Sample records for lactobacillus gasseri cect

  1. [Beneficial effects of consumption of a dairy product containing two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714 in healthy children].

    PubMed

    Lara-Villoslada, F; Sierra, S; Boza, J; Xaus, J; Olivares, M

    2007-01-01

    In the last decades there has been an increasing interest in the manipulation of intestinal microbiota with probiotics for the prevention and treatment of certain paediatric diseases. In addition, it has been suggested that probiotics could play a role in the development of immune system. Recent studies suggest that the administration of two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714 improves intestinal function of healthy adults and enhances the immune response. Since there are few studies reporting the use of probiotic in children, the main consumers of these products, the aim of the present study was to analyze the effects of the administration of the mentioned probiotic strains in healthy children. 30 children (age range 3-12) with no gastrointestinal pathology were included in the study. In addition to their usual diet, during the first 3 weeks they received 200 ml of a conventional yogurt containing Lactobacillus bulgaricus and Streptococcus thermophilus. During the following three weeks this yogurt was substi-tuted for 80 ml of a probiotic product (Max Defensas, Puleva Food S.L.) containing the same amounts of Streptococcus thermophilus and the L. bulgaricus was substituted by a mixture of the target probiotic strains: L. coryniformis CECT5711 and L. gasseri CECT5714. Samples of faeces and saliva were taken at the beginning of the protocol, at week 3 and at the end of the study. Intestinal microbiota, faecal citotoxicity and the inhibition of Salmonella cholerasusis ssp. cholerasuis adhesion to intestinal mucins by the faeces were analyzed. Finally, IgA concentration was determined in the faecal and saliva samples. Tolerance of the probiotic product was good in all the children included in the study. An increase in faecal lactobacilli counts was shown at the end of the experimental protocol (P < 0,05). In addition citotoxicity of faecal samples was significantly (p < 0.05) reduced after probiotic consumption

  2. A probiotic dairy product containing L. gasseri CECT5714 and L. coryniformis CECT5711 induces immunological changes in children suffering from allergy.

    PubMed

    Martínez-Cañavate, Ana; Sierra, Saleta; Lara-Villoslada, Federico; Romero, Julio; Maldonado, José; Boza, Julio; Xaus, Jordi; Olivares, Mónica

    2009-09-01

    The increase in the prevalence of allergic diseases in children has been attributed to an unbalanced immune response probably due to environmental factors. The immunoregulatory properties of probiotic bacteria could balance the disequilibrium in the immune response causing the allergic response. The aim of this study was to evaluate the immunological effects of the consumption of a dairy product containing two probiotic strains in children suffering from allergy. A double-blinded, randomized, control comparative study was performed with 44 allergic children. Children were randomly distributed in two groups, a control Yogurt and a Probiotic group. Both groups daily consumed 200 ml of a dairy fermented product for 3 months. The Yogurt group consumed a conventional yogurt, whereas the Probiotic group consumed a similar dairy product where Lactobacillus bulgaricus was substituted by a mixture of Lactobacillus gasseri CECT5714 and Lactobacillus coryniformis CECT5711 (at least 10(6) cfu/g each strain). Intestinal and immunological parameters were measured in fecal and blood samples. The consumption of the probiotic product induced a significant decrease in the level of IgE in plasma (p = 0.03) and an increase in CD4(+)/CD25(+) T regulatory cells (p = 0.01). The decrease in IgE was accompanied by a significant increase in mucosal IgA (p = 0.01). However, changes in other effector cells potentially involved in allergic reactions such as eosinophiles, basophiles or other IgE+ cells were not detected. The consumption of the probiotic product also induced significant changes in innate response as a significant increase in natural killer cells was detected (p = 0.03). The daily consumption of a probiotic product containing L. gasseri CECT5714 and L. coryniformis CECT5711 for 3 months induces, in allergic children, beneficial effects on immune parameters involved in the allergic response such as a reduction of IgE in plasma and an increase in regulatory T cells. The probiotic

  3. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  4. Assessment of Lactobacillus gasseri as a candidate oral vaccine vector.

    PubMed

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R; Dean, Gregg A

    2011-11-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3(+) colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens.

  5. Assessment of Lactobacillus gasseri as a Candidate Oral Vaccine Vector ▿

    PubMed Central

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R.; Dean, Gregg A.

    2011-01-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3+ colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens. PMID:21900526

  6. Development of an integration mutagenesis system in Lactobacillus gasseri.

    PubMed

    Selle, Kurt; Goh, Yong Jun; O'Flaherty, Sarah; Klaenhammer, Todd R

    2014-01-01

    Lactobacillus gasseri ATCC 33323 is a member of the acidophilus-complex group, microbes of human origin with significant potential for impacting human health based on niche-specific traits. In order to facilitate functional analysis of this important species, a upp-based counterselective chromosomal integration system was established and employed for targeting the lipoteichoic acid (LTA) synthesis gene, ltaS, in L. gasseri ATCC 33323. The ltaS gene encodes a phosphoglycerol transferase responsible for building the glycerol chain of LTA. No isogenic mutant bearing the deletion genotype was recovered, but an integration knockout mutant was generated with insertion inactivation at the ltaS locus. The ltaS deficient derivative exhibited an altered cellular morphology and significantly reduced ability to adhere to Caco-2 intestinal cell monolayers, relative to the wild-type parent strain.

  7. UV-induced Lactobacillus gasseri mutants resisting sodium chloride and sodium nitrite for meat fermentation.

    PubMed

    Arihara, K; Itoh, M

    2000-06-01

    Lactobacillus gasseri, one of the predominant lactobacilli in human intestinal tracts, is utilized for probiotics and dairy starter cultures. However, since L. gasseri is relatively sensitive to sodium chloride and sodium nitrite (essential compounds for meat products), it is difficult to utilize this species for conventional fermented meat products. In this study, efforts were directed to generate mutants of L. gasseri resisting sodium chloride and sodium nitrite. UV irradiation of the strain of L. gasseri JCM1131(T) generated several mutants resisting these compounds. A mutant strain 1131-M8 demonstrated satisfactory growth in meat containing 3.3% sodium chloride and 200 ppm sodium nitrite. Although proteins extracted from the cell surface of 1131-M8 were slightly different from those of the original strain, other biochemical characteristics of both strains were indistinguishable. These results suggest that the L. gasseri mutant obtained in this study could be utilized as a starter culture to develop probiotic meat products.

  8. Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†

    PubMed Central

    Russell, W. M.; Klaenhammer, T. R.

    2001-01-01

    The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918

  9. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products.

    PubMed

    Anwar, Munir A; Kralj, Slavko; Piqué, Anna Villar; Leemhuis, Hans; van der Maarel, Marc J E C; Dijkhuizen, Lubbert

    2010-04-01

    Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with beta(2-6) and beta(2-1) linkages, respectively. Here, we report an evaluation of fructan synthesis in three Lactobacillus gasseri strains, identification of the fructansucrase-encoding genes and characterization of the recombinant proteins and fructan (oligosaccharide) products. High-performance anion-exchange chromatography and nuclear magnetic resonance analysis of the fructo-oligosaccharides (FOS) and polymers produced by the L. gasseri strains and the recombinant enzymes revealed that, in situ, L. gasseri strains DSM 20604 and 20077 synthesize inulin (and oligosaccharides) and levan products, respectively. L. gasseri DSM 20604 is only the second Lactobacillus strain shown to produce inulin polymer and FOS in situ, and is unique in its distribution of FOS synthesized, ranging from DP2 to DP13. The probiotic bacterium L. gasseri DSM 20243 did not produce any fructan, although we identified a fructansucrase-encoding gene in its genome sequence. Further studies showed that this L. gasseri DSM 20243 gene was prematurely terminated by a stop codon. Exchanging the stop codon for a glutamine codon resulted in a recombinant enzyme producing inulin and FOS. The three recombinant fructansucrase enzymes characterized from three different L. gasseri strains have very similar primary protein structures, yet synthesize different fructan products. An interesting feature of the L. gasseri strains is that they were unable to ferment raffinose, whereas their respective recombinant enzymes converted raffinose into fructan and FOS.

  10. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri.

    PubMed

    Sanozky-Dawes, Rosemary; Selle, Kurt; O'Flaherty, Sarah; Klaenhammer, Todd; Barrangou, Rodolphe

    2015-09-01

    Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 Lactobacillus gasseri strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5'-NTAA-3' flanking the 3' end of the protospacer. The system in L. gasseri JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri. Collectively, these results open avenues for applications for bacteriophage protection and genome modification in L. gasseri, and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria.

  11. Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65.

    PubMed

    Morais, I M C; Cordeiro, A L; Teixeira, G S; Domingues, V S; Nardi, R M D; Monteiro, A S; Alves, R J; Siqueira, E P; Santos, V L

    2017-09-19

    Lactobacillus species produce biosurfactants that can contribute to the bacteria's ability to prevent microbial infections associated with urogenital and gastrointestinal tracts and the skin. Here, we described the biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65 . The biosurfactants produced by L. jensenii P 6A and L. gasseri P 65 reduced the water surface tension from 72 to 43.2 mN m -1 and 42.5 mN m -1 as their concentration increased up to the critical micelle concentration (CMC) values of 7.1 and 8.58 mg mL -1 , respectively. Maximum emulsifying activity was obtained at concentrations of 1 and 5 mg mL -1 for the P 6A and P 65 strains, respectively. The Fourier transform infrared spectroscopy data revealed that the biomolecules consist of a mixture of carbohydrates, lipids and proteins. The gas chromatography-mass spectrum analysis of L. jensenii P 6A biosurfactant showed a major peak for 14-methypentadecanoic acid, which was the main fatty acid present in the biomolecule; conversely, eicosanoic acid dominated the biosurfactant produced by L. gasseri P 65 . Although both biosurfactants contain different percentages of the sugars galactose, glucose and ribose; rhamnose was only detected in the biomolecule produced by L. jensenii P 6A . Emulsifying activities were stable after a 60-min incubation at 100 °C, at pH 2-10, and after the addition of potassium chloride and sodium bicarbonate, but not in the presence of sodium chloride. The biomolecules showed antimicrobial activity against clinical isolates of Escherichia coli and Candida albicans, with MIC values of 16 µg mL -1 , and against Staphylococcus saprophyticus, Enterobacter aerogenes and Klebsiella pneumoniae at 128 µg mL -1 . The biosurfactants also disrupted preformed biofilms of microorganisms at varying concentrations, being more efficient against E. aerogenes (64%) (P 6A biosurfactant), and E. coli (46

  12. Designing primers and evaluation of the efficiency of propidium monoazide - Quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius.

    PubMed

    Lai, Chieh-Hsien; Wu, Sih-Rong; Pang, Jen-Chieh; Ramireddy, Latha; Chiang, Yu-Cheng; Lin, Chien-Ku; Tsen, Hau-Yang

    2017-07-01

    The purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA) real-time quantitative polymerase chain reaction (qPCR) to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4-5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable. Copyright © 2016. Published by Elsevier B.V.

  13. Identification and Characterization of Novel Surface Proteins in Lactobacillus johnsonii and Lactobacillus gasseri

    PubMed Central

    Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf

    2002-01-01

    We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842

  14. Lactobacillus gasseri K7 modulates the blood cell transcriptome of conventional mice infected with Escherichia coli O157:H7.

    PubMed

    Sagaya, F M; Hacin, B; Tompa, G; Ihan, A; Špela, Š; Černe, M; Hurrell, R F; Matijašić, B B; Rogelj, I; Vergères, G

    2014-05-01

    As the immune cells underlying the intestinal barrier sense luminal microbial signals, blood cell transcriptomics may identify subclinical changes triggered by gut bacteria that may otherwise not be detected. We have therefore investigated how Lactobacillus gasseri K7 and enterohemorrhagic Escherichia coli O157:H7 modulate the blood cell transcriptome of mice possessing an intact microbiota. We have analysed the transcriptome of five groups of C57BL/6J mice: (i) control, (ii) inoculated with a single dose of E. coli, (iii) inoculated during 2 weeks with Lact. gasseri, (iv) co-inoculated with E. coli and Lact. gasseri, (v) inoculated with Lact. gasseri prior to E. coli infection. The transcriptome could distinguish between the five treatment groups. Gene characteristics of bacterial infection, in particular inflammation, were upregulated in the mice inoculated with E. coli. Lact. gasseri had only mild effects on the transcriptome but modified the gene expression induced by E. coli. The transcriptome differentiates mice inoculated orally with E. coli, Lact. gasseri and combinations of these two strains. These results suggest that the blood cell transcriptome can be used as a source of biomarkers to monitor the impact of probiotics in subclinical models of infectious disease. © 2014 The Society for Applied Microbiology.

  15. Culture Supernatants of Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and Adhesion to HeLa Cells.

    PubMed

    Matsuda, Yuko; Cho, Otomi; Sugita, Takashi; Ogishima, Daiki; Takeda, Satoru

    2018-03-30

    Vulvovaginal candidiasis (VVC) is a common superficial infection of the vaginal mucous membranes caused by the fungus Candida albicans. The aim of this study was to assess the mechanisms underlying the inhibitory effects of the culture supernatants of Lactobacillus gasseri and L. crispatus, the predominant microbiota in Asian healthy women, on C. albicans biofilm formation. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was also investigated. Candida albicans biofilm was formed on polystyrene flat-bottomed 96-well plates, and the inhibitory effects on the initial colonization and maturation phases were determined using the XTT reduction assay. The expression levels of biofilm formation-associated genes (HWP1, ECE1, ALS3, BCR1, EFG1, TEC1, and CPH1) were determined by reverse transcription quantitative polymerase chain reaction. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was evaluated by enumerating viable C. albicans cells. The culture supernatants of both Lactobacillus species inhibited the initial colonization and maturation of C. albicans biofilm. The expression levels of all biofilm formation-related genes were downregulated in the presence of Lactobacillus culture supernatant. The culture supernatant also inhibited C. albicans adhesion to HeLa cells. The culture supernatants of L. gasseri and L. crispatus inhibited C. albicans biofilm formation by downregulating biofilm formation-related genes and C. albicans adhesion to HeLa cells. These findings support the notion that Lactobacillus metabolites may be useful alternatives to antifungal drugs for the management of VVC.

  16. Oral administration of heat-killed Lactobacillus gasseri OLL2809 reduces cedar pollen antigen-induced peritoneal eosinophilia in Mice.

    PubMed

    Sashihara, Toshihiro; Ikegami, Shuji; Sueki, Natsuko; Yamaji, Taketo; Kino, Kohsuke; Taketomo, Naoki; Gotoh, Minoru; Okubo, Kimihiro

    2008-12-01

    Lactobacillus gasseri OLL2809 strongly stimulates the production of interleukin (IL)-12 (p70) by innate immune cells. Thus, it is expected to ameliorate allergic diseases. We investigated whether the oral administration of heat-killed L. gasseri OLL2809 suppressed eosinophilia in cedar pollen antigen-challenged mice. BALB/c mice sensitized with Japanese cedar pollen extract were intraperitoneally challenged with the same extract. The mice were orally given heat-killed L. gasseri OLL2809 at doses of 0.5, 1, or 2mg/day throughout the experimental period (21 d). After 24 hours of the challenge, the eosinophil number and cytokine levels in the peritoneal lavage fluid and the serum antigen-specific IgG levels were determined. On administering varying amounts of heat-killed L. gasseri OLL2809, the number of eosinophils among the total number of cells was significantly reduced in all groups. In addition, the eosinophil number significantly decreased, and the eosinophil-suppression rate significantly increased by 44% in the 2-mg group. Although the serum immunoglobulin (Ig) G2a and IgG1 levels were not affected, the IgG2a/IgG1 ratio increased significantly in the 2-mg group compared with that of the control group. Furthermore, the administration of heat-killed L. gasseri OLL2809 resulted in the induction of IL-2 and reduction in granulocyte-macrophage colony-stimulating factor levels in peritoneal lavage fluid. We demonstrated that the oral administration of heat-killed L. gasseri OLL2809 suppresses eosinophilia via the modulation of Th1/Th2 balance. These observations suggested that heat-killed L. gasseri OLL2809 might potentially ameliorate the increased number of eosinophils in patients with Japanese cedar pollinosis.

  17. Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei†

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Altermann, Eric; Barrangou, Rodolphe; McGrath, Stephen; Claesson, Marcus J.; Li, Yin; Leahy, Sinead; Walker, Carey D.; Zink, Ralf; Neviani, Erasmo; Steele, Jim; Broadbent, Jeff; Klaenhammer, Todd R.; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe

    2006-01-01

    Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli. PMID:16672450

  18. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: from genotype to phenotype.

    PubMed

    Langa, Susana; Maldonado-Barragán, Antonio; Delgado, Susana; Martín, Rebeca; Martín, Virginia; Jiménez, Esther; Ruíz-Barba, José L; Mayo, Baltasar; Connor, Ruth I; Suárez, Juan Evaristo; Rodríguez, Juan M

    2012-06-01

    Lactobacillus salivarius CECT 5713, isolated from human milk, has immunomodulatory, anti-inflammatory and antiinfectious properties, as revealed by several in vitro and in vivo assays, which suggests a strong potential as a probiotic strain. In this work, the relationships between several genetic features of L. salivarius CECT 5713 and the corresponding phenotypes were evaluated. Although it contains a plasmid-encoded bacteriocin cluster, no bacteriocin biosynthesis was observed, possibly due to a 4-bp deletion at the beginning of the histidine kinase determinant abpK. The genome of L. salivarius CECT 5713 harbours two apparently complete prophages of 39.6 and 48 kbp. Upon induction, the 48-kbp prophage became liberated from the bacterial genome, but no DNA replication took place, which resulted in lysis of the cultures but not in phage progeny generation. The strain was sensitive to most antibiotics tested and no transmissible genes potentially involved in antibiotic resistance were detected. Finally, the genome of L. salivarius CECT 5713 contained four ORFs potentially involved in human molecular mimetism. Among them, protein 1230 was considered of particular relevance because of its similarity with dendritic cell-related proteins. Subsequently, in vitro assays revealed the ability of L. salivarius CECT 5713 to stimulate the maturation of immature dendritic cells and to inhibit the in vitro infectivity of HIV-1.

  19. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization.

    PubMed

    Francl, Alyssa L; Hoeflinger, Jennifer L; Miller, Michael J

    2012-04-01

    Improving the annotation of sugar catabolism-related genes requires functional characterization. Our objective was to identify the genes necessary for lactose utilization by Lactobacillus gasseri ATCC 33323 (NCK334). The mechanism of lactose transport in many lactobacilli is a lactose/galactose-specific permease, yet no orthologue was found in NCK334. Characterization of an EI knockout strain [EI (enzyme I) is required for phosphotransferase system transporter (PTS) function] demonstrated that L. gasseri requires PTS(s) to utilize lactose. In order to determine which PTS(s) were necessary for lactose utilization, we compared transcript expression profiles in response to lactose for the 15 complete PTSs identified in the NCK334 genome. PTS 6CB (LGAS_343) and PTS 8C (LGAS_497) were induced in the presence of lactose 107- and 53-fold, respectively. However, L. gasseri ATCC 33323 PTS 6CB, PTS 8C had a growth rate similar to that of the wild-type on semisynthetic deMan, Rogosa, Sharpe (MRS) medium with lactose. Expression profiles of L. gasseri ATCC 33323 PTS 6CB, PTS 8C in response to lactose identified PTS 9BC (LGAS_501) as 373-fold induced, whereas PTS 9BC was not induced in NCK334. Elimination of growth on lactose required the inactivation of both PTS 6CB and PTS 9BC. Among the six candidate phospho-β-galactosidase genes present in the NCK334 genome, LGAS_344 was found to be induced 156-fold in the presence of lactose. In conclusion, we have determined that: (1) NCK334 uses a PTS to import lactose; (2) PTS 6CB and PTS 8C gene expression is strongly induced by lactose; and (3) elimination of PTS 6CB and PTS 9BC is required to prevent growth on lactose.

  20. Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis.

    PubMed

    Bauer, Paige V; Duca, Frank A; Waise, T M Zaved; Dranse, Helen J; Rasmussen, Brittany A; Puri, Akshita; Rasti, Mozhgan; O'Brien, Catherine A; Lam, Tony K T

    2018-03-06

    Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Effect of pretreatment with Lactobacillus gasseri OLL2716 on first-line Helicobacter pylori eradication therapy

    PubMed Central

    Deguchi, Ryuzo; Nakaminami, Hidemasa; Rimbara, Emiko; Noguchi, Norihisa; Sasatsu, Masanori; Suzuki, Takayoshi; Matsushima, Masashi; Koike, Jun; Igarashi, Muneki; Ozawa, Hideki; Fukuda, Ryuki; Takagi, Atsushi

    2012-01-01

    Background and Aim Helicobacter pylori eradication clearly decreases peptic ulcer recurrence rates. H. pylori eradication is achieved in 70–90% of cases, but treatment failures due to poor patient compliance and resistant organisms do occur. Lactobacillus gasseri can suppress both clarithromycin-susceptible and -resistant strains of H. pylori in vitro. The aim of this study was to determine the effect of pretreatment with L. gasseri- containing yogurt on H. pylori eradication. We conducted a randomized, controlled clinical trial in patients with H. pylori infection. Methods A total of 229 patients were randomized into either a 1-week triple therapy of rabeprazole (10 mg bid), amoxicillin (750 mg bid), and clarithromycin (200 mg bid) or triple therapy plus L. gasseri-containing yogurt. In the yogurt-plus-triple therapy groups, yogurt containing L. gasseri OLL2716 (112 g) was given twice daily for 4 weeks (3 weeks pretreatment and also 1 week during eradication therapy). Clarithromycin resistance was determined by the detection of a mutation in 23S rRNA using nested polymerase chain reaction and the direct sequencing of DNA from pretreatment feces. H. pylori eradication was diagnosed based on the urea breath test and a stool antigen test after 8 weeks of eradication. Results The status of H. pylori susceptibility to clarithromycin was successively determined in 188 out of 229 samples. The rate of infection with clarithromycin-resistant strains of H. pylori was 27.1%. Overall eradication (intention to treat/per protocol) was 69.3/74.5% for the triple-only group, and 82.6/85.6% for the yogurt-plus-triple group (P = 0.018/P = 0.041). Eradication of primary clarithromycin-resistant strains tended to be higher for yogurt-plus-triple therapy than triple-only therapy (38.5 vs 28.0%, respectively, P = 0.458). Conclusion This study confirmed that the major cause of treatment failure is resistance to clarithromycin. A 4-week treatment with L. gasseri-containing yogurt

  2. Safety and tolerance of the human milk probiotic strain Lactobacillus salivarius CECT5713 in 6-month-old children.

    PubMed

    Maldonado, José; Lara-Villoslada, Federico; Sierra, Saleta; Sempere, Lluis; Gómez, Marta; Rodriguez, Juan Miguel; Boza, Julio; Xaus, Jordi; Olivares, Mónica

    2010-01-01

    Intestinal microbiota plays an important role in the prevention of certain diseases during the pediatric years. Thus, there is an increasing interest in the addition of probiotics to infant formulas. The aim of this study was to evaluate the safety of a follow-on formula with Lactobacillus salivarius CECT5713 in 6-mo-old children. The antibiotic susceptibility of L. salivarius CECT5713 was analyzed by a dilution method. A double-blinded, randomized, placebo controlled study was performed. Children (n = 80) were distributed in two groups and consumed the formula supplemented or not with probiotics (2 × 10(6) colony-forming units [cfu]/g) during 6 mo. Fecal samples were collected at enrollment, at 3 mo, and at the end of trial. Clinical and anthropometric evaluations were performed. Depending on the variable, one-way or two-way repeated measures analysis of variance were used for the statistical analysis. The antibiotic susceptibility profile of the strain resulted as safe. No adverse effects associated with the consumption of the probiotic formula were reported. In addition, clinical parameters did not differ between groups. Consumption of the probiotic supplemented formula led to an increase in the fecal lactobacilli content (7.6 ± 0.2 versus 7.9 ± 0.1 log cfu/g, P < 0.05). Lactobacillus salivarius CECT5713 was detected in the feces of volunteers from the probiotic group. Probiotic consumption induced a significant increase in the fecal concentration of butyric acid at 6 mo. Thus, a follow-on formula with L. salivarius CECT5713 is safe and well tolerated in 6-mo-old infants. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Complete Genome Sequence of Lactobacillus rhamnosus Strain BPL5 (CECT 8800), a Probiotic for Treatment of Bacterial Vaginosis.

    PubMed

    Chenoll, Empar; Codoñer, Francisco M; Martinez-Blanch, Juan F; Ramón, Daniel; Genovés, Salvador; Menabrito, Marco

    2016-04-21

    ITALIC! Lactobacillus rhamnosusBPL5 (CECT 8800), is a probiotic strain suitable for the treatment of bacterial vaginosis. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insight into its functional activity. Copyright © 2016 Chenoll et al.

  4. Lipoteichoic acids are embedded in cell walls during logarithmic phase, but exposed on membrane vesicles in Lactobacillus gasseri JCM 1131T.

    PubMed

    Shiraishi, T; Yokota, S; Sato, Y; Ito, T; Fukiya, S; Yamamoto, S; Sato, T; Yokota, A

    2018-06-15

    Lipoteichoic acid (LTA) is a cell surface molecule specific to Gram-positive bacteria. How LTA localises on the cell surface is a fundamental issue in view of recognition and immunomodulation in hosts. In the present study, we examined LTA localisation using strain JCM 1131T of Lactobacillus gasseri, which is a human intestinal lactic acid bacterium, during various growth phases by immunoelectron microscopy. We first evaluated the specificity of anti-LTA monoclonal antibody clone 55 used as a probe. The glycerophosphate backbone comprising almost intact size (20 to 30 repeating units) of LTA was required for binding. The antibody did not bind to other cellular components, including wall-teichoic acid. Immunoelectron microscopy indicated that LTA was embedded in the cell wall during the logarithmic phase, and was therefore not exposed on the cell surface. Similar results were observed for Lactobacillus fermentum ATCC 9338 and Lactobacillus rhamnosus ATCC 7469T. By contrast, membrane vesicles were observed in the logarithmic phase of L. gasseri with LTA exposed on their surface. In the stationary and death phases, LTA was exposed on cell wall-free cell membrane generated by autolysis. The dramatic alternation of localisation in different growth phases and exposure on the surface of membrane vesicles should relate with complicated interaction between bacteria and host.

  5. Oral immunization of mice with engineered Lactobacillus gasseri NM713 strain expressing Streptococcus pyogenes M6 antigen.

    PubMed

    Mansour, Nahla M; Abdelaziz, Sahar A

    2016-08-01

    The aim of this in vivo study was to evaluate the effects of a recombinant probiotic strain, Lactobacillus gasseri NM713, which expresses the conserved region of streptococcal M6 protein (CRR6), as an oral vaccine against Streptococcus pyogenes. A dose of 10(9) cells of the recombinant strain in 150 μL PBS buffer was administered orally to a group of mice. One control group received an equivalent dose of Lb. gasseri NM613 (containing the empty plasmid without insert) or and another control group received PBS buffer. Each group contained 30 mice. The immunization protocol was followed on three consecutive days, after which two booster doses were administered at two week intervals. Fecal and serum samples were collected from the mice on Days 18, 32, 46, 58 after the first immunization and Day 0 prior to immunization. Anti-CRR6 IgA and IgG concentrations were measured by ELISA in fecal and sera samples, respectively, to assess immune responses. Vaccination with the recombinant Lb. gasseri NM713 strain induced significant protection after nasal challenge with S. pyogenes, only a small percentage of this group developing streptococcal infection (10%) or dying of it (3.3%) compared with the NM613 and PBS control groups, high percentages of which developed streptococcal infection (43.3% and 46.7%, respectively) and died of it (46.7% and 53%, respectively). These results indicate that recombinant Lb. gasseri NM713 has potential as an oral delivery vaccine against streptococcus group A. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  6. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa).

    PubMed

    Sungur, Tolga; Aslim, Belma; Karaaslan, Cagtay; Aktas, Busra

    2017-10-01

    Lactobacilli, commonly used as probiotics, have been shown to maintain vaginal health and contribute to host microbiota interaction. Exopolysaccharides (EPSs) produced by lactobacillus have been found to have an important role in probiotic activity; however, there is limited knowledge concerning their impact on cervical cancer and urogenital health. The objective of this study is to investigate and compare EPSs of L. gasseri strains (G10 and H15), isolated from a healthy human vagina, for their capability to inhibit cervical cancer cell (HeLa) growth and modulate immune response. HeLa cells were treated with live culture at ∼10 8  CFU/ml or increasing concentration of lyophilized EPS (L-EPS) (100, 200, or 400 μg/ml) of L. gasseri strains and their ability to adhere to host cells, inhibit proliferation, and modulate immune response were evaluated. Additionally, monosaccharide composition of the L-EPSs produced by L. gasseri strains was determined by HPLC. The sugar component was the same; however, relative proportions of the individual monosaccharides except mannose were different. Although they both produce similar amount of EPS, the most adhesive strain was G10. Both live and L-EPS of L. gasseri strains were capable of inhibiting the cell proliferation of HeLa cells with the impact of L-EPS being strain specific. L-EPSs of L. gasseri strains induced apoptosis in HeLa cells in a strain dependent manner. The ability to induce apoptosis by G10 associated with an upregulation of Bax and Caspase 3. L. gasseri strains showed an anti-inflammatory impact on HeLa cells by decreasing the production of TNF-α and increasing the IL-10 production. In conclusion, diversity in sugar composition of EPS might contribute to adhesion and proliferation properties. Although our results suggest a relationship between the ability of a strain to induce apoptosis and its sugar composition of EPS, further research is required to determine the probiotic mechanisms of action by

  7. Complete Genome Sequence of Lactobacillus salivarius CECT 5713, a Probiotic Strain Isolated from Human Milk and Infant Feces▿

    PubMed Central

    Jiménez, Esther; Martín, Rocío; Maldonado, Antonio; Martín, Virginia; Gómez de Segura, Aranzazu; Fernández, Leonides; Rodríguez, Juan M.

    2010-01-01

    Lactobacillus salivarius is a homofermentative lactic acid bacterium and is frequently isolated from mucosal surfaces of healthy humans. L. salivarius CECT 5713, a strain isolated simultaneously from breast milk and infant feces of a healthy mother-infant pair, has immunomodulatory, anti-inflammatory, and anti-infectious properties, as revealed by several in vitro and in vivo assays. Here, we report its complete and annotated genome sequence. PMID:20675488

  8. Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains

    PubMed Central

    Maresca, Diamante; Zotta, Teresa; Mauriello, Gianluigi

    2018-01-01

    Oxygen is considered one of the main factors affecting probiotic bacteria survival due to the induction of oxidative damages caused by the action of reactive oxygen species (ROS). It has been shown that oxidative stress resistance in lactic acid bacteria is strongly dependent on the type of cell metabolism. Shift from fermentative to respiratory metabolism (through the addition of heme and menaquinone and in presence of oxygen) was associated to increase in biomass, long-term survival, and production of antioxidant enzymes. The aim of this work was to investigate the effect of aerobic (presence of oxygen) and respiratory (presence of oxygen, heme, and menaquinone) cultivation on the growth kinetic, catalase production, oxygen uptake, and oxidative stress response of Lactobacillus johnsonii/gasseri strains previously isolated from infant feces. Seven strains showed to consume oxygen under aerobic and respiratory conditions. The strain AL5 showed a catalase activity in both growth conditions, while AL3 showed this activity only in respiratory condition. Respiratory condition improved their tolerance to oxidative compounds (hydrogen peroxide and ROS generators) and further they showed promising probiotic features. The exploration of respiratory competent phenotypes with probiotic features may be extremely useful for the development of competitive starter or probiotic cultures. PMID:29479342

  9. Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains.

    PubMed

    Maresca, Diamante; Zotta, Teresa; Mauriello, Gianluigi

    2018-01-01

    Oxygen is considered one of the main factors affecting probiotic bacteria survival due to the induction of oxidative damages caused by the action of reactive oxygen species (ROS). It has been shown that oxidative stress resistance in lactic acid bacteria is strongly dependent on the type of cell metabolism. Shift from fermentative to respiratory metabolism (through the addition of heme and menaquinone and in presence of oxygen) was associated to increase in biomass, long-term survival, and production of antioxidant enzymes. The aim of this work was to investigate the effect of aerobic (presence of oxygen) and respiratory (presence of oxygen, heme, and menaquinone) cultivation on the growth kinetic, catalase production, oxygen uptake, and oxidative stress response of Lactobacillus johnsonii/gasseri strains previously isolated from infant feces. Seven strains showed to consume oxygen under aerobic and respiratory conditions. The strain AL5 showed a catalase activity in both growth conditions, while AL3 showed this activity only in respiratory condition. Respiratory condition improved their tolerance to oxidative compounds (hydrogen peroxide and ROS generators) and further they showed promising probiotic features. The exploration of respiratory competent phenotypes with probiotic features may be extremely useful for the development of competitive starter or probiotic cultures.

  10. [Lactobacillus fermentum CECT5716 - probiotic from human milk with interesting properties].

    PubMed

    Żarłok, Kamil

    2016-01-01

    Probiotics are an intensively growing part of the pharmaceutical and nutrition industries. Along with the intensive development of sales volumes and product offers, more and more scientific publications on this subject are available (at the time of writing this article there are available almost 14 thousand publications in PubMed library). Scientists are trying to find new uses and new sources for this crucial group of nutrients or potential drugs. At the beginning of the XXI century it was discovered that the source of probiotics doesn't need to be only gastrointestinal tract (as previously thought), since they were obtained from breast milk which for many years were considered to be sterile. Probiotics from breast milk are an interesting group which could find application in mastitis, immunity support, infection prevention, infant colics and oral health. Main representative of this group is a strain of lactic acid bacteria Lactobacillus fermentum CECT5716.

  11. In vitro and in vivo anti-microbial activity evaluation of inactivated cells of Lactobacillus salivarius CECT 5713 against Streptococcus mutans.

    PubMed

    Sañudo, Ana I; Luque, Roberto; Díaz-Ropero, Mª Paz; Fonollá, Juristo; Bañuelos, Óscar

    2017-12-01

    Defining the etiology of dental caries is a complex problem. The microbiological approach has included Streptococcus mutans as one of the bacterial species involved in this disease. This research investigates the inhibitory effects of heat-inactivated Lactobacillus salivarius CECT 5713 against S. mutans using in vitro and in vivo assays. On the one hand, the effect of non-viable L. salivarius CECT 5713 on the in vitro adhesion of S. mutans to hydroxyapatite discs was evaluated. On the other hand, levels of Streptococcus mutans, amount of salivary flow and salivary pH before and after taking the rinse with the non-viable L. salivarius CECT 5713 in healthy volunteers were assessed (self-controlled open-label pilot study). The levels of S. mutans seemed to decrease in the in vitro and in vivo assays (p<0.05). The in vitro effect of non-viable L. salivarius was maintained until 36 months of storage. In addition, the reduction of S. mutans salivary concentration in the volunteers was statistically significant from the third day until two weeks of treatment. Heat-inactivated L. salivarius CECT 5713 prevents S. mutans adhesion to hydroxyapatite and could be used as a strategy to reduce the salivary concentration of this oral pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A cell surface aggregation-promoting factor from Lactobacillus gasseri contributes towards inhibition of Trichomonas vaginalis adhesion to human vaginal ectocervical cells.

    PubMed

    Phukan, Niha; Brooks, Anna E S; Simoes-Barbosa, Augusto

    2018-05-21

    Trichomoniasis, a prevalent sexually transmitted infection, is commonly symptomatic in women. The causative agent is Trichomonas vaginalis , an extracellular protozoan parasite. The host-protective mechanisms and molecules of vaginal lactobacilli that could counteract with this pathogen are largely unknown. This study examines the inhibition promoted by Lactobacillus gasseri against the adhesion of T. vaginalis to host cells, a critical virulence aspect of this pathogen. We observed that the vaginal L. gasseri ATCC 9857 is highly inhibitory by various contact-dependent mechanisms and surface proteins are largely responsible for this inhibitory phenotype. We found that the aggregation-promoting factor APF-2 from these bacteria significantly contributes towards inhibiting the adhesion of T. vaginalis to human vaginal ectocervical cells. Understanding the molecules and mechanisms used by lactobacilli to protect the host against T. vaginalis might help in the development of novel and specific therapeutic strategies that take advantage of the natural microbiota. Copyright © 2018 American Society for Microbiology.

  13. Lactobacillus salivarius and L. gasseri down-regulate Aggregatibacter actinomycetemcomitans exotoxins expression.

    PubMed

    Nissen, Lorenzo; Sgorbati, Barbara; Biavati, Bruno; Belibasakis, Georgios N

    2014-01-01

    Beneficial microbes, such as lactobacilli establish a symbiosis with the host and confer health-associated effects, by limiting the growth of indigenous pathogens and challenging microbes introduced by altered foods. Nevertheless, there is scarce information on the effects of beneficial microbes on the virulence properties of bacterial species associated with oral diseases, such as periodontitis. Aggregatibacter actinomycetemcomitans is a Gram-negative species highly implicated in the etiology of localized aggressive periodontitis. The objective of this study was to investigate the effect of lactobacilli on the expression of the two major virulence factors of A. actinomycetemcomitans . Lactobacillus salivarius and L. gasseri were selected as beneficial species. The gene expressions of leukotoxin ( LtxA ) and cytolethal distending toxin ( CdtB ) by A. actinomycetemcomitans were analyzed in response to challenge by lactobacilli cell-free supernatants. Neither lactobacilli affected the growth, but strongly attenuated the expressions of both CdtB and LtxA in the two A. actinomycetemcomitans strains tested. This reduction of the expression of these two exotoxins was time-dependent. These fundamental findings may indicate that lactobacilli can reduce the virulence of putative opportunistic oral pathogens, and may provide insights to future therapeutic approaches for the respective diseases.

  14. Biosynthesis of inulin from sucrose using inulosucrase from Lactobacillus gasseri DSM 20604.

    PubMed

    Ni, Dawei; Zhu, Yingying; Xu, Wei; Bai, Yuxiang; Zhang, Tao; Mu, Wanmeng

    2018-04-01

    Inulin is composed of fructose residues connected by β-(2, 1) glycosidic linkages with many promising physiochemical and physiological properties. In this study, an inulin-producing inulosucrase gene from Lactobacillus gasseri DSM 20604 was cloned, expressed and purified. SDS-PAGE and gel filtration found that the recombinant inulosucrase is a monomeric protein with a molecular weight of 63KDa. The optimal pH for its sucrose hydrolysis and transfructosylation activities was pH 5.5. The optimal temperatures were measured to be 45, 25, and 35°C for sucrose hydrolysis, transfructosylation, and total activity, respectively. Biosynthesis studies showed that the optimal enzyme dosage was 4.5U/g sucrose. Higher sucrose concentrations immensely contributed to inulin biosynthesis; the inulin yield reached its maximum after 1.5h of reaction. Structural analyses of the polysaccharide produced by the recombinant enzyme from sucrose revealed that it is an inulin-type fructan with a molecular weight of 5.858×10 6 Da. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman.

    PubMed

    Maldonado-Barragán, Antonio; Caballero-Guerrero, Belén; Martín, Virginia; Ruiz-Barba, José Luis; Rodríguez, Juan Miguel

    2016-03-12

    Lactobacillus gasseri is one of the dominant Lactobacillus species in the vaginal ecosystem. Some strains of this species have a high potential for being used as probiotics in order to maintain vaginal homeostasis, since they may confer colonization resistance against pathogens in the vagina by direct inhibition through production of antimicrobial compounds, as bacteriocins. In this work we have studied bacteriocin production of gassericin E (GasE), a novel bacteriocin produced by L. gasseri EV1461, a strain isolated from the vagina of a healthy woman, and whose production was shown to be promoted by the presence of certain specific bacteria in co-culture. Biochemical and genetic characterization of this novel bacteriocin are addressed. We found that the inhibitory spectrum of L. gasseri EV1461 was broad, being directed to species both related and non-related to the producing strain. Interestingly, L. gasseri EV1461 inhibited the grown of pathogens usually associated with bacterial vaginosis (BV). The antimicrobial activity was due to the production of a novel bacteriocin, gassericin E (GasE). Production of this bacteriocin in broth medium only was achieved at high cell densities. At low cell densities, bacteriocin production ceased and only was restored after the addition of a supernatant from a previous bacteriocin-producing EV1461 culture (autoinduction), or through co-cultivation with several other Gram-positive strains (inducing bacteria). DNA sequence of the GasE locus revealed the presence of two putative operons which could be involved in biosynthesis and immunity of this bacteriocin (gaeAXI), and in regulation, transport and processing (gaePKRTC). The gaePKR encodes a putative three-component regulatory system, involving an autoinducer peptide (GaeP), a histidine protein kinase (GaeK) and a response regulator (GaeR), while the gaeTC encodes for an ABC transporter (GaeT) and their accessory protein (GaeC), involved in transport and processing of the

  16. Probiotic (yogurt) containing Lactobacillus gasseri OLL2716 is effective for preventing Candida albicans-induced mucosal inflammation and proliferation in the forestomach of diabetic rats.

    PubMed

    Terayama, Yui; Matsuura, Tetsuro; Uchida, Masayuki; Narama, Isao; Ozaki, Kiyokazu

    2016-06-01

    Oral and esophageal candidiasis sometimes leads to mucosal hyperplasia, and progresses to carcinoma. We have produced an animal model for hyperplastic mucosal candidiasis in the forestomach that has a proliferative lesion of the squamous epithelium with chronic inflammation and C. albicans infection, some of which advanced to squamous cell carcinoma. There are many reports of the antibacterial effects of probiotics, but consensus about their antifungal effect has not been reached. In the present study, we investigate whether probiotic (yogurt) containing Lactobacillus gasseri OLL2716 (LG21 yogurt) can prevent proliferative and inflammatory changes caused by C. albicans in this mucosal candidiasis animal model. Diabetes was induced in 8-week-old WBN/Kob rats by intravenous administration of alloxan. One group of diabetic rats received a saline containing C. albicans and LG21 yogurt orally (DC+LG21 group) for 30 weeks, and another group received only C. albicans (DC group) for 30 weeks. They were sacrificed at 40 weeks of age, and analyzed histopathologically. In the DC+LG21 group, squamous hyperplasia at the greater curvature was significantly milder, and the Ki-67 positive index was significantly lower compared with the DC group. Suppurative inflammation with C. albicans also tended to be suppressed at the greater curvature. These findings suggest that probiotic (yogurt) containing Lactobacillus gasseri OLL2716 can suppress squamous hyperplastic change and inflammation associated with C. albicans infection in the forestomach.

  17. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods

    PubMed Central

    2010-01-01

    Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602

  18. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods.

    PubMed

    Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J

    2010-09-17

    Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.

  19. Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475.

    PubMed

    Jiménez, Juan J; Diep, Dzung B; Borrero, Juan; Gútiez, Loreto; Arbulu, Sara; Nes, Ingolf F; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2015-10-15

    Bacteriocins produced by lactic acid bacteria (LAB) attract considerable interest as natural and nontoxic food preservatives and as therapeutics whereas the bacteriocin-producing LAB are considered potential probiotics for food, human and veterinary applications, and in the animal production field. Within LAB the lactobacilli are increasingly used as starter cultures for food preservation and as probiotics. The lactobacilli are also natural inhabitants of the gastrointestinal (GI) tract and attractive vectors for delivery of therapeutic peptides and proteins, and for production of bioactive peptides. Research efforts for production of bacteriocins in heterologous hosts should be performed if the use of bacteriocins and the LAB bacteriocin-producers is ever to meet the high expectations deposited in these antimicrobial peptides. The recombinant production and functional expression of bacteriocins by lactobacilli would have an additive effect on their probiotic functionality. The heterologous production of the bacteriocin enterocin A (EntA) was evaluated in different Lactobacillus spp. after fusion of the versatile Sec-dependent signal peptide (SP usp45 ) to mature EntA plus the EntA immunity gene (entA + entiA) (fragment UAI), and their cloning into plasmid vectors that permitted their inducible (pSIP409 and pSIP411) or constitutive (pMG36c) production. The amount, antimicrobial activity (AA) and specific antimicrobial activity (SAA) of the EntA produced by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475 transformed with the recombinant plasmids pSIP409UAI, pSIP411UAI and pMGUAI varied depending of the expression vector and the host strain. The Lb. casei CECT475 recombinant strains produced the largest amounts of EntA, with the highest AA and SAA. Supernatants from Lb. casei CECT (pSIP411UAI) showed a 4.9-fold higher production of EntA with a 22.8-fold higher AA and 4.7-fold higher SAA than those from Enterococcus faecium T136, the natural

  20. Evaluation of Phytate-Degrading Lactobacillus Culture Administration to Broiler Chickens

    PubMed Central

    Askelson, Tyler E.; Campasino, Ashley; Lee, Jason T.

    2014-01-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics. PMID:24271165

  1. Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens.

    PubMed

    Askelson, Tyler E; Campasino, Ashley; Lee, Jason T; Duong, Tri

    2014-02-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics.

  2. The immunomodulatory properties of viable Lactobacillus salivarius ssp. salivarius CECT5713 are not restricted to the large intestine.

    PubMed

    Arribas, Belén; Garrido-Mesa, Natividad; Perán, Laura; Camuesco, Desirée; Comalada, Mònica; Bailón, Elvira; Olivares, Mónica; Xaus, Jordi; Kruidenier, Laurens; Sanderson, Ian R; Zarzuelo, Antonio; Rodríguez-Cabezas, Maria Elena; Gálvez, Julio

    2012-04-01

    The aim of this study was to better characterise the biological effects of Lactobacillus salivarius ssp. salivarius CECT5713, a probiotic with immunomodulatory properties. Live or dead probiotic was assayed in the TNBS model of rat colitis to determine whether viability was a requisite to exert the beneficial effects. In vitro studies were also performed in Caco-2 cells to evaluate its effects on epithelial cell recovery and IL-8 production. Finally, the probiotic was assayed in the LPS model of septic shock in mice to establish its effects when there is an altered systemic immune response. The viability of the probiotic was required for its anti-inflammatory activity. The probiotic inhibited IL-8 production in stimulated Caco-2 cells and facilitated the recovery of damaged intestinal epithelium. In LPS-treated mice, the probiotic inhibited the production of TNFα in plasma and lungs and increased the hepatic glutathione content. These effects were associated with an improvement in the altered production of the T-cell cytokines in splenocytes, by reducing IL-2 and IL-5 and by increasing IL-10. Finally, it reduced the increased plasma IgG production in LPS-treated mice. The anti-inflammatory effects of viable L. salivarius ssp. salivarius CECT5713 are not restricted to the gastrointestinal tract.

  3. Regulatory effect of paraprobiotic Lactobacillus gasseri CP2305 on gut environment and function.

    PubMed

    Sugawara, Tomonori; Sawada, Daisuke; Ishida, Yu; Aihara, Kotaro; Aoki, Yumeko; Takehara, Isao; Takano, Kazuhiko; Fujiwara, Shigeru

    2016-01-01

    Lactobacillus gasseri CP2305 (CP2305) is a strain of Lactobacillus isolated from a stool sample from a healthy adult that showed beneficial effects on health as a paraprobiotic. In a previous study, we demonstrated that CP2305-fermented heat-treated milk modified gut functions more than artificially acidified sour milk. Thus, the regulatory activity of the former beverage was attributed to the inactivated CP2305 cells. The aim of this study was to elucidate the contribution of non-viable paraprobiotic CP2305 cells to regulating human gut functions. We thus conducted a randomized, placebo-controlled, double-blinded parallel group trial. The trial included 118 healthy participants with relatively low or high stool frequencies. The test beverage was prepared by adding 1×10(10) washed, heat-treated, and dried CP2305 cells directly to the placebo beverage. The participants ingested a bottle of the assigned beverage daily for 3 weeks and answered daily questionnaires about defecation and quality of life. Fecal samples were collected and the fecal characteristics, microbial metabolite contents of the feces and composition of fecal microbiota were evaluated. The number of evacuations and the scores for fecal odors were significantly improved in the group that consumed the CP2305-containing beverage compared with those of the group that consumed the placebo (p=0.035 and p=0.040, respectively). Regarding the fecal contents of microbial metabolites, the level of fecal p-cresol was significantly decreased in the CP2305 group relative to that of the placebo group (p=0.013). The Bifidobacterium content of the intestinal microbiota was significantly increased in the CP2305 group relative to that of the placebo group (p<0.008), whereas the content of Clostridium cluster IV was significantly decreased (p<0.003). The parasympathetic nerve activity of the autonomic nervous system became dominant and the total power of autonomic activity was elevated in the CP2305 group (p=0.0401 and

  4. Oral Administration to Nursing Women of Lactobacillus fermentum CECT5716 Prevents Lactational Mastitis Development: A Randomized Controlled Trial

    PubMed Central

    Hurtado, José A.; Maldonado-Lobón, Jose A.; Díaz-Ropero, M. Paz; Flores-Rojas, Katherine; Uberos, José; Leante, José L.; Affumicato, Laura; Couce, María Luz; Garrido, José M.; Olivares, Mónica

    2017-01-01

    Abstract Objective: The objective of this study is to evaluate the preventive effect of oral administration of Lactobacillus fermentum CECT5716 on mastitis incidence in lactating women. Methods: A randomized double-blinded controlled trial that included 625 women was conducted. Women who received preventive dose of antibiotic in the context of delivery were recruited 1–6 days after childbirth and randomly assigned to a group. Probiotic group received 1 capsule/day containing L. fermentum 3 × 109 CFU, control group received 1 placebo capsule/day containing maltodextrin. The intervention period was 16 weeks. The primary outcome of the study was the incidence of clinical mastitis defined as at least two out of the three breast symptoms (pain, redness, and lump) and at least one of fever or flu-like symptoms (shivering, hot sweats, or aches). Results: Two hundred ninety-one women completed 16 weeks of treatment. Sixteen women in the probiotic group developed mastitis versus 30 women in the control group (odds ratio = 0.531; p = 0.058). Incidence rate of mastitis in the probiotic group was significantly lower than that in the control group (IR = 0.130 in the probiotic group versus IR = 0.263 in the control group; p = 0.021). Therefore, the oral administration of L. fermentum CECT5716 during lactation decreased by 51% the incidence rate of clinical mastitis. Staphylococcus spp. load at the end of intervention was significantly lower in breast milk of women in the probiotic group than in breast milk of women in the control group (p = 0.025). Conclusion: Consumption of the probiotic strain L. fermentum CECT5716 might be used during breastfeeding as an efficient strategy to prevent development of lactational mastitis in women. Trial registration: NCT02203877.

  5. Assessment and comparison of probiotic potential of four Lactobacillus species isolated from feces samples of Iranian infants.

    PubMed

    Halimi, Shahnaz; Mirsalehian, Akbar

    2016-02-01

    The probiotic potential of Lactobacillus species isolated from infant feces was investigated. For this study, the antibiotic susceptibility, tolerance in gut-related conditions, antimicrobial activity, and ability to adhere to a human colorectal adenocarcinoma cell line (Caco-2 cells) of four common Lactobacillus species (Lactobacillus paracasei [n = 15], Lactobacillus rhamnosus [n = 45], Lactobacillus gasseri [n = 20] and Lactobacillus fermentum [n = 18]) were assessed. Most isolates that which were sensitive to imipenem, ampicillin, gentamycin, erythromycin and tetracycline were selected for other tests. L. gasseri isolates had the greatest sensitivity to gastric and intestinal fluids (<10% viability). L. fermentum (FH5, FH13 and FH18) had the highest adhesion to Caco-2 cells. The lowest antibacterial activity against pathogenic bacteria was shown by L. gasseri strains in spot tests. Furthermore, non-adjusted cell-free culture supernatants with low pH had greater antimicrobial activity, which was related to organic acid. The results showed that some isolates of L. rhamnosus and L. fermentum are suitable for use as a probiotic. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  6. Long-term safety of early consumption of Lactobacillus fermentum CECT5716: A 3-year follow-up of a randomized controlled trial.

    PubMed

    Maldonado-Lobón, J A; Gil-Campos, M; Maldonado, J; López-Huertas, E; Flores-Rojas, K; Valero, A D; Rodríguez-Benítez, M V; Bañuelos, O; Lara-Villoslada, F; Fonollá, J; Olivares, M

    2015-01-01

    Lactobacillus fermentum CECT5716 is a probiotic strain originally isolated from human breast milk. Previous clinical studies in infants showed that the early administration of a milk formula containing this probiotic strain was safe and may be useful for the prevention of community-acquired infections. This is a 3-year follow-up study aimed at evaluating the long-term effects produced by the early consumption of an infant formula supplemented with L. fermentum CECT5716 (experimental group, EG) compared with a control formula without the probiotic (control group, CG). The infants included in this follow-up study had previously completed a 5-month randomized double-blind controlled trial (from 1 to 6 months of age), where the safety and tolerance of the probiotic formula was evaluated. The main outcome of the follow-up study was the growth of the children. The secondary outcomes included the incidence of infectious and non-infectious diseases, parameters related with intestinal function and faecal microbiota. At 3 years, the mean values of weight, length and head circumference were similar in children of the EG compared with those of the CG. No differences were observed in the incidence of infectious and non-infectious diseases or disorders related with intestinal function. The pattern of faecal microbiota was also similar between both groups. In conclusion, this 3-year study shows that the early administration of the probiotic of L. fermentum CECT5716 in an infant formula is safe and it does not produce measurable differences in children compared with a control formula. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Regulatory effect of paraprobiotic Lactobacillus gasseri CP2305 on gut environment and function

    PubMed Central

    Sugawara, Tomonori; Sawada, Daisuke; Ishida, Yu; Aihara, Kotaro; Aoki, Yumeko; Takehara, Isao; Takano, Kazuhiko; Fujiwara, Shigeru

    2016-01-01

    Background Lactobacillus gasseri CP2305 (CP2305) is a strain of Lactobacillus isolated from a stool sample from a healthy adult that showed beneficial effects on health as a paraprobiotic. In a previous study, we demonstrated that CP2305-fermented heat-treated milk modified gut functions more than artificially acidified sour milk. Thus, the regulatory activity of the former beverage was attributed to the inactivated CP2305 cells. Objective The aim of this study was to elucidate the contribution of non-viable paraprobiotic CP2305 cells to regulating human gut functions. We thus conducted a randomized, placebo-controlled, double-blinded parallel group trial. Design The trial included 118 healthy participants with relatively low or high stool frequencies. The test beverage was prepared by adding 1×1010 washed, heat-treated, and dried CP2305 cells directly to the placebo beverage. The participants ingested a bottle of the assigned beverage daily for 3 weeks and answered daily questionnaires about defecation and quality of life. Fecal samples were collected and the fecal characteristics, microbial metabolite contents of the feces and composition of fecal microbiota were evaluated. Results The number of evacuations and the scores for fecal odors were significantly improved in the group that consumed the CP2305-containing beverage compared with those of the group that consumed the placebo (p=0.035 and p=0.040, respectively). Regarding the fecal contents of microbial metabolites, the level of fecal p-cresol was significantly decreased in the CP2305 group relative to that of the placebo group (p=0.013). The Bifidobacterium content of the intestinal microbiota was significantly increased in the CP2305 group relative to that of the placebo group (p<0.008), whereas the content of Clostridium cluster IV was significantly decreased (p<0.003). The parasympathetic nerve activity of the autonomic nervous system became dominant and the total power of autonomic activity was elevated

  8. Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane.

    PubMed

    Calonghi, N; Parolin, C; Sartor, G; Verardi, L; Giordani, B; Frisco, G; Marangoni, A; Vitali, B

    2017-08-24

    Vaginal lactobacilli offer protection against recurrent urinary and vaginal infections. The precise mechanisms underlying the interaction between lactobacilli and the host epithelium remain poorly understood at the molecular level. Deciphering such events can provide valuable information on the mode of action of commensal and probiotic bacteria in the vaginal environment. We investigated the effects exerted by five Lactobacillus strains of vaginal origin (Lactobacillus crispatus BC1 and BC2, Lactobacillus gasseri BC9 and BC11 and Lactobacillus vaginalis BC15) on the physical properties of the plasma membrane in a cervical cell line (HeLa). The interaction of the vaginal lactobacilli with the cervical cells determined two kinds of effects on plasma membrane: (1) modification of the membrane polar lipid organisation and the physical properties (L. crispatus BC1 and L. gasseri BC9); (2) modification of α5β1 integrin organisation (L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15). These two mechanisms can be at the basis of the protective role of lactobacilli against Candida albicans adhesion. Upon stimulation with all Lactobacillus strains, we observed a reduction of the basal oxidative stress in HeLa cells that could be related to modifications in physical properties and organisation of the plasma membrane. These results confirm the strictly strain-specific peculiarities of Lactobacillus and deepen the understanding of the mechanisms underlying the health-promoting role of this genus within the vaginal ecosystem.

  9. An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity.

    PubMed

    Piwat, S; Sophatha, B; Teanpaisan, R

    2015-07-01

    There is limited information concerning the adhesion and aggregation of human oral lactobacilli. In this study, the adhesion of 10 Lactobacillus species was investigated using H357 oral keratinocyte cells as an in vitro model for oral mucosa. Coaggregation with the representative oral pathogen, Streptococcus mutans ATCC 25175, and the physicochemical cell properties was also evaluated. The results demonstrated significant variations in adhesion (42-96%) and aggregation (autoaggregation, 14-95%; coaggregation, 19-65%). All strains showed a high affinity for chloroform, and most strains had a moderate-to-high hydrophobicity. All strains, except Lactobacillus casei and Lactobacillus gasseri, showed a moderate affinity for ethyl acetate. There was a strong association of autoaggregation with coaggregation (rs = 0·883, P < 0·001). The highest mean for autoaggregation (74%) and coaggregation (47%) belonged to the Lact. gasseri strains. Correlations between the adhesion and surface characteristics and aggregation were observed among the Lactobacillus fermentum and Lactobacillus paracasei strains; however, there was a variation in the strains properties within and between species. This study indicated that the Lact. gasseri, Lact. fermentum, and Lact. paracasei strains might be potential probiotics for the human oral cavity given their desirable properties. It should also be emphasized that a selective process for probiotic strains is required. Adhesion to host tissues and bacterial aggregation (auto- and coaggregation) are the highly important criteria for selecting strains with probiotic potential. These abilities are commonly involved with surface-charged characteristics. This is the first study to investigate the oral Lactobacillus species using an oral keratinocyte cell line. Significant results were found for the correlations between the adhesion and surface charge characteristics and for aggregation among certain strains of Lactobacillus gasseri, Lactobacillus

  10. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens.

    PubMed

    Atassi, Fabrice; Servin, Alain L

    2010-03-01

    The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.

  11. [The change of vaginal lactobacillus in patients with high-risk human papillomavirus infection].

    PubMed

    Zhou, D; Cui, Y; Wu, F L; Deng, W H

    2016-07-05

    To study the distribution characteristics of lactobacillus in the vaginal mucosa of patients with HPV infection. The planting density of lactobacillus in vaginal secretions of 95 cases with HPV16/18 infection and 90 cases of normal women of childbearing age were observed by oil microscope. And the strains of vaginal lactobacilli in two groups were analyzed using species-specific polymerase chain reaction (Species-specific PCR) and the distribution of vaginal lactobacilli in patients with HPV16/18 infection were investigated. In HPV16/18 infective groups, the planting density of lactobacillus in the vaginal mucosa was 104 (68-186)/HP. It was significantly lower than that of the normal group (234 (161-326)/HP, P<0.05). Compared with the normal group, the positive rates of lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri were significantly lower in HPV16/18 infection group (P<0.05). The HPV16/18 infection is associated with the decreased number of lactobacillus and the imbalance of vaginal flora; Lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri may play a key role in maintaining the vaginal micro ecological environment.

  12. Para-psychobiotic Lactobacillus gasseri CP2305 ameliorates stress-related symptoms and sleep quality.

    PubMed

    Nishida, K; Sawada, D; Kawai, T; Kuwano, Y; Fujiwara, S; Rokutan, K

    2017-12-01

    To confirm the stress-relieving effects of heat-inactivated, enteric-colonizing Lactobacillus gasseri CP2305 (paraprobiotic CP2305) in medical students taking a cadaver dissection course. Healthy students (21 males and 11 females) took paraprobiotic CP2305 daily for 5 weeks during a cadaver dissection course. The General Health Questionnaire and the Pittsburgh Sleep Quality Index were employed to assess stress-related somatic symptoms and sleep quality respectively. The aggravation of stress-associated somatic symptoms was observed in female students (P = 0·029). Sleep quality was improved in the paraprobiotic CP2305 group (P = 0·038), particularly in men (P = 0·004). Among men, paraprobiotic CP2305 shortened sleep latency (P = 0·035) and increased sleep duration (P = 0·048). Diarrhoea-like symptoms were also effectively controlled with CP2305 (P = 0·005) in men. Thus, we observed sex-related differences in the effects of paraprobiotic CP2305. In addition, CP2305 affected the growth of faecal Bacteroides vulgatus and Dorea longicatena, which are involved in intestinal inflammation. CP2305 is a potential paraprobiotic that regulates stress responses, and its beneficial effects may depend on specific cell component(s). This study characterizes the effects of a stress-relieving para-psychobiotic in humans. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  13. Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease

    PubMed Central

    Martinez, Raquel M.; Hulten, Kristina G.; Bui, Uyen

    2014-01-01

    Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry. PMID:24131686

  14. Administration of probiotics Lactobacillus rhamnosus GG and Lactobacillus gasseri K7 during pregnancy and lactation changes mouse mesenteric lymph nodes and mammary gland microbiota.

    PubMed

    Treven, P; Mrak, V; Bogovič Matijašić, B; Horvat, S; Rogelj, I

    2015-04-01

    The milk and mammary gland (MG) microbiome can be influenced by several factors, such as mode of delivery, breastfeeding, maternal lifestyle, health status, and diet. An increasing number of studies show a variety of positive effects of consumption of probiotics during pregnancy and breastfeeding on the mother and the newborn. The aim of this study was to investigate the effect of oral administration of probiotics Lactobacillus gasseri K7 (LK7) and Lactobacillus rhamnosus GG (LGG) during pregnancy and lactation on microbiota of the mouse mesenteric lymph nodes (MLN), MG, and milk. Pregnant FVB/N mice were fed skim milk or probiotics LGG or LK7 resuspended in skim milk during gestation and lactation. On d 3 and 8 postpartum, blood, feces, MLN, MG, and milk were analyzed for the presence of LGG or LK7. The effects of probiotics on MLN, MG, and milk microbiota was evaluated by real-time PCR and by 16S ribosomal DNA 454-pyrosequencing. In 5 of 8 fecal samples from the LGG group and in 5 of 8 fecal samples from the LK7 group, more than 1 × 10(3) of live LGG or LK7 bacterial cells were detected, respectively, whereas no viable LGG or LK7 cells were detected in the control group. Live lactic acid bacteria but no LGG or LK7 were detected in blood, MLN, and MG. Both probiotics significantly increased the total bacterial load as assessed by copies of 16S ribosomal DNA in MLN, and a similar trend was observed in MG. Metagenomic sequencing revealed that both probiotics increased the abundance of Firmicutes in MG, especially the abundance of lactic acid bacteria. The Lactobacillus genus appeared exclusively in MG from probiotic groups. Both probiotics influenced MLN microbiota by decreasing diversity (Chao1) and increasing the distribution of species (Shannon index). The LGG probiotic also affected the MG microbiota as it increased diversity and distribution of species and proportions of the genera Lactobacillus and Bifidobacterium. These results provide evidence that

  15. Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants.

    PubMed

    Maldonado, José; Cañabate, Francisco; Sempere, Luis; Vela, Francisco; Sánchez, Ana R; Narbona, Eduardo; López-Huertas, Eduardo; Geerlings, Arjan; Valero, Antonio D; Olivares, Mónica; Lara-Villoslada, Federico

    2012-01-01

    The aim of the study was to examine the effects of a follow-on formula containing Lactobacillus fermentum CECT5716 (L. fermentum) on the incidence of infections in infants between the ages of 6 and 12 months. A randomized double-blinded controlled study including infants at the age of 6 months was conducted. Infants were assigned randomly to either follow-on formula supplemented with L. fermentum plus galactooligosaccharide (experimental group, EG), or the same formula supplemented with only galactooligosaccharide (control group, CG). The main outcome was the incidence of infections for the 6-month duration of the study. The EG showed a significant 46% reduction in the incidence rate (IR) of gastrointestinal infections (EG: 0.196 ± 0.51, CG: 0.363 ± 0.53, IR ratio 0.54, 95% confidence interval [CI] 0.307-0.950, P = 0.032), 27% reduction in the incidence of upper respiratory tract infections (EG: 0.969 ± 0.96, CG: 1.330 ± 1.23, IR ratio 0.729, 95% CI 0.46-1.38, P = 0.026), and 30% reduction in the total number of infections (EG: 1.464 ± 1.15, CG: 2.077 ± 1.59, IR ratio 0.70, 95% CI 0.46-1.38, P = 0.003), at the end of the study period compared with CG. Administration of a follow-on formula with L. fermentum CECT5716 may be useful for the prevention of community-acquired gastrointestinal and upper respiratory infections.

  16. [Diversity of Lactobacillus in vagina of vulvovaginal candidiasis].

    PubMed

    2015-04-07

    To investigate the Lactobacillus species in the vaginas of vulvovaginal candidiasis and to assess the prevalence of each Lactobacillus species in vulvovaginal candidiasis. 154 vaginal samples were analyzed, 92 of which were from fertile healthy women, and 62 of which were from women with vulvovaginal candidiasis; and species-specific PCR showed the prevalence of each Lactobacillus species Species-specific PCR was used to investigate the prevalence of each Lactobacillus species in healthy Chinese women and the women with vulvovaginal candidiasis. In women with vulvovaginal candidiasis: L. iners (6.5%), L. cripatus (79.0%), L. gasseri (37.1%), L. jensenii (74.2%), L. acidophilus (16.1%), L. brevis (19.4%), L. plantarum (1.6%), L. johnsonii (51.6%), L. fermentum (8.1%), L. salivarius (9.7%), L. reuter (1.6%), L. paracasei (8.1%), L. delbrueckii (3. 2% ) ; More than two different Lactobacillus species coexisted in 98% of women with vulvovaginal candidiasis, and no anyone species existed in 2% of them; In fertile women: L. iners (82.6%), L. cripatus (70.7%), L. gasseri (67.4%), L. jensenii (40.2%), L. acidophilus (39.1%), L. brevis (23.9%), L. plantarum (5.4%), L. rhamnosus (1.1%), L. paracasei (1.1%), L. reuter (1.1%) i, L. johnsonii (3.3%), L. fermentum (2.2%), L. salivarius (2.2%); More than two different Lactobacillus species coexisted in 97% of fertile women, and only one species existed in 3% of fertile women. Species of lactobacillus in women with vulvovaginal candidiasis did not significantly reduced compared with healthy women. Lactobacillus inert may be a marker of the change of vaginal microenvironment; Lactobacillus crispatus is a dominant lactobacillus in the vaginal of fertile healthy women, pregnant women and women with vulvovaginal candidiasis.

  17. Characterization and complete genome sequences of L. rhamnosus DSM 14870 and L. gasseri DSM 14869 contained in the EcoVag® probiotic vaginal capsules.

    PubMed

    Marcotte, Harold; Krogh Andersen, Kasper; Lin, Yin; Zuo, Fanglei; Zeng, Zhu; Larsson, Per Göran; Brandsborg, Erik; Brønstad, Gunnar; Hammarström, Lennart

    2017-12-01

    Lactobacillus rhamnosus DSM 14870 and Lactobacillus gasseri DSM 14869 were previously isolated from the vaginal epithelial cells (VEC) of healthy women and selected for the development of the vaginal EcoVag ® probiotic capsules. EcoVag ® was subsequently shown to provide long-term cure and reduce relapse of bacterial vaginosis (BV) as an adjunct to antibiotic therapy. To identify genes potentially involved in probiotic activity, we performed genome sequencing and characterization of the two strains. The complete genome analysis of both strains revealed the presence of genes encoding functions related to adhesion, exopolysaccharide (EPS) biosynthesis, antimicrobial activity, and CRISPR adaptive immunity but absence of antibiotic resistance genes. Interesting features of L. rhamnosus DSM 14870 genome include the presence of the spaCBA-srtC gene encoding spaCBA pili and interruption of the gene cluster encoding long galactose-rich EPS by integrases. Unique to L. gasseri DSM 14869 genome was the presence of a gene encoding a putative (1456 amino acid) new adhesin containing two rib/alpha-like repeats. L. rhamnosus DSM 14870 and L. gasseri DSM 14869 showed acidification of the culture medium (to pH 3.8) and a strong adhesion capability to the Caco-2 cell line and VEC. L. gasseri DSM 14869 could produce a thick (40nm) EPS layer and hydrogen peroxide. L. rhamnosus DSM 14870 was shown to produce SpaCBA pili and a 20nm EPS layer, and could inhibit the growth of Gardnerella vaginalis, a bacterium commonly associated with BV. The genome sequences provide a basis for further elucidation of the molecular basis for their probiotic functions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents.

    PubMed

    Killer, J; Havlík, J; Vlková, E; Rada, V; Pechar, R; Benada, O; Kopečný, J; Kofroňová, O; Sechovcová, H

    2014-05-01

    Three strains of regular, long, Gram-stain-positive bacterial rods were isolated using TPY, M.R.S. and Rogosa agar under anaerobic conditions from the digestive tract of wild mice (Mus musculus). All 16S rRNA gene sequences of these isolates were most similar to sequences of Lactobacillus gasseri ATCC 33323T and Lactobacillus johnsonii ATCC 33200T (97.3% and 97.2% sequence similarities, respectively). The novel strains shared 99.2-99.6% 16S rRNA gene sequence similarities. Type strains of L. gasseri and L. johnsonii were also most related to the newly isolated strains according to rpoA (83.9-84.0% similarities), pheS (84.6-87.8%), atpA (86.2-87.7%), hsp60 (89.4-90.4%) and tuf (92.7-93.6%) gene sequence similarities. Phylogenetic studies based on 16S rRNA, hsp60, rpoA, atpA and pheS gene sequences, other genotypic and many phenotypic characteristics (results of API 50 CHL, Rapid ID 32A and API ZYM biochemical tests; cellular fatty acid profiles; cellular polar lipid profiles; end products of glucose fermentation) showed that these bacterial strains represent a novel species within the genus Lactobacillus. The name Lactobacillus rodentium sp. nov. is proposed to accommodate this group of new isolates. The type strain is MYMRS/TLU1T (=DSM 24759T=CCM 7945T).

  19. Development of gastro-resistant tablets for the protection and intestinal delivery of Lactobacillus fermentum CECT 5716.

    PubMed

    Villena, María José Martín; Lara-Villoslada, Ferderico; Martínez, María Adolfina Ruiz; Hernández, María Encarnación Morales

    2015-06-20

    Different studies have attributed health benefits to Lactobacillus fermentum CECT 5716. However, the main problem associated with probiotics, is their low resistance to environmental and technological factors. Actually, probiotics are marketed as capsules or sachets, but few probiotic tablets exist. The aim of this study was to design tablets made out of functional polymers (formula 1: methocel K-15-sodium alginate; formula 2: Eudragit(®) L-100-sodium alginate; formula 3: cellulose acetate phthalate) that improve the stability and survival of probiotics. Rigid tablets were produced through direct compression with a bacterial content of 10(9)CFU/tablet (9logCFU). Tablets were shown to improve the survival of cells when exposed to an acidic medium as compared to free cells. Eudragit(®) L-100-sodium alginate was found to be the most suitable excipient for the protection of probiotic within gastric conditions, resulting in the survival of 10(9)CFU (9logCFU) after 2h of incubation. Finally, these tablets were found to be stable over 6 months when stored at 4°C. No significant differences were reported between the number of cells at time cero and after 6 months of storage at 4°C (p>0.05). In conclusion, direct compression using Eudragit(®) L-100-sodium alginate seems to be a suitable to produce probiotics tablets and could confer protection during passage trough stomach and storage. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Lactobacillus gasseri OLL2809 and its RNA suppress proliferation of CD4(+) T cells through a MyD88-dependent signalling pathway.

    PubMed

    Yoshida, Ayako; Yamada, Kiyoshi; Yamazaki, Yasumasa; Sashihara, Toshihiro; Ikegami, Shuuji; Shimizu, Makoto; Totsuka, Mamoru

    2011-08-01

    Recent studies have shown that probiotics are beneficial in prevention and improvement of inflammatory diseases. Accumulating evidence indicates that probiotics can modulate immune cell responses, although the specific molecular mechanism by which probiotics work remains elusive. Because T cells express receptors for microbial components, we examined whether the probiotic strain Lactobacillus gasseri OLL2809 (LG2809) and its components regulate murine CD4(+) T-cell activation. LG2809, as well as two other Lactobacillus strains, inhibited proliferation of CD4(+) T cells; LG2809 had the strongest suppressive activity among them. RNA isolated from LG2809 was also shown to have suppressive activity. We observed this suppressive effect in the culture of CD4(+) T cells stimulated with anti-CD3/CD28 treatment, suggesting a direct effect on CD4(+) T cells. In contrast, the suppressive effect was not observed for CD4(+) T cells from myeloid differentiation primary response gene 88 (MyD88) protein-deficient mice, and was abrogated in the presence of an anti-oxidant reagent, N-acetyl-cysteine (NAC). These results demonstrate that the suppressive effect of LG2809 and its RNA occurred through a MyD88-dependent signalling pathway and suggest involvement of a reactive oxygen species-dependent mechanism. LG2809 RNA injected subcutaneously suppressed delayed-type-hypersensitivity response in DO11.10 mice, and the suppression was abrogated by treatment with NAC. Collectively, these results suggest that suppression of T-cell proliferation by RNA may be one of the mechanisms when a probiotic bacterial strain exerts suppressive effects on inflammatory responses. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  1. A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use.

    PubMed

    Gregoret, V; Perezlindo, M J; Vinderola, G; Reinheimer, J; Binetti, A

    2013-05-01

    Specific strains should only be regarded as probiotics if they fulfill certain safety, technological and functional criteria. The aim of this work was to study, from a comprehensive point of view (in vitro and in vivo tests), three Lactobacillus strains (Lactobacillus paracasei JP1, Lactobacillus rhamnosus 64 and Lactobacillus gasseri 37) isolated from feces of local newborns, determining some parameters of technological, biological and functional relevance. All strains were able to adequately grow in different economic culture media (cheese whey, buttermilk and milk), which were also suitable as cryoprotectants. As selective media, LP-MRS was more effective than B-MRS for the enumeration of all strains. The strains were resistant to different technological (frozen storage, high salt content) and biological (simulated gastrointestinal digestion after refrigerated storage in acidified milk, bile exposure) challenges. L. rhamnosus 64 and L. gasseri 37, in particular, were sensible to chloramphenicol, erythromycin, streptomycin, tetracycline and vancomycin, increased the phagocytic activity of peritoneal macrophage and induced the proliferation of IgA producing cells in small intestine when administered to mice. Even when clinical trails are still needed, both strains fulfilled the main criteria proposed by FAO/WHO to consider them as potential probiotics for the formulation of new foods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. In vitro adherence of Lactobacillus strains isolated from the vaginas of healthy Iranian women.

    PubMed

    Mousavi, Elham; Makvandi, Manoochehr; Teimoori, Ali; Ataei, Angila; Ghafari, Shokouh; Najafian, Mahin; Ourang, Ziba; Samarbaf-Zadeh, Alireza

    2016-12-01

    The lactobacilli are a part of the bacterial flora of the human vagina. Detection of normal Lactobacillus species in the vaginas of healthy women in different geographical locations, and evaluation of their specific properties, can aid in the selection of the best species for preventing sexually transmitted diseases in the future. This study was performed to isolate and identify the Lactobacillus species in the vaginas of healthy women and to evaluate the adherence of these lactobacilli to Vero and HeLa cell lines. The study included 100 women. Bacteria were isolated from healthy women and purified. Phenotypic and biochemical tests were performed to identify the lactobacilli. The Lactobacillus species were detected by molecular methods using polymerase chain reaction amplification of the full length of the 16S rDNA of the isolated bacteria. Several isolates of each species were then selected to study their adherence to Vero and HeLa cell lines. Among the 50 samples taken from healthy women meeting the inclusion criteria, Lactobacillus species were identified in 33 (66%) samples. Of these lactobacilli, 14 isolates were Lactobacillus crispatus, six (18.2%) were Lactobacillus gasseri, nine (27%) were Lactobacillus rhamnosus, and the rest were either Lactobacillus salivarius (6%) or Lactobacillus plantarum (6%). L. rhamnosus showed the greatest adhesion to the cells when compared to the other tested species. All the lactobacilli isolated in this study showed a smaller capacity for cell adherence when compared with control species. L. crispatus, L. rhamnosus, and L. gasseri were the dominant Lactobacillus species in the vaginas of healthy women in Iran. L. rhamnosus attached more readily to the cells than did the other species; therefore, this isolate is a good candidate for further studies on the potential health benefits and application of lactobacilli as probiotics. Copyright © 2016. Published by Elsevier Taiwan LLC.

  3. Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries

    PubMed Central

    Byun, Roy; Nadkarni, Mangala A.; Chhour, Kim-Ly; Martin, F. Elizabeth; Jacques, Nicholas A.; Hunter, Neil

    2004-01-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion. PMID:15243071

  4. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries.

    PubMed

    Byun, Roy; Nadkarni, Mangala A; Chhour, Kim-Ly; Martin, F Elizabeth; Jacques, Nicholas A; Hunter, Neil

    2004-07-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion.

  5. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation

    PubMed Central

    Guerrero-Preston, Rafael; White, James Robert; Godoy-Vitorino, Filipa; Rodríguez-Hilario, Arnold; Navarro, Kelvin; González, Herminio; Michailidi, Christina; Jedlicka, Anne; Canapp, Sierra; Bondy, Jessica; Dziedzic, Amanda; Mora-Lagos, Barbara; Rivera-Alvarez, Gustavo; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Westra, William; Koch, Wayne; Kang, Hyunseok; Marchionni, Luigi; Kim, Young; Sidransky, David

    2017-01-01

    Microbiome studies show altered microbiota in head and neck squamous cell carcinoma (HNSCC), both in terms of taxonomic composition and metabolic capacity. These studies utilized a traditional bioinformatics methodology, which allows for accurate taxonomic assignment down to the genus level, but cannot accurately resolve species level membership. We applied Resphera Insight, a high-resolution methodology for 16S rRNA taxonomic assignment that is able to provide species-level context in its assignments of 16S rRNA next generation sequencing (NGS) data. Resphera Insight applied to saliva samples from HNSCC patients and healthy controls led to the discovery that a subset of HNSCC saliva samples is significantly enriched with commensal species from the vaginal flora, including Lactobacillus gasseri/johnsonii (710x higher in saliva) and Lactobacillus vaginalis (52x higher in saliva). These species were not observed in normal saliva from Johns Hopkins patients, nor in 16S rRNA NGS saliva samples from the Human Microbiome Project (HMP). Interestingly, both species were only observed in saliva from Human Papilloma Virus (HPV) positive and HPV negative oropharyngeal cancer patients. We confirmed the representation of both species in HMP data obtained from mid-vagina (n=128) and vaginal introitus (n=121) samples. Resphera Insight also led to the discovery that Fusobacterium nucleatum, an oral cavity flora commensal bacterium linked to colon cancer, is enriched (600x higher) in saliva from a subset of HNSCC patients with advanced tumors stages. Together, these high-resolution analyses on 583 samples suggest a possible role for bacterial species in the therapeutic outcome of HPV positive and HPV negative HNSCC patients. PMID:29340028

  6. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation.

    PubMed

    Guerrero-Preston, Rafael; White, James Robert; Godoy-Vitorino, Filipa; Rodríguez-Hilario, Arnold; Navarro, Kelvin; González, Herminio; Michailidi, Christina; Jedlicka, Anne; Canapp, Sierra; Bondy, Jessica; Dziedzic, Amanda; Mora-Lagos, Barbara; Rivera-Alvarez, Gustavo; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Westra, William; Koch, Wayne; Kang, Hyunseok; Marchionni, Luigi; Kim, Young; Sidransky, David

    2017-12-19

    Microbiome studies show altered microbiota in head and neck squamous cell carcinoma (HNSCC), both in terms of taxonomic composition and metabolic capacity. These studies utilized a traditional bioinformatics methodology, which allows for accurate taxonomic assignment down to the genus level, but cannot accurately resolve species level membership. We applied Resphera Insight, a high-resolution methodology for 16S rRNA taxonomic assignment that is able to provide species-level context in its assignments of 16S rRNA next generation sequencing (NGS) data. Resphera Insight applied to saliva samples from HNSCC patients and healthy controls led to the discovery that a subset of HNSCC saliva samples is significantly enriched with commensal species from the vaginal flora, including Lactobacillus gasseri/johnsonii (710x higher in saliva) and Lactobacillus vaginalis (52x higher in saliva). These species were not observed in normal saliva from Johns Hopkins patients, nor in 16S rRNA NGS saliva samples from the Human Microbiome Project (HMP). Interestingly, both species were only observed in saliva from Human Papilloma Virus (HPV) positive and HPV negative oropharyngeal cancer patients. We confirmed the representation of both species in HMP data obtained from mid-vagina (n=128) and vaginal introitus (n=121) samples. Resphera Insight also led to the discovery that Fusobacterium nucleatum , an oral cavity flora commensal bacterium linked to colon cancer, is enriched (600x higher) in saliva from a subset of HNSCC patients with advanced tumors stages. Together, these high-resolution analyses on 583 samples suggest a possible role for bacterial species in the therapeutic outcome of HPV positive and HPV negative HNSCC patients.

  7. Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens.

    PubMed

    De Cesare, Alessandra; Sirri, Federico; Manfreda, Gerardo; Moniaci, Paola; Giardini, Alberto; Zampiga, Marco; Meluzzi, Adele

    2017-01-01

    This study examines the effects of the dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) (LA) on productive performances, incidence of foot pad dermatitis and caecum microbioma in broiler chickens. A total of 1,100 one-day old male Ross 308 chicks were divided into 2 groups of 16 replicates with 25 birds each and reared from 1-41 d. One group was fed a basal diet (CON) and the other group the same diet supplemented with LA. Caecum contents were collected from 4 selected birds at day one and 5 selected birds at the end of the rearing period. Then, they were submitted to DNA extraction and whole DNA shotgun metagenomic sequencing. Overall, the LA supplementation produced a significant beneficial effect on body weight gain between 15-28 d and improved feed conversion rate in the overall period. On the contrary, litter moisture, pH and incidence of the foot pad lesions were not affected by LA. Birds treated with LA showed a lower occurrence of pasty vent at both 14 and 28 d. At the end of the rearing period, Lachanospiraceae were significantly higher in LA birds in comparison to CON (17.07 vs 14.39%; P = 0.036). Moreover, Ruminococcus obeum, Clostridium clostridioforme, Roseburia intestinalis, Lachnospiraceae bacterium 14-2T and Coprococcus eutactus were significantly higher in LA birds in comparison to CON. The relative abundance of Lactobacillus acidophilus was comparable between LA and CON groups. However, a positive effect was observed in relation to the metabolic functions in the treated group, with particular reference to the higher abundance of β-glucosidase. In conclusion, the LA supplementation improved broiler productive performances and metabolic functions promoting animal health.

  8. Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens

    PubMed Central

    De Cesare, Alessandra; Manfreda, Gerardo; Moniaci, Paola; Giardini, Alberto; Zampiga, Marco; Meluzzi, Adele

    2017-01-01

    This study examines the effects of the dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) (LA) on productive performances, incidence of foot pad dermatitis and caecum microbioma in broiler chickens. A total of 1,100 one-day old male Ross 308 chicks were divided into 2 groups of 16 replicates with 25 birds each and reared from 1–41 d. One group was fed a basal diet (CON) and the other group the same diet supplemented with LA. Caecum contents were collected from 4 selected birds at day one and 5 selected birds at the end of the rearing period. Then, they were submitted to DNA extraction and whole DNA shotgun metagenomic sequencing. Overall, the LA supplementation produced a significant beneficial effect on body weight gain between 15–28 d and improved feed conversion rate in the overall period. On the contrary, litter moisture, pH and incidence of the foot pad lesions were not affected by LA. Birds treated with LA showed a lower occurrence of pasty vent at both 14 and 28 d. At the end of the rearing period, Lachanospiraceae were significantly higher in LA birds in comparison to CON (17.07 vs 14.39%; P = 0.036). Moreover, Ruminococcus obeum, Clostridium clostridioforme, Roseburia intestinalis, Lachnospiraceae bacterium 14-2T and Coprococcus eutactus were significantly higher in LA birds in comparison to CON. The relative abundance of Lactobacillus acidophilus was comparable between LA and CON groups. However, a positive effect was observed in relation to the metabolic functions in the treated group, with particular reference to the higher abundance of β-glucosidase. In conclusion, the LA supplementation improved broiler productive performances and metabolic functions promoting animal health. PMID:28472118

  9. Lactobacillus gasseri SBT2055 reduces postprandial and fasting serum non-esterified fatty acid levels in Japanese hypertriacylglycerolemic subjects.

    PubMed

    Ogawa, Akihiro; Kadooka, Yukio; Kato, Ken; Shirouchi, Bungo; Sato, Masao

    2014-02-19

    Lactobacillus gasseri SBT2055 (LG2055) inhibits dietary fat absorption in rats and exerts preventive effects on abdominal adiposity in rats and humans. The present study aimed to evaluate the effects of LG2055 on postprandial serum lipid responses in Japanese subjects with hypertriacylglycerolemia after the intake of oral fat-loading test (OFLT) meals. We conducted a single-blind, placebo-controlled, within-subject, repeated-measure intervention trial. Twenty subjects initially ingested the fermented milk (FM) without LG2055 for 4 weeks (control FM period), followed by a 4-week washout period, and then consumed FM containing LG2055 for 4 weeks (active FM period). The subjects were asked to consume FM at 200 g/day. At the end of each 4-week period, an 8-h OFLT was conducted. Blood samples were collected at fasting and every hour for 8 h after OFLT meal intake. Thereafter, postprandial serum non-esterified fatty acid (NEFA) and triacylglycerol (TAG) levels and fasting blood parameters were measured. The OFLT showed that the postprandial serum NEFA levels from 120 to 480 min and the postprandial serum TAG level at 120 min in the active FM period were significantly (P < 0.05) lower than those in the control FM period. The fasting serum NEFA level in the active FM period significantly (P < 0.001) decreased at week 4 from the initial period compared with the control FM period. The consumption of probiotic LG2055 reduced postprandial and fasting serum NEFA levels, suggesting its possible contribution to the reduction of the risk for obesity and type 2 diabetes mellitus. UMIN000011605.

  10. Lactobacillus species isolated from vaginal secretions of healthy and bacterial vaginosis-intermediate Mexican women: a prospective study

    PubMed Central

    2013-01-01

    Background Lactobacillus jensenii, L. iners, L. crispatus and L. gasseri are the most frequently occurring lactobacilli in the vagina. However, the native species vary widely according to the studied population. The present study was performed to genetically determine the identity of Lactobacillus strains present in the vaginal discharge of healthy and bacterial vaginosis (BV) intermediate Mexican women. Methods In a prospective study, 31 strains preliminarily identified as Lactobacillus species were isolated from 21 samples collected from 105 non-pregnant Mexican women. The samples were classified into groups according to the Nugent score criteria proposed for detection of BV: normal (N), intermediate (I) and bacterial vaginosis (BV). We examined the isolates using culture-based methods as well as molecular analysis of the V1–V3 regions of the 16S rRNA gene. Enterobacterial repetitive intergenic consensus (ERIC) sequence analysis was performed to reject clones. Results Clinical isolates (25/31) were classified into four groups based on sequencing and analysis of the 16S rRNA gene: L. acidophilus (14/25), L. reuteri (6/25), L. casei (4/25) and L. buchneri (1/25). The remaining six isolates were presumptively identified as Enterococcus species. Within the L. acidophilus group, L. gasseri was the most frequently isolated species, followed by L. jensenii and L. crispatus. L. fermentum, L. rhamnosus and L. brevis were also isolated, and were placed in the L. reuteri, L. casei and L. buchneri groups, respectively. ERIC profile analysis showed intraspecific variability amongst the L. gasseri and L. fermentum species. Conclusions These findings agree with previous studies showing that L. crispatus, L. gasseri and L. jensenii are consistently present in the healthy vaginal ecosystem. Additional species or phylotypes were detected in the vaginal microbiota of the non-pregnant Mexican (Hispanic-mestizo) population, and thus, these results further our understanding of

  11. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals.

    PubMed

    Savijoki, K; Kahala, M; Palva, A

    1997-02-28

    A secretion cassette, based on the expression and secretion signals of a S-layer protein (SlpA) from Lactobacillus brevis, was constructed. E. coli beta-lactamase (Bla) was used as the reporter protein to determine the functionality of the S-layer signals for heterologous expression and secretion in Lactococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus gasseri and Lactobacillus casei using a low-copy-number plasmid derived from pGK12. In all hosts tested, the bla gene was expressed under the slpA signals and all Bla activity was secreted to the culture medium. The Lb. brevis S-layer promoters were very efficiently recognized in L. lactis, Lb. brevis and Lb. plantarum, whereas in Lb. gasseri the slpA promoter region appeared to be recognized at a lower level and in Lb. casei the level of transcripts was below the detection limit. The production of Bla was mainly restricted to the exponential phase of growth. The highest yield of Bla was obtained with L. lactis and Lb. brevis. Without pH control, substantial degradation of Bla occurred during prolonged cultivations with all lactic acid bacteria (LAB) tested. When growing L. lactis and Lb. brevis under pH control, the Bla activity could be stabilized also at the stationary phase. L. lactis produced up to 80 mg/l of Bla which to our knowledge represents the highest amount of a heterologous protein secreted by LAB so far. The short production phase implied a very high rate of secretion with a calculated value of 5 x 10(5) Bla molecules/cell per h. Such a high rate was also observed with Lb. plantarum, whereas in Lb. brevis the competition between the wild type slpA gene and the secretion construct probably lowered the rate of Bla production. The results obtained indicate wide applicability of the Lb. brevis slpA signals for efficient protein production and secretion in LAB.

  12. Predominant Lactobacillus species types of vaginal microbiota in pregnant Korean women: quantification of the five Lactobacillus species and two anaerobes.

    PubMed

    Kim, Jeong Hyun; Yoo, Seung Min; Sohn, Yong Hak; Jin, Chan Hee; Yang, Yun Suk; Hwang, In Taek; Oh, Kwan Young

    2017-10-01

    To investigate the predominant Lactobacillus species types (LSTs) of vaginal microbiota in pregnant Korean women by quantifying five Lactobacillus species and two anaerobes. In all, 168 pregnant Korean women under antenatal care at Eulji University Hospital and local clinics were enrolled in the prospective cohort study during pregnancy (10-14 weeks). Vaginal samples were collected with Eswab for Quantitative polymerase chain reaction (qPCR) and stored in a -80 °C freezer. qPCR was performed for five Lactobacillus species and two anaerobes. To identify the predominant LSTs, quantifications were analyzed by the Cluster and Tree View programs of Eisen Lab. Also the quantifications were compared among classified groups. L. crispatus and L. iners were most commonly found in pregnant Korean women, followed by L. gasseri and L. jensenii; L. vaginalis was nearly absent. Five types (four predominant LSTs and one predominant anaerobe type without predominant Lactobacillus species) were classified. Five predominant LSTs were identified in vaginal microbiota of pregnant Korean women. L. crispatus and L. iners predominant types comprised a large proportion.

  13. Antimicrobial activity of lactobacillus strains against uropathogens.

    PubMed

    Shim, Yoon Hee; Lee, Seung Joo; Lee, Jung Won

    2016-10-01

    The use of lactobacillus probiotics has been proposed as an alternative to prophylactic antibiotics for preventing urinary tract infection (UTI) in the era of antibiotic resistance. In this study, the antimicrobial activity of lactobacillus strains against uropathogens, was evaluated and compared with that of antibiotics. To evaluate inhibitory activities of lactobacilli against uropathogens, six lactobacillus strains (L. gasseri, L. rhamnosus, L. acidophilus, L. plantarum, L. paracasei, L. acidophilus) and four representative uropathogens of infantile UTI (extended-spectrum beta-lactamase [ESBL](-) Escherichia coli, ESBL(+) E. coli, Proteus vulgaris, Enterococcus fecalis) were selected. Lactobacillus strain in vitro inhibition of each uropathogen was evaluated on MRS agar well diffusion assay and compared with that of commercial antibiotic discs. Average inhibitory zone for each of the six lactobacillus strains against the four uropathogens showed slightly different but consistent inhibition (inhibitory zone diameter, 10.5-20.0 mm). This was different to that of the antibiotic discs, which had a wider range of inhibition (inhibitory zone diameter, <6.0-27.5 mm) depending on the uropathogen resistance pattern. The inhibitory zone of the six lactobacillus strains was between that of sensitive and resistant antibiotics (P < 0.05). Lactobacillus strains had similar moderate antimicrobial activities against uropathogens. Further research is needed to ascertain the strains with the best probiotic potential. © 2016 Japan Pediatric Society.

  14. Mouse Models for Assessing the Protective Efficacy of Lactobacillus gasseri SBT2055 against Helicobacter suis Infection Associated with the Development of Gastric Mucosa-Associated Lymphoid Tissue Lymphoma.

    PubMed

    Matsui, Hidenori; Takahashi, Tetsufumi; Øverby, Anders; Murayama, Somay Yamagata; Yoshida, Haruno; Yamamoto, Yuji; Nishiyama, Keita; Seto, Yasuyuki; Takahashi, Takashi; Mukai, Takao; Nakamura, Masahiko

    2015-08-01

    Helicobacter suis strain TKY infection has been strongly associated with the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma in a C57BL/6J mouse model. 1. C57BL/6J mice were intragastrically administered Lactobacillus strains once daily with 10(8)-10(9) colony-forming units (CFU), starting 2 days before intragastric infection with H. suis TKY (approximately 1 × 10(4) copies of 16S rRNA genes) or H. pylori Sydney strain 1 (SS1; 3 × 10(8) CFU) and continuing for 14 days after infection. 2. C57BL/6J mice were given powdered feed mixed with lyophilized L. gasseri SBT2055 (LG2055) cells (5 × 10(8) CFU/g), starting 2 weeks before intragastric infection with H. suis TKY and continuing 12 months after infection. 1. Among the 5 Lactobacillus strains that we examined, only LG2055 exhibited significantly preventive efficacy against both H. suis TKY and H. pylori SS1 at day 15 after infection. 2. Dietary supplementation with LG2055 protected mice from the formation of round protrusive lesions in the gastric fundus 12 months after infection with H. suis TKY, whereas such lesions had developed in the gastric fundus of nonsupplemented mice 12 months after infection. In addition, the formation of lymphoid follicles in gastric mucus layers was suppressed by dietary LG2055 at 3 months after infection. LG2055 administration is effective for suppressing the progression of gastric MALT lymphoma by reducing H. suis colonization. © 2015 John Wiley & Sons Ltd.

  15. Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T.

    PubMed

    Salgado, José Manuel; Rodríguez-Solana, Raquel; Curiel, José Antonio; de las Rivas, Blanca; Muñoz, Rosario; Domínguez, José Manuel

    2012-08-01

    The enzyme PAD from Lactobacillus plantarum CECT 748T decarboxylates some cinnamic acids namely p-coumaric acid (p-CA), caffeic acid (CA), and ferulic acid (FA) into their corresponding 4-vinyl derivatives (4-VD): 4-vinyl phenol (4-VP), 4-vinyl catechol (4-VC), and 4-vinyl guaiacol (4-VG), respectively, which are valuable food additives mainly employed as flavouring agents. The gene encoding this enzyme was cloned and overexpressed in Escherichia coli. Recombinant E. coli cells overproducing L. plantarum PAD showed a preference to degrade mainly p-CA and CA. Sterilized liquors obtained after alkaline hydrolysis of corn cob or alkaline hydrolysis of the solid residue coming from acid hydrolysis of corn cob were employed as growth media in fermentations performed in shaker or bioreactor. The fermentative process allowed converting 2222.8 mg/L p-CA into 993.9 mg/L 4-VP. The process described here allowed the production with a high-yield of a valuable food additive from a by-product of the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Diversity and functional characterization of Lactobacillus spp. isolated throughout the ripening of a hard cheese.

    PubMed

    Bautista-Gallego, J; Alessandria, V; Fontana, M; Bisotti, S; Taricco, S; Dolci, P; Cocolin, L; Rantsiou, K

    2014-07-02

    The aim of this work was to study the Lactobacillus spp. intra- and inter- species diversity in a Piedmont hard cheese made of raw milk without thermal treatment and without addition of industrial starter, and to perform a first screening for potential functional properties. A total of 586 isolates were collected during the cheese production and identified by means of molecular methods: three hundred and four were identified as Lactobacillus rhamnosus, two hundred and forty as Lactobacillus helveticus, twenty six as Lactobacillus fermentum, eleven as Lactobacillus delbrueckii, three as Lactobacillus pontis, and two as Lactobacillus gasseri and Lactobacillus reuteri, respectively. A high genetic heterogeneity was detected by using the repetitive bacterial DNA element fingerprinting (rep-PCR) with the use of (GTG)5 primer resulting in eight clusters of L. helveticus and sixteen clusters in the case of L. rhamnosus. Most of isolates showed a high auto-aggregation property, low hydrophobicity values, and a general low survival to simulated digestion process. However, sixteen isolates showed promising functional characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Enhancement of Oral Tolerance Induction in DO11.10 Mice by Lactobacillus gasseri OLL2809 via Increase of Effector Regulatory T Cells.

    PubMed

    Aoki-Yoshida, Ayako; Yamada, Kiyoshi; Hachimura, Satoshi; Sashihara, Toshihiro; Ikegami, Shuji; Shimizu, Makoto; Totsuka, Mamoru

    2016-01-01

    Food allergy is a serious problem for infants and young children. Induction of antigen-specific oral tolerance is one therapeutic strategy. Enhancement of oral tolerance induction by diet is a promising strategy to prevent food allergy in infants. Thus, in this study, we evaluate the effect of probiotic Lactobacillus gasseri OLL2809 (LG2809) on oral tolerance induction in a mouse model. The degree of oral tolerance induction was evaluated by measuring the proliferation and level of IL-2 production of splenic CD4+ T cells from DO11.10 mice fed ovalbumin (OVA) alone or OVA with LG2809. Oral administration of LG2809 significantly decreased the rate of proliferation and IL-2 production by CD4+ T cells from OVA-fed mice. LG2809 increased a ratio of CD4+ T-cell population, producing high levels of IL-10 and having strong suppressive activity. Moreover, LG2809 increased a ratio of plasmacytoid dendritic cells (pDCs) among the lamina propria (LP) in small intestine. When used as antigen presenting cells to naïve CD4+ T cells from DO11.10 mice, LP cells from BALB/c mice fed LG2809 induced higher IL-10 production and stronger suppressive activity than those from non-treated mice. These results suggest that oral administration of LG2809 increases the population of pDCs in the LP, resulting in the enhancement of oral tolerance induction by increasing the ratio of effector regulatory T cells. LG2809 could, therefore, act as a potent immunomodulator to prevent food allergies by promoting oral tolerance.

  18. Characterization of vaginal Lactobacillus species by rplK -based multiplex qPCR in Russian women.

    PubMed

    Demkin, Vladimir V; Koshechkin, Stanislav I

    2017-10-01

    We describe a multiplex qPCR assay for identification and quantitative assessment of a set of vaginal Lactobacillus species, including L. acidophilus, L. crispatus, L. gasseri, L. helveticus, L. iners, and L. jensenii. The assay extends the previously developed qPCR method for Lactobacillus detection and total quantification based on targeting the rplK gene. Both assays use only single pair of primers and a set of probes combined in three reactions, comprising a vaginal Lactobacillus diagnostic assay panel. The utility of the diagnostic panel was evaluated by analyzing of vaginal swab specimens from 145 patients with different status of vaginal health. Most frequently, only one Lactobacillus species was dominant (68,9%), mostly L. crispatus (18,6%) or L. iners (33,1%), but two or three Lactobacillus species were also being simultaneously detected (24,9%). The diagnostic panel will facilitate investigations of the role of Lactobacillus species in the health of the female reproductive system and promote studies of variability of the vaginal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial.

    PubMed

    Kadooka, Y; Sato, M; Imaizumi, K; Ogawa, A; Ikuyama, K; Akai, Y; Okano, M; Kagoshima, M; Tsuchida, T

    2010-06-01

    In spite of the much evidence for the beneficial effects of probiotics, their anti-obesity effects have not been well examined. We evaluated the effects of the probiotic Lactobacillus gasseri SBT2055 (LG2055) on abdominal adiposity, body weight and other body measures in adults with obese tendencies. We conducted a multicenter, double-blind, randomized, placebo-controlled intervention trial. Subjects (n=87) with higher body mass index (BMI) (24.2-30.7 kg/m(2)) and abdominal visceral fat area (81.2-178.5 cm(2)) were randomly assigned to receive either fermented milk (FM) containing LG2055 (active FM; n=43) or FM without LG2055 (control FM; n=44), and were asked to consume 200 g/day of FM for 12 weeks. Abdominal fat area was determined by computed tomography. In the active FM group, abdominal visceral and subcutaneous fat areas significantly (P<0.01) decreased from baseline by an average of 4.6% (mean (confidence interval): -5.8 (-10.0, -1.7) cm(2)) and 3.3% (-7.4 (-11.6, -3.1) cm(2)), respectively. Body weight and other measures also decreased significantly (P<0.001) as follows: body weight, 1.4% (-1.1 (-1.5, -0.7) kg); BMI, 1.5% (-0.4 (-0.5, -0.2) kg/m(2)); waist, 1.8% (-1.7 (-2.1, -1.4) cm); hip, 1.5% (-1.5 (-1.8, -1.1) cm). In the control group, by contrast, none of these parameters decreased significantly. High-molecular weight adiponectin in serum increased significantly (P<0.01) in the active and control groups by 12.7% (0.17 (0.07, 0.26) microg/ml) and 13.6% (0.23 (0.07, 0.38) microg/ml), respectively. The probiotic LG2055 showed lowering effects on abdominal adiposity, body weight and other measures, suggesting its beneficial influence on metabolic disorders.

  20. Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women

    PubMed Central

    Tamrakar, Renuka; Yamada, Takashi; Furuta, Itsuko; Cho, Kazutoshi; Morikawa, Mamoru; Yamada, Hideto; Sakuragi, Noriaki; Minakami, Hisanori

    2007-01-01

    Background Bacterial vaginosis (BV), the etiology of which is still uncertain, increases the risk of preterm birth. Recent PCR-based studies suggested that BV is associated with complex vaginal bacterial communities, including many newly recognized bacterial species in non-pregnant women. Methods To examine whether these bacteria are also involved in BV in pregnant Japanese women, vaginal fluid samples were taken from 132 women, classified as normal (n = 98), intermediate (n = 21), or BV (n = 13) using the Nugent gram stain criteria, and studied. DNA extracted from these samples was analyzed for bacterial sequences of any Lactobacillus, four Lactobacillus species, and four BV-related bacteria by PCR with primers for 16S ribosomal DNA including a universal Lactobacillus primer, Lactobacillus species-specific primers for L. crispatus, L. jensenii, L. gasseri, and L. iners, and BV-related bacterium-specific primers for BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Results The prevalences of L. crispatus, L. jensenii, and L. gasseri were significantly higher, while those of BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium were significantly lower in the normal group than in the BV group. Unlike other Lactobacillus species, the prevalence of L. iners did not differ between the three groups and women with L. iners were significantly more likely to have BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Linear regression analysis revealed associations of BVAB2 and Megasphaera with Nugent score, and multivariate regression analyses suggested a close relationship between Eggerthella-like bacterium and BV. Conclusion The BV-related bacteria, including BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium, are common in the vagina of pregnant Japanese women with BV. The presence of L. iners may be correlated with vaginal colonization by these BV-related bacteria. PMID:17986357

  1. Bio-preservation of ground beef meat by Enterococcus faecalis CECT7121.

    PubMed

    Sparo, M D; Confalonieri, A; Urbizu, L; Ceci, M; Bruni, S F Sánchez

    2013-01-01

    Meat and particularly ground beef is frequently associated with Food Poisoning episodes and breeches in Food Safety. The main goal of this research was to evaluate the bactericide effect of the probiotic Enterococcus faecalis CECT7121, against different pathogens as: Escherichia coli O157:H7, Staphylococcus aureus, Clostridium perfringens and Listeria monocytogenes, inoculated in ground beef meat. Three studies were performed to evaluate the inhibition of E. faecalis CECT7121 on ground beef meat samples inoculated with pathogens: Study I: Samples (100 g meat) were inoculated with pathogens (10(3) CFU/g)) and E. faecalis CECT7121 (10(4) CFU/g) simultaneously. Study II: Samples were inoculated with E. faecalis CECT7121 24 h before the pathogens. Study III: E. faecalis CECT7121were inoculated 24 h after pathogens. The viable counts were performed at 0, 24, 48 and 72 h post-inoculation. The simultaneous inoculation of E. faecalis CECT7121 with E. coli O157:H7 strains resulted in the absence of viable counts of bacteria at 72 h post-treatment. However, when the probiotic was added 24 h before and 24 h after the pathogen E. coli O157:H7, viable cells were not detected at 24 h and 48 h post-treatment, respectively. Consistently, neither S. aureus nor Cl. perfringens viable bacteria were detected at 48 h in whole assays when inoculated with E. faecalis CECT7121. The same trend than described before was obtained after applying the 3 models assayed for L. monocytogenes. The current assays demonstrated the bactericide activity of E. faecalis CECT7121 strain on bacterial pathogens in ground beef meat.

  2. The effects of administration of the Lactobacillus gasseri strain CP2305 on quality of life, clinical symptoms and changes in gene expression in patients with irritable bowel syndrome.

    PubMed

    Nobutani, K; Sawada, D; Fujiwara, S; Kuwano, Y; Nishida, K; Nakayama, J; Kutsumi, H; Azuma, T; Rokutan, K

    2017-01-01

    To clarify the effects of Lactobacillus gasseri CP2305 (CP2305) on quality of life and clinical symptoms and its functional mechanisms in patients with irritable bowel syndrome (IBS). After the patients were administered CP2305 daily for 4 weeks, the IBS-severity index score was significantly improved compared with that of the placebo group, and this improvement was accompanied by a reduction in health-related worry and changes in intestinal microbiota. The gene expression profiling of the peripheral blood leucocytes showed that CP2305 treatment significantly up-regulated genes related to eukaryotic initiation factor 2 (EIF2) signalling. Eighty-two genes were down-regulated in IBS patients compared with healthy controls. The expression of 23 of these genes exhibited a CP2305-dependent increase associated with an improvement in IBS severity. The majority of the restored genes were related to EIF2 signalling. CP2305 administration is a potential candidate therapeutic option for patients with IBS. Although probiotics have been proposed to benefit IBS patients, objective clinical evidence and elucidation of the functional mechanism remain insufficient. Our study demonstrated that CP2305 administration beneficially influences IBS patients in both subjective and objective evaluations, and gene expression profiling provided insights into the functional mechanism. © 2016 The Society for Applied Microbiology.

  3. Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates.

    PubMed

    Strahinic, I; Busarcevic, M; Pavlica, D; Milasin, J; Golic, N; Topisirovic, L

    2007-04-01

    The objective of this study was to characterize the lactobacilli from the human oral cavity as a potential source of probiotic strains. Samples were collected from four different locations within the oral cavity: surface of healthy tooth, oral mucous membrane, surface of tooth decay and deep tooth decay. On the basis of morphological and biochemical properties eight categories were formed and 26 isolates were selected for further characterization. The isolates were determined as Lactobacillus sp. using primers specific for 16S rDNA. Sequencing of 16S rDNA genes and repetitive sequence-based polymerase chain reactions were used for determination to species and subspecies levels. Predominant species were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius and Lactobacillus paracasei subsp. paracasei, while Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus gasseri were also present. The isolates Lactobacillus salivarius BGHO1, Lactobacillus fermentum BGHO36 and BGHO64, Lactobacillus gasseri BGHO89 and Lactobacillus delbrueckii subsp. lactis BGHO99 exhibited antagonistic action on the growth of Staphylococcus aureus, Enterococcus faecalis, Micrococcus flavus, Salmonella enteritidis, Streptococcus pneumoniae and Streptococcus mutans, but not on growth of Candida albicans. Moreover, the isolates L. salivarius BGHO1 and L. gasseri BGHO89 were tolerant to low pH and high concentration of bile salts. Taken together, these findings imply that L. salivarius BGHO1 and L. gasseri BGHO89 might be subjects for additional investigation as potential probiotic strains.

  4. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  5. Molecular detection of Lactobacillus species in the neovagina of male-to-female transsexual women

    PubMed Central

    Petricevic, Ljubomir; Kaufmann, Ulrike; Domig, Konrad J.; Kraler, Manuel; Marschalek, Julian; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    There is a general opinion that penile skin lined neovagina of transsexual women is not able to support the growth of lactobacilli. This study was undertaken to prove if lactobacilli strains could survive in neovagina and to characterise the most dominant Lactobacillus species. Sixty three male-to-female transsexual women without abnormal vaginal discharge, clinical signs of infection were recruited on an ongoing basis from among transsexual outpatients in an academic research institution and tertiary care centre. Neovaginal smears were taken for molecular Lactobacillus spp. profiling by denaturing gradient gel electrophoresis (PCR–DGGE). Lactobacillus species were detected from 47/63 transsexual women (75%). The 279 Lactobacillus signals detected by PCR-DGGE technique belonged to 13 different species. Lactobacilli of the L. delbrueckii group (L. gasseri, L. crispatus, L. johnsonii, L. iners, L. jensenii) were predominant. More than 90% of women harboured a combination of two or more neovaginal Lactobacillus species. In this study we report the frequent occurrence of lactobacilli from neovagina of transsexual women. Both, frequency and composition were similar to the normal lactic acid bacterial microflora in both women of reproductive age and postmenopausal women. PMID:24434849

  6. The role of prophage for genome diversification within a clonal lineage of Lactobacillus johnsonii: characterization of the defective prophage LJ771.

    PubMed

    Denou, Emmanuel; Pridmore, Raymond David; Ventura, Marco; Pittet, Anne-Cécile; Zwahlen, Marie-Camille; Berger, Bernard; Barretto, Caroline; Panoff, Jean-Michel; Brüssow, Harald

    2008-09-01

    Two independent isolates of the gut commensal Lactobacillus johnsonii were sequenced. These isolates belonged to the same clonal lineage and differed mainly by a 40.8-kb prophage, LJ771, belonging to the Sfi11 phage lineage. LJ771 shares close DNA sequence identity with Lactobacillus gasseri prophages. LJ771 coexists as an integrated prophage and excised circular phage DNA, but phage DNA packaged into extracellular phage particles was not detected. Between the phage lysin gene and attR a likely mazE ("antitoxin")/pemK ("toxin") gene cassette was detected in LJ771 but not in the L. gasseri prophages. Expressed pemK could be cloned in Escherichia coli only together with the mazE gene. LJ771 was shown to be highly stable and could be cured only by coexpression of mazE from a plasmid. The prophage was integrated into the methionine sulfoxide reductase gene (msrA) and complemented the 5' end of this gene, creating a protein with a slightly altered N-terminal sequence. The two L. johnsonii strains had identical in vitro growth and in vivo gut persistence phenotypes. Also, in an isogenic background, the presence of the prophage resulted in no growth disadvantage.

  7. Lactobacillus insicii sp. nov., isolated from fermented raw meat.

    PubMed

    Ehrmann, Matthias A; Kröckel, Lothar; Lick, Sonja; Radmann, Pia; Bantleon, Annegret; Vogel, Rudi F

    2016-01-01

    The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8 % 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4 %), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3 %), Lactobacillus versmoldensis DSM 14857T (96.9 %) and Lactobacillus furfuricola JCM 18764T (97.2 %). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70 % and the DNA G+C content was 36.3 mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T ( = CECT 8802T = DSM 29801T).

  8. Distinctive Intestinal Lactobacillus Communities in 6-Month-Old Infants From Rural Malawi and Southwestern Finland.

    PubMed

    Aakko, Juhani; Endo, Akihito; Mangani, Charles; Maleta, Kenneth; Ashorn, Per; Isolauri, Erika; Salminen, Seppo

    2015-12-01

    Our aim was to compare the composition and diversity of Lactobacillus microbiota in infants living in Malawi and Southwestern Finland. The composition and diversity of the Lactobacillus group was analyzed in the feces of healthy 6-month-old infants living in rural Malawi (n = 44) and Southwestern Finland (n = 31), using the quantitative polymerase chain reaction method and PCR-denaturing gradient gel electrophoresis fingerprinting. Malawian infants had higher counts of lactobacilli than their Finnish counterparts (7.45 log cells/g vs 6.86 log cells/g, P < 0.001, respectively) and the Lactobacillus community was richer and more diverse in the Malawian infants. Leuconostoc citreum and Weissella confusa were the predominant species in both study groups, but Malawian infants were more often colonized by these species (100% vs 74.2%, P < 0.001; 95.5% vs 41.9%, P < 0.001, respectively). Moreover, Lactobacillus ruminis, Lactobacillus gasseri, Lactobacillus acidophilus, and Lactobacillus mucosae were detected more often in the Malawian infants (59.1% vs 0.0%, P < 0.001; 38.6% vs 9.7%, P = 0.004; 29.5% vs 0.0%, P < 0.001; 22.7% vs 3.2%, P = 0.017, respectively). Lactobacillus casei group species, however, were only detected in the Finnish infants. Malawian infants have a more abundant Lactobacillus microbiota with a distinct composition compared with Finnish infants. The environment, including diet and hygiene, may be among the factors influencing these differences.

  9. Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must.

    PubMed

    Mañes-Lázaro, Rosario; Ferrer, Sergi; Rodas, Ana María; Urdiain, Mercedes; Pardo, Isabel

    2008-12-01

    A Lactobacillus strain, designated 203(T), previously isolated from Bobal grape must was characterized phylogenetically, genotypically and phenotypically in order to establish whether it represents a novel species. On the basis of the 16S rRNA gene sequence, strain 203(T) was shown to belong to the genus Lactobacillus, falling within the Lactobacillus alimentarius-Lactobacillus farciminis group and being closely related to the type strains of L. alimentarius, Lactobacillus kimchii and Lactobacillus paralimentarius. DNA-DNA hybridization results confirmed the separate status of strain 203(T) at the species level. To establish the similarities and differences between 203(T) and the three aforementioned closest species, the following methods were used: amplified rDNA restriction analysis, analysis of the 16S-23S rDNA intergenic spacer region, random amplification of polymorphic DNA (RAPD) profiling, ribotyping, carbohydrate fermentation and physiological tests. Strain 203(T) could be differentiated genetically using RAPD analysis and ribotyping. Phenotypically, it can be distinguished from its closest relatives by its ability to grow at pH 3.3, by gas production from gluconate and by certain carbohydrate fermentations. On the basis of these data, strain 203(T) represents a novel species of the genus Lactobacillus, for which the name Lactobacillus bobalius sp. nov. is proposed. The type strain is 203(T) (=CECT 7310(T) =DSM 19674(T)).

  10. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health

    PubMed Central

    Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah

    2015-01-01

    The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies. PMID:25859220

  11. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  12. Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity.

    PubMed

    Pridmore, Raymond David; Pittet, Anne-Cécile; Praplan, Fabienne; Cavadini, Christoph

    2008-06-01

    The human intestinal isolate Lactobacillus johnsonii NCC 533 (La1) is a probiotic strain with well-documented antimicrobial properties. Previous research has identified the production of lactic acid and bacteriocins as important factors, but that other unidentified factors are also involved. We used the recently published genome sequence of L. johnsonii NCC 533 to search for novel antipathogen factors and identified three potential gene products that may catalyze the synthesis of the known antimicrobial factor hydrogen peroxide, H(2)O(2). In this work, we confirmed the ability of NCC 533 as well as eight different L. johnsonii strains and Lactobacillus gasseri to produce H(2)O(2) when resting cells were incubated in the presence of oxygen, and that culture supernatant containing NCC 533-produced H(2)O(2) was effective in killing the model pathogen Salmonella enterica serovar Typhimurium SL1344 in vitro.

  13. Targeting Mucosal Dendritic Cells with Microbial Antigens from Probiotic Lactic Acid Bacteria

    DTIC Science & Technology

    2008-03-01

    Lactoba- cillus gasseri, Lactobacillus plantarum , Lactobacillus delbreuckii, Lactobacillus rhamnosus, Lactobacillus salivarius and Lactobacillus ... Lactobacillus plantarum Helicobacter pylori UreB Mouse [105] S. pneumoniae PsaA Mouse [104] Lactococcus lactis C. tetani TTFC Mouse [81...anthracis (the causative agent of anthrax). An antigen-specific immune response can be elicited using specific strains of Lactobacillus acidophilus

  14. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice.

    PubMed

    Moya-Pérez, A; Perez-Villalba, A; Benítez-Páez, A; Campillo, I; Sanz, Y

    2017-10-01

    Emerging evidence suggests that there is a window of opportunity within the early developmental period, when microbiota-based interventions could play a major role in modulating the gut-brain axis and, thereby, in preventing mood disorders. This study aims at evaluating the effects and mode of action of Bifidobacterium pseudocatenulatum CECT 7765 in a murine model of chronic stress induced by maternal separation (MS). C57Bl/6J male breast-fed pups were divided into four groups, which were subjected or not to MS and supplemented with placebo or B. pseudocatenulatum CECT7765 until postnatal period (P) 21 and followed-up until P41. Behavioral tests were performed and neuroendocrine parameters were analyzed including corticosterone, cytokine/chemokine concentrations and neurotransmitters. Microbiota was also analyzed in stools by 16S rRNA gene sequencing. B. pseudocatenulatum CECT 7765 administration attenuated some aspects of the excessive MS-induced stress response of the hypothalamic-pituitary-adrenal (HPA) axis, particularly corticosterone production at baseline and in response to subsequent acute stress in adulthood. B. pseudocatenulatum CECT 7765 also down-regulated MS-induced intestinal inflammation (reducing interferon gamma [IFN-γ]) and intestinal hypercatecholaminergic activity (reducing dopamine [DA] and adrenaline [A] concentrations) at P21. These effects have a long-term impact on the central nervous system (CNS) of adult mice since MS mice fed B. pseudocatenulatum CECT 7765 showed lower anxiety levels than placebo-fed MS mice, as well as normal neurotransmitter levels in the hypothalamus. The anti-inflammatory effect of B. pseudocatenulatum CECT 7765 seemed to be related to an improvement in glucocorticoid sensitivity in mesenteric lymph node immunocompetent cells at P21. The administration of B. pseudocatenulatum CECT 7765 to MS animals also reversed intestinal dysbiosis affecting the proportions of ten Operational Taxonomic Units (OTUs) at P21, which

  15. Identification and Characterization of the Novel LysM Domain-Containing Surface Protein Sep from Lactobacillus fermentum BR11 and Its Use as a Peptide Fusion Partner in Lactobacillus and Lactococcus

    PubMed Central

    Turner, Mark S.; Hafner, Louise M.; Walsh, Terry; Giffard, Philip M.

    2004-01-01

    Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria. PMID:15184172

  16. Characterization of bacterial isolates from the microbiota of mothers' breast milk and their infants

    PubMed Central

    Kozak, Kimberly; Charbonneau, Duane; Sanozky-Dawes, Rosemary; Klaenhammer, Todd

    2015-01-01

    This investigation assessed the potential of isolating novel probiotics from mothers and their infants. A subset of 21 isolates among 126 unique bacteria from breast milk and infant stools from 15 mother-infant pairs were examined for simulated GI transit survival, adherence to Caco-2 cells, bacteriocin production, and lack of antibiotic resistance. Of the 21 selected isolates a Lactobacillus crispatus isolate and 3 Lactobacillus gasseri isolates demonstrated good profiles of in vitro GI transit tolerance and Caco-2 cell adherence. Bacteriocin production was observed only by L. gasseri and Enterococcus faecalis isolates. Antibiotic resistance was widespread, although not universal, among isolates from infants. Highly similar isolates (≥ 97% similarity by barcode match) of Bifidobacterium longum subsp. infantis (1 match), Lactobacillus fermentum (2 matches), Lactobacillus gasseri (6 matches), and Enterococcus faecalis (1 match) were isolated from 5 infant–mother pairs. Antibiotic resistance profiles between these isolate matches were similar, except in one case where the L. gasseri isolate from the infant exhibited resistance to erythromycin and tetracycline, not observed in matching mother isolate. In a second case, L. gasseri isolates differed in resistance to ampicillin, chloramphenicol and vancomycin between the mother and infant. In this study, gram positive bacteria isolated from mothers' breast milk as well as their infants exhibited diversity in GI transit survival and acid inhibition of pathogens, but demonstrated limited ability to produce bacteriocins. Mothers and their infants offer the potential for identification of probiotics; however, even in the early stages of development, healthy infants contain isolates with antibiotic resistance. PMID:26727418

  17. Characterization of bacterial isolates from the microbiota of mothers' breast milk and their infants.

    PubMed

    Kozak, Kimberly; Charbonneau, Duane; Sanozky-Dawes, Rosemary; Klaenhammer, Todd

    2015-01-01

    This investigation assessed the potential of isolating novel probiotics from mothers and their infants. A subset of 21 isolates among 126 unique bacteria from breast milk and infant stools from 15 mother-infant pairs were examined for simulated GI transit survival, adherence to Caco-2 cells, bacteriocin production, and lack of antibiotic resistance. Of the 21 selected isolates a Lactobacillus crispatus isolate and 3 Lactobacillus gasseri isolates demonstrated good profiles of in vitro GI transit tolerance and Caco-2 cell adherence. Bacteriocin production was observed only by L. gasseri and Enterococcus faecalis isolates. Antibiotic resistance was widespread, although not universal, among isolates from infants. Highly similar isolates (≥ 97% similarity by barcode match) of Bifidobacterium longum subsp. infantis (1 match), Lactobacillus fermentum (2 matches), Lactobacillus gasseri (6 matches), and Enterococcus faecalis (1 match) were isolated from 5 infant-mother pairs. Antibiotic resistance profiles between these isolate matches were similar, except in one case where the L. gasseri isolate from the infant exhibited resistance to erythromycin and tetracycline, not observed in matching mother isolate. In a second case, L. gasseri isolates differed in resistance to ampicillin, chloramphenicol and vancomycin between the mother and infant. In this study, gram positive bacteria isolated from mothers' breast milk as well as their infants exhibited diversity in GI transit survival and acid inhibition of pathogens, but demonstrated limited ability to produce bacteriocins. Mothers and their infants offer the potential for identification of probiotics; however, even in the early stages of development, healthy infants contain isolates with antibiotic resistance.

  18. Evaluation of technological properties of Enterococcus faecium CECT 8849, a strain isolated from human milk, for the dairy industry.

    PubMed

    Cárdenas, Nivia; Arroyo, Rebeca; Calzada, Javier; Peirotén, Ángela; Medina, Margarita; Rodríguez, Juan Miguel; Fernández, Leonides

    2016-09-01

    In this work, a variety of biochemical properties of Enterococcus faecium CECT 8849, which had been isolated from breast milk, were analyzed. Its acidifying capacity and proteolytic activity were low but, in contrast, remarkable peptidase and esterase activities were observed. Ethanol and 3-hydroxy-2-butanone were the most abundant volatile compounds found in experimental model cheese manufactured with E. faecium CECT 8849. This strain inhibited the growth of several Listeria monocytogenes and Listeria innocua strains in vitro. Enterocin A and B structural genes were detected in E. faecium CECT 8849. Model fermented milk and cheeses were manufactured from milk inoculated or not with L. innocua CECT 8848 (2.5-3 log10 colony forming units mL(-1)) using E. faecium CECT 8849 or Lactococcus lactis ESI 153 as starter cultures. Although E. faecium CECT 8849 controlled Listeria growth in both dairy models, it led to lower reduction in Listeria counts when compared with L. lactis ESI 153.

  19. Cognitive existential couple therapy (CECT) in men and partners facing localised prostate cancer: a randomised controlled trial.

    PubMed

    Couper, Jeremy; Collins, Anna; Bloch, Sidney; Street, Annette; Duchesne, Gillian; Jones, Tessa; Olver, James; Love, Anthony

    2015-04-01

    To assess the efficacy of cognitive existential couple therapy (CECT) for relationship function, coping, cancer distress and mental health in men with localised prostate cancer and in their partners. A randomised controlled trial was conducted with 62 couples randomly assigned to the six-session CECT programme or care as usual. The couple's relationship function (primary outcome), and coping, cancer distress and mental health (secondary outcomes) were evaluated at T0 (baseline), T1 (after treatment) and T2 (9 months from T0). A repeated-measures analysis of covariance model, which incorporated T0 measurements as a covariate, was used to compare treatment groups at T1 and T2. After CECT, patients reported significantly greater use of adaptive coping (P = 0.03) and problem-focused coping (P = 0.01). These gains were maintained at follow-up, while relationship cohesion had improved (P = 0.03), as had relationship function for younger patients (P = 0.01). Younger partners reported less cancer-specific distress (P = 0.008), avoidance (P = 0.04), intrusive thought (P = 0.006), and hyperarousal (P = 0.01). Gains were maintained at follow-up, while relationship cohesion (P = 0.007), conflict resolution (P = 0.01) and relational function (P = 0.009) all improved. CECT resulted in improved coping for patients and lower cancer-distress for partners. Maintained over time this manifests as improved relationship function. CECT was acceptable to couples, alleviated long-term relationship decline, and is therefore suitable as a preventative mental health intervention for couples facing prostate cancer. Given resourcing demands, we recommend dissemination of CECT be targeted at younger couples, as CECT was more acceptable to the younger group, and they derived greater benefit from it. © 2015 The Authors. BJU International © 2015 BJU International.

  20. Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages.

    PubMed

    Rubio, Raquel; Jofré, Anna; Martín, Belén; Aymerich, Teresa; Garriga, Margarita

    2014-04-01

    A total of 109 lactic acid bacteria isolated from infant faeces were identified by partial 16S rRNA, cpn60 and/or pheS sequencing. Lactobacillus was the most prevalent genus, representing 48% of the isolates followed by Enterococcus (38%). Lactobacillus gasseri (21%) and Enterococcus faecalis (38%) were the main species detected. A further selection of potential probiotic starter cultures for fermented sausages focused on Lactobacillus as the most technologically relevant genus in this type of product. Lactobacilli strains were evaluated for their ability to grow in vitro in the processing conditions of fermented sausages and for their functional and safety properties, including antagonistic activity against foodborne pathogens, survival from gastrointestinal tract conditions (acidity, bile and pancreatin), tyramine production, antibiotic susceptibility and aggregation capacity. The best strains according to the results obtained were Lactobacillus casei/paracasei CTC1677, L. casei/paracasei CTC1678, Lactobacillus rhamnosus CTC1679, L. gasseri CTC1700, L. gasseri CTC1704, Lactobacillus fermentum CTC1693. Those strains were further assayed as starter cultures in model sausages. L. casei/paracasei CTC1677, L. casei/paracasei CTC1678 and L. rhamnosus CTC1679 were able to lead the fermentation and dominate (levels ca. 10(8) CFU/g) the endogenous lactic acid bacteria, confirming their suitability as probiotic starter cultures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Assessment of phenotypic and genotypic antibiotic susceptibility of vaginal Lactobacillus sp.

    PubMed

    Štšepetova, J; Taelma, H; Smidt, I; Hütt, P; Lapp, E; Aotäht, E; Mändar, R

    2017-08-01

    To assess antibiotic susceptibility of vaginal lactobacilli strains and provide the data required for assessing the potential of antibiotic resistance risk of new strains selected as probiotic. Potential probiotic vaginal lactobacilli used in the study included 31 vaginal strains of Lactobacillus crispatus (n = 27), Lactobacillus gasseri (n = 3) and Lactobacillus jensenii (n = 1) obtained from the collection of Competence Centre on Health Technologies. Two commercial probiotic strains were used as controls (Lactobacillus rhamnosus GR-1 and Lactobacillus fermentum RC-14). The phenotypic and genotypic antibiotic resistances of the strains were determined by E-test and PCR methods. The location (chromosomal DNA or plasmid) of antibiotic resistance genes was also detected. All lactobacilli strains expressed high level of resistance to kanamycin, metronidazole, norfloxacin and trimethoprim/sulphamethoxazole. Some of the strains also expressed resistance to other antibiotics (chloramphenicol, vancomycin) indicating acquired resistance. I class integrons were found in 20% (6/31) of the strains. The RPP (ribosomal protection protein) gene was found to be positive in 30% (9/31) of the strains. Only one L. jensenii strain was determined with tet(M) gene. The tet(K) gene was positive in 26·7% (8/31) and erm(B) gene in 43·3% (13/31) of strains. Three RPP and both four tet(K) and erm(B) genes were located in plasmids. High antibiotic resistance to clinically important antibiotics was demonstrated, including metronidazole, sulphonamides, aminoglycoside and quinolones. In addition, acquired tetracycline and erythromycin resistance genes were detected in either plasmid or chromosomal DNA of certain isolates, in some of the cases for the first time in the literature. It appears that antibiotic resistance genes erm(B) and tet(K) are widely spread in vaginal lactobacilli. This study provides new data about antimicrobial resistance and genotypic diversity of vaginal

  2. Phase I trial of a Lactobacillus crispatus vaginal suppository for prevention of recurrent urinary tract infection in women.

    PubMed

    Czaja, Christopher A; Stapleton, Ann E; Yarova-Yarovaya, Yuliya; Stamm, Walter E

    2007-01-01

    We performed a phase I trial to assess the safety and tolerance of a Lactobacillus vaginal suppository for prevention of recurrent UTI. Premenopausal women with a history of recurrent UTI were randomized to use L. crispatus CTV-05 or placebo vaginal suppositories daily for five days. 30 women were randomized (15 to L. crispatus CTV-05). No severe adverse events occurred. Mild to moderate vaginal discharge and genital irritation were reported by women in both study arms. Seven women randomized to L. crispatus CTV-05 developed pyuria without associated symptoms. Most women had high concentrations of vaginal H202-producing lactobacilli before randomization. L. crispatus, L. jensenii, and L. gasseri were the most common Lactobacillus species identified, with stable prevalence over time. L. crispatus CTV-05 can be given as a vaginal suppository with minimal sideeffects to healthy women with a history of recurrent UTI. Mild inflammation of the urinary tract was noted in some women.

  3. Phase I Trial of a Lactobacillus crispatus Vaginal Suppository for Prevention of Recurrent Urinary Tract Infection in Women

    PubMed Central

    Czaja, Christopher A.; Stapleton, Ann E.; Yarova-Yarovaya, Yuliya; Stamm, Walter E.

    2007-01-01

    Objectives: We performed a phase I trial to assess the safety and tolerance of a Lactobacillus vaginal suppository for prevention of recurrent UTI. Methods: Premenopausal women with a history of recurrent UTI were randomized to use L. crispatus CTV-05 or placebo vaginal suppositories daily for five days. Results: 30 women were randomized (15 to L. crispatus CTV-05). No severe adverse events occurred. Mild to moderate vaginal discharge and genital irritation were reported by women in both study arms. Seven women randomized to L. crispatus CTV-05 developed pyuria without associated symptoms. Most women had high concentrations of vaginal H202-producing lactobacilli before randomization. L. crispatus, L. jensenii, and L. gasseri were the most common Lactobacillus species identified, with stable prevalence over time. Conclusions: L. crispatus CTV-05 can be given as a vaginal suppository with minimal sideeffects to healthy women with a history of recurrent UTI. Mild inflammation of the urinary tract was noted in some women. PMID:18288237

  4. Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage {Phi}AQ113.

    PubMed

    Zago, Miriam; Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-08-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism.

  5. Characterization of the Genome of the Dairy Lactobacillus helveticus Bacteriophage ΦAQ113

    PubMed Central

    Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-01-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism. PMID:23728811

  6. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet.

    PubMed

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F

    2013-05-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model.

  8. Fatty Liver Accompanies an Increase in Lactobacillus Species in the Hind Gut of C57BL/6 Mice Fed a High-Fat Diet123

    PubMed Central

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I.; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F.

    2013-01-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model. PMID:23486979

  9. Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment

    PubMed Central

    Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J.

    2014-01-01

    Lactobacilli are found in a wide variety of habitats. Four species, Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii, are common and abundant in the human vagina and absent from other habitats. These may be adapted to the vagina and possess characteristics enabling them to thrive in that environment. Furthermore, stable codominance of multiple Lactobacillus species in a single community is infrequently observed. Thus, it is possible that individual vaginal Lactobacillus species possess unique characteristics that confer to them host-specific competitive advantages. We performed comparative functional genomic analyses of representatives of 25 species of Lactobacillus, searching for habitat-specific traits in the genomes of the vaginal lactobacilli. We found that the genomes of the vaginal species were significantly smaller and had significantly lower GC content than those of the nonvaginal species. No protein families were found to be specific to the vaginal species analyzed, but some were either over- or underrepresented relative to nonvaginal species. We also found that within the vaginal species, each genome coded for species-specific protein families. Our results suggest that even though the vaginal species show no general signatures of adaptation to the vaginal environment, each species has specific and perhaps unique ways of interacting with its environment, be it the host or other microbes in the community. These findings will serve as a foundation for further exploring the role of lactobacilli in the ecological dynamics of vaginal microbial communities and their ultimate impact on host health. PMID:24488312

  10. Preventive effects of Lactobacillus mixture on experimental E. coli urinary tract infection in infant rats.

    PubMed

    Lee, Jung Won; Lee, Jee Hyun; Sung, Sun Hee; Lee, Seung Joo

    2013-03-01

    Urinary tract infection (UTI) is an ascending infection of fecal uropathogens, urogenital lactobacilli are suggested to play a role in the prevention of UTI. This study was to investigate whether lactobacillus mixture (LM) could prevent the experimental infantile UTI. The LM were composed of three lactobacillus strains (L. gasseri, L. rhamnosus, and L. reuteri). Mother rats were grouped as lactobacillus (LB) group I (LB I, n=22), II (LB II, n=24) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare lactobacillus colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard E. coli strain. After 72 hours later, the infant rats were sacrificed for histologic examination. Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16.22) and control 75.0% (15/20) (p=0.015). The incidence of cystitis was not significantly different among the three groups. The intravesically instilled LM significantly prevented experimental pyelonephritis in infant rats, however, LM administered orally to the pregnant and lactating mother rats did not.

  11. Promising Prebiotic Candidate Established by Evaluation of Lactitol, Lactulose, Raffinose, and Oligofructose for Maintenance of a Lactobacillus-Dominated Vaginal Microbiota

    PubMed Central

    McMillan, Amy; Seney, Shannon; van der Veer, Charlotte; Kort, Remco; Sumarah, Mark W.

    2017-01-01

    ABSTRACT Perturbations to the vaginal microbiota can lead to dysbiosis, including bacterial vaginosis (BV), which affects a large portion of the female population. In a healthy state, the vaginal microbiota is characterized by low diversity and colonization by Lactobacillus spp., whereas in BV, these species are displaced by a highly diverse population of bacteria associated with adverse vaginal health outcomes. Since prebiotic ingestion has been a highly effective approach to invigorate lactobacilli for improved intestinal health, we hypothesized that these compounds could stimulate lactobacilli at the expense of BV organisms to maintain vaginal health. Monocultures of commensal Lactobacillus crispatus, Lactobacillus vaginalis, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus jensenii, and Lactobacillus iners, in addition to BV-associated organisms and Candida albicans, were tested for their ability to utilize a representative group of prebiotics consisting of lactitol, lactulose, raffinose, and oligofructose. The disaccharide lactulose was found to most broadly and specifically stimulate vaginal lactobacilli, including the strongly health-associated species L. crispatus, and importantly, not to stimulate BV organisms or C. albicans. Using freshly collected vaginal samples, we showed that exposure to lactulose promoted commensal Lactobacillus growth and dominance and resulted in healthy acidity partially through lactic acid production. This provides support for further testing of lactulose to prevent dysbiosis and potentially to reduce the need for antimicrobial agents in managing vaginal health. IMPORTANCE Bacterial vaginosis (BV) and other dysbioses of the vaginal microbiota significantly affect the quality of life of millions of women. Antimicrobial therapy is often poorly effective, causes side effects, and does not prevent recurrences. We report one of very few studies that have evaluated how prebiotics—compounds that are selectively fermented

  12. Bifidobacterium pseudocatenulatum CECT7765 promotes a TLR2-dependent anti-inflammatory response in intestinal lymphocytes from mice with cirrhosis.

    PubMed

    Moratalla, Alba; Gómez-Hurtado, Isabel; Moya-Pérez, Ángela; Zapater, Pedro; Peiró, Gloria; González-Navajas, José M; Gómez Del Pulgar, Eva Maria; Such, José; Sanz, Yolanda; Francés, Rubén

    2016-02-01

    Intestinal homeostasis plays an important role in bacteria-derived complications in cirrhosis. Intestinal lymphocytes are responsible for immune effector functions and can be modulated by certain probiotics. We evaluate the interaction between Bifidobacterium pseudocatenulatum CECT7765 and intestinal lymphocytes in mice with cirrhosis. Cirrhosis was induced by intragastrical administration of carbon tetrachloride in Balb/C mice. One week prior to laparotomy, animals received B. pseudocatenulatum CECT7765 (10(7), 10(9) or 10(10) cfu/daily) or placebo. Chemokine receptor and cytokine expression were evaluated in intestinal lymphocytes. Gut permeability was studied by FITC-LPS recovery in vivo. Luminal antigens, inflammation and functional markers were evaluated in liver samples. Bifidobacterium pseudocatenulatum CECT7765 decreased the expression of pro-inflammatory chemokine receptors CCR6, CCR9, CXCR3 and CXCR6 in intestinal lymphocytes from cirrhotic mice in a concentration-dependent manner. The bifidobacterial strain induced a shift towards an anti-inflammatory cytokine profile in this cell subset. B. pseudocatenulatum CECT7765-induced inflammatory modulation was TLR2-mediated, as in vitro TLR2 blockade inhibited the reduction of TNF-alpha and its receptors and the increase of IL-10 and IL-10 receptor secretion. The recovery rate of administered fluorescence-labelled endotoxin was significantly and dose-dependently lowered with the bifidobacterial strain. The reduced intestinal permeability was associated with a decreased burden of bacterial antigens in the liver of mice treated with B. pseudocatenulatum CECT7765. Liver function and inflammation were improved with the use of the bifidobacterial strain at the highest dose tested (10(10) cfu). Bifidobacterium pseudocatenulatum CECT7765 improves gut homeostasis and prevents gut-derived complications in experimental chronic liver disease.

  13. Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species.

    PubMed

    Bidart, Gonzalo N; Rodríguez-Díaz, Jesús; Palomino-Schätzlein, Martina; Monedero, Vicente; Yebra, María J

    2017-01-01

    Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-D-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for β1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-β-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants.

  14. Preventive Effects of Lactobacillus Mixture on Experimental E. coli Urinary Tract Infection in Infant Rats

    PubMed Central

    Lee, Jung Won; Lee, Jee Hyun; Sung, Sun Hee

    2013-01-01

    Purpose Urinary tract infection (UTI) is an ascending infection of fecal uropathogens, urogenital lactobacilli are suggested to play a role in the prevention of UTI. This study was to investigate whether lactobacillus mixture (LM) could prevent the experimental infantile UTI. Materials and Methods The LM were composed of three lactobacillus strains (L. gasseri, L. rhamnosus, and L. reuteri). Mother rats were grouped as lactobacillus (LB) group I (LB I, n=22), II (LB II, n=24) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare lactobacillus colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard E. coli strain. After 72 hours later, the infant rats were sacrificed for histologic examination. Results Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16.22) and control 75.0% (15/20) (p=0.015). The incidence of cystitis was not significantly different among the three groups. Conclusion The intravesically instilled LM significantly prevented experimental pyelonephritis in infant rats, however, LM administered orally to the pregnant and lactating mother rats did not. PMID:23364986

  15. Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG

    PubMed Central

    Burkholder, Kristin M; Bhunia, Arun K

    2009-01-01

    Background Physiological stressors may alter susceptibility of the host intestinal epithelium to infection by enteric pathogens. In the current study, cytotoxic effect, adhesion and invasion of Salmonella enterica serovar Typhimurium (S. Typhimurium) to Caco-2 cells exposed to thermal stress (41°C, 1 h) was investigated. Probiotic bacteria have been shown to reduce interaction of pathogens with the epithelium under non-stress conditions and may have a significant effect on epithelial viability during infection; however, probiotic effect on pathogen interaction with epithelial cells under physiological stress is not known. Therefore, we investigated the influence of Lactobacillus rhamnosus GG and Lactobacillus gasseri on Salmonella adhesion and Salmonella-induced cytotoxicity of Caco-2 cells subjected to thermal stress. Results Thermal stress increased the cytotoxic effect of both S. Typhimurium (P = 0.0001) and nonpathogenic E. coli K12 (P = 0.004) to Caco-2 cells, and resulted in greater susceptibility of cell monolayers to S. Typhimurium adhesion (P = 0.001). Thermal stress had no significant impact on inflammatory cytokines released by Caco-2 cells, although exposure to S. Typhimurium resulted in greater than 80% increase in production of IL-6 and IL-8. Blocking S. Typhimurium with anti-ShdA antibody prior to exposure of Salmonella decreased adhesion (P = 0.01) to non-stressed and thermal-stressed Caco-2 cells. Pre-exposure of Caco-2 cells to L. rhamnosus GG significantly reduced Salmonella-induced cytotoxicity (P = 0.001) and Salmonella adhesion (P = 0.001) to Caco-2 cells during thermal stress, while L. gasseri had no effect. Conclusion Results suggest that thermal stress increases susceptibility of intestinal epithelial Caco-2 cells to Salmonella adhesion, and increases the cytotoxic effect of Salmonella during infection. Use of L. rhamnosus GG as a probiotic may reduce the severity of infection during epithelial cell stress. Mechanisms by which thermal

  16. Development of a potential probiotic fresh cheese using two Lactobacillus salivarius strains isolated from human milk.

    PubMed

    Cárdenas, Nivia; Calzada, Javier; Peirotén, Angela; Jiménez, Esther; Escudero, Rosa; Rodríguez, Juan M; Medina, Margarita; Fernández, Leónides

    2014-01-01

    Cheeses have been proposed as a good alternative to other fermented milk products for the delivery of probiotic bacteria to the consumer. The objective of this study was to assess the survival of two Lactobacillus salivarius strains (CECT5713 and PS2) isolated from human milk during production and storage of fresh cheese for 28 days at 4°C. The effect of such strains on the volatile compounds profile, texture, and other sensorial properties, including an overall consumer acceptance, was also investigated. Both L. salivarius strains remained viable in the cheeses throughout the storage period and a significant reduction in their viable counts was only observed after 21 days. Globally, the addition of the L. salivarius strains did not change significantly neither the chemical composition of the cheese nor texture parameters after the storage period, although cheeses manufactured with L. salivarius CECT5713 presented significantly higher values of hardness. A total of 59 volatile compounds were identified in the headspace of experimental cheeses, and some L. salivarius-associated differences could be identified. All cheeses presented good results of acceptance after the sensory evaluation. Consequently, our results indicated that fresh cheese can be a good vehicle for the two L. salivarius strains analyzed in this study.

  17. Immunostimulatory Effects Triggered by Enterococcus faecalis CECT7121 Probiotic Strain Involve Activation of Dendritic Cells and Interferon-Gamma Production.

    PubMed

    Molina, Matías Alejandro; Díaz, Ailén Magalí; Hesse, Christina; Ginter, Wiebke; Gentilini, María Virginia; Nuñez, Guillermo Gabriel; Canellada, Andrea Mercedes; Sparwasser, Tim; Berod, Luciana; Castro, Marisa Silvia; Manghi, Marcela Alejandra

    2015-01-01

    Probiotics can modulate the immune system, conferring beneficial effects on the host. Understanding how these microorganisms contribute to improve the health status is still a challenge. Previously, we have demonstrated that Enterococcus faecalis CECT7121 implants itself and persists in the murine gastrointestinal tract, and enhances and skews the profile of cytokines towards the Th1 phenotype in several biological models. Given the importance of dendritic cells (DCs) in the orchestration of immunity, the aim of this work was to elucidate the influence of E. faecalis CECT7121 on DCs and the outcome of the immune responses. In this work we show that E. faecalis CECT7121 induces a strong dose-dependent activation of DCs and secretion of high levels of IL-12, IL-6, TNFα, and IL-10. This stimulation is dependent on TLR signaling, and skews the activation of T cells towards the production of IFNγ. The influence of this activation in the establishment of Th responses in vivo shows the accumulation of specific IFNγ-producing cells. Our findings indicate that the activation exerted by E. faecalis CECT7121 on DCs and its consequence on the cellular adaptive immune response may have broad therapeutic implications in immunomodulation.

  18. Genomic characterization of a fructophilic bee symbiont Lactobacillus kunkeei reveals its niche-specific adaptation.

    PubMed

    Maeno, Shintaro; Tanizawa, Yasuhiro; Kanesaki, Yu; Kubota, Eri; Kumar, Himanshu; Dicks, Leon; Salminen, Seppo; Nakagawa, Junichi; Arita, Masanori; Endo, Akihito

    2016-12-01

    Lactobacillus kunkeei is classified as a sole obligate fructophilic lactic acid bacterium that is found in fructose-rich niches, including the guts of honeybees. The species is differentiated from other lactobacilli based on its poor growth with glucose, enhanced growth in the presence of oxygen and other electron acceptors, and production of high concentrations of acetate from the metabolism of glucose. These characteristics are similar to phylogenetically distant Fructobacillus spp. In the present study, the genomic structure of L. kunkeei was characterized by using 16 different strains, and it had significantly less genes and smaller genomes when compared with other lactobacilli. Functional gene classification revealed that L. kunkeei had lost genes specifically involved in carbohydrate transport and metabolism. The species also lacked most of the genes for respiration, although growth was enhanced in the presence of oxygen. The adhE gene of L. kunkeei, encoding a bifunctional alcohol dehydrogenase (ADH)/aldehyde dehydrogenase (ALDH) protein, lacked the part encoding the ADH domain, which is reported here for the first time in lactic acid bacteria. The deletion resulted in the lack of ADH activity, implying a requirement for electron acceptors in glucose assimilation. These results clearly indicated that L. kunkeei had undergone a specific reductive evolution in order to adapt to fructose-rich environments. The reduction characteristics were similar to those of Fructobacillus spp., but distinct from other lactobacilli with small genomes, such as Lactobacillus gasseri and Lactobacillus vaginalis. Fructose-richness thus induced an environment-specific gene reduction in phylogenetically distant microorganisms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. The Glycolytic Versatility of Bacteroides uniformis CECT 7771 and Its Genome Response to Oligo and Polysaccharides

    PubMed Central

    Benítez-Páez, Alfonso; Gómez del Pulgar, Eva M.; Sanz, Yolanda

    2017-01-01

    Bacteroides spp. are dominant components of the phylum Bacteroidetes in the gut microbiota and prosper in glycan enriched environments. However, knowledge of the machinery of specific species isolated from humans (like Bacteroides uniformis) contributing to the utilization of dietary and endogenous sources of glycans and their byproducts is limited. We have used the cutting-edge nanopore-based technology to sequence the genome of B. uniformis CECT 7771, a human symbiont with a proven pre-clinical efficacy on metabolic and immune dysfunctions in obesity animal models. We have also used massive sequencing approaches to distinguish the genome expression patterns in response to carbon sources of different complexity during growth. At genome-wide level, our analyses globally demonstrate that B. uniformis strains exhibit an expanded glycolytic capability when compared with other Bacteroides species. Moreover, by studying the growth and whole-genome expression of B. uniformis CECT 7771 in response to different carbon sources, we detected a differential growth fitness and expression patterns across the genome depending on the carbon source of the culture media. The dietary fibers used exerted different effects on B. uniformis CECT 7771 activating different molecular pathways and, therefore, allowing the production of different metabolite types with potential impact on gut health. The genome and transcriptome analysis of B. uniformis CECT 7771, in response to different carbon sources, shows its high versatility to utilize both dietary and endogenous glycans along with the production of potentially beneficial end products for both the bacterium and the host, pointing to a mechanistic basis of a mutualistic relationship. PMID:28971068

  20. Immunostimulatory Effects Triggered by Enterococcus faecalis CECT7121 Probiotic Strain Involve Activation of Dendritic Cells and Interferon-Gamma Production

    PubMed Central

    Molina, Matías Alejandro; Díaz, Ailén Magalí; Hesse, Christina; Ginter, Wiebke; Gentilini, María Virginia; Nuñez, Guillermo Gabriel; Canellada, Andrea Mercedes; Sparwasser, Tim; Berod, Luciana; Castro, Marisa Silvia; Manghi, Marcela Alejandra

    2015-01-01

    Probiotics can modulate the immune system, conferring beneficial effects on the host. Understanding how these microorganisms contribute to improve the health status is still a challenge. Previously, we have demonstrated that Enterococcus faecalis CECT7121 implants itself and persists in the murine gastrointestinal tract, and enhances and skews the profile of cytokines towards the Th1 phenotype in several biological models. Given the importance of dendritic cells (DCs) in the orchestration of immunity, the aim of this work was to elucidate the influence of E. faecalis CECT7121 on DCs and the outcome of the immune responses. In this work we show that E. faecalis CECT7121 induces a strong dose-dependent activation of DCs and secretion of high levels of IL-12, IL-6, TNFα, and IL-10. This stimulation is dependent on TLR signaling, and skews the activation of T cells towards the production of IFNγ. The influence of this activation in the establishment of Th responses in vivo shows the accumulation of specific IFNγ-producing cells. Our findings indicate that the activation exerted by E. faecalis CECT7121 on DCs and its consequence on the cellular adaptive immune response may have broad therapeutic implications in immunomodulation. PMID:25978357

  1. Changes in the predominant human Lactobacillus flora during in vitro fertilisation

    PubMed Central

    Jakobsson, Tell; Forsum, Urban

    2008-01-01

    Background Signature matching of nucleotide sequences in the V1 and V3 regions 16S rRNA genes using pyrosequencing technology is a powerful tool for typing vaginal Lactobacilli to the species level and has been used for investigating the vaginal microbial niche. Methods This study has characterized the normal cultivable vaginal Lactobacillus flora at varying estradiol levels in plasma; the study comprised 17 patients undergoing ovarian stimulation for In Vitro Fertilization (IVF) treatment. The vaginal status of each participant was initially assessed as normal according to Amsel and Nugent criteria. Results L. crispatus, L. gasseri and/or L. jensenii were present in 10 of the patients throughout the study period, and little variation among these three species was encountered in individual patients. The flora of three women was dominated by L. delbrüeckii, L. rhamnosus or L. vaginalis. One woman exhibited a dominance of L. iners. The flora of the remaining three women were initially dominated by L. rhamnosus or L. reuteri, but as their estrogen levels rose, their flora composition altered, to become dominated by one of the three species most common in a normal, healthy vagina. Conclusion Signature matching of nucleotide sequences in the V1 and V3 regions of 16S rRNA genes is a discriminative tool for the study of vaginal Lactobacilli and can be used to track the Lactobacillus flora under a variety of physiological conditions. PMID:18590533

  2. L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats.

    PubMed

    Vanhaecke, T; Aubert, P; Grohard, P-A; Durand, T; Hulin, P; Paul-Gilloteaux, P; Fournier, A; Docagne, F; Ligneul, A; Fressange-Mazda, C; Naveilhan, P; Boudin, H; Le Ruyet, P; Neunlist, M

    2017-08-01

    Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn. © 2017 John Wiley & Sons Ltd.

  3. Lactobacillus frumenti Facilitates Intestinal Epithelial Barrier Function Maintenance in Early-Weaned Piglets

    PubMed Central

    Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua

    2018-01-01

    Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance

  4. A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344

    PubMed Central

    Acera, Felipe; Carmona, María Isabel; Castillo, Francisco; Quesada, Alberto

    2017-01-01

    ABSTRACT Pseudomonas pseudoalcaligenes CECT 5344 is a bacterium able to assimilate cyanide as a sole nitrogen source. Under this growth condition, a 3-cyanoalanine nitrilase enzymatic activity was induced. This activity was encoded by nit4, one of the four nitrilase genes detected in the genome of this bacterium, and its expression in Escherichia coli enabled the recombinant strain to fully assimilate 3-cyanoalanine. P. pseudoalcaligenes CECT 5344 showed a weak growth level with 3-cyanoalanine as the N source, unless KCN was also added. Moreover, a nit4 knockout mutant of P. pseudoalcaligenes CECT 5344 became severely impaired in its ability to grow with 3-cyanoalanine and cyanide as nitrogen sources. The native enzyme expressed in E. coli was purified up to electrophoretic homogeneity and biochemically characterized. Nit4 seems to be specific for 3-cyanoalanine, and the amount of ammonium derived from the enzymatic activity doubled in the presence of exogenously added asparaginase activity, which demonstrated that the Nit4 enzyme had both 3-cyanoalanine nitrilase and hydratase activities. The nit4 gene is located downstream of the cyanide resistance transcriptional unit containing cio1 genes, whose expression levels are under the positive control of cyanide. Real-time PCR experiments revealed that nit4 expression was also positively regulated by cyanide in both minimal and LB media. These results suggest that this gene cluster including cio1 and nit4 could be involved both in cyanide resistance and in its assimilation by P. pseudoalcaligenes CECT 5344. IMPORTANCE Cyanide is a highly toxic molecule present in some industrial wastes due to its application in several manufacturing processes, such as gold mining and the electroplating industry. The biodegradation of cyanide from contaminated wastes could be an attractive alternative to physicochemical treatment. P. pseudoalcaligenes CECT 5344 is a bacterial strain able to assimilate cyanide under alkaline conditions

  5. A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344.

    PubMed

    Acera, Felipe; Carmona, María Isabel; Castillo, Francisco; Quesada, Alberto; Blasco, Rafael

    2017-05-01

    Pseudomonas pseudoalcaligenes CECT 5344 is a bacterium able to assimilate cyanide as a sole nitrogen source. Under this growth condition, a 3-cyanoalanine nitrilase enzymatic activity was induced. This activity was encoded by nit4 , one of the four nitrilase genes detected in the genome of this bacterium, and its expression in Escherichia coli enabled the recombinant strain to fully assimilate 3-cyanoalanine. P. pseudoalcaligenes CECT 5344 showed a weak growth level with 3-cyanoalanine as the N source, unless KCN was also added. Moreover, a nit4 knockout mutant of P. pseudoalcaligenes CECT 5344 became severely impaired in its ability to grow with 3-cyanoalanine and cyanide as nitrogen sources. The native enzyme expressed in E. coli was purified up to electrophoretic homogeneity and biochemically characterized. Nit4 seems to be specific for 3-cyanoalanine, and the amount of ammonium derived from the enzymatic activity doubled in the presence of exogenously added asparaginase activity, which demonstrated that the Nit4 enzyme had both 3-cyanoalanine nitrilase and hydratase activities. The nit4 gene is located downstream of the cyanide resistance transcriptional unit containing cio1 genes, whose expression levels are under the positive control of cyanide. Real-time PCR experiments revealed that nit4 expression was also positively regulated by cyanide in both minimal and LB media. These results suggest that this gene cluster including cio1 and nit4 could be involved both in cyanide resistance and in its assimilation by P. pseudoalcaligenes CECT 5344. IMPORTANCE Cyanide is a highly toxic molecule present in some industrial wastes due to its application in several manufacturing processes, such as gold mining and the electroplating industry. The biodegradation of cyanide from contaminated wastes could be an attractive alternative to physicochemical treatment. P. pseudoalcaligenes CECT 5344 is a bacterial strain able to assimilate cyanide under alkaline conditions, thus

  6. Establishment of a sensitive system for analysis of human vaginal microbiota on the basis of rRNA-targeted reverse transcription-quantitative PCR.

    PubMed

    Kurakawa, Takashi; Ogata, Kiyohito; Tsuji, Hirokazu; Kado, Yukiko; Takahashi, Takuya; Kida, Yumi; Ito, Masahiro; Okada, Nobuhiko; Nomoto, Koji

    2015-04-01

    Ten specific primer sets, for Lactobacillus gasseri, Lactobacillus crispatus, Atopobium vaginae, Gardnerella vaginalis, Mobiluncus curtisii, Chlamydia trachomatis/muridarum, Bifidobacterium longum subsp. longum, Bifidobacterium longum subsp. infantis, Bifidobacterium adolescentis, and Bifidobacterium angulatum, were developed for quantitative analysis of vaginal microbiota. rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) analysis of the vaginal samples from 12 healthy Japanese volunteers using the new primer sets together with 25 existing primer sets revealed the diversity of their vaginal microbiota: Lactobacilli such as L. crispatus, L. gasseri, Lactobacillus jensenii, Lactobacillus iners, and Lactobacillus vaginalis, as the major populations at 10(7) cells/ml vaginal fluid, were followed by facultative anaerobes such as Streptococcus and strict anaerobes at lower population levels of 10(4) cells/ml or less. Certain bacterial vaginosis (BV)-related bacteria, such as G. vaginalis, A. vaginae, M. curtisii, and Prevotella, were also detected in some subjects. Especially in one subject, both G. vaginalis and A. vaginae were detected at high population levels of 10(8.8) and 10(8.9) cells/ml vaginal fluid, suggesting that she is an asymptomatic BV patient. These results suggest that the RT-qPCR system is effective for accurate analysis of major vaginal commensals and diagnosis of several vaginal infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial.

    PubMed

    Dennis-Wall, Jennifer C; Culpepper, Tyler; Nieves, Carmelo; Rowe, Cassie C; Burns, Alyssa M; Rusch, Carley T; Federico, Ashton; Ukhanova, Maria; Waugh, Sheldon; Mai, Volker; Christman, Mary C; Langkamp-Henken, Bobbi

    2017-03-01

    Background: Rhinoconjunctivitis-specific quality of life is often reduced during seasonal allergies. The Mini Rhinoconjunctivitis Quality of Life Questionnaire (MRQLQ) is a validated tool used to measure quality of life in people experiencing allergies (0 = not troubled to 6 = extremely troubled). Probiotics may improve quality of life during allergy season by increasing the percentage of regulatory T cells (Tregs) and inducing tolerance. Objective: The objective of this study was to determine whether consuming Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and B. longum MM-2 compared with placebo would result in beneficial effects on MRQLQ scores throughout allergy season in individuals who typically experience seasonal allergies. Secondary outcomes included changes in immune markers as part of a potential mechanism for changes in MRQLQ scores. Design: In this double-blind, placebo-controlled, parallel, randomized clinical trial, 173 participants (mean ± SEM: age 27 ± 1 y) who self-identified as having seasonal allergies received either a probiotic (2 capsules/d, 1.5 billion colony-forming units/capsule) or placebo during spring allergy season for 8 wk. MRQLQ scores were collected weekly throughout the study. Fasting blood samples were taken from a subgroup (placebo, n = 37; probiotic, n = 35) at baseline and week 6 (predicted peak of pollen) to determine serum immunoglobulin (Ig) E concentrations and Treg percentages. Results: The probiotic group reported an improvement in the MRQLQ global score from baseline to pollen peak (-0.68 ± 0.13) when compared with the placebo group (-0.19 ± 0.14; P = 0.0092). Both serum total IgE and the percentage of Tregs increased from baseline to week 6, but changes were not different between groups. Conclusions: This combination probiotic improved rhinoconjunctivitis-specific quality of life during allergy season for healthy individuals with self-reported seasonal allergies; however, the associated mechanism is

  8. Sortase-deficient lactobacilli: effect on immunomodulation and gut retention

    PubMed Central

    Call, Emma K.; Goh, Yong Jun; Selle, Kurt; Klaenhammer, Todd R.

    2015-01-01

    Surface proteins of probiotic microbes, including Lactobacillus acidophilus and Lactobacillus gasseri, are believed to promote retention in the gut and mediate host–bacterial communications. Sortase, an enzyme that covalently couples a subset of extracellular proteins containing an LPXTG motif to the cell surface, is of particular interest in characterizing bacterial adherence and communication with the mucosal immune system. A sortase gene, srtA, was identified in L. acidophilus NCFM (LBA1244) and L. gasseri ATCC 33323 (LGAS_0825). Additionally, eight and six intact sortase-dependent proteins were predicted in L. acidophilus and L. gasseri, respectively. Due to the role of sortase in coupling these proteins to the cell wall, ΔsrtA deletion mutants of L. acidophilus and L. gasseri were created using the upp-based counterselective gene replacement system. Inactivation of sortase did not cause significant alteration in growth or survival in simulated gastrointestinal juices. Meanwhile, both ΔsrtA mutants showed decreased adhesion to porcine mucin in vitro. Murine dendritic cells exposed to the ΔsrtA mutant of L. acidophilus or L. gasseri induced lower levels of pro-inflammatory cytokines TNF-α and IL-12, respectively, compared with the parent strains. In vivo co-colonization of the L. acidophilus ΔsrtA mutant and its parent strain in germ-free 129S6/SvEv mice resulted in a significant one-log reduction of the ΔsrtA mutant population. Additionally, a similar reduction of the ΔsrtA mutant was observed in the caecum. This study shows for the first time that sortase-dependent proteins contribute to gut retention of probiotic microbes in the gastrointestinal tract. PMID:25500495

  9. Oral Microbial Profile Discriminates Breastfed from Formula-Fed Infants

    PubMed Central

    Holgerson, Pernilla Lif; Vestman, Nelly Romani; Claesson, Rolf; Öhman, Carina; Domellöf, Magnus; Tanner, Anne CR; Hernell, Olle; Johansson, Ingegerd

    2012-01-01

    Objectives Little is known about the impact of diet on the oral microbiota of infants although diet is known to affect the gut microbiota. The aims of the present study were to compare the oral microbiota in breastfed and formula-fed infants, and investigate growth inhibition of streptococci by infant-isolated lactobacilli. Subjects and Methods 207 mothers consented to participation of their three-month old infants. 146 (70.5%) infants were exclusively and 38 (18.4%) partially breastfed, and 23 (11.1%) were exclusively formula-fed. Saliva from all infants was cultured for Lactobacillus species, with isolate identifications from 21 infants. Lactobacillus isolates were tested for their ability to supress Streptococcus mutans and Streptococcus sanguinis. Oral swabs from 73 infants were analysed by the Human Oral Microbe Identification Microarray (HOMIM) and by q-PCR for Lactobacilius gasseri. Results Lactobacilli were cultured from 27.8% of exclusively and partially breastfed infants, but not from formula-fed infants. The prevalence of 14 HOMIM detected taxa, and total salivary lactobacilli counts differed by feeding method. Multivariate modelling of HOMIM detected bacteria and possible confounders clustered samples from breastfed infants separately from formula-fed infants. The microbiota of breastfed infants differed based on vaginal or C-section delivery. Isolates of Lactobacillus plantarum, L. gasseri and Lactobacillus vaginalis inhibited growth of the cariogenic S. mutans and the commensal S. sanguinis: L. plantarum > L. gasseri > L. vaginalis. Conclusion The microbiota of the mouth differs between breastfed and formula-fed three-month-old infants. Possible mechanisms for microbial differences observed include species suppression by lactobacilli indigenous to breast milk. PMID:22955450

  10. ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014.

    PubMed

    Fernández de Las Heras, Laura; Mascaraque, Victoria; García Fernández, Esther; Navarro-Llorens, Juana María; Perera, Julián; Drzyzga, Oliver

    2011-07-20

    Cholesterol catabolism has been reported in different bacteria and particularly in several Rhodococcus species, but the genetic of this complex pathway is not yet very well defined. In this work we report the isolation and sequencing of a 9.8 kb DNA fragment of Rhodococcus sp. strain CECT3014, a bacterial strain that we here identify as a Rhodococcus erythropolis strain. In this DNA fragment we found several ORF that are probably involved in steroid catabolism, and choG, a gene encoding a putative cholesterol oxidase whose functional characterization we here report. ChoG protein is a class II cholesterol oxidase with all the structural features of the enzymes of this group. The disruption of the choG gene does not alter the ability of strain CECT3014 cells to grow on cholesterol, but it abolishes the production of extracellular cholesterol oxidase. This later effect is reverted when the mutant cells are transformed with a plasmid expressing choG. We conclude that choG is the gene responsible for the inducible extracellular cholesterol oxidase activity of strain CECT3014. This activity distributes between the cellular membrane and the culture supernatant in a way that suggests it is produced by the same ChoG protein that occurs in two different locations. RT-PCR transcript analysis showed a dual scheme of choG expression: a low constitutive independent transcription, plus a cholesterol induced transcription of choG into a polycistronic kstD-hsd4B-choG mRNA. Copyright © 2010 Elsevier GmbH. All rights reserved.

  11. A study of the effects of therapeutic doses of ionizing radiation in vitro on Lactobacillus isolates originating from the vagina - a pilot study.

    PubMed

    Gosiewski, Tomasz; Mróz, Tomasz; Ochońska, Dorota; Pabian, Wojciech; Bulanda, Malgorzata; Brzychczy-Wloch, Monika

    2016-05-31

    Ionizing radiation is used as a therapeutic option in the treatment of certain neoplastic lesions located, among others, in the pelvic region. The therapeutic doses of radiation employed often result in adverse effects manifesting themselves primarily in the form of genital tract infections in patients or diarrhea. The data available in the literature indicate disorders in the microbial ecosystem caused by ionizing radiation, which leads to the problems mentioned above. In the present study, we examined the influence of ionizing radiation on 52 selected strains of bacteria: Lactobacillus crispatus, L. fermentum, L. plantarum, L. reuteri, L. acidophilus L. amylovorus, L. casei, L. helveticus, L. paracasei, L. rhamnosus, L. salivarius and L. gasseri. This collection of Lactobacillus bacteria isolates of various species, obtained from the genital tract and gastrointestinal tract of healthy women, was tested for resistance to therapeutic doses of ionizing radiation. The species studied, were isolated from the genital tract (n = 30) and from the anus (n = 22) of healthy pregnant women. Three doses of 3 Gy (fractionated dose) and 50 Gy (total dose of the whole radiotherapy cycle) were applied. The greatest differences in survival of the tested strains in comparison to the control group (not subjected to radiation) were observed at the dose of 50 Gy. However, the results were not statistically significant. Survival decrease to zero was not demonstrated for any of the tested strains. Therapeutic doses of radiation do not affect the Lactobacillus bacteria significantly.

  12. American Society for Microbiology: Annual Meeting

    DTIC Science & Technology

    1992-01-01

    Integrative nomes of Noncardiovirulent and Cardiovirulent Isolates. (165) Functions from Lactobacillus gasseri Bacteriophage Oadh. N. M. CHAPMAN,* S. TRACY, Z...8217 Laalobacid/uý plantarum ., a Putatixe Wolin K40. Nuclcotide Sequence Analysis of the x~v/KIII Region of the Auxotroph. in the Presence of Dethiobiotiri...Cloning, Sequencing, and Expression of the dae Gene for in Bacillus subtilis D-Alanyl Lipoteichoic Acid Biosynthesis in Lactobacillus casei. ALAN D

  13. Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria.

    PubMed

    Fritsch, Caroline; Jänsch, André; Ehrmann, Matthias A; Toelstede, Simone; Vogel, Rudi F

    2017-02-01

    A high variety of plants that are used for food production contain esterified hydroxycinnamic acids. As their free forms display several benefits, like an enhanced absorption in human intestinal tract, anti-oxidative and anti-carcinogenic effects, an improved protein solubility and reduced discoloration, the microbial ability to cleave the ester bond is highly desired. In order to examine potential fermentation strains for this purpose, six different lactic acid bacteria and one bifidobacterial strain were screened for their ability to degrade esterified hydroxycinnamic acids because these strains are commonly used for fermentation of plant-based foods. Moreover, their cinnamoyl esterase activity was examined by molecular biological analyses. The enzymes were heterologously expressed in Escherichia coli, purified and biochemically characterized. The purified esterases with a molecular mass around 27-29 kDa had their optimum predominantly between pH 7 and 8 at 20-30 °C. Bifidobacterium animalis subsp. lactis, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus fermentum displayed activities against a broad substrate range (methyl caffeate, methyl trans-p-coumarate, chlorogenic acid as well as partially ethyl ferulate). Concerning substrate affinity, reaction velocity, thermal and pH stability, Lactobacillus gasseri showed the overall best performance. The herein studied lactic acid- and bifidobacteria are promising for the production of fermented plant-based foods with an increased quality and nutritional value.

  14. Characterisation of probiotic properties in human vaginal lactobacilli strains

    PubMed Central

    Hütt, Pirje; Lapp, Eleri; Štšepetova, Jelena; Smidt, Imbi; Taelma, Heleri; Borovkova, Natalja; Oopkaup, Helen; Ahelik, Ave; Rööp, Tiiu; Hoidmets, Dagmar; Samuel, Külli; Salumets, Andres; Mändar, Reet

    2016-01-01

    Background Vaginal lactobacilli offer protection against recurrent urinary infections, bacterial vaginosis, and vaginal candidiasis. Objective To characterise the isolated vaginal lactobacilli strains for their probiotic properties and to compare their probiotic potential. Methods The Lactobacillus strains were isolated from vaginal samples by conventional culturing and identified by sequencing of the 16S rDNA fragment. Several functional properties were detected (production of hydrogen peroxide and lactic acid; antagonistic activity against Escherichia coli, Candida albicans, Candida glabrata, and Gardnerella vaginalis; auto-aggregation and adhesiveness) as well as safety (haemolytic activity, antibiotic susceptibility, presence of transferrable resistance genes). Results A total of 135 vaginal lactobacilli strains of three species, Lactobacillus crispatus (56%), Lactobacillus jensenii (26%), and Lactobacillus gasseri (18%) were characterised using several functional and safety tests. Most of L. crispatus (89%) and L. jensenii (86%) strains produced H2O2. The best lactic acid producers were L. gasseri (18.2±2.2 mg/ml) compared to L. crispatus (15.6±2.8 mg/ml) and L. jensenii (11.6±2.6 mg/ml) (p<0.0001; p<0.0001, respectively). L. crispatus strains showed significantly higher anti-E. coli activity compared to L. jensenii. L. gasseri strains expressed significantly lower anticandidal activity compared to L. crispatus and L. jensenii (p<0.0001). There was no significant difference between the species in antagonistic activity against G. vaginalis. Nearly a third of the strains were able to auto-aggregate while all the tested strains showed a good ability to adhere to HeLa cells. None of the tested lactobacilli caused haemolysis. Although phenotypical resistance was not found to ampicillin, chloramphenicol, erythromycin, gentamycin, tetracycline, and vancomycin, the erm(B), tet(M), and tet(K) were detected in some strains. All strains were resistant to metronidazole

  15. Potentiation of the humoral immune response elicited by a commercial vaccine against bovine respiratory disease by Enterococcus faecalis CECT7121.

    PubMed

    Díaz, A M; Almozni, B; Molina, M A; Sparo, M D; Manghi, M A; Canellada, A M; Castro, M S

    2018-04-10

    Vaccination against pathogens involved in bovine respiratory disease (BRD) is a useful tool to reduce the risk of this disease however, it has been observed that the commercially available vaccines only partially prevent the infections caused by Pasteurella multocida and Mannheimia haemolytica. Therefore, it is recommended to search for new adjuvant strategies to minimise the economic impact of this respiratory syndrome. A possibility to improve the conventional vaccine response is to modulate the immune system with probiotics, since there is accumulating evidence that certain immunomodulatory strains administered around the time of vaccination can potentiate the immune response. Considering veterinary vaccines are frequently tested in murine models, we have developed an immunisation schedule in BALB/c mice that allows us to study the immune response elicited by BRD vaccine. In order to evaluate a potential strategy to enhance vaccine efficacy, the adjuvant effect of Enterococcus faecalis CECT7121 on the murine specific humoral immune response elicited by a commercial vaccine against BRD was studied. Results indicate that the intragastric administration of E. faecalis CECT7121 was able to induce an increase in the specific antibody titres against the bacterial components of the BRD vaccines (P. multocida and M. haemolytica). The quality of the humoral immune response, in terms of antibody avidity, was also improved. Regarding the cellular immune response, although the BRD vaccination induced a low specific secretion of cytokines in the spleen cell culture supernatants, E. faecalis CECT7121-treated mice showed higher interferon-γ production than immunised control mice. Our results allowed us to conclude that the administration of E. faecalis CECT7121 could be employed as an adjuvant strategy to potentiate humoral immune responses.

  16. Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate:quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain.

    PubMed

    Luque-Almagro, Victor M; Merchán, Faustino; Blasco, Rafael; Igeño, M Isabel; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Castillo, Francisco; Roldán, M Dolores

    2011-03-01

    The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from L-malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation in vivo. Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate:quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in P. pseudoalcaligenes CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.

  17. Solution Structure of Acidocin B, a Circular Bacteriocin Produced by Lactobacillus acidophilus M46

    PubMed Central

    Acedo, Jeella Z.; van Belkum, Marco J.; Lohans, Christopher T.; McKay, Ryan T.; Miskolzie, Mark

    2015-01-01

    Acidocin B, a bacteriocin produced by Lactobacillus acidophilus M46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin from Lactobacillus gasseri LA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation. PMID:25681186

  18. SU-E-J-242: Volume-Dependence of Quantitative Imaging Features From CT and CE-CT Images of NSCLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fave, X; Fried, D; UT Health Science Center Graduate School of Biomedical Sciences, Houston, TX

    Purpose: To determine whether tumor volume plays a significant role in the values obtained for texture features when they are extracted from computed tomography (CT) images of non-small cell lung cancer (NSCLC). We also sought to identify whether features can be reliably measured at all volumes or if a minimum volume threshold should be recommended. Methods: Eleven features were measured on 40 CT and 32 contrast-enhanced CT (CECT) patient images for this study. Features were selected for their prognostic/diagnostic value in previous publications. Direct correlations between these textures and volume were evaluated using the Spearman correlation coefficient. Any texture thatmore » the Wilcoxon rank-sum test was used to compare the variation above and below a volume cutoff. Four different volume thresholds (5, 10, 15, and 20 cm{sup 3}) were tested. Results: Four textures were found to be significantly correlated with volume in both the CT and CE-CT images. These were busyness, coarseness, gray-level nonuniformity, and run-length nonuniformity with correlation coefficients of 0.92, −0.96, 0.94, and 0.98 for the CT images and 0.95, −0.97, 0.98, and 0.98 for the CE-CT images. After volume normalization, the correlation coefficients decreased substantially. For the data obtained from the CT images, the results of the Wilcoxon rank-sum test were significant when volume thresholds of 5–15 cm3 were used. No volume threshold was shown to be significant for the CE-CT data. Conclusion: Equations for four features that have been used in several published studies were found to be volume-dependent. Future studies should consider implementing normalization factors or removing these features entirely to prevent this potential source of redundancy or bias. This work was supported in part by National Cancer Institute grant R03CA178495-01. Xenia Fave is a recipient of the American Association of Physicists in Medicine Graduate Fellowship.« less

  19. Complete Genome Sequence of Bifidobacterium breve CECT 7263, a Strain Isolated from Human Milk

    PubMed Central

    Jiménez, Esther; Villar-Tajadura, M. Antonia; Marín, María; Fontecha, Javier; Requena, Teresa; Arroyo, Rebeca; Fernández, Leónides

    2012-01-01

    Bifidobacterium breve is an actinobacterium frequently isolated from colonic microbiota of breastfeeding babies. Here, we report the complete and annotated genome sequence of a B. breve strain isolated from human milk, B. breve CECT 7263. The genome sequence will provide new insights into the biology of this potential probiotic organism and will allow the characterization of genes related to beneficial properties. PMID:22740680

  20. Complete genome sequence of Bifidobacterium breve CECT 7263, a strain isolated from human milk.

    PubMed

    Jiménez, Esther; Villar-Tajadura, M Antonia; Marín, María; Fontecha, Javier; Requena, Teresa; Arroyo, Rebeca; Fernández, Leónides; Rodríguez, Juan M

    2012-07-01

    Bifidobacterium breve is an actinobacterium frequently isolated from colonic microbiota of breastfeeding babies. Here, we report the complete and annotated genome sequence of a B. breve strain isolated from human milk, B. breve CECT 7263. The genome sequence will provide new insights into the biology of this potential probiotic organism and will allow the characterization of genes related to beneficial properties.

  1. Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS)

    PubMed Central

    Ibáñez, María Isabel; Cabello, Purificación; Luque-Almagro, Víctor Manuel; Sáez, Lara P.; Olaya, Alfonso; Sánchez de Medina, Verónica; Luque de Castro, María Dolores; Moreno-Vivián, Conrado; Roldán, María Dolores

    2017-01-01

    Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal−cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal−cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source. PMID:28253357

  2. Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS).

    PubMed

    Ibáñez, María Isabel; Cabello, Purificación; Luque-Almagro, Víctor Manuel; Sáez, Lara P; Olaya, Alfonso; Sánchez de Medina, Verónica; Luque de Castro, María Dolores; Moreno-Vivián, Conrado; Roldán, María Dolores

    2017-01-01

    Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal-cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal-cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source.

  3. DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater.

    PubMed

    Luque-Almagro, V M; Escribano, M P; Manso, I; Sáez, L P; Cabello, P; Moreno-Vivián, C; Roldán, M D

    2015-11-20

    Pseudomonas pseudoalcaligenes CECT5344 is an alkaliphilic bacterium that can use cyanide as nitrogen source for growth, becoming a suitable candidate to be applied in biological treatment of cyanide-containing wastewaters. The assessment of the whole genome sequence of the strain CECT5344 has allowed the generation of DNA microarrays to analyze the response to different nitrogen sources. The mRNA of P. pseudoalcaligenes CECT5344 cells grown under nitrogen limiting conditions showed considerable changes when compared against the transcripts from cells grown with ammonium; up-regulated genes were, among others, the glnK gene encoding the nitrogen regulatory protein PII, the two-component ntrBC system involved in global nitrogen regulation, and the ammonium transporter-encoding amtB gene. The protein coding transcripts of P. pseudoalcaligenes CECT5344 cells grown with sodium cyanide or an industrial jewelry wastewater that contains high concentration of cyanide and metals like iron, copper and zinc, were also compared against the transcripts of cells grown with ammonium as nitrogen source. This analysis revealed the induction by cyanide and the cyanide-rich wastewater of four nitrilase-encoding genes, including the nitC gene that is essential for cyanide assimilation, the cyanase cynS gene involved in cyanate assimilation, the cioAB genes required for the cyanide-insensitive respiration, and the ahpC gene coding for an alkyl-hydroperoxide reductase that could be related with iron homeostasis and oxidative stress. The nitC and cynS genes were also induced in cells grown under nitrogen starvation conditions. In cells grown with the jewelry wastewater, a malate quinone:oxidoreductase mqoB gene and several genes coding for metal extrusion systems were specifically induced. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Draft Genome Sequence of Bifidobacterium animalis subsp. lactis Strain CECT 8145, Able To Improve Metabolic Syndrome In Vivo.

    PubMed

    Chenoll, E; Codoñer, F M; Silva, A; Martinez-Blanch, J F; Martorell, P; Ramón, D; Genovés, S

    2014-03-27

    Bifidobacterium animalis subsp. lactis strain CECT 8145 is able to reduce body fat content and improve metabolic syndrome biomarkers. Here, we report the draft genome sequence of this strain, which may provide insights into its safety status and functional role.

  5. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications

    PubMed Central

    Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores

    2018-01-01

    Abstract Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed. PMID:29438505

  6. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications.

    PubMed

    Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores

    2018-03-01

    Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed.

  7. DNA Fingerprinting of Lactobacillus crispatus Strain CTV-05 by Repetitive Element Sequence-Based PCR Analysis in a Pilot Study of Vaginal Colonization

    PubMed Central

    Antonio, May A. D.; Hillier, Sharon L.

    2003-01-01

    Lactobacillus crispatus is one of the predominant hydrogen peroxide (H2O2)-producing species found in the vagina and is under development as a probiotic for the treatment of bacterial vaginosis. In this study, we assessed whether DNA fingerprinting by repetitive element sequence-based PCR (rep-PCR) can be used to distinguish the capsule strain of L. crispatus (CTV-05) from other endogenous strains as well as other species of vaginal lactobacilli. Vaginal and rectal lactobacilli were identified to the species level by using whole-chromosome probe DNA hybridization. The DNAs from L. crispatus, L. jensenii, L. gasseri, and an as-yet-unnamed H2O2-negative Lactobacillus species designated 1086V were subjected to rep-PCR. The results of gel electrophoresis and ethidium bromide staining of the DNA fingerprints obtained were compared. L. crispatus CTV-05 had a unique DNA fingerprint compared to all other lactobacilli. DNA fingerprints for 27 production lots of L. crispatus sampled from 1994 through 2001 were identical to that of the original strain isolated in 1993, suggesting strain stability. In a pilot study of nine women, this DNA fingerprinting method distinguished CTV-05 from other endogenous vaginal lactobacilli prior to and after vaginal capsule use. rep-PCR DNA fingerprinting is useful for strain typing and for evaluating longitudinal loss or acquisition of vaginal lactobacilli used as probiotics. PMID:12734221

  8. Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens.

    PubMed

    Forte, C; Manuali, E; Abbate, Y; Papa, P; Vieceli, L; Tentellini, M; Trabalza-Marinucci, M; Moscati, L

    2018-03-01

    In a market undergoing constant evolution, the production of chicken meat that consumers would perceive as "natural" and "animal friendly" is crucial. The use of probiotics in rurally reared chickens could represent a major opportunity to achieve mutual benefit for both the industry and consumers. A total of 264 male Kabir chicks were randomly distributed to one of 2 dietary treatments: the L group received a commercial feed supplemented with 2.0 g/100 kg of Lactobacillus acidophilus D2/CSL, while the C group received the same basal diet without the additive. To assess the effects of probiotic supplementation in the chickens' diet, productive performance was evaluated at d 21 and 42, whereas microbiological analyses of the intestinal content and intestinal histology and morphometry were performed at the end of the trial (d 42). At d 21 and 42, L birds showed better (P < 0.001) performance in terms of body weight, average daily gain, and feed conversion ratio. Enterococci, staphylococci, and Escherichia coli populations were not influenced by dietary treatment. On the contrary, Lactobacillus population increased (P = 0.032) in the L group. Furthermore, a tendency (P = 0.069) was observed for the coliforms to be influenced by diet, with lower values in the L group in comparison to the C group. Histological techniques revealed that the number of goblet cell containing neutral mucins was lower in the C group. Morphometric evaluations demonstrated that the probiotic supplementation increased the height of the mucosal layer by improving (P = 0.040) villus height, while crypt depth was unaffected. In conclusion, the results obtained in this study demonstrate that it is possible to use Lactobacillus acidophilus D2/CSL (CECT 4529) in rurally reared chicken breeds with positive effects on performance and gut health.

  9. Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens

    PubMed Central

    Forte, C; Manuali, E; Abbate, Y; Papa, P; Vieceli, L; Tentellini, M; Trabalza-Marinucci, M; Moscati, L

    2018-01-01

    Abstract In a market undergoing constant evolution, the production of chicken meat that consumers would perceive as “natural” and “animal friendly” is crucial. The use of probiotics in rurally reared chickens could represent a major opportunity to achieve mutual benefit for both the industry and consumers. A total of 264 male Kabir chicks were randomly distributed to one of 2 dietary treatments: the L group received a commercial feed supplemented with 2.0 g/100 kg of Lactobacillus acidophilus D2/CSL, while the C group received the same basal diet without the additive. To assess the effects of probiotic supplementation in the chickens’ diet, productive performance was evaluated at d 21 and 42, whereas microbiological analyses of the intestinal content and intestinal histology and morphometry were performed at the end of the trial (d 42). At d 21 and 42, L birds showed better (P < 0.001) performance in terms of body weight, average daily gain, and feed conversion ratio. Enterococci, staphylococci, and Escherichia coli populations were not influenced by dietary treatment. On the contrary, Lactobacillus population increased (P = 0.032) in the L group. Furthermore, a tendency (P = 0.069) was observed for the coliforms to be influenced by diet, with lower values in the L group in comparison to the C group. Histological techniques revealed that the number of goblet cell containing neutral mucins was lower in the C group. Morphometric evaluations demonstrated that the probiotic supplementation increased the height of the mucosal layer by improving (P = 0.040) villus height, while crypt depth was unaffected. In conclusion, the results obtained in this study demonstrate that it is possible to use Lactobacillus acidophilus D2/CSL (CECT 4529) in rurally reared chicken breeds with positive effects on performance and gut health. PMID:29294082

  10. Oral microbial profile discriminates breast-fed from formula-fed infants.

    PubMed

    Holgerson, Pernilla L; Vestman, Nelly R; Claesson, Rolf; Ohman, Carina; Domellöf, Magnus; Tanner, Anne C R; Hernell, Olle; Johansson, Ingegerd

    2013-02-01

    Little is known about the effect of diet on the oral microbiota of infants, although diet is known to affect the gut microbiota. The aims of the present study were to compare the oral microbiota in breast-fed and formula-fed infants, and investigate growth inhibition of streptococci by infant-isolated lactobacilli. A total of 207 mothers consented to participation of their 3-month-old infants. A total of 146 (70.5%) infants were exclusively and 38 (18.4%) partially breast-fed, and 23 (11.1%) were exclusively formula-fed. Saliva from all of their infants was cultured for Lactobacillus species, with isolate identifications from 21 infants. Lactobacillus isolates were tested for their ability to suppress Streptococcus mutans and S sanguinis. Oral swabs from 73 infants were analysed by the Human Oral Microbe Identification Microarray (HOMIM) and by quantitative polymerase chain reaction for Lactobacillus gasseri. Lactobacilli were cultured from 27.8% of exclusively and partially breast-fed infants, but not from formula-fed infants. The prevalence of 14 HOMIM-detected taxa, and total salivary lactobacilli counts differed by feeding method. Multivariate modelling of HOMIM-detected bacteria and possible confounders clustered samples from breast-fed infants separately from formula-fed infants. The microbiota of breast-fed infants differed based on vaginal or C-section delivery. Isolates of L plantarum, L gasseri, and L vaginalis inhibited growth of the cariogenic S mutans and the commensal S sanguinis: L plantarum >L gasseri >L vaginalis. The microbiota of the mouth differs between 3-month-old breast-fed and formula-fed infants. Possible mechanisms for microbial differences observed include species suppression by lactobacilli indigenous to breast milk.

  11. An in vitro protocol for direct isolation of potential probiotic lactobacilli from raw bovine milk and traditional fermented milks.

    PubMed

    Baruzzi, Federico; Poltronieri, Palmiro; Quero, Grazia Marina; Morea, Maria; Morelli, Lorenzo

    2011-04-01

    A method for isolating potential probiotic lactobacilli directly from traditional milk-based foods was developed. The novel digestion/enrichment protocol was set up taking care to minimize the protective effect of milk proteins and fats and was validated testing three commercial fermented milks containing well-known probiotic Lactobacillus strains. Only probiotic bacteria claimed in the label were isolated from two out of three commercial fermented milks. The application of the new protocol to 15 raw milk samples and 6 traditional fermented milk samples made it feasible to isolate 11 potential probiotic Lactobacillus strains belonging to Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus vaginalis species. Even though further analyses need to ascertain functional properties of these lactobacilli, the novel protocol set-up makes it feasible to isolate quickly potential probiotic strains from traditional milk-based foods reducing the amount of time required by traditional procedures that, in addition, do not allow to isolate microorganisms occurring as sub-dominant populations.

  12. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  13. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee.

    PubMed

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".

  14. Colonic Immune Stimulation by Targeted Oral Vaccine

    PubMed Central

    Kathania, Mahesh; Zadeh, Mojgan; Lightfoot, Yaíma L.; Roman, Robert M.; Sahay, Bikash; Abbott, Jeffrey R.; Mohamadzadeh, Mansour

    2013-01-01

    Background Currently, sufficient data exist to support the use of lactobacilli as candidates for the development of new oral targeted vaccines. To this end, we have previously shown that Lactobacillus gasseri expressing the protective antigen (PA) component of anthrax toxin genetically fused to a dendritic cell (DC)-binding peptide (DCpep) induced efficacious humoral and T cell-mediated immune responses against Bacillus anthracis Sterne challenge. Methodology/Principal Finding In the present study, we investigated the effects of a dose dependent treatment of mice with L. gasseri expressing the PA-DCpep fusion protein on intestinal and systemic immune responses and confirmed its safety. Treatment of mice with different doses of L. gasseri expressing PA-DCpep stimulated colonic immune responses, resulting in the activation of innate immune cells, including dendritic cells, which induced robust Th1, Th17, CD4+Foxp3+ and CD8+Foxp3+ T cell immune responses. Notably, high doses of L. gasseri expressing PA-DCpep (1012 CFU) were not toxic to the mice. Treatment of mice with L. gasseri expressing PA-DCpep triggered phenotypic maturation and the release of proinflammatory cytokines by dendritic cells and macrophages. Moreover, treatment of mice with L. gasseri expressing PA-DCpep enhanced antibody immune responses, including IgA, IgG1, IgG2b, IgG2c and IgG3. L. gasseri expressing PA-DCpep also increased the gene expression of numerous pattern recognition receptors, including Toll-like receptors, C-type lectin receptors and NOD-like receptors. Conclusion/Significance These findings suggest that L. gasseri expressing PA-DCpep has substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration and may be used as a safe oral vaccine against anthrax challenge. PMID:23383086

  15. Identification of vaginal fluid, saliva, and feces using microbial signatures in a Han Chinese population.

    PubMed

    Zou, Kai-Nan; Ren, Li-Jie; Ping, Yuan; Ma, Ke; Li, Hui; Cao, Yu; Zhou, Huai-Gu; Wei, Yi-Liang

    2016-10-01

    In recent years, forensic scientists have focused on the discrimination of body fluids using microbial signatures. In this study, we performed PCR-based detection of microbial signatures of vaginal fluid, saliva, and feces in a Han Chinese population. We investigated the 16S rRNA genes of Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus iners, and Atopobium vaginae in vaginal fluid, the 16S rRNA and the glucosyltransferase enzyme genes of Streptococcus salivarius and Streptococcus mutans in saliva, and the 16S rRNA genes of Enterococcus species, the RNA polymerase β-subunit gene of Bacteroides uniformis and Bacteroides vulgatus, and the α-1-6 mannanase gene of Bacteroides thetaiotaomicron in feces. As a result, the detection proportions of L. crispatus, L. gasseri, L. jensenii, L. iners, and A. vaginae were 15/16, 5/16, 8/16, 14/16, and 3/16 in 16 vaginal fluid donors, respectively. L. crispatus and L. jensenii were specifically detected in vaginal fluid; L. gasseri, L. iners, and A. vaginae were also detected in non-vaginal fluid. S. salivarius and S. mutans were not specifically detected in saliva. The detection proportions of Enterococcus species, B. uniformis, B. vulgatus, and B. thetaiotaomicron in 16 feces samples were 16/16, 12/16, 15/16, and 11/16, respectively. B. uniformis and B. thetaiotaomicron were specifically detected in feces. In addition, DNA samples prepared for the identification of body fluid can also be used for individual identification by short tandem repeat typing. The mean detection sensitivities of L. crispatus and L. jensenii were 0.362 and 0.249 pg/uL, respectively. In conclusion, L. crispatus, L. jensenii, B. uniformis, and B. thetaiotaomicron can be used as effective markers for forensic identification of vaginal fluid and feces. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  16. Lactobacillus

    MedlinePlus

    ... eye symptoms. Preventing diarrhea caused by antibiotics. Taking probiotics products containing lactobacillus strains helps prevent diarrhea caused ... the first 1-2 years of life, lactobacillus probiotics can reduce the chance of the child developing ...

  17. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity.

    PubMed

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ((1)H NMR and (13)C NMR), UV-Vis, and LC-MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36μgmL(-1). This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health.

    PubMed

    Oh, N S; Kwon, H S; Lee, H A; Joung, J Y; Lee, J Y; Lee, K B; Shin, Y K; Baick, S C; Park, M R; Kim, Y; Lee, K W; Kim, S H

    2014-01-01

    The aim of this study was to determine the dual effect of Maillard reaction and fermentation on the preventive cardiovascular effects of milk proteins. Maillard reaction products (MRP) were prepared from the reaction between milk proteins, such as whey protein concentrates (WPC) and sodium caseinate (SC), and lactose. The hydrolysates of MRP were obtained from fermentation by lactic acid bacteria (LAB; i.e., Lactobacillus gasseri H10, L. gasseri H11, Lactobacillus fermentum H4, and L. fermentum H9, where human-isolated strains were designated H1 to H15), which had excellent proteolytic and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities (>20%). The antioxidant activity of MRP was greater than that of intact proteins in assays of the reaction with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and trivalent ferric ions; moreover, the effect of MRP was synergistically improved by fermentation. The Maillard reaction dramatically increased the level of antithrombotic activity and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory effect of milk proteins, but did not change the level of activity for micellar cholesterol solubility. Furthermore, specific biological properties were enhanced by fermentation. Lactobacillus gasseri H11 demonstrated the greatest activity for thrombin and HMGR inhibition in Maillard-reacted WPC, by 42 and 33%, respectively, whereas hydrolysates of Maillard-reacted SC fermented by L. fermentum H9 demonstrated the highest reduction rate for micellar cholesterol solubility, at 52%. In addition, the small compounds that were likely released by fermentation of MRP were identified by size-exclusion chromatography. Therefore, MRP and hydrolysates of fermented MRP could be used to reduce cardiovascular risks. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance.

    PubMed

    González-Ferrero, C; Irache, J M; González-Navarro, C J

    2018-01-15

    The present work describes the encapsulation of probiotics using a by-product as wall material and a process feasible to be scaled-up: coacervation of soybean protein concentrate (SPC) by using calcium salts and spray-drying. SPC was extracted from soybean flour, produced during the processing of soybean milk, by alkaline extraction following isoelectric precipitation. Two probiotic strains were selected for encapsulation (Lactobacillus plantarum CECT 220 and Lactobacillus casei CECT 475) in order to evaluate the ability of SPC to encapsulate and protect bacteria from stress conditions. The viability of these encapsulated strains under in vitro gastrointestinal conditions and shelf-life during storage were compared with the most common forms commercialized nowadays. Results show that SPC is a feasible material for the development of probiotic microparticles with adequate physicochemical properties and enhanced significantly both probiotic viability and tolerance against simulated gastrointestinal fluids when compared to current available commercial forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  1. Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform

    PubMed Central

    Bumgardner, Sara A.; Zhang, Lin; LaVoy, Alora S.; Frank, Chad B.; Kajikawa, Akinobu; Klaenhammer, Todd R.

    2018-01-01

    Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform. PMID:29734365

  2. Ecophysiology of the developing total bacterial and lactobacillus communities in the terminal small intestine of weaning piglets.

    PubMed

    Pieper, Robert; Janczyk, Pawel; Zeyner, Annette; Smidt, Hauke; Guiard, Volker; Souffrant, Wolfgang Bernhard

    2008-10-01

    Weaning of the pig is generally regarded as a stressful event which could lead to clinical implications because of the changes in the intestinal ecosystem. The functional properties of microbiota inhabiting the pig's small intestine (SI), including lactobacilli which are assumed to exert health-promoting properties, are yet poorly described. Thus, we determined the ecophysiology of bacterial groups and within genus Lactobacillus in the SI of weaning piglets and the impact of dietary changes. The SI contents of 20 piglets, 4 killed at weaning (only sow milk and no creep feed) and 4 killed at 1, 2, 5, and 11 days post weaning (pw; cereal-based diet) were examined for bacterial cell count and bacterial metabolites by fluorescence in situ hybridization (FISH). Lactobacilli were the predominant group in the SI except at 1 day pw because of a marked reduction in their number. On day 11 pw, bifidobacteria and E. coli were not detected, and Enterobacteriaceae and members of the Clostridium coccoides/Eubacterium rectale cluster were only found occasionally. L. sobrius/L. amylovorus became dominant species whereas the abundance of L. salivarius and L. gasseri/johnsonii declined. Concentration of lactic acid increased pw whereas pH, volatile fatty acids, and ammonia decreased. Carbohydrate utilization of 76 Lactobacillus spp. isolates was studied revealing a shift from lactose and galactose to starch, cellobiose, and xylose, suggesting that the bacteria colonizing the SI of piglets adapt to the newly introduced nutrients during the early weaning period. Identification of isolates based on partial 16S rRNA gene sequence data and comparison with fermentation data furthermore suggested adaptation processes below the species level. The results of our study will help to understand intestinal bacterial ecophysiology and to develop nutritional regimes to prevent or counteract complications during the weaning transition.

  3. Microbial Risk Markers for Childhood Caries in Pediatricians’ Offices

    PubMed Central

    Kanasi, E.; Johansson, I.; Lu, S.C.; Kressin, N.R.; Nunn, M.E.; Kent, R.; Tanner, A.C.R.

    2010-01-01

    Dental caries in pre-school children has significant public health and health disparity implications. To determine microbial risk markers for this infection, this study aimed to compare the microbiota of children with early childhood caries with that of caries-free children. Plaque samples from incisors, molars, and the tongue from 195 children attending pediatricians’ offices were assayed by 74 DNA probes and by PCR to Streptococcus mutans. Caries-associated factors included visible plaque, child age, race, and snacking habits. Species were detected more frequently from tooth than tongue samples. Lactobacillus gasseri (p < 0.01), Lactobacillus fermentum, Lactobacillus vaginalis, and S. mutans with Streptococcus sobrinus (all p < 0.05) were positively associated with caries. By multifactorial analysis, the probiotic Lactobacillus acidophilus was negatively associated with caries. Prevotella nigrescens was the only species (p < 0.05) significantly associated with caries by the ‘false discovery’ rate. Analysis of the data suggests that selected Lactobacillus species, in addition to mutans streptococci, are risk markers for early childhood caries. PMID:20164496

  4. Rejection of reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius using comparative genomics.

    PubMed

    Yang, Seung-Jo; Kim, Byung-Yong; Chun, Jongsik

    2017-11-01

    Lactobacillus bobalius, Lactobacillus kimchii and Lactobacillus paralimentarius belong to the genus Lactobacillus and show close phylogenetic relationships. In a previous study, L. bobalius and L. kimchii were proposed to be reclassified as later heterotypic synonyms of L. paralimentarius using high 16S rRNA gene sequence similarities (≥99.5 %) and DNA-DNA hybridization values (≥82 %). We determined high quality whole genome assemblies of the type strains of L. bobalius and L. kimchii, which were then compared with that of L. paralimentarius. Average nucleotide identity values among three genomes ranged from 91.4 to 92.3 % which are clearly below 95~96 %, the generally recognized cutoff value for bacterial species boundaries. On the basis of comparative genomic evidence, L. bobalius, L. kimchii, and L. paralimentarius should stand as separate species in the genus Lactobacillus. We therefore suggest rejecting the previous proposal to combine these three species into a single species.

  5. A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences.

    PubMed

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-06-01

    Species-specific primers targeting the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough. The 16S-23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388-1406 of the 16S rRNA gene and to positions 207-189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331). Clone libraries of the resulting amplicons were constructed using a pCR2.1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S-23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNA(Ile) and tRNA(Ala) genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested. Designed species-specific primers enable a rapid and accurate identification of L. mindensis, L. paralimentarius, L. panis, L. pontis and L. frumenti species among other lactobacilli. The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.

  6. Determination of Antibacterial and Technological Properties of Vaginal Lactobacilli for Their Potential Application in Dairy Products

    PubMed Central

    Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I.; Parolin, Carola; Ñahui Palomino, Rogers A.; Vitali, Beatrice; Lanciotti, Rosalba

    2017-01-01

    Functional foods could differently affect human health in relation to the gender. Recent studies have highlighted the anti-Candida and anti-Chlamydia activities of some Lactobacillus strains isolated from the vagina of healthy women. Considering these important beneficial activities on women's health, the preparation of functional food containing active vaginal lactobacilli can represent a great scientific challenge for the female gender. In this context, the aim of this work was to study some functional and technological properties of 17 vaginal strains belonging to the species Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus vaginalis in the perspective to include them in dairy products. The antagonistic activities against the pathogenic and spoilage species associated to food products and against the principal etiological agents of the genitourinary tract infections were evaluated. Moreover, the vaginal lactobacilli were characterized for their antibiotic resistance, and for their fermentation kinetics and viability during the refrigerated storage in milk. Finally, the volatile molecule profiles of the obtained fermented milks were determined. The results showed that several strains, mainly belonging to the species Lactobacillus crispatus, exhibited a significant antagonistic activity against spoilage and pathogenic microorganisms of food interest, as well as against urogenital pathogens. All the vaginal lactobacilli showed antimicrobial activity against strains belonging to the foodborne pathogenic species Listeria monocytogenes, Listeria innocua, Eenterococcus faecalis and Escherichia coli. In addition, most of the Lactobacillus strains were active toward the main pathogens responsible of vaginal and urinary tract infections including Staphylococcus aureus, Enterococcus faecium, Gardnerella vaginalis, and Proteus mirabilis. The antimicrobial activity can be attributed to the high production of organic acids. The fermentation kinetics in milk

  7. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy.

    PubMed

    Brotman, Rebecca M; Shardell, Michelle D; Gajer, Pawel; Fadrosh, Doug; Chang, Kathryn; Silver, Michelle I; Viscidi, Raphael P; Burke, Anne E; Ravel, Jacques; Gravitt, Patti E

    2014-05-01

    The vaginal microbiota helps protect the female genital tract from disease. We sought to describe the composition of the vaginal microbiota in premenopausal, perimenopausal, and postmenopausal women and to explore the association between the microbiota and vulvovaginal atrophy (VVA). Eighty-seven women (aged 35-60 y) were classified as premenopausal (n = 30), perimenopausal (n = 29), or postmenopausal (n = 28) according to Stages of Reproductive Aging Workshop guidelines. Midvaginal bacterial community composition was characterized by 16S ribosomal RNA gene analysis. Bacterial communities clustered into six community state types (CSTs), of which four were dominated by Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners, or Lactobacillus jensenii, and two (CST IV-A and CST IV-B) had low relative abundance of Lactobacillus. CST IV-A was characterized by Streptococcus and Prevotella, whereas CST IV-B was characterized by Atopobium. There were significant associations between menopause stage and CST (P = 0.004) and between VVA and CST (P = 0.002). Perimenopausal women were more likely to be classified as CST IV-A or L. gasseri CST, whereas postmenopausal women were often classified as CST IV-A. CSTs dominated by L. crispatus and L. iners were more prevalent in premenopausal women. Nineteen participants had signs of mild or moderate VVA. Compared with women with no VVA, the vaginal microbiota of women with mild or moderate atrophy had 25-fold greater odds of being classified as CST IV-A versus L. crispatus CST (adjusted odds ratio, 25.89; 95% credible interval, 2.98-406.79). A distinct bacterial community state (CST IV-A) with a low relative abundance of Lactobacillus is associated with VVA. Future studies recruiting a larger number of women are needed to replicate the findings. This study provides an impetus for future longitudinal studies designed to manage, modulate, and restore vaginal microbiota homeostasis, which would provide stronger evidence for

  8. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides.

    PubMed

    Knockaert, Dries; Raes, Katleen; Wille, Christophe; Struijs, Karin; Van Camp, John

    2012-08-30

    Food-isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L⁻¹), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4-vinylguaiacol (4-VG) and hydroferulic acid (HFA). Conversion to 4-VG started simultaneously with the degradation of FA, while formation of HFA started in the mid-exponential phase. Lactobacillus collinoides only formed 4-VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria. Copyright © 2012 Society of Chemical Industry.

  9. Comparative genomics of Lactobacillus

    PubMed Central

    Kant, Ravi; Blom, Jochen; Palva, Airi; Siezen, Roland J.; de Vos, Willem M.

    2011-01-01

    Summary The genus Lactobacillus includes a diverse group of bacteria consisting of many species that are associated with fermentations of plants, meat or milk. In addition, various lactobacilli are natural inhabitants of the intestinal tract of humans and other animals. Finally, several Lactobacillus strains are marketed as probiotics as their consumption can confer a health benefit to host. Presently, 154 Lactobacillus species are known and a growing fraction of these are subject to draft genome sequencing. However, complete genome sequences are needed to provide a platform for detailed genomic comparisons. Therefore, we selected a total of 20 genomes of various Lactobacillus strains for which complete genomic sequences have been reported. These genomes had sizes varying from 1.8 to 3.3 Mb and other characteristic features, such as G+C content that ranged from 33% to 51%. The Lactobacillus pan genome was found to consist of approximately 14 000 protein‐encoding genes while all 20 genomes shared a total of 383 sets of orthologous genes that defined the Lactobacillus core genome (LCG). Based on advanced phylogeny of the proteins encoded by this LCG, we grouped the 20 strains into three main groups and defined core group genes present in all genomes of a single group, signature group genes shared in all genomes of one group but absent in all other Lactobacillus genomes, and Group‐specific ORFans present in core group genes of one group and absent in all other complete genomes. The latter are of specific value in defining the different groups of genomes. The study provides a platform for present individual comparisons as well as future analysis of new Lactobacillus genomes. PMID:21375712

  10. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T).

  11. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection.

    PubMed

    Brotman, Rebecca M; Shardell, Michelle D; Gajer, Pawel; Tracy, J Kathleen; Zenilman, Jonathan M; Ravel, Jacques; Gravitt, Patti E

    2014-12-01

    We sought to describe the temporal relationship between vaginal microbiota and human papillomavirus (HPV) detection. Thirty-two reproductive-age women self-collected midvaginal swabs twice weekly for 16 weeks (937 samples). Vaginal bacterial communities were characterized by pyrosequencing of barcoded 16S rRNA genes and clustered into 6 community state types (CSTs). Each swab was tested for 37 HPV types. The effects of CSTs on the rate of transition between HPV-negative and HPV-positive states were assessed using continuous-time Markov models. Participants had an average of 29 samples, with HPV point prevalence between 58%-77%. CST was associated with changes in HPV status (P<.001). Lactobacillus gasseri-dominated CSTs had the fastest HPV remission rate, and a low Lactobacillus community with high proportions of the genera Atopobium (CST IV-B) had the slowest rate compared to L. crispatus-dominated CSTs (adjusted transition rate ratio [aTRR], 4.43, 95% confidence interval [CI], 1.11-17.7; aTRR, 0.33, 95% CI, .12-1.19, respectively). The rate ratio of incident HPV for low Lactobacillus CST IV-A was 1.86 (95% CI, .52-6.74). Vaginal microbiota dominated by L. gasseri was associated with increased clearance of detectable HPV. Frequent longitudinal sampling is necessary for evaluation of the association between HPV detection and dynamic microbiota. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Lactobacillus hammesii sp. nov., isolated from French sourdough.

    PubMed

    Valcheva, Rosica; Korakli, Maher; Onno, Bernard; Prévost, Hervé; Ivanova, Iskra; Ehrmann, Matthias A; Dousset, Xavier; Gänzle, Michael G; Vogel, Rudi F

    2005-03-01

    Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38(T) and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA-DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38(T) (=DSM 16381(T)=CIP 108387(T)=TMW 1.1236(T)).

  13. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties.

    PubMed

    Klopper, Kyle B; Deane, Shelly M; Dicks, Leon M T

    2018-03-01

    Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).

  14. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2013-11-01

    A Gram-stain-positive bacterial strain, S4-3(T), was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain S4-3(T) showed 97.9-98.7 % 16S rRNA gene sequence similarities, 84.4-94.1 % pheS gene sequence similarities and 94.4-96.9 % rpoA gene sequence similarities to the type strains of Lactobacillus nantensis, Lactobacillus mindensis, Lactobacillus crustorum, Lactobacillus futsaii, Lactobacillus farciminis and Lactobacillus kimchiensis. dnaK gene sequence similarities between S4-3(T) and Lactobacillus nantensis LMG 23510(T), Lactobacillus mindensis LMG 21932(T), Lactobacillus crustorum LMG 23699(T), Lactobacillus futsaii JCM 17355(T) and Lactobacillus farciminis LMG 9200(T) were 95.4, 91.5, 90.4, 91.7 and 93.1 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus heilongjiangensis sp. nov., is proposed and the type strain is S4-3(T) ( = LMG 26166(T) = NCIMB 14701(T)).

  15. The effects of the Lactobacillus casei strain on obesity in children: a pilot study.

    PubMed

    Nagata, S; Chiba, Y; Wang, C; Yamashiro, Y

    2017-08-24

    There are few data regarding the role of probiotics as a dietary intervention in the management of obesity in children. An open prospective examination was conducted to clarify the effects of Lactobacillus casei strain Shirota (LcS)-containing beverages in obese children. We compared the intestinal microbiota and organic acid levels between 12 obese (average age, 10.8 years; body mass index (BMI) Z score, 2.7±1.7) and 22 control children(average age, 8.5 years; BMI Z score, 0.1±0.7), and pre- and post-intervention in the obese children. The obese group underwent diet and exercise therapy for 6 months and then were given an LcS beverage daily for another 6 months and the body weight and serological markers were monitored. Significant reductions in the faecal concentrations of Bifidobacterium (obese group, 7.9±1.5 vs non-obese group, 9.8±0.5 Log 10 cells/g; P<0.01) along with a significant decline in the Bacteroides fragilis group, Atopobium cluster and Lactobacillus gasseri subgroup, and acetic acid (obese group, 45.1±16.9 vs non-obese group, 57.9±17.6 μmol/g; P<0.05) were observed in the obese group at baseline. A significant decline in body weight (-2.9±4.6%; P<0.05) and an elevation in the high density lipoprotein cholesterol level (+11.1±17.6%; P<0.05) were observed 6 months after ingestion of the LcS beverage compared to baseline. Furthermore, a significant increase in the faecal concentration of Bifidobacterium (7.0±1.2 before ingestion vs 9.1±1.2 Log 10 cells/g after ingestion; P<0.01) and an apparent increase in the acetic acid concentration (7.0±1.2 before ingestion vs 9.1±1.2 Log 10 cells/g after ingestion; P<0.01) were observed 6 months after ingestion. LcS contributed to weight loss while also improving the lipid metabolism in obese children via a significant increase in the faecal Bifidobacterium numbers and the acetic acid concentration.

  16. Eruca sativa might influence the growth, survival under simulated gastrointestinal conditions and some biological features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus strains.

    PubMed

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-10-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power.

  17. Eruca sativa Might Influence the Growth, Survival under Simulated Gastrointestinal Conditions and Some Biological Features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus Strains

    PubMed Central

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-01-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power. PMID:25275269

  18. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    PubMed

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  19. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens

    PubMed Central

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-01-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis (Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis (Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment. PMID:28580872

  20. In vitro antagonistic growth effects of Lactobacillus fermentum and lactobacillus salivarius and their fermentative broth on periodontal pathogens.

    PubMed

    Chen, Ling-Ju; Tsai, Hsiu-Ting; Chen, Wei-Jen; Hsieh, Chu-Yang; Wang, Pi-Chieh; Chen, Chung-Shih; Wang, Lina; Yang, Chi-Chiang

    2012-10-01

    As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis in vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, although different inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health.

  1. Effects of Feeding of Two Potentially Probiotic Preparations from Lactic Acid Bacteria on the Performance and Faecal Microflora of Broiler Chickens

    PubMed Central

    Fajardo, Paula; Pastrana, Lorenzo; Méndez, Jesús; Rodríguez, Isabel; Fuciños, Clara; Guerra, Nelson P.

    2012-01-01

    The aim of this study was to evaluate the potential of two probiotic preparations, containing live lactic acid bacteria (Lactococcus lactis CECT 539 and Lactobacillus casei CECT 4043) and their products of fermentation (organic acids and bacteriocins), as a replacement for antibiotics in stimulating health and growth of broiler chickens. The effects of the supplementation of both preparations (with proven probiotic effect in weaned piglets) and an antibiotic (avilamycin) on body weight gain (BWG), feed intake (FI), feed consumption efficiency (FCE), relative intestinal weight, and intestinal microbiota counts were studied in 1-day posthatch chickens. The experiments were conducted with medium-growth Sasso X44 chickens housed in cages and with nutritional stressed Ross 308 broiler distributed in pens. Consumption of the different diets did not affect significantly the final coliform counts in Sasso X44 chickens. However, counts of lactic acid bacteria and mesophilic microorganisms were higher in the animals receiving the two probiotic preparations (P < 0.05). In the second experiment, although no differences in BWG were observed between treatments, Ross 308 broilers receiving the probiotic Lactobacillus preparation exhibited the lowest FCE values and were considered the most efficient at converting feed into live weight. PMID:22666137

  2. Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., isolated from silage.

    PubMed

    Tohno, Masanori; Tanizawa, Yasuhiro; Irisawa, Tomohiro; Masuda, Takaharu; Sakamoto, Mitsuo; Arita, Masanori; Ohkuma, Moriya; Kobayashi, Hisami

    2017-09-01

    Three Gram-stain positive, non-motile, non-spore-forming, catalase-negative and rod-shaped bacterial strains (IWT5T, IWT25T and IWT140), isolated from silage, were investigated by using a polyphasic taxonomic approach. Strains IWT5T and IWT25T grew at 10-37 °C and 30-37 °C, and at pH 4.0-7.5 and 4.0-7.0, respectively. The G+C contents of genomic DNA of strains IWT5T and IWT25T were 43.2 and 44.4 mol%, respectively. Strains IWT5T and IWT25T contained C16 : 0, C18 : 1 ω9c and summed feature 7 (unknown 18.846/C19 : 1 ω6c/C19 : 0cyclo ω10c) as the major fatty acids. Strain IWT5T was most closely related to the type strains of Lactobacillus mixtipabuli (99.9 % 16S rRNA gene sequence similarity) and Lactobacillus silagei (99.5 %). For IWT25T, the 16S rRNA gene sequence similarities with the closely related neighbour type strains L. mixtipabuli and L. silagei were 99.5 and 99.5 %, respectively. The 16S rRNA gene sequence similarities among the three novel isolates were 99.5-99.9 %. The average nucleotide identities of strains IWT5T and IWT25T to other neighbours of the genus Lactobacillus were less than 82 % and the genomes of IWT25T and IWT140 shared 97.3 % average nucleotide identity, demonstrating that the three strains were allocated to two different novel species of the genus Lactobacillus. Together with multilocus sequence analysis, phenotypic and chemotaxonomic characteristics, strains IWT5T (=JCM 31144T=DSM 102973T) and IWT25T (=JCM 31145T=DSM 102974T) are proposed as the type strains of novel species of the genus Lactobacillus, with the names Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., respectively.

  3. Syringeless power injector versus dual-syringe power injector: economic evaluation of user performance, the impact on contrast enhanced computed tomography (CECT) workflow exams, and hospital costs.

    PubMed

    Colombo, Giorgio L; Andreis, Ivo A Bergamo; Di Matteo, Sergio; Bruno, Giacomo M; Mondellini, Claudio

    2013-01-01

    The utilization of diagnostic imaging has substantially increased over the past decade in Europe and North America and continues to grow worldwide. The purpose of this study was to develop an economic evaluation of a syringeless power injector (PI) versus a dual-syringe PI for contrast enhanced computed tomography (CECT) in a hospital setting. Patients (n=2379) were enrolled at the Legnano Hospital between November 2012 and January 2013. They had been referred to the hospital for a CECT analysis and were randomized into two groups. The first group was examined with a 256-MDCT (MultiDetector Computed Tomography) scanner using a syringeless power injector, while the other group was examined with a 64-MDCT scanner using a dual-syringe. Data on the operators' time required in the patient analysis steps as well as on the quantity of consumable materials used were collected. The radiologic technologists' satisfaction with the use of the PIs was rated on a 10-point scale. A budget impact analysis and sensitivity analysis were performed under the base-case scenario. A total of 1,040 patients were examined using the syringeless system, and 1,339 with the dual-syringe system; the CECT examination quality was comparable for both PI systems. Equipment preparation time and releasing time per examination for syringeless PIs versus dual-syringe PIs were 100±30 versus 180±30 seconds and 90±30 and 140±20 seconds, respectively. On average, 10±3 mL of contrast media (CM) wastage per examination was observed with the dual-syringe PI and 0±1 mL with the syringeless PI. Technologists had higher satisfaction with the syringeless PI than with the dual-syringe system (8.8 versus 8.0). The syringeless PI allows a saving of about €6.18 per patient, both due to the lower cost of the devices and to the better performance of the syringeless system. The univariate sensitivity analysis carried out on the base-case results within the standard deviation range confirmed the saving generated

  4. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    PubMed

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture.

  5. (GTG)(5)-PCR fingerprinting of lactobacilli isolated from cervix of healthy women.

    PubMed

    Svec, P; Sedláček, I; Chrápavá, M; Vandamme, P

    2011-01-01

    A group of lactobacilli isolated from the cervix of 31 healthy women was characterized by (GTG)(5)-polymerase chain reaction (PCR) fingerprinting in order to evaluate this method for identification of vaginal lactobacilli. Obtained fingerprints were compared with profiles available in an in-house database of the CCM bacteria collection covering type and reference strains of multiple lactic acid bacteria including lactobacilli. Selected strains representing individual clusters were further identified by pheS gene sequencing. In total, six lactobacillus species were found among lactobacilli isolated from the cervix of healthy women. The (GTG)(5)-PCR method identified Lactobacillus gasseri (11 strains), Lactobacillus fermentum (one), and some of the Lactobacillus jensenii strains (eight out of 11), but failed to identify the remaining strains, including the Lactobacillus crispatus (18), Lactobacillus mucosae (one), and Lactobacillus vaginalis (one) species. L. jensenii strains were distributed over two fingerprint clusters. The majority of samples was dominated by one (GTG)(5)-PCR type. The rep-PCR fingerprinting using the (GTG)(5) primer allowed straightforward identification of many, but not all, isolates. This method has been shown to be a useful tool for fast screening and grouping of vaginal lactobacilli, but its combination with another identification method is needed to obtain reliable identification results. In addition, Lactobacillus acidophilus was not shown to be the most common inhabitant of the female genital tract as generally assumed.

  6. Protective effect of surface layer proteins isolated from four Lactobacillus strains on hydrogen-peroxide-induced HT-29 cells oxidative stress.

    PubMed

    Zhao, Bin-Bin; Meng, Jun; Zhang, Qiu-Xiang; Kang, Ting-Ting; Lu, Rong-Rong

    2017-09-01

    The objective of this study was to explore the antioxidant effect of the surface layer proteins (SLPs) and their mechanism. We investigated four SLPs which were extracted from L. casei zhang, L. rhamnosus, L. gasseri and L. acidophilus NCFM respectively using LiCl. The protective effect of SLPs on H 2 O 2 -induced HT-29 cells oxidative injury was investigated. As results, SLPs (100μg/mL) could significantly mitigate HT-29 cells cytotoxicity, improve the activities of total antioxidant capacity (T-AOC), catalase (CAT) and superoxide dismutase (SOD), decrease the contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), compared with H 2 O 2 -induced group (P<0.05). Furthermore, SLPs were also shown to attenuate the apoptosis rate (10.94-24.03%, P<0.01), suppress the elevation of intracellular reactive oxygen species (ROS) and calcium levels, restore mitochondrial membrane potential (MMP) and block the activation of apoptosis-related proteins of caspase-3 and caspase-9 (P<0.05). Considering all the parameters analyzed, we concluded that Lactobacillus SLPs play an essential role in the antioxidant capacity of HT-29 cells induced by H 2 O 2 , and the mechanism could be attributed to SLPs' ability to enhance the activity of the intracellular antioxidant enzyme system, reduce ROS accumulation and to inhibit apoptosis by regulating mitochondrial pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Lactobacillus allii sp. nov. isolated from scallion kimchi.

    PubMed

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-12-01

    A novel strain of lactic acid bacteria, WiKim39 T , was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39 T belonged to the genus Lactobacillus, and shared 97.1-98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39 T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39 T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39 T (=KCTC 21077 T =JCM 31938 T ).

  8. Lactobacillus allii sp. nov. isolated from scallion kimchi

    PubMed Central

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-01-01

    A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1–98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T). PMID:29043955

  9. [Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species].

    PubMed

    Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei

    2009-02-01

    We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.

  10. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    PubMed

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3

  11. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Monitoring of Water Spectral Pattern Reveals Differences in Probiotics Growth When Used for Rapid Bacteria Selection.

    PubMed

    Slavchev, Aleksandar; Kovacs, Zoltan; Koshiba, Haruki; Nagai, Airi; Bázár, György; Krastanov, Albert; Kubota, Yousuke; Tsenkova, Roumiana

    2015-01-01

    Development of efficient screening method coupled with cell functionality evaluation is highly needed in contemporary microbiology. The presented novel concept and fast non-destructive method brings in to play the water spectral pattern of the solution as a molecular fingerprint of the cell culture system. To elucidate the concept, NIR spectroscopy with Aquaphotomics were applied to monitor the growth of sixteen Lactobacillus bulgaricus one Lactobacillus pentosus and one Lactobacillus gasseri bacteria strains. Their growth rate, maximal optical density, low pH and bile tolerances were measured and further used as a reference data for analysis of the simultaneously acquired spectral data. The acquired spectral data in the region of 1100-1850nm was subjected to various multivariate data analyses - PCA, OPLS-DA, PLSR. The results showed high accuracy of bacteria strains classification according to their probiotic strength. Most informative spectral fingerprints covered the first overtone of water, emphasizing the relation of water molecular system to cell functionality.

  13. The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion.

    PubMed

    Dellaglio, Franco; Felis, Giovanna E; Torriani, Sandra

    2002-01-01

    On the basis of considerable published evidence, it is concluded that the species Lactobacillus casei is not correctly represented by the strain actually designated as the type strain ATCC 393. It is proposed that the Judicial Commission consider: (1) that ATCC 393T is scientifically unsuitable as the type strain of Lactobacillus casei and should be reclassified as Lactobacillus zeae; (2) that Lactobacillus casei ATCC 334 and Lactobacillus paracasei strains are members of the same taxon and therefore can be united within the name Lactobacillus casei (Rules 42 and 23a), the name Lactobacillus paracasei being rejected; and (3) designating ATCC 334 as the neotype strain for the species

  14. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1.

    PubMed

    Leonard, Michael T; Valladares, Ricardo B; Ardissone, Alexandria; Gonzalez, Claudio F; Lorca, Graciela L; Triplett, Eric W

    2014-05-08

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model.

  15. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough.

    PubMed

    Valcheva, Rosica; Ferchichi, Mounir F; Korakli, Maher; Ivanova, Iskra; Gänzle, Michael G; Vogel, Rudi F; Prévost, Hervé; Onno, Bernard; Dousset, Xavier

    2006-03-01

    A polyphasic taxonomic study of the bacterial flora isolated from traditional French wheat sourdough, using phenotypic characterization and phylogenetic as well as genetic methods, revealed a consistent group of isolates that could not be assigned to any recognized species. These results were confirmed by randomly amplified polymorphic DNA and amplified fragment length polymorphism fingerprinting analyses. Cells were Gram-positive, homofermentative rods. Comparative 16S rRNA gene sequence analysis of the representative strain LP33T indicated that these strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives Lactobacillus farciminis, Lactobacillus alimentarius, Lactobacillus paralimentarius and Lactobacillus mindensis. DNA-DNA reassociation experiments with the three phylogenetically closest Lactobacillus species confirmed that LP33T (= DSM 16982T = CIP 108546T = TMW 1.1265T) represents the type strain of a novel species, for which the name Lactobacillus nantensis sp. nov. is proposed.

  16. Antagonistic Activity of Lactobacillus Isolates against Salmonella typhi In Vitro

    PubMed Central

    Abdel-Daim, Amira; Hassouna, Nadia; Hafez, Mohamed; Ashor, Mohamed Seif Aldeen; Aboulwafa, Mohammad M.

    2013-01-01

    Background. Enteric fever is a global health problem, and rapidly developing resistance to various drugs makes the situation more alarming. The potential use of Lactobacillus to control typhoid fever represents a promising approach, as it may exert protective actions through various mechanisms. Methods. In this study, the probiotic potential and antagonistic activities of 32 Lactobacillus isolates against Salmonella typhi were evaluated. The antimicrobial activity of cell free supernatants of Lactobacillus isolates, interference of Lactobacillus isolates with the Salmonella adherence and invasion, cytoprotective effect of Lactobacillus isolates, and possibility of concurrent use of tested Lactobacillus isolates and antibiotics were evaluated by testing their susceptibilities to antimicrobial agents, and their oxygen tolerance was also examined. Results. The results revealed that twelve Lactobacillus isolates could protect against Salmonella typhi infection through interference with both its growth and its virulence properties, such as adherence, invasion, and cytotoxicity. These Lactobacillus isolates exhibited MIC values for ciprofloxacin higher than those of Salmonella typhi and oxygen tolerance and were identified as Lactobacillus plantarum. Conclusion. The tested Lactobacillus plantarum isolates can be introduced as potential novel candidates that have to be subjected for in vivo and application studies for treatment and control of typhoid fever. PMID:24191248

  17. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri.

    PubMed

    Ianniello, R G; Zheng, J; Zotta, T; Ricciardi, A; Gänzle, M G

    2015-09-01

    This study evaluated the aerobic and respiratory metabolism in Lactobacillus reuteri and Lactobacillus spicheri, two heterofermentative species used in sourdough fermentation. In silico genome analysis, production of metabolites and gene expression of pyruvate oxidase, pyruvate dehydrogenase and cytochrome oxidase were assessed in anaerobic and aerobic cultures of Lact. reuteri and Lact. spicheri. Respiring homofermentative Lactobacillus casei N87 and Lact. rhamnosus N132 were used for comparison. Aerobiosis and respiration increased the biomass production of heterofermentative strains compared to anaerobic cultivation. Respiration led to acetoin production by Lact. rhamnosus and Lact. casei, but not in heterofermentative strains, in which lactate and acetate were the major end-products. Lactobacillus spicheri LP38 showed the highest oxygen uptake. Pyruvate oxidase, respiratory cytochromes, NADH oxidase and NADH peroxidase were present in the genome of Lact. spicheri LP38. Both Lact. spicheri LP38 and Lact. rhamnosus N132 overexpressed pox in aerobic cultures, while cydA was up-regulated only when haeme was supplied; pdh was repressed during aerobic growth. Aerobic and respiratory growth provided physiological and metabolic advantages also in heterofermentative lactobacilli. The exploitation of oxygen-tolerant phenotypes of Lact. spicheri may be useful for the development of improved starter cultures. © 2015 The Society for Applied Microbiology.

  18. Isolated Lactobacillus chronic prosthetic knee infection.

    PubMed

    Bennett, David M; Shekhel, Tatyana; Radelet, Matt; Miller, Michael D

    2014-01-01

    Lactobacillus is a gram-positive rod bacteria found primarily in the gastrointestinal and female genital tracts. Prosthetic infections in implants are being increasingly reported. The authors present a case of a 58-year-old patient with Lactobacillus septic prosthetic knee joint infection. To the authors’ knowledge, this is the first reported case of chronic prosthetic knee infection with isolated Lactobacillus species. Lactobacillus has been most commonly implicated with bacteremia and endocarditis and rarely with pneumonia, meningitis, and endovascular infection, and a vast majority of the cases are reported in immunocompromised patients. In the current case, diabetes mellitus, hepatitis, malnutrition, anemia, and liver failure were comorbid conditions, placing the patient at increased risk of infection. The findings suggest that further case series are necessary to establish the significance of Lactobacillus as an etiologic agent in chronic low-virulence, and potentially vancomycin-resistant, prosthetic joint infection. The need also exists for further research aimed at the risk of prosthetic joint infection with oral intake of certain probiotic foods and supplements. The goal of this case report is to bring to light the potential of this organism to be a cause of subtle chronic prosthetic joint infection.

  19. An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases.

    PubMed

    Sashihara, T; Sueki, N; Ikegami, S

    2006-08-01

    Allergic diseases are reported to be caused by a skew in the balance between T helper type 1 and 2 cells. Because some lactic acid bacteria have been shown to stimulate IL-12 (p70) production, which in turn shifts the balance between the T helper type 1 and 2 cell response from the latter to the former, they have the potential to either prevent or ameliorate disease conditions or both. They have therefore been extensively studied in the recent past for their probiotic activities. Nevertheless, much less information is available concerning the microbial factors that determine the strain-dependent ability to affect the production of cytokines. The objectives of our study were first to select potentially probiotic lactobacilli that strongly stimulate cytokine production in vitro, and then to determine whether the selected Lactobacillus strains could suppress antigen-specific IgE production in vivo by using allergic model animals. Finally, our investigation was extended to analyze which bacterial components were responsible for the observed biological activity. Twenty strains of heat-killed lactobacilli isolated from humans were screened for their stimulatory activity for the production of IL-12 (p70) by murine splenocytes in vitro. The results showed that some strains of Lactobacillus plantarum and Lactobacillus gasseri had a higher stimulatory activity for IL-12 (p70) production than the other lactobacilli tested; however, this effect was strain dependent rather than species dependent. Oral administration of the heat-killed strains that showed higher stimulatory activity for IL-12 (p70) production tended to reduce the serum antigen-specific IgE levels in ovalbumin-sensitized BALB/c mice compared with the controls. Among the lactobacilli tested, L. gasseri OLL2809 showed the highest activity in reducing the level of antigen-specific IgE. Furthermore, the stimulatory activity for IL-12 (p70) production was found to be reduced after treating the lactobacilli with N

  20. Lactobacillus Fermentum Improves Tacrolimus-Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling.

    PubMed

    Toral, Marta; Romero, Miguel; Rodríguez-Nogales, Alba; Jiménez, Rosario; Robles-Vera, Iñaki; Algieri, Francesca; Chueca-Porcuna, Natalia; Sánchez, Manuel; de la Visitación, Néstor; Olivares, Mónica; García, Federico; Pérez-Vizcaíno, Francisco; Gálvez, Julio; Duarte, Juan

    2018-05-30

    Our aim was to analyse whether the probiotic Lactobacillus fermentum CECT5716 (LC40) could prevent endothelial dysfunction and hypertension induced by tacrolimus in mice. Tacrolimus increased systolic blood pressure (SBP) and impaired endothelium-dependent relaxation to acetylcholine and these effects were partially prevented by LC40. Endothelial dysfunction induced by tacrolimus was related to both increased NADPH oxidase (NOX2) and uncoupled eNOS driven-superoxide production and Rho-kinase mediated eNOS inhibition. LC40 treatment prevented all the aortic changes induced by tacrolimus. LC40 restored the imbalance between T-helper 17 (Th17)/ regulatory T (Treg) cells induced by tacrolimus in mesenteric lymph nodes and spleen. Tacrolimus induced gut dysbiosis, i.e. it decreased microbial diversity, increased Firmicutes/Bacteroidetes ratio and decreased acetate- and butyrate-producing bacteria and these effects were prevented by LC40. Fecal microbiota transplantation from LC40 treated mice to control mice prevented the increase in SBP and the impaired relaxation to acetylcholine induced by tacrolimus. LC40 treatment prevented hypertension and endothelial dysfunction induced by tacrolimus by inhibiting gut dysbiosis. These effects were associated with a reduction in vascular oxidative stress, mainly through NOX2 down-regulation and prevention of eNOS-uncoupling, and inflammation possibly because of decreased Th17 and increased Treg cells polarization in mesenteric lymph nodes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Lactobacillus cypricasei Lawson et al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et al. 2000.

    PubMed

    Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean

    2006-07-01

    The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.

  2. Extending viability of Lactobacillus plantarum and Lactobacillus johnsonii by microencapsulation in alginate microgels.

    PubMed

    Tiani, Kendra A; Yeung, Timothy W; McClements, D Julian; Sela, David A

    2018-03-01

    To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.

  3. Lactobacillus versmoldensis sp. nov., isolated from raw fermented sausage.

    PubMed

    Kröckel, L; Schillinger, U; Franz, C M A P; Bantleon, A; Ludwig, W

    2003-03-01

    Lactobacillus versmoldensis sp. nov. (KU-3T) was isolated from raw fermented sausages. The new species was present in high numbers, and frequently dominated the lactic acid bacteria (LAB) populations of the products. 16S rDNA sequence data revealed that the isolates are closely related to the species Lactobacillus kimchii DSM 13961T, Lactobacillus paralimentarius DSM 13238T, Lactobacillus alimentarius DSM 20249T and Lactobacillus farciminis DSM 20184T. DNA-DNA reassociation data, however, clearly distinguished the new isolates from these species; they showed a low degree of DNA relatedness with the type strains of this group of phylogenetically closely related lactobacilli. These results warrant separate species status for strain KU-3T, for which the name Lactobacillus versmoldensis sp. nov. is proposed. The type strain is KU-3T (=DSM 14857T =NCCB 100034T =ATCC BAA-478T).

  4. Lactobacillus paralimentarius sp. nov., isolated from sourdough.

    PubMed

    Cai, Y; Okada, H; Mori, H; Benno, Y; Nakase, T

    1999-10-01

    Six strains of lactic acid bacteria isolated from sourdough were characterized taxonomically. They were Gram-positive, catalase-negative, facultatively anaerobic rods that did not produce gas from glucose. Morphological and physiological data indicated that the strains belong to the genus Lactobacillus and they were similar to Lactobacillus alimentarius in phenotypic characteristics. These strains shared the same phenotypic characteristics and exhibited intragroup DNA homology values of over 89.8%, indicating that they comprised a single species. The G + C content of the DNA for the strains was 37.2-38.0 mol%. The 16S rRNA sequence of representative strain TB 1T was determined and aligned with that of other Lactobacillus species. This strain was placed in the genus Lactobacillus on the basis of phylogenetic analysis. L. alimentarius was the most closely related species in the phylogenetic tree and this species also showed the highest sequence homology value (96%) with strain TB 1T. DNA-DNA hybridization indicated that strain TB 1T did not belong to L. alimentarius. It is proposed that these strains are placed in the genus Lactobacillus as a new species, Lactobacillus paralimentarius sp. nov. The type strain of L. paralimentarius is TB 1T, which has been deposited in the Japan Collection of Microorganisms (JCM) as strain JCM 10415T.

  5. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study.

    PubMed

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  6. Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats.

    PubMed

    Amdekar, Sarika; Singh, Vinod; Kumar, Avnish; Sharma, Poonam; Singh, Rambir

    2013-01-01

    In view of well-established immunomodulatory properties of Lactobacillus, present investigation was carried out to evaluate antioxidant and anti-inflammatory potential of Lactobacillus casei and Lactobacillus acidophilus, against inflammatory pathway and oxidative stress developed in an experimental model of arthritis. Collagen-induced arthritis (CIA) model was used. Oral administration of L. casei, L. acidophilus, standard antiarthritic drug indomethacin, and vehicle were started after induced arthritis and continued up to day 28. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, IL-17, IL-4, and IL-10 levels were estimated in serum. In parallel, oxidative stress parameters were also measured from synovial effsuate. All rats were graded for arthritis score at the end of each week. L. casei, L. acidophilus, and indomethacin treatment significantly downregulated proinflammatory and upregulated anti-inflammatory cytokines at P<0.0001. They have significantly decreased oxidative stress in synovial effsuate (P<0.0001) and also arthritis score (P<0.05). Protection provided by L. casei and L. acidophilus was more pronounced than that of indomethacin. These lines of evidence suggest that L. casei and L. acidophilus exert potent protective effect against CIA. It further establishes effective anti-inflammatory and antioxidant properties of Lactobacillus. However, additional clinical investigations are needed to prove the efficacy of Lactobacillus in treatment/management of rheumatoid arthritis.

  7. Lactobacillus delivery of bioactive interleukin-22.

    PubMed

    Lin, Yin; Krogh-Andersen, Kasper; Hammarström, Lennart; Marcotte, Harold

    2017-08-23

    Interleukin-22 (IL-22) plays a prominent role in epithelial regeneration and dampening of chronic inflammatory responses by protecting intestinal stem cells from immune-mediated tissue damage. IL-22 has a considerable therapeutic potential in graft-versus-host disease (GVHD), which is a frequent and challenging complication following allogeneic stem cell transplantation. The aim of our study was to engineer Lactobacillus for delivery of IL-22 directly to the intestinal mucosa as a new therapeutic strategy for GVHD. The secretion and surface anchoring of mouse IL-22 by Lactobacillus paracasei BL23 was demonstrated by Western blot and flow cytometry. Both secreted and anchored mouse IL-22 produced by Lactobacillus was biologically active, as determined by its ability to induce IL-10 secretion in the Colo 205 human colon cancer cell line. We have demonstrated the secretion and surface anchoring of bioactive IL-22 by Lactobacillus. Our results suggest that IL-22 expressing lactobacilli may potentially be a useful mucosal therapeutic agent for the treatment of GVHD, provided that chromosomal integration of the IL-22 expression cassettes can be achieved.

  8. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components.

    PubMed

    Terraf, M C Leccese; Juárez Tomás, M S; Nader-Macías, M E F; Silva, C

    2012-12-01

    To assess the ability of vaginal lactobacilli to form biofilm under different culture conditions and to determine the relationship between their growth and the capability of biofilm formation by selected strains. Fifteen Lactobacillus strains from human vagina were tested for biofilm formation by crystal violet staining. Only Lactobacillus rhamnosus Centro de Referencia para Lactobacilos Culture Collection (CRL) 1332, Lact. reuteri CRL 1324 and Lact. delbrueckii CRL 1510 were able to grow and form biofilm in culture media without Tween 80. However, Lact. gasseri CRL 1263 (a non-biofilm-forming strain) did not grow in these media. Scanning electron microscopy showed that Lact. rhamnosus CRL 1332 and Lact. reuteri CRL 1324 formed a highly structured biofilm, but only Lact. reuteri CRL 1324 showed a high amount of extracellular material in medium without Tween. Biofilm formation was significantly influenced by the strain, culture medium, inoculum concentration, microbial growth and chemical nature of the support used for the assay. The results allow the selection of biofilm-forming vaginal Lactobacillus strains and the conditions and factors that affect this phenomenon. © 2012 The Society for Applied Microbiology.

  9. Distribution Dynamics of Recombinant Lactobacillus in the Gastrointestinal Tract of Neonatal Rats

    PubMed Central

    Bao, Sujin; Zhu, Libin; Zhuang, Qiang; Wang, Lucia; Xu, Pin-Xian; Itoh, Keiji; Holzman, Ian R.; Lin, Jing

    2013-01-01

    One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates. PMID:23544119

  10. In vitro activity of farnesol against vaginal Lactobacillus spp.

    PubMed

    Wang, Fengjuan; Liu, Zhaohui; Zhang, Dai; Niu, Xiaoxi

    2017-05-01

    Farnesol, a quorum-sensing molecule in Candida albicans, can affect the growth of certain microorganisms. The objective of this study was to evaluate the in vitro activity of farnesol against vaginal Lactobacillus spp., which play a crucial role in the maintenance of vaginal health. Growth and metabolic viability of vaginal Lactobacillus spp. incubated with different concentrations of farnesol were determined by measuring the optical density of the cultures and with the MTT assay. Morphology of the farnesol-treated cells was evaluated using a scanning electron microscope. In vitro adherence of vaginal Lactobacillus cells treated with farnesol was determined by co-incubating with vaginal epithelial cells (VECs). The minimum inhibitory concentration (MIC) of farnesol for vaginal Lactobacillus spp. was 1500μM. No morphological changes were observed when the farnesol-treated Lactobacillus cells were compared with farnesol-free cells, and 100μM farnesol would reduce the adherence of vaginal Lactobacillus to VECs. Farnesol acted as a potential antimicrobial agent, had little impact on the growth, metabolism, and cytomorphology of the vaginal Lactobacillus spp.; however, it affected their adhering capacity to VECs. The safety of farnesol as an adjuvant for antimicrobial agents during the treatment of vaginitis needs to be studied further. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lactobacillus kimchii sp. nov., a new species from kimchi.

    PubMed

    Yoon, J H; Kang, S S; Mheen, T I; Ahn, J S; Lee, H J; Kim, T K; Park, C S; Kho, Y H; Kang, K H; Park, Y H

    2000-09-01

    A bacteriocin-producing lactic acid bacterium, which was isolated from the Korean fermented-vegetable food kimchi, was subjected to a polyphasic taxonomic study using phenotypic characterization and phylogenetic and genetic methods. This organism (MT-1077T) has phenotypic properties that are consistent with the description characterizing the genus Lactobacillus. Phylogenetic analysis based on 16S rDNA sequences showed clearly that strain MT-1077T is a member of the genus Lactobacillus. The closest phylogenetic relatives are Lactobacillus alimentarius KCTC 3593T and Lactobacillus farciminis LMG 9200T, with levels of 16S rDNA similarity of 98.4 and 98.2%, respectively. Levels of 16S rDNA similarity between strain MT-1077T and other Lactobacillus species were less than 93.0%. Differences in some phenotypic characteristics and DNA-DNA relatedness data indicated that strain MT-1077T should be distinguished from L. alimentarius KCTC 3593T and L. farciminis LMG 9200T. On the basis of the data presented, it is proposed that strain MT-1077T should be placed in the genus Lactobacillus as a new species, Lactobacillus kimchii sp. nov. The type strain of the new species is strain MT-1077T (= KCTC 8903PT = JCM 10707T).

  12. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  13. Testing of viscous anti-HIV microbicides using Lactobacillus

    PubMed Central

    Moncla, B.J.; Pryke, K.; Rohan, L. C.; Yang, H.

    2012-01-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30 min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive brief, about 2 sec, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. PMID:22226641

  14. Testing of viscous anti-HIV microbicides using Lactobacillus.

    PubMed

    Moncla, B J; Pryke, K; Rohan, L C; Yang, H

    2012-02-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Draft Genome Sequence of Lactobacillus pobuzihii E100301T.

    PubMed

    Chiu, Chi-Ming; Chang, Chi-Huan; Pan, Shwu-Fen; Wu, Hui-Chung; Li, Shiao-Wen; Chang, Chuan-Hsiung; Lee, Yun-Shien; Chiang, Chih-Ming; Chen, Yi-Sheng

    2013-05-09

    Lactobacillus pobuzihii E100301(T) is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301(T).

  16. Biofilms of vaginal Lactobacillus in vitro test.

    PubMed

    Wei, Xiao-Yu; Zhang, Rui; Xiao, Bing-Bing; Liao, Qin-Ping

    2017-01-01

    This paper focuses on biofilms of Lactobacillus spp. - a type of normal flora isolated from healthy human vaginas of women of childbearing age; thereupon, it broadens the research scope of investigation of vaginal normal flora. The static slide culture method was adopted to foster biofilms, marked by specific fluorescence staining. Laser scanning confocal and scanning electron microscopy were used to observe the microstructure of the biofilms. Photographs taken from the microstructure were analysed to calculate the density of the biofilms. The body of Lactobacillus spp., though red, turned yellow when interacting with the green extracellular polysaccharides. The structure of the biofilm and aquaporin within the biofilm were imaged. Lactobacillus density increases over time. This study provides convincing evidence that Lactobacillus can form biofilms and grow over time in vitro. This finding establishes an important and necessary condition for selecting proper strains for the pharmaceutics of vaginal ecology.

  17. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  18. Draft Genome Sequence of Lactobacillus pobuzihii E100301T

    PubMed Central

    Chiu, Chi-ming; Chang, Chi-huan; Pan, Shwu-fen; Wu, Hui-chung; Li, Shiao-wen; Chang, Chuan-hsiung; Lee, Yun-shien; Chiang, Chih-ming

    2013-01-01

    Lactobacillus pobuzihii E100301T is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301T. PMID:23661478

  19. Control of lupus nephritis by changes of gut microbiota.

    PubMed

    Mu, Qinghui; Zhang, Husen; Liao, Xiaofeng; Lin, Kaisen; Liu, Hualan; Edwards, Michael R; Ahmed, S Ansar; Yuan, Ruoxi; Li, Liwu; Cecere, Thomas E; Branson, David B; Kirby, Jay L; Goswami, Poorna; Leeth, Caroline M; Read, Kaitlin A; Oestreich, Kenneth J; Vieson, Miranda D; Reilly, Christopher M; Luo, Xin M

    2017-07-11

    Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a "leaky" gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.

  20. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Urease enzyme preparation from Lactobacillus... Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic bacterium Lactobacillus...

  1. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  2. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Spontaneous Preterm Birth Is Associated with Differential Expression of Vaginal Metabolites by Lactobacilli-Dominated Microflora.

    PubMed

    Stafford, Graham P; Parker, Jennifer L; Amabebe, Emmanuel; Kistler, James; Reynolds, Steven; Stern, Victoria; Paley, Martyn; Anumba, Dilly O C

    2017-01-01

    A major challenge in preventing preterm birth (PTB) is identifying women at greatest risk. This pilot study prospectively examined the differences in vaginal microbiota and metabolite profiles of women who delivered prematurely compared to their term counterparts in a cohort of asymptomatic (studied at 20-22, n = 80; and 26-28 weeks, n = 41) and symptomatic women (studied at 24-36 weeks, n = 37). Using 16S rRNA sequencing, the vaginal microbiota from cervicovaginal fluid samples was characterized into five Community State Types (CST) dominated by Lactobacillus spp.: CSTI ( Lactobacillus crispatus ), CSTII ( Lactobacillus gasseri ), CSTIII ( Lactobacillus iners) , CSTV ( Lactobacillus jensenii ); and mixed anaerobes-CSTIV. This was then related to the vaginal metabolite profile and pH determined by 1 H-Nuclear Magnetic Resonance spectroscopy and pH indicator paper, respectively. At 20-22 weeks, the term-delivered women (TDW) indicated a proportion of CSTI-dominated microbiota >2-fold higher compared to the preterm-delivered women (PTDW) (40.3 vs. 16.7%, P = 0.0002), and a slightly higher proportion at 26-28 weeks (20.7 vs. 16.7%, P = 0.03). CSTV was >2-fold higher in the PTDW compared to TDW at 20-22 (22.2 vs. 9.7%, P = 0.0002) and 26-28 weeks (25.0 vs. 10.3%, P = 0.03). Furthermore, at 26-28 weeks no PTDW had a CSTII-dominated microbiome, in contrast to 28% of TDW ( P < 0.0001). CSTI-dominated samples showed higher lactate levels than CSTV at 20-22 weeks ( P < 0.01), and 26-28 weeks ( P < 0.05), while CSTII-dominated samples indicated raised succinate levels over CSTV at 26-28 weeks ( P < 0.05). These were supported by Principal coordinates analysis, which revealed strong clustering of metabolites according to CST. In addition, the CSTI-dominated samples had an average pH of 3.8, which was lower than those of CSTII-4.4, and CSTV-4.2 ( P < 0.05). Elevated vaginal lactate and succinate were associated with predominance of CSTI and II over CSTV in women who delivered

  4. Spontaneous Preterm Birth Is Associated with Differential Expression of Vaginal Metabolites by Lactobacilli-Dominated Microflora

    PubMed Central

    Stafford, Graham P.; Parker, Jennifer L.; Amabebe, Emmanuel; Kistler, James; Reynolds, Steven; Stern, Victoria; Paley, Martyn; Anumba, Dilly O. C.

    2017-01-01

    A major challenge in preventing preterm birth (PTB) is identifying women at greatest risk. This pilot study prospectively examined the differences in vaginal microbiota and metabolite profiles of women who delivered prematurely compared to their term counterparts in a cohort of asymptomatic (studied at 20–22, n = 80; and 26–28 weeks, n = 41) and symptomatic women (studied at 24–36 weeks, n = 37). Using 16S rRNA sequencing, the vaginal microbiota from cervicovaginal fluid samples was characterized into five Community State Types (CST) dominated by Lactobacillus spp.: CSTI (Lactobacillus crispatus), CSTII (Lactobacillus gasseri), CSTIII (Lactobacillus iners), CSTV (Lactobacillus jensenii); and mixed anaerobes—CSTIV. This was then related to the vaginal metabolite profile and pH determined by 1H-Nuclear Magnetic Resonance spectroscopy and pH indicator paper, respectively. At 20–22 weeks, the term-delivered women (TDW) indicated a proportion of CSTI-dominated microbiota >2-fold higher compared to the preterm-delivered women (PTDW) (40.3 vs. 16.7%, P = 0.0002), and a slightly higher proportion at 26–28 weeks (20.7 vs. 16.7%, P = 0.03). CSTV was >2-fold higher in the PTDW compared to TDW at 20–22 (22.2 vs. 9.7%, P = 0.0002) and 26–28 weeks (25.0 vs. 10.3%, P = 0.03). Furthermore, at 26–28 weeks no PTDW had a CSTII-dominated microbiome, in contrast to 28% of TDW (P < 0.0001). CSTI-dominated samples showed higher lactate levels than CSTV at 20–22 weeks (P < 0.01), and 26–28 weeks (P < 0.05), while CSTII-dominated samples indicated raised succinate levels over CSTV at 26–28 weeks (P < 0.05). These were supported by Principal coordinates analysis, which revealed strong clustering of metabolites according to CST. In addition, the CSTI-dominated samples had an average pH of 3.8, which was lower than those of CSTII—4.4, and CSTV—4.2 (P < 0.05). Elevated vaginal lactate and succinate were associated with predominance of CSTI and II over CSTV in women

  5. Effects of probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary Streptococcus mutans and Lactobacillus levels

    PubMed Central

    Tehrani, Maryam Hajnorouzali; Akhlaghi, Najmeh; Talebian, Leila; Emami, Jaber; Keyhani, Siamak Etzad

    2016-01-01

    Aims: The aim of the present study was to evaluate the effect of a probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary counts of Streptococcus mutans (SM) and Lactobacillus (LB) in children 3–6 years of age. Settings and Design: Sixty-one healthy children were randomly allocated into two parallel blocks in this double-blind, randomized controlled trial (IRCT2014120320202N1) from May to June 2015. Subjects and Methods: Finally 53 participants consumed five drops of placebo (n = 23) or probiotic (n = 30) every night for 2 weeks. Before intervention and 1 day after completion of the intervention, unstimulated salivary samples were collected, and microbiologic evaluations were carried out. Statistical Analysis: Data were analyzed with descriptive statistical methods Wilcoxon signed ranks, Mann–Whitney, and logistic regression. Results: SM level decreased significantly in probiotic group after intervention (P = 0.045), and there were significant differences in salivary SM counts after intervention between two groups (P = 0.04). In probiotic group, LB counts decreased significantly after intervention (P = 0.048); however, there were no significant differences between two groups (P = 0.216). Conclusions: Use of this probiotic drop decreased salivary counts of SM; however, LB counts did not change. In addition, use of the drop in children with higher salivary counts appeared to be more effective. PMID:27994413

  6. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk.

    PubMed

    Riaz Rajoka, Muhammad Shahid; Zhao, Haobin; Lu, Yao; Lian, Ziyang; Li, Na; Hussain, Nazim; Shao, Dongyan; Jin, Mingliang; Li, Qi; Shi, Junling

    2018-05-15

    Lactic acid bacteria have been categorized as probiotics and play a crucial role in human health by stimulating the supply of nutrients, shaping the immune system, and preventing the colonization of pathogenic microbes. This study investigated the mechanisms for the action of three potential probiotic Lactobacillus strains: Lactobacillus casei SR1, Lactobacillus casei SR2, and Lactobacillus paracasei SR4 isolated from human breast milk. These Lactobacillus strains were identified via 16S DNA sequencing and characterized via biochemical assays including acid resistance, bile resistance, antioxidant activity, and antibiotic susceptibility. The bioactivity of the cell-free culture supernatant (CFCS) secreted by these strains on the cervix cancer (HeLa) cell line was also evaluated via cytotoxicity assay and apoptosis analysis. The mechanism of anticancer activity was also investigated via RT-qPCR and western blotting. The results demonstrated that these newly isolated Lactobacillus strains from human milk displayed noticeable probiotic characteristics such as excellent antibiotic susceptibility, outstanding antioxidant activity, and promising resistance to low pH and high concentration of bile salts. The results of the conducted bioactivity assays verified that the CFCSs had acceptable anticancer effects on cervix cancer (HeLa) cells by upregulating the expression of apoptotic genes BAX, BAD, caspase3, caspase8, and caspase9 and by downregulating the expression of the BCl-2 gene. Overall, these results indicate that the Lactobacillus strains isolated from human breast milk could be considered as a topical medication with a potential therapeutic index due to their efficacy against cervix cancer cells.

  7. In vitro testing of commercial and potential probiotic lactic acid bacteria.

    PubMed

    Jensen, Hanne; Grimmer, Stine; Naterstad, Kristine; Axelsson, Lars

    2012-02-01

    Probiotics are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host. The objective of this study was to investigate the diversity of selected commercial and potential probiotic lactic acid bacteria using common in vitro screening assays such as transit tolerance in the upper human gastrointestinal tract, adhesion capacity to human intestinal cell lines and effect on epithelial barrier function. The selected bacteria include strains of Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus farciminis, Lactobacillus sakei, Lactobacillus gasseri, Lactobacillus rhamnosus, Lactobacillus reuteri and Pediococcus pentosaceus. Viable counts after simulated gastric transit tolerance showed that L. reuteri strains and P. pentosaceus tolerate gastric juice well, with no reduction of viability, whereas L. pentosus, L. farciminis and L. sakei strains lost viability over 180min. All strains tested tolerate the simulated small intestinal juice well. The bacterial adhesion capacity to human intestinal cells revealed major species and strain differences. Overall, L. plantarum MF1298 and three L. reuteri strains had a significant higher adhesion capacity compared to the other strains tested. All strains, both living and UV-inactivated, had little effect on the epithelial barrier function. However, living L. reuteri strains revealed a tendency to increase the transepithelial electrical resistance (TER) from 6 to 24h. This work demonstrates the diversity of 18 potential probiotic bacteria, with major species and strain specific effects in the in vitro screening assays applied. Overall, L. reuteri strains reveal some interesting characteristics compared to the other strains investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The Cervicovaginal Microbiota and Its Associations With Human Papillomavirus Detection in HIV-Infected and HIV-Uninfected Women

    PubMed Central

    Reimers, Laura L.; Mehta, Supriya D.; Massad, L. Stewart; Burk, Robert D.; Xie, Xianhong; Ravel, Jacques; Cohen, Mardge H.; Palefsky, Joel M.; Weber, Kathleen M.; Xue, Xiaonan; Anastos, Kathryn; Minkoff, Howard; Atrio, Jessica; D'Souza, Gypsyamber; Ye, Qian; Colie, Christine; Zolnik, Christine P.; Spear, Gregory T.; Strickler, Howard D.

    2016-01-01

    Background. Bacterial vaginosis (BV) is characterized by low abundance of Lactobacillus species, high pH, and immune cell infiltration and has been associated with an increased risk of human papillomavirus (HPV) infection. We molecularly assessed the cervicovaginal microbiota over time in human immunodeficiency virus (HIV)–infected and HIV-uninfected women to more comprehensively study the HPV-microbiota relationship, controlling for immune status. Methods. 16S ribosomal RNA gene amplicon pyrosequencing and HPV DNA testing were conducted annually in serial cervicovaginal lavage specimens obtained over 8–10 years from African American women from Chicago, of whom 22 were HIV uninfected, 22 were HIV infected with a stable CD4+ T-cell count of > 500 cells/mm3, and 20 were HIV infected with progressive immunosuppression. Vaginal pH was serially measured. Results. The relative abundances of Lactobacillus crispatus and other Lactobacillus species were inversely associated with vaginal pH (all P < .001). High (vs low) L. crispatus relative abundance was associated with decreased HPV detection (odds ratio, 0.48; 95% confidence interval, .24–.96; Ptrend = .03) after adjustment for repeated observation and multiple covariates, including pH and study group. However, there were no associations between HPV and the relative abundance of Lactobacillus species as a group, nor with Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii individually. Conclusions. L. crispatus may have a beneficial effect on the burden of HPV in both HIV-infected and HIV-uninfected women (independent of pH). PMID:27521363

  9. Efficacy and safety of a vaginal medicinal product containing three strains of probiotic bacteria: a multicenter, randomized, double-blind, and placebo-controlled trial.

    PubMed

    Tomusiak, Anna; Strus, Magdalena; Heczko, Piotr B; Adamski, Paweł; Stefański, Grzegorz; Mikołajczyk-Cichońska, Aleksandra; Suda-Szczurek, Magdalena

    2015-01-01

    The main objective of this study was to evaluate whether vaginal administration of probiotic Lactobacillus results in their colonization and persistence in the vagina and whether Lactobacillus colonization promotes normalization and maintenance of pH and Nugent score. The study was a multicenter, randomized, double-blind, and placebo-controlled trial. Altogether, 376 women were assessed for eligibility, and signed informed consent. One hundred and sixty eligible women with abnormal, also called intermediate, vaginal microflora, as indicated by a Nugent score of 4-6 and pH >4.5 and zero or low Lactobacillus count, were randomized. Each participant was examined four times during the study. Women were randomly allocated to receive either the probiotic preparation inVag(®), or a placebo (one capsule for seven consecutive days vaginally). The product inVag includes the probiotic strains Lactobacillus fermentum 57A, Lactobacillus plantarum 57B, and Lactobacillus gasseri 57C. We took vaginal swabs during visits I, III, and IV to determine the presence and abundance of bacteria from the Lactobacillus genus, measure the pH, and estimate the Nugent score. Drug safety evaluation was based on analysis of the types and occurrence of adverse events. Administration of inVag contributed to a significant decrease (between visits) in both vaginal pH (P<0.05) and Nugent score (P<0.05), and a significant increase in the abundance of Lactobacillus between visit I and visits III and IV (P<0.05). Molecular typing revealed the presence of Lactobacillus strains originating from inVag in 82% of women taking the drug at visit III, and 47.5% at visit IV. There was no serious adverse event related to inVag administration during the study. The probiotic inVag is safe for administration to sustainably restore the healthy vaginal microbiota, as demonstrated by predominance of the Lactobacillus bacteria in vaginal microbiota.

  10. The aggregation-promoting factor in Lactobacillus delbrueckii ssp. bulgaricus: confirmation of the presence and expression of the apf gene and in silico analysis of the corresponding protein.

    PubMed

    Yungareva, Tsvetelina; Urshev, Zoltan

    2018-06-19

    In lactobacilli the aggregation phenotype is linked to their ability to colonize the intestinal and urogenital tracts and to counteract pathogenic bacteria. In all available complete genome sequences of Lactobacillus delbrueckii ssp. bulgaricus there are at least two genes putatively related to aggregation, one of which is annotated as aggregation-promoting factor (apf). Here we report the results from the in silico analysis of this gene and its product. The apf gene was present in the genome of all 70 tested L. delbr. ssp. bulgaricus strains. Its expression was confirmed for a selection of five strains with aggregation phenotype and two aggregation-negative strains. The mature Apf protein had a length of 257-284 amino acids with predicted molecular weight in the range of 28.64-30.36 kDa and isoelectric point of 10.6 ± 0.1, showing some similarity to Apf1 and Apf2 from L. johnsonii NCC533 and Apf1 and Apf2 from L. gasseri which are similar in size (28-35 kDa) and share a similar high isoelectric point (pI > 9). Predictive analyzes have indicated that Apf is a secretory protein. The 30 amino acid signal peptide and the predicted cleavage site in the pre-protein suggested that it was processed by Type I Signal protease. In the mature Apf protein a glutamine-rich N-terminal region was followed by an unusual lysine/alanine-rich region with variable length, supposed to be positively charged under physiological conditions, interacting with bacterial teichoic acids. The alignment of the C-termini of the Apf proteins showed similarity to conserved C-terminal domains in aggregation-related proteins in other lactobacilli such as Apf1 of Lactobacillus johnsonii ATCC 11506 and the secretory protein Sep of L. fermentum BR11, that may be involved in non-covalent binding to carbohydrates. The C-terminal anchor and the cationic domain in Apf may serve as mediators of physical cell-to-cell interaction in L. delbr. ssp. bulgaricus.

  11. Screening of Probiotic Candidates in Human Oral Bacteria for the Prevention of Dental Disease

    PubMed Central

    Terai, Tomohiko; Okumura, Takekazu; Imai, Susumu; Nakao, Masumi; Yamaji, Kazuaki; Ito, Masahiko; Nagata, Tsuyoshi; Kaneko, Kimiyuki; Miyazaki, Kouji; Okada, Ayako; Nomura, Yoshiaki; Hanada, Nobuhiro

    2015-01-01

    The oral cavity in healthy subjects has a well-balanced microbiota that consists of more than 700 species. However, a disturbance of this balance, with an increase of harmful microbes and a decrease of beneficial microbes, causes oral disorders such as periodontal disease or dental caries. Nowadays, probiotics are expected to confer oral health benefits by modulating the oral microbiota. This study screened new probiotic candidates with potential oral health benefits and no harmful effects on the oral cavity. We screened 14 lactobacillus strains and 36 streptococcus strains out of 896 oral isolates derived from healthy subjects. These bacteria did not produce volatile sulfur compounds or water-insoluble glucan, had higher antibacterial activity against periodontal bacteria, and had higher adherence activity to oral epithelial cells or salivary-coated hydroxyapatite in vitro. We then evaluated the risk of primary cariogenicity and infective endocarditis of the selected oral isolates. As a result, Lactobacillus crispatus YIT 12319, Lactobacillus fermentum YIT 12320, Lactobacillus gasseri YIT 12321, and Streptococcus mitis YIT 12322 were selected because they showed no cariogenic potential in an artificial mouth system and a lower risk of experimental infective endocarditis in a rat model. These candidates are expected as new probiotics with potential oral health benefits and no adverse effects on general health. PMID:26053410

  12. Screening of Probiotic Candidates in Human Oral Bacteria for the Prevention of Dental Disease.

    PubMed

    Terai, Tomohiko; Okumura, Takekazu; Imai, Susumu; Nakao, Masumi; Yamaji, Kazuaki; Ito, Masahiko; Nagata, Tsuyoshi; Kaneko, Kimiyuki; Miyazaki, Kouji; Okada, Ayako; Nomura, Yoshiaki; Hanada, Nobuhiro

    2015-01-01

    The oral cavity in healthy subjects has a well-balanced microbiota that consists of more than 700 species. However, a disturbance of this balance, with an increase of harmful microbes and a decrease of beneficial microbes, causes oral disorders such as periodontal disease or dental caries. Nowadays, probiotics are expected to confer oral health benefits by modulating the oral microbiota. This study screened new probiotic candidates with potential oral health benefits and no harmful effects on the oral cavity. We screened 14 lactobacillus strains and 36 streptococcus strains out of 896 oral isolates derived from healthy subjects. These bacteria did not produce volatile sulfur compounds or water-insoluble glucan, had higher antibacterial activity against periodontal bacteria, and had higher adherence activity to oral epithelial cells or salivary-coated hydroxyapatite in vitro. We then evaluated the risk of primary cariogenicity and infective endocarditis of the selected oral isolates. As a result, Lactobacillus crispatus YIT 12319, Lactobacillus fermentum YIT 12320, Lactobacillus gasseri YIT 12321, and Streptococcus mitis YIT 12322 were selected because they showed no cariogenic potential in an artificial mouth system and a lower risk of experimental infective endocarditis in a rat model. These candidates are expected as new probiotics with potential oral health benefits and no adverse effects on general health.

  13. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  14. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  15. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Franden, Mary Ann; Mc Millan, James D.; Finkelstein, Mark

    1998-01-01

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid.

  16. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Franden, M.A.; McMillan, J.D.; Finkelstein, M.

    1998-08-25

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid. 4 figs.

  17. Genome sequence of Lactobacillus farciminis KCTC 3681.

    PubMed

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-04-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds.

  18. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  19. Assessment of in vitro oxalate degradation by Lactobacillus species cultured from veterinary probiotics.

    PubMed

    Cho, Jenny G; Gebhart, Connie J; Furrow, Eva; Lulich, Jody P

    2015-09-01

    To culture Lactobacillus spp from veterinary probiotics and measure their in vitro oxalate-degrading capacity. 2 commercial veterinary probiotics containing Lactobacillus spp. Lactobacillus spp were cultured anaerobically on selective deMan, Rogosa, Sharpe agar medium and subcultured for speciation by 16S rDNA gene sequencing. Isolates were inoculated into broth containing sodium oxalate (5 mg/L) and incubated anaerobically for 72 hours. An oxalate-degrading isolate of Lactobacillus acidophilus (American Type Culture Collection [ATCC] 53544) was the positive control sample; sterile broth containing a known quantity of sodium oxalate was the negative control sample. Oxalate concentrations were detected with ion chromatography. Oxalate degradation was assessed with Dunnett tests to detect differences in mean oxalate concentration for each isolate, compared with results for the negative control. Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei or Lactobacillus zeae (too closely related to differentiate) were isolated from probiotic 1, and L plantarum was isolated from probiotic 2. Sequencing of the 16S rDNA gene confirmed 100% homology to type species. Lactobacillus acidophilus (ATCC 53544) and L acidophilus from probiotic 1 significantly decreased oxalate concentrations by 85.3 and 161.9 mg/L, respectively. Lactobacillus plantarum from probiotics 1 and 2 significantly increased oxalate concentrations by 56.1 and 36.1 mg/L, respectively. Lactobacillus casei did not alter oxalate concentrations. Lactobacillus acidophilus isolates significantly reduced oxalate concentrations. In vivo studies are needed to determine whether probiotics containing L acidophilus decrease urine oxalate concentrations and reduce risk of urolith recurrence in dogs with a history of calcium oxalate urolithiasis.

  20. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.

    PubMed

    Ehrmann, Matthias A; Müller, Martin R A; Vogel, Rudi F

    2003-01-01

    Genotypic fingerprinting to analyse the bacterial flora of an industrial sourdough revealed a coherent group of strains which could not be associated with a valid species. Comparative 16S rDNA sequence analysis showed that these strains formed a homogeneous cluster distinct from their closest relatives, Lactobacillus farciminis, Lactobacillus alimentarius and Lactobacillus kimchii. To characterize them further, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic properties have been determined. The DNA G +C content was 37.5 0.2 mol%. The peptidoglycan was of the lysine-D-iso-asparagine (L-Lys-D-Asp) type. The strains were homofermentative, Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They were found as a major stable component of a rye flour sourdough fermentation. Physiological, biochemical as well as genotypic data suggested them to be a new species of the genus Lactobacillus. This was confirmed by DNA-DNA hybridization of genomic DNA, and the name Lactobacillus mindensis is proposed. The type strain of this species is DSM 14500T (=LMG 21508T).

  1. Association between the vaginal microbiota, menopause status and signs of vulvovaginal atrophy

    PubMed Central

    Brotman, Rebecca M.; Shardell, Michelle D.; Gajer, Pawel; Fadrosh, Doug; Chang, Kathryn; Silver, Michelle; Viscidi, Raphael P.; Burke, Anne E.; Ravel, Jacques; Gravitt, Patti E.

    2013-01-01

    Objectives The vaginal microbiota help protect the female genital tract from disease. We sought to describe the composition of the vaginal microbiota between pre-, peri- and postmenopausal women and to explore the association between the microbiota and vulvovaginal atrophy (VVA). Methods 87 women (age 35–60) were classified as premenopausal (n=30), perimenopausal (n=29) or postmenopausal (n=28) according to STRAW guidelines. Mid-vagina bacterial community composition was characterized by 16S rRNA gene analysis. Results Bacterial communities clustered into six community state types (CSTs), of which four were dominated by Lactobacillus crispatus, L. gasseri, L. iners, or L. jensenii; and two (CST-IV-A and IV-B) had low relative abundance of Lactobacillus. CST IV-A was characterized by Streptococcus and Prevotella, whereas CST IV-B by Atopobium. There was a significant association between menopause stage and CST (p-value=0.004) and VVA and CST (p-value=0.002). Perimenopausal women were more likely to be classified as CST IV-A or the L. gasseri CST, whereas postmenopausal women were mostly CST IV-A. CSTs dominated by L. crispatus and L. iners were more prevalent in premenopausal women. Nineteen participants had signs of mild or moderate VVA. Compared to women with no VVA, the vaginal microbiota of women with mild or moderate atrophy had 25-fold greater odds of being classified as CST IV-A vs. L. crispatus CST (aOR: 25.89, 95% Credible Interval:2.98-406.79). Conclusions A distinct bacterial community state (CST IV-A) with low relative abundance of Lactobacillus was associated with VVA. Future studies recruiting a larger number of women are needed to replicate the findings. This study provides an impetus for future longitudinal studies designed to manage, modulate and restore vaginal microbiota homeostasis which would provide stronger evidence for a causal relationship with VVA and ultimately improve treatment and prevention of atrophic vaginitis in menopause. PMID

  2. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  3. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    PubMed

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  4. Lactobacillus curtus sp. nov., isolated from beer in Finland.

    PubMed

    Asakawa, Yuki; Takesue, Nobuchika; Asano, Shizuka; Shimotsu, Satoshi; Iijima, Kazumaru; Suzuki, Koji; Motoyama, Yasuo; Aizawa, Masayuki

    2017-10-01

    A Gram-stain-positive, catalase-negative and short-rod-shaped organism, designated VTT E-94560, was isolated from beer in Finland and deposited in the VTT culture collection as a strain of Lactobacillus rossiae. However, the results of 16S rRNA gene sequence analysis showed that VTT E-94560 was only related to Lactobacillus rossiae JCM 16176 T with 97.0 % sequence similarity, lower than the 98.7 % regarded as the boundary for the species differentiation. Additional phylogenetic studies on the pheS gene, rpoA gene and 16S-23S rRNA internally transcribed spacer region further reinforced the taxonomically independent status of VTT E-94560 and its related Lactobacillus species including L. rossiae and Lactobacillus siliginis. Strain VTT E-94560 also exhibited several differences in its carbohydrate fermentation profiles from those related Lactobacillus species. In addition, DNA-DNA relatedness between VTT E-94560 and these two type strains was 4 % (L. rossiae JCM 16176 T ) and 12 % (L. siliginins JCM 16155 T ), respectively, which were lower than the 70 % cut-off for general species delineation, indicating that these three strains are not taxonomically identical at the species level. These studies revealed that VTT E-94560 represents a novel species, for which the name Lactobacillus curtus sp. nov. is proposed. The type strain is VTT E-94560 T (=JCM 31185 T ).

  5. Biodiversity of Lactobacillus sanfranciscensis strains isolated from five sourdoughs.

    PubMed

    Kitahara, M; Sakata, S; Benno, Y

    2005-01-01

    Five different sourdoughs were investigated for the composition of lactic acid bacteria (LAB) and the biodiversity of Lactobacillus sanfranciscensis strains. A total of 57 strains were isolated from five sourdoughs. Isolated strains were all identified by the 16S rDNA sequence and species-specific primers for L. sanfranciscensis. Results of identification showed that LAB strains were L. sanfranciscensis, Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus fermentum, Lactobacillus pontis, Lactobacillus casei, Weisella confusa and Pediococcus pentosaceus. A total of 21 strains were identified as L. sanfranciscensis and these isolates were detected in all five sourdoughs. Ribotyping was applied to investigate the relationship between intraspecies diversity of L. sanfranciscensis and sourdough. A total of 22 strains of L. sanfranciscensis including L. sanfranciscensis JCM 5668T were compared by ribotyping. The dendrogram of 21 ribotyping patterns showed four clusters, and L. sanfranciscensis JCM 5668T was independent of the others. The different biotypes of L. sanfranciscensis were present in two sourdoughs compared with other three sourdoughs. The LAB compositions of five sourdoughs were different and the relationship between intraspecies diversity of L. sanfranciscensis strains and five sourdoughs was shown by ribotyping. This study demonstrated that ribotyping was useful for distinguishing L. sanfranciscensis strains. A further important result is that the intra-species diversity of L. sanfranciscensis strains seems to be related to the sourdough preparation.

  6. Lactobacillus rhamnosus GG (ATCC 53103) and platelet aggregation in vitro.

    PubMed

    Korpela, R; Moilanen, E; Saxelin, M; Vapaatalo, H

    1997-06-17

    Lactobacillus rhamnosus GG is an experimentally and clinically well documented probiotic used in different dairy products. The present study aimed to investigate the safety aspects of Lactobacillus rhamnosus GG, particularly with respect to platelet aggregation, the initiating event in thrombosis. Platelet rich plasma was separated from the blood of healthy volunteers, and the effects of Lactobacillus rhamnosus GG (ATCC 53103), Lactobacillus rhamnosus (ATCC 7469) and Enterococcus faecium T2L6 in different dilutions on spontaneous, ADP- and adrenaline-induced aggregation were tested. The bacteria did not influence spontaneous aggregation. Only Enterococcus faecium T2L6 enhanced the adrenaline-induced aggregation, with a less clear effect on ADP-induced aggregation.

  7. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. Copyright © 2016. Published by Elsevier B.V.

  8. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection

    PubMed Central

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-01-01

    BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects. PMID:24567124

  9. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection.

    PubMed

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-02-24

    Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.

  10. First Functional and Mutational Analysis of Group 3 N-Acetylneuraminate Lyases from Lactobacillus antri and Lactobacillus sakei 23K

    PubMed Central

    García-García, María Inmaculada; Gil-Ortiz, Fernando; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2014-01-01

    N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1. PMID:24817128

  11. Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-zhe; Chen, Hsin-Chih; Chiang, Yu-Cheng; Tsen, Hau-Yang

    2009-01-01

    PCR primers specific for the detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum were designed based on the elongation factor Tu gene (tuf). The specificity of these four primer sets were confirmed by PCR with 88 bacterial strains of Lactobacillus, Enterococcus, Bifidobacterium, and other bacterial species. Results indicated that these primer sets generated predicted PCR products of 397, 230, 202, and 161 bp for L. acidophilus, L. delbrueckii, L. casei group, and B. longum, respectively. Bacterial species other than the target organisms tested did not generate false-positive results. When these four primer sets were combined for the simultaneous detection of the lactic acid bacteria (LAB) in fermented milk products including yogurt, the LAB species listed on the labels of these products could be identified without the preenrichment step. The identification limit for each LAB strain with this multiplex PCR method was N X 10(3) CFU/ml in milk samples. The results of our multiplex PCR method were confirmed by PCR assay using primers based on the 16S rDNA or the 16S-23S intergenic spacer region and by biochemical tests using the API 50 CHL kit. When this multiplex PCR method was used with the determination of counts of total viable LAB and bifidobacteria, the quality of commercial fermented milk products could be assured.

  12. Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage.

    PubMed

    Zou, Yuanqiang; Liu, Feng; Fang, Chengxiang; Wan, Daiwei; Yang, Rentao; Su, Qingqing; Yang, Ruifu; Zhao, Jiao

    2013-05-01

    Two Lactobacillus strains, designated LY-73(T) and LY-30B, were isolated from a dairy beverage, sold in Shenzhen market, China. The two isolates were Gram-positive, non-spore-forming, non-motile, facultatively anaerobic rods that were heterofermentative and did not exhibit catalase activity. Sequencing of the 16S rRNA, pheS and rpoA genes revealed that the two isolates shared 99.5, 99.8 and 99.9 % sequence similarity, which indicates that they belong to the same species. Phylogenetic analysis demonstrated clustering of the two isolates with the genus Lactobacillus. Strain LY-73(T) showed highest 16S rRNA gene sequence similarities with Lactobacillus harbinensis KACC 12409(T) (97.73%), Lactobacillus perolens DSM 12744(T) (96.96 %) and Lactobacillus selangorensis DSM 13344(T) (93.10 %). Comparative analyses of their rpoA and pheS gene sequences indicated that the novel strains were significantly different from other Lactobacillus species. Low DNA-DNA reassociation values (50.5 %) were obtained between strain LY-73(T) and its phylogenetically closest neighbours. The G+C contents of the DNA of the two novel isolates were 56.1 and 56.5 mol%. Straight-chain unsaturated fatty acids C18 : 1ω9c (78.85 and 74.29 %) were the dominant components, and the cell-wall peptidoglycan was of the l-Lys-d-Asp type. Based on phenotypic characteristics, and chemotaxonomic and genotypic data, the novel strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus shenzhenensis sp. nov. is proposed, with LY-73(T) ( = CCTCC M 2011481(T) = KACC 16878(T)) as the type strain.

  13. Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov.

    PubMed

    Meroth, Christiane B; Hammes, Walter P; Hertel, Christian

    2004-03-01

    The microbiota of two industrially processed rice sourdoughs was characterised by bacteriological culture in combination with PCR-denaturing gradient gel electrophoresis (DGGE) and 16S/28S rDNA sequence analysis. Rice sourdough I was continuously propagated for several years by back-slopping every week, whereas sourdough II was processed by using a commercial starter culture and back-slopping daily for three days. In rice sourdough II Candida krusei and Saccharomyces cerevisiae as well as Lactobacillus fermentum, Lactobacillus gallinarum, Lactobacillus kimchii, Lactobacillus plantarum, and Lactobacillus pontis dominated at the first day of fermentation. RAPD analysis of lactobacilli revealed identical profiles for each of the species except for L. fermentum and L. pontis indicating the presence of different strains. Fluctuations within the LAB community during fermentation were monitored by PCR-DGGE. L. pontis decreased in numbers over time and L. curvatus became dominant after 3 days of fermentation. Rice sourdough I contained S. cerevisiae, Lactobacillus paracasei (present with three different RAPD types), Lactobacillus paralimentarius, and a Lactobacillus strain which could not be allotted to any valid species. Phylogenetic analysis based on 16S rDNA sequences revealed Lactobacillus brevis as the closest relative (97.3% sequence similarity). Differences in some phenotypic characteristics and DNA-DNA relatedness indicated that the strain represents a new Lactobacillus species, for which the name Lactobacillus spicheri is proposed.

  14. Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia Lactobacilli?

    PubMed Central

    Allain, Thibault; Chaouch, Soraya; Thomas, Myriam; Travers, Marie-Agnès; Valle, Isabelle; Langella, Philippe; Grellier, Philippe; Polack, Bruno; Florent, Isabelle; Bermúdez-Humarán, Luis G.

    2018-01-01

    Giardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH)-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals. PMID:29472903

  15. Evaluation of propidium monoazide real-time PCR for enumeration of probiotic lactobacilli microencapsulated in calcium alginate beads.

    PubMed

    Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V

    2015-01-01

    The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.

  16. Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413

    PubMed Central

    Vizcaíno, Juan Antonio; González, Francisco Javier; Suárez, M Belén; Redondo, José; Heinrich, Julian; Delgado-Jarana, Jesús; Hermosa, Rosa; Gutiérrez, Santiago; Monte, Enrique; Llobell, Antonio; Rey, Manuel

    2006-01-01

    Background The filamentous fungus Trichoderma harzianum is used as biological control agent of several plant-pathogenic fungi. In order to study the genome of this fungus, a functional genomics project called "TrichoEST" was developed to give insights into genes involved in biological control activities using an approach based on the generation of expressed sequence tags (ESTs). Results Eight different cDNA libraries from T. harzianum strain CECT 2413 were constructed. Different growth conditions involving mainly different nutrient conditions and/or stresses were used. We here present the analysis of the 8,710 ESTs generated. A total of 3,478 unique sequences were identified of which 81.4% had sequence similarity with GenBank entries, using the BLASTX algorithm. Using the Gene Ontology hierarchy, we performed the annotation of 51.1% of the unique sequences and compared its distribution among the gene libraries. Additionally, the InterProScan algorithm was used in order to further characterize the sequences. The identification of the putatively secreted proteins was also carried out. Later, based on the EST abundance, we examined the highly expressed genes and a hydrophobin was identified as the gene expressed at the highest level. We compared our collection of ESTs with the previous collections obtained from Trichoderma species and we also compared our sequence set with different complete eukaryotic genomes from several animals, plants and fungi. Accordingly, the presence of similar sequences in different kingdoms was also studied. Conclusion This EST collection and its annotation provide a significant resource for basic and applied research on T. harzianum, a fungus with a high biotechnological interest. PMID:16872539

  17. The Cervicovaginal Microbiota and Its Associations With Human Papillomavirus Detection in HIV-Infected and HIV-Uninfected Women.

    PubMed

    Reimers, Laura L; Mehta, Supriya D; Massad, L Stewart; Burk, Robert D; Xie, Xianhong; Ravel, Jacques; Cohen, Mardge H; Palefsky, Joel M; Weber, Kathleen M; Xue, Xiaonan; Anastos, Kathryn; Minkoff, Howard; Atrio, Jessica; D'Souza, Gypsyamber; Ye, Qian; Colie, Christine; Zolnik, Christine P; Spear, Gregory T; Strickler, Howard D

    2016-11-01

     Bacterial vaginosis (BV) is characterized by low abundance of Lactobacillus species, high pH, and immune cell infiltration and has been associated with an increased risk of human papillomavirus (HPV) infection. We molecularly assessed the cervicovaginal microbiota over time in human immunodeficiency virus (HIV)-infected and HIV-uninfected women to more comprehensively study the HPV-microbiota relationship, controlling for immune status.  16S ribosomal RNA gene amplicon pyrosequencing and HPV DNA testing were conducted annually in serial cervicovaginal lavage specimens obtained over 8-10 years from African American women from Chicago, of whom 22 were HIV uninfected, 22 were HIV infected with a stable CD4 + T-cell count of > 500 cells/mm 3 , and 20 were HIV infected with progressive immunosuppression. Vaginal pH was serially measured.  The relative abundances of Lactobacillus crispatus and other Lactobacillus species were inversely associated with vaginal pH (all P < .001). High (vs low) L. crispatus relative abundance was associated with decreased HPV detection (odds ratio, 0.48; 95% confidence interval, .24-.96; P trend = .03) after adjustment for repeated observation and multiple covariates, including pH and study group. However, there were no associations between HPV and the relative abundance of Lactobacillus species as a group, nor with Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii individually.  L. crispatus may have a beneficial effect on the burden of HPV in both HIV-infected and HIV-uninfected women (independent of pH). © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Microbiological Quality of Panicum maximum Grass Silage with Addition of Lactobacillus sp. as Starter

    NASA Astrophysics Data System (ADS)

    Sumarsih, S.; Sulistiyanto, B.; Utama, C. S.

    2018-02-01

    The aim of the research was to evaluate microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp as starter. The completely randomized design was been used on this research with 4 treaments and 3 replications. The treatments were P0 ( Panicum maximum grass silage without addition Lactobacillus sp ), P1 ( Panicum maximum grass silage with 2% addition Lactobacillus sp), P2 (Panicum maximum grass silage with 4% addition Lactobacillus sp) and P3 (Panicum maximum grass silage with 6% addition Lactobacillus sp).The parameters were microbial populations of Panicum maximum grass silage (total lactic acid bacteria, total bacteria, total fungi, and Coliform bacteria. The data obtained were analyzed variance (ANOVA) and further tests performed Duncan’s Multiple Areas. The population of lactic acid bacteria was higher (P<0.05) and the total bacteria, fungi and Coliform were lower (P<0.05) with addition Lactobacillus sp. Microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp was better than no addition Lactobacillus sp.

  19. Genome Sequence of Lactobacillus farciminis KCTC 3681▿

    PubMed Central

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-01-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds. PMID:21257766

  20. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease.

    PubMed

    Di Cagno, Raffaella; Rizzello, Carlo G; Gagliardi, Francesca; Ricciuti, Patrizia; Ndagijimana, Maurice; Francavilla, Ruggiero; Guerzoni, M Elisabetta; Crecchio, Carmine; Gobbetti, Marco; De Angelis, Maria

    2009-06-01

    This study aimed at investigating the fecal microbiotas of children with celiac disease (CD) before (U-CD) and after (T-CD) they were fed a gluten-free diet and of healthy children (HC). Brothers or sisters of T-CD were enrolled as HC. Each group consisted of seven children. PCR-denaturing gradient gel electrophoresis (DGGE) analysis with V3 universal primers revealed a unique profile for each fecal sample. PCR-DGGE analysis with group- or genus-specific 16S rRNA gene primers showed that the Lactobacillus community of U-CD changed significantly, while the diversity of the Lactobacillus community of T-CD was quite comparable to that of HC. Compared to HC, the ratio of cultivable lactic acid bacteria and Bifidobacterium to Bacteroides and enterobacteria was lower in T-CD and even lower in U-CD. The percentages of strains identified as lactobacilli differed as follows: HC (ca. 38%) > T-CD (ca. 17%) > U-CD (ca. 10%). Lactobacillus brevis, Lactobacillus rossiae, and Lactobacillus pentosus were identified only in fecal samples from T-CD and HC. Lactobacillus fermentum, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus gasseri were identified only in several fecal samples from HC. Compared to HC, the composition of Bifidobacterium species of T-CD varied, and it varied even more for U-CD. Forty-seven volatile organic compounds (VOCs) belonging to different chemical classes were identified using gas-chromatography mass spectrometry-solid-phase microextraction analysis. The median concentrations varied markedly for HC, T-CD, and U-CD. Overall, the r(2) values for VOC data for brothers and sisters were equal to or lower than those for unrelated HC and T-CD. This study shows the effect of CD pathology on the fecal microbiotas of children.

  1. Effects of Lactobacillus formosensis S215T and Lactobacillus buchneri on quality and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage.

    PubMed

    Mangwe, M C; Rangubhet, K T; Mlambo, V; Yu, B; Chiang, H I

    2016-11-01

    This study investigated the influence of two microbial inoculants; Lactobacillus formosensis and Lactobacillus buchneri on fermentation quality, chemical composition, aerobic stability and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage. Sweet potato vines were ensiled for 28 and 60 days; without inoculant (CON), with Lact. buchneri (LB) or with Lact. formosensis (LF), both inoculants applied to achieve 1 × 10 6  CFU g -1 fresh forage. Lactobacillus formosensis silage had lower pH and higher lactic acid than all treatments. Yeasts and moulds were not detected in LB silage after ensiling. Lactobacillus buchneri silage was more aerobically stable than all treatments, whereas LF was more stable than CON silage. In vitro ruminal biological activity of condensed tannins was lower in microbial-inoculated silages than CON after ensiling. Lactobacillus formosensis improved fermentability by reducing silage pH and improved aerobic stability by producing more propionate, which inhibited yeast activity. Lactobacillus buchneri improved aerobic stability of the silage by producing more acetate. Both strains effectively reduced the antinutritional effect of condensed tannins after ensiling. Lactobacillus formosensis has the potential to be used as a silage inoculant because of its ability to improve fermentability and aerobic stability in sweet potato vines silage. © 2016 The Society for Applied Microbiology.

  2. A Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development

    PubMed Central

    Yu, Rosa R.; Cheng, Andrew T.; Lagenaur, Laurel A.; Huang, Wenjun; Weiss, Deborah E.; Treece, Jim; Sanders-Beer, Brigitte E.; Hamer, Dean H.; Lee, Peter P.; Xu, Qiang; Liu, Yang

    2015-01-01

    Background We sought to establish a nonhuman primate model of vaginal Lactobacillus colonization suitable for evaluating live microbial microbicide candidates. Methods Vaginal and rectal microflora in Chinese rhesus macaques (Macaca mulatta) were analyzed, with cultivable bacteria identified by 16S rRNA gene sequencing. Live lactobacilli were intravaginally administered to evaluate bacterial colonization. Results Chinese rhesus macaques harbored abundant vaginal Lactobacillus, with Lactobacillus johnsonii as the predominant species. Like humans, most examined macaques harbored only one vaginal Lactobacillus species. Vaginal and rectal Lactobacillus isolates from the same animal exhibited different genetic and biochemical profiles. Vaginal Lactobacillus was cleared by a vaginal suppository of azithromycin, and endogenous L. johnsonii was subsequently restored by intravaginal inoculation. Importantly, prolonged colonization of a human vaginal Lactobacillus jensenii was established in these animals. Conclusions The Chinese rhesus macaque harbors vaginal Lactobacillus and is a potentially useful model to support the pre-clinical evaluation of Lactobacillus-based topical microbicides. PMID:19367737

  3. Mg2+ improves the thermotolerance of probiotic Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8.

    PubMed

    Yang, Y; Huang, S; Wang, J; Jan, G; Jeantet, R; Chen, X D

    2017-04-01

    Food-related carbohydrates and proteins are often used as thermoprotectants for probiotic lactobacilli during industrial production and processing. However, the effect of inorganic salts is rarely reported. Magnesium is the second-most abundant cation in bacteria, and commonly found in various foods. Mg 2+ homeostasis is important in Salmonella and has been reported to play a critical role in their thermotolerance. However, the role of Mg 2+ in thermotolerance of other bacteria, in particular probiotic bacteria, still remains a hypothesis. In this study, the effect of Mg 2+ on thermotolerance of probiotic lactobacilli was investigated in three well-documented probiotic strains, Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8, in comparison with Zn 2+ and Na + . Concentrations of Mg 2+ between 10 and 50 mmol l -1 were found to increase the bacterial survival upon heat challenge. Remarkably, Mg 2+ addition at 20 mmol l -1 led to a 100-fold higher survival of L. rhamnosus GG upon heat challenge. This preliminary study also showed that Mg 2+ shortened the heat-induced extended lag time of bacteria, which indicated the improvement in bacterial recovery from thermal injury. In order to improve the productivity and stability of live probiotics, extensive investigations have been carried out to improve thermotolerance of probiotics. However, most of these studies focused on the effects of carbohydrates, proteins or amino acids. The roles of inorganic salts in various food materials, which have rarely been reported, should be considered when incorporating probiotics into these foods. In this study, Mg 2+ was found to play a significant role in the thermotolerance of probiotic lactobacilli. A novel strategy may be available in the near future by employing magnesium salts as protective agents of probiotics during manufacturing process. © 2017 The Society for Applied Microbiology.

  4. Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach

    PubMed Central

    Wilson, Charlotte M.; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M.; O'Toole, Paul W.; Zomer, Aldert

    2014-01-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. PMID:25063664

  5. Lactobacillus reuteri 100-23 modulates urea hydrolysis in the murine stomach.

    PubMed

    Wilson, Charlotte M; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M; O'Toole, Paul W; Zomer, Aldert; Tannock, Gerald W

    2014-10-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Huys, Geert; Vandamme, Peter; De Vuyst, Luc; Vancanneyt, Marc

    2007-07-01

    A polyphasic taxonomic study of the lactic acid bacteria (LAB) population in three traditional Belgian sourdoughs, sampled between 2002 and 2004, revealed a group of isolates that could not be assigned to any recognized LAB species. Initially, sourdough isolates were screened by means of (GTG)(5)-PCR fingerprinting. Four isolates displaying unique (GTG)(5)-PCR patterns were further investigated by means of phenylalanyl-tRNA synthase (pheS) gene sequence analysis and represented a bifurcated branch that could not be allocated to any LAB species present in the in-house pheS database. Their phylogenetic affiliation was determined using 16S rRNA gene sequence analysis and showed that the four sourdough isolates belong to the Lactobacillus plantarum group with Lactobacillus mindensis, Lactobacillus farciminis and Lactobacillus nantensis as closest relatives. Further genotypic and phenotypic studies, including whole-cell protein analysis (SDS-PAGE), amplified fragment length polymorphism (AFLP) fingerprinting, DNA-DNA hybridization, DNA G+C content analysis, growth characteristics and biochemical features, demonstrated that the new sourdough isolates represent a novel Lactobacillus species for which the name Lactobacillus crustorum sp. nov. is proposed. The type strain of the new species is LMG 23699(T) (=CCUG 53174(T)).

  7. Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γδ T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease.

    PubMed

    Tedesco, Dana; Thapa, Manoj; Chin, Chui Yoke; Ge, Yong; Gong, Minghao; Li, Jing; Gumber, Sanjeev; Speck, Patrick; Elrod, Elizabeth J; Burd, Eileen M; Kitchens, William H; Magliocca, Joseph F; Adams, Andrew B; Weiss, David S; Mohamadzadeh, Mansour; Grakoui, Arash

    2018-06-01

    Variants at the ABCB4 or MDR2 locus, which encodes a biliary transport protein, are associated with a spectrum of cholestatic liver diseases. Exacerbation of liver disease has been linked to increased hepatic levels of interleukin (IL) 17, yet the mechanisms of this increase are not understood. We studied mice with disruption of Mdr2 to determine how defects in liver and alteration in the microbiota contribute to production of IL17 by intrahepatic γδ T cells. We performed studies with Mdr2 -/- and littermate FVB/NJ (control) mice. IL17 was measured in serum samples by an enzyme-linked immunosorbent assay. Mice were injected with neutralizing antibodies against the γδ T-cell receptor (TCR; anti-γδ TCR) or mouse IL17A (anti-IL17A). Livers were collected and bacteria were identified in homogenates by culture procedures; TCRγδ + cells were isolated by flow cytometry. Fecal samples were collected from mice and analyzed by 16S ribosomal DNA sequencing. Cells were stimulated with antibodies or bacteria, and cytokine production was measured. We obtained tissues from 10 patients undergoing liver transplantation for primary sclerosing cholangitis or chronic hepatitis C virus infection. Tissues were analyzed for cytokine production by γδ TCR + cells. Mdr2 -/- mice had collagen deposition around hepatic bile ducts and periportal-bridging fibrosis with influx of inflammatory cells and increased serum levels of IL17 compared with control mice. Administration of anti-IL17A reduced hepatic fibrosis. Livers from Mdr2 -/- mice had increased numbers of IL17A + γδTCR + cells-particularly of IL17A + Vγ6Jγ1 γδ TCR + cells. Fecal samples from Mdr2 -/- mice were enriched in Lactobacillus, and liver tissues were enriched in Lactobacillus gasseri compared with control mice. Mdr2 -/- mice also had increased intestinal permeability. The γδ TCR + cells isolated from Mdr2 -/- livers produced IL17 in response to heat-killed L gasseri. Intraperitoneal injection of control mice

  8. Oral Lactobacillus Counts Predict Weight Gain Susceptibility: A 6-Year Follow-Up Study

    PubMed Central

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A.H.; Heitmann, Berit L.

    2017-01-01

    Background Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. Aim We examined the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35–65 years at baseline. Design Prospective observational study. Results In unadjusted analysis the level of oral Lactobacillus was inversely associated with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium intake of complex carbohydrates predicted diminished weight gain. A closer examination of these relations showed that BMI change and Lactobacillus level was unrelated for those with high complex carbohydrate consumption. Conclusion A high level of oral Lactobacillus seems related to weight loss among those with medium and low intakes of complex carbohydrates. Absence, or a low level of oral Lactobacillus, may potentially be a novel marker to identify those at increased risk of weight gain. PMID:29020671

  9. Oral Lactobacillus Counts Predict Weight Gain Susceptibility: A 6-Year Follow-Up Study.

    PubMed

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A H; Heitmann, Berit L

    2017-01-01

    Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. We examined the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35-65 years at baseline. Prospective observational study. In unadjusted analysis the level of oral Lactobacillus was inversely associated with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium intake of complex carbohydrates predicted diminished weight gain. A closer examination of these relations showed that BMI change and Lactobacillus level was unrelated for those with high complex carbohydrate consumption. A high level of oral Lactobacillus seems related to weight loss among those with medium and low intakes of complex carbohydrates. Absence, or a low level of oral Lactobacillus, may potentially be a novel marker to identify those at increased risk of weight gain. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  10. [Progress in research of relationship between vaginal Lactobacillus and preterm delivery].

    PubMed

    He, Y N; Xiong, H Y; Zheng, Y J

    2017-03-10

    The vaginal flora in most healthy women is dominated by Lactobacillus species. The absence of Lactobacillus species in vaginal flora might lead to a series of symptoms, especially in pregnant women causing adverse pregnancy outcomes, such as preterm delivery. This review focuses on the progress in the research of the relationship between vaginal Lactobacillus and preterm delivery, providing reference for the reduction of the incidence of preterm delivery.

  11. Influence of Lactobacillus acidophilus and Lactobacillus plantarum on wound healing in male Wistar rats - an experimental study.

    PubMed

    Gudadappanavar, Anupama M; Hombal, Prashant R; Timashetti, Somling S; Javali, S B

    2017-01-01

    Probiotics have been documented with various pleotropic effects other than improving general gut health, but the potential benefits of strain-specific Lactobacillus on wound healing are unknown. Hence, the objective of the study is to evaluate and compare the wound healing property of Lactobacillus acidophilus and Lactobacillus plantarum on various wound models in male Wistar rats. Excision wound, resutured incision wound, and dead space wounds were inflicted under light thiopentone anesthesia in male Wistar rats ( n = 6, in each group). The rats received one of the Lactobacillus orally as per their weight for a period of 10 days in resutured incision (assessed by wound breaking strength) and dead space wounds (granuloma dry weight, histopathology of granulation tissue, and biochemical hydroxyproline estimation), whereas in excision wounds, treatment was monitored by planimetry. Data were expressed as mean ± standard error of mean and analyzed by ANOVA followed by Tukey's multiple post hoc test. P < 0.05 was considered as statistically significant. L. acidophilus showed a significant difference ( P < 0.05) in all the three models, namely, enhanced wound contraction and decreased days for complete epithelization in excision wound; increased breaking strength in resutured incision wound; increased granuloma dry weight and cellular infiltration in granulation tissue with marked increase in collagen content indicating wound healing. The study suggests that the wound healing activity of L. acidophilus if could be extrapolated to clinical situations may decrease dosage and duration of treatment and can be a potential adjuvant to reduce hospitalization with efficient recovery after injury and sustained good health.

  12. Lactobacillus panisapium sp. nov., from honeybee Apis cerana bee bread.

    PubMed

    Wang, Cong; Huang, Yan; Li, Li; Guo, Jun; Wu, Zhengyun; Deng, Yu; Dai, Lirong; Ma, Shichun

    2018-03-01

    A novel facultatively anaerobic, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative bacterium of the genus Lactobacillus, designated strain Bb 2-3 T , was isolated from bee bread of Apis cerana collected from a hive in Kunming, China. The strain was regular rod-shaped. Optimal growth occurred at 37 °C, pH 6.5 with 5.0 g l -1 NaCl. The predominant fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 iso. Respiratory quinones were not detected. Seven glycolipids, three lipids, phosphatidylglycerol and diphosphatidylglycerol were detected. The peptidoglycan type A4α l-Lys-d-Asp was determined. Strain Bb 2-3 T was closely related to Lactobacillus bombicola DSM 28793 T , Lactobacillus apis LMG 26964 T and Lactobacillus helsingborgensis DSM 26265 T , with 97.8, 97.6 and 97.0 % 16S rRNA gene sequence similarity, respectively. A comparison of two housekeeping genes, rpoA and pheS, revealed that strain Bb 2-3 T was well separated from the reference strains of species of the genus Lactobacillus. The average nucleotide identity between strain Bb 2-3 T and the type strains of closely related species was lower than the 95-96 % threshold value for delineation of genomic prokaryotic species. The G+C content of the genomic DNA of strain Bb 2-3 T was 37.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain Bb 2-3 T is proposed to represent a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus panisapium sp. nov. The type strain is Bb 2-3 T (=DSM 102188 T =ACCC 19955 T ).

  13. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains.

    PubMed

    Almståhl, Annica; Lingström, Peter; Eliasson, Lars; Carlén, Anette

    2013-07-01

    The objective was to analyse the ability of Lactobacillus strains isolated from supragingival plaque of subjects with hyposalivation and from healthy controls to ferment sugars and sugar alcohols. Fifty strains isolated from interproximal plaque from subjects with radiation-induced hyposalivation (25 strains), subjects with primary Sjögren's syndrome (16 strains) and from subjects with normal salivary secretion rate (9 strains) were tested. Growth and pH were determined after 24 and 48 h of anaerobic incubation in vials containing basal media with 1 % of glucose, fructose, sucrose, mannitol, sorbitol or xylitol. No differences between strains isolated from hyposalivated subjects and controls were detected. All strains lowered the pH to <5.0 from fructose and the majority of the strains from glucose and sucrose. A pH of <5.5 was seen for 52 % of the strains using mannitol, 50 % using sorbitol and 36 % using xylitol. The ability to produce acids from sugars and sugar alcohols was highest among strains of Lactobacillus rhamnosus, Lactobacillus casei and Lactobacillus paracasei and lowest among Lactobacillus fermentum strains. A large number of Lactobacillus strains are able to ferment not only sugars but also the sugar substitutes mannitol, sorbitol and xylitol to pH levels critical for enamel demineralisation. Our findings suggest that products containing mannitol, sorbitol and/or xylitol may contribute to the acidogenic potential of the dental plaque and especially in hyposalivated subjects with high numbers of lactobacilli.

  14. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds.

    PubMed

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-12-01

    Two strains, KBL13(T) and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13(T) and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA-DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13(T) and GBL13, belong to the same species. In the representative strain, KBL13(T), the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231(T) (=ATCC 11741(T); AF089108) is the type strain most closely related to the strain KBL13(T) as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA-DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13(T) represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13(T) (=JCM 14209(T)=DSM 18933(T)).

  15. Lactobacillus salivarius LA307 and Lactobacillus rhamnosus LA305 attenuate skin inflammation in mice.

    PubMed

    Holowacz, S; Blondeau, C; Guinobert, I; Guilbot, A; Hidalgo, S; Bisson, J F

    2018-02-27

    Oral probiotics potential for the management of dermatological diseases is vast. However, results of available studies in skin diseases, such as atopic dermatitis (AD), are inconsistent, partly because probiotic effects are strain specific. Careful selection of probiotic strains is therefore indispensable to ensure efficacy of treatment. In this study, Lactobacillus salivarius LA307, Lactobacillus rhamnosus LA305 and Bifidobacterium bifidum PI22, three strains that were previously identified for their interesting immunomodulatory properties in allergy and/or colitis models, were assessed in the prevention of chronic skin inflammation induced by repeated applications of 12-O-tetradecanoylphorbol-13-acetate in hairless SKH-1 mice. Macroscopic and microscopic evaluation of skin lesions was performed together with measurements of serum levels of interleukin (IL)-1β, IL-6, tumour necrosis factor alpha (TNF-α), IL-17, IL-22, IL-10 and IL-4. Daily oral treatment with the three strains at the dose of 1×10 9 cfu/day for 3 weeks limited the development of chronic skin inflammation, the effects being strain dependent. Indeed the two Lactobacillus strains significantly limited the intensity of skin inflammation both at the macroscopic and microscopic levels. Macroscopic observations were correlated to the histological observations and the resulting microscopic score. This limitation of the development of AD-like skin lesions involved the modulation of cytokine production. Treatment with the two Lactobacillus strains induced a decrease in the serum levels of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, IL-17, IL-22 and at the opposite an increase in the production of the anti-inflammatory cytokine IL-10 and also of IL-4. Globally, B. bifidum PI22 had lower benefits. These results obtained in mice suggest that L. salivarius LA307 and L. rhamnosus LA305 could be good candidates for preserving skin integrity and homeostasis via the modulation of the gut microbiota and that

  16. Isolation of a DNA Probe for Lactobacillus curvatus

    PubMed Central

    Petrick, Hendrik A. R.; Ambrosio, Riccardo E.; Holzapfel, Wilhelm H.

    1988-01-01

    A genomic library of Lactobacillus curvatus DSM 20019 was constructed in bacteriophage λ gt11. A 1.2-kilobase DNA probe specific for L. curvatus was isolated from this library. When this probe was hybridized to DNA from Lactobacillus isolates from different sources classified by conventional techniques, differing degrees of hybridization were obtained. This could imply that these isolates may have been incorrectly classified. Images PMID:16347554

  17. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection.

    PubMed

    Percopo, Caroline M; Dyer, Kimberly D; Garcia-Crespo, Katia E; Gabryszewski, Stanislaw J; Shaffer, Arthur L; Domachowske, Joseph B; Rosenberg, Helene F

    2014-06-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient μMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.

  18. A Lactobacillus-Deficient Vaginal Microbiota Dominates Postpartum Women in Rural Malawi

    PubMed Central

    2018-01-01

    ABSTRACT The bacterial community found in the vagina is an important determinant of a woman's health and disease status. A healthy vaginal microbiota is associated with low species richness and a high proportion of one of a number of different Lactobacillus spp. When disrupted, the resulting abnormal vaginal microbiota is associated with a number of disease states and poor pregnancy outcomes. Studies up until now have concentrated on relatively small numbers of American and European populations that may not capture the full complexity of the community or adequately predict what constitutes a healthy microbiota in all populations. In this study, we sampled and characterized the vaginal microbiota found on vaginal swabs taken postpartum from a cohort of 1,107 women in rural Malawi. We found a population dominated by Gardnerella vaginalis and devoid of the most common vaginal Lactobacillus species, even if the vagina was sampled over a year postpartum. This Lactobacillus-deficient anaerobic community, commonly labeled community state type (CST) 4, could be subdivided into four further communities. A Lactobacillus iners-dominated vaginal microbiota became more common the longer after delivery the vagina was sampled, but G. vaginalis remained the dominant organism. These results outline the difficulty in all-encompassing definitions of what a healthy or abnormal postpartum vaginal microbiota is. Previous identification of community state types and associations among bacterial species, bacterial vaginosis, and adverse birth outcomes may not represent the complex heterogeneity of the microbiota present. (This study has been registered at ClinicalTrials.gov as NCT01239693.) IMPORTANCE A bacterial community in the vaginal tract is dominated by a small number of Lactobacillus species, and when not present there is an increased incidence of inflammatory conditions and adverse birth outcomes. A switch to a vaginal bacterial community lacking in Lactobacillus species is common

  19. Lactobacillus-deficient vaginal microbiota dominate post-partum women in rural Malawi.

    PubMed

    Doyle, Ronan; Gondwe, Austridia; Fan, Yue-Mei; Maleta, Kenneth; Ashorn, Per; Klein, Nigel; Harris, Kathryn

    2018-01-05

    The bacterial community found in the vagina is an important determinant of a woman's health and disease. A healthy vaginal microbiota is associated with a lower species richness and high proportions of one of a number of different Lactobacillus spp.. When disrupted the resulting abnormal vaginal microbiota is associated with a number of disease states and poor pregnancy outcomes. Studies up until now have concentrated on relatively small numbers of American and European populations which may not capture the full complexity of the community, nor adequately predict what constitutes a healthy microbiota in all populations. In this study we sampled and characterised the vaginal microbiota from a cohort of 1107 women in rural Malawi found on vaginal swabs taken post-partum. We found a population dominated by Gardnerella vaginalis and devoid of the most common vaginal Lactobacillus species, even if the vagina was sampled over a year post-partum. The Lactobacillus -deficient anaerobic community commonly labelled community state type (CST) 4 could be sub-divided into four further communities. A Lactobacillus iners dominated vaginal microbiota became more common the longer after delivery the vagina was sampled, but G. vaginalis remained the dominant organism. These results outline the difficulty in all-encompassing definitions of what a healthy or abnormal vaginal microbiota is post-partum. Previous identification of community state types and associations between bacterial species, bacterial vaginosis and adverse birth outcomes may not represent the complex heterogeneity of the microbiota present. Importance A bacterial community in the vaginal tract that is dominated by small number of bacterial Lactobacillus species and when they are not present, there is a greater incidence of inflammatory conditions and adverse birth outcomes. A switch to a vaginal bacterial community lacking in Lactobacillus species is common after pregnancy. In this study we characterised the vaginal

  20. Efficacy and safety of a vaginal medicinal product containing three strains of probiotic bacteria: a multicenter, randomized, double-blind, and placebo-controlled trial

    PubMed Central

    Tomusiak, Anna; Strus, Magdalena; Heczko, Piotr B; Adamski, Paweł; Stefański, Grzegorz; Mikołajczyk-Cichońska, Aleksandra; Suda-Szczurek, Magdalena

    2015-01-01

    Objective The main objective of this study was to evaluate whether vaginal administration of probiotic Lactobacillus results in their colonization and persistence in the vagina and whether Lactobacillus colonization promotes normalization and maintenance of pH and Nugent score. Patients and methods The study was a multicenter, randomized, double-blind, and placebo-controlled trial. Altogether, 376 women were assessed for eligibility, and signed informed consent. One hundred and sixty eligible women with abnormal, also called intermediate, vaginal microflora, as indicated by a Nugent score of 4–6 and pH >4.5 and zero or low Lactobacillus count, were randomized. Each participant was examined four times during the study. Women were randomly allocated to receive either the probiotic preparation inVag®, or a placebo (one capsule for seven consecutive days vaginally). The product inVag includes the probiotic strains Lactobacillus fermentum 57A, Lactobacillus plantarum 57B, and Lactobacillus gasseri 57C. We took vaginal swabs during visits I, III, and IV to determine the presence and abundance of bacteria from the Lactobacillus genus, measure the pH, and estimate the Nugent score. Drug safety evaluation was based on analysis of the types and occurrence of adverse events. Results Administration of inVag contributed to a significant decrease (between visits) in both vaginal pH (P<0.05) and Nugent score (P<0.05), and a significant increase in the abundance of Lactobacillus between visit I and visits III and IV (P<0.05). Molecular typing revealed the presence of Lactobacillus strains originating from inVag in 82% of women taking the drug at visit III, and 47.5% at visit IV. There was no serious adverse event related to inVag administration during the study. Conclusion The probiotic inVag is safe for administration to sustainably restore the healthy vaginal microbiota, as demonstrated by predominance of the Lactobacillus bacteria in vaginal microbiota. PMID:26451088

  1. Lactobacillus for preventing recurrent urinary tract infections in women: meta-analysis.

    PubMed

    Grin, Peter M; Kowalewska, Paulina M; Alhazzan, Waleed; Fox-Robichaud, Alison E

    2013-02-01

    Urinary tract infections (UTIs) are the most common infections affecting women, and often recur. Lactobacillus probiotics could potentially replace low dose, long term antibiotics as a safer prophylactic for recurrent UTI (rUTI). This systematic review and meta-analysis was performed to compile the results of existing randomized clinical trials (RCTs) to determine the efficacy of probiotic Lactobacillus species in preventing rUTI. MEDLINE and EMBASE were searched from inception to July 2012 for RCTs using a Lactobacillus prophylactic against rUTI in premenopausal adult women. A random-effects model meta-analysis was performed using a pooled risk ratio, comparing incidence of rUTI in patients receiving Lactobacillus to control. Data from 294 patients across five studies were included. There was no statistically significant difference in the risk for rUTI in patients receiving Lactobacillus versus controls, as indicated by the pooled risk ratio of 0.85 (95% confidence interval of 0.58-1.25, p = 0.41). A sensitivity analysis was performed, excluding studies using ineffective strains and studies testing for safety. Data from 127 patients in two studies were included. A statistically significant decrease in rUTI was found in patients given Lactobacillus, denoted by the pooled risk ratio of 0.51 (95% confidence interval 0.26-0.99, p = 0.05) with no statistical heterogeneity (I2 = 0%). Probiotic strains of Lactobacillus are safe and effective in preventing rUTI in adult women. However, more RCTs are required before a definitive recommendation can be made since the patient population contributing data to this meta-analysis was small.

  2. TEMPERATURE-SENSITIVE DEXTRANSUCRASE SYNTHESIS BY A LACTOBACILLUS.

    PubMed

    DUNICAN, L K; SEELEY, H W

    1963-11-01

    Dunican, L. K. (Cornell University, Ithaca, New York), and H. W. Seeley, Jr. Temperature-sensitive dextransucrase synthesis by a lactobacillus. J. Bacteriol. 86:1079-1083. 1963.-Dextran synthesis was found to be temperature-dependent in Lactobacillus strain RWM-13. Dextran was not formed above 37 C, although growth of cells occurred up to 42 C. Logarithmically growing cells transferred from 30 C to 40 C ceased producing dextran while growth decreased nominally. An examination of the extracts of cells broken by sonic treatment showed that as the temperature of growth was increased above 37 C the production of dextransucrase decreased. By use of an inhibitor of invertase, 10(-4)m AgNO(3), it was shown that invertase replaced dextransucrase activity at temperatures above 37 C. In contrast to dextransucrase in Leuconostoc mesenteroides, the enzyme in Lactobacillus strain RWM-13 was constitutive and thus resembled that of Streptococcus bovis. Thermosensitivity of dextransucrase synthesis has not been observed in Leuconostoc or Streptococcus.

  3. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines

    PubMed Central

    Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.

    2013-01-01

    Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines. PMID:23405290

  4. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues?

    PubMed Central

    Blánquez, Alba; Ball, Andrew S.; González-Pérez, José Antonio; Jiménez-Morillo, Nicasio T.; González-Vila, Francisco; Arias, M. Enriqueta

    2017-01-01

    The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA−) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA−). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA− and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation. PMID:29112957

  5. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues?

    PubMed

    Blánquez, Alba; Ball, Andrew S; González-Pérez, José Antonio; Jiménez-Morillo, Nicasio T; González-Vila, Francisco; Arias, M Enriqueta; Hernández, Manuel

    2017-01-01

    The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA-) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA-). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA- and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation.

  6. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    PubMed Central

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  7. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds

    PubMed Central

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-01-01

    Two strains, KBL13T and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13T and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA–DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13T and GBL13, belong to the same species. In the representative strain, KBL13T, the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231T (=ATCC 11741T; AF089108) is the type strain most closely related to the strain KBL13T as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA–DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13T represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13T (=JCM 14209T=DSM 18933T). PMID:18048734

  8. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    PubMed

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogenss.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Nowaczek, Anna; Wernicki, Andrzej

    2016-03-01

    This study was conducted to identify and evaluate the antimicrobial activity of some Lactobacillus isolates of chicken origin. Among 90 isolates 14 Lactobacillus species were distinguished using MALDI-TOF mass spectrometry and 16S-ARDRA. The dominant species was L. salivarius (34.4%), followed by L. johnsonii (23.3%), L. crispatus (13.3%) and L. reuteri (11.1%). All lactobacilli were screened for antimicrobial activity against wild-type strains of Salmonella enterica, Escherichia coli, and Clostridium perfringens. Results from the agar slab method showed that all Lactobacillus isolates were able to produce active compounds on solid media with antagonistic properties against these pathogens. The highest sensitivity to lactobacilli was observed in C. perfringens strains, and the lowest in E. coli. Lactobacillus salivarius exhibited particularly strong antagonism towards all of the indicator bacteria. Strains of L. ingluviei and L. johnsonii and one strain of L. salivarius (10d) selectively inhibited the growth of C. perfringens. No antimicrobial activity of many Lactobacillus isolates was observed when cell-free culture supernatant was used in a well diffusion assay. All Lactobacillus isolates exhibited the ability to produce H2O2 and proved to be hydrophobic (excluding one of L. salivarius). [Int Microbiol 19(1):57-67 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  10. Contrast induced nephropathy in patients undergoing intravenous (IV) contrast enhanced computed tomography (CECT) and the relationship with risk factors: a meta-analysis.

    PubMed

    Moos, Shira I; van Vemde, David N H; Stoker, Jaap; Bipat, Shandra

    2013-09-01

    To summarize the incidence of contrast-induced nephropathy (CIN) and associations between CIN incidence and risk factors in patients undergoing intravenous contrast-enhanced computed tomography (CECT) with low- or iso-osmolar iodinated contrast medium. This review is performed in accordance with the preferred reporting items in systematic reviews and meta-analysis (PRISMA) guidelines. We searched the MEDLINE, EMBASE and Cochrane databases from 2002 till November 2012. Two reviewers included papers and extracted data. The pooled data were analysed by either fixed or random-effects approach depending on heterogeneity defined as the I(2) index. 42 articles with 18,790 patients (mean age 61.5 years (range: 38-83 years)) were included. The mean baseline eGFR was 59.8 mL/min and ranged from 4 to 256 mL/min. Of all patients 45.0% had an estimated glomerular filtration rate (eGFR)<60 mL/min, 55.2% had hypertension; 20.2% had diabetes mellitus (DM) and 6.5% had congestive heart failure (CHF). The overall pooled CIN incidence, defined as a SCr increase of ≥ 25% or ≥ 0.5mg/dL, was 4.96% (95%CI: 3.79-6.47). Data analysis showed associations between CIN and the presence of renal insufficiency, DM, malignancy, age>65 years and use of non-steroidal anti-inflammatory drugs (NSAID's) with odds ratios of 1.73 (95%CI: 1.06-2.82), 1.87 (95%CI: 1.55-2.26), 1.79 (95%CI: 1.03-3.11), 1.95 (95%CI: 1.02-3.70) and 2.32 (95%CI: 1.04-5.19), respectively while hypertension, anaemia and CFH were not associated (p=0.13, p=0.38, p=0.40). The mean incidence of CIN after intravenous iodinated CECT was low and associated with renal insufficiency, diabetes, presence of malignancy, old age and NSAID's use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus.

    PubMed

    Ricciardi, Annamaria; Parente, Eugenio; Guidone, Angela; Ianniello, Rocco Gerardo; Zotta, Teresa; Abu Sayem, S M; Varcamonti, Mario

    2012-07-02

    Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum are three closely related species which are widespread in food and non-food environments, and are important as starter bacteria or probiotics. In order to evaluate the phenotypic diversity of stress tolerance in the L. plantarum group and the ability to mount an adaptive heat shock response, the survival of exponential and stationary phase and of heat adapted exponential phase cells of six L. plantarum subsp. plantarum, one L. plantarum subsp. argentoratensis, one L. pentosus and two L. paraplantarum strains selected in a previous work upon exposure to oxidative, heat, detergent, starvation and acid stresses was compared to that of the L. plantarum WCFS1 strain. Furthermore, to evaluate the genotypic diversity in stress response genes, ten genes (encoding for chaperones DnaK, GroES and GroEL, regulators CtsR, HrcA and CcpA, ATPases/proteases ClpL, ClpP, ClpX and protease FtsH) were amplified using primers derived from the WCFS1 genome sequence and submitted to restriction with one or two endonucleases. The results were compared by univariate and multivariate statistical methods. In addition, the amplicons for hrcA and ctsR were sequenced and compared by multiple sequence alignment and polymorphism analysis. Although there was evidence of a generalized stress response in the stationary phase, with increase of oxidative, heat, and, to a lesser extent, starvation stress tolerance, and for adaptive heat stress response, with increased tolerance to heat, acid and detergent, different growth phases and adaptation patterns were found. Principal component analysis showed that while heat, acid and detergent stresses respond similarly to growth phase and adaptation, tolerance to oxidative and starvation stresses implies completely unrelated mechanisms. A dendrogram obtained using the data from multilocus restriction typing (MLRT) of stress response genes clearly separated two groups of L

  12. A Decade of Experience in Primary Prevention of Clostridium difficile Infection at a Community Hospital Using the Probiotic Combination Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+).

    PubMed

    Maziade, Pierre-Jean; Pereira, Pascale; Goldstein, Ellie J C

    2015-05-15

    In August 2003, the 284-bed community hospital Pierre-Le Gardeur (PLGH) in Quebec experienced a major outbreak associated with the Clostridium difficile NAP1/027/BI strain. Augmented standard preventive measures (SPMs) were not able to control this outbreak. It was decided in February 2004 to give to every adult inpatient on antibiotics, without any exclusion, a probiotic (Bio-K+: Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2) within 12 hours of the antibiotic prescription. Augmented SPMs were continued. The use of the probiotic in addition to SPMs was associated with a marked reduction of C. difficile infection (CDI). During the 10 years of observation, 44 835 inpatients received Bio-K+, and the CDI rate at PLGH declined from 18.0 cases per 10,000 patient-days and remained at low mean levels of 2.3 cases per 10,000 patient-days. Additionally, 10-year data collected by the Ministry of Health in Quebec comparing the CDI rate between Quebec hospitals showed that CDI rates at PLGH were consistently and continuously lower compared with those at similar hospitals. Blood cultures were monitored at PLGH for Lactobacillus bacteremia through the 10 years' experience, and no Lactobacillus bacteremias were detected. Despite the limitation of an observational study, we concluded that the probiotic Bio-K+ was safe and effective in decreasing our primary CDI rate. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Characterization of Selected Lactobacillus Strains for Use as Probiotics

    PubMed Central

    Song, Minyu; Yun, Bohyun; Moon, Jae-Hak; Park, Dong-June; Lim, Kwangsei; Oh, Sejong

    2015-01-01

    The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products. PMID:26761878

  14. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans.

    PubMed

    Wasfi, Reham; Abd El-Rahman, Ola A; Zafer, Mai M; Ashour, Hossam M

    2018-03-01

    Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...

  16. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...

  17. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...

  18. Evaluation of the preventative effects exerted by Lactobacillus fermentum in an experimental model of septic shock induced in mice.

    PubMed

    Arribas, Belén; Rodríguez-Cabezas, Maria Elena; Comalada, Mònica; Bailón, Elvira; Camuesco, Desireé; Olivares, Mónica; Xaus, Jordi; Zarzuelo, Antonio; Gálvez, Julio

    2009-01-01

    The preventative effects of the probiotic Lactobacillus fermentum CECT5716 were evaluated in the lipopolysaccharide (LPS) model of septic shock in mice. The probiotic was administered suspended in drinking water at the final concentration of 108 colony-forming units/ml for 2 weeks before the induction of an endotoxic shock by an intraperitoneal injection of LPS (400 microg/200 microl per mouse). Blood and different organs were collected after 24 h to evaluate the severity of the endotoxic shock and the preventative effects of the probiotic. L. fermentum reduced TNF-alpha levels in blood, which promotes the major alterations observed during septic shock, as well as the infiltration of activated neutrophils into the lungs. Furthermore, free radical overproduction and oxidative stress were associated with a significant decrease in hepatic glutathione levels in septic mice, and with an excessive NO production attributed to the induction of the inducible isoform of NO synthase (iNOS). In fact, hepatic glutathione levels were significantly increased in the group of mice receiving the probiotic, and the increased iNOS expression both in the colon and lungs was down-regulated in those mice treated with L. fermentum. Finally, pre-treatment with L. fermentum may also exert its protective action modulating the expression of different cytokines in splenocyte-derived T cells such us IL-2, IL-5, IL-6 or IL-10. In conclusion, pre-treatment with L. fermentum may exert its protective action against LPS-induced organ damage in mice by a combination of several actions including its antioxidant properties and by reduction of the synthesis of the pro-inflammatory TNF-alpha and IL-6.

  19. Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species.

    PubMed

    Aguirre Santos, Elsa Anaheim; Schieber, Andreas; Weber, Fabian

    2018-07-01

    Hydroxycinnamic acids are a major group of phenolic compounds widely distributed in plants. Among them, chlorogenic acids and caffeic acid have been in the focus of interest due to their impact on food quality and their putative health benefits. Numerous microorganisms like lactic acid bacteria are able to hydrolyze chlorogenic acids by cinnamoyl esterase enzymes. Data on the specificity of theses enzymes regarding the cleavage of distinct isomers of mono- or dichlorogenic acids is lacking. Lactobacillus reuteri, Lactobacillus helveticus, and Lactobacillus fermentum were screened for their ability to hydrolyze chlorogenic acid isomers in culture medium. Concentrations of chlorogenic acids and the released caffeic acid were determined by UHPLC-ESI-MS. The highest hydrolysis rate (100%) was observed for the hydrolysis of 5-CQA by Lactobacillus helveticus. A so far unknown metabolic pathway for the cleavage of 4-CQA is proposed including isomerization to 5-CQA and 3-CQA followed by hydrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme..., nontoxicogenic bacterium Lactobacillus fermentum. It contains the enzyme urease (CAS Reg. No. 9002-13-5), which...

  1. Enzymatic Synthesis and Structural Characterization of Theanderose through Transfructosylation Reaction Catalyzed by Levansucrase from Bacillus subtilis CECT 39.

    PubMed

    Ruiz-Aceituno, Laura; Sanz, Maria Luz; de Las Rivas, Blanca; Muñoz, Rosario; Kolida, Sofia; Jimeno, Maria Luisa; Moreno, F Javier

    2017-12-06

    This work addresses the high-yield and fast enzymatic production of theanderose, a naturally occurring carbohydrate, also known as isomaltosucrose, whose chemical structure determined by NMR is α-d-glucopyranosyl-(1 → 6)-α-d-glucopyranosyl-(1 → 2)-β-d-fructofuranose. The ability of isomaltose to act as an acceptor in the Bacillus subtilis CECT 39 levansucrase-catalyzed transfructosylation reaction to efficiently produce theanderose in the presence of sucrose as a donor is described by using four different sucrose:isomaltose concentration ratios. The maximum theanderose concentration ranged from 122.4 to 130.4 g L -1 , was obtained after only 1 h and at a moderate temperature (37 °C), leading to high productivity (109.7-130.4 g L -1 h -1 ) and yield (up to 37.3%) values. The enzymatic synthesis was highly regiospecific, since no other detectable acceptor reaction products were formed. The development of efficient and cost-effective procedures for the biosynthesis of unexplored but appealing oligosaccharides as potential sweeteners, such as theanderose, could help to expand its potential applications which are currently limited by their low availability.

  2. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection*

    PubMed Central

    Percopo, Caroline M.; Dyer, Kimberly D.; Garcia-Crespo, Katia E.; Gabryszewski, Stanislaw J.; Shaffer, Arthur L.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2014-01-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice (PVM), a property known as heterologous immunity. Lactobacillus-priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. As B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, here we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway immunoglobulins IgG, IgA and IgM and lung tissues with dense, B cell (B220+) enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of bronchus-associated lymphoid tissue. No B cells were detected in lung tissue of Lactobacillus-primed B-cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway immunoglobulins. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-gamma, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, L. plantarum-primed, B-cell deficient μMT and Jh mice were fully protected from an otherwise lethal PVM infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection. PMID:24748495

  4. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)). © 2015 IUMS.

  5. Technological and Probiotic Traits of the Lactobacilli Isolated From Vaginal Tract of the Healthy Women for Probiotic Use.

    PubMed

    Bouridane, Hamida; Sifour, Mohamed; Idoui, Tayeb; Annick, Lejeune; Thonard, Philip

    2016-09-01

    For biotechnological application, selected lactic acid bacteria strains belonging to the genera Lactobacillus (Lb) are proposed as an alternative to the antibiotics for the prevention and treatment of urogenital tract infections. Isolating and selecting vaginal lactobacilli strains for probiotic use based on their technological and probiotic aptitudes. The vaginal isolates were examined for their essential characteristics as the potential probiotic such as low pH tolerance, bile-salt and simulated human intestinal fluid (SIF) resistance, adhesion to the vaginal epithelial cells (VECs), aggregation and coaggregation, surface hydrophobicity, antimicrobial activity, acid production, antibiotic resistance, and resistance to spermicides. The best strain was identified by PCR. From 70 lactobacilli isolates and according to the 16 rDNA sequences, isolates B6 and B10 showed the closest homology (99%) to the Lb. gasseri and Lb. plantarum respectively. They produced hydrogen peroxide (H 2 O 2 ), tolerant to acid, bile, simulated human intestinal fluid, present a strong adhesion, highest percentages of aggregation, and antibacterial activity. These strains are resistant to the spermicide and actively acidify the growth medium. Strains Lb. plantarum B10 and Lb. gasseri B6 have a strong potential probiotic confirming their value as a tool for prevention against urinary and vaginal infections.

  6. Technological and Probiotic Traits of the Lactobacilli Isolated From Vaginal Tract of the Healthy Women for Probiotic Use

    PubMed Central

    Bouridane, Hamida; Sifour, Mohamed; Idoui, Tayeb; Annick, Lejeune; Thonard, Philip

    2016-01-01

    Background For biotechnological application, selected lactic acid bacteria strains belonging to the genera Lactobacillus (Lb) are proposed as an alternative to the antibiotics for the prevention and treatment of urogenital tract infections. Objectives Isolating and selecting vaginal lactobacilli strains for probiotic use based on their technological and probiotic aptitudes. Materials and Methods The vaginal isolates were examined for their essential characteristics as the potential probiotic such as low pH tolerance, bile-salt and simulated human intestinal fluid (SIF) resistance, adhesion to the vaginal epithelial cells (VECs), aggregation and coaggregation, surface hydrophobicity, antimicrobial activity, acid production, antibiotic resistance, and resistance to spermicides. The best strain was identified by PCR. Results From 70 lactobacilli isolates and according to the 16 rDNA sequences, isolates B6 and B10 showed the closest homology (99%) to the Lb. gasseri and Lb. plantarum respectively. They produced hydrogen peroxide (H2O2), tolerant to acid, bile, simulated human intestinal fluid, present a strong adhesion, highest percentages of aggregation, and antibacterial activity. These strains are resistant to the spermicide and actively acidify the growth medium. Conclusions Strains Lb. plantarum B10 and Lb. gasseri B6 have a strong potential probiotic confirming their value as a tool for prevention against urinary and vaginal infections. PMID:28959336

  7. In vitro antagonistic effect of Lactobacillus on organisms associated with bacterial vaginosis.

    PubMed

    Strus, Magdalena; Malinowska, Magdalena; Heczko, Piotr B

    2002-01-01

    To assess antagonistic properties of Lactobacillus strains isolated from the vaginas of healthy women as compared to the most common bacterial agents related to vaginosis. Antagonistic activity of different Lactobacillus strains isolated from the vaginas of healthy women not treated for infections with an antibiotic for the previous three months was screened using an agar slab method. The activity was tested against test organisms associated with bacterial vaginosis and/or urinary tract infections: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli, Gardnerella vaginalis, Peptostreptococcus anaerobius and Prevotella bivia. Many of the 146 Lactobacillus strains tested exerted apparent antagonistic activities against gram-positive aerobic cocci and gram-negative rods, such as S aureus and E coli, and a marked number of Lactobacillus strains inhibited facultative bacteria, such as Gardnerella vaginalis and the anaerobes P anaerobius and P bivia. Only a few lactobacilli were able to inhibit growth of E faecalis and S agalactiae. Indicator bacteria growth inhibition probably relies upon several different complementary mechanisms. The specific indicator bacteria species determines which mechanism predominates. Lactobacillus strains taken from normal vaginal flora demonstrated antagonistic activity against a variety of bacteria related to vaginal and urinary tract infections. The specific occurrence rates of active Lactobacillus strains are different, and this difference is dependent on the indicator bacteria species.

  8. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species.

    PubMed

    Duarte, Francisca Nayara Dantas; Rodrigues, Jéssica Bezerra; da Costa Lima, Maiara; Lima, Marcos Dos Santos; Pacheco, Maria Teresa Bertoldo; Pintado, Maria Manuela Estevez; de Souza Aquino, Jailane; de Souza, Evandro Leite

    2017-08-01

    The prebiotic effects of a cashew apple (Anacardium occidentale L.) agro-industrial byproduct powder (CAP) on different potentially probiotic Lactobacillus strains, namely Lactobacillus acidophilus LA-05, Lactobacillus casei L-26 and Lactobacillus paracasei L-10, were assessed using in vitro experimental models. Accordingly, the growth of the Lactobacillus strains when cultivated in a broth containing CAP (20 or 30 g L -1 ), glucose (20 g L -1 ) or fructooligosaccharides (FOS) (20 g L -1 ) was monitored over 48 h; the prebiotic activity scores of CAP were determined; and the changes in pH values, production of organic acids and consumption of sugars in growth media were verified. During the 48-h cultivation, similar viable cell counts were observed for the Lactobacillus strains grown in the different media tested. The CAP presented positive prebiotic activity scores toward all the tested Lactobacillus strains, indicating a desirable selective fermentable activity relative to enteric organisms. The cultivation of the Lactobacillus strains in broth containing glucose, FOS or CAP resulted in high viable cell counts, a decreased pH, the production of organic acids and the consumption of sugars over time, revealing intense bacterial metabolic activity. The CAP exerts potential prebiotic effects on different potentially probiotic Lactobacillus strains and should be an added-value ingredient for the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Lactobacillus ixorae sp. nov., isolated from a flower (West-Indian jasmine).

    PubMed

    Techo, Sujitra; Miyashita, Mika; Shibata, Chiyo; Tanaka, Naoto; Wisetkhan, Preeyarach; Visessanguan, Wonnop; Tanasupawat, Somboon

    2016-12-01

    A Gram-stain-positive, lactic acid bacterium, strain Ru20-1T, was isolated from a flower (West-Indian jasmine) collected from Kalasin province, Thailand. A polyphasic approach was used to determine the taxonomic position of this strain. Studies of morphological and biochemical characteristics revealed that strain Ru20-1T belonged to the genus Lactobacillus. The strain was heterofermentative, non-spore-forming and rod-shaped. It produced dl-lactic acid. Based on 16S rRNA gene sequence similarity, this strain was closely related to Lactobacillus lindneri LMG 14528T (96.8 %), Lactobacillus sanfranciscensis NRIC 1548T (95.4 %) and Lactobacillus florum NRIC 0771T (95.2 %), respectively. In addition, the pheS gene sequence of strain Ru20-1T was closely related to those of L. sanfranciscensis NRIC 1548T (92.0 %), L. lindneri LMG 14528T (89.0 %) and L. florum NRIC 0771T(85.0 %). Phylogenetic analysis indicated that strain Ru20-1T was clearly separated from closely related species of the genus Lactobacillus. The DNA G+C content of strain Ru20-1T was 47.8 mol %. The cell-wall peptidoglycan type was l-Lys-d-Asp. The major cellular fatty acids were C18 : 1ω9c, C20 : 0, C20 : 1ω9c and summed feature 7 (unknown 18.846 and/or C19 : 1ω6c and/or C19 : 0 cyclo). On the basis of the data provided, strain Ru20-1T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus ixorae sp. nov. is proposed. The type strain is Ru20-1T (=LMG 29008T=NBRC 111239T=PCU 346T=TISTR 2381T).

  10. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.

    PubMed

    O'Sullivan, Daniel J; McSweeney, Paul L H; Cotter, Paul D; Giblin, Linda; Sheehan, Jeremiah J

    2016-04-01

    Nonstarter lactic acid bacteria are commonly implicated in undesirable gas formation in several varieties, including Cheddar, Dutch-, and Swiss-type cheeses, primarily due to their ability to ferment a wide variety of substrates. This effect can be magnified due to factors that detrimentally affect the composition or activity of starter bacteria, resulting in the presence of greater than normal amounts of fermentable carbohydrates and citrate. The objective of this study was to determine the potential for a facultatively heterofermentative Lactobacillus (Lactobacillus casei DPC6987) isolated from a cheese plant environment to promote gas defects in the event of compromised starter activity. A Swiss-type cheese was manufactured, at pilot scale and in triplicate, containing a typical starter culture (Streptococcus thermophilus and Lactobacillus helveticus) together with propionic acid bacteria. Lactobacillus helveticus populations were omitted in certain vats to mimic starter failure. Lactobacillus casei DPC6987 was added to each experimental vat at 4 log cfu/g. Cheese compositional analysis and X-ray computed tomography revealed that the failure of starter bacteria, in this case L. helveticus, coupled with the presence of a faculatively heterofermentative Lactobacillus (L. casei) led to excessive eye formation during ripening. The availability of excess amounts of lactose, galactose, and citrate during the initial ripening stages likely provided the heterofermentative L. casei with sufficient substrates for gas formation. The accrual of these fermentable substrates was notable in cheeses lacking the L. helveticus starter population. The results of this study are commercially relevant, as they demonstrate the importance of viability of starter populations and the control of specific nonstarter lactic acid bacteria to ensure appropriate eye formation in Swiss-type cheese. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights

  11. Effects of antibiotic treatment on the lactobacillus composition of vaginal microbiota.

    PubMed

    Melkumyan, A R; Priputnevich, T V; Ankirskaya, A S; Murav'eva, V V; Lubasovskaya, L A

    2015-04-01

    We analyzed sensitivity of 123 vaginal lactobacillus strains to antibacterial substances. All lactobacillus strains were sensitive to ampicillin, cefazolin, cefotaxime, and vancomycin, and insensitive to metronidazole, trimethoprim/sulfamethoxazole, and levofloxacin. Lactobacillus strains demonstrated different sensitivity to gentamycin, clindamycin, erythromycin, ciprofloxacin, and tetracycline. The phenomenon of preferential selective influence of antibacterial drugs on the composition of lactobacilli of the vaginal microbiota, in which some lactobacilli survive as part of the vaginal microbiota and have a selective advantage over other types of lactobacilli, should be taken into account during treatment of vaginal infections and dysbiosis.

  12. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth.

    PubMed

    Keski-Nisula, Leea; Kyynäräinen, Hanna-Reetta; Kärkkäinen, Ulla; Karhukorpi, Jari; Heinonen, Seppo; Pekkanen, Juha

    2013-05-01

    To estimate the transmission of maternal vaginal microbiota to neonates during term delivery, focusing on Lactobacillus flora in relation to various obstetric clinical factors. Fifty consecutive pregnant healthy women with singleton term pregnancies and their newborn infants. Vertical transmission of Lactobacillus flora to the newborn during delivery was evaluated in 45 mother-newborn pairs. Lactobacillus-dominant mixed flora was detected in 90% (N = 45) of vaginal samples, but only in 28% (N = 14) of neonatal cultures (transmission rate 31%). All neonates with Lactobacillus-dominant mixed flora had findings similar to those in maternal cultures. Cocci-dominant flora was the most common finding in neonates. Administration of antibiotics to the mother during the intrapartum period before birth and duration of rupture of membranes (ROM), regardless of maternal antibiotic treatment, were associated significantly with a decreased transmission rate of Lactobacillus-dominant mixed flora to neonates. Maternal intrapartum antibiotics and prolonged expectant management after ROM were associated with decreased transmission rate of vaginal Lactobacillus flora to the neonate during birth. As early colonization of Lactobacillus flora may have a preventive role in the development of allergic diseases later, the significance of intrapartum prophylactic antibiotics needs to be highlighted in forthcoming studies, especially as regards immunological development of the offspring. ©2013 The Author(s)/Acta Paediatrica ©2013 Foundation Acta Paediatrica.

  13. Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula

    PubMed Central

    Haarman, Monique; Knol, Jan

    2006-01-01

    The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants. PMID:16597930

  14. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo.

    PubMed

    Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih

    2016-10-31

    The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  15. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    PubMed Central

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( < 1 % 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  16. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria.

    PubMed

    Abdelmaksoud, Abdallah A; Koparde, Vishal N; Sheth, Nihar U; Serrano, Myrna G; Glascock, Abigail L; Fettweis, Jennifer M; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2016-03-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.

  17. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    NASA Astrophysics Data System (ADS)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  18. Lactobacillus cerevisiae sp. nov., isolated from a spoiled brewery sample.

    PubMed

    Koob, Jennifer; Jacob, Fritz; Wenning, Mareike; Hutzler, Mathias

    2017-09-01

    A Gram-stain-positive, non-motile, rod-shaped bacterium, designated TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T), was isolated from spoiled beer. This bacterium did not form spores, and was catalase-negative and facultatively anaerobic. Its taxonomic position was determined in a polyphasic study. The 16S rRNA gene sequence similarity data showed that the strain belonged to the Lactobacillus genus with the nearest neighbours being Lactobacillus koreensis DCY50T (sequence similarity 99.5 %), Lactobacillus yonginensis THK-V8T (99.2 %) and Lactobacillus parabrevis LMG 11984T (98.7 %). Sequence comparisons of additional phylogenetic markers, pheS and rpoA, confirmed the 16S rRNA gene sequence tree topology. The maximum rpoA sequence similarity was 92.3 % with L. yonginensis THK-V8T. The DNA G+C content of the isolate was 50.0 mol%. The DNA-DNA relatedness showed that strain TUM BP 140423000-2250T could be clearly distinguished from L. koreensis DCY 50T (30.8±0.4 %) and L. yonginensis THK-V8T (23.6±5.9 %). The major fatty acids were C18 : 1ω9c, summed feature 7 (comprised of C19 : 0 cyclo ω10c/C19 : 1ω6c) and C16 : 0. Based on phenotypic and genotypic studies, the authors propose classifying the new isolate as a representative of a novel species of the genus Lactobacillus, Lactobacillus cerevisiae sp. nov. The type strain is deposited at the Research Centre Weihenstephan for Brewing and Food Quality as TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T).

  19. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    PubMed Central

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  20. [Confocal laser scanning electron microscopy for assessment of vaginal Lactobacillus crispatus biofilm].

    PubMed

    Wu, Li-jie; Wang, Ben; Liao, Qin-ping; Zhang, Rui

    2015-12-18

    To investigate the female vaginal Lactobacillus crispatus biofilm by using confocal laser scanning microscopy (CLSM),thus revealing the formation of biofilm. The cover slide biofilm culture approach in vitro was employed for induction of the vaginal Lactobacillus crispatus biofilm formation. Following the culture for 2, 4, 8, 12, 16, 20, 24, 48, 72, 96 and 120 hours, the cover slide was removed for subsequent staining with the fluoresce in isothiocyanate-conjugated concanavalin A(FITC-ConA) and propidium (PI).This was followed by determination of the formation and characteristics of the vaginal Lactobacillus crispatus biofilm by using CLSM. The CLSM images of biofilm formation at different time points were captured, suggesting that the vaginal Lactobacillus crispatus adhesion occurred at h 4, which was in reversible attachment, then more and more Lactobacillus crispatus aggregated at h 8 to h 20, which was in irreversible attachment.Lactobacillus crispatus clustered at h 20, with early development of biofilm architecture.Then the biofilm with extracellular matrix around the bacteria was set up at h 24,with gradual matureation at h 24 to h 48.The biofilm dispersed at h 72. The biofilm density of cultivating for 20 hours was 42.7 × 10⁻³ ± 6.8 × 10⁻³ ,and for 24 hours increased to 102.5 × 10⁻³ ± 23.1 × 10⁻³, suggesting a significant difference, P<0.05. This meant that mature biofilm was formed at h 24. The vaginal Lactobacillus crispatus is able to form typical biofilm with distinct developmental phases and architecture characteristics.Mature biofilm is formed at h 24 to h 48, then the biofilm begins to disperse.

  1. Unraveling the Dynamics of the Human Vaginal Microbiome.

    PubMed

    Nunn, Kenetta L; Forney, Larry J

    2016-09-01

    Four Lactobacillus species, namely L. crispatus , L. iners , L. gasseri , and L. jensenii , commonly dominate the vaginal communities of most reproductive-age women. It is unclear why these particular species, and not others, are so prevalent. Historically, estrogen-induced glycogen production by the vaginal epithelium has been proffered as being key to supporting the proliferation of vaginal lactobacilli. However, the 'fly in the ointment' (that has been largely ignored) is that the species of Lactobacillus commonly found in the human vagina cannot directly metabolize glycogen. It would appear that this riddle has been solved as studies have demonstrated that vaginal lactobacilli can metabolize the products of glycogen depolymerization by α-amylase, and fortunately, amylase activity is found in vaginal secretions. These amylases are presumed to be host-derived, but we suggest that other bacterial populations in vaginal communities could also be sources of amylase in addition to (or instead of) the host. Here we briefly review what is known about human vaginal bacterial communities and discuss how glycogen-derived resources and resource competition might shape the composition and structure of these communities.

  2. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model.

    PubMed

    Bhandari, Praveen; Prabha, Vijay

    2015-07-01

    Urogenital infections of bacterial origin have a high incidence among the female population at reproductive age, affecting the fertility. Strains of Escherichia coli can colonize the vagina and replace natural microflora. Lactobacillus the predominant vaginal microorganism in healthy women, maintains the acidic vaginal pH which inhibits pathogenic microorganisms. Studies on Lactobacillus have shown that these can inhibit E. coli growth and vaginal colonization. An alternative therapeutic approach to antimicrobial therapy is to re-establish Lactobacillus in this microbiome through probiotic administration to resurge fertility. Therefore, the aim of the present study was to determine the capability of L. plantarum 2621 strain with probiotic properties, to prevent the vaginal colonization of E. coli causing agglutination of sperms and to evaluate its profertility effect in a murine model. Screened mice were divided into five groups i.e. control group, E. coli group, Lactobacillus group, prophylactic and therapeutic groups. The control group was infused with 20 µl PBS, E.coli group was administered with 10 [6] cfu/20 µl E. coli, and probiotic group was administered with Lactobacillus (10 [8] cfu/20 µl) for 10 consecutive days. In prophylactic group, the vagina was colonized with 10 consecutive doses of Lactobacillus (10 [8] cfu/20 µl). After 24 h, it was followed by 10 day intravaginal infection with E. coli (10 [6] cfu/20 µl) whereas for the therapeutic group vagina was colonized with (10 [6] cfu/20 µl) E. coli for 10 consecutive days, followed by 10 day intravaginal administration with Lactobacillus after 24 h. Upon mating and completion of gestation period, control, probiotic and the therapeutic groups had litters in contrast to the prophylactic group and the group administered with E. coli. Results indicated that Lactobacillus intermitted colonization of pathogenic strains that resulted in reinforcement of natural microflora and resurge fertility.

  3. Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults.

    PubMed

    Ait Seddik, Hamza; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2017-04-01

    Sixty-seven (67) lactic acid bacteria (LAB) isolates belonging to Lactobacillus genus were isolated from human feces and tested for their auto-aggregation and cell surface hydrophobicity in order to establish their adhesion capabilities, a prerequisite for probiotic selection. Strains with the upmost auto-aggregation and cell surface hydrophobicity scores were identified by MALDI-TOF spectrometry and 16S rDNA sequencing as Lactobacillus plantarum (p25lb1 and p98lb1) and Lactobacillus salivarius (p85lb1 and p104lb1). These strains were also able to adhere to human epithelial colorectal adenocarcinoma Caco-2 cells, with percentages ranging from 4.68 to 9.59%. They displayed good survival under conditions mimicking the gastrointestinal environment and remarkably impeded adhesion and invasion of human Caco-2 by Listeria monocytogenes and Enteropathogenic Escherichia coli. It should also be noted that Lb. plantarum p98lb1 was able to reduce in vitro cholesterol concentration by about 32%, offering an additional health attribute. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products.

    PubMed

    Chao, Shiou-Huei; Kudo, Yuko; Tsai, Ying-Chieh; Watanabe, Koichi

    2012-03-01

    Three Gram-stain-positive strains were isolated from fermented mustard and were rod-shaped, non-motile, asporogenous, facultatively anaerobic, homofermentative and did not exhibit catalase activity. Comparative analyses of 16S rRNA, pheS and rpoA gene sequences demonstrated that the novel strains were members of the genus Lactobacillus. On the basis of 16S rRNA gene sequence analysis, the type strains of Lactobacillus crustorum (98.7% similarity), Lactobacillus farciminis (98.9%) and Lactobacillus mindensis (97.9%) were the closest neighbours. However, DNA-DNA reassociation values with these strains were less than 50%. Phenotypic and genotypic features demonstrated that these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus futsaii sp. nov. is proposed; the type strain is YM 0097(T) (=JCM 17355(T)=BCRC 80278(T)).

  5. Lactobacilli Inactivate Chlamydia trachomatis through Lactic Acid but Not H2O2

    PubMed Central

    Gong, Zheng; Luna, Yesmin; Yu, Ping; Fan, Huizhou

    2014-01-01

    Lactobacillus species dominate the microbiome in the lower genital tract of most reproductive-age women. Producing lactic acid and H2O2, lactobacilli are believed to play an important role in prevention of colonization by and growth of pathogens. However, to date, there have been no reported studies characterizing how lactobacilli interact with Chlamydia trachomatis, a leading sexually transmitted bacterium. In this report, we demonstrate inactivation of C. trachomatis infectivity by culture media conditioned by Lactobacillus crispatus, L. gasseri and L. jensenii, known to be dominating organisms in the human vaginal microbiome. Lactobacillus still cultures produced lactic acid, leading to time- and concentration-dependent killing of C. trachomatis. Neutralization of the acidic media completely reversed chlamydia killing. Addition of lactic acid into Lactobacillus-unconditioned growth medium recapitulated the chlamydiacidal activity of conditioned media. The H2O2 concentrations in the still cultures were found to be comparable to those reported for the cervicovaginal fluid, but insufficient to inactivate chlamydiae. Aeration of Lactobacillus cultures by shaking markedly induced H2O2 production, but strongly inhibited Lactobacillus growth and lactic acid production, and thus severely affected acidification, leading to significantly reduced chlamydiacidal efficiency. These observations indicate lactobacilli inactivate chlamydiae primarily through maintaining acidity in a relatively hypoxic environment in the vaginal lumen with limited H2O2, which is consistent with the notion that women with higher vaginal pH are more prone to sexually transmitted C. trachomatis infection. In addition to lactic acid, formic acid and acetic acid also exhibited potent chlamydiacidal activities. Taken together, our findings imply that lowering the vaginal pH through engineering of the vaginal microbiome and other means will make women less susceptible to C. trachomatis infection. PMID

  6. Influence of Vaginal Bacteria and d- and l-Lactic Acid Isomers on Vaginal Extracellular Matrix Metalloproteinase Inducer: Implications for Protection against Upper Genital Tract Infections

    PubMed Central

    Witkin, Steven S.; Mendes-Soares, Helena; Linhares, Iara M.; Jayaram, Aswathi; Ledger, William J.; Forney, Larry J.

    2013-01-01

    ABSTRACT We evaluated levels of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP-8) in vaginal secretions in relation to the composition of vaginal bacterial communities and d- and l-lactic acid levels. The composition of vaginal bacterial communities in 46 women was determined by pyrosequencing the V1 to V3 region of 16S rRNA genes. Lactobacilli were dominant in 71.3% of the women, followed by Gardnerella (17.4%), Streptococcus (8.7%), and Enterococcus (2.2%). Of the lactobacillus-dominated communities, 51.5% were dominated by Lactobacillus crispatus, 36.4% by Lactobacillus iners, and 6.1% each by Lactobacillus gasseri and Lactobacillus jensenii. Concentrations of l-lactic acid were slightly higher in lactobacillus-dominated vaginal samples, but most differences were not statistically significant. d-Lactic acid levels were higher in samples containing L. crispatus than in those with L. iners (P < 0.0001) or Gardnerella (P = 0.0002). The relative proportion of d-lactic acid in vaginal communities dominated by species of lactobacilli was in concordance with the proportions found in axenic cultures of the various species grown in vitro. Levels of l-lactic acid (P < 0.0001) and the ratio of l-lactic acid to d-lactic acid (P = 0.0060), but not concentrations of d-lactic acid, were also correlated with EMMPRIN concentrations. Moreover, vaginal concentrations of EMMPRIN and MMP-8 levels were highly correlated (P < 0.0001). Taken together, the data suggest the relative proportion of l- to d-lactic acid isomers in the vagina may influence the extent of local EMMPRIN production and subsequent induction of MMP-8. The expression of these proteins may help determine the ability of bacteria to transverse the cervix and initiate upper genital tract infections. PMID:23919998

  7. Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: kinetics of formation and matrix characterization.

    PubMed

    Leccese Terraf, María Cecilia; Juárez Tomás, María Silvina; Rault, Lucie; Le Loir, Yves; Even, Sergine; Nader-Macías, María Elena Fátima

    2016-09-01

    Adhesion and biofilm formation are strain properties that reportedly contribute to the permanence of lactobacilli in the human vagina. The kinetics of biofilm formation and the chemical nature of the biofilm matrix formed by Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 and Lactobacillus rhamnosus CRL 1332, vaginal beneficial strains, were evaluated in this work. Crystal violet-stained microplate assay and techniques of epifluorescence, electron and confocal microscopy were applied. The highest density and complexity of biofilms of both vaginal lactobacilli were observed at 72 h of incubation. Protease, proteinase K, α-chymotrypsin and trypsin treatments efficiently detached L. reuteri CRL 1324 biofilm that was also partially affected by α-amylase. However, L. rhamnosus CRL 1332 biofilm was slightly affected by protease, proteinase K and α-amylase. Confocal microscopy revealed greater amount of polysaccharides in L. rhamnosus CRL 1332 biofilm matrix than in L. reuteri CRL 1324 biofilm matrix. The results indicate that proteins are one of the main components of the L. reuteri CRL 1324 biofilm, while the biofilm matrix of L. rhamnosus CRL 1332 is composed of carbohydrates and proteins. The results obtained support the knowledge, understanding and characterization of two biofilm-forming vaginal Lactobacillus strains.

  8. Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia).

    PubMed

    Chen, Yi-Sheng; Miyashita, Mika; Suzuki, Ken-ichiro; Sato, Hajime; Hsu, Jar-Sheng; Yanagida, Fujitoshi

    2010-08-01

    Twenty-one homofermentative lactic acid bacteria were isolated from fermented cummingcordia (pobuzihi), a traditional food in Taiwan. The isolates had identical 16S rRNA gene sequences that were distinct from those of other lactobacilli, and their closest neighbours in the 16S rRNA gene sequence phylogenetic tree were strains of Lactobacillus acidipiscis. Levels of DNA-DNA relatedness between representative pobuzihi isolates and strains of L. acidipiscis were 17% and below. Furthermore, the new isolates could be differentiated clearly from L. acidipiscis NBRC 102163T and NBRC 102164 in terms of acid production from L-arabinose, rhamnose, mannitol, lactose and 5-ketogluconate. It was concluded that the new isolates represent a single novel species of the genus Lactobacillus, for which the name Lactobacillus pobuzihii sp. nov. is proposed. The type strain is E100301T (=RIFY 6501T =NBRC 103219T =KCTC 13174T).

  9. Development and evaluation of a suppository formulation containing Lactobacillus and its application in vaginal diseases.

    PubMed

    Kale, Vinita V; Trivedi, Rashmi V; Wate, Sanjay P; Bhusari, Kishor P

    2005-11-01

    Lactobacillus has long been considered the protective flora in the vagina that displaces and kills vaginal pathogens. Lactic acid, H2O2, and antibacterial agents such as lactocin and bacitracin produced by Lactobacillus act against the vaginal pathogens. The first objective of this research was to develop a local application pharmaceutical formulation of a vaginal suppository containing lyophilized culture of Lactobacillus. The second objective was to establish its in vivo performance by developing in vitro methods of evaluation. Lyophilized culture of Lactobacillus sporogenes was selected for this study. Three formulations of the suppositories were prepared by the molding method. Formulations I, II, and III contained cocoa butter, glycerinated gelatin, and PEG 1000 base, respectively. The prepared suppositories were characterized for physical properties. Assembly to simulate the application site was designed. Methods to evaluate the viability, production of lactic acid, and H2O2 produced by the released Lactobacillus at the application site were developed and the antagonistic activity was demonstrated. From the physical characteristics of the suppository formulations, the glycerinated gelatin suppository (formulation II) containing lyophilized Lactobacillus was found to be satisfactory. The developed assembly was satisfactory in simulating the application site. The Lactobacillus released was viable and exhibited the production of lactic acid, hydrogen peroxide, and antagonistic activity against the uropathogen. The suppository formulation containing Lactobacillus and the methods of its evaluation were successfully developed in this research work and have several applications in the vaginal diseases of women.

  10. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    PubMed Central

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  11. Genome sequences of five Lactobacillus sp. isolates from traditional Turkish sourdough

    USDA-ARS?s Scientific Manuscript database

    A high level of variation in microflora can be observed in lactic acid bacteria (LAB) profiles of sourdoughs. Here, we present draft genome sequences of Lactobacillus reuteri E81, L. reuteri LR5A, L. rhamnosus LR2, L. plantarum PFC-311 and a novel Lactobacillus sp. PFC-70 isolated from traditional T...

  12. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay.

    PubMed

    Le Roy, Caroline I; Štšepetova, Jelena; Sepp, Epp; Songisepp, Epp; Claus, Sandrine P; Mikelsaar, Marika

    2015-10-13

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.

  13. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits.

    PubMed

    Chen, Yi-Sheng; Wang, Li-Ting; Liao, Yu-Jou; Lan, Yi-Shan; Chang, Chi-Huan; Chang, Yu-Chung; Wu, Hui-Chung; Lo, Huei-Yin; Otoguro, Misa; Yanagida, Fujitoshi

    2017-12-01

    Two Gram-stain-positive, catalase-negative, rod-shaped, bacterial strains (313 T and 311) were isolated from banana fruits in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both strains corresponded to the type strain of Lactobacillus nantensis (99.19 %), followed by Lactobacillus crustorum (98.99 %), Lactobacillus heilongjiangensis (98.59 %) and Lactobacillus farciminis (98.52 %). Phylogenetic analysis based on the sequences of two housekeeping genes, pheS and rpoA, revealed that these two strains were well separated from the Lactobacillus reference strains. DNA-DNA relatedness values revealed genotype separation of the two strains from the above four species. The DNA G+C content of strain 313 T was 35.5 mol%. The strains were homofermentative and mainly produced l-lactic acid from glucose. The major cellular fatty acids of strain 313 T were 18 : 1ω6c and/or 18 : 1ω7c, 16 : 0, and 19 : 1ω6c and/or 19 : 0 cyclo ω10c. Based on their physiological and genotypic characteristics, the isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillusmusae sp. nov. is proposed. The type strain is 313 T =NBRC 112868 T =BCRC 81020 T ).

  14. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay

    PubMed Central

    Sepp, Epp; Songisepp, Epp; Claus, Sandrine P.; Mikelsaar, Marika

    2015-01-01

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population. PMID:26437083

  15. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): Characterization, Manufacture, Mechanisms of Action, and Quality Control of a Specific Probiotic Combination for Primary Prevention of Clostridium difficile Infection.

    PubMed

    Auclair, Julie; Frappier, Martin; Millette, Mathieu

    2015-05-15

    A specific probiotic formulation composed of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+) has been marketed in North America since 1996. The strains and the commercial products have been evaluated for safety, identity, gastrointestinal survival, and stability throughout shelf life. The capacity of both the fermented beverages and the capsules to reduce incidences of antibiotic-associated diarrhea and Clostridium difficile infection (CDI) has been demonstrated in human clinical trials. Individual strains and the finished products have shown antimicrobial activity against C. difficile and toxin A/B neutralization capacity in vitro. The use of this specific probiotic formulation as part of a bundle of preventive measures to control CDI in healthcare settings is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Effect of lactobacillus in preventing post-antibiotic vulvovaginal candidiasis: a randomised controlled trial

    PubMed Central

    Pirotta, Marie; Gunn, Jane; Chondros, Patty; Grover, Sonia; O'Malley, Paula; Hurley, Susan; Garland, Suzanne

    2004-01-01

    Objective To test whether oral or vaginal lactobacillus can prevent vulvovaginitis after antibiotic treatment. Design Randomised, placebo controlled, double blind, factorial 2×2 trial. Setting Fifty general practices and 16 pharmacies in Melbourne, Australia. Participants Non-pregnant women aged 18-50 years who required a short course of oral antibiotics for a non-gynaecological infection: 278 were enrolled in the study, and results were available for 235. Interventions Lactobacillus preparations taken orally or vaginally, or both, from enrolment until four days after completion of their antibiotic course. Main outcome measures Participants' reports of symptoms of post-antibiotic vulvovaginitis, with microbiological evidence of candidiasis provided by a self obtained vaginal swab. Results Overall, 55/235 (23% (95% confidence interval 18% to 29%)) women developed post-antibiotic vulvovaginitis. Compared with placebo, the odds ratio for developing post-antibiotic vulvovaginitis with oral lactobacillus was 1.06 (95% confidence interval 0.58 to 1.94) and with vaginal lactobacillus 1.38 (0.75 to 2.54). Compliance with antibiotics and interventions was high. The trial was terminated after the second interim analysis because of lack of effect of the interventions. Given the data at this time, the chances of detecting a significant reduction in vulvovaginitis with oral or vaginal lactobacillus treatment were less than 0.032 and 0.0006 respectively if the trial proceeded to full enrolment. Conclusions The use of oral or vaginal forms of lactobacillus to prevent post-antibiotic vulvovaginitis is not supported by these results. Further research on this subject is unlikely to be fruitful, unless new understandings about the pathogenesis of post-antibiotic vulvovaginitis indicate a possible role for lactobacillus. PMID:15333452

  17. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    PubMed

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106.

  18. Gut REG3γ-Associated Lactobacillus Induces Anti-inflammatory Macrophages to Maintain Adipose Tissue Homeostasis

    PubMed Central

    Huang, Yugang; Qi, HouBao; Zhang, Zhiqian; Wang, Enlin; Yun, Huan; Yan, Hui; Su, Xiaomin; Liu, Yingquan; Tang, Zenzen; Gao, Yunhuan; Shang, Wencong; Zhou, Jiang; Wang, Tianze; Che, Yongzhe; Zhang, Yuan; Yang, Rongcun

    2017-01-01

    Gut microbiota may not only affect composition of local immune cells but also affect systemic immune cells. However, it is not completely clear how gut microbiota modulate these immune systems. Here, we found that there exist expanded macrophage pools in huREG3γtgIEC mice. REG3γ-associated Lactobacillus, which is homology to Lactobacillus Taiwanese, could enlarge macrophage pools not only in the small intestinal lamina propria but also in the spleen and adipose tissues. STAT3-mediated signal(s) was a critical factor in the Lactobacillus-mediated anti-inflammatory macrophages. We also offered evidence for critical cellular links among REG3γ-associated Lactobacillus, tissue macrophages, and obesity diseases. Anti-inflammatory macrophages in the lamina propria, which are induced by REG3γ-associated Lactobacillus, may migrate into adipose tissues and are involved in resistance against high-fat diet-mediated obesity. Thus, REG3γ-associated Lactobacillus-induced anti-inflammatory macrophages in gut tissues may play a role in adipose tissue homeostasis. PMID:28928739

  19. Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations.

    PubMed

    Nielsen, Dennis S; Schillinger, Ulrich; Franz, Charles M A P; Bresciani, José; Amoa-Awua, Wisdom; Holzapfel, Wilhelm H; Jakobsen, Mogens

    2007-07-01

    Three Gram-positive, catalase-negative, motile, rod-shaped strains, designated L486, L489(T) and L499, were isolated from fermenting cocoa. These organisms produced DL-lactic acid from glucose without gas formation. Ammonia was not produced from arginine. Acid was produced from amygdalin, D-cellobiose, aesculin, D-fructose, D-glucose, D-galactose, D-mannitol, D-mannose, N-acetylglucosamine, L-rhamnose, sucrose, salicin and D-trehalose. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type. A 16S rRNA gene sequence analysis revealed that the isolates belong phylogenetically to the genus Lactobacillus and are closely related to Lactobacillus nagelii, Lactobacillus vini and Lactobacillus satsumensis. Low DNA-DNA reassociation values were obtained between the isolates and the phylogenetically closest neighbours. On the basis of the genetic and phenotypic results, the isolates are considered to represent a novel species, for which the name Lactobacillus ghanensis is proposed. The type strain is L489(T) (=DSM 18630(T)=CCUG 53453(T)).

  20. [Identification and phylogenetic analysis of one strain of Lactobacillus delbrueckii subsp. bulgaricus separated from yoghourt].

    PubMed

    Wang, Chuan; Zhang, Chaowu; Pei, Xiaofang; Liu, Hengchuan

    2007-11-01

    For being further applied and studied, one strain of Lactobacillus delbrueckii subsp. bulgaricus (wch9901) separated from yoghourt which had been identified by phenotype characteristic analysis was identified by 16S rDNA and phylogenetic analyzed. The 16S rDNA of wch9901 was amplified with the genomic DNA of wch9901 as template, and the conservative sequences of the 16S rDNA as primers. Inserted 16S rDNA amplified into clonal vector pGEM-T under the function of T4 DNA ligase to construct recombined plasmid pGEM-wch9901 16S rDNA. The recombined plasmid was identified by restriction enzyme digestion, and the eligible plasmid was presented to sequencing company for DNA sequencing. Nucleic acid sequence was blast in GenBank and phylogenetic tree was constructed using neighbor-joining method of distance methods by Mega3.1 soft. Results of blastn showed that the homology of 16S rDNA of wch9901 with the 16S rDNA of Lactobacillus delbrueckii subsp. bulgaricus strains was higher than 96%. On the phylogenetic tree, wch9901 formed a separate branch and located between Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch and another evolution branch which was composed of Lactobacillus delbrueckii subsp. bulgaricus DL2 evolution cluster and Lactobacillus delbrueckii subsp. bulgaricus JSQ evolution cluster. The distance between wch9901 evolution branch and Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch was the closest. wch9901 belonged to Lactobacillus delbrueckii subsp. bulgaricus. wch9901 showed the closest evolution relationship to Lactobacillus delbrueckii subsp. bulgaricus LGM2.

  1. Effects of feeding lactobacillus GG on lethal irradiation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, M.Y.; Chang, T.W.; Gorbach, S.L.

    1987-05-01

    Mice exposed to 1400 rads of total body irradiation experienced 80%-100% mortality in 2 wk. Bacteremia was demonstrated in all dead animals. Feeding Lactobacillus GG strain reduced Pseudomonas bacteremia and prolonged survival time in animals colonized with this organism. In animals not colonized with Pseudomonas, feeding Lactobacillus GG also produced some reduction in early deaths, and there was less Gram-negative bacteremia in these animals compared with controls.

  2. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  3. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  4. Draft Genome Sequences of Lactobacillus equicursoris CIP 110162T and Lactobacillus sp. Strain CRBIP 24.137, Isolated from Thoroughbred Racehorse Feces and Human Urine, Respectively.

    PubMed

    Cousin, Sylvie; Loux, Valentin; Ma, Laurence; Creno, Sophie; Clermont, Dominique; Bizet, Chantal; Bouchier, Christiane

    2013-08-22

    We report the draft genome sequences of strain Lactobacillus equicursoris CIP 110162(T), isolated from racehorse breed feces, and Lactobacillus sp. strain CRBIP 24.137, isolated from human urine; the two strains are closely related. The total lengths of the 116 and 62 scaffolds are about 2.157 and 2.358 Mb, with G+C contents of 46 and 45% and 2,279 and 2,342 coding sequences (CDSs), respectively.

  5. Probiotic properties of native Lactobacillus spp. strains for dairy calves.

    PubMed

    Fernández, S; Fraga, M; Silveyra, E; Trombert, A N; Rabaza, A; Pla, M; Zunino, P

    2018-04-10

    The use of native microorganisms with probiotic capacity is an alternative tool for the treatment and prevention of several diseases that affect animals, such as neonatal calf diarrhoea. The selection of probiotic strains within a collection is based on different in vitro and in vivo assays, which predict their potential. The aim of this study was to characterise a group of native Lactobacillus spp. strains isolated from faeces of healthy calves using an in vitro approach and to assess their ability to colonise the gastrointestinal tract (GIT) of calves. Native Lactobacillus spp. strains were evaluated on their capacity to survive low pH conditions and bile salts presence, biofilm formation and adhesion to both mucus and Caco-2 cells. Based on the in vitro characterisation, four strains (Lactobacillus johnsonii TP1.1, Lactobacillus reuteri TP1.3B, L. johnsonii TP1.6 and Lactobacillus amylovorus TP8.7) were selected to evaluate their capacity to colonise and persist in the GIT of calves. The assessment of enteric persistence involved an in vivo assay with oral administration of probiotics and quantification in faeces of the administered bacterial species with real-time quantitative PCR (qPCR). The study was conducted using 15 calves (1-month-old) which were divided into five groups of three animals, four of which were treated with four different selected strains and one was the control group. Strains TP1.3B and TP1.6 managed to persist in treated animals until ten days after the end of the administration period, indicating that they could be promising candidates for the design of probiotics for calves.

  6. Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri

    PubMed Central

    TANIZAWA, Yasuhiro; KOBAYASHI, Hisami; KAMINUMA, Eli; SAKAMOTO, Mitsuo; OHKUMA, Moriya; NAKAMURA, Yasukazu; ARITA, Masanori; TOHNO, Masanori

    2017-01-01

    Whole-genome sequencing was performed for Lactobacillus parakefiri JCM 8573T to confirm its hitherto controversial taxonomic position. Here, we report its first reliable reference genome. Genome-wide metrics, such as average nucleotide identity and digital DNA-DNA hybridization, and phylogenomic analysis based on multiple genes supported its taxonomic status as a distinct species in the genus Lactobacillus. The availability of a reliable genome sequence will aid future investigations on the industrial applications of L. parakefiri in functional foods such as kefir grains. PMID:28748134

  7. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Therapeutic effects of Lactobacillus in treating irritable bowel syndrome: a meta-analysis.

    PubMed

    Tiequn, Bian; Guanqun, Chao; Shuo, Zhang

    2015-01-01

    As the lack of reliable treatment for irritable bowel syndrome (IBS) prompts interest in the development of new therapies, we aimed to systematically evaluate the effect of Lactobacillus in treating this disease. We searched MEDLIINE, PubMed, Scopus, Web of Science and the Cochrane Central Register of Controlled Trials for the period from 1966 to August 2013 for double-blind, placebo-controlled trials investigating the efficacy of Lactobacillus treatment in the management of IBS. The studies were screened for inclusion based on randomization, controls and reported measurable outcomes. We used the Jadad score to assess the quality of the articles. The STATA 11.0 and Revman 5.0 software packages were used for the meta-analysis. The STATA 11.0 software program was also used to assess indicators of publication bias according to Begg's and Egger's tests. Six randomized, placebo-controlled clinical trials met the criteria and were included in the meta-analysis. The Jadad score of the articles was >3, and three articles were of high quality. We analyzed the heterogeneity of the studies and found no heterogeneity in the meta-analysis. In the forest plot, the diamond was on the right side of the vertical line and did not intersect with the line. The pooled relative risk for clinical improvement with Lactobacillus treatment was 7.69 (95% confidence interval: 2.33-25.43, p=0.0008). For adults, the pooled relative risk for clinical improvement with Lactobacillus treatment was 17.62 (95% confidence interval: 5.12-60.65, p<0.00001). For children, the pooled relative risk for clinical improvement with Lactobacillus treatment was 3.71 (95% confidence interval:1.05-13.11, p=0.04). Using the STATA 10.0 and Revman 5.0 software programs, we confirmed that Lactobacillus exhibited significant efficacy in treating IBS. Compared with the placebo, Lactobacillus treatment was found to be associated with a significantly higher rate of treatment responders in the overall population with IBS

  9. Viability and Stress Response of Putative Probiotic Lactobacillus plantarum Strains in Honey Environment.

    PubMed

    Landry, Bemmo Kamdem Ulrich; François, Zambou Ngoufack; Wang, Rui-Yan; Taicheng, Zhu; Li, Yin

    2017-12-01

    Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04 × 10 6  CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86 × 10 4  CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~ 50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.

  10. The use of Lactobacillus GG in irritable bowel syndrome in children: a double-blind randomized control trial.

    PubMed

    Bauserman, Melissa; Bausserman, Melissa; Michail, Sonia

    2005-08-01

    To determine whether oral administration of the probiotic Lactobacillus GG under randomized, double-blinded, placebo-controlled conditions would improve symptoms of irritable bowel syndrome (IBS) in children. Fifty children fulfilling the Rome II criteria for IBS were given Lactobacillus GG or placebo for 6 weeks. Response to therapy was recorded and collected on a weekly basis using the Gastrointestinal Symptom Rating Scale (GSRS). Lactobacillus GG was not superior to placebo in relieving abdominal pain (40.0% response rate in the placebo group vs 44.0% in the Lactobacillus GG group; P=.774). There was no difference in the other gastrointestinal symptoms, except for a lower incidence of perceived abdominal distention (P=.02 favoring Lactobacillus GG). Lactobacillus GG was not superior to placebo in the treatment of abdominal pain in children with IBS but may help relieve such symptoms as perceived abdominal distention.

  11. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina.

    PubMed

    France, Michael T; Mendes-Soares, Helena; Forney, Larry J

    2016-12-15

    Lactobacillus crispatus and Lactobacillus iners are common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from an L. iners-dominated community to one dominated by L. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes of L. iners and L. crispatus to gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species. The microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by either Lactobacillus iners or Lactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes of L. iners and L. crispatus differ in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal microbiome and

  12. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina

    PubMed Central

    France, Michael T.; Mendes-Soares, Helena

    2016-01-01

    ABSTRACT Lactobacillus crispatus and Lactobacillus iners are common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from an L. iners-dominated community to one dominated by L. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes of L. iners and L. crispatus to gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species. IMPORTANCE The microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by either Lactobacillus iners or Lactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes of L. iners and L. crispatus differ in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal

  13. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F.

    PubMed

    Tyler, C A; Kopit, L; Doyle, C; Yu, A O; Hugenholtz, J; Marco, M L

    2016-05-01

    This study examined the fermentative growth and polyol production of Lactobacillus florum and other plant-associated lactic acid bacteria (LAB). Sugar consumption and end-product production were measured for Lact. florum 2F in the presence of fructose, glucose and both sugars combined. The genome of Lact. florum was examined for genes required for mannitol and erythritol biosynthesis. The capacity for other plant-associated LAB to synthesize polyols was also assessed. Lactobacillus florum exhibited higher growth rates and cell yields in the presence of both fructose and glucose. Lactobacillus florum 2F produced lactate, acetate and ethanol as well as erythritol and mannitol. Lactobacillus florum 2F synthesized mannitol during growth on fructose and erythritol during growth on glucose. Gene and protein homology searches identified a mannitol dehydrogenase in the Lact. florum 2F genome but not the genes responsible for erythritol biosynthesis. Lastly, we found that numerous other heterofermentative LAB species synthesize erythritol and/or mannitol. Lactobacillus florum is a recently identified, plant-associated, fructophilic LAB species. Our results show that Lact. florum growth rates and heterofermentation end-products differ depending on the sugar substrates present and growth yields can be improved when combinations of sugars are provided. Lactobacillus florum 2F produces erythritol and mannitol, two polyols that are relevant to foods and potentially also in plant environments. The capacity for polyol biosynthesis appears to be common among plant-associated, LAB species. © 2016 The Society for Applied Microbiology.

  14. Characterization and adsorption of Lactobacillus virulent phage P1.

    PubMed

    Chen, X; Xi, Y; Zhang, H; Wang, Z; Fan, M; Liu, Y; Wu, W

    2016-09-01

    Bacteriophage infection of lactic acid bacteria is considered an important problem worldwide in the food fermentation industry, as it may produce low quality or unsafe foods, cause fermentation failure, and result in economic losses. To increase current knowledge on the properties of Lactobacillus virulent phages, we evaluated the effect of divalent cations, temperature, pH, and chloramphenicol on the adsorption ability of Lactobacillus virulent phage P1. Phage P1 was isolated from the abnormal fermentation liquid of Lactobacillus plantarum IMAU10120. The results showed that this phage belonged to the Siphoviridae family. The latent period of this phage was 45min, and the burst time was 90min. Burst size was 132.88±2.37 phage counts expressed per milliliter per infective center. This phage showed good tolerance at different temperatures, but incubation at 50°C only affected its adsorption. Adsorption rate reached a maximum value between 30 and 42°C. A high adsorption value of phage infectivity was obtained from pH 6 to 8. Moreover, calcium ions promoted and increased the adsorption capacity of phage P1, but magnesium ions had negative effects. Chloramphenicol had no effect on phage adsorption. This study increased current knowledge on the characterization and biological aspects of Lactobacillus virulent phages, and may provide some basic information that can be used to design successful antiphage strategies in the food industry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. High-level expression of recombinant beta-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a Sakacin P-based expression system.

    PubMed

    Halbmayr, Elisabeth; Mathiesen, Geir; Nguyen, Thu-Ha; Maischberger, Thomas; Peterbauer, Clemens K; Eijsink, Vincent G H; Haltrich, Dietmar

    2008-06-25

    This work presents the cloning and expression of the genes encoding heterodimeric beta-galactosidases from Lactobacillus reuteri L103, Lactobacillus acidophilus R22, Lactobacillus plantarum WCFS1, and Lactobacillus sakei Lb790. These enzymes consist of two subunits of approximately 73 and 35 kDa, which are encoded by two overlapping genes, lacL and lacM, respectively. We have cloned these genes into the lactobacillal expression vectors pSIP403 and pSIP409, which are based on the sakacin P operon of L. sakei ( Sørvig et al. Microbiology 2005, 151, 2439- 2449 ), and expressed them in the host strains L. plantarum WCFS1 and L. sakei Lb790. Results varied considerably, ranging from 2.23 to 61.1 U/mg of beta-galactosidase activity, depending on the origin of the lacLM genes, the host strain, and the expression vector used. Highest expression levels were obtained in a laboratory cultivation of L. plantarum WCFS1 harboring the plasmid pEH3R containing the lacLM gene from L. reuteri L103. These cultivations yielded approximately 23 000 U of beta-galactosidase activity per liter, corresponding to the formation of roughly 100 mg of recombinant protein per liter of fermentation medium, and beta-galactosidase levels amounted to 55% of the total intracellular protein of the host organism. To further verify the suitability of this expression system, recombinant beta-galactosidase from L. reuteri was purified to apparent homogeneity. The properties of the purified enzyme were essentially identical with the properties of purified native beta-galactosidase from L. reuteri L103. The presented results lead the way to efficient overproduction of beta-galactosidase in a food-grade expression system, which is of high interest for applications in food industry.

  16. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  18. Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus

    PubMed Central

    De Angelis, Maria; Bottacini, Francesca; Fosso, Bruno; Kelleher, Philip; Calasso, Maria; Di Cagno, Raffaella; Ventura, Marco; Picardi, Ernesto; van Sinderen, Douwe; Gobbetti, Marco

    2014-01-01

    Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches. PMID:25264826

  19. Bile tolerance and its effect on antibiotic susceptibility of probiotic Lactobacillus candidates.

    PubMed

    Hyacinta, Májeková; Hana, Kiňová Sepová; Andrea, Bilková; Barbora, Čisárová

    2015-05-01

    Before use in practice, it is necessary to precisely identify and characterize a new probiotic candidate. Eight animal lactobacilli and collection strain Lactobacillus reuteri CCM 3625 were studied from the point of saccharide fermentation profiles, bile salt resistance, antibiogram profiles, and influence of bile on sensitivity to antibiotics. Studied lactobacilli differed in their sugar fermentation ability determined by API 50CHL and their identification based on these profiles did not correspond with molecular-biological one in most cases. Survival of strains Lactobacillus murinus C and L. reuteri KO4b was not affected by presence of bile. The resistance of genus Lactobacillus to vancomycin and quinolones (ofloxacin, ciprofloxacin) was confirmed in all strains tested. This study provides the new information about oxgall (0.5 and 1 %) effect on the lactobacilli antibiotic susceptibility. Antibiotic profiles were not noticeably affected, and both bile concentrations tested had comparable impact on the lactobacilli antibiotic sensitivity. Interesting change was noticed in L. murinus C, where the resistance to cephalosporins was reverted to susceptibility. Similarly, susceptibility of L. reuteri E to ceftazidime arose after incubation in both concentration of bile. After influence of 1 % bile, Lactobacillus mucosae D lost its resistance to gentamicin. On the base of gained outcomes, the best probiotic properties manifested L. reuteri KO4b, Lactobacillus plantarum KG4, and L. reuteri E due to their survival in the presence of bile.

  20. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors.

    PubMed

    Soto, Ana; Martín, Virginia; Jiménez, Esther; Mader, Isabelle; Rodríguez, Juan M; Fernández, Leonides

    2014-07-01

    The objective of this work was to study the lactobacilli and bifidobacteria population in human milk of healthy women, and to investigate the influence that several factors (including antibioteraphy during pregnancy and lactation, country and date of birth, delivery mode, or infant age) may exert on such population. A total of 160 women living in Germany or Austria provided the breast milk samples. Initially, 66 samples were randomly selected and cultured on MRS-Cys agar plates. Then, the presence of DNA from the genera Lactobacillus and Bifidobacterium, and from most of the Lactobacillus and Bifidobacterium species that were isolated, was assessed by qualitative polymerase chain reaction (PCR) using genus- and species-specific primers. Lactobacilli and bifidobacteria could be isolated from the milk of 27 (40.91%) and 7 (10.61%), respectively, of the 66 cultured samples. On the contrary, Lactobacillus and Bifidobacterium sequences were detected by PCR in 108 (67.50%) and 41 (25.62%), respectively, of the 160 samples analyzed. The Lactobacillus species most frequently isolated and detected was L salivarius (35.00%), followed by L fermentum (25.00%) and L gasseri (21.88%), whereas B breve (13.75%) was the bifidobacterial species most commonly recovered and whose DNA was most regularly found. The number of lactobacilli- or bifidobacteria-positive samples was significantly lower in women who had received antibiotherapy during pregnancy or lactation. Our results suggest that either the presence of lactobacilli and/or bifidobacteria or their DNA may constitute good markers of a healthy human milk microbiota that has not been altered by the use of antibiotics.

  1. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages.

    PubMed

    Rocha-Ramírez, L M; Pérez-Solano, R A; Castañón-Alonso, S L; Moreno Guerrero, S S; Ramírez Pacheco, A; García Garibay, M; Eslava, C

    2017-01-01

    Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF- κ B pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus . The results obtained from the tested strains ( Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF- α , IL-12p70, and IL-6. However, IL-1 β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus , S. typhimurium , and E. coli , were increased by pretreatment with Lactobacillus . The nuclear translocation NF- κ B pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages.

  2. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages

    PubMed Central

    Moreno Guerrero, S. S.; Ramírez Pacheco, A.; García Garibay, M.; Eslava, C.

    2017-01-01

    Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages. PMID:28758133

  3. Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Pang, Xiaoyang; Liu, Cuiping; Lyu, Pengcheng; Zhang, Shuwen; Liu, Lu; Lu, Jing; Ma, Changlu; Lv, Jiaping

    2016-12-14

    Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.

  4. Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533

    PubMed Central

    Kazou, Maria; Alexandraki, Voula; Pot, Bruno; Tsakalidou, Effie

    2017-01-01

    ABSTRACT Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese. PMID:28126948

  5. Lactobacillus plantarum culture supernatants improve intestinal tissue exposed to deoxynivalenol.

    PubMed

    Maidana, L G; Gerez, J; Pinho, F; Garcia, S; Bracarense, A P F L

    2017-10-02

    In the present study, histological, morphometrical and ultrastructural analysis were performed to investigate intestinal mucosa changes in piglets exposed to deoxynivalenol alone or associated with two strains of Lactobacillus plantarum and the respective culture supernatants. Jejunal explants were incubated for 4h in culture medium with a) only culture medium (DMEM, control group), b) deoxynivalenol (DON, 10μM), c) heat-inactivated Lactobacillus plantarum strain1 - LP1 (1.1×10 8 CFU/ml) plus DON, d) heat-inactivated Lactobacillus plantarum strain2-LP2 (2.0×10 9 CFU/ml) plus DON, e) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON, and f) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON. Explants exposed to DON and DON plus LP1 and LP2 showed a significant increase in histological changes (mainly villi atrophy and apical necrosis) and a significant decrease in villi height when compared to unexposed explants. However, explants treated with CS1+DON and CS2+DON remained similar to the control group both in histological and morphometrical aspects. DON also induced a significant decrease in goblet cell density compared to control whereas CS1+DON treatment induced an increase in the number of goblet cells in comparison to DON explants. In addition, ultrastructural assessment showed control, CS1+DON and CS2+DON explants with well delineated finger shape villi, meanwhile DON-treated, LP1+DON and LP2+DON explants showed a severe villi atrophy with leukocytes exudation on the intestinal surface. Taken together, our results indicate that the culture supernatant treatment reduced the toxic effects induced by DON on intestinal tissue and may contribute as an alternative strategy to reduce mycotoxin toxicity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces.

    PubMed

    Osawa, Ro; Fujisawa, Tomohiko; Pukall, Rüdiger

    2006-07-01

    A Gram-positive, rod-shaped, non-endospore-forming bacterium, strain ASB1(T), able to degrade tannin, was isolated from faeces of the Japanese large wood mouse, Apodemus speciosus. Comparative analysis of the 16S rRNA gene sequence revealed that the strain could be assigned as a member of the genus Lactobacillus. The nearest phylogenetic neighbours were determined as Lactobacillus animalis DSM 20602(T) (98.9 % 16S rRNA gene sequence similarity) and Lactobacillus murinus ASF 361 (98.9 %). Subsequent polyphasic analysis, including automated ribotyping and DNA-DNA hybridization experiments, confirmed that the isolate represents a novel species, for which the name Lactobacillus apodemi sp. nov. is proposed. The DNA G+C content of the novel strain is 38.5 mol%. The cell-wall peptidoglycan is of type A4alpha L-lys-D-asp. The type strain is ASB1(T) (=DSM 16634(T)=CIP 108913(T)).

  7. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Physiological Changes of Surface Membrane in Lactobacillus with Prebiotics.

    PubMed

    Pan, Mingfang; Kumaree, Kishore K; Shah, Nagendra P

    2017-03-01

    Synbiotics are always considered to be beneficial in healthy manipulation of gut environment; however, the purpose of this research was to investigate the dominance of synbiotic over the individual potential of probiotics and prebiotics. Four different types of prebiotics, fructo-oligosaccharides, raffinose, inulin, and cellobiose, were evaluated based on their varying degree of polymerization, combined each with 2 different Lactobacilli strains, including Lactobacillus paracasei 276 and Lactobacillus plantarum WCFS1. The effects of synbiotics combination on the surface structure were evaluated by analyzing auto-aggregation, membrane hydrophobicity, and adhesion to Caco-2 cells. Our results showed that both Lactobacilli exhibited significantly greater degree of attachment to Caco-2 cells (23.31% and 16.85%, respectively) when using cellobiose as a substrate than with other prebiotics (P < 0.05). Intestinal adhesion ability was in correlation with the percent of auto-aggregation, both Lactobacillus exhibited higher percent of auto-aggregation in cellobiose compared to other prebiotics. These behavioral changes in terms of attachment and auto-aggregation were further supported with the changes noticed from infrared spectra (FT-IR). © 2017 Institute of Food Technologists®.

  10. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988.

    PubMed

    Vancanneyt, M; Mengaud, J; Cleenwerck, I; Vanhonacker, K; Hoste, B; Dawyndt, P; Degivry, M C; Ringuet, D; Janssens, D; Swings, J

    2004-03-01

    Fourteen homofermentative lactic acid bacteria that were isolated from kefir grains and kefir fermented milks were assigned to either Lactobacillus kefiranofaciens or Lactobacillus kefirgranum, based on their characteristic morphotypes, phenotypic features and SDS-PAGE profiles of whole-cell proteins. Further genotypic analyses on representative strains from both taxa demonstrated that L. kefiranofaciens and L. kefirgranum share 100 % 16S rDNA sequence similarity and belong phylogenetically to the Lactobacillus acidophilus species group. DNA-DNA binding values of >79 % and analogous DNA G+C contents of 37-38 mol% showed that the strains studied belonged to one species: L. kefirgranum is a later synonym of L. kefiranofaciens. An emended description is proposed for L. kefiranofaciens. Due to the specific morphological and biochemical characteristics of these taxa in kefir grain formation, it is proposed that L. kefirgranum should be reclassified as L. kefiranofaciens subsp. kefirgranum subsp. nov.

  11. Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus.

    PubMed

    Kang, Mi-Sun; Lim, Hae-Soon; Oh, Jong-Suk; Lim, You-Jin; Wuertz-Kozak, Karin; Harro, Janette M; Shirtliff, Mark E; Achermann, Yvonne

    2017-03-01

    The increasing prevalence of methicillin-resistant Staphylococcus aureus has become a major public health threat. While lactobacilli were recently found useful in combating various pathogens, limited data exist on their therapeutic potential for S. aureus infections. The aim of this study was to determine whether Lactobacillus salivarius was able to produce bactericidal activities against S. aureus and to determine whether the inhibition was due to a generalized reduction in pH or due to secreted Lactobacillus product(s). We found an 8.6-log10 reduction of planktonic and a 6.3-log10 reduction of biofilm S. aureus. In contrast, the previously described anti-staphylococcal effects of L. fermentum only caused a 4.0-log10 reduction in planktonic S. aureus cells, with no effect on biofilm S. aureus cells. Killing of S. aureus was partially pH dependent, but independent of nutrient depletion. Cell-free supernatant that was pH neutralized and heat inactivated or proteinase K treated had significantly reduced killing of L. salivarius than with pH-neutralized supernatant alone. Proteomic analysis of the L. salivarius secretome identified a total of five secreted proteins including a LysM-containing peptidoglycan binding protein and a protein peptidase M23B. These proteins may represent potential novel anti-staphylococcal agents that could be effective against S. aureus biofilms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  13. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R and Lactobacillus rhamnosus CLR2 improve quality-of-life and IBS symptoms: a double-blind, randomised, placebo-controlled study.

    PubMed

    Preston, K; Krumian, R; Hattner, J; de Montigny, D; Stewart, M; Gaddam, S

    2018-06-11

    A combination of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R and Lactobacillus rhamnosus CLR2 was compared to placebo for relief of symptoms of irritable bowel syndrome (IBS). A total of 113 subjects at 3 clinical sites were randomised in a 2:1 ratio and followed for 12 weeks. Subjects ingested either 2 capsules of active study product, containing 50×10 9 cfu of live organisms, or 2 placebo capsules daily. Endpoints included improvement in abdominal pain, days of pain, distention, stool consistency and frequency, quality of life (QOL), and adequate relief (AR) of IBS symptoms. IBS subtypes constipation (IBS-C), diarrhoea (IBS-D), and mixed (IBS-M) were evaluated separately; the effect of gender was also examined. For all efficacy endpoints improvement of 30% or more vs placebo was considered clinically significant. With the exception of pain intensity and AR, the endpoints demonstrated a therapeutic advantage of active over placebo for IBS symptoms in at least some subject subgroups. The IBS-D and female subgroups showed the largest and most consistent effects. Stool frequency and consistency were evaluated in the IBS-C and IBS-D subgroups, and improvement of active vs placebo was noted in both. QOL improvement was seen overall and in specific domains. Adverse events (AEs) were limited to 7 subjects; all were of mild or moderate intensity except one, severe cramping. Four AEs in the same subject in the placebo group were judged to be related to study product; these resolved by the end of study. There were no serious AEs.

  14. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Ye, Fei; Liu, Cunxia; Liu, Hongfeng; Wang, Maopeng; Li, Yi; Sun, Yang; Li, Xiao; Tian, Mingyao; Jin, Ningyi

    2014-12-01

    This study aims to evaluate the functional and probiotic characteristics of eight indigenous Lactobacillus strains in vitro. The selected lactobacilli include strains of Lactobacillus casei subsp. casei, Lactobacillus salivarius subsp. salicinius, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus rhamnosus. All strains tolerated both pH 2 for 3 h and 1% bile salt for 24 h. The strains CICC 23174 and CGMCC 1.557 were the most adhesive strains producing the highest quantity of EPS. Although a wide variation in the ability of the eight strains to deplete cholesterol and nitrite, antagonize pathogens, scavenge free radical, and stimulate innate immune response were observed, the strains CICC 23174 and CGMCC 1.557 showed the widest range of these useful traits. Taken together, the strains CICC 23174 and CGMCC 1.557 exhibited the best probiotic properties with the potential for use in the production of probiotic fermented foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533.

    PubMed

    Kazou, Maria; Alexandraki, Voula; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-01-26

    Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese. Copyright © 2017 Kazou et al.

  16. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium

    PubMed Central

    Wen, Zezhang T.; Liao, Sumei; Bitoun, Jacob P.; De, Arpan; Jorgensen, Ashton; Feng, Shihai; Xu, Xiaoming; Chain, Patrick S. G.; Caufield, Page W.; Koo, Hyun; Li, Yihong

    2017-01-01

    Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P < 0.001), while biofilms by L. fermentum reduced by >1-log (P < 0.001). L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P < 0.001), but drastically reduced the survival rates following exposure to hydrogen peroxide (P < 0.001), as compared to the respective mono-species cultures. When analyzed by RNA-seq, more than 134 genes were identified in S. mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community. PMID:29326887

  17. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    PubMed

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed

  18. Calcium phosphate supplementation increases faecal Lactobacillus spp. in a randomised trial of young adults.

    PubMed

    Dahl, W J; Ford, A L; Coppola, J A; Lopez, D; Combs, W; Rohani, A; Ukhanova, M; Culpepper, T; Tompkins, T A; Christman, M; Mai, V

    2016-02-01

    The aim of the studies was to determine the effects of calcium carbonate and calcium phosphate supplementation on faecal Lactobacillus spp., with and without a probiotic supplement, in healthy adults. Study 1 comprised of a randomised, double-blind, crossover design; participants (n=15) received 2 capsules/d of 250 mg elemental calcium as calcium carbonate (Ca1) and calcium phosphate (Ca2) each for 2-week periods, with 2-week baseline and washout periods. Study 2 was a randomised, double-blind, crossover design; participants (n=17) received 2 capsules/d of Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011 (probiotic) alone, the probiotic with 2 capsules/d of Ca1, and probiotic with 2 capsules/d of Ca2 each for 2-week periods with 2-week baseline and washout periods. In both studies, stools were collected during the baseline, intervention and washout periods for Lactobacillus spp. quantification and qPCR analyses. Participants completed daily questionnaires of stool frequency and compliance. In Study 1, neither calcium supplement influenced viable counts of resident Lactobacillus spp., genome equivalents of lactic acid bacteria or stool frequency. In Study 2, faecal Lactobacillus spp. counts were significantly enhanced from baseline when the probiotic was administered with Ca2 (4.83±0.30, 5.79±0.31) (P=0.02), but not with Ca1 (4.98±0.31) or with the probiotic alone (5.36±0.31, 5.55±0.29) (not significant). Detection of L. helveticus R0052 and L. rhamnosus R0011 was significantly increased with all treatments, but did not differ among treatments. There were no changes in weekly stool frequency. Calcium phosphate co-administration may increase gastrointestinal survival of orally-administered Lactobacillus spp.

  19. Intestinal Lactobacillus community structure and its correlation with diet of Southern Chinese elderly subjects.

    PubMed

    Pan, Yuanyuan; Wang, Fang; Sun, Da-Wen; Li, Quanyang

    2016-09-01

    This study aimed to investigate the relationship between the intestinal Lactobacillus species and diet of elderly subjects in a longevity area in Southern China. Healthy elderly subjects ranging from 80 to 99 years old were respectively selected from the regions of Bama and Nanning, Guangxi, China. The nested polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) technology was used to analyze the intestinal Lactobacillus community structure. Results showed that Weissella confusa, L. mucosae, L. crispatus, L. salivarius, and L. delbrueckii were the representative Lactobacillus of elderly subjects. Among them, L. crispatus and L. delbrueckii were the dominant Lactobacillus of all species. In comparison to Nanning elderly subjects, the detection frequencies of W. confusa and L. salivarius were significantly increased in Bama elderly subjects (P < 0.01), whereas L. mucosae was significantly decreased (P < 0.01). Interestingly, it was also found that there were 4 kinds of representative Lactobacillus, which were significantly correlated with dietary fiber. W. confusa (P < 0.01) and L. salivarius (P < 0.05) were significantly positively correlated with the intake of dietary fiber, while L. mucosae (P < 0.01) and L. crispatus (P < 0.05) were significantly negatively correlated with the intake of dietary fiber, respectively. Results confirmed that different diets had obvious effects on the intestinal Lactobacillus community structure of elderly subjects in Southern China, which may provide a certain theoretical basis for the elderly's healthy food strategic design and probiotics product development.

  20. Milk fermented by Lactobacillus species from Brazilian artisanal cheese protect germ-free-mice against Salmonella Typhimurium infection.

    PubMed

    Acurcio, L B; Sandes, S H C; Bastos, R W; Sant'anna, F M; Pedroso, S H S P; Reis, D C; Nunes, Á C; Cassali, G D; Souza, M R; Nicoli, J R

    2017-08-24

    Ingestion of milks fermented by Lactobacillus strains showing probiotic properties is an important tool to maintain gastrointestinal health. In this study, Lactobacillus rhamnosus D1 and Lactobacillus plantarum B7, isolated from Brazilian artisanal cheese, were used as starters for the functional fermented milks to assess their probiotic properties in a gnotobiotic animal model. Male germ-free Swiss mice received a single oral dose of milk fermented by each sample, and were challenged with Salmonella Typhimurium five days afterwards. Milk fermented by both Lactobacillus strains maintained counts above 10 8 cfu/ml during cold storage. Lactobacillus strains colonised the gut of the germ-free-mice, maintaining their antagonistic effect. This colonisation led to a protective effect against Salmonella challenge, as demonstrated by reduced pathogen translocation and histological lesions, when compared to control group, especially for Lactobacillus rhamnosus D1. Additionally, mRNA expression of inflammatory (interferon gamma, interleukin (IL)-6, tumour necrosis factor alpha) and anti-inflammatory (transforming growth factor β1) cytokines was augmented in animals previously colonised and then challenged, when compared to other experimental groups. Lactobacillus plantarum B7 colonisation also promoted higher expression of IL-17, showing a proper maturation of colonised germ-free-mice immune system. IL-5 was stimulated by both strains' colonisation and not by S. Typhimurium challenge.

  1. Homodimeric β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: Expression in Lactobacillus plantarum and Biochemical Characterization

    PubMed Central

    2012-01-01

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ∼170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS. PMID:22283494

  2. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization.

    PubMed

    Nguyen, Tien-Thanh; Nguyen, Hoang Anh; Arreola, Sheryl Lozel; Mlynek, Georg; Djinović-Carugo, Kristina; Mathiesen, Geir; Nguyen, Thu-Ha; Haltrich, Dietmar

    2012-02-22

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ~170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS.

  3. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt.

    PubMed

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage.

  4. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    PubMed Central

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  5. Lifestyles in transition: evolution and natural history of the genus Lactobacillus.

    PubMed

    Duar, Rebbeca M; Lin, Xiaoxi B; Zheng, Jinshui; Martino, Maria Elena; Grenier, Théodore; Pérez-Muñoz, María Elisa; Leulier, François; Gänzle, Michael; Walter, Jens

    2017-08-01

    Lactobacillus species are found in nutrient-rich habitats associated with food, feed, plants, animals and humans. Due to their economic importance, the metabolism, genetics and phylogeny of lactobacilli have been extensively studied. However, past research primarily examined lactobacilli in experimental settings abstracted from any natural history, and the ecological context in which these bacteria exist and evolve has received less attention. In this review, we synthesize phylogenetic, genomic and metabolic metadata of the Lactobacillus genus with findings from fine-scale phylogenetic and functional analyses of representative species to elucidate the evolution and natural history of its members. The available evidence indicates a high level of niche conservatism within the well-supported phylogenetic groups within the genus, with lifestyles ranging from free-living to strictly symbiotic. The findings are consistent with a model in which host-adapted Lactobacillus lineages evolved from free-living ancestors, with present-day species displaying substantial variations in terms of the reliance on environmental niches and the degree of host specificity. This model can provide a framework for the elucidation of the natural and evolutionary history of Lactobacillus species and valuable information to improve the use of this important genus in industrial and therapeutic applications. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Unraveling the Dynamics of the Human Vaginal Microbiome

    PubMed Central

    Nunn, Kenetta L.; Forney, Larry J.

    2016-01-01

    Four Lactobacillus species, namely L. crispatus, L. iners, L. gasseri, and L. jensenii, commonly dominate the vaginal communities of most reproductive-age women. It is unclear why these particular species, and not others, are so prevalent. Historically, estrogen-induced glycogen production by the vaginal epithelium has been proffered as being key to supporting the proliferation of vaginal lactobacilli. However, the ‘fly in the ointment’ (that has been largely ignored) is that the species of Lactobacillus commonly found in the human vagina cannot directly metabolize glycogen. It would appear that this riddle has been solved as studies have demonstrated that vaginal lactobacilli can metabolize the products of glycogen depolymerization by α-amylase, and fortunately, amylase activity is found in vaginal secretions. These amylases are presumed to be host-derived, but we suggest that other bacterial populations in vaginal communities could also be sources of amylase in addition to (or instead of) the host. Here we briefly review what is known about human vaginal bacterial communities and discuss how glycogen-derived resources and resource competition might shape the composition and structure of these communities. PMID:27698617

  7. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics.

    PubMed

    Lhomme, Emilie; Orain, Servane; Courcoux, Philippe; Onno, Bernard; Dousset, Xavier

    2015-11-20

    Fourteen bakeries located in different regions of France were selected. These bakers use natural sourdough and organic ingredients. Consequently, different organic sourdoughs used for the manufacture of French bread were studied by the enumeration of lactic acid bacteria (LAB) and 16S rRNA sequencing of the isolates. In addition, after DNA extraction the bacterial diversity was assessed by pyrosequencing of the 16S rDNA V1-V3 region. Although LAB counts showed significant variations (7.6-9.5log10CFU/g) depending on the sourdough studied, their identification through a polyphasic approach revealed a large predominance of Lactobacillus sanfranciscensis in all samples. In ten sourdoughs, both culture and independent methods identified L. sanfranciscensis as the dominant LAB species identified. In the remaining sourdoughs, culture methods identified 30-80% of the LAB as L. sanfranciscensis whereas more than 95% of the reads obtained by pyrosequencing belonged to L. sanfranciscensis. Other sub-dominant species, such as Lactobacillus curvatus, Lactobacillus hammesii, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei, were also identified. Quantification of L. sanfranciscensis by real-time PCR confirmed the predominance of this species ranging from 8.24 to 10.38log10CFU/g. Regarding the acidification characteristics, sourdough and related bread physico-chemical characteristics varied, questioning the involvement of sub-dominant species or L. sanfranciscensis intra-species diversity and/or the role of the baker's practices. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici on the nematode Caenorhabditis elegans include possible antitumor activity.

    PubMed

    Fasseas, Michael K; Fasseas, Costas; Mountzouris, Konstantinos C; Syntichaki, Popi

    2013-03-01

    This study examined the effects of three lactic acid bacteria (LAB) strains on the nematode Caenorhabditis elegans. Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici were found to inhibit the development and growth of the worm. Compared to Escherichia coli used as the control, L. reuteri and P. acidilactici reduced the lifespan of wild-type and short-lived daf-16 worms. On the contrary, L. salivarius extended the lifespan of daf-16 worms when used live, but reduced it as UV-killed bacteria. The three LAB induced the expression of genes involved in pathogen response and inhibited the growth of tumor-like germ cells, without affecting DAF16 localization or increasing corpse cells. Our results suggest the possible use of C. elegans as a model for studying the antitumor attributes of LAB. The negative effects of these LAB strains on the nematode also indicate their potential use against parasitic nematodes.

  9. In vitro probiotic characterization of Lactobacillus strains from fermented radish and their anti-adherence activity against enteric pathogens.

    PubMed

    Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2015-11-01

    In this study, we evaluated the probiotic properties of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus fermentum strains isolated from fermented radish. All the strains survived the simulated oro-gastrointestinal transit condition and showed significantly higher adherence to Caco-2 cells compared with the probiotic strain Lactobacillus rhamnosus GG. The strains showed broad-spectrum antimicrobial activity, autoaggregation, and coaggregation capacity with pathogens. Furthermore, the Lactobacillus strains inhibited the adherence of Yersinia enterocolitica subsp. enterocolitica, Shigella boydii, and Salmonella choleraesuis to the Caco-2 cell line. The strains possessed bile salt hydrolase activity and their cholesterol-lowering activity in vitro was above 50% in the presence of bile. Strains of L. plantarum and L. pentosus possessed the plantaricin-encoding plnEF gene. In addition, the Lactobacillus strains maintained about 80% cell viability after freeze-drying in the presence of a combination of 5% skim milk and 5% maltodextrin as cryoprotectant, and 70% recovery of cell viability was observed in the absence of any cryoprotectant.

  10. Multiplex PCR for the Detection of Lactobacillus pontis and Two Related Species in a Sourdough Fermentation

    PubMed Central

    Müller, Martin R. A.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2000-01-01

    A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation. PMID:10788389

  11. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).

  12. Degradation of sinigrin by Lactobacillus agilis strain R16.

    PubMed

    Llanos Palop, M; Smiths, J P; Brink, B T

    1995-07-01

    Forty-two lactobacilli were screened for their potential to degrade glucosinolate sinigrin. One of them, strain R16, demonstrated a high level of sinigrin degradation; it was identified as Lactobacillus agilis. The sinigrin degrading activity of L. agilis R16 could only be demonstrated when intact cells were used. The products of sinigrin degradation are allyl-isothiocyanate (AITC) and glucose (which is further fermented to DL-lactic acid), suggesting that myrosinase activity is involved. The activity was induced by the presence of sinigrin. Glucose inhibited the myrosinase activity, even in induced cells. Lactobacillus agilis R16 was able to grow on an extract of brown mustard seed and caused glucosinolate degradation.

  13. Lactobacillus vespulae sp. nov., isolated from gut of a queen wasp (Vespula vulgaris).

    PubMed

    Hoang, Van-An; Kim, Yeon-Ju; Nguyen, Ngoc-Lan; Kim, Si-Kwan; Yang, Deok-Chun

    2015-10-01

    A Gram-stain-positive, oxidase- and catalase-negative, rod-shaped, facultatively anaerobic bacterial strain, DCY75T, was isolated from a queen wasp (Vespula vulgaris). Growth occurred at 4–37 °C (optimum, 30 °C), at pH 3.5–8.0 (optimum, pH 5.0–6.0) and with ≤ 7.0 % (w/v) NaCl. Strain DCY75T produced gas during growth on glucose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DCY75T belonged to the genus Lactobacillus and was closely related to Lactobacillus sanfranciscensis ATCC 27651T and Lactobacillus lindneri DSM 20690T at sequence similarities of 96.7 and 96.4 %, respectively. A comparison of two housekeeping genes, pheS and rpoA, revealed that strain DCT75T was well separated from other species of the genus Lactobacillus. Strain DCY75T produced d- and l-lactic acid isomers in a ratio of 22.5 : 77.5 (v/v). The major fatty acids were summed feature 8 (comprising C18 :  1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω9c and C18 : 0.The peptidoglycan structure was of the A4α (l-Lys–d-Asp) type. Cell-wall sugars were glucose, galactose and ribose. The DNA G+C content was 35.5 ± 1.3 mol%. Based on phenotypic and genotypic properties, strain DCY75T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus vespulae sp. nov. is proposed. The type strain is DCY75T ( = KCTC 21023T = JCM 19742T).

  14. Association between Obesity and Cervical Microflora Dominated by Lactobacillus iners in Korean Women

    PubMed Central

    Oh, Hea Young; Seo, Sang-Soo; Kong, Ji-Sook; Lee, Jae-Kwan

    2015-01-01

    Lactobacillus spp. are associated with the maintenance of reproductive health, but obesity reduces fertility and is a risk factor for obstetric and neonatal complications. We assessed the association between obesity and the cervical Lactobacillus composition, which has not been examined previously. Pyrosequencing was performed using cervical swabs collected from 76 normal participants with negative results for cervical intraepithelial neoplasia (CIN) and 57 participants with CIN, based on histological examinations. Cluster analysis of nine Lactobacillus spp. was performed, and five cluster types were identified. The association between obesity and the Lactobacillus community was assessed by logistic regression analysis after adjustment for confounding factors. The proportion of Lactobacillus iners increased and that of Lactobacillus crispatus decreased according to body mass index (BMI) categories, i.e., underweight (BMI of <18.5 kg m−2), normal weight (BMI of 18.5 to 22.9 kg m−2), overweight (BMI of 23.0 to 24.9 kg m−2), and obese (BMI of ≥25 kg m−2). The L. iners-dominant type had a significant association with obesity (odds ratio [OR], 7.55 [95% confidence interval [CI], 1.18 to 48.2]), compared to the L. crispatus-dominant type. The group with high values for the ratio obtained by dividing the relative abundance of L. iners by that of L. crispatus had a significant association with obesity (OR, 6.54 [95% CI, 1.22 to 35.1]), compared to the low-ratio group. Associations between obesity and the L. iners/L. crispatus ratio were observed among young women (OR, 6.26 [95% CI, 1.15 to 33.9]) but not older women and in the normal group (OR, 6.97 [95% CI, 1.20 to 70.4]) but not the CIN group. Obesity was associated with cervical microflora dominated by L. iners in reproductive-age women without dysplasia. PMID:26269625

  15. Different immune regulatory potential of Lactobacillus plantarum and Lactobacillus sakei isolated from Kimchi.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Rim; Gim, Min Geun; Chung, Dae Kyun

    2014-12-28

    It is known that lactic acid bacteria (LAB) have many beneficial health effects, including antioxidative activity and immune regulation. In this study, the immune regulatory effects of Lactobacillus sakei and Lactobacillus plantarum, which are found in different types of kimchi, were evaluated. L. sakei and its lipoteichoic acid (LTA) have greater immune stimulating potential in IL-12, IFN-γ, and TNF-α production as compared with L. plantarum in an in vitro condition. On the other hand, L. plantarum is assumed to repress the Th1 immune response in murine experiments. After being injected with LPS, L. plantarum-fed mice maintained a healthier state, and the level of TNF-α in their blood was lower than in other bacterial strainfed mice and in the LPS-only control mice. Additionally, IL-12 production was significantly decreased and the production of IL-4 was greatly increased in the splenocytes from L. plantarum-fed mice. Further experiments revealed that the pre-injection of purified LTA from L. plantarum (pLTA), L. sakei (sLTA), and S. aureus (aLTA) decreased TNF-α and IL-4 production in LPS-injected mice. Mouse IL-12, however, was significantly increased by aLTA pre-injection. In conclusion, the L. sakei and L. plantarum strains have immune regulation effects, but the effects differ in cytokine production and the regulatory effects of the Th1/Th2 immune response.

  16. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection.

  17. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Preventative effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis

    PubMed Central

    Peran, Laura; Camuesco, Desiree; Comalada, Monica; Nieto, Ana; Concha, Angel; Diaz-Ropero, Maria Paz; Olivares, Monica; Xaus, Jordi; Zarzuelo, Antonio; Galvez, Julio

    2005-01-01

    AIM: To investigate the intestinal anti-inflammatory effect and mechanism of a probiotic Lactobacillus salivarius ssp. salivarius CECT5713 in the TNBS model of rat colitis. METHODS: Female Wistar rats (180-200 g) were used in this study. A group of rats were administered orally the probiotic L. salivarius ssp. salivarius (5×108 CFU suspended in 0.5 mL of skimmed milk) daily for 3 wk. Two additional groups were used for reference, a non-colitic and a control colitic without probiotic treatment, which received orally the vehicle used to administer the probiotic. Two weeks after starting the experiment, the rats were rendered colitic by intracolonic administration of 10 mg of TNBS dissolved in 0.25 mL of 500 mL/L ethanol. One week after colitis induction, all animals were killed and colonic damage was evaluated both histologically and biochemically. The biochemical studies performed in colonic homogenates include determination of myeloperoxidase (MPO) activity, glutathione (GSH) content, leukotriene B4 (LTB4) and tumor necrosis factor α (TNF-α) levels, as well as inducible nitric oxide synthase (iNOS) expression. In addition, the luminal contents obtained from colonic samples were used for microbiological studies, in order to determine Lactobacilli and Bifidobacteria counts. RESULTS: Treatment of colitic rats with L. salivarius ssp. salivarius resulted in amelioration of the inflammatory response in colitic rats, when compared with the corresponding control group without probiotic treatment. This anti-inflammatory effect was evidenced macroscopically by a significant reduction in the extent of colonic necrosis and/or inflammation induced by the administration of TNBS/ethanol (2.3±0.4 cm vs 3.4±0.3 cm in control group, P<0.01) and histologically by improvement of the colonic architecture associated with a reduction in the neutrophil infiltrate in comparison with non-treated colitic rats. The latter was confirmed biochemically by a significant reduction of colonic

  19. Lactobacillus salivarius 1077 (NRRL B-50053) bacteriocin

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  20. Characterization of Endogenous Plasmids from Lactobacillus salivarius UCC118▿ †

    PubMed Central

    Fang, Fang; Flynn, Sarah; Li, Yin; Claesson, Marcus J.; van Pijkeren, Jan-Peter; Collins, J. Kevin; van Sinderen, Douwe; O'Toole, Paul W.

    2008-01-01

    The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK homologs, and this plasmid could be cured when PemI was produced in trans. The minimal replicon of pSF118-20 was determined by deletion analysis. Shuttle vector derivatives of pSF118-20 were generated that included the replication region (pLS203) and the replication region plus mobilization genes (pLS208). The plasmid pLS203 was stably maintained without selection in Lactobacillus plantarum, Lactobacillus fermentum, and the pSF118-20-cured derivative strain of L. salivarius UCC118 (strain LS201). Cloning in pLS203 of genes encoding luciferase and green fluorescent protein, and expression from a constitutive L. salivarius promoter, demonstrated the utility of this vector for the expression of heterologous genes in Lactobacillus. This study thus expands the knowledge base and vector repertoire of probiotic lactobacilli. PMID:18390685

  1. Lactobacillus arizonensis sp. nov., isolated from jojoba meal.

    PubMed

    Swezey, J L; Nakamura, L K; Abbott, T P; Peterson, R E

    2000-09-01

    Five strains of simmondsin-degrading, lactic-acid-producing bacteria were isolated from fermented jojoba meal. These isolates were facultatively anaerobic, gram-positive, non-motile, non-spore-forming, homofermentative, rod-shaped organisms. They grew singly and in short chains, produced lactic acid but no gas from glucose, and did not exhibit catalase activity. Growth occurred at 15 and 45 degrees C. All strains fermented cellobiose, D-fructose, D-galactose, D-glucose, lactose, maltose, D-mannitol, D-mannose, melibiose, D-ribose, salicin, D-sorbitol, sucrose and trehalose. Some strains fermented L-(-)-arabinose and L-rhamnose. D-Xylose was not fermented and starch was not hydrolysed. The mean G+C content of the DNA was 48 mol%. Phylogenetic analyses of 16S rDNA established that the isolates were members of the genus Lactobacillus. DNA reassociation of 45% or less was obtained between the new isolates and the reference strains of species with G+C contents of about 48 mol%. The isolates were differentiated from other homofermentative Lactobacillus spp. on the basis of 16S rDNA sequence divergence, DNA relatedness, stereoisomerism of the lactic acid produced, growth temperature and carbohydrate fermentation. The data support the conclusion that these organisms represent strains of a new species, for which the name Lactobacillus arizonensis is proposed. The type strain of L. arizonensis is NRRL B-14768T (= DSM 13273T).

  2. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese.

    PubMed

    Oberg, Craig J; Oberg, Taylor S; Culumber, Michele D; Ortakci, Fatih; Broadbent, Jeffery R; McMahon, Donald J

    2016-01-01

    A Gram-stain positive, rod-shaped, non-spore-forming strain (WDC04T), which may be associated with late gas production in cheese, was isolated from aged Cheddar cheese following incubation on MRS agar (pH 5.2) at 6 °C for 35 days. Strain WDC04T had 97 % 16S rRNA gene sequence similarity with Lactobacillus hokkaidonensis DSM 26202T, Lactobacillus oligofermentans 533, 'Lactobacillus danicus' 9M3, Lactobacillus suebicus CCUG 32233T and Lactobacillus vaccinostercus DSM 20634T. API 50 CH carbohydrate fermentation panels indicated strain WDC04T could only utilize one of the 50 substrates tested, ribose, although it does slowly utilize galactose. In the API ZYM system, strain WDC04T was positive for leucine arylamidase, valine arylamidase, cysteine arylamidase (weakly), naphthol-AS-BI-phosphohydrolase and β-galactosidase activities. Total genomic DNA was sequenced from strain WDC04T using a whole-genome shotgun strategy on a 454 GS Titanium pyrosequencer. The sequence was assembled into a 1.90 Mbp draft genome consisting of 105 contigs with preliminary genome annotation performed using the RAST algorithm (rast.nmpdr.org). Genome analysis confirmed the pentose phosphate pathway for ribose metabolism as well as galactose, N-acetylglucosamine, and glycerol fermentation pathways. Genomic analysis places strain WDC04T in the obligately heterofermentative group of lactobacilli and metabolic results confirm this conclusion. The result of genome sequencing, along with 16S rRNA gene sequence analysis, indicates WDC04T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus wasatchensis sp. nov. is proposed. The type strain is WDC04T ( = DSM 29958T = LMG 28678T).

  3. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    PubMed Central

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  4. Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota.

    PubMed

    Nunn, Kenetta L; Wang, Ying-Ying; Harit, Dimple; Humphrys, Michael S; Ma, Bing; Cone, Richard; Ravel, Jacques; Lai, Samuel K

    2015-10-06

    Cervicovaginal mucus (CVM) can provide a barrier that precludes HIV and other sexually transmitted virions from reaching target cells in the vaginal epithelium, thereby preventing or reducing infections. However, the barrier properties of CVM differ from woman to woman, and the causes of these variations are not yet well understood. Using high-resolution particle tracking of fluorescent HIV-1 pseudoviruses, we found that neither pH nor Nugent scores nor total lactic acid levels correlated significantly with virus trapping in unmodified CVM from diverse donors. Surprisingly, HIV-1 was generally trapped in CVM with relatively high concentrations of d-lactic acid and a Lactobacillus crispatus-dominant microbiota. In contrast, a substantial fraction of HIV-1 virions diffused rapidly through CVM with low concentrations of d-lactic acid that had a Lactobacillus iners-dominant microbiota or significant amounts of Gardnerella vaginalis, a bacterium associated with bacterial vaginosis. Our results demonstrate that the vaginal microbiota, including specific species of Lactobacillus, can alter the diffusional barrier properties of CVM against HIV and likely other sexually transmitted viruses and that these microbiota-associated changes may account in part for the elevated risks of HIV acquisition linked to bacterial vaginosis or intermediate vaginal microbiota. Variations in the vaginal microbiota, especially shifts away from Lactobacillus-dominant microbiota, are associated with differential risks of acquiring HIV or other sexually transmitted infections. However, emerging evidence suggests that Lactobacillus iners frequently colonizes women with recurring bacterial vaginosis, raising the possibility that L. iners may not be as protective as other Lactobacillus species. Our study was designed to improve understanding of how the cervicovaginal mucus barrier against HIV may vary between women along with the vaginal microbiota and led to the finding that the vaginal microbiota

  5. Conventional 4-field box radiotherapy technique for cancer cervix: potential for geographic miss without CECT scan-based planning.

    PubMed

    Nagar, Y S; Singh, S; Kumar, S; Lal, P

    2004-01-01

    The advantage of 4-field radiation to the pelvis is that the use of lateral portals spares a portion of the small bowel anteriorly and rectum posteriorly. The standard lateral portals defined in textbooks are not always adequate especially in advanced cancer cervix. An analysis was done to determine adequacy of margins of standard lateral pelvic portals with CECT defined tumor volumes. The study included 40 patients of FIGO stage IIB and IIIB treated definitively for cancer cervix between 1998 and 2000. An inadequate margin was defined if the cervical growth and uterus were not encompassed by the 95% isodose. An inadequate posterior margin was common with bulky disease (P = 0.06) and with retroverted uterus (P = 0.08). Menopausal status, FIGO stage, associated myoma, and age were of no apparent prognostic significance. Bulk retained significant on multivariate analysis. An inadequate anterior margin was common in premenopausal (P = 0.01); anteverted uterus (P = 0.02); associated myoma (P = 0.01); and younger patients (P = 0.03). It was not influenced by bulk or stage. Menopausal status and associated myoma retained significant on multivariate analysis. Without the knowledge of precise tumor volume, the 4-field technique with standard portals is potentially risky as it may under dose the tumor through lateral portals and the standard AP/ PA portals are a safer option.

  6. Influence of the Probiotic Lactobacillus acidophilus NCFM
and Lactobacillus rhamnosus HN001 on Proteolysis Patterns
of Edam Cheese

    PubMed Central

    Cichosz, Grażyna; Nalepa, Beata; Kowalska, Marika

    2014-01-01

    Summary The objective of this study is to determine the viability of Lactobacillus acidophilus NCFM and Lactobacillus rhamnosus HN001 in Edam cheese as well as the effect of probiotic bacteria on paracasein proteolysis and changes in the water activity during ripening. The use of probiotics L. rhamnosus HN001 and L. acidophilus NCFM in Edam cheese slightly changed its chemical composition, but the change was not significant. The pH values were significantly correlated with the changes in Lactobacillus count (R=–0.807) and the level of phosphotungstic acid-soluble nitrogen compounds in total nitrogen (PTA-SN/TN) (R=0.775). After 10 weeks of ripening, the highest level of trichloroacetic acid-soluble nitrogen compounds in total nitrogen (TCA-SN/TN) was observed in the cheese containing L. rhamnosus HN001 (11.87%) and slightly lower level in the cheese containing L. acidophilus NCFM (7.60%) and control cheese (6.24%). The highest level of PTA-SN/TN fraction was noted in cheese containing L. acidophilus NCFM (3.48%) but the lowest level was observed in control cheese (2.24%) after ten weeks of ripening. The changes in the levels of PTA-SN/TN (R=–0.813) and TCA-SN/TN (R=–0.717) fractions were significantly (p<0.05) correlated with the viability of probiotic counts. Water activity (aw) strongly correlated with the PTA-SN/TN level (R=–0.824) and bacteria viability (R=–0.728). All of the analyzed cheeses were characterized by high counts of L. rhamnosus HN001 and L. acidophilus NCFM during ten weeks of ripening. PMID:27904317

  7. Potential of Lactobacillus plantarum IBB3036 and Lactobacillus salivarius IBB3154 to persistence in chicken after in ovo delivery.

    PubMed

    Aleksandrzak-Piekarczyk, Tamara; Puzia, Weronika; Żylińska, Joanna; Cieśla, Jarosław; Gulewicz, Krzysztof A; Bardowski, Jacek K; Górecki, Roman K

    2018-03-25

    The aim of this study was to characterize and compare selected Lactobacillus strains originating from different environments (cow milk and hen feces) with respect to their applicative potential to colonize gastrointestinal track of chickens before hatching from an egg. In vitro phenotypic characterization of lactobacilli strains included the investigation of the important prerequisites for persistence in gastrointestinal tract, such as a capability to survive in the presence of bile salts and at low pH, enzymatic and sugar metabolic profiles, adhesion abilities, and resistance to osmolytes, temperature, and antibiotics. Regarding the resistance of lactobacilli to most of the various stress factors tested, the milk isolate Lactobacillus plantarum IBB3036 showed better abilities than the chicken feces isolate Lactobacillus salivarius IBB3154. However, regarding the acidification tolerance and adherence ability, L. salivarius IBB3154 revealed better characteristics. Use of these two selected lactobacilli isolates together with proper prebiotics resulted in the preparation of two S1 and S2 bioformulations, which were injected in ovo into hen Cobb500 FF fertilized eggs. Furthermore, in vivo tests assessing the persistence of L. plantarum IBB3036 and L. salivarius IBB3154 in the chicken gastrointestinal tract was monitored by PCR-based classical and quantitative techniques and revealed the presence of both strains in fecal samples collected 3 days after hatching. Subsequently, the number of L. salivarius IBB3154 increased significantly in the chicken intestine, whereas the presence of L. plantarum IBB3036 was gradually decreased. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Lactobacilli and Bifidobacteria in Human Breast Milk: Influence of Antibiotherapy and Other Host and Clinical Factors

    PubMed Central

    Soto, Ana; Martín, Virginia; Jiménez, Esther; Mader, Isabelle; Rodríguez, Juan M.; Fernández, Leonides

    2014-01-01

    ABSTRACT Objective: The objective of this work was to study the lactobacilli and bifidobacteria population in human milk of healthy women, and to investigate the influence that several factors (including antibioteraphy during pregnancy and lactation, country and date of birth, delivery mode, or infant age) may exert on such population. Methods: A total of 160 women living in Germany or Austria provided the breast milk samples. Initially, 66 samples were randomly selected and cultured on MRS-Cys agar plates. Then, the presence of DNA from the genera Lactobacillus and Bifidobacterium, and from most of the Lactobacillus and Bifidobacterium species that were isolated, was assessed by qualitative polymerase chain reaction (PCR) using genus- and species-specific primers. Results: Lactobacilli and bifidobacteria could be isolated from the milk of 27 (40.91%) and 7 (10.61%), respectively, of the 66 cultured samples. On the contrary, Lactobacillus and Bifidobacterium sequences were detected by PCR in 108 (67.50%) and 41 (25.62%), respectively, of the 160 samples analyzed. The Lactobacillus species most frequently isolated and detected was L salivarius (35.00%), followed by L fermentum (25.00%) and L gasseri (21.88%), whereas B breve (13.75%) was the bifidobacterial species most commonly recovered and whose DNA was most regularly found. The number of lactobacilli- or bifidobacteria-positive samples was significantly lower in women who had received antibiotherapy during pregnancy or lactation. Conclusions: Our results suggest that either the presence of lactobacilli and/or bifidobacteria or their DNA may constitute good markers of a healthy human milk microbiota that has not been altered by the use of antibiotics. PMID:24590211

  9. Bacteriocins from Lactobacillus plantarum – production, genetic organization and mode of action

    PubMed Central

    Todorov, Svetoslav D.

    2009-01-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented. PMID:24031346

  10. Interplay Between the Temporal Dynamics of the Vaginal Microbiota and Human Papillomavirus Detection

    PubMed Central

    Brotman, Rebecca M.; Shardell, Michelle D.; Gajer, Pawel; Tracy, J. Kathleen; Zenilman, Jonathan M.; Ravel, Jacques; Gravitt, Patti E.

    2014-01-01

    Background. We sought to describe the temporal relationship between vaginal microbiota and human papillomavirus (HPV) detection. Methods. Thirty-two reproductive-age women self-collected midvaginal swabs twice weekly for 16 weeks (937 samples). Vaginal bacterial communities were characterized by pyrosequencing of barcoded 16S rRNA genes and clustered into 6 community state types (CSTs). Each swab was tested for 37 HPV types. The effects of CSTs on the rate of transition between HPV-negative and HPV-positive states were assessed using continuous-time Markov models. Results. Participants had an average of 29 samples, with HPV point prevalence between 58%–77%. CST was associated with changes in HPV status (P < .001). Lactobacillus gasseri–dominated CSTs had the fastest HPV remission rate, and a low Lactobacillus community with high proportions of the genera Atopobium (CST IV-B) had the slowest rate compared to L. crispatus–dominated CSTs (adjusted transition rate ratio [aTRR], 4.43, 95% confidence interval [CI], 1.11–17.7; aTRR, 0.33, 95% CI, .12–1.19, respectively). The rate ratio of incident HPV for low Lactobacillus CST IV-A was 1.86 (95% CI, .52–6.74). Conclusions. Vaginal microbiota dominated by L. gasseri was associated with increased clearance of detectable HPV. Frequent longitudinal sampling is necessary for evaluation of the association between HPV detection and dynamic microbiota. PMID:24943724

  11. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Weckx, Stefan

    2015-10-12

    Lactobacillus fermentum 222 and Lactobacillus plantarum 80, isolates from a spontaneous Ghanaian cocoa bean fermentation process, proved to be interesting functional starter culture strains for cocoa bean fermentations. Lactobacillus fermentum 222 is a thermotolerant strain, able to dominate the fermentation process, thereby converting citrate and producing mannitol. Lactobacillus plantarum 80 is an acid-tolerant and facultative heterofermentative strain that is competitive during cocoa bean fermentation processes. In this study, whole-genome sequencing and comparative genome analysis was used to investigate the mechanisms of these strains to dominate the cocoa bean fermentation process. Through functional annotation and analysis of the high-coverage contigs obtained through 454 pyrosequencing, plantaricin production was predicted for L. plantarum 80. For L. fermentum 222, genes encoding a complete arginine deiminase pathway were attributed. Further, in-depth functional analysis revealed the capacities of these strains associated with carbohydrate and amino acid metabolism, such as the ability to use alternative external electron acceptors, the presence of an extended pyruvate metabolism, and the occurrence of several amino acid conversion pathways. A comparative genome sequence analysis using publicly available genome sequences of strains of the species L. plantarum and L. fermentum revealed unique features of both strains studied. Indeed, L. fermentum 222 possessed genes encoding additional citrate transporters and enzymes involved in amino acid conversions, whereas L. plantarum 80 is the only member of this species that harboured a gene cluster involved in uptake and consumption of fructose and/or sorbose. In-depth genome sequence analysis of the candidate functional starter culture strains L. fermentum 222 and L. plantarum 80 revealed their metabolic capacities, niche adaptations and functionalities that enable them to dominate the cocoa bean fermentation

  12. Lactobacillus iners: Friend or Foe?

    PubMed

    Petrova, Mariya I; Reid, Gregor; Vaneechoutte, Mario; Lebeer, Sarah

    2017-03-01

    The vaginal microbial community is typically characterized by abundant lactobacilli. Lactobacillus iners, a fairly recently detected species, is frequently present in the vaginal niche. However, the role of this species in vaginal health is unclear, since it can be detected in normal conditions as well as during vaginal dysbiosis, such as bacterial vaginosis, a condition characterized by an abnormal increase in bacterial diversity and lack of typical lactobacilli. Compared to other Lactobacillus species, L. iners has more complex nutritional requirements and a Gram-variable morphology. L. iners has an unusually small genome (ca. 1 Mbp), indicative of a symbiotic or parasitic lifestyle, in contrast to other lactobacilli that show niche flexibility and genomes of up to 3-4 Mbp. The presence of specific L. iners genes, such as those encoding iron-sulfur proteins and unique σ-factors, reflects a high degree of niche specification. The genome of L. iners strains also encodes inerolysin, a pore-forming toxin related to vaginolysin of Gardnerella vaginalis. Possibly, this organism may have clonal variants that in some cases promote a healthy vagina, and in other cases are associated with dysbiosis and disease. Future research should examine this friend or foe relationship with the host. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei.

    PubMed

    Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth.

  14. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  15. Persistent bacteremia secondary to delayed identification of Lactobacillus in the setting of mitral valve endocarditis.

    PubMed

    Stroupe, Cody; Pendley, Joseph; Isang, Emmanuel; Helms, Benjamin

    2017-01-01

    Lactobacillus species causing infective endocarditis is rare. Most reported cases arise from the oral ingestion of Lactobacillus via dairy or nutritional supplements in patients with congenital valve disease or replacement. We present a case of native valve bacterial endocarditis caused by Lactobacillus arising from dental abscesses. Additionally, there was an error in identification of the Lactobacillus as Corynebacterium , which led to inadequate treatment. A 51-year-old male presented to an outside clinic with several weeks of subjective fevers and malaise. The provider obtained two sets of blood cultures. Both grew Gram-positive bacilli identified as Corynebacterium . Once hospitalized he persistently had positive blood cultures despite treatment with vancomycin and gentamicin. The specimens were sent to a reference lab. The cultures were confirmed to be Lactobacillus zeae resistant to vancomycin and gentamicin. Once he was started on appropriate therapy his blood cultures showed no further growth of bacteria. The infected teeth were removed as it was felt they were the source of the bacteremia. This case presents two interesting topics in one encounter. First, Lactobacillus is not a common culprit in endocarditis. Secondly, the incorrect identification of the gram-positive bacilli bacteria led to prolonged bacteremia in our patient. The patient was evaluated by cardiothoracic surgery at our facility and it was determined that he would likely need a mitral valve replacement versus repair. The decision was made to treat the patient with six weeks Penicillin-VK prior to the operation. He is currently completing his antibiotic therapy.

  16. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    PubMed

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  17. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    PubMed Central

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  18. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-06-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents.

  19. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  20. Clinical characteristics of bacteraemia caused by Lactobacillus spp. and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2000-2014.

    PubMed

    Lee, Meng-Rui; Tsai, Chia-Jung; Liang, Sheng-Kai; Lin, Ching-Kai; Huang, Yu-Tsung; Hsueh, Po-Ren

    2015-10-01

    The clinical characteristics of 89 patients with Lactobacillus bacteraemia treated at a university-affiliated hospital in northern Taiwan during 2000-2014 were retrospectively evaluated. Lactobacillus spp. were identified by 16S rRNA sequencing analysis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antimicrobial susceptibilities of the isolates were determined by broth microdilution. The most commonly isolated species was Lactobacillus salivarius (n = 21), followed by Lactobacillus paracasei (n = 16) and Lactobacillus fermentum (n = 13). Excluding three isolates with lower 16S rRNA sequence similarity, MALDI-TOF/MS provided correct identification for 84.9% (73/86) of Lactobacillus isolates. Concordant identification was lowest for Lactobacillus casei (11%). The main infection foci were intra-abdominal infection (49%) and catheter-related bloodstream infection (17%). Only one-half of the patients received adequate antibiotic treatment during the bacteraemic episode. The majority of patients with Lactobacillus bacteraemia were immunocompromised. The 7-day and in-hospital mortality rates were 21% and 62%, respectively, and underlying malignancy was associated with a higher in-hospital mortality rate (odds ratio = 2.666). There were no significant differences in mortality (7-day, 14-day, 30-day and in-hospital) among patients with bacteraemia due to different Lactobacillus spp. Minimum inhibitory concentrations were highest for glycopeptides, cephalosporins and fluoroquinolones and were lowest for carbapenems and aminopenicillins. Lactobacillus bacteraemia was associated with a high mortality rate, and patient outcome was associated with underlying malignancy. MALDI-TOF/MS was able to accurately identify 84.9% of the Lactobacillus isolates, and L. salivarius was the predominant pathogen. The accuracy rate for identification of Lactobacillus spp. by MALDI-TOF/MS was lowest for L. casei. Copyright © 2015 Elsevier B

  1. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups.

    PubMed

    Ricciardi, A; Ianniello, R G; Parente, E; Zotta, T

    2015-09-01

    Members of the Lactobacillus casei and Lactobacillus plantarum groups are capable of aerobic and respiratory growth. However, they grow poorly in aerobiosis in the currently available chemically defined media, suggesting that aerobic and respiratory growth require further supplementation. The effect of Tween 80, L-alanine, L-asparagine, L-aspartate, L-proline and L-serine on anaerobic and respiratory growth of Lact. casei N87 was investigated using a 2(5) factorial design. The effectiveness of modified CDM (mCDM) was validated on 21 strains of Lact. casei and Lact. plantarum groups. Tween 80 supplementation did not affect anaerobic growth, but improved respiratory growth. L-asparagine, L-proline and L-serine were stimulatory for respiring cells, while the presence of L-aspartate, generally, impaired biomass production. mCDM promoted the growth of Lact. casei and Lact. plantarum, with best results for strains showing a respiratory phenotype. The nutritional requirements of anaerobic and respiratory cultures of members of the Lact. casei and Lact. plantarum groups differ. Tween 80 and selected amino acids derived from pathways related to TCA cycle, pyruvate conversion and NADH recycling are required for respiration. The availability of mCDM will facilitate the study of aerobic metabolism of lactobacilli under controlled conditions. © 2015 The Society for Applied Microbiology.

  2. The protective effect of Lactobacillus and Bifidobacterium as the gut microbiota members against chronic urticaria.

    PubMed

    Rezazadeh, Akram; Shahabi, Shahram; Bagheri, Morteza; Nabizadeh, Edris; Jazani, Nima Hosseini

    2018-06-01

    Chronic Urticaria is a common disorder which is defined by recurrent occurrence of wheals and sometimes angioedema. It has a notable influence on the patients' quality of life. Regulation of the immune system is one of the important roles of the gut microbiota. The effect of dysbiosis considering some members of gut microbiota in patients with chronic urticaria has been demonstrated in our previous study. Comparing the frequency and bacterial load of Lactobacillus, Bifidobacterium, and Bacteroides between patients with chronic urticaria and healthy controls. 20 patients with chronic urticaria and 20 age and sex matched healthy individuals were included in the present study. Stool samples were analyzed for determining the frequency and bacterial load of Lactobacillus, Bifidobacterium, and Bacteroides genera. There were no significant differences among the frequencies of detectable Lactobacillus, Bifidobacterium, or Bacteroides in stool samples of patients with chronic urticaria and healthy controls. The relative amounts of Lactobacillus and Bifidobacterium were significantly higher in fecal samples from controls compared to patients with chronic urticaria (P = 0.038 and 0.039, respectively). It is the first study on the implication of Lactobacillus, Bifidobacterium, and Bacteroides genera as gut microbiota members in patients with chronic urticaria. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus.

    PubMed

    Ansari, Fereshteh; Pourjafar, Hadi; Jodat, Vahid; Sahebi, Javad; Ataei, Amir

    2017-12-01

    In this study, we examined a novel method of microencapsulation with calcium alginate-chitosan and Eudragit S100 nanoparticles for the improving viability of probiotic bacteria, Lactobacillus acidophilus and Lactobacillus rhamnosus. Extrusion technique was carried out in microencapsulation process. The viability of two probiotics in single coated beads (with only chitosan), double coated beads (with chitosan and Eudragit nanoparticles), and as free cells (unencapsulated) were conducted in simulated gastric juice (pH 1.55, without pepsin) followed by incubation in simulated intestinal juice (pH 7.5, with 1% bile salt). In case of single coated beads, presumably, lack of sufficient strength of chitosan under simulated gastric condition was the main reason of 4-log and 5-log reduction of the counts of the L. acidophilus and L. rhamnosus respectively. The results showed that with the second coat forming (Eudragit nanoparticles) over the first coat (chitosan), the strength of the beads and then viability rate of the bacteria were increased in comparison with the single coated beads.

  4. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  6. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    USDA-ARS?s Scientific Manuscript database

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  7. Association between Obesity and Cervical Microflora Dominated by Lactobacillus iners in Korean Women.

    PubMed

    Oh, Hea Young; Seo, Sang-Soo; Kong, Ji-Sook; Lee, Jae-Kwan; Kim, Mi Kyung

    2015-10-01

    Lactobacillus spp. are associated with the maintenance of reproductive health, but obesity reduces fertility and is a risk factor for obstetric and neonatal complications. We assessed the association between obesity and the cervical Lactobacillus composition, which has not been examined previously. Pyrosequencing was performed using cervical swabs collected from 76 normal participants with negative results for cervical intraepithelial neoplasia (CIN) and 57 participants with CIN, based on histological examinations. Cluster analysis of nine Lactobacillus spp. was performed, and five cluster types were identified. The association between obesity and the Lactobacillus community was assessed by logistic regression analysis after adjustment for confounding factors. The proportion of Lactobacillus iners increased and that of Lactobacillus crispatus decreased according to body mass index (BMI) categories, i.e., underweight (BMI of <18.5 kg m(-2)), normal weight (BMI of 18.5 to 22.9 kg m(-2)), overweight (BMI of 23.0 to 24.9 kg m(-2)), and obese (BMI of ≥25 kg m(-2)). The L. iners-dominant type had a significant association with obesity (odds ratio [OR], 7.55 [95% confidence interval [CI], 1.18 to 48.2]), compared to the L. crispatus-dominant type. The group with high values for the ratio obtained by dividing the relative abundance of L. iners by that of L. crispatus had a significant association with obesity (OR, 6.54 [95% CI, 1.22 to 35.1]), compared to the low-ratio group. Associations between obesity and the L. iners/L. crispatus ratio were observed among young women (OR, 6.26 [95% CI, 1.15 to 33.9]) but not older women and in the normal group (OR, 6.97 [95% CI, 1.20 to 70.4]) but not the CIN group. Obesity was associated with cervical microflora dominated by L. iners in reproductive-age women without dysplasia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Lactobacillus plantarum L9 but not Lactobacillus acidophilus LA reduces tumour necrosis factor induced bacterial translocation in Caco-2 cells.

    PubMed

    Wang, B; Chen, J; Wang, S; Zhao, X; Lu, G; Tang, X

    2017-05-30

    Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis and multiple organ dysfunction syndromes. Inflammatory cytokines increase paracellular permeability that allows increased luminal bacteria to translocate across mucosal epithelium and further deteriorate the gut barrier. In order to reduce this risk, the prophylactic use of probiotics has been recently addressed. In this paper, we investigate the protective role toward tumour necrosis factor (TNF)-α induced non-pathogenic Escherichia coli translocation across Caco-2 monolayers of Lactobacillus strains. According to our experimental data, Lactobacillus plantarum L9 and Lactobacillus acidophilus LA have good capacities to adhere to Caco-2 cells. Addition of L. plantarum L9 and L. acidophilus LA to the enterocyte monolayer surface result in significant inhibition of E. coli adhesion and cell internalisation. However, L. plantarum L9 and L. acidophilus LA did not inhibit the growth of the non-pathogenic E. coli B5 after 24 h incubation. Exposure to TNF-α for 6 h caused a dramatic increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability. Pretreatment with L. plantarum L9 prevent TNF-α induced transcellular bacterial translocation and IL-8 production in Caco-2 cells. L. plantarum L9 also did not affect the integrity of the monolayers, as indicated by lactate dehydrogenase release, horseradish peroxidase permeability, and transepithelial electrical resistance. L. plantarum L9 showed the potential to protect enterocytes from an acute inflammatory response and therefore could be good potential prophylactic agents in counteracting bacterial translocation.

  9. The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content.

    PubMed

    Boekhorst, Jos; Siezen, Roland J; Zwahlen, Marie-Camille; Vilanova, David; Pridmore, Raymond D; Mercenier, Annick; Kleerebezem, Michiel; de Vos, Willem M; Brüssow, Harald; Desiere, Frank

    2004-11-01

    The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of Lactobacillus plantarum (3.3 Mb) and Lactobacillus johnsonii (2.0 Mb). L. johnsonii is predominantly found in the gastrointestinal tract, while L. plantarum is also found on plants and plant-derived material, and is used in a variety of industrial fermentations. The L. plantarum and L. johnsonii chromosomes have only 28 regions with conservation of gene order, totalling about 0.75 Mb; these regions are not co-linear, indicating major chromosomal rearrangements. Metabolic reconstruction indicates many differences between L. johnsonii and L. plantarum: numerous enzymes involved in sugar metabolism and in biosynthesis of amino acids, nucleotides, fatty acids and cofactors are lacking in L. johnsonii. Major differences were seen in the number and types of putative extracellular proteins, which are of interest because of their possible role in host-microbe interactions. The differences between L. plantarum and L. johnsonii, both in genome organization and gene content, are exceptionally large for two bacteria of the same genus, emphasizing the difficulty in taxonomic classification of lactobacilli.

  10. Genome Sequence of Lactobacillus plantarum Strain UCMA 3037.

    PubMed

    Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias; Vernoux, Jean-Paul

    2013-05-23

    Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem.

  11. Genotyping by randomly amplified polymorphic DNA of bacteriocin producing Lactobacillus acidophilus strains from Nigeria.

    PubMed

    Alli, John Adeolu; Iwalokun, Bamidele A; Oluwadun, Afolabi; Okonko, Iheanyi Omezuruike

    2015-01-01

    Yogurt and starter culture producers are still searching strains of Lactobacillus acidophilus to produce healthier yogurt with a longer shelf life and better texture, taste, and quality. This study determined the genotyping of bacteriocin producing Lactobacillus acidophilus strains recovered from Nigerian yogurts. Yogurt samples were collected from four different states of South West regions of Nigeria. Isolates were obtained from MRS Medium and biochemically characterized. This was further confirmed by API50CH. The bacteriocin positivity and activity was determined. Genomic characterization of our Lactobacillus acidophilus strains was done with randomly amplified polymorphic DNA-PCR. All yogurt samples containing Lactobacillus acidophilus strains meet the probiotic requirement of ≥10(6) cfu/mL. The gel picture revealed 6 RAPD clonal types of Lactobacillus acidophilus strains with RAPD type C observed to be more common. Significant differences existed in the mean growth inhibition zone (t = -7.32, P < 0.05 for E. coli ATCC; t = -6.19, P < 0.05 for E. coli clinical isolates; t = -6.16, P < 0.05 for Enterobacter sp; t = -11.92, P < 0.05 for Salmonella typhi, t = -1.10, P > 0.05 Staphylococcus aureus). No correlation between the bacteriocin production, activity, and their RAPD clonal division (X(2) = 7.49, P = 0.1610, df = 5). In conclusion, L. acidophilus isolated in Nigeria samples met the probiotic requirements of ≥10(6) cfu/mL and produce bacteriocins with good spectrum of activity.

  12. Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants.

    PubMed

    Marzotto, Marta; Maffeis, Claudio; Paternoster, Thomas; Ferrario, Rossano; Rizzotti, Lucia; Pellegrino, Maristella; Dellaglio, Franco; Torriani, Sandra

    2006-11-01

    This study focuses on the potentiality of a putative probiotic strain, Lactobacillus paracasei A, to survive gastrointestinal (GI) passage and modulate the resident microbiota of healthy infants. In a placebo-controlled study, 26 children aged 12-24 months received 100 g/day of either fermented milk containing strain A or pasteurized yogurt for four weeks. Fecal samples were analyzed before starting the administration, after 1, 3 and 4 weeks of consumption and after washout. The fate of strain A was followed by means of a newly developed PCR targeting a strain-specific genomic marker. The composition and dynamics of fecal microbial communities during the study were analyzed by culturing on selective media and by the PCR-denaturing gradient gel electrophoresis (DGGE) technique using universal and group-specific (Lactobacillus and Bifidobacterium) primers. The variation in enzymatic activities in infant feces during probiotic consumption was also analyzed. Strain A survived in fecal samples in most (92%) of the infants examined after 1 week of consumption, and temporarily dominated the intestinal Lactobacillus community. The administration of L. paracasei A led to a significant increment in the Lactobacillus population, while a moderate effect upon the main bacterial groups in the GI ecosystem was observed. Strain A also affected the diversity of the Lactobacillus and Bifidobacterium populations. The fecal bacterial structure of 1 - 2-year-old infants seems to combine neonate and adult-like features. The microbiota of these subjects promptly responded to probiotic consumption, later restoring the endogenous equilibrium.

  13. Inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 toward L. monocytogenes, S. thypimurium and E. coli

    NASA Astrophysics Data System (ADS)

    Marwati, T.; Cahyaningrum, N.; Widodo, S.; Januarsyah, T.; Purwoko

    2018-01-01

    Bacteriocin is a protein compound which has bactericidal ability against pathogen bacteria. This research aims to study the inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 against Listeria monocytogenes, Salmonella thypimuruim and Escherchia coli. The bacteriocin produce from Lactobacillus SCG 1223 in the MRS broth media The experimental design used was Completely Randomized Design. The variations used in this design were percentage of inoculum (5%, 10%), medium pH (4, 6), incubation temperature (27°C, 40°C), and incubation time (4, 10, 14 hours). Result showed that bacteriocin from Lactobacillus SCG 1223 had wide spectrum toward L. monocytogenes, S. thypimuruim and E. coli. The highest bacteriocin activity toward L. monocytogenes produced by Lactobacillus SCG 1223 with 10% inoculum in media with initial pH 6, incubation temperature 27°C for 14 hour, toward S. thypimurium produced by Lactobacillus SCG 1223 with in media with initial pH 6, incubation temperature 40°C for 14 hour, and toward E. coli was 1085.81 AU/ml, produced by Lactobacillus SCG 1223 in MRS broth with initial pH 4, incubation temperature 40°C for 14 hour. This study is expected to find a new food preservative that can inhibit the growth of pathogenic bacteria and extend the shelf life of food. From the economic prospective of view, bacteriocin is very promising natural alternative biopreservatives.

  14. Isolation of lactobacillus reuteri from Peyer's patches and their effects on sIgA production and gut microbiota diversity.

    PubMed

    Wang, Panpan; Li, Ya; Xiao, Hang; Shi, Yonghui; Le, Guo-Wei; Sun, Jin

    2016-09-01

    We previously reported that specific Lactobacillus reuteri colonized within mouse Peyer's patches (PP) effectively prevented high fat diet induced obesity and low-grade chronic inflammation. We further investigated the role of PP Lactobacillus reuteri on sIgA production in rats in this study. Lactobacilli were isolated from rat PP. All isolates were L. reuteri and belonged to three phenotypes according to amplified fragment length polymorphism analysis. Typical strains of two main clusters, PP1 and PP2, were used to treat control and vitamin A deficient (VAD) rats, respectively. The feeding of PP1 and PP2 affected sIgA and Lactobacillus diversity by strain-specific manner. Free sIgA was significantly increased by PP1 (p = 0.069) and PP2 (p < 0.05) in the control rats but not in the VAD rats. Only PP1 significantly changed PP Lactobacillus diversity in the control rats (p < 0.05). However, PP2 specifically changed ileal Lactobacillus diversity in both control and VAD rats. Fecal sIgA was correlated with PP Lactobacillus diversity (R(2) = 0.7958, p = 0.011). Modulation of sIgA production by PP L. reuteri of rat is dependent on vitamin A and change of Lactobacillus diversity in PP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice.

    PubMed

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L

  16. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice

    PubMed Central

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    Aim To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Methods Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. Results The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Conclusions Administration of an L. crispatus CCTCC M206119 supplement aggravated

  17. Genome sequence of Lactobacillus rhamnosus ATCC 8530.

    PubMed

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry

    2012-02-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  18. Safety evaluation of Lactobacillus delbrueckii subsp. lactis UO 004, a probiotic bacterium.

    PubMed

    Fernández, M Fernanda; Boris, Soledad; Barbés, Covadonga

    2005-03-01

    Lactobacillus delbrueckii subsp. lactis UO 004 was evaluated for its use as a potential probiotic from a safety point of view. The strain did not exhibit mucinolytic or other enzymatic activities that might be detrimental, such as those involving glycosidases (beta-D-glucosaminidase or alpha-D-galactosidase) or arylamidases (factor Xa and quimotrypsin-like activities), frequently present in Lactobacillus strains isolated from patients with endocarditis, although it was able to express protein Ca and kallikrein-like activities. On the other hand, the presence of the strain did not interfere with the growth of certain species of normal intestinal microbiota, such as Enterococcus fecalis, Escherichia coli, Bifidobacterium bifidum or Bacteroides fragilis. Moreover, the potential probiotic strain UO 004 is sensitive to antibiotics with transmissible resistance mechanisms in Lactobacillus such as chloramphenicol, erythromycin, tetracycline and vancomycin. In addition, strain L. delbrueckii UO 004 was not able to translocate towards the intestinal barrier of mice or produce changes in their activity or general health status.

  19. Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes.

    PubMed

    Cardoza, R E; Malmierca, M G; Gutiérrez, S

    2014-09-01

    To investigate the effect of the overexpression of erg1 gene of Trichoderma harzianum CECT 2413 (T34) on the Trichoderma-plant interactions and in the biocontrol ability of this fungus. Transformants of T34 strain overexpressing erg1 gene did not show effect on the ergosterol level, although a drastic decrease in the squalene level was observed in the transformants at 96 h of growth. During interaction with plants, the erg1 overexpression resulted in a reduction of the priming ability of several tomato defence-related genes belonging to the salicylate pathway, and also of the TomLoxA gene, which is related to the jasmonate pathway. Interestingly, other jasmonate-related genes, such as PINI and PINII, were slightly induced. The erg1 overexpressed transformants also showed a reduced ability to colonize tomato roots. The ergosterol biosynthetic pathway might play an important role in regulating Trichoderma-plant interactions, although this role does not seem to be restricted to the final product; instead, other intermediates such as squalene, whose role in the Trichoderma-plant interaction has not been characterized, would also play an important role. The functional analysis of genes involved in the synthesis of ergosterol could provide additional strategies to improve the ability of biocontrol of the Trichoderma strains and their interaction with plants. © 2014 The Society for Applied Microbiology.

  20. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.

    PubMed

    Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo

    2013-10-15

    Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    PubMed

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (P<0.01). B. subtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (P<0.05). The viability of Lactobacillus increased when co-cultured with B. subtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (P<0.05). The role of Bacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.

  2. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp.

    PubMed

    Archer, A C; Kurrey, N K; Halami, P M

    2018-03-14

    This study aimed at characterizing the adhesion and immune-stimulatory properties of native probiotic Lactobacillus fermentum (MCC 2759 and MCC 2760) and Lactobacillus delbrueckii MCC 2775. Adhesion of the strains was assessed in Caco-2 and HT-29 cell lines. Expression of adhesion and immune markers were evaluated in Caco-2 cells by real-time qPCR. The cultures displayed >80% of adhesion to both cell lines and also induced the expression of mucin-binding protein (mub) gene in the presence of mucin, bile and pancreatin. Adhesion was mediated by carbohydrate and proteinaceous factors. The cultures stimulated the expression of inflammatory cytokines in Caco-2 cells. However, pro-inflammatory genes were down-regulated upon challenge with lipopolysaccharide and IL-10 was up-regulated by the cultures. Cell wall extract of L. fermentum MCC 2760 induced the expression of IL-6 by 5·47-fold, whereas crude culture filtrate enhanced the expression of IL-10 by 14·87-fold compared to LPS control. The bacterial cultures exhibited strong adhesion and anti-inflammatory properties. This is the first report to reveal the role of adhesion markers of L. fermentum and L. delbrueckii by qPCR. The strain-specific anti-inflammatory property of native cultures may be useful to alleviate inflammatory conditions and develop a target-based probiotic. © 2018 The Society for Applied Microbiology.

  3. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  4. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  5. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    PubMed Central

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  6. Lactobacillus alimentarius sp. nov., nom rev. and Lactobacillus farciminis sp. nov., nom. rev.

    PubMed

    Reuter, G

    1983-01-01

    In 1970 two new species within the so-called subgenus "Streptobacterium" Orla-Jensen of the genus Lactobacillus were described (Reuter, 1970). They were named L. alimentarius with the type strain "R 13" (DSM 20249) and L. farciminis with the type strain "Rv 4na" (DSM 20184). Since these two names have so far not been included in the "Approved Lists of Bacterial Names" (Skerman et al., 1980) they are revived for the same organisms with the same type strains. Copyright © 1983 Gustav Fischer Verlag, Stuttgart/New York. Published by Elsevier GmbH.. All rights reserved.

  7. The Lactobacillus flora in vagina and rectum of fertile and postmenopausal healthy Swedish women

    PubMed Central

    2011-01-01

    Background Lactobacillus species are the most often found inhabitants of vaginal ecosystem of fertile women. In postmenopausal women with low oestrogen levels, Lactobacillus flora is diminishing or absent. However, no studies have been performed to investigate the correlation between oestrogen levels and the lactobacilli in the gut. The aim of the present study was to investigate the relation in healthy women between vaginal and rectal microbial flora as well as possible variations with hormone levels. Methods Vaginal and rectal smears were taken from 20 healthy fertile women, average 40 years (range 28-49 years), in two different phases of the menstrual cycle, and from 20 postmenopausal women, average 60 years (range 52-85 years). Serum sex hormone levels were analyzed. Bacteria from the smears isolated on Rogosa Agar were grouped by Randomly Amplified Polymorphic DNA and identified by multiplex PCR and partial 16S rRNA gene sequencing. Results Lactobacillus crispatus was more often found in the vaginal flora of fertile women than in that of postmenopausal (p = 0.036). Fifteen of 20 fertile women had lactobacilli in their rectal smears compared to 10 postmenopausal women (p = 0.071). There was no correlation between the number of bacteria in vagina and rectum, or between the number of bacteria and hormonal levels. Neither could any association between the presence of rectal lactobacilli and hormonal levels be found. Conclusion Lactobacillus crispatus was more prevalent in the vaginal flora of fertile women, whereas the Lactobacillus flora of rectum did not correlate to the vaginal flora nor to hormonal levels. PMID:21609500

  8. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  9. Acid-producing capacity from sugars and sugar alcohols among Lactobacillus isolates collected in connection with radiation therapy.

    PubMed

    Almståhl, Annica; Rudbäck, Helena; Basic, Amina; Carlén, Anette; Alstad, Torgny

    2017-12-01

    To investigate the acid-producing capacity from sugars and sugar alcohols of oral Lactobacillus collected in connection with radiation therapy (RT) to the head and neck region. Lactobacillus were collected from the tongue, buccal mucosa and supragingival plaque in 24 patients before, during, and after RT. The acid-producing capacity of Lactobacillus isolates (n=211) was analyzed using a colorimetric fermentation test in microtiter plates. Solutions containing 2% sugars (sucrose, glucose, fructose, lactose) or sugar-alcohols (sorbitol and xylitol) were used. After 24h of incubation, bacterial acid-producing capacity was determined as strong (pH<5), weak (pH  ≥5-≤ 6) or low/absent (pH>6). Data regarding intake frequency of sugar-rich products and products with sugar-alcohols was collected. The highest acid-producing capacity using the sugars was seen for isolates collected during RT. Sorbitol was fermented to a higher extent during and post RT, especially among isolates from plaque. Lactobacillus fermenting xylitol showed the highest acid-producing capacity during RT (p<0.05). No statistically significant correlations between stimulated whole salivary secretion rate and acid-producing capacity, or between the intake frequency of sugar-rich products or sugar-alcohol containing products and Lactobacillus acid-producing capacity, were found. The results suggest that Lactobacillus isolates, collected from the tongue, buccal mucosa and supragingival plaque, have a higher acid-producing capacity using sugars and sugar-alcohols during RT than one year post RT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery.

    PubMed

    Petricevic, Ljubomir; Domig, Konrad J; Nierscher, Franz Josef; Sandhofer, Michael J; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-05-30

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery.

  11. Accumulation of Polyphosphate in Lactobacillus spp. and Its Involvement in Stress Resistance

    PubMed Central

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel

    2014-01-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  12. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success.

    PubMed

    Bull, Matthew; Plummer, Sue; Marchesi, Julian; Mahenthiralingam, Eshwar

    2013-12-01

    Lactobacillus acidophilus is a commercially significant bacterial probiotic, originally isolated from the human gastrointestinal tract and designated Bacillus acidophilus in 1900. Throughout the development of methods to identify and characterise bacteria, L. acidophilus has undergone multiple taxonomic revisions and is now the type species of a phylogenetic subgroup in the highly diverse and heterogeneous Lactobacillus genus. As a result of the limitations of differentiating phenotypically similar species by morphological and biochemical means and revisionary nature of Lactobacillus taxonomy, the characterisation of L. acidophilus has struggled with misidentification and misrepresentation. In contrast, due to its global use as a probiotic supplement in functional foods, L. acidophilus sensu stricto is now one of the most well-characterised Lactobacillus species. Here, we establish the provenance of L. acidophilus strains, unpicking historical and current misidentifications of L. acidophilus, and reviewing the probiotic, genomic and physiological characteristics of this important Lactobacillus species. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. The vaginal microbiome during pregnancy and the postpartum period in a European population

    PubMed Central

    MacIntyre, David A.; Chandiramani, Manju; Lee, Yun S.; Kindinger, Lindsay; Smith, Ann; Angelopoulos, Nicos; Lehne, Benjamin; Arulkumaran, Shankari; Brown, Richard; Teoh, Tiong Ghee; Holmes, Elaine; Nicoholson, Jeremy K.; Marchesi, Julian R.; Bennett, Phillip R.

    2015-01-01

    The composition and structure of the pregnancy vaginal microbiome may influence susceptibility to adverse pregnancy outcomes. Studies on the pregnant vaginal microbiome have largely been limited to Northern American populations. Using MiSeq sequencing of 16S rRNA gene amplicons, we characterised the vaginal microbiota of a mixed British cohort of women (n = 42) who experienced uncomplicated term delivery and who were sampled longitudinally throughout pregnancy (8–12, 20–22, 28–30 and 34–36 weeks gestation) and 6 weeks postpartum. We show that vaginal microbiome composition dramatically changes postpartum to become less Lactobacillus spp. dominant with increased alpha-diversity irrespective of the community structure during pregnancy and independent of ethnicity. While the pregnancy vaginal microbiome was characteristically dominated by Lactobacillus spp. and low alpha-diversity, unlike Northern American populations, a significant number of pregnant women this British population had a L. jensenii-dominated microbiome characterised by low alpha-diversity. L. jensenii was predominantly observed in women of Asian and Caucasian ethnicity whereas L. gasseri was absent in samples from Black women. This study reveals new insights into biogeographical and ethnic effects upon the pregnancy and postpartum vaginal microbiome and has important implications for future studies exploring relationships between the vaginal microbiome, host health and pregnancy outcomes. PMID:25758319

  14. Lactobacillus as a rare cause of an infected total knee replacement: a case report

    PubMed Central

    2009-01-01

    Introduction We report a rare case of an infected revision total knee replacement as a result of a Lactobacillus species infection. Lactobacillus infections have been associated with prolonged broad-spectrum antibiotic use. This can have implications in revision surgery, especially when patients have been on previous long-term suppressive antibiotic therapy. Case presentation An 81-year-old British man with a previous history of complex revision knee arthroplasty for infection presented with a hot, swollen knee joint. He had previously been on long-term suppressive antibiotic therapy. Aspiration of the knee joint yielded a culture of Lactobacillus species. Conclusion In patients undergoing revision joint arthroplasty, especially for previous infection, the presence of common and uncommon bacterial species must be excluded and eradicated before further surgical intervention. PMID:19830207

  15. Evaluation in vitro of the antagonistic substances produced by Lactobacillus spp. isolated from chickens

    PubMed Central

    Lima, Edna T.; Andreatti Filho, Raphael L.; Okamoto, Adriano S.; Noujaim, José C.; Barros, Mércia R.; Crocci, Adalberto J.

    2007-01-01

    To determine the inhibitory capacity of lactic acid bacteria due to the action of antagonistic substances, we tested 474 isolates of Lactobacillus from the crop and cecum of chickens against gram-positive and gram-negative indicator microorganisms by the spot-on-the-lawn and well-diffusion antagonism methods. Of the 474 isolates, 265 demonstrated antimicrobial activity against the indicator microorganisms. Isolates identified as L. reuteri, L. salivarius, or Lactobacillus spp. inhibited Enterococcus faecalis, E. faecium, Listeria monocytogenes, and Salmonella spp. but not L. casei, L. delbrueckii, L. fermentum, or L. helveticus by the well-diffusion simultaneous antagonism method under anaerobic incubation conditions. The antagonistic substances produced by some of the Lactobacillus isolates were inactivated after treatment by proteolytic enzymes, which suggested that the substances could be antimicrobial peptides or bacteriocins. PMID:17479773

  16. Draft Genome Sequence of Lactobacillus helveticus ATCC 12046

    PubMed Central

    2018-01-01

    ABSTRACT Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production. PMID:29449405

  17. Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88

    PubMed Central

    Ladero, Victor; Alvarez-Sieiro, Patricia; Redruello, Begoña; del Rio, Beatriz; Linares, Daniel M.; Martin, M. Cruz; Fernández, María

    2013-01-01

    Here, we report a 3.2-Mbp draft assembly for the genome of Lactobacillus plantarum IPLA 88. The sequence of this sourdough isolate provides insight into the adaptation of this versatile species to different environments. PMID:23887921

  18. Rapid molecular identification and characteristics of Lactobacillus strains.

    PubMed

    Markiewicz, L H; Biedrzycka, E; Wasilewska, E; Bielecka, M

    2010-09-01

    Eleven type strains and 24 Lactobacillus isolates, preliminarily classified to the species due to phenotypic features, were investigated. Standard methods of identification with species-specific PCRs and typing with PFGE (with ApaI, NotI and SmaI restriction enzymes) allowed us to distinguish 16 unique strains belonging to 5 species (L. acidophilus, L. delbrueckii ssp. bulgaricus, L. plantarum, L. rhamnosus, L. salivarius). Alternative approach with 16S-23S rDNA ARDRA identification (with merely two restrictases, BsuRI and TaqI) and PCR-based typing (RAPD with two random- and rep-PCR with (GTG)(5) primers) showed to be more discriminative, i.e. 21 unique strains were classified in the same species as above. As a result, 7 out of 24 phenotypically species-assigned isolates were reclassified. The alternative procedure of rapid identification and typing of Lactobacillus isolates appeared to be equally effective and shortened from 1 week to 2-3 d (in comparison to the standard methods).

  19. Probiotic potential of lactobacillus strains isolated from sorghum-based traditional fermented food.

    PubMed

    Rao, K Poornachandra; Chennappa, G; Suraj, U; Nagaraja, H; Raj, A P Charith; Sreenivasa, M Y

    2015-06-01

    Sorghum-based traditional fermented food was screened for potential probiotic lactic acid bacteria. The isolates were identified by biochemical, physiological and genetic methods. Species identification was done by 16s rRNA sequence analysis. The functional probiotic potential of the two Lactobacillus species viz., Lactobacillus plantarum (Lact. plantarum) and Lactobacillus pentosus (Lact. pentosus) was assessed by different standard parameters. The strains were tolerant to pH 2 for 1 h and resistant to methicillin, kanamycin, vancomycin and norfloxacin. Two (Lact. plantarum COORG-3 and Lact. pentosus COORG-8) out of eight isolates recorded the cell surface hydrophobicity to be 59.12 and 64.06%, respectively. All the strains showed tolerance to artificial duodenum juice (pH 2) for 3 h, positive for bile salt hydrolase test and negative for haemolytic test. The neutralized cell-free supernatant of the strains Lact. pentosus COORG-4, Lact. plantarum COORG-1, Lact. plantarum COORG-7, Lact. pentosus COORG-8 and Lact. plantarum COORG-3 showed good antibiofilm activity. Lact. pentosus COORG-8 exhibited 74% activity against Pseudomonas aeruginosa-MTCC 7903 and Lact. plantarum COORG-7 showed 68% inhibition of biofilm against Klebsiella pneumonia MTCC 7407. Three (Lact. plantarum COORG-7, Lact. pentosus COORG-5 and Lact. pentosus COORG 8) out of eight isolates exhibited a good antimicrobial activity against Listeria monocytogenes and five isolates (Lact. pentosus COORG 2, Lact. plantarum COORG 1, Lact. plantarum COORG 4, Lact. pentosus COORG 3 and Lact. plantarum COORG 6) are active against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella pneumonia, Enterococcus faecalis. The study also evaluated the cholesterol lowering property of the Lactobacillus strains using hen egg yolk as the cholesterol source. The cholesterol in hen egg yolk was assimilated by 74.12 and 68.26% by Lact. plantarum COORG 4 and Lact. pentosus COORG 7

  20. Consistent Condom Use Increases the Colonization of Lactobacillus crispatus in the Vagina

    PubMed Central

    Ma, Liyan; Lv, Zhi; Su, Jianrong; Wang, Jianjie; Yan, Donghui; Wei, Jingjuan; Pei, Shuang

    2013-01-01

    Background Non-hormonal contraception methods have been widely used, but their effects on colonization by vaginal lactobacilli remain unclear. Objective To determine the association between non-hormonal contraception methods and vaginal lactobacilli on women’s reproductive health. Methods The cross-sectional study included 164 healthy women between 18–45 years of age. The subjects were divided into different groups on the basis of the different non-hormonal contraception methods used by them. At the postmenstrual visit (day 21 or 22 of the menstrual cycle), vaginal swabs were collected for determination of Nugent score, quantitative culture and real-time polymerase chain reaction (PCR) of vaginal lactobacilli. The prevalence, colony counts and 16S rRNA gene expression of the Lactobacillus strains were compared between the different groups by Chi-square and ANOVA statistical analysis methods. Results A Nugent score of 0–3 was more common in the condom group (93.1%) than in the group that used an interuterine device(IUD) (75.4%), (p = 0.005). The prevalence of H2O2-producing Lactobacillus was significantly higher in the condom group (82.3%) than in the IUD group (68.2%), (p = 0.016). There was a significant difference in colony count (mean ± standard error (SE), log10colony forming unit (CFU)/ml) of H2O2-producing Lactobacillus between condom users (7.81±0.14) and IUD users (6.54±0.14), (p = 0.000). The 16S rRNA gene expression (mean ± SE, log10copies/ml) of Lactobacillus crispatus was significantly higher in the condom group (8.09±0.16) than in the IUD group (6.03±0.18), (p = 0.000). Conclusion Consistent condom use increases the colonization of Lactobacillus crispatus in the vagina and may protect against both bacterial vaginosis (BV) and human immunodeficiency virus (HIV). PMID:23894682

  1. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder.

    PubMed

    Aizawa, Emiko; Tsuji, Hirokazu; Asahara, Takashi; Takahashi, Takuya; Teraishi, Toshiya; Yoshida, Sumiko; Ota, Miho; Koga, Norie; Hattori, Kotaro; Kunugi, Hiroshi

    2016-09-15

    Bifidobacterium and Lactobacillus in the gut have been suggested to have a beneficial effect on stress response and depressive disorder. We examined whether these bacterial counts are reduced in patients with major depressive disorder (MDD) than in healthy controls. Bifidobacterium and Lactobacillus counts in fecal samples were estimated in 43 patients and 57 controls using bacterial rRNA-targeted reverse transcription-quantitative polymerase chain reaction The patients had significantly lower Bifidobacterium counts (P=0.012) and tended to have lower Lactobacillus counts (P=0.067) than the controls. Individuals whose bacterial counts below the optimal cut-off point (9.53 and 6.49log10 cells/g for Bifidobacterium and Lactobacillus, respectively) were significantly more common in the patients than in the controls for both bacteria (Bifidobacterium: odds ratio 3.23, 95% confidence interval [CI] 1.38-7.54, P=0.010; Lactobacillus: 2.57, 95% CI 1.14-5.78, P=0.027). Using the same cut-off points, we observed an association between the bacterial counts and Irritable bowel syndrome. Frequency of fermented milk consumption was associated with higher Bifidobacterium counts in the patients. The findings should be interpreted with caution since effects of gender and diet were not fully taken into account in the analysis. Our results provide direct evidence, for the first time, that individuals with lower Bifidobacterium and/or Lactobacillus counts are more common in patients with MDD compared to controls. Our findings provide new insight into the pathophysiology of MDD and will enhance future research on the use of pro- and prebiotics in the treatment of MDD. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Coexpression and Secretion of Endoglucanase and Phytase Genes in Lactobacillus reuteri

    PubMed Central

    Wang, Lei; Yang, Yuxin; Cai, Bei; Cao, Pinghua; Yang, Mingming; Chen, Yulin

    2014-01-01

    A multifunctional transgenic Lactobacillus with probiotic characteristics and an ability to degrade β-glucan and phytic acid (phytate) was engineered to improve nutrient utilization, increase production performance and decrease digestive diseases in broiler chickens. The Bacillus subtilis WL001 endoglucanase gene (celW) and Aspergillus fumigatus WL002 phytase gene (phyW) mature peptide (phyWM) were cloned into an expression vector with the lactate dehydrogenase promoter of Lactobacillus casei and the secretion signal peptide of the Lactococcus lactis usp45 gene. This construct was then transformed into Lactobacillus reuteri XC1 that had been isolated from the gastrointestinal tract of broilers. Heterologous enzyme production and feed effectiveness of this genetically modified L. reuteri strain were investigated and evaluated. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that the molecular mass of phyWM and celW was approximately 48.2 and 55 kDa, respectively, consistent with their predicted molecular weights. Endoglucanase and phytase activities in the extracellular fraction of the transformed L. reuteri culture were 0.68 and 0.42 U/mL, respectively. Transformed L. reuteri improved the feed conversion ratio of broilers from 21 to 42 days of age and over the whole feeding period. However, there was no effect on body weight gain and feed intake of chicks. Transformed L. reuteri supplementation improved levels of ash, calcium and phosphorus in tibiae at day 21 and of phosphorus at day 42. In addition, populations of Escherichia coli, Veillonella spp. and Bacteroides vulgatus were decreased, while populations of Bifidobacterium genus and Lactobacillus spp. were increased in the cecum at day 21. PMID:25050780

  3. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum.

    PubMed

    Rud, Ida; Jensen, Peter Ruhdal; Naterstad, Kristine; Axelsson, Lars

    2006-04-01

    A synthetic promoter library (SPL) for Lactobacillus plantarum has been developed, which generalizes the approach for obtaining synthetic promoters. The consensus sequence, derived from rRNA promoters extracted from the L. plantarum WCFS1 genome, was kept constant, and the non-consensus sequences were randomized. Construction of the SPL was performed in a vector (pSIP409) previously developed for high-level, inducible gene expression in L. plantarum and Lactobacillus sakei. A wide range of promoter strengths was obtained with the approach, covering 3-4 logs of expression levels in small increments of activity. The SPL was evaluated for the ability to drive beta-glucuronidase (GusA) and aminopeptidase N (PepN) expression. Protein production from the synthetic promoters was constitutive, and the most potent promoters gave high protein production with levels comparable to those of native rRNA promoters, and production of PepN protein corresponding to approximately 10-15 % of the total cellular protein. High correlation was obtained between the activities of promoters when tested in L. sakei and L. plantarum, which indicates the potential of the SPL for other Lactobacillus species. The SPL enables fine-tuning of stable gene expression for various applications in L. plantarum.

  4. Identification of salivary Lactobacillus rhamnosus species by DNA profiling and a specific probe.

    PubMed

    Richard, B; Groisillier, A; Badet, C; Dorignac, G; Lonvaud-Funel, A

    2001-03-01

    The Lactobacillus genus has been shown to be associated with the dental carious process, but little is known about the species related to the decay, although Lactobacillus rhamnosus is suspected to be the most implicated species. Conventional identification methods based on biochemical criteria lead to ambiguous results, since the Lactobacillus species found in saliva are phenotypically close. To clarify the role of this genus in the evolution of carious disease, this work aimed to find a rapid and reliable method for identifying the L. rhamnosus species. Methods based on hybridization with DNA probes and DNA amplification by PCR were used. The dominant salivary Lactobacillus species (reference strains from the ATCC) were selected for this purpose as well as some wild strains isolated from children's saliva. DNA profiling using semirandom polymorphic DNA amplification (semi-RAPD) generated specific patterns for L. rhamnosus ATCC 7469. The profiles of all L. rhamnosus strains tested were similar and could be grouped; these strains shared four common fragments. Wild strains first identified with classic methods shared common patterns with the L. rhamnosus species and could be reclassified. One fragment of the profile was purified, cloned, used as a probe and found to be specific to the L. rhamnosus species. These results may help to localize this species within its ecological niche and to elucidate the progression of the carious process.

  5. Discrimination of probiotic Lactobacillus strains for poultry by repetitive sequenced-based PCR fingerprinting.

    PubMed

    Lee, Chin Mei; Sieo, Chin Chin; Cheah, Yoke-Kqueen; Abdullah, Norhani; Ho, Yin Wan

    2012-02-01

    Four repetitive element sequence-based polymerase chain reaction (rep-PCR) methods, namely repetitive extragenic palindromic PCR (REP-PCR), enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), polytrinucleotide (GTG)₅ -PCR and BOX-PCR, were evaluated for the molecular differentiation of 12 probiotic Lactobacillus strains previously isolated from the gastrointestinal tract of chickens and used as a multistrain probiotic. This study represents the first analysis of the comparative efficacy of these four rep-PCR methods and their combination (composite rep-PCR) in the molecular typing of Lactobacillus strains based on a discriminatory index (D). Species-specific and strain-specific profiles were observed from rep-PCR. From the numerical analysis of composite rep-PCR, BOX-PCR, (GTG)₅ -PCR, REP-PCR and ERIC-PCR, D values of 0.9118, 0.9044, 0.8897, 0.8750 and 0.8529 respectively were obtained. Composite rep-PCR analysis was the most discriminative method, with eight Lactobacillus strains, namely L. brevis ATCC 14869(T) , L. reuteri C 10, L. reuteri ATCC 23272(T) , L. gallinarum ATCC 33199(T) , L. salivarius ATCC 11741(T) , L. salivarius I 24, L. panis JCM 11053(T) and L. panis C 17, being differentiated at the strain level. Composite rep-PCR analysis is potentially a useful fingerprinting method to discriminate probiotic Lactobacillus strains isolated from the gastrointestinal tract of chickens. Copyright © 2011 Society of Chemical Industry.

  6. Characterization of amygdalin-degrading Lactobacillus species.

    PubMed

    Menon, R; Munjal, N; Sturino, J M

    2015-02-01

    Cyanogenic glycosides are phytotoxic secondary metabolites produced by some crop plants. The aim of this study was to identify lactic acid bacteria (LAB) capable of catabolizing amygdalin, a model cyanogenic glycoside, for use in the biodetoxification of amygdalin-containing foods and feeds. Amygdalin-catabolizing lactobacilli were characterized using a combination of cultivation-dependent and molecular assays. Lactobacillus paraplantarum and Lactobacillus plantarum grew robustly on amygdalin (Amg(+)), while other LAB species typically failed to catabolize amygdalin (Amg(-)). Interestingly, high concentrations of amygdalin and two of its metabolic derivatives (mandelonitrile and benzaldehyde) inhibited the growth of Lact. plantarum RENO 0093. The differential regulation of genes tentatively involved in cyanohydrin metabolism illustrated that the metabolism of amygdalin- and glucose-grown cultures also differed significantly. Amygdalin fermentation was a relatively uncommon phenotype among the LAB and generally limited to strains from the Lact. plantarum group. Phenotype microarrays (PM) enabled strain-level discrimination between closely related strains within a species and suggested that phenotypic differences might affect niche specialization. Amygdalin-degrading lactobacilli with practical application in the biodetoxification of amygdalin were characterized. These strains show potential for use as starter cultures to improve the safety of foods and feeds. © 2014 The Society for Applied Microbiology.

  7. The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the "gastric barrier effect" in patients chronically treated with PPI: a pilot study.

    PubMed

    Del Piano, Mario; Anderloni, Andrea; Balzarini, Marco; Ballarè, Marco; Carmagnola, Stefania; Montino, Franco; Orsello, Marco; Pagliarulo, Michela; Tari, Roberto; Soattini, Liliana; Sforza, Filomena; Mogna, Luca; Mogna, Giovanni

    2012-10-01

    Gastroesophageal reflux disease is a very widespread condition. In Europe, it is estimated that about 175 million people suffer from this disease and have to chronically take drugs to increase gastric pH. The proton pump inhibitors (PPIs) such as omeprazole, lansoprazole, and esomeprazole are the most widely used drug typology in this regard. However, the inhibition of normal gastric acid secretion has important side effects, the most important being bacterial overgrowth in the stomach and duodenum with a concentration of >10⁵ viable cells/mL. As a major consequence of this, many harmful or even pathogenic bacteria contained in some foods could survive the gastric transit and colonize either the stomach itself, the duodenum, or the gut, where they could establish acute and even chronic infections with unavoidable consequences for the host's health. In other words, the "gastric barrier effect" is strongly reduced or even disrupted. To date, there are no real strategies to deal with this widespread, although still relatively little known, problem. The aim of this study was to confirm the gastric bacterial overgrowth in long-term PPI consumers and to assess the efficacy of some probiotic bacteria, belonging to both genera Lactobacillus and Bifidobacterium, in the reduction of gastric and duodenal bacterial overgrowth, therefore partially restoring the gastric barrier effect against foodborne pathogenic bacteria. For this purpose, probiotics with a strong demonstrated inhibitory activity on gram-negative bacteria, such as Escherichia coli, were tested in a human intervention trial involving a total of 30 subjects treated with PPIs for either 3 to 12 consecutive months (short-term) or >12 consecutive months (long-term). An additional 10 subjects not taking PPIs were enrolled and used as a control group representing the general population. Four selected probiotics Probiotical SpA (Novara, Italy), namely Lactobacillus rhamnosus LR06 (DSM 21981), Lactobacillus pentosus

  8. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. [Lactobacillus sake; Lactobacillus curvatus; Lactobacillus farciminis; Staphylococcus aureus; Salmonella typimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showingmore » a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.« less

  9. Lactobacillus GG for treatment of acute childhood diarrhoea: An open labelled, randomized controlled trial

    PubMed Central

    Aggarwal, Sunny; Upadhyay, Amit; Shah, Dheeraj; Teotia, Neeraj; Agarwal, Astha; Jaiswal, Vijay

    2014-01-01

    Background & objectives: Randomized controlled trials in developed countries have reported benefits of Lactobacillus GG (LGG) in the treatment of acute watery diarrhoea, but there is paucity of such data from India. The study was aimed to evaluate the efficacy and safety of Lactobacillus GG in the treatment of acute diarrhoea in children from a semi-urban city in north India. Methods: In this open labelled, randomized controlled trial 200 children with acute watery diarrhoea, aged between 6 months to 5 years visiting outpatient department and emergency room of a teaching hospital in north India were enrolled. The children were randomized into receiving either Lactobacillus GG in dose of 10 billion cfu/day for five days or no probiotic medication in addition to standard WHO management of diarrhoea. Primary outcomes were duration of diarrhoea and time to change in consistency of stools. Results: Median (inter quartile range) duration of diarrhoea was significantly shorter in children in LGG group [60 (54-72) h vs. 78 (72-90) h; P<0.001]. Also, there was faster improvement in stool consistency in children receiving Lactobacillus GG than control group [36 (30-36) h vs. 42 (36-48) h; P<0.001]. There was significant reduction in average number of stools per day in LGG group (P<0.001) compared to the control group. These benefits were seen irrespective of rotavirus positivity in stool tests. Interpretation & conclusions: Our results showed that the use of Lactobacillus GG in children with acute diarrhoea resulted in shorter duration and faster improvement in stool consistency as compared to the control group. PMID:24820831

  10. Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia.

    PubMed

    Leisner, J J; Vancanneyt, M; Lefebvre, K; Vandemeulebroecke, K; Hoste, B; Vilalta, N Euras; Rusul, G; Swings, J

    2002-05-01

    Lactic acid bacteria (LAB) are the predominant micro-organisms in tempoyak, a Malaysian acid-fermented condiment. In a study on the diversity of LAB in this product, three isolates could not be identified using SDS-PAGE of whole-cell proteins or API 50 CH. The taxonomic position of the three isolates was clarified in the present study. 16S rDNA sequencing classified a representative strain in the genus Lactobacillus, clearly separated from all known species, and most closely related to the Lactobacillus reuteri phylogenetic group. DNA-DNA hybridization experiments and an extensive phenotypic description confirm that the strains represent a single and separate novel species among the obligately heterofermentative lactobacilli. The three isolates are distinguished at the intra-species level by plasmid profiling, pulsed-field gel electrophoresis of macro-restriction fragments and biochemical features. The name Lactobacillus durianis sp. nov. is proposed for the novel taxon and the type strain is LMG 19193T (= CCUG 45405T).

  11. Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics.

    PubMed

    Arena, Mattia P; Russo, Pasquale; Capozzi, Vittorio; López, Paloma; Fiocco, Daniela; Spano, Giuseppe

    2014-09-01

    The probiotic potential of Lactobacillus plantarum and Lactobacillus fermentum strains, capable of overproducing riboflavin, was investigated. The riboflavin production was quantified in co-cultures of lactobacilli and human intestinal epithelial cells, and the riboflavin overproduction ability was confirmed. When milk and yogurt were used as carrier matrices, L. plantarum and L. fermentum strains displayed a significant ability to survive through simulated gastrointestinal transit. Adhesion was studied on both biotic and abiotic surfaces. Both strains adhered strongly on Caco-2 cells, negatively influenced the adhesion of Escherichia coli O157:H7, and strongly inhibited the growth of three reference pathogenic microbial strains. Resistance to major antibiotics and potential hemolytic activity were assayed. Overall, this study reveals that these Lactobacillus stains are endowed with promising probiotic properties and thus are candidates for the development of novel functional food which would be both enriched in riboflavin and induce additional health benefits, including a potential in situ riboflavin production, once the microorganisms colonize the host intestine.

  12. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface.

    PubMed

    Song, Young-Gyun; Lee, Sung-Hoon

    2017-04-01

    Candida albicans biofilm is associated with denture-related stomatitis and oral candidiasis of elderly. Probiotics are beneficial bacteria and have antibacterial activity against pathogenic bacteria. The purpose of this study was to investigate the antifungal activity of various probiotics against C. albicans and the inhibitory effects of probiotics on Candida biofilm on the denture surface. The spent culture media of various probiotics were investigated the antifungal efficacy against C. albicans. Candida biofilm was formed on a denture base resin and was then treated with Lactobacillus rhamnosus and Lactobacillus casei. Also, the biofilms of L. rhamnosus and L. casei were formed and were sequentially treated with C. albicans. Colony-forming units of C. albicans on the denture surface were counted after spreading on agar plate. The denture base resin was treated with the spent culture media for 30days, after which the denture surface roughness was analyzed with an atomic force microscope. L. rhamnosus and L. casei exhibited stronger antifungal activity than other probiotics. The spent culture medium of L. rhamnosus and L. casei exhibited the antifungal activity against blastoconidia and biofilm of C. albicans. L. rhamnosus and L. casei showed the antifungal activity against Candida biofilm, and the biofilm of L. rhamnosus and L. casei inhibited formation of Candida biofilm on denture surface. Neither of the probiotics affected the surface roughness of the denture base resin. L. rhamnosus and L. casei may be the ideal probiotics for the prevention and treatment of denture-related stomatitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Use of Lactobacillus spp. to prevent recurrent urinary tract infections in females.

    PubMed

    Ng, Qin Xiang; Peters, Christina; Venkatanarayanan, Nandini; Goh, Yan Yih; Ho, Collin Yih Xian; Yeo, Wee-Song

    2018-05-01

    Urinary tract infections (UTIs) are the most common bacterial infections seen in the community, especially amongst females. The widespread use of antibiotics has led to the increased occurrence of E. coli resistant isolates worldwide. A promising non-antibiotic approach is the use of probiotic lactobacilli strains. This paper hypothesizes that Lactobacillus spp. containing products are able to prevent recurrent urinary tract infections in females. Using the keywords [lactobacillus OR lactobacilli OR probiotic] and [urinary tract infection OR UTI OR cystitis], a preliminary search on the PubMed, Ovid, Google Scholar and ClinicalTrials.gov database yielded 1,647 papers published in English between 1-Jan-1960 and 1-May-2017. 9 clinical trials with a total of 726 patients were reviewed. Different lactobacilli strains (in either oral or suppository formulation) were utilized and they demonstrated varying efficacy in the prevention of recurrent UTIs. Using a random-effects model, pooled risk ratio of at least one recurrent UTI episode during the entire study duration was 0.684 (95% CI 0.438 to 0.929, p < 0.001), per-protocol analysis. However, key limitations include significant inter-study variability and the limited duration of follow-up of most studies. Our hypothesis on the chemoprophylactic effects of probiotics for UTIs is plausible and supported by current data. Lactobacillus rhamnosus GR1 and Lactobacillus reuteri RC14 were the most commonly studied lactobacilli strains. Further and more robust randomized controlled trials with standardized lactobacilli strains and formulation are required for confirmation of effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Draft Genome Sequence of Lactobacillus helveticus ATCC 12046.

    PubMed

    Palomino, María Mercedes; Burguener, Germán F; Campos, Josefina; Allievi, Mariana; Fina-Martin, Joaquina; Prado Acosta, Mariano; Fernández Do Porto, Darío A; Ruzal, Sandra M

    2018-02-15

    Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production. Copyright © 2018 Palomino et al.

  15. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains

    PubMed Central

    Garcia, Estefânia F.; Luciano, Winnie A.; Xavier, Danilo E.; da Costa, Whyara C. A.; de Sousa Oliveira, Kleber; Franco, Octávio L.; de Morais Júnior, Marcos A.; Lucena, Brígida T. L.; Picão, Renata C.; Magnani, Marciane; Saarela, Maria; de Souza, Evandro L.

    2016-01-01

    This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains. PMID:27625647

  16. Mixed Lactobacillus plantarum Strains Inhibit Staphylococcus aureus Induced Inflammation and Ameliorate Intestinal Microflora in Mice.

    PubMed

    Ren, Dayong; Gong, Shengjie; Shu, Jingyan; Zhu, Jianwei; Rong, Fengjun; Zhang, Zhenye; Wang, Di; Gao, Liangfeng; Qu, Tianming; Liu, Hongyan; Chen, Ping

    2017-01-01

    Objective . Staphylococcus aureus is an important pathogen that causes intestinal infection. We examined the immunomodulatory function of single and mixed Lactobacillus plantarum strains, as well as their impacts on the structure of the microbiome in mice infected with Staphylococcus aureus . The experiment was divided into three groups: protection, treatment, and control. Serum IFN- γ and IL-4 levels, as well as intestinal sIgA levels, were measured during and 1 week after infection with Staphylococcus aureus with and without Lactobacillus plantarum treatment. We used 16s rRNA tagged sequencing to analyze microbiome composition. IFN- γ /IL-4 ratio decreased significantly from infection to convalescence, especially in the mixed Lactobacillus plantarum group. In the mixed Lactobacillus plantarum group the secretion of sIgA in the intestine of mice (9.4-9.7 ug/mL) was significantly higher than in the single lactic acid bacteria group. The dominant phyla in mice are Firmicutes , Bacteroidetes , and Proteobacteria . Treatment with mixed lactic acid bacteria increased the anti-inflammatory factor and the secretion of sIgA in the intestine of mice infected with Staphylococcus aureus and inhibited inflammation.

  17. The effects of inulin and fructo-oligosaccharide on the probiotic properties of Lactobacillus spp. isolated from human milk.

    PubMed

    Tulumoğlu, Şener; Erdem, Belgin; Şimşek, Ömer

    2018-05-22

    This study aims to determine the effects of inulin and fructo-oligosaccharide (FOS) on the probiotic properties of five Lactobacillus spp. isolated from human milk. Lactobacillus spp. were isolated and identified, and the growth characteristics, acid and bile salt tolerance, antagonistic effects, and cholesterol assimilation of Lactobacillus strains were investigated in the presence of inulin and FOS. Lactobacillus casei L1 was able to utilize inulin and FOS as carbon source as well as glucose even other strains were able to use, including Lactobacillus rhamnosus GG. This strain also showed high tolerance to acid and bile salt, even at pH 2.5 and 0.5% bile salt levels, respectively. Inulin and FOS promoted the antimicrobial activity of L. casei L1 against pathogenic bacteria. Cholesterol assimilation was higher than in the other and control probiotic strains in the presence inulin and FOS, which were measured as 14 and 25 mg/dL, respectively. In conclusion, L. casei L1 can use both inulin and FOS to maintain its viability both at digestive conditions and also the relevant prebiotics, and show broad antagonistic activity and cholesterol assimilation.

  18. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus.

    PubMed

    Spear, Gregory T; French, Audrey L; Gilbert, Douglas; Zariffard, M Reza; Mirmonsef, Paria; Sullivan, Thomas H; Spear, William W; Landay, Alan; Micci, Sandra; Lee, Byung-Hoo; Hamaker, Bruce R

    2014-10-01

    Lactobacillus colonization of the lower female genital tract provides protection from the acquisition of sexually transmitted diseases, including human immunodeficiency virus, and from adverse pregnancy outcomes. While glycogen in vaginal epithelium is thought to support Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize glycogen in vitro. This study investigated how glycogen could be utilized by vaginal lactobacilli in the genital tract. Several Lactobacillus isolates were confirmed to not grow in glycogen, but did grow in glycogen-breakdown products, including maltose, maltotriose, maltopentaose, maltodextrins, and glycogen treated with salivary α-amylase. A temperature-dependent glycogen-degrading activity was detected in genital fluids that correlated with levels of α-amylase. Treatment of glycogen with genital fluids resulted in production of maltose, maltotriose, and maltotetraose, the major products of α-amylase digestion. These studies show that human α-amylase is present in the female lower genital tract and elucidates how epithelial glycogen can support Lactobacillus colonization in the genital tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Restoration of cefixime-induced gut microbiota changes by Lactobacillus cocktails and fructooligosaccharides in a mouse model.

    PubMed

    Shi, Ying; Zhai, Qixiao; Li, Dongyao; Mao, Bingyong; Liu, Xiaoming; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2017-07-01

    Probiotics have been used to rebuild the antibiotic-induced dysfunction in gut microbiota, but whether the different strains of probiotics result in similar or reverse effects remains unclear. In this study, the different recovery effects of two cocktails (each contains four strains) of Lactobacillus and fructooligosaccharide against cefixime-induced change of gut microbiota were evaluated in C57BL/6J mice. The results show that the use of cefixime caused a reduction in the diversities of the microbial community and led to significantly decreasing to one preponderant Firmicutes phylum, which was difficult to restore naturally in the short term. The gut microbiota compositions of the groups treated with the probiotic cocktails were much more diverse than those of the natural recovery group. The effects of Lactobacillus cocktails against the cefixime-induced gut microbiota change may mainly be due to the beneficial SCFAs production in vivo and also be related to the good cell adhesion properties performed in vitro. Meanwhile, the restoration of the cefixime-induced gut microbiota was significantly different between two Lactobacillus groups since the Lactobacillus strains with high levels of fructooligosaccharide use and better cell adhesion properties performed considerably better than the Lactobacillus strains with high survival rates in the gastrointestinal tract. The contents of short-chain fatty acids in ceca were increased to 26.483±1.925 and 25.609±2.782μmol/g in the two probiotic cocktail groups respectively compared to 15.791±0.833μmol/g (P<0.05) in control group. Moreover, intestinal inflammation was alleviated by administration of the Lactobacillus cocktails. However, fructooligasaccharide administration showed certain effects on gut microbiota restoration (such as an increase of Akkermansia), although its effect on the entire microbiome structure is not so obvious. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Kraft Pulp Biobleaching and Mediated Oxidation of a Nonphenolic Substrate by Laccase from Streptomyces cyaneus CECT 3335

    PubMed Central

    Arias, M. Enriqueta; Arenas, María; Rodríguez, Juana; Soliveri, Juan; Ball, Andrew S.; Hernández, Manuel

    2003-01-01

    A new laccase (EC 1.10.3.2) produced by Streptomyces cyaneus CECT 3335 in liquid media containing soya flour (20 g per liter) was purified to homogeneity. The physicochemical, catalytic, and spectral characteristics of this enzyme, as well as its suitability for biobleaching of eucalyptus kraft pulps, were assessed. The purified laccase had a molecular mass of 75 kDa and an isoelectric point of 5.6, and its optimal pH and temperature were 4.5 and 70°C, respectively. The activity was strongly enhanced in the presence of Cu2+, Mn2+, and Mg2+ and was completely inhibited by EDTA and sodium azide. The purified laccase exhibited high levels of activity against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,6-dimethoxyphenol and no activity against tyrosine. The UV-visible spectrum of the purified laccase was the typical spectrum of the blue laccases, with an absorption peak at 600 nm and a shoulder around 330 to 340 nm. The ability of the purified laccase to oxidize a nonphenolic compound, such as veratryl alcohol, in the presence of ABTS opens up new possibilities for the use of bacterial laccases in the pulp and paper industry. We demonstrated that application of the laccase from S. cyaneus in the presence of ABTS to biobleaching of eucalyptus kraft pulps resulted in a significant decrease in the kappa number (2.3 U) and an important increase in the brightness (2.2%, as determined by the International Standard Organization test) of pulps, showing the suitability of laccases produced by streptomycetes for industrial purposes. PMID:12676669

  1. Optimization of the medium for Lactobacillus acidophilus by Plackett-Burman and steepest ascent experiment.

    PubMed

    Chen, He; Niu, Jinfeng; Qin, Tao; Ma, Qi; Wang, Lei; Shu, Guowei

    2015-01-01

    Lactobacillus acidophilus not only improves the intestinal flora balance but also inhabits the growth of undesirable microorganisms in intestine, which is benefit to the health of humans and animals. Plackett-Burman and steepest ascent experiment are the rapid and concise ways of screening the main effective factors. This study is aimed to select the main influence factors and optimize the medium for Lactobacillus acidophilus by Plackett-Burman experiment and steepest ascent experiment. The ideal carbon source was screened among glucose, maltose, lactose and whey powder, and the ideal nitrogen source was screened among casein hydrolysate, peptone, yeast extract powder, fish meal, carbamide, ammonium sulfate and sodium nitrate by single factor experiment. Plackett-Burman and steepest ascent experiment were applied to screen the main effective factors of Lactobacillus acidophilus among peptone, beef extract, yeast extract powder, glucose, K2HPO4, C6H14O7N2, CH3COONa, MgSO4 and Tween-80. Result. The results indicated that glucose (p = 0.01510) as negative factor and K2HPO4 (p = 0.02017) as positive effect were the significant growth factors of Lactobacillus acidophilus, CH3COONa (p = 0.09273) as positive effect was an important factor, and the optimized medium was as follows: glucose - 21 g/L, K2HPO4 - 3.5 g/L, CH3COONa - 6.5 g/L, peptone - 10 g/L, beef extract - 8 g/L, yeast extract pow. nd. Lactobacillus acidophilus not only improves the intestinal flora balance but also inhabits the growth of undesirable microorganisms in intestine, which is benefit to the health of humans and animals. Plackett-Burman and steepest ascent experiment are the rapid and concise ways of screening the main effective factors. This study is aimed to select the main influence factors and optimize the medium for Lactobacillus acidophilus by Plackett-Burman experiment and steepest ascent experiment. Material and methods. The ideal carbon source was screened among glucose, maltose, lactose and

  2. In Vitro Characterization of Lactobacillus Strains Isolated from Fruit Processing By-Products as Potential Probiotics.

    PubMed

    de Albuquerque, Thatyane Mariano Rodrigues; Garcia, Estefânia Fernandes; de Oliveira Araújo, Amanda; Magnani, Marciane; Saarela, Maria; de Souza, Evandro Leite

    2017-08-23

    Nine wild Lactobacillus strains, namely Lactobacillus plantarum 53, Lactobacillus fermentum 56, L. fermentum 60, Lactobacillus paracasei 106, L. fermentum 250, L. fermentum 263, L. fermentum 139, L. fermentum 141, and L. fermentum 296, isolated from fruit processing by-products were evaluated in vitro for a series of safety, physiological functionality, and technological properties that could enable their use as probiotics. Considering the safety aspects, the resistance to antibiotics varied among the examined strains, and none of the strains presented hemolytic and mucinolytic activity. Regarding the physiological functionality properties, none of the strains were able to deconjugate bile salts; all of them presented low to moderate cell hydrophobicity and were able to autoaggregate, coaggregate with Listeria monocytogenes and Escherichia coli, and antagonize pathogenic bacteria. Exposure to pH 2 sharply decreased the survival of the examined strains after 1- or 2-h exposure; variable decreases were noted after 3-h exposure to pH 3. Overall, exposure to pH 5 and to bile salts (0.15, 0.3, and 1%) did not decrease the strains' survival. Examined strains presented better ability to survive from the exposure to simulated gastrointestinal conditions in laboratorial media and milk than in grape juice. Considering the technological properties, all the strains were positive for proteolytic activity and EPS and diacetyl production, and most of them had good tolerance to 1-4% NaCl. These results indicate that wild Lactobacillus strains isolated from fruit processing by-products could present performance compatible with probiotic properties and technological features that enable the development of probiotic foods with distinct characteristics.

  3. Lactobacillus species: taxonomic complexity and controversial susceptibilities.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M

    2015-05-15

    The genus Lactobacillus is a taxonomically complex and is composed of over 170 species that cannot be easily differentiated phenotypically and often require molecular identification. Although they are part of the normal human gastrointestinal and vaginal flora, they can also be occasional human pathogens. They are extensively used in a variety of commercial products including probiotics. Their antimicrobial susceptibilities are poorly defined in part because of their taxonomic complexity and are compounded by the different methods recommended by Clinical Laboratory Standards Institute and International Dairy Foundation. Their use as probiotics for prevention of Clostridium difficile infection is prevalent among consumers worldwide but raises the question of will the use of any concurrent antibiotic effect their ability to survive. Lactobacillus species are generally acid resistant and are able to survive ingestion. They are generally resistant to metronidazole, aminoglycosides and ciprofloxacin with L. acidophilus being susceptible to penicillin and vancomycin, whereas L. rhamnosus and L. casei are resistant to metronidazole and vancomycin. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Probiotic Properties of Lactobacillus Strains Isolated from Tibetan Kefir Grains

    PubMed Central

    Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying

    2013-01-01

    The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing

  5. Lactobacillus perolens sp. nov., a soft drink spoilage bacterium.

    PubMed

    Back, W; Bohak, I; Ehrmann, M; Ludwig, W; Pot, B; Kersters, K; Schleifer, K H

    1999-09-01

    Lactic acid bacteria that are able to spoil soft drinks with low pH comprise a limited number of acidotolerant or acidophilic species of the genera Lactobacillus, Leuconostoc and Weissella. Various Gram-positive rods causing turbidity and off-flavour were isolated from orange lemonades. Physiological and biochemical studies including SDS-PAGE whole-cell protein analysis showed a homogeneous group of organisms. The 16S rRNA gene sequence analysis of two representatives revealed that they formed a phylogenetically distinct line within the genus Lactobacillus. All strains were facultatively heterofermentative, producing L-lactic acid. Based on the data presented a new species L. perolens is proposed. The name refers to the off-flavour caused by high amounts of diacetyl. The type strain of L. perolens is DSM 12744 (LMG 18936). A rRNA targeted oligonucleotide probe was designed that allows a fast and reliable identification of L. perolens.

  6. Antibiotic susceptibility of Lactobacillus strains isolated from domestic geese.

    PubMed

    Dec, M; Wernicki, A; Puchalski, A; Urban-Chmiel, R

    2015-01-01

    The aim of this study was to determine the antibiotic susceptibility of 93 Lactobacillus strains isolated from domestic geese raised on Polish farms. The minimal inhibitory concentration (MIC) of 13 antimicrobial substances was determined by the broth microdilution method. All strains were sensitive to the cell wall inhibitors ampicillin and amoxicillin (MIC ≤ 8 μg/ml). Resistance to inhibitors of protein synthesis and to fluoroquinolone inhibitors of replication was found in 44.1% and 60.2% of isolates, respectively; 26.9% strains were resistant to neomycin (MIC ≥ 64 μg/ml), 23.6% to tetracycline (MIC ≥ 32 μg/ml), 15% to lincomycin (MIC ≥ 64 μg/ml), 18.3% to doxycycline (MIC ≥ 32 μg/ml), 9.7% to tylosin (MIC ≥ 32 μg/ml), 56% to flumequine (MIC ≥ 256 μg/ml) and 22.6% to enrofloxacin (MIC ≥ 64 μg/ml). Bimodal distribution of MICs indicative of acquired resistance and unimodal distribution of the high MIC values indicative of intrinsic resistance were correlated with Lactobacillus species. Eleven (11.8%) strains displayed multiple resistance for at least three classes of antibiotics. Data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorisation of susceptible and resistant strains of Lactobacillus genus and help to assess the hazards associated with the occurrence of drug resistance among natural intestinal microflora.

  7. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice.

    PubMed

    Asahara, T; Shimizu, K; Takada, T; Kado, S; Yuki, N; Morotomi, M; Tanaka, R; Nomoto, K

    2011-01-01

    The anti-infectious activity of lactobacilli against multi-drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic-induced infection. Explosive intestinal growth and subsequent lethal extra-intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 10(8) colony-forming units per mouse daily to mice. Comparison of the anti-Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869(T) , Lactobacillus plantarum ATCC 14917(T) , Lactobacillus reuteri JCM 1112(T) , Lactobacillus rhamnosus ATCC 7469(T) and Lactobacillus salivarius ATCC 11741(T) conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334(T) and Lactobacillus zeae ATCC 15820(T) . The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti-infectious activity. Moreover, heat-killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti-infectious activity. These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi-drug resistant pathogens, such as DT104. Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics. © 2010 The Authors. Journal of Applied Microbiology

  8. Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet.

    PubMed

    Feng, Jing; Jiang, Yujun; Li, Mingyu; Zhao, Siyu; Zhang, Yanming; Li, Xuesong; Wang, Hui; Lin, Guangen; Wang, Hao; Li, Tiejing; Man, Chaoxin

    2018-05-25

    Bacteria in Lactobacillus casei group, including Lactobacillus casei (L. casei), Lactobacillus paracasei (L. paracasei), and Lactobacillus rhamnosus (L. rhamnosus) are important lactic acid bacteria in the production of fermented dairy products and are faced with the controversial nomenclatural status due to their close phylogenetic similarity. To probe the evolution and phylogeny of L. casei group, 100 isolates of lactic acid bacteria originated from naturally fermented dairy products in Tibet of China were subjected to multilocus sequence typing (MLST). The MLST scheme, based on analysis of the housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA and recG, revealed that all the isolates belonged to a group containing the L. paracasei reference strains and were clearly different from the strains of L. casei and L. rhamnosus. Although nucleotide diversity (π) was low for the seven genes (ranging from 0.00341 for fusA to 0.01307 for recG), high genetic diversity represented by 83 sequence types (STs) with a discriminatory index of 0.98 was detected. A network-like structure based on split decomposition analysis, and the high values of the relative effect of recombination and mutation in the diversification of the lineages (r/m = 4.76) and the relative frequency of occurrence of recombination and mutation (ρ/θ = 2.62) indicated that intra-species recombination occurred frequently and homologous recombination played a key role in generating genotypic diversity amongst L. paracasei strains in Tibet. The discovery of 51 new STs and the results of STRUCTURE analysis suggested that the L. casei group in Tibet had an individual and particular population structure in comparison to European isolates. Overall, this research might be the first report about genetic diversity and population structure of Lactobacillus populations isolated from naturally fermented dairy products in Tibet based on MLST scheme.

  9. Use of Lactobacillus casei rhamnosus to Prevent Cholangitis in Biliary Atresia After Kasai Operation.

    PubMed

    Lien, Tien-Hau; Bu, Ling-Nan; Wu, Jia-Feng; Chen, Huey-Ling; Chen, An-Chyi; Lai, Ming-Wei; Shih, Hsiang-Hung; Lee, I-Hsien; Hsu, Hong-Yuan; Ni, Yen-Hsuan; Chang, Mei-Hwei

    2015-05-01

    Recurrent cholangitis may aggravate cholestatic liver cirrhosis in biliary atresia (BA) after the Kasai operation. This pilot study aimed to investigate whether Lactobacillus casei rhamnosus has the prophylactic efficacy for recurrent cholangitis in comparison with the conventional neomycin prophylaxis. Twenty jaundice-free patients with BA ages 0 to 3 years who underwent a Kasai operation were enrolled and randomized into 2 groups with 10 patients each: neomycin (25 mg · kg · day for 4 days/wk) and L casei rhamnosus (8 × 10 colony-forming unit per day) groups. The treatment duration was 6 months. Bacterial stool cultures were performed before treatment and 1, 3, and 6 months after starting treatment. In addition, 10 patients with BA with similar status but without prophylaxis served as the historical control group. In the Lactobacillus group, 2 patients (20%, mean 0.03 ± 0.07 episodes per month) developed cholangitis during the study period, with the same frequency as in the neomycin group and significantly lower than that in the control group (80%, P = 0.005, mean 0.22 ± 0.16 episodes per month). The mean change in body weight z score during the 6 months in the Lactobacillus group was 0.97 ± 0.59, which was significantly better than that in the control group (-0.01 ± 0.79, P = 0.006). In bacterial stool cultures, the Lactobacillus and Escherichia coli populations significantly increased and decreased, respectively, in the Lactobacillus group. The use of L casei rhamnosus was as effective as neomycin in preventing cholangitis in patients with BA who underwent Kasai operation, and therefore could be considered as a potential alternative prophylactic regimen.

  10. Microbiological, chemical, and sensory characteristics of Swiss cheese manufactured with adjunct Lactobacillus strains using a low cooking temperature.

    PubMed

    Kocaoglu-Vurma, N A; Harper, W J; Drake, M A; Courtney, P D

    2008-08-01

    The effect of nonstarter Lactobacillus adjunct cultures on the microbial, chemical, and sensory characteristics of Swiss cheese manufactured using the "kosher make procedure" was investigated. The kosher make procedure, which uses a lower cooking temperature than traditional Swiss cheese making, is used by many American cheese manufacturers to allow for kosher-certified whey. Cheeses were manufactured using a commercial starter culture combination and 1 of 3 non-starter Lactobacillus strains previously isolated from Swiss cheeses, Lactobacillus casei A26, L. casei B21, and Lactobacillus rhamnosus H2, as an adjunct. Control cheeses lacked the adjunct culture. Cheeses were analyzed during ripening for microbial and chemical composition. Adjunct strain L. casei A26, which utilized citrate most readily in laboratory medium, dominated the Lactobacillus population within 30 d, faster than the other adjunct cultures. There were no significant differences in Propionibacterium counts, Streptococcus thermophilus counts, protein, fat, moisture, salt, and pH among the cheeses. Free amino acid concentration ranged from 5 to 7 mmol/100 g of cheese at 90 d of ripening and was adjunct strain dependent. Lactic, acetic, and propionic acid concentrations were not significantly different among the cheeses after a 90-d ripening period; however differences in propionic acid concentrations were apparent at 60 d, with the cheeses made with L. casei adjuncts containing less propionic acid. Citric acid was depleted by the end of warm room ripening in cheeses manufactured with adjunct L. casei strains, but not with adjunct L. rhamnosus. Cheeses made with L. casei A26 were most similar to the control cheeses in diacetyl and butyric/isobutyric acid abundance as evaluated by electronic nose during the first 3 mo of ripening. The 4 cheese types differed in their descriptive sensory profiles at 8 mo of age, indicating an adjunct strain-dependent effect on particular flavor attributes. Adjunct

  11. Carbapenem-resistant Lactobacillus intra-abdominal infection in a renal transplant recipient with a history of probiotic consumption.

    PubMed

    Vanichanan, Jakapat; Chávez, Violeta; Wanger, Audrey; De Golovine, Aleksandra M; Vigil, Karen J

    2016-12-01

    Lactobacillus sp. is a low virulence bacterium, which rarely causes infection in immunocompetent individuals and usually is considered a contaminant. Normally this organism is susceptible to β-lactam antibiotics, yet resistant strains have been reported. Here, we report a case of a 60-year-old renal transplant recipient who developed an intra-abdominal abscess which grew a carbapenem-resistant Lactobacillus casei. This is significant since it is the first report of a clinical isolate of Lactobacillus sp. that demonstrated both microbiological and clinical resistance to carbapenem use. Moreover, the probiotic supplement that the patient had taken also grew a similar organism raising the concern of probiotic associated infection in immunocompromised individual.

  12. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kôso, a Japanese Sugar-Vegetable Fermented Beverage

    PubMed Central

    Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-01

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. PMID:26769925

  13. Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia.

    PubMed

    Choi, Il-Dong; Kim, Sung-Hwan; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Hong, Seong Soo; Sim, Jae-Hun; Ahn, Young-Tae

    2016-03-01

    The triglyceride-lowering effect of probiotics Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 were investigated. Male SD Wistar rats were randomly divided into three groups and fed high-fat diet (HFD), HFD and probiotics (5 X 10(9) CFU/day of L. plantarum KY1032 and 5 X 10(9) CFU/day of L. curvatus HY7601), or normal diet for 6 weeks. Probiotic treatment significantly lowered the elevated plasma triglyceride and increased plasma free fatty acid, glycerol, and plasma apolipoprotein A-V (ApoA-V) levels. The probiotic-treated group showed elevated hepatic mRNA expression of PPARα, bile acid receptor (FXR), and ApoA-V. These results demonstrate that L. plantarum KY1032 and L. curvatus HY7601 lower triglycerides in hypertriglyceridemic rats by upregulating ApoA-V, PPARα, and FXR.

  14. Vaginal Lactobacillus Inhibits HIV-1 Replication in Human Tissues Ex Vivo

    PubMed Central

    Ñahui Palomino, Rogers A.; Zicari, Sonia; Vanpouille, Christophe; Vitali, Beatrice; Margolis, Leonid

    2017-01-01

    Lactobacillus species, which dominate vaginal microbiota of healthy reproductive-age women, lower the risks of sexually transmitted infections, including the risk of human immunodeficiency virus (HIV) acquisition. The exact mechanisms of this protection remain to be understood. Here, we investigated these mechanisms in the context of human cervico-vaginal and lymphoid tissues ex vivo. We found that all six Lactobacillus strains tested in these systems significantly suppressed HIV type-1 (HIV-1) infection. We identified at least three factors that mediated this suppression: (i) Acidification of the medium. The pH of the undiluted medium conditioned by lactobacilli was between 3.8 and 4.6. Acidification of the culture medium with hydrochloric acid (HCl) to this pH in control experiments was sufficient to abrogate HIV-1 replication. However, the pH of the Lactobacillus-conditioned medium (CM) diluted fivefold, which reached ∼6.9, was also suppressive for HIV-1 infection, while in control experiments HIV-1 infection was not abrogated when the pH of the medium was brought to 6.9 through the use of HCl. This suggested the existence of other factors responsible for HIV-1 inhibition by lactobacilli. (ii) Lactic acid. There was a correlation between the concentration of lactic acid in the Lactobacillus-CM and its ability to suppress HIV-1 infection in human tissues ex vivo. Addition of lactic acid isomers D and L to tissue culture medium at the concentration that corresponded to their amount released by lactobacilli resulted in HIV-1 inhibition. Isomer L was produced in higher quantities than isomer D and was mostly responsible for HIV-1 inhibition. These results indicate that lactic acid, in particular its L-isomer, inhibits HIV-1 independently of lowering of the pH. (iii) Virucidal effect. Incubation of HIV-1 in Lactobacillus-CM significantly suppressed viral infectivity for human tissues ex vivo. Finally, lactobacilli adsorb HIV-1, serving as a sink decreasing the

  15. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants

    PubMed Central

    2011-01-01

    Background Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Results Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp.delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. Conclusions This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky

  16. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants.

    PubMed

    Savino, Francesco; Cordisco, Lisa; Tarasco, Valentina; Locatelli, Emanuela; Di Gioia, Diana; Oggero, Roberto; Matteuzzi, Diego

    2011-06-30

    Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp. delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky infants. Our findings may stimulate

  17. Selected Lactobacillus strains isolated from sugary and milk kefir reduce Salmonella infection of epithelial cells in vitro.

    PubMed

    Zavala, L; Golowczyc, M A; van Hoorde, K; Medrano, M; Huys, G; Vandamme, P; Abraham, A G

    2016-09-01

    The isolation of potentially probiotic strains and the subsequent study of their properties are very important steps to gain insight in the health benefits ascribed to sugary and milk kefir. The aim of the present study was to characterise fifteen Lactobacillus strains isolated from these beverages by determining some surface properties and their ability to antagonise enterocyte cell damage after Salmonella infection in vitro. Lactobacillus surface properties were determined by hydrophobicity, autoaggregation, and coaggregation assays with Salmonella. In addition, lactobacilli adhesion to Caco-2/TC-7 cells and the effect on Salmonella invasion were evaluated. Finally, the disassembly of F-actin cytoskeleton on intestinal epithelial cells was assayed in vitro when Salmonella infection was performed in the presence of selected Lactobacillus strains. Ten out of the 15 strains showed a high adhesion capacity to Caco-2/TC-7 cells. Most of the strains were hydrophilic and non-autoaggregating. Strains isolated from sugary kefir were non-coaggregating with Salmonella, while strains Lactobacillus paracasei CIDCA 83120, 83121, 83123, 83124, 8339, 83102 isolated from milk kefir were able to coaggregate after 1 h. L. paracasei CIDCA 8339 and Lactobacillus kefiri CIDCA 83102 were able to diminish Salmonella invasion to the enterocytes. An antagonistic effect on cytoskeleton disruption elicited by the pathogen was also demonstrated. Our results suggest that both strains isolated from milk kefir could be considered as appropriate probiotic candidates.

  18. Fluorescence in situ Hybridization method using Peptide Nucleic Acid probes for rapid detection of Lactobacillus and Gardnerella spp.

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331

  19. Potentially probiotic Lactobacillus strains from traditional Kurdish cheese.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Shahidi, Fakhri; Mortazavi, Seyed Ali; Milani, Elnaz; Eshaghi, Zarrin

    2014-03-01

    In this study, the probiotic potential of Lactobacillus strains isolated from traditional Kurdish cheese was investigated. The Lactobacillus strains were examined for resistance to gastric acidity and bile toxicity, antimicrobial activities, autoaggregation, coaggregation, hydrophobicity, adhesion to Caco-2 cells, and antibiotic susceptibility. The results showed that all strains tested tolerate acid gastric conditions (pH 2.0 and 3.0), and all of them were bile resistant (at 0.3 and 1% concentration). Although no antibacterial activity was detected in vitro assay for the treated (neutralized to pH 6.5 and treated with catalase) cell-free culture supernatant (CFCS) of strains, untreated CFCS showed strong antagonistic activity against two known pathogens bacteria. All strains exhibited a strong autoaggregating phenotype and manifested a high degree of coaggregation with pathogens. On the other hand, majority of studied strains were found sensitive to different antibiotics, such as ampicillin, penicillin, ciprofloxacin, chloramphenicol, erythromycin, rifampicin, and tetracycline, and were resistant to vancomycin and streptomycin. Finally, isolated strains showed good hydrophobicity and adherence to Caco-2 cell line, so they could be exploited for food manufacture.

  20. Complete genome sequence of Lactobacillus johnsonii FI9785, a competitive exclusion agent against pathogens in poultry.

    PubMed

    Wegmann, Udo; Overweg, Karin; Horn, Nikki; Goesmann, Alexander; Narbad, Arjan; Gasson, Michael J; Shearman, Claire

    2009-11-01

    Lactobacillus johnsonii is a member of the acidophilus group of lactobacilli. Because of their probiotic properties, including attachment to epithelial cells, immunomodulation, and competitive exclusion of pathogens, representatives of this group are being intensively studied. Here we report the complete annotated genome sequence of Lactobacillus johnsonii FI9785, a strain which prevents the colonization of specific-pathogen-free chicks by Clostridium perfringens.