction may explain this enhanced osteogenic differentiation since the expression of Osterix transcriptional target genes including osteocalcin and BSP are increased in YF cells. Overall, our findings highlight a hitherto unexplored and novel role for Cbl and PI3K in modulating the osteogenic response of periosteal cells during the early stages of fracture repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. One-Pot Evolution of Ageladine A through a Bio-Inspired Cascade towards Selective Modulators of Neuronal Differentiation.

    PubMed

    Iwata, Takayuki; Otsuka, Satoshi; Tsubokura, Kazuki; Kurbangalieva, Almira; Arai, Daisuke; Fukase, Koichi; Nakao, Yoichi; Tanaka, Katsunori

    2016-10-04

    A bio-inspired cascade reaction has been developed for the construction of the marine natural product ageladine A and a de novo array of its N1-substituted derivatives. This cascade features a 2-aminoimidazole formation that is modeled after an arginine post-translational modification and an aza-electrocyclization. It can be effectively carried out in a one-pot procedure from simple anilines or guanidines, leading to structural analogues of ageladine A that had been otherwise synthetically inaccessible. We found that some compounds out of this structurally novel library show a significant activity in modulating the neural differentiation. Namely, these compounds selectively activate or inhibit the differentiation of neural stem cells to neurons, while being negligible in the differentiation to astrocytes. This study represents a successful case in which the native biofunction of a natural product could be altered by structural modifications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin.

    PubMed

    McLaughlin, Heather P; Motherway, Mary O'Connell; Lakshminarayanan, Bhuvaneswari; Stanton, Catherine; Paul Ross, R; Brulc, Jennifer; Menon, Ravi; O'Toole, Paul W; van Sinderen, Douwe

    2015-06-16

    Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Differential Modulation of Excitatory and Inhibitory Neurons during Periodic Stimulation

    PubMed Central

    Mahmud, Mufti; Vassanelli, Stefano

    2016-01-01

    Non-invasive transcranial neuronal stimulation, in addition to deep brain stimulation, is seen as a promising therapeutic and diagnostic approach for an increasing number of neurological diseases such as epilepsy, cluster headaches, depression, specific type of blindness, and other central nervous system disfunctions. Improving its effectiveness and widening its range of use may strongly rely on development of proper stimulation protocols that are tailored to specific brain circuits and that are based on a deep knowledge of different neuron types response to stimulation. To this aim, we have performed a simulation study on the behavior of excitatory and inhibitory neurons subject to sinusoidal stimulation. Due to the intrinsic difference in membrane conductance properties of excitatory and inhibitory neurons, we show that their firing is differentially modulated by the wave parameters. We analyzed the behavior of the two neuronal types for a broad range of stimulus frequency and amplitude and demonstrated that, within a small-world network prototype, parameters tuning allow for a selective enhancement or suppression of the excitation/inhibition ratio. PMID:26941602

  2. Nutritionally enhanced fermented sausages as a vehicle for potential probiotic lactobacilli delivery.

    PubMed

    Rubio, Raquel; Jofré, Anna; Aymerich, Teresa; Guàrdia, Maria Dolors; Garriga, Margarita

    2014-02-01

    The suitability of three potential probiotic lactobacilli strains (Lactobacillus casei CTC1677, L. casei CTC1678 and Lactobacillus rhamnosus CTC1679), previously isolated from infants' faeces and characterized, and three commercial probiotic strains (Lactobacillus plantarum 299v, L. rhamnosus GG and L. casei Shirota) was assessed during the manufacture of low-acid fermented sausages (fuets) with reduced Na(+) and fat content. The inoculated strains were successfully monitored by RAPD-PCR during the process. L. rhamnosus CTC1679 was the only strain able to grow and dominate (levels ca. 10(8)CFU/g) the endogenous lactic acid bacteria population in two independent trials, throughout the ripening process. Thus, fuet containing L. rhamnosus CTC1679 as a starter culture could be a suitable vehicle for putative probiotic bacteria delivery. All the final products recorded a satisfactory overall sensory quality without any noticeable off-flavour, and with the characteristic sensory properties of low-acid fermented sausages. © 2013.

  3. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi Jun; Mandelis, Andreas, E-mail: mandelis@mie.utoronto.ca; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that couldmore » be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.« less

  4. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner.

    PubMed

    Cross, Sarah N; Nelson, Rachel A; Potter, Julie A; Norwitz, Errol R; Abrahams, Vikki M

    2018-04-30

    Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO 4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO 4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO 4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO 4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO 4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO 4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. DELAYED APPEARANCE OF LACTOBACILLI IN THE INTESTINES OF CHICKS REARED IN A "NEW" ENVIRONMENT.

    PubMed

    BARE, L N; WISEMAN, R F

    1964-11-01

    Male chicks (1 day old; Vantress x Arbor Acre) were fed a basal folic acid-deficient diet, a 5% uric acid-containing diet with and without 5 mg/lb (453.5 g) of bacitracin and 20 mg/lb of sodium penicillin G, the basal diet supplemented with only the antibiotics, and the basal diet plus 500 mug/lb of folic acid. The chicks were reared in a room which had not been used previously for housing chickens ("new" environment). Bacteriological analyses of the contents of the small intestine revealed a decrease in numbers of streptococci and "anaerobic" bacteria in the chicks receiving dietary antibiotics. No persistent changes were seen in the numbers of coliform bacteria. Lactobacilli were not detected in any of the groups until 3 weeks after feeding.

  6. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery.Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with

  7. Mechanisms of masked evaluative priming: task sets modulate behavioral and electrophysiological priming for picture and words differentially

    PubMed Central

    Liegel, Nathalie; Zovko, Monika; Wentura, Dirk

    2017-01-01

    Abstract Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. PMID:27998994

  8. Oxytocin differentially modulates pavlovian cue and context fear acquisition.

    PubMed

    Cavalli, Juliana; Ruttorf, Michaela; Pahi, Mario Rosero; Zidda, Francesca; Flor, Herta; Nees, Frauke

    2017-06-01

    Fear acquisition and extinction have been demonstrated as core mechanisms for the development and maintenance of mental disorders, with different contributions of processing cues vs contexts. The hypothalamic peptide oxytocin (OXT) may have a prominent role in this context, as it has been shown to affect fear learning. However, investigations have focused on cue conditioning, and fear extinction. Its differential role for cue and context fear acquisition is still not known. In a randomized, double-blind, placebo (PLC)-controlled design, we administered an intranasal dose of OXT or PLC before the acquisition of cue and context fear conditioning in healthy individuals (n = 52), and assessed brain responses, skin conductance responses and self-reports (valence/arousal/contingency). OXT compared with PLC significantly induced decreased responses in the nucleus accumbens during early cue and context acquisition, and decreased responses of the anterior cingulate cortex and insula during early as well as increased hippocampal response during late context, but not cue acquisition. The OXT group additionally showed significantly higher arousal in late cue and context acquisition. OXT modulates various aspects of cue and context conditioning, which is relevant from a mechanism-based perspective and might have implications for the treatment of fear and anxiety. © The Author (2017). Published by Oxford University Press.

  9. Modulation of the differentiation of dental pulp stem cells by different concentrations of β-glycerophosphate.

    PubMed

    Liu, Mingyue; Sun, Yao; Liu, Yang; Yuan, Mengtong; Zhang, Zhihui; Hu, Weiping

    2012-01-31

    Dentinogenesis is a necessary prerequisite for dental tissue engineering. One of the steps for dentinogenesis is to obtain large quantities of highly purified odontoblasts. Therefore, we have undertaken an experiment applying different concentrations of β-glycerophosphate (β-GP) to induce the differentiation of dental pulp stem cells (DPSCs) in a long-term 28-day culture. In the meanwhile, we have studied the time- and maturation-dependent expression of matrix extracellular phosphoglycoprotein (MEPE) and that of the odontoblast-like marker-dentin sialoprotein (DSP), in order to investigate an optimized mineralized condition. Western blot results revealed that the expression of DSP became lower when accompanied by the increase of the β-GP concentration, and there was also an influence on MEPE expression when different concentrations of β-GP were applied. Meanwhile, the mineralized groups had an inhibitory function on the expression of MEPE as compared with the control group. Above all, all experimental groups successfully generated mineralized nodules by Alizarin Red S and the 5 mM β-GP group formed more mineralized nodules quantitated using the CPC extraction method. In conclusion, there is a significant modulation of the β-GP during the differentiation of the DPSCs. The degree of odontoblast differentiation is β-glycerophosphate concentration dependent. A low concentration of β-GP (5 mM) has been shown to be the optimal concentration for stimulating the maturation of the DPSCs. Moreover, MEPE accompanied with DSP clearly demonstrates the degree of the differentiation.

  10. Neurosteroid Modulators of GABAA Receptors Differentially Modulate Ethanol Intake Patterns in Male C57BL/6J Mice

    PubMed Central

    Ford, Matthew M.; Nickel, Jeffrey D.; Phillips, Tamara J.; Finn, Deborah A.

    2006-01-01

    evaluated. Conclusions The present findings suggest that GABAA receptor-active neurosteroids may modulate the regulatory processes that govern the onset, maintenance, and termination of drinking episodes. The differential influence of ALLO and EPI on ethanol intake patterns may reflect an alteration in GABAergic inhibitory tone that is likely due to each neurosteroid’s pharmacological profile at GABAA receptors. Manipulation of endogenous ALLO may prove a useful strategy for diminishing excessive intake and protecting against the loss of regulatory control over drinking. PMID:16205363

  11. Microbiological Characterization of Wet Wheat Distillers' Grain, with Focus on Isolation of Lactobacilli with Potential as Probiotics

    PubMed Central

    Pedersen, C.; Jonsson, H.; Lindberg, J. E.; Roos, S.

    2004-01-01

    Wet wheat distillers' grain (WWDG), a residue from ethanol fermentation, was examined from a microbiological perspective. After storage, WWDG was characterized by a high content of lactobacilli, nondetectable levels of other bacteria, occasional occurrence of yeasts, and a pH of about 3.6 and contained a mixture of lactic acid, acetic acid, and ethanol. The composition of lactobacilli in WWDG was simple, including primarily the species Lactobacillus amylolyticus, Lactobacillus panis, and Lactobacillus pontis, as determined by 16S rRNA gene sequencing. Since the use of WWDG as pig feed has indicated a health-promoting function, some relevant characteristics of three strains of each of these species were examined together with basal physiological parameters, such as carbohydrate utilization and growth temperature. Seven of the strains were isolated from WWDG, and two strains from pig feces were included for comparison. It was clear that all three species could grow at temperatures of 45 to 50°C, with L. amylolyticus being able to grow at temperatures as high as 54°C. This finding could be the explanation for the simple microflora of WWDG, where a low pH together with a high temperature during storage would select for these organisms. Some strains of L. panis and L. pontis showed prolonged survival at pH 2.5 in synthetic stomach juice and good growth in the presence of porcine bile salt. In addition, members of all three species were able to bind to immobilized mucus material in vitro. Especially the isolates from pig feces but, interestingly, some isolates from WWDG as well possessed properties that might be of importance for colonization of the gastrointestinal tracts of pigs. PMID:15006774

  12. Ursolic acid differentially modulates apoptosis in skin melanoma and retinal pigment epithelial cells exposed to UV-VIS broadband radiation.

    PubMed

    Lee, Yuan-Hao; Wang, Exing; Kumar, Neeru; Glickman, Randolph D

    2014-05-01

    The signaling pathways via mTOR (mammalian target of rapamycin) and AMPK (AMP-activated protein kinase) play key roles in transcription, translation and carcinogenesis, and may be activated by light exposure. These pathways can be modulated by naturally occurring compounds, such as the triterpenoid, ursolic acid (UA). Previously, the transcription factors p53 and NF-κB, which transactivate mitochondrial apoptosis-related genes, were shown to be differentially modulated by UA. UA-modulated apoptosis, following exposure to UV-VIS radiation (ultraviolet to visible light broadband radiation, hereafter abbreviated to UVR), is observed to correspond to differential levels of oxidative stress in retinal pigment epithelial (RPE) and skin melanoma (SM) cells. The cellular response to this phytochemical was characterized using western blot, flow cytometry, microscopy with reactive oxidative species probes MitoTracker and dihydroethidium, and membrane permeability assay. UA pretreatment potentiated cell cycle arrest and UVR-induced apoptosis selectively in SM cells while reducing photo-oxidative stress in the DNA of RPE cells presumably by antioxidant activity of UA. Mechanistically, the nuclear transportation of p65 and p53 was reduced by UA administration prior to UVR exposure while the levels of p65 and p53 nuclear transportation in SM cells were sustained at a substantially higher level. Finally, the mitochondrial functional assay showed that UVR induced the collapse of the mitochondrial membrane potential, and this effect was exacerbated by rapamycin or UA pretreatment in SM preferentially. These results were consistent with reduced proliferation observed in the clonogenic assay, indicating that UA treatment enhanced the phototoxicity of UVR, by modulating the activation of p53 and NF-κB and initiating a mitogenic response to optical radiation that triggered mitochondria-dependent apoptosis, particularly in skin melanoma cells. The study indicates that this compound

  13. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping

    2017-10-01

    Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.

  14. Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation.

    PubMed

    Sharma, Arun; Li, Guang; Rajarajan, Kuppusamy; Hamaguchi, Ryoko; Burridge, Paul W; Wu, Sean M

    2015-03-18

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have become an important cell source to address the lack of primary cardiomyocytes available for basic research and translational applications. To differentiate hiPSCs into cardiomyocytes, various protocols including embryoid body (EB)-based differentiation and growth factor induction have been developed. However, these protocols are inefficient and highly variable in their ability to generate purified cardiomyocytes. Recently, a small molecule-based protocol utilizing modulation of Wnt/β-Catenin signaling was shown to promote cardiac differentiation with high efficiency. With this protocol, greater than 50%-60% of differentiated cells were cardiac troponin-positive cardiomyocytes were consistently observed. To further increase cardiomyocyte purity, the differentiated cells were subjected to glucose starvation to specifically eliminate non-cardiomyocytes based on the metabolic differences between cardiomyocytes and non-cardiomyocytes. Using this selection strategy, we consistently obtained a greater than 30% increase in the ratio of cardiomyocytes to non-cardiomyocytes in a population of differentiated cells. These highly purified cardiomyocytes should enhance the reliability of results from human iPSC-based in vitro disease modeling studies and drug screening assays.

  15. Mechanisms of masked evaluative priming: task sets modulate behavioral and electrophysiological priming for picture and words differentially.

    PubMed

    Kiefer, Markus; Liegel, Nathalie; Zovko, Monika; Wentura, Dirk

    2017-04-01

    Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Differential modulation of microglia superoxide anion and thromboxane B2 generation by the marine manzamines

    PubMed Central

    Mayer, Alejandro MS; Hall, Mary L; Lynch, Sean M; Gunasekera, Sarath P; Sennett, Susan H; Pomponi, Shirley A

    2005-01-01

    Background Thromboxane B2 (TXB2) and superoxide anion (O2-) are neuroinflammatory mediators that appear to be involved in the pathogenesis of several neurodegenerative diseases. Because activated-microglia are the main source of TXB2 and O2- in these disorders, modulation of their synthesis has been hypothesized as a potential therapeutic approach for neuroinflammatory disorders. Marine natural products have become a source of novel agents that modulate eicosanoids and O2- generation from activated murine and human leukocytes. With the exception of manzamine C, all other manzamines tested are characterized by a complex pentacyclic diamine linked to C-1 of the β-carboline moiety. These marine-derived alkaloids have been reported to possess a diverse range of bioactivities including anticancer, immunostimulatory, insecticidal, antibacterial, antimalarial and antituberculosis activities. The purpose of this investigation was to conduct a structure-activity relationship study with manzamines (MZ) A, B, C, D, E and F on agonist-stimulated release of TXB2 and O2- from E. coli LPS-activated rat neonatal microglia in vitro. Results The manzamines differentially attenuated PMA (phorbol 12-myristate 13-acetate)-stimulated TXB2 generation in the following order of decreasing potency: MZA (IC50 <0.016 μM) >MZD (IC50 = 0.23 μM) >MZB (IC50 = 1.6 μM) >MZC (IC50 = 2.98 μM) >MZE and F (IC50 >10 μM). In contrast, there was less effect on OPZ (opsonized zymosan)-stimulated TXB2 generation: MZB (IC50 = 1.44 μM) >MZA (IC50 = 3.16 μM) >MZC (IC50 = 3.34 μM) >MZD, MZE and MZF (IC50 >10 μM). Similarly, PMA-stimulated O2- generation was affected differentially as follows: MZD (apparent IC50<0.1 μM) >MZA (IC50 = 0.1 μM) >MZB (IC50 = 3.16 μM) >MZC (IC50 = 3.43 μM) >MZE and MZF (IC50 >10 μM). In contrast, OPZ-stimulated O2- generation was minimally affected: MZB (IC50 = 4.17 μM) >MZC (IC50 = 9.3 μM) >MZA, MZD, MZE and MZF (IC50 > 10 μM). From the structure

  17. Diversity of Lactobacilli in the Oral Cavities of Young Women with Dental Caries

    PubMed Central

    Caufield, P.W.; Li, Y.; Dasanayake, A.; Saxena, D.

    2009-01-01

    For nearly a century, lactobacilli (LB) in the oral cavity have been generally associated with dental caries. Here, we characterized the LB isolated from the saliva of 6 women with active caries using genetic-based taxonomical identification methods. From each subject, 30 isolates growing on Rogosa medium and presumed to be LB were analyzed. Of the 180 isolates, 176 were further characterized by biotyping, DNA melting points, DNA chromosomal fingerprinting, genotyping, and phylogenetic cluster assessment. We found a total of 30 unique genotypes of LB in the saliva of caries-active women, with each woman harboring between 2 and 8 distinct genotypes. Although Lactobacillus vaginalis, Lactobacillus fermentum, and Lactobacillus salivarius were found in 4 of 6 of the subjects, results from other studies using comparable methods show an entirely different array of LB associated with caries. These collective observations lead us to surmise that LB associated with dental caries are likely exogenous and opportunistic colonizers, arising from food or other reservoirs outside the oral cavity. PMID:17167253

  18. Effect of traditional leafy vegetables on the growth of lactobacilli and bifidobacteria.

    PubMed

    Kassim, Muhammad Arshad; Baijnath, Himansu; Odhav, Bharti

    2014-12-01

    Traditional leafy vegetables, apart from being a staple in the diet of most of sub-Saharan Africa, are an essential part of traditional medicine and are used daily by traditional healers in the region to treat a wide variety of ailments. In this study, a batch culture technique was used to investigate whether 25 infusions from 22 traditional leafy vegetables stimulated the growth of Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus reuteri and Bifidobacterium longum in pure culture. High performance liquid chromatography was used to determine the inulin content of the infusions. Sonchus oleraceus stimulated all four strains and Taraxacum officinale stimulated three strains. In total, 18 plants stimulated at least one of the four probiotic strains. The inulin content of the infusions varied between 2.5% and 3.6%, with Asparagus sprengeri containing the highest percentage. These results indicate that traditional leafy vegetables do stimulate the growth of the selected lactobacilli and bifidobacteria in pure culture and contain inulin. These infusions can now be tested for prebiotic potential using mixed culture systems or human hosts.

  19. ODEion--a software module for structural identification of ordinary differential equations.

    PubMed

    Gennemark, Peter; Wedelin, Dag

    2014-02-01

    In the systems biology field, algorithms for structural identification of ordinary differential equations (ODEs) have mainly focused on fixed model spaces like S-systems and/or on methods that require sufficiently good data so that derivatives can be accurately estimated. There is therefore a lack of methods and software that can handle more general models and realistic data. We present ODEion, a software module for structural identification of ODEs. Main characteristic features of the software are: • The model space is defined by arbitrary user-defined functions that can be nonlinear in both variables and parameters, such as for example chemical rate reactions. • ODEion implements computationally efficient algorithms that have been shown to efficiently handle sparse and noisy data. It can run a range of realistic problems that previously required a supercomputer. • ODEion is easy to use and provides SBML output. We describe the mathematical problem, the ODEion system itself, and provide several examples of how the system can be used. Available at: http://www.odeidentification.org.

  20. Fibromodulin modulates myoblast differentiation by controlling calcium channel.

    PubMed

    Lee, Eun Ju; Nam, Joo Hyun; Choi, Inho

    2018-06-16

    Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells. In addition, gene knock-down studies demonstrated the COL1α1 and Itm2a genes both regulate the expressions of calcium channel genes. Studies using a cardiotoxin-induced mouse muscle injury model demonstrated calcium channels play important roles in the regeneration of muscle tissue, possibly by promoting the differentiation of muscle stem cells (MSCs). Summarizing, the study demonstrates ECM components secreted by myoblasts during differentiation provide an essential environment for muscle differentiation and regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Strain-dependent release of cytokines modulated by Lactobacillus salivarius human isolates in an in vitro model

    PubMed Central

    2010-01-01

    Background Oral administration of probiotics is known to modulate cytokines profile not only locally, but also systemically. Four strains of Lactobacillus salivarius, LDR0723, BNL1059, RGS1746 and CRL1528, were evaluated for their ability to modulate release of pro- and anti-inflammatory cytokines. Findings Strains were assessed for effects on production of Interleukin-12 (IL-12), Interferon-γ (IFN-γ), Interleukin-4 (IL-4) and Interleukin-5 (IL-5) by incubating bacterial suspensions with THP-1 macrophage like cells. Cytokines were determined by means of specific quantitative enzyme-linked immunosorbent assays. LDR0723 and CRL1528 led to a sustained increment in production of IL-12 and IFN-γ and to a decrease in release of IL-4 and IL-5, while BNL1059 and RGS1746 favoured Th2 response, leading to a decrease in Th1/Th2 ratio with respect to unstimulated cells. Conclusions In conclusion, capability of L. salivarius to modulate immune response was strictly strain dependent and strains of the same species might have opposite effects. Therefore, a careful evaluation of anti-inflammatory properties of lactobacilli should be performed on single strain, before any consideration on potential probiotic use. PMID:20184725

  2. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial.

    PubMed

    van Zanten, Gabriella C; Krych, Lukasz; Röytiö, Henna; Forssten, Sofia; Lahtinen, Sampo J; Abu Al-Soud, Waleed; Sørensen, Søren; Svensson, Birte; Jespersen, Lene; Jakobsen, Mogens

    2014-10-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n = 18) were enrolled in a double-blinded, randomized, and placebo-controlled cross-over study and received synbiotic [Lactobacillus acidophilus NCFM (10(9) CFU) and cellobiose (5 g)] or placebo daily for 3 weeks. Fecal samples were collected and lactobacilli numbers were quantified by qPCR. Furthermore, 454 tag-encoded amplicon pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P < 0.05). No other effects were found on microbiota composition. Remarkably, however, the synbiotic increased concentrations of branched-chain fatty acids, measured by gas chromatography, while short-chain fatty acids were not affected. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. In vitro screening of potential probiotic activities of selected lactobacilli isolated from unpasteurized milk products for incorporation into soft cheese.

    PubMed

    Coeuret, Valérie; Gueguen, Micheline; Vernoux, Jean Paul

    2004-11-01

    The aim was to select potentially probiotic lactobacilli from 88 strains isolated from unpasteurized milk and cheese products, and to incorporate these bacteria in a viable state into a soft cheese, without changing its quality. The survival of these bacteria was assessed in acidic and bile conditions, after freezing at -80 degrees C. Four strains from unpasteurized Camembert--two Lactobacillus plantarum strains and two Lb. paracasei/casei strains--were identified and typed by PCR and PFGE and were found to display potentially probiotic characteristics in addition to resistance to low pH and bile. These characteristics were resistance to lysozyme, adhesion to CACO-2 cells, antimicrobial effects against common foodborne pathogens (Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, innocuity following the ingestion of high doses by mice and appropriate antibiotic susceptibility profiles. The potential of Lb. plantarum strain UCMA 3037 for incorporation into a soft cheese (Pont-l'Eveque registered designation of origin (RDO)) was investigated. This strain grew well and survived in sufficient numbers (more than 10(7) cfu/g throughout the shelf-life of the product) in the cheese. This strain did not change the quality score of the product until the best before date (75 days after manufacture). Thus, unpasteurized Camembert is a natural source of potentially probiotic lactobacilli, which could be used as an additive in the development of potentially probiotic soft cheeses. Further work is required to demonstrate the persistence and efficacy of these strains in the human host upon ingestion.

  4. Resonance Properties of Class I and Class II Neurons Differentially Modulated by Channel Noise

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2018-01-01

    Resonance properties of two different neuron types (Class I and Class II) induced by channel noise are investigated in this study. It is found that for Class I neuron, spiking activity is enhanced when certain noise intensity is presented, especially under weak current stimuli -- a typical phenomenon of stochastic resonance (SR); while for Class II neuron, in addition to perform the SR, certain noise intensity would inhibit neuronal activity under some current stimuli -- a typical phenomenon of inverse stochastic resonance (ISR). Moreover, we show that only sodium channel noise or potassium channel noise variation can achieve the similar phenomena. Consequently, the model results suggest that channel noise may exert differential roles in modulating the resonance properties of Class I and Class II neurons.

  5. Nitric Oxide Modulates TGF-β–Directive Signals To Suppress Foxp3+ Regulatory T Cell Differentiation and Potentiate Th1 Development

    PubMed Central

    Lee, Seung-Woo; Choi, Heonsik; Eun, So-Young; Fukuyama, Satoshi; Croft, Michael

    2011-01-01

    TGF-β can induce Foxp3+ inducible regulatory T cells (Treg) and also synergize with IL-6 and IL-4 to induce Th17 and Th9 cells. We now report that NO modulates TGF-β activity away from Treg but toward the Th1 lineage. NO potentiated Th1 differentiation in the presence of TGF-β in both IL-12–independent and –dependent fashions by augmenting IFN-γ–activated STAT-1 and T-bet. Differentiation into Treg, Th1, and Th17 lineages could be modulated by NO competing with other cofactors, such as IL-6 and retinoic acid. NO antagonized IL-6 to block TGF-β–directed Th17 differentiation, and together with IL-6, NO suppressed Treg development induced by TGF-β and retinoic acid. Furthermore, we show that physiologically produced NO from TNF and inducible NO synthase-producing dendritic cells can contribute to Th1 development predominating over Treg development through a synergistic activity induced when these cells cocluster with conventional dendritic cells presenting Ag to naive Th cells. This illustrates that NO is another cofactor allowing TGF-β to participate in development of multiple Th lineages and suggests a new mechanism by which NO, which is associated with protection against intracellular pathogens, might maintain effective Th1 immunity. PMID:21555530

  6. Comparison of Antimicrobial Efficacy of Green Tea, Garlic with Lime, and Sodium Fluoride Mouth Rinses against Streptococcus mutans, Lactobacilli species, and Candida albicans in Children: A Randomized Double-blind Controlled Clinical Trial

    PubMed Central

    Thomas, Ann; Habib, Rishika

    2017-01-01

    Introduction With greater awareness worldwide, the use of herbs and herbal products has increased to a large extent. Objective To evaluate and compare the antimicrobial efficacy of green tea, garlic with lime, and 0.05% sodium fluoride (NaF) mouth rinses against Streptococcus mutans, Lactobacilli species, and Candida albicans. Materials and methods A total of 45 children aged 4 to 6 years with severe early childhood caries (S-ECC; based on decayed extracted filled [defs] score) were selected. Children were divided randomly into three equal groups and were asked to rinse with the prescribed mouth rinse once daily for 2 weeks after breakfast under supervision. A base-line and postrinsing nonstimulated whole salivary sample (2 mL) was collected and tested for the number of colony-forming units (CFUs). The data were statistically analyzed using Statistical Package for the Social Sciences (SPSS) version 16.0 software with one-way analysis of variance (ANOVA) and Tukey’s post hoc test. Results A statistically significant fall in colony count was found with the three mouth rinses in S. mutans (p < 0.001, p < 0.001) and Lactobacilli spp. (p < 0.001, p < 0.001), but not against C. albicans (p = 0.264, p = 0.264). On comparison, no statistically significant difference was found against S. mutans (p = 1, p = 0.554, p = 0.572), lactobacilli spp. (p = 0.884, p = 0.999, p = 0.819), and C. albicans (p = 0.999, p = 0.958, p = 0.983). Conclusion The findings of this study indicate that green tea and garlic with lime mouth rinse can be an economical alternative to NaF mouth rinse both for prevention and therapeutics. How to cite this article Thomas A, Thakur S, Habib R. Comparison of Antimicrobial Efficacy of Green Tea, Garlic with Lime, and Sodium Fluoride Mouth Rinses against Streptococcus mutans, Lactobacilli species, and Candida albicans in Children: A Randomized Double-blind Controlled Clinical Trial. Int J Clin Pediatr Dent 2017;10(3):234-239. PMID:29104381

  7. Comparison of Antimicrobial Efficacy of Green Tea, Garlic with Lime, and Sodium Fluoride Mouth Rinses against Streptococcus mutans, Lactobacilli species, and Candida albicans in Children: A Randomized Double-blind Controlled Clinical Trial.

    PubMed

    Thomas, Ann; Thakur, Sneha; Habib, Rishika

    2017-01-01

    With greater awareness worldwide, the use of herbs and herbal products has increased to a large extent. To evaluate and compare the antimicrobial efficacy of green tea, garlic with lime, and 0.05% sodium fluoride (NaF) mouth rinses against Streptococcus mutans, Lactobacilli species, and Candida albicans. A total of 45 children aged 4 to 6 years with severe early childhood caries (S-ECC; based on decayed extracted filled [defs] score) were selected. Children were divided randomly into three equal groups and were asked to rinse with the prescribed mouth rinse once daily for 2 weeks after breakfast under supervision. A base-line and postrinsing nonstimulated whole salivary sample (2 mL) was collected and tested for the number of colony-forming units (CFUs). The data were statistically analyzed using Statistical Package for the Social Sciences (SPSS) version 16.0 software with one-way analysis of variance (ANOVA) and Tukey's post hoc test. A statistically significant fall in colony count was found with the three mouth rinses in S. mutans (p < 0.001, p < 0.001) and Lactobacilli spp. (p < 0.001, p < 0.001), but not against C. albicans (p = 0.264, p = 0.264). On comparison, no statistically significant difference was found against S. mutans (p = 1, p = 0.554, p = 0.572), lactobacilli spp. (p = 0.884, p = 0.999, p = 0.819), and C. albicans (p = 0.999, p = 0.958, p = 0.983). The findings of this study indicate that green tea and garlic with lime mouth rinse can be an economical alternative to NaF mouth rinse both for prevention and therapeutics. Thomas A, Thakur S, Habib R. Comparison of Antimicrobial Efficacy of Green Tea, Garlic with Lime, and Sodium Fluoride Mouth Rinses against Streptococcus mutans, Lactobacilli species, and Candida albicans in Children: A Randomized Double-blind Controlled Clinical Trial. Int J Clin Pediatr Dent 2017;10(3):234-239.

  8. Microarray and network-based identification of functional modules and pathways of active tuberculosis.

    PubMed

    Bian, Zhong-Rui; Yin, Juan; Sun, Wen; Lin, Dian-Jie

    2017-04-01

    Diagnose of active tuberculosis (TB) is challenging and treatment response is also difficult to efficiently monitor. The aim of this study was to use an integrated analysis of microarray and network-based method to the samples from publically available datasets to obtain a diagnostic module set and pathways in active TB. Towards this goal, background protein-protein interactions (PPI) network was generated based on global PPI information and gene expression data, following by identification of differential expression network (DEN) from the background PPI network. Then, ego genes were extracted according to the degree features in DEN. Next, module collection was conducted by ego gene expansion based on EgoNet algorithm. After that, differential expression of modules between active TB and controls was evaluated using random permutation test. Finally, biological significance of differential modules was detected by pathways enrichment analysis based on Reactome database, and Fisher's exact test was implemented to extract differential pathways for active TB. Totally, 47 ego genes and 47 candidate modules were identified from the DEN. By setting the cutoff-criteria of gene size >5 and classification accuracy ≥0.9, 7 ego modules (Module 4, Module 7, Module 9, Module 19, Module 25, Module 38 and Module 43) were extracted, and all of them had the statistical significance between active TB and controls. Then, Fisher's exact test was conducted to capture differential pathways for active TB. Interestingly, genes in Module 4, Module 25, Module 38, and Module 43 were enriched in the same pathway, formation of a pool of free 40S subunits. Significant pathway for Module 7 and Module 9 was eukaryotic translation termination, and for Module 19 was nonsense mediated decay enhanced by the exon junction complex (EJC). Accordingly, differential modules and pathways might be potential biomarkers for treating active TB, and provide valuable clues for better understanding of molecular

  9. The alpha subunit of Go modulates cell proliferation and differentiation through interactions with Necdin.

    PubMed

    Ju, Hyunhee; Lee, Sujin; Kang, Sunghak; Kim, Sung-Soo; Ghil, Sungho

    2014-07-10

    Heterotrimeric GTP-binding proteins (G-proteins) play an important role in mediating signal transduction generated by neurotransmitters or hormones. Go, a member of the Gi/Go subfamily, is the most abundant G-protein found in the brain. Recently, the alpha subunit of Go (Gαo) was characterized as an inducer of neuronal differentiation. However, its underlying molecular mechanisms have remained unclear to date, since the downstream effectors of Gαo are ambiguous. A neurally differentiated embryonal carcinoma-derived protein (Necdin) was isolated as an interacting partner for Gαo from a mouse brain cDNA library using yeast two-hybrid screening. Interactions between the proteins were confirmed with several affinity binding assays, both in vitro and in vivo. Necdin interacted directly and preferentially with activated Gαo, compared to wild-type protein. Interestingly, Gαo did not interact with Gαi, despite high sequence homology between the two proteins. We subsequently analyzed whether Gαo modulates the cellular activities of Necdin. Notably, expression of Gαo significantly augmented Necdin-mediated cellular responses, such as proliferation and differentiation. Moreover, activation of type 1 cannabinoid receptor (CB1R), a Gi/oα-coupled receptor, augmented cell growth suppression, which was mediated by Gαo and Necdin in U87MG cells containing CB1R, Gαo, and Necdin as normal components. These results collectively suggest that Necdin is a candidate downstream effector for Gαo. Our findings provide novel insights into the cellular roles of Gαo and its coupled receptor.

  10. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Discovery of a Positive Allosteric Modulator of the Thyrotropin Receptor: Potentiation of Thyrotropin-Mediated Preosteoblast Differentiation In Vitro

    PubMed Central

    Eliseeva, Elena; Boutin, Alisa; Barnaeva, Elena; Ferrer, Marc; Southall, Noel; Kim, David; Hu, Xin; Morgan, Sarah J.; Marugan, Juan J.; Gershengorn, Marvin C.

    2018-01-01

    Recently, we showed that TSH-enhanced differentiation of a human preosteoblast-like cell model involved a β-arrestin 1 (β-Arr 1)-mediated pathway. To study this pathway in more detail, we sought to discover a small molecule ligand that was functionally selective toward human TSH receptor (TSHR) activation of β-Arr 1. High-throughput screening using a cell line stably expressing mutated TSHRs and mutated β-Arr 1 (DiscoverX1 cells) led to the discovery of agonists that stimulated translocation of β-Arr 1 to the TSHR, but did not activate Gs-mediated signaling pathways, i.e., cAMP production. D3-βArr (NCGC00379308) was selected. In DiscoverX1 cells, D3-βArr stimulated β-Arr 1 translocation with a 5.1-fold greater efficacy than TSH and therefore potentiated the effect of TSH in stimulating β-Arr 1 translocation. In human U2OS-TSHR cells expressing wild-type TSHRs, which is a model of human preosteoblast-like cells, TSH upregulated the osteoblast-specific genes osteopontin (OPN) and alkaline phosphatase (ALPL). D3-βArr alone had only a weak effect to upregulate these bone markers, but D3-βArr potentiated TSH-induced upregulation of ALPL and OPN mRNA levels 1.6-fold and 5.5-fold, respectively, at the maximum dose of ligands. Furthermore, the positive allosteric modulator effect of D3-βArr resulted in an increase of TSH-induced secretion of OPN protein. In summary, we have discovered the first small molecule positive allosteric modulator of TSHR. As D3-βArr potentiates the effect of TSH to enhance differentiation of a human preosteoblast in an in vitro model, it will allow a novel experimental approach for probing the role of TSH-induced β-Arr 1 signaling in osteoblast differentiation. PMID:29089368

  12. Identifying module biomarkers from gastric cancer by differential correlation network

    PubMed Central

    Liu, Xiaoping; Chang, Xiao

    2016-01-01

    Gastric cancer (stomach cancer) is a severe disease caused by dysregulation of many functionally correlated genes or pathways instead of the mutation of individual genes. Systematic identification of gastric cancer biomarkers can provide insights into the mechanisms underlying this deadly disease and help in the development of new drugs. In this paper, we present a novel network-based approach to predict module biomarkers of gastric cancer that can effectively distinguish the disease from normal samples. Specifically, by assuming that gastric cancer has mainly resulted from dysfunction of biomolecular networks rather than individual genes in an organism, the genes in the module biomarkers are potentially related to gastric cancer. Finally, we identified a module biomarker with 27 genes, and by comparing the module biomarker with known gastric cancer biomarkers, we found that our module biomarker exhibited a greater ability to diagnose the samples with gastric cancer. PMID:27703371

  13. Low Lactobacilli abundance and polymicrobial diversity in the lower reproductive tract of female rhesus monkeys do not compromise their reproductive success.

    PubMed

    Amaral, Wellington Z; Lubach, Gabriele R; Kapoor, Amita; Proctor, Alexandra; Phillips, Gregory J; Lyte, Mark; Coe, Christopher L

    2017-10-01

    The lower reproductive tract of nonhuman primates is colonized with a diverse microbiota, resembling bacterial vaginosis (BV), a gynecological condition associated with negative reproductive outcomes in women. Our 4 aims were to: (i) assess the prevalence of low Lactobacilli and a BV-like profile in female rhesus monkeys; (ii) quantify cytokines in their cervicovaginal fluid (CVF); (iii) examine the composition and structure of their mucosal microbiota with culture-independent sequencing methods; and (iv) evaluate the potential influence on reproductive success. CVF specimens were obtained from 27 female rhesus monkeys for Gram's staining, and to determine acidity (pH), and quantify proinflammatory cytokines. Based on Nugent's classification, 40% had a score of 7 or higher, which would be indicative of BV in women. Nugent scores were significantly correlated with the pH of the CVF. Interleukin-1ß was present at high concentrations, but not further elevated by high Nugent scores. Vaginal swabs were obtained from eight additional females to determine microbial diversity by rRNA gene amplicon sequencing. At the phylum level, the Firmicutes/Bacteroidetes ratio was low. The relative abundance of Lactobacilli was also low (between 3% and 17%), and 11 other genera were present at >1%. However, neither the microbial diversity in the community structure, nor high Nugent scores, was associated with reduced fecundity. Female monkeys provide an opportunity to understand how reproductive success can be sustained in the presence of a diverse polymicrobial community in the reproductive tract. © 2017 Wiley Periodicals, Inc.

  14. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph

    2007-01-01

    activity in the absence of RANKL. Taken together, our results suggest that RANKL signals through TRAF6 and that NFATc1 is a downstream effector of RANKL signaling to modulate MMP-9 gene expression during osteoclast differentiation.« less

  15. Oxygen and differentiation status modulate the effect of X-ray irradiation on physiology and mitochondrial proteome of human neuroblastoma cells.

    PubMed

    Džinić, Tamara; Hartwig, Sonja; Lehr, Stefan; Dencher, Norbert A

    2016-12-01

    Cytotoxic effects, including oxidative stress, of low linear energy transfer (LET)-ionizing radiation are often underestimated and studies of their mechanisms using cell culture models are widely conducted with cells cultivated at atmospheric oxygen that does not match its physiological levels in body tissues. Also, cell differentiation status plays a role in the outcome of experiments. We compared effects of 2 Gy X-ray irradiation on the physiology and mitochondrial proteome of nondifferentiated and human neuroblastoma (SH-SY5Y) cells treated with retinoic acid cultivated at 21% and 5% O 2 . Irradiation did not affect the amount of subunits of OxPhos complexes and other non-OxPhos mitochondrial proteins, except for heat shock protein 70, which was increased depending on oxygen level and differentiation status. These two factors were proven to modulate mitochondrial membrane potential and the bioenergetic status of cells. We suggest, moreover, that oxygen plays a role in the differentiation of human SH-SY5Y cells.

  16. Tryptophan hydroxylase 2 (TPH2) in a neuronal cell line: modulation by cell differentiation and NRSF/rest activity.

    PubMed

    Gentile, Maria Teresa; Nawa, Yukino; Lunardi, Gianluigi; Florio, Tullio; Matsui, Hiroaki; Colucci-D'Amato, Luca

    2012-12-01

    Serotonin (5-HT) is a neurotransmitter involved in many aspects of the neuronal function. The synthesis of 5-HT is initiated by the hydroxylation of tryptophan, catalyzed by tryptophan hydroxylase (TPH). Two isoforms of TPH (TPH1 and TPH2) have been identified, with TPH2 almost exclusively expressed in the brain. Following TPH2 discovery, it was reported that polymorphisms of both gene and non-coding regions are associated with a spectrum of psychiatric disorders. Thus, insights into the mechanisms that specifically regulate TPH2 expression and its modulation by exogenous stimuli may represent a new therapeutic approach to modify serotonergic neurotransmission. To this aim, a CNS-originated cell line expressing TPH2 endogenously represents a valid model system. In this study, we report that TPH2 transcript and protein are modulated by neuronal differentiation in the cell line A1 mes-c-myc (A1). Moreover, we show luciferase activity driven by the human TPH2 promoter region and demonstrate that upon mutation of the NRSF/REST responsive element, the promoter activity strongly increases with cell differentiation. Our data suggest that A1 cells could represent a model system, allowing an insight into the mechanisms of regulation of TPH2 and to identify novel therapeutic targets in the development of drugs for the management of psychiatric disorders. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  17. [Intestinal microbial ecology and its modulation under the influence of immunodepressants].

    PubMed

    Amanov, N; Garib, F Iu; Umarov, Ia A

    1989-06-01

    Oral administration of immunodepressants such as imuran (purine analog) and batriden (gossypol derivative) for 3 months led to development of dysbacterioses in various sections of the rat gastrointestinal tract. The dysbacterioses differed in their levels and the pattern of the recovery process. As compared to batriden, imuran in a dose of 30 mg/kg body weight administered at the early observation periods (days 7, 14 and 30) induced more marked disorders in the intestine microecology. The imuran-induced dysbacteriosis was characterized by lower quantities of lactobacilli and bifidobacteria in the rat intestine. After the use of batriden the quantities of bifidobacteria, lactobacilli and bacteroides decreased. After the batriden use at the late observation periods (days 60 to 90) the ratio of anaerobes and lactobacilli to aerobes recovered at the background of increased quantities of Candida in all the intestine sections while the ratio of bacteroides recovered in the stomach. When immunity was suppressed by imuran the recovery period was characterized by normalization of the microflora composition in the distal sections and preservation of the contamination symptom in the proximal section which was evident from predominance of aerobes over anaerobes.

  18. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ke, E-mail: dingke@med.uestc.edu.cn; Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072; Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibitedmore » a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.« less

  19. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation.

    PubMed

    Ding, Ke; Liu, Wen-Ying; Zeng, Qiang; Hou, Fang; Xu, Jian-Zhong; Yang, Zhong

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Algebraic and geometric structures of analytic partial differential equations

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2016-11-01

    We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.

  1. Notch Signaling Modulates MUC16 Biosynthesis in an In Vitro Model of Human Corneal and Conjunctival Epithelial Cell Differentiation

    PubMed Central

    Xiong, Linjie; Woodward, Ashley M.

    2011-01-01

    Purpose. Notch proteins are a family of transmembrane receptors that coordinate binary cell fate decisions and differentiation in wet-surfaced epithelia. We sought to determine whether Notch signaling contributes to maintaining mucosal homeostasis by modulating the biosynthesis of cell surface-associated mucins in an in vitro model of human corneal (HCLE) and conjunctival (HCjE) epithelial cell differentiation. Methods. HCLE and HCjE cells were grown at different stages of differentiation, representing nondifferentiated (preconfluent and confluent) and differentiated (stratified) epithelial cultures. Notch signaling was blocked with the γ-secretase inhibitor dibenzazepine (DBZ). The presence of Notch intracellular domains (Notch1 to Notch3) and mucin protein (MUC1, -4, -16) was evaluated by electrophoresis and Western blot analysis. Mucin gene expression was determined by TaqMan real-time polymerase chain reaction. Results. Here we demonstrate that Notch3 is highly expressed in undifferentiated and differentiated HCLE and HCjE cells, and that Notch1 and Notch2 biosynthesis is enhanced by induction of differentiation with serum-containing media. Inhibition of Notch signaling with DBZ impaired MUC16 biosynthesis in a concentration-dependent manner in undifferentiated cells at both preconfluent and confluent stages, but not in postmitotic stratified cells. In contrast to protein levels, the amount of MUC16 transcripts were not significantly reduced after DBZ treatment, suggesting that Notch regulates MUC16 posttranscriptionally. Immunoblots of DBZ-treated epithelial cells grown at different stages of differentiation revealed no differences in the levels of MUC1 and MUC4. Conclusions. These results indicate that MUC16 biosynthesis is posttranscriptionally regulated by Notch signaling at early stages of epithelial cell differentiation, and suggest that Notch activation contributes to maintaining a mucosal phenotype at the ocular surface. PMID:21508102

  2. Liraglutide attenuates the osteoblastic differentiation of MC3T3-E1 cells by modulating AMPK/mTOR signaling

    PubMed Central

    Hu, Xiong-Ke; Yin, Xin-Hua; Zhang, Hong-Qi; Guo, Chao-Feng; Tang, Ming-Xing

    2016-01-01

    Liraglutide, a synthetic analogue of glucagon-like peptide-1, is utilized in the treatment of type 2 diabetes and obesity. Liraglutide has been previously demonstrated to prevent osteoblastic differentiation of human vascular smooth muscle cells, resulting in the slowing of arterial calcification, however, its effect on bone formation remains unclear. The present study investigated the effect of liraglutide on osteoblastic differentiation using Alizarin Red S staining, and examined the molecular mechanisms underlying the regulatory effect by western blot analysis. The present study demonstrated that protein expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were downregulated in MC3T3-E1 cells during osteoblastic differentiation in commercial osteogenic differentiation medium, whereas protein expression levels of transforming growth factor-β (TGF-β) and phosphorylated mammalian target of rapamycin (p-mTOR) increased. Liraglutide was subsequently demonstrated to dose-dependently attenuate the osteoblastic differentiation of MC3T3-E1 cells, to upregulate p-AMPK, and downregulate p-mTOR and TGF-β protein expression levels. Treatment with an AMPK-specific inhibitor, Compound C, eradicated the effect of liraglutide on osteoblastic differentiation, and p-mTOR and TGF-β downregulation. An mTOR activator, MHY1485, also abolished the inhibitory effect of liraglutide on osteoblastic differentiation, and resulted in p-mTOR and TGF-β downregulation, but did not attenuate the liraglutide-induced increase in p-AMPK protein expression levels. The results of the present study demonstrate that liraglutide attenuates osteoblastic differentiation of MC3T3-E1 cells via modulation of AMPK/mTOR signaling. The present study revealed a novel function of liraglutide, which contributes to the understanding of its pharmacological and physiological effects in clinical settings. PMID:27600753

  3. Differential glutamatergic modulation of monoamine release in the limbic lobe by selective anticonvulsant ionotropic and metabotropic glutamate receptor ligands.

    PubMed

    Smolders, I

    2005-01-01

    Several researchers are currently trying to unravel neurobiological relationships between epilepsy and depression. After all, these disorders often develop in the same vulnerable brain regions and the importance of comorbid depression and epilepsy is still underscored. Facilitation of central serotonin (5-HT), dopamine (DA) and noradrenaline (NAD) release seems to be associated with both anticonvulsant and antidepressant effects. We show that selective ionotropic and metabotropic glutamate receptor ligands with anticonvulsant properties differentially modulate NAD, DA and 5-HT in rat limbic lobe structures.

  4. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep

    PubMed Central

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-01-01

    Study Objectives: It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. Methods: We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. Results: We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. Conclusions: These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. Citation: Fraize N, Carponcy J, Joseph MA, Comte JC, Luppi PH, Libourel PA, Salin PA, Malleret G, Parmentier R. Levels of interference in long and short-term memory differentially modulate non-REM and REM sleep. SLEEP 2016;39(12):2173–2188. PMID:27748246

  5. Octopamine and Dopamine differentially modulate the nicotine-induced calcium response in Drosophila Mushroom Body Kenyon Cells.

    PubMed

    Leyton, V; Goles, N I; Fuenzalida-Uribe, N; Campusano, J M

    2014-02-07

    In Drosophila associative olfactory learning, an odor, the conditioned stimulus (CS), is paired to an unconditioned stimulus (US). The CS and US information arrive at the Mushroom Bodies (MB), a Drosophila brain region that processes the information to generate new memories. It has been shown that olfactory information is conveyed through cholinergic inputs that activate nicotinic acetylcholine receptors (nAChRs) in the MB, while the US is coded by biogenic amine (BA) systems that innervate the MB. In this regard, the MB acts as a coincidence detector. A better understanding of the properties of the responses gated by nicotinic and BA receptors is required to get insights on the cellular and molecular mechanisms responsible for memory formation. In recent years, information has become available on the properties of the responses induced by nAChR activation in Kenyon Cells (KCs), the main neuronal MB population. However, very little information exists on the responses induced by aminergic systems in fly MB. Here we have evaluated some of the properties of the calcium responses gated by Dopamine (DA) and Octopamine (Oct) in identified KCs in culture. We report that exposure to BAs induces a fast but rather modest increase in intracellular calcium levels in cultured KCs. The responses to Oct and DA are fully blocked by a VGCC blocker, while they are differentially modulated by cAMP. Moreover, co-application of BAs and nicotine has different effects on intracellular calcium levels: while DA and nicotine effects are additive, Oct and nicotine induce a synergistic increase in calcium levels. These results suggest that a differential modulation of nicotine-induced calcium increase by DA and Oct could contribute to the events leading to learning and memory in flies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Multiple-Bit Differential Detection of OQPSK

    NASA Technical Reports Server (NTRS)

    Simon, Marvin

    2005-01-01

    A multiple-bit differential-detection method has been proposed for the reception of radio signals modulated with offset quadrature phase-shift keying (offset QPSK or OQPSK). The method is also applicable to other spectrally efficient offset quadrature modulations. This method is based partly on the same principles as those of a multiple-symbol differential-detection method for M-ary QPSK, which includes QPSK (that is, non-offset QPSK) as a special case. That method was introduced more than a decade ago by the author of the present method as a means of improving performance relative to a traditional (two-symbol observation) differential-detection scheme. Instead of symbol-by-symbol detection, both that method and the present one are based on a concept of maximum-likelihood sequence estimation (MLSE). As applied to the modulations in question, MLSE involves consideration of (1) all possible binary data sequences that could have been received during an observation time of some number, N, of symbol periods and (2) selection of the sequence that yields the best match to the noise-corrupted signal received during that time. The performance of the prior method was shown to range from that of traditional differential detection for short observation times (small N) to that of ideal coherent detection (with differential encoding) for long observation times (large N).

  7. MiR-133 is Involved in Estrogen Deficiency-Induced Osteoporosis through Modulating Osteogenic Differentiation of Mesenchymal Stem Cells.

    PubMed

    Lv, Hao; Sun, Yujie; Zhang, Yuchen

    2015-05-27

    MiR-133 expression is dysregulated in postmenopausal osteoporosis. However, its role in postmenopausal osteoporosis is still not well understood. In the current study, we explore how estrogen deficiency affects miR-133 expression and how miR-133 is involved in osteogenic differentiation of mesenchymal stem cells (MSCs). qRT-PCR analysis was performed to assess miR-133 expression in MSCs isolated from bone marrow of an ovariectomized (OVX) animal model and postmenopausal osteoporosis patients (PMOP) and their corresponding controls. The binding between miR-133 and predicted target SLC39A1 was verified using dual luciferase assay and Western blot analysis. The effect of miR-133 and SLC39A1 on osteogenic differentiation of MSCs was assessed through measuring alkaline phosphatase (ALP), mineralization nodules, and osteoblast-specific genes Runx2 and Osterix expression. miR-133 expression is significantly enhanced as a result of estrogen deficiency. Its overexpression is negatively correlated to osteogenic differentiation of hMSCs. SLC39A1 showed an inverse expression trend to miR-133 during the differentiation. miR-133 can directly target 3'UTR of SLC39A1 and thereby modulate its expression in hMSCs. The miR-133-SLC39A1 axis might play an important role in osteogenic differentiation of hMSCs. SLC39A1 can promote ALP activity and formation of mineralization nodules. In addition, SLC39A1 expression level is also positively correlated with RUNX2 and Osterix. Estrogen deficiency is associated with miR-133 overexpression. MiR-133 can induce postmenopausal osteoporosis by weakening osteogenic differentiation of hMSCs, at least partly through repressing SLC39A1 expression.

  8. MiR-133 is Involved in Estrogen Deficiency-Induced Osteoporosis through Modulating Osteogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Lv, Hao; Sun, Yujie; Zhang, Yuchen

    2015-01-01

    Background MiR-133 expression is dysregulated in postmenopausal osteoporosis. However, its role in postmenopausal osteoporosis is still not well understood. In the current study, we explore how estrogen deficiency affects miR-133 expression and how miR-133 is involved in osteogenic differentiation of mesenchymal stem cells (MSCs). Material/Methods qRT-PCR analysis was performed to assess miR-133 expression in MSCs isolated from bone marrow of an ovariectomized (OVX) animal model and postmenopausal osteoporosis patients (PMOP) and their corresponding controls. The binding between miR-133 and predicted target SLC39A1 was verified using dual luciferase assay and Western blot analysis. The effect of miR-133 and SLC39A1 on osteogenic differentiation of MSCs was assessed through measuring alkaline phosphatase (ALP), mineralization nodules, and osteoblast-specific genes Runx2 and Osterix expression. Results miR-133 expression is significantly enhanced as a result of estrogen deficiency. Its overexpression is negatively correlated to osteogenic differentiation of hMSCs. SLC39A1 showed an inverse expression trend to miR-133 during the differentiation. miR-133 can directly target 3′UTR of SLC39A1 and thereby modulate its expression in hMSCs. The miR-133-SLC39A1 axis might play an important role in osteogenic differentiation of hMSCs. SLC39A1 can promote ALP activity and formation of mineralization nodules. In addition, SLC39A1 expression level is also positively correlated with RUNX2 and Osterix. Conclusions Estrogen deficiency is associated with miR-133 overexpression. MiR-133 can induce postmenopausal osteoporosis by weakening osteogenic differentiation of hMSCs, at least partly through repressing SLC39A1 expression. PMID:26013661

  9. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells

    PubMed Central

    Bunaciu, Rodica P.; LaTocha, Dorian H.; Varner, Jeffrey D.; Yen, Andrew

    2015-01-01

    6-Formylindolo(3,2-b)carbazole (FICZ) is a photoproduct of tryptophan and an endogenous high affinity ligand for aryl hydrocarbon receptor (AhR). It was previously reported that, in patient-derived HL-60 myeloblastic leukemia cells, retinoic acid (RA)-induced differentiation is driven by a signalsome containing c-Cbl and AhR. FICZ enhances RA-induced differentiation, assessed by expression of the membrane differentiation markers CD38 and CD11b, cell cycle arrest and the functional differentiation marker, inducible oxidative metabolism. Moreover, FICZ augments the expression of a number of the members of the RA-induced signalsome, such as c-Cbl, Vav1, Slp76, PI3K, and the Src family kinases Fgr and Lyn. Pursuing the molecular signaling responsible for RA-induced differentiation, we characterized, using FRET and clustering analysis, associations of key molecules thought to drive differentiation. Here we report that, assayed by FRET, AhR interacts with c-Cbl upon FICZ plus RA-induced differentiation, whereas AhR constitutively interacts with Cbl-b. Moreover, correlation analysis based on the flow cytometric assessment of differentiation markers and western blot detection of signaling factors reveal that Cbl-b, p-p38α and pT390-GSK3β, are not correlated with other known RA-induced signaling components or with a phenotypic outcome. We note that FICZ plus RA elicited signaling responses that were not typical of RA alone, but may represent alternative differentiation-driving pathways. In clusters of signaling molecules seminal to cell differentiation, FICZ co-administered with RA augments type and intensity of the dynamic changes induced by RA. Our data suggest relevance for FICZ in differentiation-induction therapy. The mechanism of action includes modulation of a SFK and MAPK centered signalsome and c-Cbl-AhR association. PMID:26287494

  10. Tall oil fatty acid inclusion in the diet improves performance and increases ileal density of lactobacilli in broiler chickens.

    PubMed

    Vienola, K; Jurgens, G; Vuorenmaa, J; Apajalahti, J

    2018-04-20

    1. Studies were conducted with tall oil fatty acids (TOFA) to determine their effect on broiler chicken performance and ileal microbiota. TOFA, a product originating from coniferous trees and recovered by fractional distillation of side-streams from pulp production, mainly comprises free long-chain fatty acids (~90%) and resin acids (~8%). Conjugated linolenic acids and pinolenic acid are characteristic fatty acid components of TOFA. 2. TOFA products at 750 mg/kg feed were tested in two 35-day broiler chicken trials, each using a wheat soya-based diet and with 12 replicate pens per treatment. In both trials, TOFA improved body weight gain at all time points (P < 0.001) and feed conversion efficiency during the first 21 days (P < 0.01). Two different dry TOFA formulations (silica carrier and palm oil coating) were tested and showed performance effects similar to liquid TOFA. 3. Ileal digesta of the broiler chickens was analysed for total eubacteria, Lactobacillus spp., Enterococcus spp., Escherichia coli and Clostridium perfringens on days 14 and 35. TOFA significantly increased total eubacteria and lactobacilli density on day 14 (P < 0.05). There was a significant positive correlation between these bacterial groups and broiler body weight on day 14 (P < 0.01). 4. A numerical reduction in C. perfringens was observed. In vitro growth inhibition studies showed that C. perfringens was strongly inhibited by 10 mg/l TOFA (P < 0.001), while common lactobacilli were resistant to >250 mg/l. The in vitro results were thus in line with in vivo observations. 5. The mechanisms behind the bacterial shifts and their role in performance improvement are unknown. Further purification of TOFA components is needed to identify the effective agents.

  11. Discovery of a Positive Allosteric Modulator of the Thyrotropin Receptor: Potentiation of Thyrotropin-Mediated Preosteoblast Differentiation In Vitro.

    PubMed

    Neumann, Susanne; Eliseeva, Elena; Boutin, Alisa; Barnaeva, Elena; Ferrer, Marc; Southall, Noel; Kim, David; Hu, Xin; Morgan, Sarah J; Marugan, Juan J; Gershengorn, Marvin C

    2018-01-01

    Recently, we showed that TSH-enhanced differentiation of a human preosteoblast-like cell model involved a β -arrestin 1 ( β -Arr 1)-mediated pathway. To study this pathway in more detail, we sought to discover a small molecule ligand that was functionally selective toward human TSH receptor (TSHR) activation of β -Arr 1. High-throughput screening using a cell line stably expressing mutated TSHRs and mutated β -Arr 1 (DiscoverX1 cells) led to the discovery of agonists that stimulated translocation of β -Arr 1 to the TSHR, but did not activate G s -mediated signaling pathways, i.e., cAMP production. D3- β Arr (NCGC00379308) was selected. In DiscoverX1 cells, D3- β Arr stimulated β -Arr 1 translocation with a 5.1-fold greater efficacy than TSH and therefore potentiated the effect of TSH in stimulating β -Arr 1 translocation. In human U2OS-TSHR cells expressing wild-type TSHRs, which is a model of human preosteoblast-like cells, TSH upregulated the osteoblast-specific genes osteopontin (OPN) and alkaline phosphatase (ALPL). D3- β Arr alone had only a weak effect to upregulate these bone markers, but D3- β Arr potentiated TSH-induced upregulation of ALPL and OPN mRNA levels 1.6-fold and 5.5-fold, respectively, at the maximum dose of ligands. Furthermore, the positive allosteric modulator effect of D3- β Arr resulted in an increase of TSH-induced secretion of OPN protein. In summary, we have discovered the first small molecule positive allosteric modulator of TSHR. As D3- β Arr potentiates the effect of TSH to enhance differentiation of a human preosteoblast in an in vitro model, it will allow a novel experimental approach for probing the role of TSH-induced β -Arr 1 signaling in osteoblast differentiation. U.S. Government work not protected by U.S. copyright.

  12. Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development

    PubMed Central

    Becker, Jason R.; Chatterjee, Sneha; Robinson, Tamara Y.; Bennett, Jeffrey S.; Panáková, Daniela; Galindo, Cristi L.; Zhong, Lin; Shin, Jordan T.; Coy, Shannon M.; Kelly, Amy E.; Roden, Dan M.; Lim, Chee Chew; MacRae, Calum A.

    2014-01-01

    Organ development is a highly regulated process involving the coordinated proliferation and differentiation of diverse cellular populations. The pathways regulating cell proliferation and their effects on organ growth are complex and for many organs incompletely understood. In all vertebrate species, the cardiac natriuretic peptides (ANP and BNP) are produced by cardiomyocytes in the developing heart. However, their role during cardiogenesis is not defined. Using the embryonic zebrafish and neonatal mammalian cardiomyocytes we explored the natriuretic peptide signaling network during myocardial development. We observed that the cardiac natriuretic peptides ANP and BNP and the guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2 are functionally redundant during early cardiovascular development. In addition, we demonstrate that low levels of the natriuretic peptides preferentially activate Npr3, a receptor with Gi activator sequences, and increase cardiomyocyte proliferation through inhibition of adenylate cyclase. Conversely, high concentrations of natriuretic peptides reduce cardiomyocyte proliferation through activation of the particulate guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2, and activation of protein kinase G. These data link the cardiac natriuretic peptides in a complex hierarchy modulating cardiomyocyte numbers during development through opposing effects on cardiomyocyte proliferation mediated through distinct cyclic nucleotide signaling pathways. PMID:24353062

  13. Differential modulation of auditory responses to attended and unattended speech in different listening conditions

    PubMed Central

    Kong, Ying-Yee; Mullangi, Ala; Ding, Nai

    2014-01-01

    This study investigates how top-down attention modulates neural tracking of the speech envelope in different listening conditions. In the quiet conditions, a single speech stream was presented and the subjects paid attention to the speech stream (active listening) or watched a silent movie instead (passive listening). In the competing speaker (CS) conditions, two speakers of opposite genders were presented diotically. Ongoing electroencephalographic (EEG) responses were measured in each condition and cross-correlated with the speech envelope of each speaker at different time lags. In quiet, active and passive listening resulted in similar neural responses to the speech envelope. In the CS conditions, however, the shape of the cross-correlation function was remarkably different between the attended and unattended speech. The cross-correlation with the attended speech showed stronger N1 and P2 responses but a weaker P1 response compared with the cross-correlation with the unattended speech. Furthermore, the N1 response to the attended speech in the CS condition was enhanced and delayed compared with the active listening condition in quiet, while the P2 response to the unattended speaker in the CS condition was attenuated compared with the passive listening in quiet. Taken together, these results demonstrate that top-down attention differentially modulates envelope-tracking neural activity at different time lags and suggest that top-down attention can both enhance the neural responses to the attended sound stream and suppress the responses to the unattended sound stream. PMID:25124153

  14. Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity

    PubMed Central

    Plikus, Maksim V.; Zeichner-David, Maggie; Mayer, Julie-Ann; Reyna, Julia; Bringas, Pablo; Thewissen, J. G. M.; Snead, Malcolm L.; Chai, Yang; Chuong, Cheng-Ming

    2015-01-01

    SUMMARY During development and evolution, the morphology of ectodermal organs can be modulated so that an organism can adapt to different environments. We have proposed that morphoregulation can be achieved by simply tilting the balance of molecular activity. We test the principles by analyzing the effects of partial downregulation of Bmp signaling in oral and dental epithelia of the keratin 14-Noggin transgenic mouse. We observed a wide spectrum of tooth phenotypes. The dental formula changed from 1.0.0.3/1.0.0.3 to 1.0.0.2(1)/1.0.0.0. All mandibular and M3 maxillary molars were selectively lost because of the developmental block at the early bud stage. First and second maxillary molars were reduced in size, exhibited altered crown patterns, and failed to form multiple roots. In these mice, incisors were not transformed into molars. Histogenesis and differentiation of ameloblasts and odontoblasts in molars and incisors were abnormal. Lack of enamel caused misocclusion of incisors, leading to deformation and enlargement in size. Therefore, subtle differences in the level, distribution, and timing of signaling molecules can have major morphoregulatory consequences. Modulation of Bmp signaling exemplifies morphoregulation hypothesis: simple alteration of key signaling pathways can be used to transform a prototypical conical-shaped tooth into one with complex morphology. The involvement of related pathways and the implication of morphoregulation in tooth evolution are discussed. PMID:16174037

  15. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components.

    PubMed

    Terraf, M C Leccese; Juárez Tomás, M S; Nader-Macías, M E F; Silva, C

    2012-12-01

    To assess the ability of vaginal lactobacilli to form biofilm under different culture conditions and to determine the relationship between their growth and the capability of biofilm formation by selected strains. Fifteen Lactobacillus strains from human vagina were tested for biofilm formation by crystal violet staining. Only Lactobacillus rhamnosus Centro de Referencia para Lactobacilos Culture Collection (CRL) 1332, Lact. reuteri CRL 1324 and Lact. delbrueckii CRL 1510 were able to grow and form biofilm in culture media without Tween 80. However, Lact. gasseri CRL 1263 (a non-biofilm-forming strain) did not grow in these media. Scanning electron microscopy showed that Lact. rhamnosus CRL 1332 and Lact. reuteri CRL 1324 formed a highly structured biofilm, but only Lact. reuteri CRL 1324 showed a high amount of extracellular material in medium without Tween. Biofilm formation was significantly influenced by the strain, culture medium, inoculum concentration, microbial growth and chemical nature of the support used for the assay. The results allow the selection of biofilm-forming vaginal Lactobacillus strains and the conditions and factors that affect this phenomenon. © 2012 The Society for Applied Microbiology.

  16. Dietary supplementation with sorbitol results in selective enrichment of lactobacilli in rat intestine.

    PubMed

    Sarmiento-Rubiano, Luz Adriana; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María Jesús

    2007-01-01

    A potential prebiotic action has been ascribed to sorbitol, but in vivo evidence of this remains scarce. In the present work, the effect of sorbitol was compared to that of fructo-oligosaccharides (FOS) in a rat model. Microbiota changes, particularly in lactobacilli, were analyzed on fecal, colonic and cecal samples. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons using universal primers showed that FOS and sorbitol diets exerted a strong influence upon gut microbiota patterns. When Lactobacillus group-specific primers were used, DGGE profiles revealed five DNA bands that belonged to Lactobacillus johnsonii, Lactobacillus sp. AD102, Lactobacillus intestinalis, Lactobacillus murinus and Lactobacillus reuteri. Although these species are present in all dietary groups, quantification by real-time PCR showed that sorbitol and FOS intake increased L. reuteri cell numbers, and sorbitol also contributed to maintaining the levels of Lactobacillus sp. AD102. Analysis of organic acid concentrations showed that sorbitol intake significantly increased colonic and cecal butyrate levels. Hence, sorbitol, which is widely used as a low-calorie sweetener, has the capacity, in our animal model, to modify gut microbiota activity in such a way as to possibly contribute to healthy colonic mucosa.

  17. Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro.

    PubMed

    Söderling, Eva M; Marttinen, Aino M; Haukioja, Anna L

    2011-02-01

    In clinical studies, probiotic bacteria have decreased the counts of salivary mutans streptococci (MS). We compared the effects of probiotic Lactobacillus strains on the biofilm formation of Streptococcus mutans. The bacterial strains used included four S. mutans strains (reference strains NCTC 10449 and Ingbritt and clinical isolates 2366 and 195) and probiotic strains Lactobacillus rhamnosus GG, L. plantarum 299v, and L. reuteri strains PTA 5289 and SD2112. The ability of MS to adhere and grow on a glass surface, reflecting biofilm formation, was studied in the presence of the lactobacilli (LB). The effect of LB culture supernatants on the viability of the MS was studied as well. All of the LB inhibited the biofilm formation of the clinical isolates of MS (P < 0.001). The biofilm formation of the reference strains of MS was also inhibited by the LB, but L. plantarum and L. reuteri PTA 5289 showed a weaker inhibition when compared to L. reuteri SD2112 and L. rhamnosus GG. Viable S. mutans cells could be detected in the biofilms and culture media only when the experiments were performed with the L. reuteri strains. The L. reuteri strains were less efficient in killing the MS also in the tests performed with the culture supernatants. The pHs of the supernatants of L. reuteri were higher compared to those of L. rhamnosus GG and L. plantarum; P < 0.001. In conclusion, our results demonstrated that four commonly used probiotics interfered with S. mutans biofilm formation in vitro, and that the antimicrobial activity against S. mutans was pH-dependent.

  18. Antioxidative activity of lactobacilli measured by oxygen radical absorbance capacity.

    PubMed

    Saide, J A O; Gilliland, S E

    2005-04-01

    The reducing ability and antioxidative activity of some species of Lactobacillus were compared under in vitro conditions. Cultures of Lactobacillus delbrueckii ssp. lactis, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Lactobacillus casei were grown at 37 degrees C in de Man, Rogosa, Sharpe (MRS) broth supplemented with 0.5% 2,3,5 triphenyl tetrazolium chloride (TTC) to evaluate reducing activity. Reduced TTC was extracted from the cultures with acetone, and the intensity of the red color measured colorimetrically at 485 nm was an indication of reducing activity. The lactobacilli varied significantly in relative ability to reduce TTC when grown in MRS broth for 15 h. The relative amounts of growth as indicated by pH values at 18 h appeared to influence the amount of reduction. Antioxidative activity was evaluated by the ability of the whole cells or the cell-free extracts from cultures to protect a protein from being attacked by free radicals. These analyses were performed using the oxygen radical absorbance capacity method. All cultures tested exhibited some degree of antioxidative activity. Among the treatments, the cell-free extracts from cells grown in MRS broth exhibited significantly higher values than did whole cells. There was no apparent relationship between the reducing and antioxidative activities of the cultures evaluated. The results from this study show that these cultures can provide a source of dietary antioxidants. Furthermore, selection of cultures that produce antioxidants as starters could provide yet another health or nutritional benefit from cultured or culture-containing dairy products.

  19. Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE

    NASA Astrophysics Data System (ADS)

    Ansmann, Gerrit

    2018-04-01

    We present a family of Python modules for the numerical integration of ordinary, delay, or stochastic differential equations. The key features are that the user enters the derivative symbolically and it is just-in-time-compiled, allowing the user to efficiently integrate differential equations from a higher-level interpreted language. The presented modules are particularly suited for large systems of differential equations such as those used to describe dynamics on complex networks. Through the selected method of input, the presented modules also allow almost complete automatization of the process of estimating regular as well as transversal Lyapunov exponents for ordinary and delay differential equations. We conceptually discuss the modules' design, analyze their performance, and demonstrate their capabilities by application to timely problems.

  20. DCGL v2.0: an R package for unveiling differential regulation from differential co-expression.

    PubMed

    Yang, Jing; Yu, Hui; Liu, Bao-Hong; Zhao, Zhongming; Liu, Lei; Ma, Liang-Xiao; Li, Yi-Xue; Li, Yuan-Yuan

    2013-01-01

    Differential co-expression analysis (DCEA) has emerged in recent years as a novel, systematic investigation into gene expression data. While most DCEA studies or tools focus on the co-expression relationships among genes, some are developing a potentially more promising research domain, differential regulation analysis (DRA). In our previously proposed R package DCGL v1.0, we provided functions to facilitate basic differential co-expression analyses; however, the output from DCGL v1.0 could not be translated into differential regulation mechanisms in a straightforward manner. To advance from DCEA to DRA, we upgraded the DCGL package from v1.0 to v2.0. A new module named "Differential Regulation Analysis" (DRA) was designed, which consists of three major functions: DRsort, DRplot, and DRrank. DRsort selects differentially regulated genes (DRGs) and differentially regulated links (DRLs) according to the transcription factor (TF)-to-target information. DRrank prioritizes the TFs in terms of their potential relevance to the phenotype of interest. DRplot graphically visualizes differentially co-expressed links (DCLs) and/or TF-to-target links in a network context. In addition to these new modules, we streamlined the codes from v1.0. The evaluation results proved that our differential regulation analysis is able to capture the regulators relevant to the biological subject. With ample functions to facilitate differential regulation analysis, DCGL v2.0 was upgraded from a DCEA tool to a DRA tool, which may unveil the underlying differential regulation from the observed differential co-expression. DCGL v2.0 can be applied to a wide range of gene expression data in order to systematically identify novel regulators that have not yet been documented as critical. DCGL v2.0 package is available at http://cran.r-project.org/web/packages/DCGL/index.html or at our project home page http://lifecenter.sgst.cn/main/en/dcgl.jsp.

  1. Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA.

    PubMed

    Costa, Delfina; Gigoni, Arianna; Würth, Roberto; Cancedda, Ranieri; Florio, Tullio; Pagano, Aldo

    2014-01-01

    Metformin is a widely used oral hypoglycemizing agent recently proposed as potential anti-cancer drug. In this study we report the antiproliferative effect of metformin treatment in a high risk neuroblastoma cell model, focusing on possible effects associated to different levels of differentiation and/or tumor initiating potential. Antiproliferative and cytotoxic effects of metformin were tested in human SKNBE2 and SH-SY5Y neuroblastoma cell lines and in SKNBE2 cells in which differentiation is induced by retinoic acid treatment or stable overexpression of NDM29 non-coding RNA, both conditions characterized by a neuron-like differentiated phenotype. We found that metformin significantly inhibits the proliferation of NB cells, an effect that correlates with the inhibition of Akt, while AMPK activity resulted unchanged. Notably, metformin effects were modulated in a different ways by differentiating stimuli, being abolished after retinoic acid treatment but potentiated by overexpression of NDM29. These data suggest the efficacy of metformin as neuroblastoma anticancer agent, and support the requirement of further studies on the possible role of the differentiation status on the antiproliferative effects of this drug.

  2. Bioenergetics of the growth of the lactobacillus culture on various nutrient media

    NASA Astrophysics Data System (ADS)

    Ur'yash, V. F.; Gorlova, I. S.; Novoselova, N. V.; Kon'kova, N. K.

    2010-07-01

    The energy (enthalpy) of the multiplication of lactobacilli on various nutrient media was measured on a DAK-1-1 differential microcalorimeter. Cultivation of lactobacilli on the nutrient media studied was accompanied by a release of energy. The time dependences of heat evolution were similar in shape to the curves of the growth of the microorganism population. The conclusion was drawn that the quantity of the evolved energy depended on the type of the nutrient medium.

  3. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation.

    PubMed

    Maldonado, Maricela; Luu, Rebeccah J; Ramos, Michael E P; Nam, Jin

    2016-09-01

    Robust control of human induced pluripotent stem cell (hIPSC) differentiation is essential to realize its patient-tailored therapeutic potential. Here, we demonstrate a novel application of Y-27632, a small molecule Rho-associated protein kinase (ROCK) inhibitor, to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin, a cell-cell junctional protein, proportional to the increased exposure to Y-27632. Interestingly, gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36h. Simultaneously, epithelial-to-mesenchymal (EMT) transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast, an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively, these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632. Copyright © 2016 Helmholtz Zentrum München. Published by Elsevier B.V. All rights reserved.

  4. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling

    PubMed Central

    Baer, Alexandra S.; Syed, Yasir A.; Kang, Sung Ung; Mitteregger, Dieter; Vig, Raluca; ffrench-Constant, Charles; Franklin, Robin J. M.; Altmann, Friedrich; Lubec, Gert

    2009-01-01

    Failure of oligodendrocyte precursor cell (OPC) differentiation contributes significantly to failed myelin sheath regeneration (remyelination) in chronic demyelinating diseases. Although the reasons for this failure are not completely understood, several lines of evidence point to factors present following demyelination that specifically inhibit differentiation of cells capable of generating remyelinating oligodendrocytes. We have previously demonstrated that myelin debris generated by demyelination inhibits remyelination by inhibiting OPC differentiation and that the inhibitory effects are associated with myelin proteins. In the present study, we narrow down the spectrum of potential protein candidates by proteomic analysis of inhibitory protein fractions prepared by CM and HighQ column chromatography followed by BN/SDS/SDS–PAGE gel separation using Nano-HPLC-ESI-Q-TOF mass spectrometry. We show that the inhibitory effects on OPC differentiation mediated by myelin are regulated by Fyn-RhoA-ROCK signalling as well as by modulation of protein kinase C (PKC) signalling. We demonstrate that pharmacological or siRNA-mediated inhibition of RhoA-ROCK-II and/or PKC signalling can induce OPC differentiation in the presence of myelin. Our results, which provide a mechanistic link between myelin, a mediator of OPC differentiation inhibition associated with demyelinating pathologies and specific signalling pathways amenable to pharmacological manipulation, are therefore of significant potential value for future strategies aimed at enhancing CNS remyelination. PMID:19208690

  5. Kindlin-2 Modulates the Survival, Differentiation, and Migration of Induced Pluripotent Cell-Derived Mesenchymal Stromal Cells

    PubMed Central

    Eggenschwiler, Reto; Wichmann, Christian; Buhmann, Raymund; Cantz, Tobias

    2017-01-01

    Kindlin-2 is a multidomain intracellular protein that can be recruited to β-integrin domains to activate signaling, initiate transcriptional programs, and bind to E-cadherin. To explore its involvement in cell fate decisions in mesenchymal cells, we studied the effects of Kindlin-2 modification (overexpression/knockdown) in induced pluripotent cell-derived mesenchymal stromal cells (iPSC-MSCs). Kindlin-2 overexpression resulted in increased proliferation and reduced apoptosis of iPSC-MSCs, as well as inhibition of their differentiation towards osteocytes, adipocytes, and chondrocytes. In contrast, siRNA-mediated Kindlin-2 knockdown induced increased apoptosis and increased differentiation response in iPSC-MSCs. The ability of iPSC-MSCs to adhere to VCAM-1/SDF-1α under shear stress and to migrate in a wound scratch assay was significantly increased after Kindlin-2 overexpression. In contrast, inhibition of mixed lymphocyte reaction (MLR) was generally independent of Kindlin-2 modulation in iPSC-MSCs, except for decreased production of interleukin-2 (IL-2) after Kindlin-2 overexpression in iPS-MSCs. Thus, Kindlin-2 upregulates survival, proliferation, stemness, and migration potential in iPSC-MSCs and may therefore be beneficial in optimizing performance of iPSC-MSC in therapies. PMID:28163724

  6. Identification of Proteins Modulated in the Date Palm Stem Infested with Red Palm Weevil (Rhynchophorus ferrugineus Oliv.) Using Two Dimensional Differential Gel Electrophoresis and Mass Spectrometry

    PubMed Central

    Rasool, Khawaja Ghulam; Khan, Muhammad Altaf; Aldawood, Abdulrahman Saad; Tufail, Muhammad; Mukhtar, Muhammad; Takeda, Makio

    2015-01-01

    A state of the art proteomic methodology using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI TOF) has been employed to characterize peptides modulated in the date palm stem subsequent to infestation with red palm weevil (RPW). Our analyses revealed 32 differentially expressed peptides associated with RPW infestation in date palm stem. To identify RPW infestation associated peptides (I), artificially wounded plants (W) were used as additional control beside uninfested plants, a conventional control (C). A constant unique pattern of differential expression in infested (I), wounded (W) stem samples compared to control (C) was observed. The upregulated proteins showed relative fold intensity in order of I > W and downregulated spots trend as W > I, a quite interesting pattern. This study also reveals that artificially wounding of date palm stem affects almost the same proteins as infestation; however, relative intensity is quite lower than in infested samples both in up and downregulated spots. All 32 differentially expressed spots were subjected to MALDI-TOF analysis for their identification and we were able to match 21 proteins in the already existing databases. Relatively significant modulated expression pattern of a number of peptides in infested plants predicts the possibility of developing a quick and reliable molecular methodology for detecting plants infested with date palm. PMID:26287180

  7. Identification of Proteins Modulated in the Date Palm Stem Infested with Red Palm Weevil (Rhynchophorus ferrugineus Oliv.) Using Two Dimensional Differential Gel Electrophoresis and Mass Spectrometry.

    PubMed

    Rasool, Khawaja Ghulam; Khan, Muhammad Altaf; Aldawood, Abdulrahman Saad; Tufail, Muhammad; Mukhtar, Muhammad; Takeda, Makio

    2015-08-17

    A state of the art proteomic methodology using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI TOF) has been employed to characterize peptides modulated in the date palm stem subsequent to infestation with red palm weevil (RPW). Our analyses revealed 32 differentially expressed peptides associated with RPW infestation in date palm stem. To identify RPW infestation associated peptides (I), artificially wounded plants (W) were used as additional control beside uninfested plants, a conventional control (C). A constant unique pattern of differential expression in infested (I), wounded (W) stem samples compared to control (C) was observed. The upregulated proteins showed relative fold intensity in order of I > W and downregulated spots trend as W > I, a quite interesting pattern. This study also reveals that artificially wounding of date palm stem affects almost the same proteins as infestation; however, relative intensity is quite lower than in infested samples both in up and downregulated spots. All 32 differentially expressed spots were subjected to MALDI-TOF analysis for their identification and we were able to match 21 proteins in the already existing databases. Relatively significant modulated expression pattern of a number of peptides in infested plants predicts the possibility of developing a quick and reliable molecular methodology for detecting plants infested with date palm.

  8. Downregulation of monocytic differentiation via modulation of CD147 by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.

    PubMed

    Sasidhar, Manda V; Chevooru, Sai Krishnaveni; Eickelberg, Oliver; Hartung, Hans-Peter; Neuhaus, Oliver

    2017-01-01

    CD147 is an activation induced glycoprotein that promotes the secretion and activation of matrix metalloproteinases (MMPs) and is upregulated during the differentiation of macrophages. Interestingly, some of the molecular functions of CD147 rely on its glycosylation status: the highly glycosylated forms of CD147 induce MMPs whereas the lowly glycosylated forms inhibit MMP activation. Statins are hydroxy-methylglutaryl coenzyme A reductase inhibitors that block the synthesis of mevalonate, thereby inhibiting all mevalonate-dependent pathways, including isoprenylation, N-glycosylation and cholesterol synthesis. In this study, we investigated the role of statins in the inhibition of macrophage differentiation and the associated process of MMP secretion through modulation of CD147. We observed that differentiation of the human monocytic cell line THP-1 to a macrophage phenotype led to upregulation of CD147 and CD14 and that this effect was inhibited by statins. At the molecular level, statins altered CD147 expression, structure and function by inhibiting isoprenylation and N-glycosylation. In addition, statins induced a shift of CD147 from its highly glycosylated form to its lowly glycosylated form. This shift in N-glycosylation status was accompanied by a decrease in the production and functional activity of MMP-2 and MMP-9. In conclusion, these findings describe a novel molecular mechanism of immune regulation by statins, making them interesting candidates for autoimmune disease therapy.

  9. NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis.

    PubMed

    Anastasia, Luigi; Papini, Nadia; Colazzo, Francesca; Palazzolo, Giacomo; Tringali, Cristina; Dileo, Loredana; Piccoli, Marco; Conforti, Erika; Sitzia, Clementina; Monti, Eugenio; Sampaolesi, Maurilio; Tettamanti, Guido; Venerando, Bruno

    2008-12-26

    Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.

  10. Modulation of Rhamm (CD168) for selective adipose tissue development

    DOEpatents

    Turley, Eva A; Bissell, Mina J

    2014-05-06

    Herein is described the methods and compositions for modulation of Rhamm, also known as CD 186, and its effects on wound repair, muscle differentiation, bone density and adipogeneisis through its ability to regulate mesenchymal stem cell differentiation. Compositions and methods are provided for blocking Rhamm function for selectively increasing subcutaneous, but not, visceral fat. Compositions and methods for modulating Rhamm in wound repair are also described.

  11. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    PubMed

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  12. Cohomology and deformation of 𝔞𝔣𝔣(1|1) acting on differential operators

    NASA Astrophysics Data System (ADS)

    Basdouri, Khaled; Omri, Salem

    We consider the 𝔞𝔣𝔣(1|1)-module structure on the spaces of differential operators acting on the spaces of weighted densities. We compute the second differential cohomology of the Lie superalgebra 𝔞𝔣𝔣(1|1) with coefficients in differential operators acting on the spaces of weighted densities. We classify formal deformations of the 𝔞𝔣𝔣(1|1)-module structure on the superspaces of symbols of differential operators. We prove that any formal deformation of a given infinitesimal deformation of this structure is equivalent to its infinitesimal part. This work is the simplest superization of a result by Basdouri [Deformation of 𝔞𝔣𝔣(1)-modules of pseudo-differential operators and symbols, J. Pseudo-differ. Oper. Appl. 7(2) (2016) 157-179] and application of work by Basdouri et al. [First cohomology of 𝔞𝔣𝔣(1) and 𝔞𝔣𝔣(1|1) acting on linear differential operators, Int. J. Geom. Methods Mod. Phys. 13(1) (2016)].

  13. Biofilm formation and antimicrobial sensitivity of lactobacilli contaminants from sugarcane-based fuel ethanol fermentation.

    PubMed

    Dellias, Marina de Toledo Ferraz; Borges, Clóvis Daniel; Lopes, Mário Lúcio; da Cruz, Sandra Helena; de Amorim, Henrique Vianna; Tsai, Siu Mui

    2018-02-24

    Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.

  14. Medium-Frequency Data Link for Differential NAVSTAR/GPS Broadcasts

    DOT National Transportation Integrated Search

    1986-06-01

    Differential GPS must communicate differential corrections to civilian users of the Global Positioning System. Modulation of existing marine radiobeacons can provide the needed communication link for DGPS, provided the operation of existing radiobeac...

  15. Dietary Micronutrients Promote Neuronal Differentiation by Modulating the Mitochondrial-Nuclear Dialogue.

    PubMed

    Xie, Kui; Sheppard, Allan

    2018-07-01

    The metabolic requirements of differentiated neurons are significantly different from that of neuronal precursor and neural stem cells. While a re-programming of metabolism is tightly coupled to the neuronal differentiation process, whether shifts in mitochondrial mass, glycolysis, and oxidative phosphorylation are required (or merely consequential) in differentiation is not yet certain. In addition to providing more energy, enhanced metabolism facilitates differentiation by supporting increased neurotransmitter signaling and underpinning epigenetic regulation of gene expression. Both epidemiological and animal studies demonstrate that micronutrients (MNs) significantly influence many aspects of neonatal brain development, particularly neural migration and survival, neurite outgrowth, and process maturation. Here we review recent insights into the importance of metabolic reprogramming in neuronal differentiation, before considering evidence that micronutrient signaling may be key to regulating these processes. © 2018 WILEY Periodicals, Inc.

  16. Mg-Al and Zn-Al Layered Double Hydroxides Promote Dynamic Expression of Marker Genes in Osteogenic Differentiation by Modulating Mitogen-Activated Protein Kinases.

    PubMed

    Kang, Ha Ram; da Costa Fernandes, Célio Junior; da Silva, Rodrigo Augusto; Constantino, Vera Regina Leopoldo; Koh, Ivan Hong Jun; Zambuzzi, Willian F

    2018-02-01

    The effect of LDH samples comprised of chloride anions intercalated between positive layers of magnesium/aluminum (Mg-Al LDH) or zinc/aluminum (Zn-Al LDH) chemical composition on pre-osteoblast performance is investigated. Non-cytotoxic concentrations of both LDHs modulated pre-osteoblast adhesion by triggering cytoskeleton rearrangement dependent on recruiting of Cofilin, which is modulated by the inhibition of the Protein Phosphatase 2A (PP2A), culminating in osteoblast differentiation with a significant increase of osteogenic marker genes. The alkaline phosphatase (ALP) and bone sialoprotein (BSP) are significantly up-modulated by both LDHs; however, Mg-Al LDH nanomaterial promoted even more significance than both experimental controls, while the phosphorylations of mitogen-activated protein kinase (MAPKs)- extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) significantly increased. MAPK signaling is necessary to activate Runt-related transcription factor 2 (RUNX2) gene. Concomitantly, it is also investigated whether challenged osteoblasts are able to modulate osteoclastogenesis by investigating both osteoprotegerin (OPG) and Receptor activator of nuclear factor kappa-ligand (RANKL) in this model; a dynamic reprogramming of both these genes is found, suggesting LDHs in modulating osteoclastogenesis. These results suggest that LDHs interfere in bone remodeling, and they can be considered as nanomaterials in graft-based bone healing or drug-delivery materials for bone disorders. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Outcomes of a service teaching module on ODEs for physics students

    NASA Astrophysics Data System (ADS)

    Hyland, Diarmaid; van Kampen, Paul; Nolan, Brien C.

    2018-07-01

    This paper reports on the first part of a multiphase research project that seeks to identify and address the difficulties encountered by physics students when studying differential equations. Differential equations are used extensively by undergraduate physics students, particularly in the advanced modules of their degree. It is, therefore, necessary that students develop conceptual understanding of differential equations in addition to procedural skills. We have investigated the difficulties encountered by third-year students at Dublin City University in an introductory differential equations module. We developed a survey to identify these difficulties and administered it to students who had recently completed the module. We found that students' mathematical ability in relation to procedural competence is an issue in their study of differential equations, but not as severe an issue as their conceptual understanding. Mathematical competence alone is insufficient if we expect our students to be able to recognize the need for differential equations in a physical context and to be able to set up, solve and interpret the solutions of such equations. We discuss the implications of these results for the next stages of the research project.

  18. Tannic Acid-Dependent Modulation of Selected Lactobacillus plantarum Traits Linked to Gastrointestinal Survival

    PubMed Central

    Reverón, Inés; Rodríguez, Héctor; Campos, Gema; Curiel, José Antonio; Ascaso, Carmen; Carrascosa, Alfonso V.; Prieto, Alicia; de las Rivas, Blanca; Muñoz, Rosario; de Felipe, Félix López

    2013-01-01

    Background Owing to its antimicrobial properties dietary tannins may alter the functional efficacy of probiotic lactobacilli in the gastrointestinal (GI)-tract influencing their growth, viability and molecular adaptation to the intestinal environment. Methods and Findings The effects of tannic acid on Lactobacillus plantarum WCFS1 were studied by in vitro growth monitoring and visualizing the morphological alteration on the cell wall using transmission electron microscopy. Growth upon tannic acid was characterized by dose-dependent reductions of initial viable counts and extended lag phases. Lag phase-cells growing upon 0.5 mM tannic acid were abnormally shaped and experienced disturbance on the cell wall such as roughness, occasional leakage and release of cell debris, but resumed growth later at tannic acid concentrations high as 2.5 mM. To gain insight on how the response to tannic acid influenced the molecular adaptation of L. plantarum to the GI-tract conditions, gene expression of selected biomarkers for GI-survival was assessed by RT-qPCR on cDNA templates synthetized from mRNA samples obtained from cells treated with 0.5 or 2 mM tannic acid. Tannic acid-dependent gene induction was confirmed for selected genes highly expressed in the gut or with confirmed roles in GI-survival. No differential expression was observed for the pbp2A gene, a biomarker negatively related with GI-survival. However PBP2A was not labeled by Bocillin FL, a fluorescent dye-labeled penicillin V derivative, in the presence of tannic acid which suggests for enhanced GI-survival reportedly associated with the inactivation of this function. Conclusions Probiotic L. plantarum WCFS1 is able to overcome the toxic effects of tannic acid. This dietary constituent modulates molecular traits linked to the adaptation to intestinal environment in ways previously shown to enhance GI-survival. PMID:23776675

  19. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation

    PubMed Central

    Kajahn, Jennifer; Franz, Sandra; Rueckert, Erik; Forstreuter, Inka; Hintze, Vera; Moeller, Stephanie; Simon, Jan C.

    2012-01-01

    Integration of biomaterials into tissues is often disturbed by unopposed activation of macrophages. Immediately after implantation, monocytes are attracted from peripheral blood to the implantation site where they differentiate into macrophages. Inflammatory signals from the sterile tissue injury around the implanted biomaterial mediate the differentiation of monocytes into inflammatory M1 macrophages (M1) via autocrine and paracrine mechanisms. Suppression of sustained M1 differentiation is thought to be crucial to improve implant healing. Here, we explore whether artificial extracellular matrix (aECM) composed of collagen I and hyaluronan (HA) or sulfated HA-derivatives modulate this monocyte differentiation. We mimicked conditions of sterile tissue injury in vitro using a specific cytokine cocktail containing MCP-1, IL-6 and IFNγ, which induced in monocytes a phenotype similar to M1 macrophages (high expression of CD71, HLA-DR but no CD163 and release of high amounts of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12 and TNFα). In the presence of aECMs containing high sulfated HA this monocyte to M1 differentiation was disturbed. Specifically, pro-inflammatory functions were impaired as shown by reduced secretion of IL-1β, IL-8, IL-12 and TNFα. Instead, release of the immunregulatory cytokine IL-10 and expression of CD163, both markers specific for anti-inflammatory M2 macrophages (M2), were induced. We conclude that aECMs composed of collagen I and high sulfated HA possess immunomodulating capacities and skew monocyte to macrophage differentiation induced by pro-inflammatory signals of sterile injury toward M2 polarization suggesting them as an effective coating for biomaterials to improve their integration. PMID:23507888

  20. Signal transducer and activator of transcription 5B (STAT5B) modulates adipocyte differentiation via MOF.

    PubMed

    Gao, Peng; Zhang, Yuchao; Liu, Yuantao; Chen, Jicui; Zong, Chen; Yu, Cong; Cui, Shang; Gao, Weina; Qin, Dandan; Sun, Wenchuan; Li, Xia; Wang, Xiangdong

    2015-12-01

    The role and mechanism of signal transducer and activator of transcription 5B (STAT5B) in adipogenesis remain unclear. In this study, our data showed that Males absent on the first (MOF) protein expression was increased during 3 T3-L1 preadipocytes differentiation accompanied with STAT5B expression increasing. Over-expression STAT5B enhanced MOF promoter trans-activation in HeLa cells. Mutagenesis assay and ChIP analysis exhibited that STAT5B was able to bind MOF promoter. Knocking-down STAT5B in 3 T3-L1 preadipocytes led to decreased expression of MOF, but resulted in increased expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid-binding protein 4 (Fabp4), which were important factors or enzymes for adipogenesis. We also found that knocking-down MOF in 3 T3-L1 preadipocytes resulted in increased expression of PPARγ, C/EBPα and Fabp4, which was in the same trend as STAT5B knocking-down. Over-expression MOF resulted in reduced promoter trans-activation activity of C/EBPα. These results suggest that STAT5B and MOF work as negative regulators in adipogenesis, and STAT5B modulates preadipocytes differentiation partially by regulating MOF expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Provide Career Guidance to Girls and Women. Module CG C-13 of Category C--Implementing. Competency-Based Career Guidance Modules.

    ERIC Educational Resources Information Center

    Birk, Janice M.; Colby, Pamela G.

    This learning module, one in a series of competency-based guidance program training packages focusing upon professional and paraprofessional competencies of guidance personnel, deals with providing career guidance to girls and women. Addressed in the module are the following topics: society's influence on shaping differential roles and behaviors…

  2. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    PubMed

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  3. Evaluation of propidium monoazide real-time PCR for enumeration of probiotic lactobacilli microencapsulated in calcium alginate beads.

    PubMed

    Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V

    2015-01-01

    The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.

  4. Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods

    PubMed Central

    Xing, Jiali; Wang, Gang; Zhang, Qiuxiang; Liu, Xiaoming; Gu, Zhennan; Zhang, Hao; Chen, Yong Q.; Chen, Wei

    2015-01-01

    Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA) assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs) of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS), reducing power (RP), and inhibition of linoleic acid peroxidation (ILAP). Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs. PMID:25789875

  5. Down-modulation of erbB2 activity is necessary but not enough in the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Pagano, Eleonora; Coso, Omar; Calvo, Juan Carlos

    2008-05-01

    The high incidence of obesity-related pathologies, led to the study of the mechanisms involved in preadipose cell proliferation and differentiation. Here, we demonstrate that modulation of erbB2, plays a fundamental role during proliferation and adipogenic induction of preadipocytes. Using 3T3-L1 cells as model, we demonstrate that EGF (10 nM, 5 min) in addition to stimulate receptor tyrosine phosphorylation of both erbB2 and EGFR, is able to induce the heterodimer erbB2-EGFR. We treated proliferating 3T3-L1 cells with two inhibitors, AG 825 (IC(50) 0.35 microM, 54 times more selective for erbB2 than for EGFR, IC(50) 19 microM), and AG 879 (IC(50) of 1 microM for erbB2 versus 500 microM for EGFR). We found that both inhibited the proliferation on a dose-dependent basis, reaching a 30% maximal inhibition at 100 microM (P < 0.001) for AG825, and a 20% maximal inhibition at 10 microM (P < 0.001) for AG 879. These results involve erbB2 in 3T3-L1 proliferation. When studying the differentiation process, we found that the action of MIX-Dexa immediately activates MEK, JNK and p38 kinases. We observed that PD98059 and SP600125 (MEK-ERK and JNK inhibitors, respectively) added 1 h prior to the MIX-Dexa induction produced a decrease in erbB2 expression after 6 h, which is even greater than the one produced by the inducers, MIX-Dexa. This work supports erbB2 as a key factor in 3T3-L1 adipogenesis, acting mostly and not only during the proliferative phase but also during the differentiation through modulation of both its expression and activity.

  6. Urea Hydrogen Peroxide Reduces the Numbers of Lactobacilli, Nourishes Yeast, and Leaves No Residues in the Ethanol Fermentation

    PubMed Central

    Narendranath, N. V.; Thomas, K. C.; Ingledew, W. M.

    2000-01-01

    Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from ∼107 to ∼102 CFU/ml in a 2-h preincubation at 30°C of normal-gravity wheat mash at ∼21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at ∼107 CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at ∼107 CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30°C whether the bactericidal agent was added as H2O2 or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H2O2) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H2O2. H2O2-resistant mutants were not expected or found when lethal levels of H2O2 or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast. PMID:11010858

  7. Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates.

    PubMed

    Strahinic, I; Busarcevic, M; Pavlica, D; Milasin, J; Golic, N; Topisirovic, L

    2007-04-01

    The objective of this study was to characterize the lactobacilli from the human oral cavity as a potential source of probiotic strains. Samples were collected from four different locations within the oral cavity: surface of healthy tooth, oral mucous membrane, surface of tooth decay and deep tooth decay. On the basis of morphological and biochemical properties eight categories were formed and 26 isolates were selected for further characterization. The isolates were determined as Lactobacillus sp. using primers specific for 16S rDNA. Sequencing of 16S rDNA genes and repetitive sequence-based polymerase chain reactions were used for determination to species and subspecies levels. Predominant species were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius and Lactobacillus paracasei subsp. paracasei, while Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus gasseri were also present. The isolates Lactobacillus salivarius BGHO1, Lactobacillus fermentum BGHO36 and BGHO64, Lactobacillus gasseri BGHO89 and Lactobacillus delbrueckii subsp. lactis BGHO99 exhibited antagonistic action on the growth of Staphylococcus aureus, Enterococcus faecalis, Micrococcus flavus, Salmonella enteritidis, Streptococcus pneumoniae and Streptococcus mutans, but not on growth of Candida albicans. Moreover, the isolates L. salivarius BGHO1 and L. gasseri BGHO89 were tolerant to low pH and high concentration of bile salts. Taken together, these findings imply that L. salivarius BGHO1 and L. gasseri BGHO89 might be subjects for additional investigation as potential probiotic strains.

  8. Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics.

    PubMed

    Azevedo, Maria M; Domingues, Helena S; Cordelières, Fabrice P; Sampaio, Paula; Seixas, Ana I; Relvas, João B

    2018-05-06

    During central nervous system development, oligodendrocytes form structurally and functionally distinct actin-rich protrusions that contact and wrap around axons to assemble myelin sheaths. Establishment of axonal contact is a limiting step in myelination that relies on the oligodendrocyte's ability to locally coordinate cytoskeletal rearrangements with myelin production, under the control of a transcriptional differentiation program. The molecules that provide fine-tuning of actin dynamics during oligodendrocyte differentiation and axon ensheathment remain largely unidentified. We performed transcriptomics analysis of soma and protrusion fractions from rat brain oligodendrocyte progenitors and found a subcellular enrichment of mRNAs in newly-formed protrusions. Approximately 30% of protrusion-enriched transcripts encode proteins related to cytoskeleton dynamics, including the junction mediating and regulatory protein Jmy, a multifunctional regulator of actin polymerization. Here, we show that expression of Jmy is upregulated during myelination and is required for the assembly of actin filaments and protrusion formation during oligodendrocyte differentiation. Quantitative morphodynamics analysis of live oligodendrocytes showed that differentiation is driven by a stereotypical actin network-dependent "cellular shaping" program. Disruption of actin dynamics via knockdown of Jmy leads to a program fail resulting in oligodendrocytes that do not acquire an arborized morphology and are less efficient in contacting neurites and forming myelin wraps in co-cultures with neurons. Our findings provide new mechanistic insight into the relationship between cell shape dynamics and differentiation in development. © 2018 Wiley Periodicals, Inc.

  9. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    PubMed

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  10. Inhibition of infection and transmission of HIV-1 and lack of significant impact on the vaginal commensal lactobacilli by carbohydrate-binding agents.

    PubMed

    Petrova, Mariya I; Mathys, Leen; Lebeer, Sarah; Noppen, Sam; Van Damme, Els J M; Tanaka, Haruo; Igarashi, Yasuhiro; Vaneechoutte, Mario; Vanderleyden, Jos; Balzarini, Jan

    2013-09-01

    A selection of carbohydrate-binding agents (CBAs) with different glycan specificities were evaluated for their inhibitory effect against HIV infection and transmission, and their interaction with vaginal commensal bacteria. Several assays were used for the antiviral evaluation: (i) cell-free virus infection of human CD4+ T lymphocyte C8166 cells; (ii) syncytium formation in co-cultures of persistently HIV-1-infected HUT-78/HIV-1 and non-infected CD4+ SupT1 cells; (iii) DC-SIGN-directed capture of HIV-1 particles; and (iv) transmission of DC-SIGN-captured HIV-1 particles to uninfected CD4+ C8166 cells. CBAs were also examined for their interaction with vaginal commensal lactobacilli using several viability, proliferation and adhesion assays. The CBAs showed efficient inhibitory activity in the nanomolar to low-micromolar range against four events that play a crucial role in HIV-1 infection and transmission: cell-free virus infection, fusion between HIV-1-infected and non-infected cells, HIV-1 capture by DC-SIGN and transmission of DC-SIGN-captured virus to T cells. As candidate microbicides should not interfere with the normal human microbiota, we examined the effect of CBAs against Lactobacillus strains, including a variety of vaginal strains, a gastrointestinal strain and several non-human isolates. None of the CBAs included in our studies inhibited the growth of these bacteria in several media, affected their viability or had any significant impact on their adhesion to HeLa cell monolayers. The CBAs in this study were inhibitory to HIV-1 in several in vitro infection and transmission models, and may therefore qualify as potential microbicide candidates. The lack of significant impact on commensal vaginal lactobacilli is an important property of these CBAs in view of their potential microbicidal use.

  11. Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling

    PubMed Central

    Luhmann, Ulrich F. O.; Lange, Clemens A.; Robbie, Scott; Munro, Peter M. G.; Cowing, Jill A.; Armer, Hannah E. J.; Luong, Vy; Carvalho, Livia S.; MacLaren, Robert E.; Fitzke, Frederick W.; Bainbridge, James W. B.; Ali, Robin R.

    2012-01-01

    Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2−/−/Crb1Rd8/RD8, Cx3cr1−/−/Crb1Rd8/RD8 and CCl2−/−/Cx3cr1−/−/Crb1Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings

  12. Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions.

    PubMed

    Liu, Wenjia; Konermann, Anna; Guo, Tao; Jäger, Andreas; Zhang, Liqiang; Jin, Yan

    2014-03-01

    Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway. PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2. PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs. Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation. These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Rational CCL5 mutagenesis integration in a lactobacilli platform generates extremely potent HIV-1 blockers.

    PubMed

    Secchi, Massimiliano; Grampa, Valentina; Vangelista, Luca

    2018-01-30

    Efforts to improve existing anti-HIV-1 therapies or develop preventatives have identified CCR5 as an important target and CCL5 as an ideal scaffold to sculpt potent HIV-1 entry inhibitors. We created novel human CCL5 variants that exhibit exceptional anti-HIV-1 features using recombinant lactobacilli (exploited for live microbicide development) as a screening platform. Protein design, expression and anti-HIV-1 activity flowed in iterative cycles, with a stepwise integration of successful mutations and refinement of an initial CCL5 mutant battery towards the generation of two ultimate CCL5 derivatives, a CCR5 agonist and a CCR5 antagonist with similar anti-HIV-1 potency. The CCR5 antagonist was tested in human macrophages and against primary R5 HIV-1 strains, exhibiting cross-clade low picomolar IC 50 activity. Moreover, its successful combination with several HIV-1 inhibitors provided the ground for conceiving therapeutic and preventative anti-HIV-1 cocktails. Beyond HIV-1 infection, these CCL5 derivatives may now be tested against several inflammation-related pathologies where the CCL5:CCR5 axis plays a relevant role.

  14. Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.

    PubMed

    Bonakdar, Shahin; Mahmoudi, Morteza; Montazeri, Leila; Taghipoor, Mojtaba; Bertsch, Arnaud; Shokrgozar, Mohammad Ali; Sharifi, Shahriar; Majidi, Mohammad; Mashinchian, Omid; Hamrang Sekachaei, Mohammad; Zolfaghari, Pegah; Renaud, Philippe

    2016-06-08

    Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demonstrated their potential for differentiation, redifferentiation, and transdifferentiation. Analysis of shape and upregulation/downregulation of specific genes of stem cells, which were seeded on these cell-imprinted substrates, confirmed that imprinted substrates have the capability to induce specific shapes and molecular characteristics of the cell types that were used as templates for cell-imprinting. Interestingly, immunofluorescent staining of a specific protein in chondrocytes (i.e., collagen type II) confirmed that adipose-derived stem cells, semifibroblasts, and tenocytes can acquire the chondrocyte phenotype after a 14 day culture on chondrocyte-imprinted substrates. In summary, we propose that common polystyrene tissue culture plates can be replaced by this imprinting technique as an effective and promising way to regulate any cell phenotype in vitro with significant potential applications in regenerative medicine and cell-based therapies.

  15. A Survey of Modulation of Gut Microbiota by Dietary Polyphenols

    PubMed Central

    Dueñas, Montserrat; Muñoz-González, Irene; Cueva, Carolina; Jiménez-Girón, Ana; Sánchez-Patán, Fernando; Santos-Buelga, Celestino; Moreno-Arribas, M. Victoria; Bartolomé, Begoña

    2015-01-01

    Dietary polyphenols present in a broad range of plant foods have been related to beneficial health effects. This review aims to update the current information about the modulation of the gut microbiota by dietary phenolic compounds, from a perspective based on the experimental approaches used. After referring to general aspects of gut microbiota and dietary polyphenols, studies related to this topic are presented according to their experimental design: batch culture fermentations, gastrointestinal simulators, animal model studies, and human intervention studies. In general, studies evidence that dietary polyphenols may contribute to the maintenance of intestinal health by preserving the gut microbial balance through the stimulation of the growth of beneficial bacteria (i.e., lactobacilli and bifidobacteria) and the inhibition of pathogenic bacteria, exerting prebiotic-like effects. Combination of in vitro and in vivo models could help to understand the underlying mechanisms in the polyphenols-microbiota-host triangle and elucidate the implications of polyphenols on human health. From a technological point of view, supplementation with rich-polyphenolic stuffs (phenolic extracts, phenolic-enriched fractions, etc.) could be an effective option to improve health benefits of functional foods such as the case of dairy fermented foods. PMID:25793210

  16. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2014-01-01

    Chromatin remodeling is important for cell differentiation. Histone methyltransferase EZH2 and histone demethylase JMJD3 (KDM6B) modulate levels of histone H3 lysine 27 trimethylation (H3K27me3). Interplay between the two modulators influence lineage specification in stem cells. Here, we identified microRNA MIR146A to be a negative regulator of JMJD3. In the osteogenic differentiation of human mesenchymal stem cells (hMSCs), we observed an upregulation of JMJD3 and a downregulation of MIR146A. Blocking JMJD3 activity in differentiating hMSCs reduced transcript levels of osteogenic gene RUNX2. H3K27me3 levels decreased at the RUNX2 promoter during cell differentiation. Modulation of MIR146A levels in hMSCs altered JMJD3 and RUNX2 expression and affected osteogenic differentiation. We conclude that JMJD3 promotes osteogenesis in differentiating hMSCs, with MIR146A regulating JMJD3. PMID:24726732

  17. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1.

    PubMed

    Hawkins, Brian T; Grego, Sonia; Sellgren, Katelyn L

    2015-05-22

    Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells.

    PubMed

    Gonzalez, Eva; Nagiel, Aaron; Lin, Alison J; Golan, David E; Michel, Thomas

    2004-09-24

    Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in

  19. Prevention strategies differentially modulate the impact of cytomegalovirus replication on CD8(+) T-cell differentiation in high-risk solid organ transplant patients.

    PubMed

    Cantisán, Sara; Páez-Vega, Aurora; Pérez-Romero, Pilar; Montejo, Miguel; Cordero, Elisa; Gracia-Ahufinger, Irene; Martín-Gandul, Cecilia; Maruri, Naroa; Aguado, Rocío; Solana, Rafael; Torre-Cisneros, Julián

    2016-08-01

    The present study aimed to determine whether antiviral prevention strategies against cytomegalovirus (CMV) infection used in high-risk D+R- solid organ transplanted patients can modulate the impact of CMV replication on CD8(+) T-cell differentiation. The different CD8(+) T-cell subpopulations were measured at a single point when at least one year had elapsed since transplantation. A total of 68 D+R- patients were included, of which 33 underwent pre-emptive therapy and 35 received prophylaxis. Multivariate analysis showed that CMV replication was associated with the expansion of CD28־ EMRA CD8(+) T cells in patients managed pre-emptively but not in patients under prophylaxis (21.4% vs. 3.6%). This finding is likely related to the higher frequency of CMV recurrence observed in patients under pre-emptive therapy compared to those under prophylaxis (75% vs. 14.3%; p < 0.001). In fact, multivariate analysis showed that having more than one replication episode was associated with a 17.2% increase (p = 0.001) in the percentage of CD28־ EMRA CD8(+) T cells compared to "no episode" and with a 10.9% increase with respect to "single episodes" (p = 0.025). Additionally, patients with IFNγ response to CMV (QuantiFERON-CMV Reactive) had a higher percentage of late-differentiated CD8(+) T cells than patients lacking this response. In summary, recurrent CMV replication in D+R- patients under pre-emptive therapy was associated with the expansion of CD28־ EMRA CD8(+) T cells, which might have a short-term beneficial effect related to the high functionality of this T-cell subpopulation. Nevertheless, we cannot rule out that this accumulation might have a long-term detrimental effect related to immunosenescence and inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Visual attention to food cues is differentially modulated by gustatory-hedonic and post-ingestive attributes.

    PubMed

    Garcia-Burgos, David; Lao, Junpeng; Munsch, Simone; Caldara, Roberto

    2017-07-01

    Although attentional biases towards food cues may play a critical role in food choices and eating behaviours, it remains largely unexplored which specific food attribute governs visual attentional deployment. The allocation of visual attention might be modulated by anticipatory postingestive consequences, from taste sensations derived from eating itself, or both. Therefore, in order to obtain a comprehensive understanding of the attentional mechanisms involved in the processing of food-related cues, we recorded the eye movements to five categories of well-standardised pictures: neutral non-food, high-calorie, good taste, distaste and dangerous food. In particular, forty-four healthy adults of both sexes were assessed with an antisaccade paradigm (which requires the generation of a voluntary saccade and the suppression of a reflex one) and a free viewing paradigm (which implies the free visual exploration of two images). The results showed that observers directed their initial fixations more often and faster on items with high survival relevance such as nutrient and possible dangers; although an increase in antisaccade error rates was only detected for high-calorie items. We also found longer prosaccade fixation duration and initial fixation duration bias score related to maintained attention towards high-calorie, good taste and danger categories; while shorter reaction times to correct an incorrect prosaccade related to less difficulties in inhibiting distasteful images. Altogether, these findings suggest that visual attention is differentially modulated by both the accepted and rejected food attributes, but also that normal-weight, non-eating disordered individuals exhibit enhanced approach to food's postingestive effects and avoidance of distasteful items (such as bitter vegetables or pungent products). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Differential operators on the supercircle S1|2 and symbol map

    NASA Astrophysics Data System (ADS)

    Hamza, Raouafi; Selmi, Zeineb; Boujelben, Jamel

    2017-09-01

    We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra 𝒦(2) acts on S1|2 as the Lie superalgebra of contact vector fields; it contains the Möbius superalgebra 𝔬𝔰𝔭(2|2). We study the space of linear differential operators on weighted densities as a module over 𝔬𝔰𝔭(2|2). We introduce the canonical isomorphism between this space and the corresponding space of symbols. This result allows us to give, in contrast to the classical setting, a classification of the 𝒦(2)-modules 𝔇λ,μk of linear differential operators of order k acting on the superspaces of weighted densities. This work is the simplest superization of a result by Gargoubi and Ovsienko [Modules of differential operators on the real line, Funct. Anal. Appl. 35(1) (2001) 13-18.

  2. Hypoxia modulates the differentiation potential of stem cells of the apical papilla.

    PubMed

    Vanacker, Julie; Viswanath, Aiswarya; De Berdt, Pauline; Everard, Amandine; Cani, Patrice D; Bouzin, Caroline; Feron, Olivier; Diogenes, Anibal; Leprince, Julian G; des Rieux, Anne

    2014-09-01

    Stem cells from the apical papilla (SCAP) are a population of mesenchymal stem cells likely involved in regenerative endodontic procedures and have potential use as therapeutic agents in other tissues. In these situations, SCAP are exposed to hypoxic conditions either within a root canal devoid of an adequate blood supply or in a scaffold material immediately after implantation. However, the effect of hypoxia on SCAP proliferation and differentiation is largely unknown. Therefore, the objective of this study was to evaluate the effect of hypoxia on the fate of SCAP. SCAP were cultured under normoxia (21% O2) or hypoxia (1% O2) in basal or differentiation media. Cellular proliferation, gene expression, differentiation, and protein secretion were analyzed by live imaging, quantitative reverse-transcriptase polymerase chain reaction, cellular staining, and enzyme-linked immunosorbent assay, respectively. Hypoxia had no effect on SCAP proliferation, but it evoked the up-regulation of genes specific for osteogenic differentiation (runt-related transcription factor 2, alkaline phosphatase, and transforming growth factor-β1), neuronal differentiation ( 2'-3'-cyclic nucleotide 3' phosphodiesterase, SNAIL, neuronspecific enolase, glial cell-derived neurotrophic factor and neurotrophin 3), and angiogenesis (vascular endothelial growth factor A and B). Hypoxia also increased the sustained production of VEGFa by SCAP. Moreover, hypoxia augmented the neuronal differentiation of SCAP in the presence of differentiation exogenous factors as detected by the up-regulation of NSE, VEGFB, and GDNF and the expression of neuronal markers (PanF and NeuN). This study shows that hypoxia induces spontaneous differentiation of SCAP into osteogenic and neurogenic lineages while maintaining the release of the proangiogenic factor VEGFa. This highlights the potential of SCAP to promote pulp-dentin regeneration. Moreover, SCAP may represent potential therapeutic agents for neurodegenerative

  3. Iron differentially modulates the CD4-lck and CD8-lck complexes in resting peripheral blood T-lymphocytes.

    PubMed

    Arosa, F A; de Sousa, M

    1995-03-01

    Clinical and experimental studies performed in situations of iron overload have demonstrated that iron impairs several T-cell functions. We have examined the effect of iron in the form of ferric citrate on the CD4-lck and CD8-lck complexes in view of the key role played by the tyrosine kinase p56lck in regulating T-cell functions. Ferric citrate was seen to differentially modulate the CD4-lck and CD8-lck complexes in resting peripheral blood T-lymphocytes (PBLs) cultured in the presence of this metal salt for periods of 20 to 24 hr. Thus, whereas ferric citrate invariably induced a marked decrease in the in vitro activity of the CD4-associated lck by three- to fourfold at 100 microM (P < 3 x 10(-5)), it did not affect significantly the in vitro activity of the CD8-associated lck, although modest decreases were observed in some experiments. Immunoprecipitation and subsequent lck-immunoblotting revealed that the marked decrease in CD4-lck activity induced by 100 microM of ferric citrate was due to a decrease in the amount of p56lck on CD4 immunoprecipitates. Furthermore, flow cytometry analysis showed a decrease in the surface expression of the CD4 molecule in iron-treated PBLs, as judged by a decrease in the mean fluorescence intensity (MFI), that was accompanied by a decrease in the percentage of CD4+ T-lymphocytes. In marked contrast, whereas the surface expression of the CD8 molecule was slightly decreased, the percentage of CD8+ T-lymphocytes remained constant. This differential effect of ferric citrate on the CD4+ and CD8+ T-cell subsets led to a marked decrease in the CD4/CD8 ratios in iron-treated PBLs after the 20- to 24-hr period (P < 0.001). The present results indicate that iron in the form of ferric citrate can modulate key molecules involved in the process of T-cell activation and therefore influence T-cell-mediated functions.

  4. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    DTIC Science & Technology

    2015-08-01

    approved drugs, were tested in multiple screens. The two best hits were confirmed in rescreens and validated for differential effects on AR activity in...ulate by different mecha- nisms, with dox more cell type specific than Cpd05. The data also indicate that dox can stimulate sARE- lucifer - ase at...with R1881 (1 nM) and compounds or DMSO.   7   Effect of compounds on endogenous gene expression. To determine whether the differential effects

  5. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways.

    PubMed

    Dayem, Ahmed Abdal; Kim, BongWoo; Gurunathan, Sangiliyandi; Choi, Hye Yeon; Yang, Gwangmo; Saha, Subbroto Kumar; Han, Dawoon; Han, Jihae; Kim, Kyeongseok; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-07-01

    Nano-scale materials are noted for unique properties, distinct from those of their bulk material equivalents. In this study, we prepared spherical silver nanoparticles (AgNPs) with an average size of about 30 nm and tested their potency to induce neuronal differentiation of SH-SY5Y cells. Human neuroblastoma SH-SY5Y cells are considered an ideal in vitro model for studying neurogenesis, as they can be maintained in an undifferentiated state or be induced to differentiate into neuron-like phenotypes in vitro by several differentiation-inducing agents. Treatment of SH-SY5Y cells by biologically synthesized AgNPs led to cell morphological changes and significant increase in neurite length and enhanced the expression of neuronal differentiation markers such as Map-2, β-tubulin III, synaptophysin, neurogenin-1, Gap-43, and Drd-2. Furthermore, we observed an increase in generation of intracellular reactive oxygen species (ROS), activation of several kinases such as ERK and AKT, and downregulation of expression of dual-specificity phosphatases (DUSPs) in AgNPs-exposed SH-SY5Y cells. Our results suggest that AgNPs modulate the intracellular signaling pathways, leading to neuronal differentiation, and could be applied as promising nanomaterials for stem cell research and therapy. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues

    PubMed Central

    Pandey, Ashutosh; Misra, Prashant; Choudhary, Dharmendra; Yadav, Reena; Goel, Ridhi; Bhambhani, Sweta; Sanyal, Indraneel; Trivedi, Ritu; Kumar Trivedi, Prabodh

    2015-01-01

    Plants synthesize secondary metabolites, including flavonoids, which play important role during various stresses for their survival. These metabolites are also considered as health-protective components in functional foods. Flavonols, one of the important groups of flavonoids, apart from performing several roles in plants have been recognized as potent phytoceuticals for human health. Tomato fruits are deficient in this group of flavonoids and have been an important target for enhancing the accumulation of flavonols through genetic manipulations. In the present study, AtMYB12 transcription factor of the Arabidopsis has been expressed under constitutive promoter in tomato. Transgenic tomato lines exhibited enhanced accumulation of flavonols and chlorogenic acid (CGA) in leaf and fruit accompanied with elevated expression of phenylpropanoid pathway genes involved in flavonol biosynthesis. In addition, global gene expression analysis in leaf and fruit suggested that AtMYB12 modulates number of molecular processes including aromatic amino acid biosynthesis, phytohormone signaling and stress responses. Besides this, a differential modulation of the genes in fruits and leaves is reported in this study. Taken together, results demonstrate that modulation of primary carbon metabolism and other pathways by AtMYB12 in tomato may lead to sufficient substrate supply for enhanced content of phenolics in general and flavonols in particular. PMID:26206248

  7. Chemical modulation of the ultra-weak photon emission from Saccharomyces cerevisiae and differentiated HL-60 cells

    NASA Astrophysics Data System (ADS)

    Červinková, Kateřina; Nerudová, Michaela; Hašek, Jiří; Cifra, Michal

    2015-01-01

    The ultra-weak photon emission (UPE) is a universal phenomenon common to all cells with active oxidative metabolism. Generally accepted mechanism of the origin of the ultra-weak photon emission considers reactions of radical or nonradical reactive oxygen species (ROS) with biomolecules such as lipids and proteins which lead to the formation of electron excited species. During the transition to the ground state the excess energy is released as a photon with a wavelength in the visible range of the electromagnetic spectrum. Since the intensity of the light is very low it is possible to be measured only by highly sensitive devices. We used Hamamatsu Photonics PMT module H7360-01 mounted into a light-tight chamber for the purposes of this work. The goal of our research is to delineate an origin of UPE from two model organisms; differentiated HL-60 cells (human promyelocytic leukemia) and yeast cells Saccharomyces cerevisiae. While the UPE from the yeast cells arises spontaneously during the growth without any external stimuli, UPE from HL-60 is induced by phorbol 12-myristate, 13-acetate (PMA). It is possible to modulate the UPE production by certain antioxidants which scavenge ROS formed during the metabolism (yeast cells) or respiratory burst (HL-60 cells). The experiments are focused on the description of effects caused by antioxidants. Several kinds of antioxidants (ascorbic acid, mannitol, glutathione) with different concentration were used and we studied the changes in the UPE intensities of and the temporal developments of the optical signal.

  8. Aversive Stimuli Differentially Modulate Real-Time Dopamine Transmission Dynamics within the Nucleus Accumbens Core and Shell

    PubMed Central

    Badrinarayan, Aneesha; Wescott, Seth A.; Vander Weele, Caitlin M.; Saunders, Benjamin T.; Couturier, Brenann E.; Maren, Stephen

    2012-01-01

    Although fear directs adaptive behavioral responses, how aversive cues recruit motivational neural circuitry is poorly understood. Specifically, while it is known that dopamine (DA) transmission within the nucleus accumbens (NAc) is imperative for mediating appetitive motivated behaviors, its role in aversive behavior is controversial. It has been proposed that divergent phasic DA transmission following aversive events may correspond to segregated mesolimbic dopamine pathways; however, this prediction has never been tested. Here, we used fast-scan cyclic voltammetry to examine real-time DA transmission within NAc core and shell projection systems in response to a fear-evoking cue. In male Sprague Dawley rats, we first demonstrate that a fear cue results in decreased DA transmission within the NAc core, but increased transmission within the NAc shell. We examined whether these changes in DA transmission could be attributed to modulation of phasic transmission evoked by cue presentation. We found that cue presentation decreased the probability of phasic DA release in the core, while the same cue enhanced the amplitude of release events in the NAc shell. We further characterized the relationship between freezing and both changes in DA as well as local pH. Although we found that both analytes were significantly correlated with freezing in the NAc across the session, changes in DA were not strictly associated with freezing while basic pH shifts in the core more consistently followed behavioral expression. Together, these results provide the first real-time neurochemical evidence that aversive cues differentially modulate distinct DA projection systems. PMID:23136417

  9. Universal sensor interface module (USIM)

    NASA Astrophysics Data System (ADS)

    King, Don; Torres, A.; Wynn, John

    1999-01-01

    A universal sensor interface model (USIM) is being developed by the Raytheon-TI Systems Company for use with fields of unattended distributed sensors. In its production configuration, the USIM will be a multichip module consisting of a set of common modules. The common module USIM set consists of (1) a sensor adapter interface (SAI) module, (2) digital signal processor (DSP) and associated memory module, and (3) a RF transceiver model. The multispectral sensor interface is designed around a low-power A/D converted, whose input/output interface consists of: -8 buffered, sampled inputs from various devices including environmental, acoustic seismic and magnetic sensors. The eight sensor inputs are each high-impedance, low- capacitance, differential amplifiers. The inputs are ideally suited for interface with discrete or MEMS sensors, since the differential input will allow direct connection with high-impedance bridge sensors and capacitance voltage sources. Each amplifier is connected to a 22-bit (Delta) (Sigma) A/D converter to enable simultaneous samples. The low power (Delta) (Sigma) converter provides 22-bit resolution at sample frequencies up to 142 hertz (used for magnetic sensors) and 16-bit resolution at frequencies up to 1168 hertz (used for acoustic and seismic sensors). The video interface module is based around the TMS320C5410 DSP. It can provide sensor array addressing, video data input, data calibration and correction. The processor module is based upon a MPC555. It will be used for mode control, synchronization of complex sensors, sensor signal processing, array processing, target classification and tracking. Many functions of the A/D, DSP and transceiver can be powered down by using variable clock speeds under software command or chip power switches. They can be returned to intermediate or full operation by DSP command. Power management may be based on the USIM's internal timer, command from the USIM transceiver, or by sleep mode processing management

  10. Honeybees (Apis mellifera) Learn Color Discriminations via Differential Conditioning Independent of Long Wavelength (Green) Photoreceptor Modulation

    PubMed Central

    Wijesekara Witharanage, Randika; Rosa, Marcello G. P.

    2012-01-01

    Background Recent studies on colour discrimination suggest that experience is an important factor in how a visual system processes spectral signals. In insects it has been shown that differential conditioning is important for processing fine colour discriminations. However, the visual system of many insects, including the honeybee, has a complex set of neural pathways, in which input from the long wavelength sensitive (‘green’) photoreceptor may be processed either as an independent achromatic signal or as part of a trichromatic opponent-colour system. Thus, a potential confound of colour learning in insects is the possibility that modulation of the ‘green’ photoreceptor could underlie observations. Methodology/Principal Findings We tested honeybee vision using light emitting diodes centered on 414 and 424 nm wavelengths, which limit activation to the short-wavelength-sensitive (‘UV’) and medium-wavelength-sensitive (‘blue’) photoreceptors. The absolute irradiance spectra of stimuli was measured and modelled at both receptor and colour processing levels, and stimuli were then presented to the bees in a Y-maze at a large visual angle (26°), to ensure chromatic processing. Sixteen bees were trained over 50 trials, using either appetitive differential conditioning (N = 8), or aversive-appetitive differential conditioning (N = 8). In both cases the bees slowly learned to discriminate between the target and distractor with significantly better accuracy than would be expected by chance. Control experiments confirmed that changing stimulus intensity in transfers tests does not significantly affect bee performance, and it was possible to replicate previous findings that bees do not learn similar colour stimuli with absolute conditioning. Conclusion Our data indicate that honeybee colour vision can be tuned to relatively small spectral differences, independent of ‘green’ photoreceptor contrast and brightness cues. We thus show that colour vision

  11. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment.

    PubMed

    Hastings, J W; Holzapfel, W H; Niemand, J G

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp., one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four references strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO2, and N2). Organisms exhibited the highest death rate (lowest D10 values [doses required to reduce the logarithm of the bacterial population by 1] ) under CO2 packaging conditions, but resistance to irradiation was increased under N2. The D10 values of the isolates were generally greater than those of the reference strains. The D10 values were also higher (approximately two times) in meat than in semisynthetic growth medium.

  12. X-chromosome dosage as a modulator of pluripotency, signalling and differentiation?

    PubMed

    Schulz, Edda G

    2017-11-05

    Already during early embryogenesis, before sex-specific hormone production is initiated, sex differences in embryonic development have been observed in several mammalian species. Typically, female embryos develop more slowly than their male siblings. A similar phenotype has recently been described in differentiating murine embryonic stem cells, where a double dose of the X-chromosome halts differentiation until dosage-compensation has been achieved through X-chromosome inactivation. On the molecular level, several processes associated with early differentiation of embryonic stem cells have been found to be affected by X-chromosome dosage, such as the transcriptional state of the pluripotency network, the activity pattern of several signal transduction pathways and global levels of DNA-methylation. This review provides an overview of the sex differences described in embryonic stem cells from mice and discusses a series of X-linked genes that are associated with pluripotency, signalling and differentiation and their potential involvement in mediating the observed X-dosage-dependent effects.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  13. ModuleMiner - improved computational detection of cis-regulatory modules: are there different modes of gene regulation in embryonic development and adult tissues?

    PubMed Central

    Van Loo, Peter; Aerts, Stein; Thienpont, Bernard; De Moor, Bart; Moreau, Yves; Marynen, Peter

    2008-01-01

    We present ModuleMiner, a novel algorithm for computationally detecting cis-regulatory modules (CRMs) in a set of co-expressed genes. ModuleMiner outperforms other methods for CRM detection on benchmark data, and successfully detects CRMs in tissue-specific microarray clusters and in embryonic development gene sets. Interestingly, CRM predictions for differentiated tissues exhibit strong enrichment close to the transcription start site, whereas CRM predictions for embryonic development gene sets are depleted in this region. PMID:18394174

  14. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  15. Insulin receptor-mediated signaling via phospholipase C-γ regulates growth and differentiation in Drosophila.

    PubMed

    Murillo-Maldonado, Juan M; Zeineddine, Fouad Bou; Stock, Rachel; Thackeray, Justin; Riesgo-Escovar, Juan R

    2011-01-01

    Coordination between growth and patterning/differentiation is critical if appropriate final organ structure and size is to be achieved. Understanding how these two processes are regulated is therefore a fundamental and as yet incompletely answered question. Here we show through genetic analysis that the phospholipase C-γ (PLC-γ) encoded by small wing (sl) acts as such a link between growth and patterning/differentiation by modulating some MAPK outputs once activated by the insulin pathway; particularly, sl promotes growth and suppresses ectopic differentiation in the developing eye and wing, allowing cells to attain a normal size and differentiate properly. sl mutants have previously been shown to have a combination of both growth and patterning/differentiation phenotypes: small wings, ectopic wing veins, and extra R7 photoreceptor cells. We show here that PLC-γ activated by the insulin pathway participates broadly and positively during cell growth modulating EGF pathway activity, whereas in cell differentiation PLC-γ activated by the insulin receptor negatively regulates the EGF pathway. These roles require different SH2 domains of PLC-γ, and act via classic PLC-γ signaling and EGF ligand processing. By means of PLC-γ, the insulin receptor therefore modulates differentiation as well as growth. Overall, our results provide evidence that PLC-γ acts during development at a time when growth ends and differentiation begins, and is important for proper coordination of these two processes.

  16. Generation and transmission of multilevel quadrature amplitude modulation formats using only one optical modulator: MATLAB Simulink simulation models

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen

    2009-04-01

    A geometrical and phasor representation technique is presented to illustrate the modulation of the lightwave carrier to generate quadrature amplitude modulated (QAM) signals. The modulation of the amplitude and phase of the lightwave carrier is implemented using only one dual-drive Mach-Zehnder interferometric modulator (MZIM) with the assistance of phasor techniques. Any multilevel modulation scheme can be generated, but we illustrate specifically, the multilevel amplitude and differential phase shift keying (MADPSK) signals. The driving voltage levels are estimated for driving the traveling wave electrodes of the modulator. Phasor diagrams are extensively used to demonstrate the effectiveness of modulation schemes. MATLAB Simulink models are formed to generate the multilevel modulation formats, transmission, and detection in optically amplified fiber communication systems. Transmission performance is obtained for the multilevel optical signals and proven to be equivalent or better than those of binary level with equivalent bit rate. Further, the resilience to nonlinear effects is much higher for MADPSK of 50% and 33% pulse width as compared to non-return-to-zero (NRZ) pulse shaping.

  17. In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose.

    PubMed

    Hernot, David C; Boileau, Thomas W; Bauer, Laura L; Middelbos, Ingmar S; Murphy, Michael R; Swanson, Kelly S; Fahey, George C

    2009-02-25

    It is of interest to benefit from the positive intestinal health outcomes of prebiotic consumption but with minimal gas production. This study examined gas production potential, fermentation profile, and microbial modulation properties of several types of oligosaccharides. Substrates studied included short-chain, medium-chain, and long-chain fructooligosaccharides, oligofructose-enriched inulin, galactooligosaccharide, and polydextrose. Each substrate was fermented in vitro using human fecal inoculum, and fermentation characteristics were quantified at 0, 4, 8, and 12 h. Gas and short-chain fatty acid (SCFA) production data showed that short-chain oligosaccharides were more rapidly fermented and produced more SCFA and gas than substrates with greater degrees of polymerization. Lactobacilli increased similarly among substrates. Short-chain oligosaccharides fermentation resulted in the greatest increase in bifidobacteria concentrations. Mixing short- and long-chain oligosaccharides attenuated short-chain oligosaccharide fermentation rate and extent. This study provides new information on the fermentation characteristics of some oligosaccharides used in human nutrition.

  18. Influences of Histidine-1 and Azaphenylalanine-4 on the Affinity, Anti-inflammatory, and Antiangiogenic Activities of Azapeptide Cluster of Differentiation 36 Receptor Modulators.

    PubMed

    Chignen Possi, Kelvine; Mulumba, Mukandila; Omri, Samy; Garcia-Ramos, Yesica; Tahiri, Houda; Chemtob, Sylvain; Ong, Huy; Lubell, William D

    2017-11-22

    Azapeptide analogues of growth hormone releasing peptide-6 (GHRP-6) exhibit promising affinity, selectivity, and modulator activity on the cluster of differentiation 36 receptor (CD36). For example, [A 1 , azaF 4 ]- and [azaY 4 ]-GHRP-6 (1a and 2b) were previously shown to bind selectively to CD36 and exhibited respectively significant antiangiogenic and slight angiogenic activities in a microvascular sprouting assay using choroid explants. The influences of the 1- and 4-position residues on the affinity, anti-inflammatory, and antiangiogenic activity of these azapeptides have now been studied in detail by the synthesis and analysis of a set of 25 analogues featuring Ala 1 or His 1 and a variety of aromatic side chains at the aza-amino acid residue in the 4-position. Although their binding affinities differed only by a factor of 17, the analogues exhibited significant differences in ability to modulate production of nitric oxide (NO) in macrophages and choroidal neovascularization.

  19. Isoliquiritigenin-Induced Differentiation in Mouse Melanoma B16F0 Cell Line

    PubMed Central

    Chen, Xiaoyu; Zhang, Bo; Yuan, Xuan; Yang, Fan; Liu, Jinglei; Zhao, Hong; Liu, Liangliang; Wang, Yanming; Wang, Zhenhua; Zheng, Qiusheng

    2012-01-01

    The chemotherapeutical treatment is very limited for malignant melanoma, a highly lethal disease occurs globally. Natural products derived from traditional Chinese medicine licorice are attractive in quest new treatments due to their anti-tumor activities. A new dietary flavonoid isoliquiritigenin (ISL) were thus investigated to indentify its anti-melanoma activities on mouse melanoma B16F0 cells in present study. Using biochemical and free radical biological experiments in vitro, we identified the pro-differentiated profiles of ISL and evaluated the role of reactive oxygen species (ROS) during B16F0 cell differentiation. The data showed a strong dose-response relationship between ISL exposure and the characteristics of B16F0 differentiation in terms of morphology changes and melanogenesis. The accumulated intercellular ROS during exposure are necessary to support ISL-induced differentiation, which was proven by additional redox modulators. It was confirmed further by the relative activities of enzymes and genes modulated melanogenesis in ISL-treatments with or without ROS modulators. The tumorigenicity of ISL-treated cells was limited significantly by using the colony formation assay in vitro and an animal model assay in vivo respectively. Our research demonstrated that isoliquiritigenin is a differentiation-inducing agent, and its mechanisms involve ROS accumulation facilitating melanogenesis. PMID:23304254

  20. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line.

    PubMed

    Chen, Xiaoyu; Zhang, Bo; Yuan, Xuan; Yang, Fan; Liu, Jinglei; Zhao, Hong; Liu, Liangliang; Wang, Yanming; Wang, Zhenhua; Zheng, Qiusheng

    2012-01-01

    The chemotherapeutical treatment is very limited for malignant melanoma, a highly lethal disease occurs globally. Natural products derived from traditional Chinese medicine licorice are attractive in quest new treatments due to their anti-tumor activities. A new dietary flavonoid isoliquiritigenin (ISL) were thus investigated to indentify its anti-melanoma activities on mouse melanoma B16F0 cells in present study. Using biochemical and free radical biological experiments in vitro, we identified the pro-differentiated profiles of ISL and evaluated the role of reactive oxygen species (ROS) during B16F0 cell differentiation. The data showed a strong dose-response relationship between ISL exposure and the characteristics of B16F0 differentiation in terms of morphology changes and melanogenesis. The accumulated intercellular ROS during exposure are necessary to support ISL-induced differentiation, which was proven by additional redox modulators. It was confirmed further by the relative activities of enzymes and genes modulated melanogenesis in ISL-treatments with or without ROS modulators. The tumorigenicity of ISL-treated cells was limited significantly by using the colony formation assay in vitro and an animal model assay in vivo respectively. Our research demonstrated that isoliquiritigenin is a differentiation-inducing agent, and its mechanisms involve ROS accumulation facilitating melanogenesis.

  1. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience

    PubMed Central

    Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan

    2010-01-01

    This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience. PMID:21119929

  2. Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia Lactobacilli?

    PubMed Central

    Allain, Thibault; Chaouch, Soraya; Thomas, Myriam; Travers, Marie-Agnès; Valle, Isabelle; Langella, Philippe; Grellier, Philippe; Polack, Bruno; Florent, Isabelle; Bermúdez-Humarán, Luis G.

    2018-01-01

    Giardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH)-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals. PMID:29472903

  3. Modulation of the Mesenchymal Stem Cell Secretome Using Computer-Controlled Bioreactors: Impact on Neuronal Cell Proliferation, Survival and Differentiation.

    PubMed

    Teixeira, Fábio G; Panchalingam, Krishna M; Assunção-Silva, Rita; Serra, Sofia C; Mendes-Pinheiro, Bárbara; Patrício, Patrícia; Jung, Sunghoon; Anjo, Sandra I; Manadas, Bruno; Pinto, Luísa; Sousa, Nuno; Behie, Leo A; Salgado, António J

    2016-06-15

    In recent years it has been shown that the therapeutic benefits of human mesenchymal stem/stromal cells (hMSCs) in the Central Nervous System (CNS) are mainly attributed to their secretome. The implementation of computer-controlled suspension bioreactors has shown to be a viable route for the expansion of these cells to large numbers. As hMSCs actively respond to their culture environment, there is the hypothesis that one can modulate its secretome through their use. Herein, we present data indicating that the use of computer-controlled suspension bioreactors enhanced the neuroregulatory profile of hMSCs secretome. Indeed, higher levels of in vitro neuronal differentiation and NOTCH1 expression in human neural progenitor cells (hNPCs) were observed when these cells were incubated with the secretome of dynamically cultured hMSCs. A similar trend was also observed in the hippocampal dentate gyrus (DG) of rat brains where, upon injection, an enhanced neuronal and astrocytic survival and differentiation, was observed. Proteomic analysis also revealed that the dynamic culturing of hMSCs increased the secretion of several neuroregulatory molecules and miRNAs present in hMSCs secretome. In summary, the appropriate use of dynamic culture conditions can represent an important asset for the development of future neuro-regenerative strategies involving the use of hMSCs secretome.

  4. Differential modulation of FXR activity by chlorophacinone and ivermectin analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Chia-Wen

    Chemicals that alter normal function of farnesoid X receptor (FXR) have been shown to affect the homeostasis of bile acids, glucose, and lipids. Several structural classes of environmental chemicals and drugs that modulated FXR transactivation were previously identified by quantitative high-throughput screening (qHTS) of the Tox21 10 K chemical collection. In the present study, we validated the FXR antagonist activity of selected structural classes, including avermectin anthelmintics, dihydropyridine calcium channel blockers, 1,3-indandione rodenticides, and pyrethroid pesticides, using in vitro assay and quantitative structural-activity relationship (QSAR) analysis approaches. (Z)-Guggulsterone, chlorophacinone, ivermectin, and their analogs were profiled for their ability to altermore » CDCA-mediated FXR binding using a panel of 154 coregulator motifs and to induce or inhibit transactivation and coactivator recruitment activities of constitutive androstane receptor (CAR), liver X receptor alpha (LXRα), or pregnane X receptor (PXR). Our results showed that chlorophacinone and ivermectin had distinct modes of action (MOA) in modulating FXR-coregulator interactions and compound selectivity against the four aforementioned functionally-relevant nuclear receptors. These findings collectively provide mechanistic insights regarding compound activities against FXR and possible explanations for in vivo toxicological observations of chlorophacinone, ivermectin, and their analogs. - Highlights: • A subset of Tox21 chemicals was investigated for FXR antagonism. • In vitro and computational approaches were used to evaluate FXR antagonists. • Chlorophacinone and ivermectin had distinct patterns in modulating FXR activity.« less

  5. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NF{kappa}B and AhR and EGFR-ERK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potapovich, Alla I.; Biology Department, Belarus State University, Skorina Prosp. 10, Minsk 220050; Lulli, Daniela

    Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure,more » the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted

  6. Stimulus sequence context differentially modulates inhibition-related theta and delta band activity in a go/nogo task

    PubMed Central

    Harper, Jeremy; Malone, Stephen M.; Bachman, Matthew D.; Bernat, Edward M.

    2015-01-01

    Recent work suggests that dissociable activity in theta and delta frequency bands underlies several common event-related potential (ERP) components, including the nogo N2/P3 complex, which can better index separable functional processes than traditional time-domain measures. Reports have also demonstrated that neural activity can be affected by stimulus sequence context information (i.e., the number and type of preceding stimuli). Stemming from prior work demonstrating that theta and delta index separable processes during response inhibition, the current study assessed sequence context in a Go/Nogo paradigm in which the number of go stimuli preceding each nogo was selectively manipulated. Principal component analysis (PCA) of time-frequency representations revealed differential modulation of evoked theta and delta related to sequence context, where delta increased robustly with additional preceding go stimuli, while theta did not. Findings are consistent with the view that theta indexes simpler initial salience-related processes, while delta indexes more varied and complex processes related to a variety of task parameters. PMID:26751830

  7. Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecomte, Sylvain; Lelong, Marie; Bourgine, Gaëlle

    Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as amore » model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases. - Highlights: • SERM activity of dietary compounds on proliferation and differentiation is studied. • All the dietary compounds tested transactivate estrogen receptors. • Apigenin and

  8. Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong

    2013-06-01

    By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.

  9. An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program.

    PubMed

    Tasseff, Ryan; Jensen, Holly A; Congleton, Johanna; Dai, David; Rogers, Katharine V; Sagar, Adithya; Bunaciu, Rodica P; Yen, Andrew; Varner, Jeffrey D

    2017-10-30

    In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.

  10. Jitter model and signal processing techniques for pulse width modulation optical recording

    NASA Technical Reports Server (NTRS)

    Liu, Max M.-K.

    1991-01-01

    A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.

  11. Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway.

    PubMed

    Almeida, Ana S; Soares, Nuno L; Sequeira, Catarina O; Pereira, Sofia A; Sonnewald, Ursula; Vieira, Helena L A

    2018-05-15

    Over the last decades, the silent-killer carbon monoxide (CO) has been shown to also be an endogenous cytoprotective molecule able to inhibit cell death and modulate mitochondrial metabolism. Neuronal metabolism is mostly oxidative and neurons also use glucose for maintaining their anti-oxidant status by generation of reduced glutathione (GSH) via the pentose-phosphate pathway (PPP). It is established that neuronal differentiation depends on reactive oxygen species (ROS) generation and signalling, however there is a lack of information about modulation of the PPP during adult neurogenesis. Thus, the main goal of this study was to unravel the role of CO on cell metabolism during neuronal differentiation, particularly by targeting PPP flux and GSH levels as anti-oxidant system. A human neuroblastoma SH-S5Y5 cell line was used, which differentiates into post-mitotic neurons by treatment with retinoic acid (RA), supplemented or not with CO-releasing molecule-A1 (CORM-A1). SH-SY5Y cell differentiation supplemented with CORM-A1 prompted an increase in neuronal yield production. It did, however, not alter glycolytic metabolism, but increased the PPP. In fact, CORM-A1 treatment stimulated (i) mRNA expression of 6-phosphogluconate dehydrogenase (PGDH) and transketolase (TKT), which are enzymes for oxidative and non-oxidative phases of the PPP, respectively and (ii) protein expression and activity of glucose 6-phosphate dehydrogenase (G6PD) the rate-limiting enzyme of the PPP. Likewise, whenever G6PD was knocked-down CO-induced improvement on neuronal differentiation was reverted, while pharmacological inhibition of GSH synthesis did not change CO's effect on the improvement of neuronal differentiation. Both results indicate the key role of PPP in CO-modulation of neuronal differentiation. Furthermore, at the end of SH-SY5Y neuronal differentiation process, CORM-A1 supplementation increased the ratio of reduced and oxidized glutathione (GSH/GSSG) without alteration of GSH

  12. Crystallization of Polymers Investigated by Temperature-Modulated DSC

    PubMed Central

    Righetti, Maria Cristina

    2017-01-01

    The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC) on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystallizations upon heating and cooling are examined separately, together with the relevant mathematical treatments that allow the evolution of the crystalline, mobile amorphous and rigid amorphous fractions to be determined. The phenomena of ‘reversing’ and ‘reversible‘ melting are explicated through the analysis of the thermal response of various semi-crystalline polymers to temperature modulation. PMID:28772807

  13. Gardnerella vaginalis and anaerobic bacteria in the etiology of bacterial (nonspecific) vaginosis.

    PubMed

    Spiegel, C A; Davick, P; Totten, P A; Chen, K C; Eschenbach, D A; Amsel, R; Holmes, K K

    1983-01-01

    G. vaginalis was originally described as the etiologic agent of bacterial vaginosis (nonspecific vaginitis) because it was recovered only from women with signs and symptoms of "bacterial vaginitis" and not from normal controls. Recent data have shown that G. vaginalis is present in normal women but at concentrations lower than the limit of sensitivity of the media formerly used. Detection of low concentrations of G. vaginalis in normal controls has been made possible by development of a selective and differential medium (HBT). Anaerobically performed studies of the vaginal flora have indicated that while lactobacilli predominate in the normal vagina with or without G. vaginalis, anaerobic bacteria including Bacteroides spp., Peptococcus spp., Eubacterium spp. and curved rods as well as G. vaginalis predominate in bacterial vaginosis. Anaerobic bacteria and G. vaginalis are decreased after appropriate therapy. After treatment with metronidazole, lactobacilli again predominate. Lactobacilli are less prevalent after treatment with ampicillin or amoxicillin. These data suggest that as in infections at other mucous membrane sites, bacterial vaginosis is a mixed infection involving a finite number of facultative and anaerobic species. The data also suggest an important role for facultative lactobacilli.

  14. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria.

    PubMed

    Amund, O D

    2016-09-01

    Strains of Lactobacillus and Bifidobacterium are considered probiotic because of their associated potential health benefits. Probiotics are commonly administered orally via incorporation into food products. Microorganisms for use as probiotics encounter stress conditions, which include acid, bile, osmotic, oxidative, heat and cold stresses. These can occur during processing and storage and during passage through the gastrointestinal tract, and can affect viability. Probiotic bacteria have to remain viable to confer any health benefits. Therefore, the ability to withstand technological and gastrointestinal stresses is crucial probiotic selection criteria. While the stress tolerance mechanisms of lactobacilli and bifidobacteria are largely understood, the impact of exposure to stressful conditions on the functional properties of surviving probiotic microorganisms is not clear. This review explores the potentially positive and negative relationships between exposure to stress conditions and probiotic functional properties, such as resistance to gastric acid and bile, adhesion and colonization potential, and tolerance to antibiotics. Protective strategies can be employed to combat negative effects of stress on functional properties. However, further research is needed to ascertain synergistic relationships between exposure to stress and probiotic properties.

  15. Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species

    PubMed Central

    Vlasova, Anastasia N.; Kandasamy, Sukumar; Chattha, Kuldeep S.; Rajashekara, Gireesh; Saif, Linda J.

    2016-01-01

    Different probiotic strains of Lactobacillus and Bifidobacterium genera possess significant and widely acknowledged health-promoting and immunomodulatory properties. They also provide an affordable means for prevention and treatment of various infectious, allergic and inflammatory conditions as demonstrated in numerous human and animal studies. Despite the ample evidence of protective effects of these probiotics against rotavirus (RV) infection and disease, the precise immune mechanisms of this protection remain largely undefined, because of limited mechanistic research possible in humans and investigated in the majority of animal models. Additionally, while most human clinical probiotic trials are well-standardized using the same strains, uniform dosages, regimens of the probiotic treatments and similar host age, animal studies often lack standardization, have variable experimental designs, and non-uniform and sometime limited selection of experimental variables or observational parameters. This review presents selected data on different probiotic strains of lactobacilli and bifidobacteria and summarizes the knowledge of their immunomodulatory properties and the associated protection against RV disease in diverse host species including neonates. PMID:26809484

  16. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment.

    PubMed Central

    Hastings, J W; Holzapfel, W H; Niemand, J G

    1986-01-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp., one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four references strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO2, and N2). Organisms exhibited the highest death rate (lowest D10 values [doses required to reduce the logarithm of the bacterial population by 1] ) under CO2 packaging conditions, but resistance to irradiation was increased under N2. The D10 values of the isolates were generally greater than those of the reference strains. The D10 values were also higher (approximately two times) in meat than in semisynthetic growth medium. PMID:3096207

  17. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    PubMed Central

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  18. Bacterial differentiation via gradual activation of global regulators.

    PubMed

    Kovács, Ákos T

    2016-02-01

    Bacteria have evolved to adapt to various conditions and respond to certain stress conditions. The ability to sense and efficiently reply to these environmental effects involve versatile array of sensors and global or specific regulators. Interestingly, modulation of the levels of active global regulators enables bacteria to respond to diverse signals via a single central transcriptional regulator and to activate or repress certain differentiation pathways at a spatio-temporal manner. The Gram-positive Bacillus subtilis is an ideal bacterium to study how membrane bound and cytoplasmic sensor kinases affect the level of phosphorylated global regulator, Spo0A which in response activates genes related to sliding, biofilm formation, and sporulation. In addition, other global regulators, including the two-component system DegS-DegU, modulate overlapping and complementary genes in B. subtilis related to surface colonization and biofilm formation. The intertwinement of global regulatory systems also allows the accurate modulation of differentiation pathways. Studies in the last decade enable us to get a deeper insight into the role of global regulators on the smooth transition of developmental processes in B. subtilis.

  19. Identification of Unstable Network Modules Reveals Disease Modules Associated with the Progression of Alzheimer’s Disease

    PubMed Central

    Kikuchi, Masataka; Ogishima, Soichi; Miyamoto, Tadashi; Miyashita, Akinori; Kuwano, Ryozo; Nakaya, Jun; Tanaka, Hiroshi

    2013-01-01

    Alzheimer’s disease (AD), the most common cause of dementia, is associated with aging, and it leads to neuron death. Deposits of amyloid β and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD, but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction networks (PINs), we identified the PINs expressed in three brain regions: the entorhinal cortex (EC), hippocampus (HIP) and superior frontal gyrus (SFG). Dividing the expressed PINs into modules, we examined the stability of the modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins, interactions and cellular functions were not maintained between consecutive stages through all brain regions. Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are disrupted in the EC region, which affects the ubiquitin-proteasome system. PMID:24348898

  20. Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems.

    PubMed

    Tan, Kang; Shao, Jing; Sun, Junqiang; Wang, Jian

    2012-01-16

    We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach-Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

  1. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    PubMed

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  2. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro

    PubMed Central

    Jørgensen, Mette Rose; Kragelund, Camilla; Jensen, Peter Østrup; Keller, Mette Kirstine; Twetman, Svante

    2017-01-01

    ABSTRACT Background: An alternative approach for managing Candida infections in the oral cavity by modulating the oral microbiota with probiotic bacteria has been proposed. Objective: The aim was to investigate the antifungal potential of the probiotic bacterium Lactobacillus reuteri (DSM 17938 and ATCC PTA 5289) against six oral Candida species (C. albicans, C. glabrata, C. krusei, C. tropicalis, C. dubliniensis, and C. parapsilosis). Design: The lactobacilli were tested for their ability to co-aggregate with and inhibit the growth of the yeasts assessed by spectrophotometry and the agar overlay inhibition assay. Additionally, the pH was evaluated with microsensors, and the production of hydrogen peroxide (H2O2) by the lactobacilli was verified. Results: Both L. reuteri strains showed co-aggregation abilities with the yeasts. The lactobacilli almost completely inhibited the growth of C. albicans and C. parapsilosis, but did not affect C. krusei. Statistically significant differences in co-aggregation and growth inhibition capacities between the two L. reuteri strains were observed (p<0.001). The pH measurements suggested that C. krusei can resist the acids produced by the lactobacilli. Conclusions: L. reuteri exhibited antifungal properties against five of the six most common oral Candida species. Further, the results reconfirms that the probiotic capacity of L. reuteri is strain specific. PMID:28326154

  3. microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency.

    PubMed

    Giusti, Lorenzo; Mica, Erica; Bertolini, Edoardo; De Leonardis, Anna Maria; Faccioli, Primetta; Cattivelli, Luigi; Crosatti, Cristina

    2017-05-01

    Plant stress response is a complex molecular process based on transcriptional and posttranscriptional regulation of many stress-related genes. microRNAs are the best-studied class of small RNAs known to play key regulatory roles in plant response to stress, besides being involved in plant development and organogenesis. We analyzed the leaf miRNAome of two durum wheat cultivars (Cappelli and Ofanto) characterized by a contrasting water use efficiency, exposed to heat stress, and mild and severe drought stress. On the whole, we identified 98 miRNA highly similar to previously known miRNAs and grouped in 47 MIR families, as well as 85 novel candidate miRNA, putatively wheat specific. A total of 80 known and novel miRNA precursors were found differentially expressed between the two cultivars or modulated by stress and many of them showed a cultivar-specific expression profile. Interestingly, most in silico predicted targets of the miRNAs coming from the differentially expressed precursors have been experimentally linked in other species to mechanisms controlling stomatal movement, a finding in agreement with previous results showing that Cappelli has a lower stomatal conductance than Ofanto. Selected miRNAs were validated through a standardized and reliable stem-loop qRT-PCR procedure.

  4. Acceptance and Commitment Therapy modules: Differential impact on treatment processes and outcomes.

    PubMed

    Villatte, Jennifer L; Vilardaga, Roger; Villatte, Matthieu; Plumb Vilardaga, Jennifer C; Atkins, David C; Hayes, Steven C

    2016-02-01

    A modular, transdiagnostic approach to treatment design and implementation may increase the public health impact of evidence-based psychosocial interventions. Such an approach relies on algorithms for selecting and implementing treatment components intended to have a specific therapeutic effect, yet there is little evidence for how components function independent of their treatment packages when employed in clinical service settings. This study aimed to demonstrate the specificity of treatment effects for two components of Acceptance and Commitment Therapy (ACT), a promising candidate for modularization. A randomized, nonconcurrent, multiple-baseline across participants design was used to examine component effects on treatment processes and outcomes in 15 adults seeking mental health treatment. The ACT OPEN module targeted acceptance and cognitive defusion; the ACT ENGAGED module targeted values-based activation and persistence. According to Tau-U analyses, both modules produced significant improvements in psychiatric symptoms, quality of life, and targeted therapeutic processes. ACT ENGAGED demonstrated greater improvements in quality of life and values-based activation. ACT OPEN showed greater improvements in symptom severity, acceptance, and defusion. Both modules improved awareness and non-reactivity, which were mutually targeted, though using distinct intervention procedures. Both interventions demonstrated high treatment acceptability, completion, and patient satisfaction. Treatment effects were maintained at 3-month follow up. ACT components should be considered for inclusion in a modular approach to implementing evidence-based psychosocial interventions for adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Epidermal Notch signalling: differentiation, cancer and adhesion.

    PubMed

    Watt, Fiona M; Estrach, Soline; Ambler, Carrie A

    2008-04-01

    The Notch pathway plays an important role in regulating epidermal differentiation. Notch ligands, receptors and effectors are expressed in a complex and dynamic pattern in embryonic and adult skin. Genetic ablation or activation of the pathway reveals that Notch signalling promotes differentiation of the hair follicle, sebaceous gland and interfollicular epidermal lineages and that Notch acts as an epidermal tumour suppressor. Notch signalling interacts with a range of other pathways to fulfil these functions and acts via RBP-Jkappa dependent and independent mechanisms. The effects on differentiation can be cell autonomous and non-autonomous, and Notch contributes to stem cell clustering via modulation of cell adhesion.

  6. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells.

    PubMed

    Liao, Xiao-Bo; Zhang, Zhi-Yuan; Yuan, Ke; Liu, Yuan; Feng, Xiang; Cui, Rong-Rong; Hu, Ye-Rong; Yuan, Zhao-Shun; Gu, Lu; Li, Shi-Jun; Mao, Ding-An; Lu, Qiong; Zhou, Xin-Ming; de Jesus Perez, Vinicio A; Yuan, Ling-Qing

    2013-09-01

    Arterial calcification is a key pathologic component of vascular diseases such as atherosclerosis, coronary artery disease, and peripheral vascular disease. A hallmark of this pathological process is the phenotypic transition of vascular smooth muscle cells (VSMCs) to osteoblast-like cells. Several studies have demonstrated that microRNAs (miRNAs) regulate osteoblast differentiation, but it is unclear whether miRNAs also regulate VSMC-mediated arterial calcification. In the present study, we sought to characterize the role of miR-133a in regulating VSMC-mediated arterial calcification. Northern blotting analysis of VSMCs treated with β-glycerophosphate demonstrated that miR-133a was significantly decreased during osteogenic differentiation. Overexpression of miR-133a inhibited VSMC transdifferentiation into osteoblast-like cells as evidenced by a decrease in alkaline phosphatase activity, osteocalcin secretion, Runx2 expression, and mineralized nodule formation. Conversely, the knockdown of miR-133a using an miR-133a inhibitor promoted osteogenic differentiation of VSMCs by increasing alkaline phosphatase activity, osteocalcin secretion, and Runx2 expression. Runx2 was identified as a direct target of miR-133a by a cotransfection experiment in VSMCs with luciferase reporter plasmids containing wild-type or mutant 3'-untranslated region sequences of Runx2. Furthermore, the pro-osteogenic effects of miR-133a inhibitor were abrogated in Runx2-knockdown cells, and the inhibition of osteogenic differentiation by pre-miR-133a was reversed by overexpression of Runx2, providing functional evidence that the effects of miR-133a in osteogenic differentiation were mediated by targeting Runx2. These results demonstrate that miR-133a is a key negative regulator of the osteogenic differentiation of VSMCs.

  7. Broadband pump-probe spectroscopy at 20-MHz modulation frequency.

    PubMed

    Preda, Fabrizio; Kumar, Vikas; Crisafi, Francesco; Figueroa Del Valle, Diana Gisell; Cerullo, Giulio; Polli, Dario

    2016-07-01

    We introduce an innovative high-sensitivity broadband pump-probe spectroscopy system, based on Fourier-transform detection, operating at 20-MHz modulation frequency. A common-mode interferometer employing birefringent wedges creates two phase-locked delayed replicas of the broadband probe pulse, interfering at a single photodetector. A single-channel lock-in amplifier demodulates the interferogram, whose Fourier transform provides the differential transmission spectrum. Our approach combines broad spectral coverage with high sensitivity, due to high-frequency modulation and detection. We demonstrate its performances by measuring two-dimensional differential transmission maps of a carbon nanotubes sample, simultaneously acquiring the signal over the entire 950-1350 nm range with 2.7·10-6  rms noise over 1.5 s integration time.

  8. Enlightening discriminative network functional modules behind Principal Component Analysis separation in differential-omic science studies

    PubMed Central

    Ciucci, Sara; Ge, Yan; Durán, Claudio; Palladini, Alessandra; Jiménez-Jiménez, Víctor; Martínez-Sánchez, Luisa María; Wang, Yuting; Sales, Susanne; Shevchenko, Andrej; Poser, Steven W.; Herbig, Maik; Otto, Oliver; Androutsellis-Theotokis, Andreas; Guck, Jochen; Gerl, Mathias J.; Cannistraci, Carlo Vittorio

    2017-01-01

    Omic science is rapidly growing and one of the most employed techniques to explore differential patterns in omic datasets is principal component analysis (PCA). However, a method to enlighten the network of omic features that mostly contribute to the sample separation obtained by PCA is missing. An alternative is to build correlation networks between univariately-selected significant omic features, but this neglects the multivariate unsupervised feature compression responsible for the PCA sample segregation. Biologists and medical researchers often prefer effective methods that offer an immediate interpretation to complicated algorithms that in principle promise an improvement but in practice are difficult to be applied and interpreted. Here we present PC-corr: a simple algorithm that associates to any PCA segregation a discriminative network of features. Such network can be inspected in search of functional modules useful in the definition of combinatorial and multiscale biomarkers from multifaceted omic data in systems and precision biomedicine. We offer proofs of PC-corr efficacy on lipidomic, metagenomic, developmental genomic, population genetic, cancer promoteromic and cancer stem-cell mechanomic data. Finally, PC-corr is a general functional network inference approach that can be easily adopted for big data exploration in computer science and analysis of complex systems in physics. PMID:28287094

  9. Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms.

    PubMed

    Clemente-Perez, Alexandra; Makinson, Stefanie Ritter; Higashikubo, Bryan; Brovarney, Scott; Cho, Frances S; Urry, Alexander; Holden, Stephanie S; Wimer, Matthew; Dávid, Csaba; Fenno, Lief E; Acsády, László; Deisseroth, Karl; Paz, Jeanne T

    2017-06-06

    Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT) gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV) and somatostatin (SOM) expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Immunoregulatory effects of glutathione during mesenchymal stem cell differentiation to hepatocyte-like cells.

    PubMed

    Ahmadi-Ashtiani, Hamid-Reza; Allameh, Abdolamir; Rastegar, Hossein; Mortaz, Esmaeil; Saraf, Zahir

    2012-09-01

    The role of mesenchymal stem cell in cellular therapy is the subject of interest for many researchers. The differentiation potential of MSCs and abilities in modulations of the recipient's immune system makes them important cells in tissue regenerative studies. MSCs by releasing the proinflammatory cytokines play important role in immunomodulatory systems; however the signaling pathways for releasing of these mediators are not well understood. Glutathione has been shown to play a role in modulation of cytokines in hepatogenic differentiation. In the current study we aimed to investigate the effects of buthionine sulfoximine (BSO, inhibitor for glutathione synthesis) and N-acetylecystin (NAC, an inhibitor for ROS generation) on proinflammatory cytokines production in a hepatogenic differentiation model. BSO and NAC significantly decreased IL-6 and TNF-α levels at 14 days of differentiation, whereas, NAC decreased the levels of IL-8 at days 2 and 14 of differentiation. Moreover, intracellular glutathione level during the differentiation was depleted. Our current study suggests a novel role of GSH as an immunopharmacological regulatory molecule during hepatogenic differentiation. Finally, this information may shed some light on the understanding of MSCs responses in transplantation and cell therapy in diseases such as chronic hepatic diseases.

  11. Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells

    PubMed Central

    Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.

    2013-01-01

    Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon

  12. Differential modulation of host plant delta13C and delta18O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment.

    PubMed

    Querejeta, J I; Allen, M F; Caravaca, F; Roldán, A

    2006-01-01

    Native, drought-adapted arbuscular mycorrhizal fungi (AMF) often improve host-plant performance to a greater extent than nonnative AMF in dry environments. However, little is known about the physiological basis for this differential plant response. Seedlings of Olea europaea and Rhamnus lycioides were inoculated with either a mixture of eight native Glomus species or with the nonnative Glomus claroideum before field transplanting in a semiarid area. Inoculation with native AMF produced the greatest improvement in nutrient and water status as well as in long-term growth for both Olea and Rhamnus. Foliar delta18O measurements indicated that native AMF enhanced stomatal conductance to a greater extent than nonnative AMF in Olea and Rhamnus.delta13C data showed that intrinsic water-use efficiency in Olea was differentially stimulated by native AMF compared with nonnative AMF. Our results suggest that modulation of leaf gas exchange by native, drought-adapted AMF is critical to the long-term performance of host plants in semiarid environments. delta18O can provide a time-integrated measure of the effect of mycorrhizal infection on host-plant water relations.

  13. Seeing red: affect modulation and chromatic color responses on the Rorschach.

    PubMed

    Malone, Johanna C; Stein, Michelle B; Slavin-Mulford, Jenelle; Bello, Iruma; Sinclair, S Justin; Blais, Mark A

    2013-01-01

    Psychoanalytic theories suggest that color perception on the Rorschach relates to affective modulation. However, this idea has minimal empirical support. Using a clinical sample, the authors explored the cognitive and clinical correlates of Rorschach color determinants and differences among four affective modulation subtypes: Controlled, Balanced, Under-Controlled, and Flooded. Subtypes were differentiated by measures of affective regulation, reality testing/confusion, and personality traits. Initial support for the relationship of chromatic color response styles and affective modulation was found.

  14. Dystroglycan modulates the ability of insulin-like growth factor-1 to promote oligodendrocyte differentiation.

    PubMed

    Galvin, Jason; Eyermann, Christopher; Colognato, Holly

    2010-11-15

    The adhesion receptor dystroglycan positively regulates terminal differentiation of oligodendrocytes, but the mechanism by which this occurs remains unclear. Using primary oligodendrocyte cultures, we identified and examined a connection between dystroglycan and the ability of insulin-like growth factor-1 (IGF-1) to promote oligodendrocyte differentiation. Consistent with previous reports, treatment with exogenous IGF-1 caused an increase in MBP protein that was preceded by activation of PI3K (AKT) and MAPK (ERK) signaling pathways. The extracellular matrix protein laminin was further shown to potentiate the effect of IGF-1 on oligodendrocyte differentiation. Depletion of the laminin receptor dystroglycan using siRNA, however, blocked the ability of IGF-1 to promote oligodendrocyte differentiation of cells grown on laminin, suggesting a role for dystroglycan in IGF-1-mediated differentiation. Indeed, loss of dystroglycan led to a reduction in the ability of IGF-1 to activate MAPK, but not PI3K, signaling pathways. Pharmacological inhibition of MAPK signaling also prevented IGF-1-induced increases in myelin basic protein (MBP), indicating that MAPK signaling was necessary to drive IGF-1-mediated enhancement of oligodendrocyte differentiation. Using immunoprecipitation, we found that dystroglycan, the adaptor protein Grb2, and insulin receptor substrate-1 (IRS-1), were associated in a protein complex. Taken together, our results suggest that the positive regulatory effect of laminin on oligodendrocyte differentiation may be attributed, at least in part, to dystroglycan's ability to promote IGF-1-induced differentiation.

  15. Differential Modulation of Ethanol-Induced Sedation and Hypnosis by Metabotropic Glutamate Receptor Antagonists in C57BL/6J Mice

    PubMed Central

    Sharko, Amanda C.; Hodge, Clyde W.

    2008-01-01

    Background Emerging evidence implicates metabotropic glutamate receptor (mGluR) function in the neurobiological effects of ethanol. The recent development of subtype specific mGluR antagonists has made it possible to examine the roles of specific mGluRs in biochemical and behavioral responses to ethanol. The purpose of the present study was to determine if mGluRs modulate the acute sedative-hypnotic properties of ethanol in mice. Methods C57BL / 6J mice were tested for locomotor activity (sedation) and duration of loss of the righting reflex (hypnosis) following acute systemic administration of ethanol alone or in combination with the mGluR5-selective antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), the mGluR1-selective antagonist, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), or the mGluR2 / 3-selective antagonist (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495)). Results MPEP (10 and 30 mg / kg) significantly enhanced both the sedative and hypnotic effects of ethanol, while LY341495 (10 and 30 mg / kg) significantly reduced the sedative-hypnotic effects of ethanol. CPCCOEt had no effect at any concentration tested. Further loss of righting reflex experiments revealed that LY341495 (30 mg / kg) significantly reduced hypnosis induced by the gamma-aminobutyric acid type A (GABAA) positive modulators, pentobarbital (50 mg / kg) and midazolam (60 mg / kg), and the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine (150 mg / kg), while MPEP (30 mg / kg) only significantly enhanced the hypnotic properties of ketamine (150 mg / kg). Conclusions These findings suggest that specific subtypes of the metabotropic glutamate receptor differentially modulate the sedative-hypnotic properties of ethanol through separate mechanisms of action, potentially involving GABAA and NMDA receptors. PMID:18070246

  16. COUP-TF1 Modulates Thyroid Hormone Action in an Embryonic Stem-Cell Model of Cortical Pyramidal Neuronal Differentiation.

    PubMed

    Teng, Xiaochun; Liu, Yan-Yun; Teng, Weiping; Brent, Gregory A

    2018-05-01

    Thyroid hormone is critical for normal brain development and acts in a spatial and temporal specific pattern. Thyroid hormone excess, or deficiency, can lead to irreversible impairment of brain and sensory development. Chicken ovalbumin upstream-transcription factor 1 (COUP-TF1), expressed early in neuronal development, is essential to achieve normal brain structure. Thyroid hormone stimulation of gene expression is inversely correlated with the level of COUP-TF1 expression. An in vitro method of differentiating mouse embryonic stem (mES) cells into cortical neurons was utilized to study the influence of COUP-TF1 on thyroid hormone signaling in brain development. mES cells were cultured and differentiated in specific conditioned media, and a high percentage of nestin-positive progenitor neurons in the first stage, and cortical neurons in the second stage, was obtained with characteristic neuronal firing. The number of nestin-positive progenitors, as determined by fluorescence-activated cell sorting analysis, was significantly greater with triiodothyronine (T3) treatment compared to control (p < 0.05). T3 enhanced the expression of cortical neuron marker (Tbr1 and Rc3) mRNAs. After COUP-TF1 knockdown, the number of nestin-positive progenitors was reduced compared to control (p < 0.05), but the number increased with T3 treatment. The mRNA of cortical neuronal gene markers was measured after COUP-TF1 knockdown. In the presence of T3, the peak expression of neuron markers Emx1, Tbr1, Camkiv, and Rc3 mRNA was earlier, at day 18 of differentiation, compared to control cells, at day 22. Furthermore, after COUP-TF1 knockdown, T3 induction of Rc3 and Tbr1 mRNA was significantly enhanced compared to cells expressing COUP-TF1. These results indicate that COUP-TF1 plays an important role in modulating the timing and magnitude of T3-stimulated gene expression required for normal corticogenesis.

  17. Salivary levels of mutans streptococci and Lactobacilli among Palestinian school children in East Jerusalem.

    PubMed

    Steinberg, Doron; Eskander, Lana; Zini, Avraham; Sgan-Cohen, Harold; Bajali, Musa

    2014-04-01

    The aim of the present study was to investigate the distribution of oral cariogenic bacteria among 12-year-old Palestinian children attending schools in East Jerusalem. Salivary levels of mutans streptococci (MS) and Lactobacilli (LB) were examined by semi-quantitative commercial kits and then correlated to social-demographic parameters. Overall, 52.1 % of the examined children presented the highest possible ranking score categories for MS bacteria, with only 5.4 % in the lowest category. Only 12.6 % of the school children presented the highest LB score, while 25 % had the lowest ranking score. Salivary MS levels in children attending private schools were lower than those of children in government schools and United Nations Relief and Works Agency (UNRWA) schools. Conversely, levels of LB were lowest in children attending UNRWA schools compared to government and private schools. Girls had significantly higher amounts of MS and LB than boys (p = 0.001). Lower MS levels were significantly related to the following socioeconomic variables: higher father's education level (p = 0.037), higher mother's education level (p = 0.063), mother's employment status (p = 0.012), and lower home density (p = 0.001). For LB, the only significant socioeconomic variable was higher father's employment level, which was related to lower LB level (p = 0.025). Levels of MS and LB were found to be strongly related with socioeconomic status among Palestinian children in East Jerusalem. The relatively high prevalence of cariogenic bacteria suggests that oral care prevention and treatment demands special attention from the health care institutions and authorities.

  18. Administration of a multistrain probiotic product (VSL#3) to women in the perinatal period differentially affects breast milk beneficial microbiota in relation to mode of delivery.

    PubMed

    Mastromarino, Paola; Capobianco, Daniela; Miccheli, Alfredo; Praticò, Giulia; Campagna, Giuseppe; Laforgia, Nicola; Capursi, Teresa; Baldassarre, Maria E

    2015-01-01

    Probiotic supplementation to a mother during the perinatal period can have a positive impact on the breast milk composition. The aim of our study was to evaluate the effect of oral supplementation with the probiotic VSL#3, during late pregnancy and lactation, on breast milk levels of beneficial bacteria and some functional components (oligosaccharides and lactoferrin) potentially able to have a positive influence on the microbiota. Breast milk microbiota was analyzed by conventional and quantitative real-time PCR. In a double-blind, placebo-controlled, randomized trial, 66 women took daily either the probiotic (n=33) or a placebo (n=33). Intergroup analysis demonstrated that the amounts of both lactobacilli and bifidobacteria were significantly higher in the colostrum and mature milk of the mothers taking VSL#3 in comparison to those taking placebo. The analysis of bacterial strains and species present in breast milk of VSL#3 supplemented mothers indicated that the administered probiotic microorganisms did not pass from maternal gut to mammary gland. In women with vaginal delivery, significantly higher amounts of lactobacilli and bifidobacteria were detected in colostrum and mature milk of probiotic treated group in comparison to placebo group, whereas no significant difference was observed between groups in women who had caesarean section, neither in colostrum nor in mature milk. Milk levels of oligosaccharides and lactoferrin were similar in placebo and probiotic supplemented groups at all timepoints and regardless of the mode of delivery. Our results indicate a probiotic-dependent modulation of breast milk microbiota in vaginally delivering women, possibly exerted through a systemic effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Anti-differentiation non-coding RNA, ANCR, is differentially expressed in different types of brain tumors.

    PubMed

    Malakootian, Mahshid; Mirzadeh Azad, Fatemeh; Fouani, Youssef; Taheri Bajgan, Elham; Saberi, Hooshang; Mowla, Seyed Javad

    2018-06-01

    Long non-coding RNAs (lncRNAs) are important modulators of various cellular and molecular events, including cancer-associated pathways. The Anti-differentiation ncRNA (ANCR) is a key regulator of keratinocyte differentiation, where its expression is necessary to maintain epidermal progenitor's cells. Herein, we investigated the expression pattern of ANCR in the course of neural differentiation. Moreover, we used published RNAseq data and clinical samples to evaluate the alteration of ANCR expression in different cell types and brain tumors. Furthermore, we manipulated ANCR expression in glioma cell lines to clarify a potential functional role for ANCR in tumorigenesis. Our qRT-PCR results revealed a significant upregulation of ANCR in more malignant and less differentiated types of brain tumors (P = 0.03). This data was in accordance with down regulation of ANCR during neural differentiation. ANCR suppression caused an elevation in apoptosis rate, as well as a G1 cell cycle arrest in glioblastoma cell line. Altogether, our data demonstrated that ANCR may play a role in glioma genesis and that it could be considered as a potential diagnostic and therapeutic target to combat brain cancers.

  20. Interactions of meat-associated bacteriocin-producing Lactobacilli with Listeria innocua under stringent sausage fermentation conditions.

    PubMed

    Leroy, Frédéric; Lievens, Kristoff; De Vuyst, Luc

    2005-10-01

    The kinetics of the antilisterial effect of meat-associated lactobacilli on Listeria innocua LMG 13568 were investigated during laboratory batch fermentations. During these fermentations, which were performed in a liquid meat simulation medium, a combination of process factors typical for European-style sausage fermentations was applied, such as a temperature of 20 degrees C and a representative pH and salting profile. Two bacteriocin-producing sausage isolates (Lactobacillus sakei CTC 494 and Lactobacillus curvatus LTH 1174), which have already proven efficacy in sausage trials, and one nonbacteriocinogenic, industrial strain (Lactobacillus sakei I), were evaluated. Staphylococcus carnosus 833 was included in the experiment because of its role in flavor and color development. When grown as a monoculture or upon cocultivation with L. sakei I and S. carnosus 833, L. innocua LMG 13568 developed slightly, despite the stress of low temperature, pH, lactic acid, salt, and nitrite. In contrast, when either of the bacteriocin producers was used, the L. innocua LMG 13568 population was rapidly inactivated with more than 3 log CFU ml(-1) after 2 days of fermentation. A bacteriocin-tolerant L. innocua LMG 13568 subpopulation (4 X 10(-4)) remained after bacteriocin inactivation. Thus, when the initial level of L. innocua LMG 13568 equaled 3 log CFU ml(-1), all cells were inactivated and no bacteriocin-tolerant cells were detected, even after 7 days of incubation. S. carnosus was not inactivated by the Lactobacillus bacteriocins and displayed slight growth.

  1. Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers

    PubMed Central

    Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Hsu, Pei-Yin; Lu, Tzu-Pin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Huang, Tim H.-M.; Chuang, Eric Y.; Chen, Yidong

    2016-01-01

    Several mutual information (MI)-based algorithms have been developed to identify dynamic gene-gene and function-function interactions governed by key modulators (genes, proteins, etc.). Due to intensive computation, however, these methods rely heavily on prior knowledge and are limited in genome-wide analysis. We present the modulated gene/gene set interaction (MAGIC) analysis to systematically identify genome-wide modulation of interaction networks. Based on a novel statistical test employing conjugate Fisher transformations of correlation coefficients, MAGIC features fast computation and adaption to variations of clinical cohorts. In simulated datasets MAGIC achieved greatly improved computation efficiency and overall superior performance than the MI-based method. We applied MAGIC to construct the estrogen receptor (ER) modulated gene and gene set (representing biological function) interaction networks in breast cancer. Several novel interaction hubs and functional interactions were discovered. ER+ dependent interaction between TGFβ and NFκB was further shown to be associated with patient survival. The findings were verified in independent datasets. Using MAGIC, we also assessed the essential roles of ER modulation in another hormonal cancer, ovarian cancer. Overall, MAGIC is a systematic framework for comprehensively identifying and constructing the modulated interaction networks in a whole-genome landscape. MATLAB implementation of MAGIC is available for academic uses at https://github.com/chiuyc/MAGIC. PMID:26972162

  2. Modulation of tumor necrosis factor (TNF) receptor expression during monocytic differentiation by glucocorticoids.

    PubMed

    Goppelt-Struebe, M; Reiser, C O; Schneider, N; Grell, M

    1996-10-01

    Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation. As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M). Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis. During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%. These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.

  3. Crx broadly modulates the pineal transcriptome

    PubMed Central

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M.; Rohde, Kristian; Coon, Steven L.; Litman, Thomas; Rath, Martin F.; Møller, Morten; Klein, David C.

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. Here, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use of microarray and qRTPCR technology, thereby extending previous studies on selected genes (Furukawa et al. 1999). Deletion of Crx was not found to alter pineal morphology, but was found to broadly modulate the mouse pineal transcriptome, characterized by a >2-fold downregulation of 543 genes and a >2-fold upregulation of 745 genes (p < 0.05). Of these, one of the most highly upregulated (18-fold) is Hoxc4, a member of the Hox gene family, members of which are known to control gene expression cascades. During a 24-hour period, a set of 51 genes exhibited differential day/night expression in pineal glands of wild-type animals; only eight of these were also day/night expressed in the Crx−/− pineal gland. However, in the Crx−/− pineal gland 41 genes exhibit differential night/day expression that is not seen in wild-type animals. These findings indicate that Crx broadly modulates the pineal transcriptome and also influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 upregulation. PMID:21797868

  4. Differential modulation of visual object processing in dorsal and ventral stream by stimulus visibility.

    PubMed

    Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido

    2016-10-01

    As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Corticosterone affects the differentiation of a neuronal cerebral cortex-derived cell line through modulation of the nicotinic acetylcholine receptor.

    PubMed

    Baier, C J; Franco, D L; Gallegos, C E; Mongiat, L A; Dionisio, L; Bouzat, C; Caviedes, P; Barrantes, F J

    2014-08-22

    Chronic exposure to stress hormones has an impact on brain structures relevant to cognition. Nicotinic acetylcholine receptors (AChRs) are involved in numerous cognitive processes including learning and memory formation. In order to better understand the molecular mechanisms of chronic stress-triggered mental disease, the effect of corticosterone (CORT) on the biology of AChRs was studied in the neuronal cell line CNh. We found that chronic treatment with CORT reduced the expression levels of the α7-type neuronal AChR and, to a lesser extent, of α4-AChR. CORT also delayed the acquisition of the mature cell phenotype in CNh cells. Chronic nicotine treatment affected the differentiation of CNh cells and exerted a synergistic effect with CORT, suggesting that AChR could participate in signaling pathways that control the cell cycle. Overexpression of α7-AChR-GFP abolished the CORT effects on the cell cycle and the specific α7-AChR inhibitor, methyllycaconitine, mimicked the proliferative action exerted by CORT. Whole-cell voltage-clamp recordings showed a significant decrease in nicotine-evoked currents in CORT-treated cells. Taken together, these observations indicate that AChRs, and the α7-AChR in particular, could act as modulators of the differentiation of CNh cells and that CORT could impair the acquisition of a mature phenotype by affecting the function of this AChR subtype. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Solving Differential Equations Analytically. Elementary Differential Equations. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 335.

    ERIC Educational Resources Information Center

    Goldston, J. W.

    This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…

  7. Module isolation devices

    DOEpatents

    Carolan, Michael Francis; Cooke, John Albert; Buzinski, Michael David

    2010-04-27

    A gas flow isolation device includes a gas flow isolation valve movable from an opened condition to a closed condition. The module isolation valve in one embodiment includes a rupture disk in flow communication with a flow of gas when the module isolation valve is in an opened condition. The rupture disk ruptures when a predetermined pressure differential occurs across it causing the isolation valve to close. In one embodiment the valve is mechanically linked to the rupture disk to maintain the valve in an opened condition when the rupture disk is intact, and which permits the valve to move into a closed condition when the rupture disk ruptures. In another embodiment a crushable member maintains the valve in an open condition, and the flow of gas passed the valve upon rupturing of the rupture disk compresses the crushable member to close the isolation valve.

  8. Zinc and Copper Differentially Modulate Amyloid Precursor Protein Processing by γ-Secretase and Amyloid-β Peptide Production.

    PubMed

    Gerber, Hermeto; Wu, Fang; Dimitrov, Mitko; Garcia Osuna, Guillermo M; Fraering, Patrick C

    2017-03-03

    Recent evidence suggests involvement of biometal homeostasis in the pathological mechanisms in Alzheimer's disease (AD). For example, increased intracellular copper or zinc has been linked to a reduction in secreted levels of the AD-causing amyloid-β peptide (Aβ). However, little is known about whether these biometals modulate the generation of Aβ. In the present study we demonstrate in both cell-free and cell-based assays that zinc and copper regulate Aβ production by distinct molecular mechanisms affecting the processing by γ-secretase of its Aβ precursor protein substrate APP-C99. We found that Zn 2+ induces APP-C99 dimerization, which prevents its cleavage by γ-secretase and Aβ production, with an IC 50 value of 15 μm Importantly, at this concentration, Zn 2+ also drastically raised the production of the aggregation-prone Aβ43 found in the senile plaques of AD brains and elevated the Aβ43:Aβ40 ratio, a promising biomarker for neurotoxicity and AD. We further demonstrate that the APP-C99 histidine residues His-6, His-13, and His-14 control the Zn 2+ -dependent APP-C99 dimerization and inhibition of Aβ production, whereas the increased Aβ43:Aβ40 ratio is substrate dimerization-independent and involves the known Zn 2+ binding lysine Lys-28 residue that orientates the APP-C99 transmembrane domain within the lipid bilayer. Unlike zinc, copper inhibited Aβ production by directly targeting the subunits presenilin and nicastrin in the γ-secretase complex. Altogether, our data demonstrate that zinc and copper differentially modulate Aβ production. They further suggest that dimerization of APP-C99 or the specific targeting of individual residues regulating the production of the long, toxic Aβ species, may offer two therapeutic strategies for preventing AD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses.

    PubMed

    Liu, Bao-Hong; Cai, Jian-Ping

    2017-01-01

    Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection.

  10. Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses

    PubMed Central

    2017-01-01

    Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection. PMID:28529955

  11. Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 Modulation of Cereblon Activity

    PubMed Central

    Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Schafer, Peter H.

    2017-01-01

    BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27+ memory and memory-like CD27−IgD− double-negative (DN) B cells, but not CD27−IgD+ naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27+ memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. PMID:28848067

  12. Re-modulated technology of WDM-PON employing different DQPSK downstream signals

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu

    2012-11-01

    This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  14. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium.

    PubMed

    Hugo, Ayelén A; Rolny, Ivanna S; Romanin, David; Pérez, Pablo F

    2017-03-01

    Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.

  15. Development of photovoltaic array and module safety requirements

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  16. Human Papillomavirus Types 16 and 18 Early-expressed Proteins Differentially Modulate the Cellular Redox State and DNA Damage

    PubMed Central

    Cruz-Gregorio, Alfredo; Manzo-Merino, Joaquín; Gonzaléz-García, María Cecilia; Pedraza-Chaverri, José; Medina-Campos, Omar Noel; Valverde, Mahara; Rojas, Emilio; Rodríguez-Sastre, María Alexandra; García-Cuellar, Claudia María; Lizano, Marcela

    2018-01-01

    Oxidative stress has been proposed as a risk factor for cervical cancer development. However, few studies have evaluated the redox state associated with human papillomavirus (HPV) infection. The aim of this work was to determine the role of the early expressed viral proteins E1, E2, E6 and E7 from HPV types 16 and 18 in the modulation of the redox state in an integral form. Therefore, generation of reactive oxygen species (ROS), concentration of reduced glutathione (GSH), levels and activity of the antioxidant enzymes catalase and superoxide dismutase (SOD) and deoxyribonucleic acid (DNA) damage, were analysed in epithelial cells ectopically expressing the viral proteins. Our research shows that E6 oncoproteins decreased GSH and catalase protein levels, as well as its enzymatic activity, which was associated with an increase in ROS production and DNA damage. In contrast, E7 oncoproteins increased GSH, as well as catalase protein levels and its activity, which correlated with a decrease in ROS without affecting DNA integrity. The co-expression of both E6 and E7 oncoproteins neutralized the effects that were independently observed for each of the viral proteins. Additionally, the combined expression of E1 and E2 proteins increased ROS levels with the subsequent increase in the marker for DNA damage phospho-histone 2AX (γH2AX). A decrease in GSH, as well as SOD2 levels and activity were also detected in the presence of E1 and E2, even though catalase activity increased. This study demonstrates that HPV early expressed proteins differentially modulate cellular redox state and DNA damage. PMID:29483822

  17. wALADin benzimidazoles differentially modulate the function of porphobilinogen synthase orthologs.

    PubMed

    Lentz, Christian S; Halls, Victoria S; Hannam, Jeffrey S; Strassel, Silke; Lawrence, Sarah H; Jaffe, Eileen K; Famulok, Michael; Hoerauf, Achim; Pfarr, Kenneth M

    2014-03-27

    The heme biosynthesis enzyme porphobilinogen synthase (PBGS) is a potential drug target in several human pathogens. wALADin1 benzimidazoles have emerged as species-selective PBGS inhibitors against Wolbachia endobacteria of filarial worms. In the present study, we have systematically tested wALADins against PBGS orthologs from bacteria, protozoa, metazoa, and plants to elucidate the inhibitory spectrum. However, the effect of wALADin1 on different PBGS orthologs was not limited to inhibition: several orthologs were stimulated by wALADin1; others remained unaffected. We demonstrate that wALADins allosterically modulate the PBGS homooligomeric equilibrium with inhibition mediated by favoring low-activity oligomers, while 5-aminolevulinic acid, Mg(2+), or K(+) stabilized high-activity oligomers. Pseudomonas aeruginosa PBGS could be inhibited or stimulated by wALADin1 depending on these factors and pH. We have defined the wALADin chemotypes responsible for either inhibition or stimulation, facilitating the design of tailored PBGS modulators for potential application as antimicrobial agents, herbicides, or drugs for porphyric disorders.

  18. Differential Sensitivity Between a Virtual Reality Balance Module and Clinically Used Concussion Balance Modalities.

    PubMed

    Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M

    2016-03-01

    Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Retrospective case-control study. Institutional research laboratory. Normal controls (n = 94) and concussed participants (n = 27). All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours postinjury) and tested in the laboratory between 7 and 10 days postinjury. Receiver operating characteristic curves were performed to establish the VR module's sensitivity and specificity for detecting lingering balance deficits. Final balance score. For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. The VR balance module has high sensitivity and specificity for detecting subacute balance deficits after concussive injury. The VR balance has a high subacute sensitivity and specificity as a stand-alone balance assessment tool and may detect ongoing balance deficits not readily detectable by the Balance Error Scoring System or Sensory Organization Test. Virtual reality balance modules may be a beneficial addition to the current clinical concussion diagnostic battery.

  19. Interferon-γ differentially modulates the impact of tumor necrosis factor-α on human endometrial stromal cells.

    PubMed

    Spratte, Julia; Oemus, Anne; Zygmunt, Marek; Fluhr, Herbert

    2015-09-01

    The pro-inflammatory T helper (Th)-1 cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), are immunological factors relevant at the feto-maternal interface and involved in the pathophysiology of implantation disorders. The synergistic action of the two cytokines has been described with regard to apoptotic cell death and inflammatory responses in different cell types, but little is known regarding the human endometrium. Therefore, we examined the interaction of TNF-α and IFN-γ in human endometrial stromal cells (ESCs). ESCs were isolated from specimens obtained during hysterectomy and decidualized in vitro. Cells were incubated with TNF-α, IFN-γ or signaling-inhibitor. Insulin-like growth factor binding protein (IGFBP)-1, prolactin (PRL), leukemia inhibitory factor (LIF), interleukin (IL)-6, IL-8, regulated on activation normal T-cell expressed and secreted protein (RANTES) and monocyte chemotactic protein (MCP)-1 were measured using ELISA and real-time RT-PCR. Nuclear factor of transcription (NF)-κB and its inhibitor (IκBα) were analyzed by in-cell western assay and transcription factor assay. TNF-α inhibited and IFN-γ did not affect the decidualization of ESCs. In contrast, IFN-gamma differentially modulated the stimulating effect of TNF-alpha on cytokines by enhancing IL-6, RANTES and MCP-1 and attenuating LIF mRNA expression. These effects were time- and dose-dependent. IFN-γ had no impact on the initial activation of NF-κB signaling. Histone-deacetylase activity was involved in the modulating effect of IFN-γ on RANTES secretion. These observations showed a distinct pattern of interaction of the Th-1 cytokines, TNF-α and IFN-γ in the human endometrium, which could play an important role in the pathophysiology of implantation disorders. Copyright © 2015 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z

  20. Characterization of an intraluminal differential frequency-domain photoacoustics system

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Son, Jungik; Liang, Simon; Castelino, Robin; Foster, F. Stuart; Courtney, Brian; Mandelis, Andreas

    2016-03-01

    Cardiovascular related diseases are ranked as the second highest cause of death in Canada. Among the most important cardiovascular diseases is atherosclerosis. Current methods of diagnosis of atherosclerosis consist of angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). None of these methods possesses adequate sensitivity, as the ideal technique should be capable of both depth profiling, as well as functional imaging. An alternative technique is photoacoustics (PA) which can perform deep imaging and spectroscopy. The presented study explores the application of wavelength-modulated differential photoacoustic radar (WM-DPAR) for characterizing arterial vessels. The wavelength-modulated differential photoacoustic technique was shown to be able to substantially increase the dynamic range and sensitivity of hemoglobin oxygenation level detection. In this work the differential PA technique was used with a very high frequency modulation range. To perform spectroscopic PA imaging, at least two wavelengths are required. The selected wavelengths for this work are 1210 nm and 980 nm. 1210 nm corresponds to the maximum optical absorption coefficient of cholesterol and cholesteryl esters which are the main constituents of plaques. Since water, elastin and collagen also have high absorption coefficients at 1210 nm, this wavelength alone cannot provide very high sensitivity and specificity. The additional wavelength, 980 nm corresponds to high absorption coefficient of those constituents of healthy artery tissue. The simultaneous application of the abovementioned wavelengths can provide higher sensitivity and improved specificity in detecting lipids in the arterial vessels.

  1. Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats

    PubMed Central

    Fox, Steven V; Gotter, Anthony L; Tye, Spencer J; Garson, Susan L; Savitz, Alan T; Uslaner, Jason M; Brunner, Joseph I; Tannenbaum, Pamela L; McDonald, Terrence P; Hodgson, Robert; Yao, Lihang; Bowlby, Mark R; Kuduk, Scott D; Coleman, Paul J; Hargreaves, Richard; Winrow, Christopher J; Renger, John J

    2013-01-01

    Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague–Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep. PMID:23722242

  2. Single or combined treatment with L-DOPA and quinpirole differentially modulate expression and phosphorylation of key regulatory kinases in neuroblastoma cells.

    PubMed

    Fuzzati-Armentero, Marie Therese; Ghezzi, Cristina; Nisticò, Robert; Oda, Adriano; Blandini, Fabio

    2013-09-27

    In the past decades, the clinical use of dopamine agonists has expanded from adjunct therapy in patients with a deteriorating response to L-3,4-dihydroxyphenylalanine (L-DOPA) to monotherapy for the treatment of early PD. Dopamine agonists provide their antiparkinsonian benefit through stimulation of brain postsynaptic type 2 dopamine receptors that exert their effect through classical cAMP-dependent mechanisms, as well as cAMP-independent cellular signaling cascades, including the Akt/glycogen synthase kinase 3 (GSK3) pathway. Alterations of Akt/GSK3 have been observed and may contribute to the neurodegenerative processes and the development of L-DOPA-induced dyskinesia. The effects L-DOPA and quinpirole, a dopamine agonist, on the two key regulatory kinases, Akt and GSK3, were evaluated in neuroblastoma cell line. L-DOPA and dopamine agonist dose-dependently and differentially modulated Akt and GSK3 expression and phosphorylation when added alone or combined. The combined treatment inverted or potentiated the modulatory properties of the single compound. The drug- and concentration-dependent balance of dopamine receptor stimulation over auto-oxidation may distinctively modulate GSK3 isoforms and Akt. Our results indicate that particular attention must be given to drug concentration and combination when multiple therapies are applied for the clinical treatment of PD patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. A cryogenic multichannel electronically scanned pressure module

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  4. Functional differentiation of human pluripotent stem cells on a chip.

    PubMed

    Giobbe, Giovanni G; Michielin, Federica; Luni, Camilla; Giulitti, Stefano; Martewicz, Sebastian; Dupont, Sirio; Floreani, Annarosa; Elvassore, Nicola

    2015-07-01

    Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments.

  5. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  6. Pleiotrophin antagonizes Brd2 during neuronal differentiation

    PubMed Central

    Garcia-Gutierrez, Pablo; Juarez-Vicente, Francisco; Wolgemuth, Debra J.; Garcia-Dominguez, Mario

    2014-01-01

    ABSTRACT Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing induced neuronal differentiation. Moreover, Ptn knockdown reduced neuronal differentiation. We analyzed Ptn-mediated antagonism of Brd2 in a cell differentiation model and in two embryonic processes associated with the neural tube: spinal cord neurogenesis and neural crest migration. Finally, we investigated the mechanisms of Ptn-mediated antagonism and determined that Ptn destabilizes the association of Brd2 with chromatin. Thus, Ptn-mediated Brd2 antagonism emerges as a modulation system accounting for the balance between cell proliferation and differentiation in the vertebrate nervous system. PMID:24695857

  7. Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis.

    PubMed

    Savini, Isabella; Catani, Maria Valeria; Rossi, Antonello; Duranti, Guglielmo; Melino, Gerry; Avigliano, Luciana

    2002-02-01

    Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.

  8. Multi-level trellis coded modulation and multi-stage decoding

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu

    1990-01-01

    Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.

  9. Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 Modulation of Cereblon Activity.

    PubMed

    Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Hur, Eun Mi; Schafer, Peter H; Ringheim, Garth E

    2017-10-01

    BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27 + memory and memory-like CD27 - IgD - double-negative (DN) B cells, but not CD27 - IgD + naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27 + memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Aerodynamic parameter estimation via Fourier modulating function techniques

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1995-01-01

    Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

  11. Use of lactobacilli and estriol combination in the treatment of disturbed vaginal ecosystem: a review

    PubMed Central

    Ünlü, Cihat; Donders, Gilbert

    2011-01-01

    To maintain a healthy vaginal ecosystem or to restore any disturbance, sufficient estrogen levels, an intact mature vaginal epithelium, and physiological lactobacillary microflora are essential. Thus, a combination of beneficial lactobacilli and estrogen is an appealing treatment option. This article reviews the published data on the use of viable Lactobacillus acidophilus KS400 and a low dose of estriol (0.03 mg E3) in the form of vaginal tablets (Gynoflor®). In vitro studies demonstrated that L. acidophilus KS400 produces lactic acid and hydrogen peroxide (H2O2), inhibits the growth of relevant vaginal pathogens, and inhibits adherence of pathogens to epithelial cells. Topical administration of E3 for treatment of vaginal diseases is generally preferred, as this route of application of hormones produces a more significant local proliferative response and has no stimulating effect on the endometrium. Overall, 16 clinical studies have been published with the combination of L. acidophilus KS400 and 0.03 mg E3. The results of these trials have demonstrated that the combination improves the vaginal epithelium and the restoration of the lactobacillary microflora with an excellent safety profile, even during pregnancy. The combination can be used in pre- and postmenopausal women for the restoration of the vaginal flora after anti-infective therapy, for treatment of symptomatic vaginal atrophy, and for abnormal vaginal flora therapy. It can be also considered in repetitive therapy courses for the long-term prevention of recurrences of bacterial vaginosis, even though further clinical studies are needed to substantiate the benefit of this application. PMID:24592002

  12. Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.

    PubMed

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania

    2017-02-01

    Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. wALADin Benzimidazoles Differentially Modulate the Function of Porphobilinogen Synthase Orthologs

    PubMed Central

    2015-01-01

    The heme biosynthesis enzyme porphobilinogen synthase (PBGS) is a potential drug target in several human pathogens. wALADin1 benzimidazoles have emerged as species-selective PBGS inhibitors against Wolbachia endobacteria of filarial worms. In the present study, we have systematically tested wALADins against PBGS orthologs from bacteria, protozoa, metazoa, and plants to elucidate the inhibitory spectrum. However, the effect of wALADin1 on different PBGS orthologs was not limited to inhibition: several orthologs were stimulated by wALADin1; others remained unaffected. We demonstrate that wALADins allosterically modulate the PBGS homooligomeric equilibrium with inhibition mediated by favoring low-activity oligomers, while 5-aminolevulinic acid, Mg2+, or K+ stabilized high-activity oligomers. Pseudomonas aeruginosa PBGS could be inhibited or stimulated by wALADin1 depending on these factors and pH. We have defined the wALADin chemotypes responsible for either inhibition or stimulation, facilitating the design of tailored PBGS modulators for potential application as antimicrobial agents, herbicides, or drugs for porphyric disorders. PMID:24568185

  14. New insights into redox regulation of stem cell self-renewal and differentiation.

    PubMed

    Ren, Fenglian; Wang, Kui; Zhang, Tao; Jiang, Jingwen; Nice, Edouard Collins; Huang, Canhua

    2015-08-01

    Reactive oxygen species (ROS), the natural byproducts of aerobic metabolism, are precisely orchestrated to evoke diverse signaling pathways. To date, studies have focused mainly on the detrimental effects of ROS in stem cells. Recently, accumulating evidence has suggested that ROS also function as second messengers that modulate stem cell self-renewal and differentiation by regulating intricate signaling networks. Although many efforts have been made to clarify the general effects of ROS on signal transduction in stem cells, less is known about the initial and direct executors of ROS signaling, which are known as 'redox sensors'. Modifications of cysteine residues in redox sensors are of significant importance in the modulation of protein function in response to different redox conditions. Intriguingly, most key molecules in ROS signaling and cell cycle regulation (including transcriptional factors and kinases) that are crucial in the regulation of stem cell self-renewal and differentiation have the potential to be redox sensors. We highlight herein the importance of redox regulation of these key regulators in stem cell self-renewal and differentiation. Understanding the mechanisms of redox regulation in stem cell self-renewal and differentiation will open exciting new perspectives for stem cell biology. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Efficacy analysis of LDPC coded APSK modulated differential space-time-frequency coded for wireless body area network using MB-pulsed OFDM UWB technology.

    PubMed

    Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K

    2017-12-04

    Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.

  16. Integrating microRNA and mRNA expression profiles of acute promyelocytic leukemia cells to explore the occurrence mechanisms of differentiation syndrome

    PubMed Central

    Ge, Fei; Cao, Fenglin; Li, Haitao; Wang, Ping; Xu, Mengyuan; Song, Peng; Li, Xiaoxia; Wang, Shuye; Li, Jinmei; Han, Xueying; Zhao, Yanhong; Su, Yanhua; Li, Yinghua; Fan, Shengjin; Li, Limin; Zhou, Jin

    2016-01-01

    The pathogenesis of therapy-induced differentiation syndrome (DS) in patients with acute promyelocytic leukemia (APL) remains unclear. In this study, mRNA and microRNA (miRNA) expression profiling of peripheral blood APL cells from patients complicated with vs. without DS were integratively analyzed to explore the mechanisms underlying arsenic trioxide treatment-associated DS. By integrating the differentially expressed data with the data of differentially expressed microRNAs and their computationally predicted target genes, as well as the data of transcription factors and differentially expressed target microRNAs obtained from a literature search, a DS-related genetic regulatory network was constructed. Then using an EAGLE algorithm in clusterViz, the network was subdivided into 10 modules. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database the modules were annotated functionally, and three functionally active modules were recognized. The further in-depth analyses on the annotated functions of the three modules and the expression and roles of the related genes revealed that proliferation, differentiation, apoptosis and infiltration capability of APL cells might play important roles in the DS pathogenesis. The results could improve our understanding of DS pathogenesis from a more overall perspective, and could provide new clues for future research. PMID:27634874

  17. Cis- and trans-zeatin differentially modulate plant immunity.

    PubMed

    Großkinsky, Dominik K; Edelsbrunner, Kerstin; Pfeifhofer, Hartwig; van der Graaff, Eric; Roitsch, Thomas

    2013-07-01

    Phytohormones are essential regulators of various processes in plant growth and development. Several phytohormones are also known to regulate plant responses to environmental stress and pathogens. Only recently, cytokinins have been demonstrated to play an important role in plant immunity. Increased levels of cytokinins such as trans-zeatin, which are considered highly active, induced resistance against mainly (hemi)biotrophic pathogens in different plant species. In contrast, cis-zeatin is commonly regarded as a cytokinin exhibiting low or no activity. Here we comparatively study the impact of both zeatin isomers on the infection of Nicotiana tabacum by the (hemi)biotrophic microbial pathogen Pseudomonas syringae. We demonstrate a biological effect of cis-zeatin and a differential effect of the two zeatin isomers on symptom development, defense responses and bacterial multiplication.

  18. Dendritic cell MST1 inhibits Th17 differentiation

    PubMed Central

    Li, Chunxiao; Bi, Yujing; Li, Yan; Yang, Hui; Yu, Qing; Wang, Jian; Wang, Yu; Su, Huilin; Jia, Anna; Hu, Ying; Han, Linian; Zhang, Jiangyuan; Li, Simin; Tao, Wufan; Liu, Guangwei

    2017-01-01

    Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. PMID:28145433

  19. Differential targeting of Gbetagamma-subunit signaling with small molecules.

    PubMed

    Bonacci, Tabetha M; Mathews, Jennifer L; Yuan, Chujun; Lehmann, David M; Malik, Sundeep; Wu, Dianqing; Font, Jose L; Bidlack, Jean M; Smrcka, Alan V

    2006-04-21

    G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  20. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation

    PubMed Central

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose. PMID:28072818

  1. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation.

    PubMed

    Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.

  2. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cellsmore » versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.« less

  3. Expressions Module for the Satellite Orbit Analysis Program

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    The Expressions Module is a software module that has been incorporated into the Satellite Orbit Analysis Program (SOAP). The module includes an expressions- parser submodule built on top of an analytical system, enabling the user to define logical and numerical variables and constants. The variables can capture output from SOAP orbital-prediction and geometric-engine computations. The module can combine variables and constants with built-in logical operators (such as Boolean AND, OR, and NOT), relational operators (such as >, <, or =), and mathematical operators (such as addition, subtraction, multiplication, division, modulus, exponentiation, differentiation, and integration). Parentheses can be used to specify precedence of operations. The module contains a library of mathematical functions and operations, including logarithms, trigonometric functions, Bessel functions, minimum/ maximum operations, and floating- point-to-integer conversions. The module supports combinations of time, distance, and angular units and has a dimensional- analysis component that checks for correct usage of units. A parser based on the Flex language and the Bison program looks for and indicates errors in syntax. SOAP expressions can be built using other expressions as arguments, thus enabling the user to build analytical trees. A graphical user interface facilitates use.

  4. Prebiotic inulin supplementation modulates the immune response and restores gut morphology in Giardia duodenalis-infected malnourished mice.

    PubMed

    Shukla, Geeta; Bhatia, Ruchika; Sharma, Anuj

    2016-11-01

    Malnutrition induces a state of growth retardation and immunologic depression, enhancing the host susceptibility to various infections. In the present study, it was observed that prebiotic supplementation either prior or simultaneously with Giardia infection in malnourished mice significantly reduced the severity of giardiasis and increased the body and small intestine mass, along with increased lactobacilli counts in faeces compared with malnourished-Giardia-infected mice. More specifically, prebiotic supplementation significantly increased the levels of anti-giardial IgG and IgA antibodies and anti-inflammatory cytokines IL-6 and IL-10 and reduced the pro-inflammatory cytokine TNF-α, along with increased levels of nitric oxide in both the serum and intestinal fluid of malnourished-prebiotic-Giardia-infected mice compared with malnourished-Giardia-infected mice. Histopathology and scanning electron microscopy of the small intestine also revealed less cellular and mucosal damage in the microvilli of prebiotic-supplemented malnourished-Giardia-infected mice compared with severely damaged mummified and blunted villi of malnourished-Giardia-infected mice. This is the first study to report that prebiotic supplementation modulated the gut morphology and improved the immune status even in malnourished-Giardia-infected mice.

  5. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation

    PubMed Central

    Fuchs, Gilad; Shema, Efrat; Vesterman, Rita; Kotler, Eran; Wolchinsky, Zohar; Wilder, Sylvia; Golomb, Lior; Pribluda, Ariel; Zhang, Feng; Haj-Yahya, Mahmood; Feldmesser, Ester; Brik, Ashraf; Yu, Xiaochun; Hanna, Jacob; Aberdam, Daniel; Domany, Eytan; Oren, Moshe

    2012-01-01

    Summary Embryonic stem cells (ESC) maintain high genomic plasticity, essential for their capacity to enter diverse differentiation pathways. Post-transcriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner. PMID:22681888

  6. Measurement in Sensory Modulation: The Sensory Processing Scale Assessment

    PubMed Central

    Miller, Lucy J.; Sullivan, Jillian C.

    2014-01-01

    OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p < .01) were retained. Feedback from the expert panel also contributed to decisions about retaining items in the scale. CONCLUSION. The SPS Assessment appears to be a reliable and valid measure of sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464

  7. Generation and detection of 80-Gbit/s return-to-zero differential phase-shift keying signals

    NASA Astrophysics Data System (ADS)

    Möller, Lothar; Su, Yikai; Xie, Chongjin; Liu, Xiang; Leuthold, Juerg; Gill, Douglas; Wei, Xing

    2003-12-01

    Nonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.

  8. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens

    PubMed Central

    2014-01-01

    Background Biosurfactants (BS) are amphiphilic compounds produced by microbes, either on the cell surface or secreted extracellularly. BS exhibit strong antimicrobial and anti-adhesive properties, making them good candidates for applications used to combat infections. In this study, our goal was to assess the in vitro antimicrobial, anti-adhesive and anti-biofilm abilities of BS produced by Lactobacillus jensenii and Lactobacillus rhamnosus against clinical Multidrug Resistant (MDR) strains of Acinetobacter baumannii, Escherichia coli, and Staphylococcus aureus (MRSA). Cell-bound BS from both L. jensenii and L. rhamnosus were extracted and isolated. The surface activities of crude BS samples were evaluated using an oil spreading assay. The antimicrobial, anti-adhesive and anti-biofilm activities of both BS against the above mentioned MDR pathogens were determined. Results Surface activities for both BS ranged from 6.25 to 25 mg/ml with clear zones observed between 7 and 11 cm. BS of both L. jensenii and L. rhamnosus showed antimicrobial activities against A. baumannii, E. coli and S. aureus at 25-50 mg/ml. Anti-adhesive and anti-biofilm activities were also observed for the aforementioned pathogens between 25 and 50 mg/ml. Finally, analysis by electron microscope indicated that the BS caused membrane damage for A. baumannii and pronounced cell wall damage in S. aureus. Conclusion Our results indicate that BS isolated from two Lactobacilli strains has antibacterial properties against MDR strains of A. baumannii, E. coli and MRSA. Both BS also displayed anti-adhesive and anti-biofilm abilities against A. baumannii, E. coli and S. aureus. Together, these capabilities may open up possibilities for BS as an alternative therapeutic approach for the prevention and/or treatment of hospital-acquired infections. PMID:25124936

  9. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  10. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    DTIC Science & Technology

    2017-08-01

    Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be...Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT...recognition, we performed a high -throughput screen for compounds eliciting differential AR activity on cARE vs. sARE reporters. Of 10,000 compounds

  11. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    PubMed

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  12. Locomotion and task demands differentially modulate thalamic audiovisual processing during active search

    PubMed Central

    Williamson, Ross S.; Hancock, Kenneth E.; Shinn-Cunningham, Barbara G.; Polley, Daniel B.

    2015-01-01

    SUMMARY Active search is a ubiquitous goal-driven behavior wherein organisms purposefully investigate the sensory environment to locate a target object. During active search, brain circuits analyze a stream of sensory information from the external environment, adjusting for internal signals related to self-generated movement or “top-down” weighting of anticipated target and distractor properties. Sensory responses in the cortex can be modulated by internal state [1–9], though the extent and form of modulation arising in the cortex de novo versus an inheritance from subcortical stations is not clear [4, 8–12]. We addressed this question by simultaneously recording from auditory and visual regions of the thalamus (MG and LG, respectively) while mice used dynamic auditory or visual feedback to search for a hidden target within an annular track. Locomotion was associated with strongly suppressed responses and reduced decoding accuracy in MG but a subtle increase in LG spiking. Because stimuli in one modality provided critical information about target location while the other served as a distractor, we could also estimate the importance of task relevance in both thalamic subdivisions. In contrast to the effects of locomotion, we found that LG responses were reduced overall yet decoded stimuli more accurately when vision was behaviorally relevant, whereas task relevance had little effect on MG responses. This double dissociation between the influences of task relevance and movement in MG and LG highlights a role for extrasensory modulation in the thalamus but also suggests key differences in the organization of modulatory circuitry between the auditory and visual pathways. PMID:26119749

  13. Developing instrumentation to characterize thermoelectric generator modules.

    PubMed

    Liu, Dawei; Li, Qiming; Peng, Wenbo; Zhu, Lianjun; Gao, Hu; Meng, Qingsen; Jin, A J

    2015-03-01

    Based on the law of physics, known as "Seebeck effect," a thermoelectric generator (TEG) produces electricity when the temperature differential is applied across the TEG. This article reports a precision method in characterizing TEG modules. A precision instrument is constructed to study thermoelectric conversion in terms of output power and efficiency of TEG modules. The maximum allowable TEG module size is 150 mm, and the preferred size is from 30 mm to 60 mm. During measurements, the highest hot side temperature is 500 °C and the cold side temperature can be adjusted from room temperature to 100 °C. A mechanical structure is developed to control the pressure and parallelism of the clamping force of the TEG on both its hot and cold sides. A heat flux measurement module is installed at its cold side, and the heat flux through TEGs can be measured in position. Finally, the energy conversion efficiency of TEGs is calculated from experimental data of both an output power and a heat flux.

  14. Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Rashidi, A.; Nami, M.; Monavarian, M.; Aragon, A.; DaVico, K.; Ayoub, F.; Mishkat-Ul-Masabih, S.; Rishinaramangalam, A.; Feezell, D.

    2017-07-01

    This work describes a small-signal microwave method for determining the differential carrier lifetime and transport effects in electrically injected InGaN/GaN light-emitting diodes (LEDs). By considering the carrier diffusion, capture, thermionic escape, and recombination, the rate equations are used to derive an equivalent small-signal electrical circuit for the LEDs, from which expressions for the input impedance and modulation response are obtained. The expressions are simultaneously fit to the experimental data for the input impedance and modulation response for nonpolar InGaN/GaN micro-LEDs on free-standing GaN substrates. The fittings are used to extract the transport related circuit parameters and differential carrier lifetimes. The dependence of the parameters on the device diameter and current density is reported. We also derive approximations for the modulation response under low and high injection levels and show that the transport of carriers affects the modulation response of the device, especially at low injection levels. The methods presented are relevant to the design of high-speed LEDs for visible-light communication.

  15. Feasibility study of microwave modulation DIAL system for global CO II monitoring

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshihito; Kameyama, Shumpei; Ueno, Shinichi; Sugimoto, Nobuo; Kimura, Toshiyoshi

    2006-12-01

    A new concept of DIAL (DIfferential Absorption Lidar) system for global CO II monitoring using microwave modulation is introduced. This system uses quasi-CW lights which are intensity modulated in microwave region and receives a backscattered light from the ground. In this system, ON/OFF wavelength laser lights are modulated with microwave frequencies, and received lights of two wavelengths are able to be discriminated by modulation frequencies in electrical signal domain. Higher sensitivity optical detection can be realized compared with the conventional microwave modulation lidar by using direct down conversion of modulation frequency. The system also has the function of ranging by using pseudo-random coding in modulation. Fiber-based optical circuit using wavelength region of 1.6 micron is a candidate for the system configuration. After the explanation of this configuration, feasibility study of this system on the application to global CO II monitoring is introduced.

  16. miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification.

    PubMed

    Nissan, Xavier; Denis, Jérôme Alexandre; Saidani, Manoubia; Lemaitre, Gilles; Peschanski, Marc; Baldeschi, Christine

    2011-08-15

    The molecular mechanisms controlling the differentiation of human basal keratinocyte stem cells towards the epidermis are well characterized, whereas the earliest process leading to the specification of embryonic stem cells into keratinocytes is still not well understood. MicroRNAs are regulators of many cellular events, but evidence for microRNA acting on the differentiation of human embryonic stem cells into a specific lineage has been elusive. By using our recent protocol for obtaining functional keratinocytes from hESC, we attempted to analyze the role of microRNAs in the early stages of epidermal differentiation. Thus, we identified a set of 5 microRNAs, namely miR-200a, miR-200b, miR-203, miR-205 and miR-429, that are specifically overexpressed during the early stages of the differentiation process. Interestingly, our functional analyses revealed an instrumental role of miR-203, which had been previously shown to play a key role during the formation of the pluristratified epidermis by basal keratinocyte stem cells, in the early keratinocyte commitment. These results highlight the determinant and unique role of miR-203 during the entire process of epidermal development by extending its spectrum of action from the early commitment of embryonic stem cells to ultimate differentiation of the organ. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Aggression differentially modulates brain responses to fearful and angry faces: an exploratory study.

    PubMed

    Lu, Hui; Wang, Yu; Xu, Shuang; Wang, Yifeng; Zhang, Ruiping; Li, Tsingan

    2015-08-19

    Aggression is reported to modulate neural responses to the threatening information. However, whether aggression can modulate neural response to different kinds of threatening facial expressions (angry and fearful expressions) remains unknown. Thus, event-related potentials were measured in individuals (13 high aggressive, 12 low aggressive) exposed to neutral, angry, and fearful facial expressions while performing a frame-distinguishing task, irrespective of the emotional valence of the expressions. Highly aggressive participants showed no distinct neural responses between the three facial expressions. In addition, compared with individuals with low aggression, highly aggressive individuals showed a decreased frontocentral response to fearful faces within 250-300 ms and to angry faces within 400-500 ms of exposure. These results indicate that fearful faces represent a more threatening signal requiring a quick cognitive response during the early stage of facial processing, whereas angry faces elicit a stronger response during the later processing stage because of its eminent emotional significance. The present results represent the first known evidence that aggression is associated with different neural responses to fearful and angry faces. By exploring the distinct temporal responses to fearful and angry faces modulated by aggression, this study more precisely characterizes the cognitive characteristics of aggressive individuals. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  18. Differential paralog divergence modulates genome evolution across yeast species

    PubMed Central

    Lynch, Bryony; Huang, Mei; Alcantara, Erica; DeSevo, Christopher G.; Pai, Dave A.; Hoang, Margaret L.

    2017-01-01

    Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200–500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution. PMID:28196070

  19. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β-catenin signaling

    PubMed Central

    Cao, Fengdi; Zhan, Jialin; Chen, Xufeng; Zhang, Kai; Lai, Renfa; Feng, Zhiqiang

    2017-01-01

    The canonical Wnt/β-catenin signaling is important in the differentiation of human mesenchymal stem cells into osteoblasts. Accumulating evidence suggests that the expression of β-catenin is, in part, regulated by specific microRNAs (miRNAs). The aim of the present study was to investigate the putative roles of miRNAs in osteoblast differentiation. Polymerase chain reaction (PCR) arrays were used to identify miRNAs that were differentially expressed between differentiated and non-differentiated periodontal ligament stem cells (PDLSCs), and reverse transcription-quantitative PCR (RT-qPCR) was used for validation. Since miR-214 was revealed to be significantly downregulated during PDLSC differentiation, its function was further investigated via silencing and overexpression. In addition, osteogenic differentiation of PDLSCs was evaluated at 10 and 21 days following induction, using Alizarin red staining and RT-qPCR analysis for mRNA expression levels of the osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin and bone sialoprotein. Furthermore, the potential target genes of miR-214 were investigated using a dual-luciferase reporter assay, RT-qPCR and western blot analysis, whereas a TOPflash/FOPflash reporter plasmid system followed by a luciferase assay was used to examine the effects of miR-214 on Wnt/β-catenin signaling. The present results demonstrated that miR-214 was significantly downregulated during the osteoblastic differentiation of PDLSCs. Notably, its overexpression inhibited PDLSC differentiation, whereas its knockdown promoted PDLSC differentiation, as revealed by alterations in mRNA expression of osteoblast-specific genes and ALP. In addition, miR-214 was demonstrated to directly interact with the 3′-untranslated region of the β-catenin gene CTNNB1, and suppressed Wnt/β-catenin signaling through the inhibition of β-catenin. The results of the present study suggested that miR-214 may participate in the regulation of the Wnt

  20. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    PubMed Central

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  1. Indigenous lactobacilli strains of food and human sources reverse enteropathogenic E. coli O26:H11-induced damage in intestinal epithelial cell lines: effect on redistribution of tight junction proteins.

    PubMed

    Jariwala, Ruchi; Mandal, Hemanti; Bagchi, Tamishraha

    2017-09-01

    The aim of the study was to investigate the neutralizing effect of lactobacilli isolated from indigenous food and human sources on enteropathogenic Escherichia coli (EPEC) O26 : H11-induced epithelial barrier dysfunction in vitro. This was assessed by transepithelial electrical resistance (TEER) and permeability assays using intestinal cell lines, HT-29 and Caco-2. Furthermore, the expression and distribution of tight junction (TJ) proteins were analysed by qRT-PCR and immunofluorescence assay, respectively. The nine strains used in the study were from different species viz. Lactobacillus fermentum, Lactobacillushelveticus, Lactobacillus salivarius and Lactobacillus plantarum. All strains were able to reverse the decrease in TEER and corresponding increase in permeability across E. coli-infected monolayers. Maximum reversal was observed after 18 h [up to 93.8±2.0 % by L. rhamnosus GG followed by L. fermentum IIs11.2 (92.6±2.2 %) and L. plantarum GRI-2 (91.9±0.9 %)] of lactobacilli exposure following EPEC O26 : H11 infection. All strains were able to redistribute the TJ proteins to the cell periphery either partially or completely. Moreover, L. helveticus FA-7 was also able to significantly increase the mRNA expression of ZO-1 and claudin-1 (2.5-fold and 3.0-fold, respectively; P<0.05). The rapid reversal observed by these strains could be mostly because of the redistribution rather than increased mRNA expression of TJ proteins. In conclusion, L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 were good in all the aspects studied, and the other strains were good in some aspects. L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 can therefore be used for potential therapeutic purpose against intestinal epithelial dysfunction.

  2. Treatment with at Homeopathic Complex Medication Modulates Mononuclear Bone Marrow Cell Differentiation

    PubMed Central

    Cesar, Beatriz; Abud, Ana Paula R.; de Oliveira, Carolina C.; Cardoso, Francolino; Bernardi, Raffaello Popa Di; Guimarães, Fernando S. F.; Gabardo, Juarez; de Freitas Buchi, Dorly

    2011-01-01

    A homeopathic complex medication (HCM), with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now report in vivo immunophenotyping of total bone marrow cells and ex vivo effects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measured in vitro. After in vivo treatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects of ex vivo HCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were induced in vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products. PMID:19736221

  3. Signaling Cascades Governing Cdc42-Mediated Chondrogenic Differentiation and Mensenchymal Condensation.

    PubMed

    Wang, Jirong R; Wang, Chaojun J; Xu, Chengyun Y; Wu, Xiaokai K; Hong, Dun; Shi, Wei; Gong, Ying; Chen, Haixiao X; Long, Fanxin; Wu, Ximei M

    2016-03-01

    Endochondral ossification consists of successive steps of chondrocyte differentiation, including mesenchymal condensation, differentiation of chondrocytes, and hypertrophy followed by mineralization and ossification. Loss-of-function studies have revealed that abnormal growth plate cartilage of the Cdc42 mutant contributes to the defects in endochondral bone formation. Here, we have investigated the roles of Cdc42 in osteogenesis and signaling cascades governing Cdc42-mediated chondrogenic differentiation. Though deletion of Cdc42 in limb mesenchymal progenitors led to severe defects in endochondral ossification, either ablation of Cdc42 in limb preosteoblasts or knockdown of Cdc42 in vitro had no obvious effects on bone formation and osteoblast differentiation. However, in Cdc42 mutant limb buds, loss of Cdc42 in mesenchymal progenitors led to marked inactivation of p38 and Smad1/5, and in micromass cultures, Cdc42 lay on the upstream of p38 to activate Smad1/5 in bone morphogenetic protein-2-induced mesenchymal condensation. Finally, Cdc42 also lay on the upstream of protein kinase B to transactivate Sox9 and subsequently induced the expression of chondrocyte differential marker in transforming growth factor-β1-induced chondrogenesis. Taken together, by using biochemical and genetic approaches, we have demonstrated that Cdc42 is involved not in osteogenesis but in chondrogenesis in which the BMP2/Cdc42/Pak/p38/Smad signaling module promotes mesenchymal condensation and the TGF-β/Cdc42/Pak/Akt/Sox9 signaling module facilitates chondrogenic differentiation. Copyright © 2016 by the Genetics Society of America.

  4. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  5. Regulation of mammalian cell differentiation by long non-coding RNAs

    PubMed Central

    Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F

    2012-01-01

    Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development. PMID:23070366

  6. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  7. Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations.

    PubMed

    Busch, Robert; Qiu, Weiliang; Lasky-Su, Jessica; Morrow, Jarrett; Criner, Gerard; DeMeo, Dawn

    2016-11-05

    Chronic obstructive pulmonary disease (COPD) is the third-leading cause of death worldwide. Identifying COPD-associated DNA methylation marks in African-Americans may contribute to our understanding of racial disparities in COPD susceptibility. We determined differentially methylated genes and co-methylation network modules associated with COPD in African-Americans recruited during exacerbations of COPD and smoking controls from the Pennsylvania Study of Chronic Obstructive Pulmonary Exacerbations (PA-SCOPE) cohort. We assessed DNA methylation from whole blood samples in 362 African-American smokers in the PA-SCOPE cohort using the Illumina Infinium HumanMethylation27 BeadChip Array. Final analysis included 19302 CpG probes annotated to the nearest gene transcript after quality control. We tested methylation associations with COPD case-control status using mixed linear models. Weighted gene comethylation networks were constructed using weighted gene coexpression network analysis (WGCNA) and network modules were analyzed for association with COPD. There were five differentially methylated CpG probes significantly associated with COPD among African-Americans at an FDR less than 5 %, and seven additional probes that approached significance at an FDR less than 10 %. The top ranked gene association was MAML1, which has been shown to affect NOTCH-dependent angiogenesis in murine lung. Network modeling yielded the "yellow" and "blue" comethylation modules which were significantly associated with COPD (p-value 4 × 10 -10 and 4 × 10 -9 , respectively). The yellow module was enriched for gene sets related to inflammatory pathways known to be relevant to COPD. The blue module contained the top ranked genes in the concurrent differential methylation analysis (FXYD1/LGI4, gene significance p-value 1.2 × 10 -26 ; MAML1, p-value 2.0 × 10 -26 ; CD72, p-value 2.1 × 10 -25 ; and LPO, p-value 7.2 × 10 -25 ), and was significantly associated with lung

  8. Differential Modulation of Photosynthesis, Signaling, and Transcriptional Regulation between Tolerant and Sensitive Tomato Genotypes under Cold Stress

    PubMed Central

    Zhang, Junhong; Wang, Taotao; Li, Hanxia; Zhang, Yuyang; Yu, Chuying; Ye, Zhibiao

    2012-01-01

    The wild species Solanum habrochaites is more cold tolerant than the cultivated tomato (S. lycopersicum). To explore the mechanisms underlying cold tolerance of S. habrochaites, seedlings of S. habrochaites LA1777 introgression lines (ILs), as well as the two parents, were evaluated under low temperature (4°C). The IL LA3969 and its donor parent LA1777 were found to be more cold tolerant than the recurrent parent S. lycopersicum LA4024. The differences in physiology and global gene expression between cold-tolerant (LA1777 and LA3969) and -sensitive (LA4024) genotypes under cold stress were further investigated. Comparative transcriptome analysis identified 1613, 1456, and 1523 cold-responsive genes in LA1777, LA3969, and LA4024, respectively. Gene ontology (GO) term enrichment analysis revealed that more GO biological process terms were significantly enriched among the up-regulated genes in the two tolerant genotypes, whereas more biological processes were significantly repressed by cold stress in the sensitive one. A total of 92 genes with significant differential expression between tolerant and sensitive genotypes under cold stress were identified. Among these, many stress-related GO terms were significantly enriched, such as ‘response to stimulus’ and ‘response to stress’. Moreover, GO terms ‘response to hormone stimulus’, ‘response to reactive oxygen species (ROS)’, and ‘calcium-mediated signaling’ were also overrepresented. Several transcripts involved in hormone or ROS homeostasis were also differentially expressed. ROS, hormones, and calcium as signaling molecules may play important roles in regulating gene expression in response to cold stress. Moreover, the expression of various transcription factors, post-translational proteins, metabolic enzymes, and photosynthesis-related genes was also specifically modulated. These specific modifications may play pivotal roles in conferring cold tolerance in tomato. These results not only provide

  9. Characterization of a Theta-Type Plasmid from Lactobacillus sakei: a Potential Basis for Low-Copy-Number Vectors in Lactobacilli

    PubMed Central

    Alpert, Carl-Alfred; Crutz-Le Coq, Anne-Marie; Malleret, Christine; Zagorec, Monique

    2003-01-01

    The complete nucleotide sequence of the 13-kb plasmid pRV500, isolated from Lactobacillus sakei RV332, was determined. Sequence analysis enabled the identification of genes coding for a putative type I restriction-modification system, two genes coding for putative recombinases of the integrase family, and a region likely involved in replication. The structural features of this region, comprising a putative ori segment containing 11- and 22-bp repeats and a repA gene coding for a putative initiator protein, indicated that pRV500 belongs to the pUCL287 subfamily of theta-type replicons. A 3.7-kb fragment encompassing this region was fused to an Escherichia coli replicon to produce the shuttle vector pRV566 and was observed to be functional in L. sakei for plasmid replication. The L. sakei replicon alone could not support replication in E. coli. Plasmid pRV500 and its derivative pRV566 were determined to be at very low copy numbers in L. sakei. pRV566 was maintained at a reasonable rate over 20 generations in several lactobacilli, such as Lactobacillus curvatus, Lactobacillus casei, and Lactobacillus plantarum, in addition to L. sakei, making it an interesting basis for developing vectors. Sequence relationships with other plasmids are described and discussed. PMID:12957947

  10. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  11. Differential Targeting of Gβγ-Subunit Signaling with Small Molecules

    NASA Astrophysics Data System (ADS)

    Bonacci, Tabetha M.; Mathews, Jennifer L.; Yuan, Chujun; Lehmann, David M.; Malik, Sundeep; Wu, Dianqing; Font, Jose L.; Bidlack, Jean M.; Smrcka, Alan V.

    2006-04-01

    G protein βγ subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gβγ subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gβγ subunit functions. Several compounds bound to Gβγ subunits with affinities from 0.1 to 60 μM and selectively modulated functional Gβγ-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  12. A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer.

    PubMed

    Yang, Mary Qu; Li, Dan; Yang, William; Zhang, Yifan; Liu, Jun; Tong, Weida

    2017-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common and most aggressive form of renal cell cancer (RCC). The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1 , as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways.

  13. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator.

    PubMed

    Ding, Jianfeng; Chen, Hongtao; Yang, Lin; Zhang, Lei; Ji, Ruiqiang; Tian, Yonghui; Zhu, Weiwei; Lu, Yangyang; Zhou, Ping; Min, Rui; Yu, Mingbin

    2012-03-26

    We demonstrate a 26 Gbit/s Mach-Zehnder silicon optical modulator. The doping concentration and profile are optimized, and a modulation efficiency with the figure of merit (VπL) of 1.28 V·cm is achieved. We design an 80-nm-wide intrinsic silicon gap between the p-type and n-type doped regions to reduce the capacitance of the diode and prevent the diode from working in a slow diffusion mode. Therefore, the modulator can be driven with a small differential voltage of 0.5 V with no bias. Without the elimination of the dissipated power of the series resistors and the reflected power of the electrical signal, the maximum power consumption is 3.8 mW.

  14. Lactobacilli and Bifidobacteria Promote Immune Homeostasis by Modulating Innate Immune Responses to Human Rotavirus in Neonatal Gnotobiotic Pigs

    PubMed Central

    Vlasova, Anastasia N.; Chattha, Kuldeep S.; Kandasamy, Sukumar; Liu, Zhe; Esseili, Malak; Shao, Lulu; Rajashekara, Gireesh; Saif, Linda J.

    2013-01-01

    significantly decreased MNC proliferation, suggesting that probiotics control excessive lymphoproliferative reactions upon VirHRV challenge. We conclude that in the neonatal Gn pig disease model, selected probiotics contribute to immunomaturation, regulate immune homeostasis and modulate vaccine and virulent HRV effects, thereby moderating HRV diarrhea. PMID:24098572

  15. Fluorescent polymer-based post-translational differentiation and subtyping of breast cancer cells.

    PubMed

    Scott, Michael D; Dutta, Rinku; Haldar, Manas K; Wagh, Anil; Gustad, Thomas R; Law, Benedict; Friesner, Daniel L; Mallik, Sanku

    2012-12-07

    Herein, we report the application of synthesized fluorescent, water soluble polymers for post-translational subtyping and differentiation of breast cancer cells in vitro. The fluorescence emission spectra from these polymers were modulated differently in the presence of conditioned cell culture media from various breast cancer cells. These polymers differentiate at a post-translation level possibly due to their ability to interact with extracellular enzymes that are over-expressed in cancerous conditions.

  16. The development of differential inductors using double air-bridge structure based on integrated passive device technology

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong

    2017-05-01

    Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.

  17. Selective spatial attention modulates bottom-up informational masking of speech

    PubMed Central

    Carlile, Simon; Corkhill, Caitlin

    2015-01-01

    To hear out a conversation against other talkers listeners overcome energetic and informational masking. Largely attributed to top-down processes, information masking has also been demonstrated using unintelligible speech and amplitude-modulated maskers suggesting bottom-up processes. We examined the role of speech-like amplitude modulations in information masking using a spatial masking release paradigm. Separating a target talker from two masker talkers produced a 20 dB improvement in speech reception threshold; 40% of which was attributed to a release from informational masking. When across frequency temporal modulations in the masker talkers are decorrelated the speech is unintelligible, although the within frequency modulation characteristics remains identical. Used as a masker as above, the information masking accounted for 37% of the spatial unmasking seen with this masker. This unintelligible and highly differentiable masker is unlikely to involve top-down processes. These data provides strong evidence of bottom-up masking involving speech-like, within-frequency modulations and that this, presumably low level process, can be modulated by selective spatial attention. PMID:25727100

  18. Selective spatial attention modulates bottom-up informational masking of speech.

    PubMed

    Carlile, Simon; Corkhill, Caitlin

    2015-03-02

    To hear out a conversation against other talkers listeners overcome energetic and informational masking. Largely attributed to top-down processes, information masking has also been demonstrated using unintelligible speech and amplitude-modulated maskers suggesting bottom-up processes. We examined the role of speech-like amplitude modulations in information masking using a spatial masking release paradigm. Separating a target talker from two masker talkers produced a 20 dB improvement in speech reception threshold; 40% of which was attributed to a release from informational masking. When across frequency temporal modulations in the masker talkers are decorrelated the speech is unintelligible, although the within frequency modulation characteristics remains identical. Used as a masker as above, the information masking accounted for 37% of the spatial unmasking seen with this masker. This unintelligible and highly differentiable masker is unlikely to involve top-down processes. These data provides strong evidence of bottom-up masking involving speech-like, within-frequency modulations and that this, presumably low level process, can be modulated by selective spatial attention.

  19. Enhancement of neuronal differentiation by using small molecules modulating Nodal/Smad, Wnt/β-catenin, and FGF signaling.

    PubMed

    Song, Yonghee; Lee, Somyung; Jho, Eek-Hoon

    2018-06-08

    Pluripotent embryonic stem cells are one of the best modalities for the disease treatment due to their potential for self-renewal and differentiation into various cell types. Induction of stem cell differentiation into specific cell lineages has been investigated for decades, especially in vitro neuronal differentiation of embryonic stem cells. However, in vitro differentiation methods do not yield sufficient amounts of neurons for use in the therapeutic treatment of neurological disorders. Here, we provide an improved neuronal differentiation method based on a combination of small regulatory molecules for specific signaling pathways (FGF4 for FGF signaling, SB431542 for Nodal/Smad signaling, and XAV939 and BIO for Wnt signaling) in N2B27 media. We found that FGF4 was required for neural induction, SB431542 accelerated neural precursor differentiation, and treatment with XAV939 and BIO at different periods enhanced neuronal differentiation. These optimized neuronal differentiation conditions may allow a greater neuron cell yield within a shorter time than current methods and be the basis for treatment of neurological dysfunction using stem cells. Copyright © 2018. Published by Elsevier Inc.

  20. Maximum likelihood sequence estimation for optical complex direct modulation.

    PubMed

    Che, Di; Yuan, Feng; Shieh, William

    2017-04-17

    Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.

  1. Evidence that the modulation of membrane-associated protein kinase C activity by an endogenous inhibitor plays a role in N1E-115 murine neuroblastoma cell differentiation.

    PubMed

    Chakravarthy, B R; Wong, J; Durkin, J P

    1995-10-01

    Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.

  2. Whitham modulation theory for the two-dimensional Benjamin-Ono equation.

    PubMed

    Ablowitz, Mark; Biondini, Gino; Wang, Qiao

    2017-09-01

    Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system of five quasilinear first-order partial differential equations is derived. The system describes modulations of the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are discussed, the formulation of initial value problems is considered, and the system is used to study the transverse stability of traveling wave solutions of the 2DBO equation.

  3. Nouns Referring to Tools and Natural Objects Differentially Modulate the Motor System

    ERIC Educational Resources Information Center

    Gough, Patricia M.; Riggio, Lucia; Chersi, Fabian; Sato, Marc; Fogassi, Leonardo; Buccino, Giovanni

    2012-01-01

    While increasing evidence points to a critical role for the motor system in language processing, the focus of previous work has been on the linguistic category of verbs. Here we tested whether nouns are effective in modulating the motor system and further whether different kinds of nouns--those referring to artifacts or natural items, and items…

  4. MEK5 suppresses osteoblastic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneshiro, Shoichi; Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871; Otsuki, Dai

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcinmore » (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.« less

  5. Vector network analyzer ferromagnetic resonance spectrometer with field differential detection

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Tsunegi, S.; Kubota, H.; Yuasa, S.

    2018-05-01

    This work presents a vector network analyzer ferromagnetic resonance (VNA-FMR) spectrometer with field differential detection. This technique differentiates the S-parameter by applying a small binary modulation field in addition to the DC bias field to the sample. By setting the modulation frequency sufficiently high, slow sensitivity fluctuations of the VNA, i.e., low-frequency components of the trace noise, which limit the signal-to-noise ratio of the conventional VNA-FMR spectrometer, can be effectively removed, resulting in a very clean FMR signal. This paper presents the details of the hardware implementation and measurement sequence as well as the data processing and analysis algorithms tailored for the FMR spectrum obtained with this technique. Because the VNA measures a complex S-parameter, it is possible to estimate the Gilbert damping parameter from the slope of the phase variation of the S-parameter with respect to the bias field. We show that this algorithm is more robust against noise than the conventional algorithm based on the linewidth.

  6. Differential network as an indicator of osteoporosis with network entropy.

    PubMed

    Ma, Lili; Du, Hongmei; Chen, Guangdong

    2018-07-01

    Osteoporosis is a common skeletal disorder characterized by a decrease in bone mass and density. The peak bone mass (PBM) is a significant determinant of osteoporosis. To gain insights into the indicating effect of PBM to osteoporosis, this study focused on characterizing the PBM networks and identifying key genes. One biological data set with 12 monocyte low PBM samples and 11 high PBM samples was derived to construct protein-protein interaction networks (PPINs). Based on clique-merging, module-identification algorithm was used to identify modules from PPINs. The systematic calculation and comparison were performed to test whether the network entropy can discriminate the low PBM network from high PBM network. We constructed 32 destination networks with 66 modules divided from monocyte low and high PBM networks. Among them, network 11 was the only significantly differential one (P<0.05) with 8 nodes and 28 edges. All genes belonged to precursors of osteoclasts, which were related to calcium transport as well as blood monocytes. In conclusion, based on the entropy in PBM PPINs, the differential network appears to be a novel therapeutic indicator for osteoporosis during the bone monocyte progression; these findings are helpful in disclosing the pathogenetic mechanisms of osteoporosis.

  7. Is My Network Module Preserved and Reproducible?

    PubMed Central

    Langfelder, Peter; Luo, Rui; Oldham, Michael C.; Horvath, Steve

    2011-01-01

    In many applications, one is interested in determining which of the properties of a network module change across conditions. For example, to validate the existence of a module, it is desirable to show that it is reproducible (or preserved) in an independent test network. Here we study several types of network preservation statistics that do not require a module assignment in the test network. We distinguish network preservation statistics by the type of the underlying network. Some preservation statistics are defined for a general network (defined by an adjacency matrix) while others are only defined for a correlation network (constructed on the basis of pairwise correlations between numeric variables). Our applications show that the correlation structure facilitates the definition of particularly powerful module preservation statistics. We illustrate that evaluating module preservation is in general different from evaluating cluster preservation. We find that it is advantageous to aggregate multiple preservation statistics into summary preservation statistics. We illustrate the use of these methods in six gene co-expression network applications including 1) preservation of cholesterol biosynthesis pathway in mouse tissues, 2) comparison of human and chimpanzee brain networks, 3) preservation of selected KEGG pathways between human and chimpanzee brain networks, 4) sex differences in human cortical networks, 5) sex differences in mouse liver networks. While we find no evidence for sex specific modules in human cortical networks, we find that several human cortical modules are less preserved in chimpanzees. In particular, apoptosis genes are differentially co-expressed between humans and chimpanzees. Our simulation studies and applications show that module preservation statistics are useful for studying differences between the modular structure of networks. Data, R software and accompanying tutorials can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Module

  8. Selective Chemical Modulation of Gene Transcription Favors Oligodendrocyte Lineage Progression

    PubMed Central

    Plotnikov, Alexander N.; Zhang, Guangtao; Zeng, Lei; Kaur, Jasbir; Moy, Gregory; Rusinova, Elena; Rodriguez, Yoel; Matikainen, Bridget; Vincek, Adam; Joshua, Jennifer; Casaccia, Patrizia; Zhou, Ming-Ming

    2014-01-01

    SUMMARY Lysine acetylation regulates gene expression through modulating protein-protein interactions in chromatin. Chemical inhibition of acetyl-lysine binding bromodomains of the major chromatin regulators BET (bromodomain and extra-terminal domain) proteins, has been shown to effectively block cell proliferation in cancer and inflammation. However, whether selective inhibition of individual BET bromodomains has distinctive functional consequences, remains only partially understood. In this study, we show that selective chemical inhibition of the first bromodomain of BET proteins using our newly designed small molecule inhibitor, Olinone, accelerated the progression of mouse primary oligodendrocyte progenitors towards differentiation, while inhibition of both bromodomains of BET proteins hindered differentiation. This effect was target-specific, as it was not detected in cells treated with inactive analogues and independent of any effect on proliferation. Therefore, selective chemical modulation of individual bromodomains, rather than use of broad-based inhibitors may enhance regenerative strategies in disorders characterized by myelin loss such as aging and neurodegeneration. PMID:24954007

  9. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents

    PubMed Central

    Patel, Bijal; Bright, Damian P.; Mortensen, Martin; Frølund, Bente

    2016-01-01

    Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. SIGNIFICANCE STATEMENT A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders

  10. Detection and Identification of Lactobacillus Species in Crops of Broilers of Different Ages by Using PCR-Denaturing Gradient Gel Electrophoresis and Amplified Ribosomal DNA Restriction Analysis

    PubMed Central

    Guan, Le Luo; Hagen, Karen E.; Tannock, Gerald W.; Korver, Doug R.; Fasenko, Gaylene M.; Allison, Gwen E.

    2003-01-01

    The microflora of the crop was investigated throughout the broiler production period (0 to 42 days) using PCR combined with denaturing gradient gel electrophoresis (PCR-DGGE) and selective bacteriological culture of lactobacilli followed by amplified ribosomal DNA restriction analysis (ARDRA). The birds were raised under conditions similar to those used in commercial broiler production. Lactobacilli predominated and attained populations of 108 to 109 CFU per gram of crop contents. Many of the lactobacilli present in the crop (61.9% of isolates) belonged to species of the Lactobacillus acidophilus group and could not be differentiated by PCR-DGGE. A rapid and simple ARDRA method was developed to distinguish between the members of the L. acidophilus group. HaeIII-ARDRA was used for preliminary identification of isolates in the L. acidophilus group and to identify Lactobacillus reuteri and Lactobacillus salivarius. MseI-ARDRA generated unique patterns for all species of the L. acidophilus group, identifying Lactobacillus crispatus, Lactobacillus johnsonii, and Lactobacillus gallinarum among crop isolates. The results of our study provide comprehensive knowledge of the Lactobacillus microflora in the crops of birds of different ages using nucleic acid-based methods of detection and identification based on current taxonomic criteria. PMID:14602636

  11. Epigenetic modulation by TFII-I during embryonic stem cell differentiation.

    PubMed

    Bayarsaihan, Dashzeveg; Makeyev, Aleksandr V; Enkhmandakh, Badam

    2012-10-01

    TFII-I transcription factors play an essential role during early vertebrate embryogenesis. Genome-wide mapping studies by ChIP-seq and ChIP-chip revealed that TFII-I primes multiple genomic loci in mouse embryonic stem cells and embryonic tissues. Moreover, many TFII-I-bound regions co-localize with H3K4me3/K27me3 bivalent chromatin within the promoters of lineage-specific genes. This minireview provides a summary of current knowledge regarding the function of TFII-I in epigenetic control of stem cell differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  12. Concatenated Coding Using Trellis-Coded Modulation

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1997-01-01

    In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.

  13. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation.

    PubMed

    Khacho, Mireille; Slack, Ruth S

    2017-12-01

    Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A diels-alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells

    PubMed Central

    Koehler, Kenneth C.; Alge, Daniel L.; Anseth, Kristi S.; Bowman, Christopher N.

    2013-01-01

    We report a new approach to controlled drug release based upon exploiting the dynamic equilibrium that exists between Diels-Alder reactants and products, demonstrating the release of a furan containing dexamethasone peptide (dex-KGPQG-furan) from a maleimide containing hydrogel. Using a reaction-diffusion model, the release kinetics were tuned to achieve sustained concentrations conducive to osteogenic differentiation of human mesenchymal stem cells (hMSCs). Efficacy was first demonstrated in a 2D culture model, in which dexamethasone release induced significant increases in alkaline phosphatase (ALP) activity and mineral deposition in hMSCs compared to a dexamethasone-free treatment. The results were similar to that observed with a soluble dexamethasone treatment. More dramatic differences were observed in 3D culture, where co-encapsulation of a dexamethasone releasing hydrogel depot within an hMSC-laden extracellular matrix mimetic poly(ethylene glycol) hydrogel resulted in a local and robust osteogenic differentiation. ALP activity reached levels that were up to six times higher than the dexamethasone free treatment. Interestingly, at 5 and 10 day time points, the ALP activity exceeded the dexamethasone positive control, suggesting a potential benefit of sustained release in 3D culture. After 21 days, substantial mineralization comparable to the positive control was also observed in the hydrogels. Collectively, these results demonstrate Diels-Alder modulated release as an effective and versatile new platform for controlled drug delivery that may prove especially beneficial for sustaining the release of low molecular weight molecules in hydrogel systems. PMID:23465826

  15. The design of a device for hearer and feeler differentiation, part A. [speech modulated hearing device

    NASA Technical Reports Server (NTRS)

    Creecy, R.

    1974-01-01

    A speech modulated white noise device is reported that gives the rhythmic characteristics of a speech signal for intelligible reception by deaf persons. The signal is composed of random amplitudes and frequencies as modulated by the speech envelope characteristics of rhythm and stress. Time intensity parameters of speech are conveyed through the vibro-tactile sensation stimuli.

  16. An automated high throughput screening-compatible assay to identify regulators of stem cell neural differentiation.

    PubMed

    Casalino, Laura; Magnani, Dario; De Falco, Sandro; Filosa, Stefania; Minchiotti, Gabriella; Patriarca, Eduardo J; De Cesare, Dario

    2012-03-01

    The use of Embryonic Stem Cells (ESCs) holds considerable promise both for drug discovery programs and the treatment of degenerative disorders in regenerative medicine approaches. Nevertheless, the successful use of ESCs is still limited by the lack of efficient control of ESC self-renewal and differentiation capabilities. In this context, the possibility to modulate ESC biological properties and to obtain homogenous populations of correctly specified cells will help developing physiologically relevant screens, designed for the identification of stem cell modulators. Here, we developed a high throughput screening-suitable ESC neural differentiation assay by exploiting the Cell(maker) robotic platform and demonstrated that neural progenies can be generated from ESCs in complete automation, with high standards of accuracy and reliability. Moreover, we performed a pilot screening providing proof of concept that this assay allows the identification of regulators of ESC neural differentiation in full automation.

  17. Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction

    PubMed Central

    Stock, Kristin; Nolden, Lars; Edenhofer, Frank; Quandel, Tamara

    2010-01-01

    In contrast to conventional gene transfer strategies, the direct introduction of recombinant proteins into cells bypasses the risk of insertional mutagenesis and offers an alternative to genetic intervention. Here, we explore whether protein transduction of the gliogenic transcription factor Nkx2.2 can be used to promote oligodendroglial differentiation of mouse embryonic stem cell (ESC)-derived neural stem cells (NSC). To that end, a recombinant cell-permeant form of Nkx2.2 protein was generated. Exposure of ESC-derived NSC to the recombinant protein and initiation of differentiation resulted in a two-fold increase in the number of oligodendrocytes. Furthermore, Nkx2.2-transduced cells exhibited a more mature oligodendroglial phenotype. Comparative viral gene transfer studies showed that the biological effect of Nkx2.2 protein transduction is comparable to that obtained by lentiviral transduction. The results of this proof-of-concept study depict direct intracellular delivery of transcription factors as alternative modality to control lineage differentiation in NSC cultures without genetic modification. Electronic supplementary material The online version of this article (doi:10.1007/s00018-010-0347-1) contains supplementary material, which is available to authorized users. PMID:20352468

  18. Neuronal Differentiation Modulated by Polymeric Membrane Properties.

    PubMed

    Morelli, Sabrina; Piscioneri, Antonella; Drioli, Enrico; De Bartolo, Loredana

    2017-01-01

    In this study, different collagen-blend membranes were successfully constructed by blending collagen with chitosan (CHT) or poly(lactic-co-glycolic acid) (PLGA) to enhance their properties and thus create new biofunctional materials with great potential use for neuronal tissue engineering and regeneration. Collagen blending strongly affected membrane properties in the following ways: (i) it improved the surface hydrophilicity of both pure CHT and PLGA membranes, (ii) it reduced the stiffness of CHT membranes, but (iii) it did not modify the good mechanical properties of PLGA membranes. Then, we investigated the effect of the different collagen concentrations on the neuronal behavior of the membranes developed. Morphological observations, immunocytochemistry, and morphometric measures demonstrated that the membranes developed, especially CHT/Col30, PLGA, and PLGA/Col1, provided suitable microenvironments for neuronal growth owing to their enhanced properties. The most consistent neuronal differentiation was obtained in neurons cultured on PLGA-based membranes, where a well-developed neuronal network was achieved due to their improved mechanical properties. Our findings suggest that tensile strength and elongation at break are key material parameters that have potential influence on both axonal elongation and neuronal structure and organization, which are of fundamental importance for the maintenance of efficient neuronal growth. Hence, our study has provided new insights regarding the effects of membrane mechanical properties on neuronal behavior, and thus it may help to design and improve novel instructive biomaterials for neuronal tissue engineering. © 2017 S. Karger AG, Basel.

  19. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers.

    PubMed

    Thomson, Matt; Liu, Siyuan John; Zou, Ling-Nan; Smith, Zack; Meissner, Alexander; Ramanathan, Sharad

    2011-06-10

    Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Complex effect of hydroxyapatite nanoparticles on the differentiation and functional activity of human pre-osteoclastic cells.

    PubMed

    Costa-Rodrigues, João; Silva, Ana; Santos, Catarina; Almeida, Maria Margarida; Costa, Maria Elisabete; Fernandes, Maria Helena

    2014-12-01

    Nanosized hydroxyapatite (HA) is a promising material in clinical applications targeting the bone tissue. NanoHA is able to modulate bone cellular events, which accounts for its potential utility, but also raises safety concerns regarding the maintenance of the bone homeostasis. This work analyses the effects of HA nanoparticles (HAnp) on osteoclastic differentiation and activity, an issue that has been barely addressed. Rod-like HAnp, produced by a hydrothermal precipitation method, were tested on peripheral blood mononuclear cells (PBMC), which contains the CD14+ osteoclastic precursors, in unstimulated or osteoclastogenic-induced conditions. HAnp were added at three time-points during the osteoclastic differentiation pathway, and cell response was evaluated for osteoclastic related parameters. Results showed that HAnp modulated the differentiation and function of osteoclastic cells in a dose- and time-dependent manner. In addition, the effects were dependent on the stage of osteoclastic differentiation. In unstimulated PBMC, HAnp significantly increased osteoclastogenesis, leading to the formation of mature osteoclasts, as evident by the significant increase of TRAP activity, number of TRAP-positive multinucleated cells, osteoclastic gene expression and resorbing ability. However, in a population of mature osteoclasts (formed in osteoclastogenic-induced PBMC cultures), HAnp caused a dose-dependent decrease on the osteoclastic-related parameters. These results highlight the complex effects of HAnp in osteoclastic differentiation and activity, and suggest the possibility of HAnp to modulate/disrupt osteoclastic behavior, with eventual imbalances in the bone metabolism. This should be carefully considered in bone-related and other established and prospective biomedical applications of HAnp.

  1. Modulation of pain by estrogens.

    PubMed

    Craft, Rebecca M

    2007-11-01

    It has become increasingly apparent that women suffer a disproportionate amount of pain during their lifetime compared to men. Over the past 15 years, a growing number of studies have suggested a variety of causes for this sex difference, from cellular to psychosocial levels of analysis. From a biological perspective, sexual differentiation of pain appears to occur similarly to sexual differentiation of other phenomena: it results in large part from organizational and activational effects of gonadal steroid hormones. The focus of this review is the activational effects of a single group of ovarian hormones, the estrogens, on pain in humans and animals. The effects of estrogens (estradiol being the most commonly examined) on experimentally induced acute pain vs. clinical pain are summarized. For clinical pain, the review is limited to a few syndromes for which there is considerable evidence for estrogenic involvement: migraine, temporomandibular disorder (TMD) and arthritis. Because estrogens can modulate the function of the nervous, immune, skeletal, and cardiovascular systems, estrogenic modulation of pain is an exceedingly complex, multi-faceted phenomenon, with estrogens producing both pro- and antinociceptive effects that depend on the extent to which each of these systems of the body is involved in a particular type of pain. Forging a more complete understanding of the myriad ways that estrogens can ameliorate vs. facilitate pain will enable us to better prevent and treat pain in both women and men.

  2. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β‑catenin signaling.

    PubMed

    Cao, Fengdi; Zhan, Jialin; Chen, Xufeng; Zhang, Kai; Lai, Renfa; Feng, Zhiqiang

    2017-12-01

    The canonical Wnt/β‑catenin signaling is important in the differentiation of human mesenchymal stem cells into osteoblasts. Accumulating evidence suggests that the expression of β‑catenin is, in part, regulated by specific microRNAs (miRNAs). The aim of the present study was to investigate the putative roles of miRNAs in osteoblast differentiation. Polymerase chain reaction (PCR) arrays were used to identify miRNAs that were differentially expressed between differentiated and non‑differentiated periodontal ligament stem cells (PDLSCs), and reverse transcription‑quantitative PCR (RT‑qPCR) was used for validation. Since miR‑214 was revealed to be significantly downregulated during PDLSC differentiation, its function was further investigated via silencing and overexpression. In addition, osteogenic differentiation of PDLSCs was evaluated at 10 and 21 days following induction, using Alizarin red staining and RT‑qPCR analysis for mRNA expression levels of the osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin and bone sialoprotein. Furthermore, the potential target genes of miR‑214 were investigated using a dual‑luciferase reporter assay, RT‑qPCR and western blot analysis, whereas a TOPflash/FOPflash reporter plasmid system followed by a luciferase assay was used to examine the effects of miR‑214 on Wnt/β‑catenin signaling. The present results demonstrated that miR‑214 was significantly downregulated during the osteoblastic differentiation of PDLSCs. Notably, its overexpression inhibited PDLSC differentiation, whereas its knockdown promoted PDLSC differentiation, as revealed by alterations in mRNA expression of osteoblast‑specific genes and ALP. In addition, miR‑214 was demonstrated to directly interact with the 3'‑untranslated region of the β‑catenin gene CTNNB1, and suppressed Wnt/β‑catenin signaling through the inhibition of β‑catenin. The results of the present study suggested that miR‑214 may

  3. Differential Potency of 2,6-Dimethylcyclohexanol Isomers for Positive Modulation of GABAA Receptor Currents.

    PubMed

    Chowdhury, Luvana; Croft, Celine J; Goel, Shikha; Zaman, Naina; Tai, Angela C-S; Walch, Erin M; Smith, Kelly; Page, Alexandra; Shea, Kevin M; Hall, C Dennis; Jishkariani, D; Pillai, Girinath G; Hall, Adam C

    2016-06-01

    GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1β3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 μM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 μM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the β3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. PLZT block data composers operated in differential phase mode. [lanthanum-modified lead zirconate titanate ceramic device for digital holographic memory

    NASA Technical Reports Server (NTRS)

    Drake, M. D.; Klingler, D. E.

    1973-01-01

    The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.

  5. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    PubMed Central

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  6. Epigenetic programming during monocyte to macrophage differentiation and trained innate immunity

    PubMed Central

    Saeed, Sadia; Quintin, Jessica; Kerstens, Hindrik H.D.; Rao, Nagesha A; Aghajanirefah, Ali; Matarese, Filomena; Cheng, Shih-Chin; Ratter, Jacqueline; Berentsen, Kim; van der Ent, Martijn A.; Sharifi, Nilofar; Janssen-Megens, Eva M.; Huurne, Menno Ter; Mandoli, Amit; van Schaik, Tom; Ng, Aylwin; Burden, Frances; Downes, Kate; Frontini, Mattia; Kumar, Vinod; Giamarellos-Bourboulis, Evangelos J; Ouwehand, Willem H; van der Meer, Jos W.M.; Joosten, Leo A.B.; Wijmenga, Cisca; Martens, Joost H.A.; Xavier, Ramnik J.; Logie, Colin; Netea, Mihai G.; Stunnenberg, Hendrik G.

    2014-01-01

    Structured Abstract Introduction Monocytes circulate in the bloodstream for up to 3–5 days. Concomitantly, immunological imprinting of either tolerance (immunosuppression) or trained immunity (innate immune memory) determines the functional fate of monocytes and monocyte-derived macrophages, as observed after infection or vaccination. Methods Purified circulating monocytes from healthy volunteers were differentiated under the homeostatic M-CSF concentrations present in human serum. During the first 24 hours, trained immunity was induced by β-glucan (BG) priming, while post-sepsis immunoparalysis was mimicked by exposure to LPS, generating endotoxin-induced tolerance. Epigenomic profiling of the histone marks H3K4me1, H3K4me3 and H3K27ac, DNase I accessibility and RNA sequencing were performed at both the start of the experiment (ex vivo monocytes) and at the end of the six days of in vitro culture (macrophages). Results Compared to monocytes (Mo), naïve macrophages (Mf) display a remodeled metabolic enzyme repertoire and attenuated innate inflammatory pathways; most likely necessary to generate functional tissue macrophages. Epigenetic profiling uncovered ~8000 dynamic regions associated with ~11000 DNase I hypersensitive sites. Changes in histone acetylation identified most dynamic events. Furthermore, these regions of differential histone marks displayed some degree of DNase I accessibility that was already present in monocytes. H3K4me1 mark increased in parallel with de novo H3K27ac deposition at distal regulatory regions; H3K4me1 mark remained even after the loss of H3K27ac, marking decommissioned regulatory elements. β-glucan priming specifically induced ~3000 distal regulatory elements, whereas LPS-tolerization uniquely induced H3K27ac at ~500 distal regulatory regions. At the transcriptional level, we identified co-regulated gene modules during monocyte to macrophage differentiation, as well as discordant modules between trained and tolerized cells

  7. Myeloid-derived suppressor cells modulate B-cell responses.

    PubMed

    Lelis, Felipe J N; Jaufmann, Jennifer; Singh, Anurag; Fromm, Katja; Teschner, Annkathrin Chiara; Pöschel, Simone; Schäfer, Iris; Beer-Hammer, Sandra; Rieber, Nikolaus; Hartl, Dominik

    2017-08-01

    Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  8. Probiotic lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans.

    PubMed

    Wagner, R Doug; Johnson, Shemedia J

    2012-06-20

    lactobacilli may induce IL-1α and IL-1β expression by an alternate signal transduction pathway, such as MAPK/AP-1. Activation of alternate signaling mechanisms by lactobacilli to modify epithelial cell cytokine production may be a mechanism for probiotic modulation of morbidity in vulvovaginal candidiasis.

  9. Decorin modulates matrix mineralization in vitro

    NASA Technical Reports Server (NTRS)

    Mochida, Yoshiyuki; Duarte, Wagner R.; Tanzawa, Hideki; Paschalis, Eleftherios P.; Yamauchi, Mitsuo

    2003-01-01

    Decorin (DCN), a member of small leucine-rich proteoglycans, is known to modulate collagen fibrillogenesis. In order to investigate the potential roles of DCN in collagen matrix mineralization, several stable osteoblastic cell clones expressing higher (sense-DCN, S-DCN) and lower (antisense-DCN, As-DCN) levels of DCN were generated and the mineralized nodules formed by these clones were characterized. In comparison with control cells, the onset of mineralization by S-DCN clones was significantly delayed; whereas it was markedly accelerated and the number of mineralized nodules was significantly increased in As-DCN clones. The timing of mineralization was inversely correlated with the level of DCN synthesis. In these clones, the patterns of cell proliferation and differentiation appeared unaffected. These results suggest that DCN may act as an inhibitor of collagen matrix mineralization, thus modulating the timing of matrix mineralization.

  10. A Walsh Function Module Users' Manual

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2014-01-01

    The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities to simulate many challenging problems in mathematical physics. The approach was developed to better simulate hypersonic flows with shocks on unstructured grids. It is unique in that integrals and derivatives are computed using simple matrix multiplication of series representations of functions without the need for divided differences. The product of any two Walsh functions is another Walsh function - a feature that radically changes an algorithm for solving PDEs. A FORTRAN module for supporting Walsh function simulations is documented. A FORTRAN code is also documented with options for solving time-dependent problems: an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the usage of the Walsh function module including such features as operator overloading, Fast Walsh Transforms in multi-dimensions, and a Fast Walsh reciprocal.

  11. Viability and resistance of lactobacilli isolated from cocoa fermentation to simulated gastrointestinal digestive steps in soy yogurt.

    PubMed

    Saito, V S T; Dos Santos, T F; Vinderola, C G; Romano, C; Nicoli, J R; Araújo, L S; Costa, M M; Andrioli, J L; Uetanabaro, A P T

    2014-02-01

    To study the potential probiotic characteristics such as decrease of pH, microbial viability, and tolerance to simulated digestive steps of fermented soy beverage ("soy yogurt") produced with lactobacilli isolated from cocoa fermentation (Lactobacillus fermentum TcUESC01 and Lactobacillus plantarum TcUESC02) during fermentation and refrigerated storage. The sensory acceptance of the yogurts was also tested. Samples of soy yogurt produced with L. fermentum TcUESC01 or L. plantarum TcUESC02 were collected during fermentation (0, 4, 8, and 12 h) and refrigerated storage (1, 9, 18, and 27 d), and submitted to pH and bacterial viability determinations. Tolerance to simulated digestion steps was done with refrigerated storage samples at 9 °C. Simulated digestion was performed in 3 successive steps: exposure to pepsin-HCl solution, bile shock, and simulated small intestinal juice. During storage, a decrease in pH and lactobacillus viability was observed. L. fermentum TcUESC01 showed to be more resistant than L. plantarum TcUESC02 to simulated gastrointestinal digestion. All soy yogurts showed acceptable hedonic scores (greater than 5 in a 9-point hedonic scale ranging from "like extremely" to "dislike extremely") in sensory evaluation for flavor, aroma, color, consistency, and overall impression. L. plantarum TcUESC02 and, especially, L. fermentum TcUESC01 showed potential probiotic characteristics when considering pH, cell viability, and tolerance to simulated digestive steps and did not affect the sensory characteristics when supplemented to soy yogurt during storage. © 2014 Institute of Food Technologists®

  12. Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex.

    PubMed

    Özkan, Mazhar; Johnson, Nicholas W; Sehirli, Umit S; Woodhall, Gavin L; Stanford, Ian M

    2017-01-01

    The loss of dopamine (DA) in Parkinson's is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.

  13. Lactobacilli Activate Human Dendritic Cells that Skew T Cells Toward T Helper 1 Polarization

    DTIC Science & Technology

    2005-01-06

    Species Modulate the Phenotype and Function of MDCs. Previous studies have shown that Lactobacillus plantarum and Lactobacillus rhamnosus can induce...cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded...several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and

  14. Impact of environmental hazards on internal soiling within concentrator photovoltaic (CPV) modules

    NASA Astrophysics Data System (ADS)

    Ellis, Sara

    2014-09-01

    Environmental conditions have a significant impact on internal soiling of a CPV system, which affects overall system performance and efficiency. The International Electrotechnical Commission (IEC) 62108, Section 10, standard includes accelerated testing such as temperature cycling, damp heat, and humidity freeze to assess a CPV module's ability to withstand environmental hazards that can compromise the typical 25-year lifetime. This paper discusses the IEC 60529 ingress protection (IP) test protocols and how they can be used to evaluate the performance of CPV modules to block water and particulate contaminants. Studies with GORE® Protective Vents installed in a CPV module and subjected to environmental hazard testing have shown increased reliability of the module over the lifetime of the system by protecting the seals from pressure differentials and keeping out contaminants.

  15. Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-Sensitivity Methodology for the Detection of Early-Stage Tumors in Tissues

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mandelis, A.; Guo, X.; Lashkari, B.; Kellnberger, S.; Ntziachristos, V.

    2015-06-01

    In the field of medical diagnostics, biomedical photoacoustics (PA) is a non-invasive hybrid optical-ultrasonic imaging modality. Due to the unique hybrid capability of optical and acoustic imaging, PA imaging has risen to the frontiers of medical diagnostic procedures such as human breast cancer detection. While conventional PA imaging has been mainly carried out by a high-power pulsed laser, an alternative technology, the frequency domain biophotoacoustic radar (FD-PAR) is under intensive development. It utilizes a continuous wave optical source with the laser intensity modulated by a frequency-swept waveform for acoustic wave generation. The small amplitude of the generated acoustic wave is significantly compensated by increased signal-to-noise ratio (several orders of magnitude) using matched-filter and pulse compression correlation processing in a manner similar to radar systems. The current study introduces the theory of a novel FD-PAR modality for ultra-sensitive characterization of functional information for breast cancer imaging. The newly developed theory of wavelength-modulated differential PA spectroscopy (WM-DPAS) detection has been introduced to address angiogenesis and hypoxia monitoring, two well-known benchmarks of breast tumor formation. Based on the WM-DPAS theory, this modality efficiently suppresses background absorptions and is expected to detect very small changes in total hemoglobin concentration and oxygenation levels, thereby identifying pre-malignant tumors before they are anatomically apparent. An experimental system design for the WM-DPAS is presented and preliminary single-ended laser experimental results were obtained and compared to a limiting case of the developed theoretical formalism.

  16. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    PubMed

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. © 2016 Associated Professional Sleep Societies, LLC.

  17. Retinoic acid and nitric oxide promote cell proliferation and differentially induce neuronal differentiation in vitro in the cnidarian Renilla koellikeri.

    PubMed

    Estephane, Djoyce; Anctil, Michel

    2010-10-01

    Retinoic acid (RA) and nitric oxide (NO) are known to promote neuronal development in both vertebrates and invertebrates. Retinoic acid receptors appear to be present in cnidarians and NO plays various physiological roles in several cnidarians, but there is as yet no evidence that these agents have a role in neural development in this basal metazoan phylum. We used primary cultures of cells from the sea pansy Renilla koellikeri to investigate the involvement of these signaling molecules in cnidarian cell differentiation. We found that 9-cis RA induce cell proliferation in dose- and time-dependent manners in dishes coated with polylysine from the onset of culture. Cells in cultures exposed to RA in dishes devoid of polylysine were observed to differentiate into epithelium-associated cells, including sensory cells, without net gain in cell density. NO donors also induce cell proliferation in polylysine-coated dishes, but induce neuronal differentiation and neurite outgrowth in uncoated dishes. No other cell type undergoes differentiation in the presence of NO. These observations suggest that in the sea pansy (1) cell adhesion promotes proliferation without morphogenesis and this proliferation is modulated positively by 9-cis RA and NO, (2) 9-cis RA and NO differentially induce neuronal differentiation in nonadherent cells while repressing proliferation, and (3) the involvement of RA and NO in neuronal differentiation appeared early during the evolutionary emergence of nervous systems. 2010 Wiley Periodicals, Inc.

  18. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanxia; Department of Rehabilitation, Xi'an Children's Hospital, Xi'an 710003; Liu, Xiaoguai

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis alsomore » showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.« less

  19. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation

    PubMed Central

    Gerber, AN; Wilson, CW; Li, Y-J; Chuang, P-T

    2012-01-01

    The mechanism by which activation of the Hedgehog (Hh) pathway modulates differentiation and promotes oncogenesis in specific tissues is poorly understood. We therefore, analysed rhabdomyosarcomas from mice that were haploinsufficient for the Hh-binding protein, Hip1, or for the Hh receptor, Patched 1 (Ptch1). Transfection of the Hh-regulated transcription factor Gli1, which is expressed in a subset of mouse and human rhabdomyosarcomas, suppressed differentiation of myogenic rhabdomyosarcoma lines generated from Hip1+/− and Ptch1+/− mice. The closely related factor, Gli2, had similar effects. Gli1 and Gli2 inhibited myogenesis by repressing the capacity of MyoD to activate transcription. Deletion analysis of Gli1 indicated that multiple domains of Gli1 are required for efficient inhibition of MyoD. Gli1 reduced the ability of MyoD to heterodimerize with E12 and bind DNA, providing one mechanism whereby the Gli proteins modulate the activity of MyoD. This novel activity of Gli proteins provides new insights into how Hh signaling modulates terminal differentiation through inhibition of tissue-specific factors such as MyoD. This mechanism may contribute to the broad role of Hh signaling and the Gli proteins in differentiation decisions and cancer formation. PMID:16964293

  20. Human pancreatic islet-derived extracellular vesicles modulate insulin expression in 3D-differentiating iPSC clusters

    PubMed Central

    Andersson, Eva-Marie; Heath, Nikki; Persson-kry, Anette; Collins, Richard; Hicks, Ryan; Dekker, Niek; Forslöw, Anna

    2017-01-01

    It has been suggested that extracellular vesicles (EVs) can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs) were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC) clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications. PMID:29117231

  1. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    PubMed

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  2. Inhibition of the Differentiation of Monocyte-Derived Dendritic Cells by Human Gingival Fibroblasts

    PubMed Central

    Séguier, Sylvie; Tartour, Eric; Guérin, Coralie; Couty, Ludovic; Lemitre, Mathilde; Lallement, Laetitia; Folliguet, Marysette; Naderi, Samah El; Terme, Magali; Badoual, Cécile; Lafont, Antoine; Coulomb, Bernard

    2013-01-01

    We investigated whether gingival fibroblasts (GFs) can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs) and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM) from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05) inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism. PMID:23936476

  3. Estrogen receptor β (ERβ1) transactivation is differentially modulated by the transcriptional coregulator Tip60 in a cis-acting element-dependent manner.

    PubMed

    Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving; Tarapore, Pheruza; Ho, Shuk-Mei

    2013-08-30

    Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1.

  4. Estrogen Receptor β (ERβ1) Transactivation Is Differentially Modulated by the Transcriptional Coregulator Tip60 in a cis-Acting Element-dependent Manner*

    PubMed Central

    Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving; Tarapore, Pheruza; Ho, Shuk-Mei

    2013-01-01

    Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1. PMID:23857583

  5. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.

    2018-01-01

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  6. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    PubMed

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  7. The application of encapsulation material stability data to photovoltaic module life assessment

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1983-01-01

    For any piece of hardware that degrades when subject to environmental and application stresses, the route or sequence that describes the degradation process may be summarized in terms of six key words: LOADS, RESPONSE, CHANGE, DAMAGE, FAILURE, and PENALTY. Applied to photovoltaic modules, these six factors form the core outline of an expanded failure analysis matrix for unifying and integrating relevant material degradation data and analyses. An important feature of this approach is the deliberate differentiation between factors such as CHANGE, DAMAGE, and FAILURE. The application of this outline to materials degradation research facilitates the distinction between quantifying material property changes and quantifying module damage or power loss with their economic consequences. The approach recommended for relating material stability data to photovoltaic module life is to use the degree of DAMAGE to (1) optical coupling, (2) encapsulant package integrity, (3) PV circuit integrity or (4) electrical isolation as the quantitative criterion for assessing module potential service life rather than simply using module power loss.

  8. LTCC-based differential photo acoustic cell for ppm gas sensing

    NASA Astrophysics Data System (ADS)

    Karioja, P.; Keränen, K.; Kautio, K.; Ollila, J.; Heikkinen, M.; Kauppinen, I.; Kuusela, T.; Matveev, B.; McNie, M. E.; Jenkins, R. M.; Palve, J.

    2010-04-01

    suggests that the proof-of-principle packaging demonstrator paves the way for implementing a novel differential photoacoustic gas cell for a future miniature gas sensor module. The future module consisting of a sample gas cell and immersion lens IR-LEDs together with interferometric probing of the cantilever microphone is expected to be capable of measuring ultra low concentrations of a wide range of gases with their fundamental absorption bands at 3 - 7 μm wavelength, such as CO, CO2 and CH4.

  9. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kyoung Ho; Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr; Troy, Frederic A., E-mail: fatroy@ucdavis.edu

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC withmore » epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.« less

  10. Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.

    PubMed

    Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin

    2018-04-01

    Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.

  11. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    PubMed Central

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  12. p62 modulates Akt activity via association with PKC{zeta} in neuronal survival and differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joung, Insil; Kim, Hak Jae; Kwon, Yunhee Kim

    2005-08-26

    p62 is a ubiquitously expressed phosphoprotein that interacts with a number of signaling molecules and a major component of neurofibrillary tangles in the brain of Alzheimer's disease patients. It has been implicated in important cellular functions such as cell proliferation and anti-apoptotic pathways. In this study, we have addressed the potential role of p62 during neuronal differentiation and survival using HiB5, a rat neuronal progenitor cell. We generated a recombinant adenovirus encoding T7-epitope tagged p62 to reliably transfer p62 cDNA into the neuronal cells. The results show that an overexpression of p62 led not only to neuronal differentiation, but alsomore » to decreased cell death induced by serum withdrawal in HiB5 cells. In this process p62-dependent Akt phosphorylation occurred via the release of Akt from PKC{zeta} by association of p62 and PKC{zeta}, which is known as a negative regulator of Akt activation. These findings indicate that p62 facilitates cell survival through novel signaling cascades that result in Akt activation. Furthermore, we found that p62 expression was induced during neuronal differentiation. Taken together, the data suggest p62 is a regulator of neuronal cell survival and differentiation.« less

  13. Oxygen Tension Modulates Differentiation and Primary Macrophage Functions in the Human Monocytic THP-1 Cell Line

    PubMed Central

    Grodzki, Ana Cristina G.; Giulivi, Cecilia; Lein, Pamela J.

    2013-01-01

    The human THP-1 cell line is widely used as an in vitro model system for studying macrophage differentiation and function. Conventional culture conditions for these cells consist of ambient oxygen pressure (∼20% v/v) and medium supplemented with the thiol 2-mercaptoethanol (2-ME) and serum. In consideration of the redox activities of O2 and 2-ME, and the extensive experimental evidence supporting a role for reactive oxygen species (ROS) in the differentiation and function of macrophages, we addressed the question of whether culturing THP-1 cells under a more physiologically relevant oxygen tension (5% O2) in the absence of 2-ME and serum would alter THP-1 cell physiology. Comparisons of cultures maintained in 18% O2 versus 5% O2 indicated that reducing oxygen tension had no effect on the proliferation of undifferentiated THP-1 cells. However, decreasing the oxygen tension to 5% O2 significantly increased the rate of phorbol ester-induced differentiation of THP-1 cells into macrophage-like cells as well as the metabolic activity of both undifferentiated and PMA-differentiated THP-1 cells. Removal of both 2-ME and serum from the medium decreased the proliferation of undifferentiated THP-1 cells but increased metabolic activity and the rate of differentiation under either oxygen tension. In differentiated THP-1 cells, lowering the oxygen tension to 5% O2 decreased phagocytic activity, the constitutive release of β-hexosaminidase and LPS-induced NF-κB activation but enhanced LPS-stimulated release of cytokines. Collectively, these data demonstrate that oxygen tension influences THP-1 cell differentiation and primary macrophage functions, and suggest that culturing these cells under tightly regulated oxygen tension in the absence of exogenous reducing agent and serum is likely to provide a physiologically relevant baseline from which to study the role of the local redox environment in regulating THP-1 cell physiology. PMID:23355903

  14. Survival and synergistic growth of mixed cultures of bifidobacteria and lactobacilli combined with prebiotic oligosaccharides in a gastrointestinal tract simulator

    PubMed Central

    Adamberg, Signe; Sumeri, Ingrid; Uusna, Riin; Ambalam, Padma; Kondepudi, Kanthi Kiran; Adamberg, Kaarel; Wadström, Torkel; Ljungh, Åsa

    2014-01-01

    Background Probiotics, especially in combination with non-digestible oligosaccharides, may balance the gut microflora while multistrain preparations may express an improved functionality over single strain cultures. In vitro gastrointestinal models enable to test survival and growth dynamics of mixed strain probiotics in a controlled, replicable manner. Methods The robustness and compatibility of multistrain probiotics composed of bifidobacteria and lactobacilli combined with mixed prebiotics (galacto-, fructo- and xylo-oligosaccharides or galactooligosaccharides and soluble starch) were studied using a dynamic gastrointestinal tract simulator (GITS). The exposure to acid and bile of the upper gastrointestinal tract was followed by dilution with a continuous decrease of the dilution rate (de-celerostat) to simulate the descending nutrient availability of the large intestine. The bacterial numbers and metabolic products were analyzed and the growth parameters determined. Results The most acid- and bile-resistant strains were Lactobacillus plantarum F44 and L. paracasei F8. Bifidobacterium breve 46 had the highest specific growth rate and, although sensitive to bile exposure, recovered during the dilution phase in most experiments. B. breve 46, L. plantarum F44, and L. paracasei F8 were selected as the most promising strains for further studies. Conclusions De-celerostat cultivation can be applied to study the mixed bacterial cultures under defined conditions of decreasing nutrient availability to select a compatible set of strains. PMID:25045346

  15. Startle modulation and explicit valence evaluations dissociate during backward fear conditioning.

    PubMed

    Luck, Camilla C; Lipp, Ottmar V

    2017-05-01

    Blink startle magnitude is linearly modulated by affect such that, relative to neutral stimuli, startle magnitude is inhibited during pleasant stimuli and potentiated during unpleasant stimuli. Andreatta, Mühlberger, Yarali, Gerber, and Pauli (2010), however, report a dissociation between startle modulation and explicit valence evaluations during backward conditioning, a procedure in which the unconditional stimulus precedes the conditional stimulus (CS). Relative to controls, startles elicited during the CS were inhibited, suggesting that the CS had acquired positive valence, but participants still evaluated the CS as unpleasant after the experiment. In Experiment 1, we aimed to replicate this dissociation using a trial-by-trial measure of CS valence to measure startle modulation and CS valence simultaneously during forward and backward differential fear conditioning. In Experiment 2, we examined whether early and late portions of the CS could acquire differential valence by presenting startle probes at early and late probe positions during the CS. In both experiments, the dissociation between startle modulation and explicit valence evaluations in backward conditioning replicated, with CS+ evaluated as less pleasant than CS-, but startles elicited during CS+ inhibited relative to CS-. In Experiment 2, we provide preliminary evidence that this inhibition was present early, but not late, during the CS+. The results replicate the dissociation between implicit and explicit CS valence reported by Andreatta et al. (2010) using a trial-by-trial measure of valence. We also provide preliminary evidence that this dissociation may occur because the implicit and explicit measures are recorded at different times during the CS presentation. © 2017 Society for Psychophysiological Research.

  16. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents.

    PubMed

    Patel, Bijal; Bright, Damian P; Mortensen, Martin; Frølund, Bente; Smart, Trevor G

    2016-01-13

    Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders but there are no

  17. Brg1 modulates enhancer activation in mesoderm lineage commitment

    DOE PAGES

    Alexander, Jeffrey M.; Hota, Swetansu K.; He, Daniel; ...

    2015-03-26

    The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also requiredmore » to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. In conclusion, these findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.« less

  18. Differentially-Expressed Pseudogenes in HIV-1 Infection.

    PubMed

    Gupta, Aditi; Brown, C Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-09-29

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these "functional" pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  19. Differentially-Expressed Pseudogenes in HIV-1 Infection

    PubMed Central

    Gupta, Aditi; Brown, C. Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-01-01

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these “functional” pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit. PMID:26426037

  20. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling

    PubMed Central

    Kasaai, Bahar; Caolo, Vincenza; Peacock, Hanna M.; Lehoux, Stephanie; Gomez-Perdiguero, Elisa; Luttun, Aernout; Jones, Elizabeth A. V.

    2017-01-01

    Erythro-myeloid progenitors (EMPs) were recently described to arise from the yolk sac endothelium, just prior to vascular remodeling, and are the source of adult/post-natal tissue resident macrophages. Questions remain, however, concerning whether EMPs differentiate directly from the endothelium or merely pass through. We provide the first evidence in vivo that EMPs can emerge directly from endothelial cells (ECs) and demonstrate a role for these cells in vascular development. We find that EMPs express most EC markers but late EMPs and EMP-derived cells do not take up acetylated low-density lipoprotein (AcLDL), as ECs do. When the endothelium is labelled with AcLDL before EMPs differentiate, EMPs and EMP-derived cells arise that are AcLDL+. If AcLDL is injected after the onset of EMP differentiation, however, the majority of EMP-derived cells are not double labelled. We find that cell division precedes entry of EMPs into circulation, and that blood flow facilitates the transition of EMPs from the endothelium into circulation in a nitric oxide-dependent manner. In gain-of-function studies, we inject the CSF1-Fc ligand in embryos and found that this increases the number of CSF1R+ cells, which localize to the venous plexus and significantly disrupt venous remodeling. This is the first study to definitively establish that EMPs arise from the endothelium in vivo and show a role for early myeloid cells in vascular development. PMID:28272478