Science.gov

Sample records for lactobacillus gasseri sbt2055

  1. Lactobacillus gasseri SBT2055 reduces postprandial and fasting serum non-esterified fatty acid levels in Japanese hypertriacylglycerolemic subjects.

    PubMed

    Ogawa, Akihiro; Kadooka, Yukio; Kato, Ken; Shirouchi, Bungo; Sato, Masao

    2014-02-19

    Lactobacillus gasseri SBT2055 (LG2055) inhibits dietary fat absorption in rats and exerts preventive effects on abdominal adiposity in rats and humans. The present study aimed to evaluate the effects of LG2055 on postprandial serum lipid responses in Japanese subjects with hypertriacylglycerolemia after the intake of oral fat-loading test (OFLT) meals. We conducted a single-blind, placebo-controlled, within-subject, repeated-measure intervention trial. Twenty subjects initially ingested the fermented milk (FM) without LG2055 for 4 weeks (control FM period), followed by a 4-week washout period, and then consumed FM containing LG2055 for 4 weeks (active FM period). The subjects were asked to consume FM at 200 g/day. At the end of each 4-week period, an 8-h OFLT was conducted. Blood samples were collected at fasting and every hour for 8 h after OFLT meal intake. Thereafter, postprandial serum non-esterified fatty acid (NEFA) and triacylglycerol (TAG) levels and fasting blood parameters were measured. The OFLT showed that the postprandial serum NEFA levels from 120 to 480 min and the postprandial serum TAG level at 120 min in the active FM period were significantly (P < 0.05) lower than those in the control FM period. The fasting serum NEFA level in the active FM period significantly (P < 0.001) decreased at week 4 from the initial period compared with the control FM period. The consumption of probiotic LG2055 reduced postprandial and fasting serum NEFA levels, suggesting its possible contribution to the reduction of the risk for obesity and type 2 diabetes mellitus. UMIN000011605.

  2. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial.

    PubMed

    Kadooka, Y; Sato, M; Imaizumi, K; Ogawa, A; Ikuyama, K; Akai, Y; Okano, M; Kagoshima, M; Tsuchida, T

    2010-06-01

    In spite of the much evidence for the beneficial effects of probiotics, their anti-obesity effects have not been well examined. We evaluated the effects of the probiotic Lactobacillus gasseri SBT2055 (LG2055) on abdominal adiposity, body weight and other body measures in adults with obese tendencies. We conducted a multicenter, double-blind, randomized, placebo-controlled intervention trial. Subjects (n=87) with higher body mass index (BMI) (24.2-30.7 kg/m(2)) and abdominal visceral fat area (81.2-178.5 cm(2)) were randomly assigned to receive either fermented milk (FM) containing LG2055 (active FM; n=43) or FM without LG2055 (control FM; n=44), and were asked to consume 200 g/day of FM for 12 weeks. Abdominal fat area was determined by computed tomography. In the active FM group, abdominal visceral and subcutaneous fat areas significantly (P<0.01) decreased from baseline by an average of 4.6% (mean (confidence interval): -5.8 (-10.0, -1.7) cm(2)) and 3.3% (-7.4 (-11.6, -3.1) cm(2)), respectively. Body weight and other measures also decreased significantly (P<0.001) as follows: body weight, 1.4% (-1.1 (-1.5, -0.7) kg); BMI, 1.5% (-0.4 (-0.5, -0.2) kg/m(2)); waist, 1.8% (-1.7 (-2.1, -1.4) cm); hip, 1.5% (-1.5 (-1.8, -1.1) cm). In the control group, by contrast, none of these parameters decreased significantly. High-molecular weight adiponectin in serum increased significantly (P<0.01) in the active and control groups by 12.7% (0.17 (0.07, 0.26) microg/ml) and 13.6% (0.23 (0.07, 0.38) microg/ml), respectively. The probiotic LG2055 showed lowering effects on abdominal adiposity, body weight and other measures, suggesting its beneficial influence on metabolic disorders.

  3. Mouse Models for Assessing the Protective Efficacy of Lactobacillus gasseri SBT2055 against Helicobacter suis Infection Associated with the Development of Gastric Mucosa-Associated Lymphoid Tissue Lymphoma.

    PubMed

    Matsui, Hidenori; Takahashi, Tetsufumi; Øverby, Anders; Murayama, Somay Yamagata; Yoshida, Haruno; Yamamoto, Yuji; Nishiyama, Keita; Seto, Yasuyuki; Takahashi, Takashi; Mukai, Takao; Nakamura, Masahiko

    2015-08-01

    Helicobacter suis strain TKY infection has been strongly associated with the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma in a C57BL/6J mouse model. 1. C57BL/6J mice were intragastrically administered Lactobacillus strains once daily with 10(8)-10(9) colony-forming units (CFU), starting 2 days before intragastric infection with H. suis TKY (approximately 1 × 10(4) copies of 16S rRNA genes) or H. pylori Sydney strain 1 (SS1; 3 × 10(8) CFU) and continuing for 14 days after infection. 2. C57BL/6J mice were given powdered feed mixed with lyophilized L. gasseri SBT2055 (LG2055) cells (5 × 10(8) CFU/g), starting 2 weeks before intragastric infection with H. suis TKY and continuing 12 months after infection. 1. Among the 5 Lactobacillus strains that we examined, only LG2055 exhibited significantly preventive efficacy against both H. suis TKY and H. pylori SS1 at day 15 after infection. 2. Dietary supplementation with LG2055 protected mice from the formation of round protrusive lesions in the gastric fundus 12 months after infection with H. suis TKY, whereas such lesions had developed in the gastric fundus of nonsupplemented mice 12 months after infection. In addition, the formation of lymphoid follicles in gastric mucus layers was suppressed by dietary LG2055 at 3 months after infection. LG2055 administration is effective for suppressing the progression of gastric MALT lymphoma by reducing H. suis colonization. © 2015 John Wiley & Sons Ltd.

  4. Assessment of Lactobacillus gasseri as a candidate oral vaccine vector.

    PubMed

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R; Dean, Gregg A

    2011-11-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3(+) colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens.

  5. Development of an integration mutagenesis system in Lactobacillus gasseri.

    PubMed

    Selle, Kurt; Goh, Yong Jun; O'Flaherty, Sarah; Klaenhammer, Todd R

    2014-01-01

    Lactobacillus gasseri ATCC 33323 is a member of the acidophilus-complex group, microbes of human origin with significant potential for impacting human health based on niche-specific traits. In order to facilitate functional analysis of this important species, a upp-based counterselective chromosomal integration system was established and employed for targeting the lipoteichoic acid (LTA) synthesis gene, ltaS, in L. gasseri ATCC 33323. The ltaS gene encodes a phosphoglycerol transferase responsible for building the glycerol chain of LTA. No isogenic mutant bearing the deletion genotype was recovered, but an integration knockout mutant was generated with insertion inactivation at the ltaS locus. The ltaS deficient derivative exhibited an altered cellular morphology and significantly reduced ability to adhere to Caco-2 intestinal cell monolayers, relative to the wild-type parent strain.

  6. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  7. UV-induced Lactobacillus gasseri mutants resisting sodium chloride and sodium nitrite for meat fermentation.

    PubMed

    Arihara, K; Itoh, M

    2000-06-01

    Lactobacillus gasseri, one of the predominant lactobacilli in human intestinal tracts, is utilized for probiotics and dairy starter cultures. However, since L. gasseri is relatively sensitive to sodium chloride and sodium nitrite (essential compounds for meat products), it is difficult to utilize this species for conventional fermented meat products. In this study, efforts were directed to generate mutants of L. gasseri resisting sodium chloride and sodium nitrite. UV irradiation of the strain of L. gasseri JCM1131(T) generated several mutants resisting these compounds. A mutant strain 1131-M8 demonstrated satisfactory growth in meat containing 3.3% sodium chloride and 200 ppm sodium nitrite. Although proteins extracted from the cell surface of 1131-M8 were slightly different from those of the original strain, other biochemical characteristics of both strains were indistinguishable. These results suggest that the L. gasseri mutant obtained in this study could be utilized as a starter culture to develop probiotic meat products.

  8. Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains

    PubMed Central

    Maresca, Diamante; Zotta, Teresa; Mauriello, Gianluigi

    2018-01-01

    Oxygen is considered one of the main factors affecting probiotic bacteria survival due to the induction of oxidative damages caused by the action of reactive oxygen species (ROS). It has been shown that oxidative stress resistance in lactic acid bacteria is strongly dependent on the type of cell metabolism. Shift from fermentative to respiratory metabolism (through the addition of heme and menaquinone and in presence of oxygen) was associated to increase in biomass, long-term survival, and production of antioxidant enzymes. The aim of this work was to investigate the effect of aerobic (presence of oxygen) and respiratory (presence of oxygen, heme, and menaquinone) cultivation on the growth kinetic, catalase production, oxygen uptake, and oxidative stress response of Lactobacillus johnsonii/gasseri strains previously isolated from infant feces. Seven strains showed to consume oxygen under aerobic and respiratory conditions. The strain AL5 showed a catalase activity in both growth conditions, while AL3 showed this activity only in respiratory condition. Respiratory condition improved their tolerance to oxidative compounds (hydrogen peroxide and ROS generators) and further they showed promising probiotic features. The exploration of respiratory competent phenotypes with probiotic features may be extremely useful for the development of competitive starter or probiotic cultures. PMID:29479342

  9. Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains.

    PubMed

    Maresca, Diamante; Zotta, Teresa; Mauriello, Gianluigi

    2018-01-01

    Oxygen is considered one of the main factors affecting probiotic bacteria survival due to the induction of oxidative damages caused by the action of reactive oxygen species (ROS). It has been shown that oxidative stress resistance in lactic acid bacteria is strongly dependent on the type of cell metabolism. Shift from fermentative to respiratory metabolism (through the addition of heme and menaquinone and in presence of oxygen) was associated to increase in biomass, long-term survival, and production of antioxidant enzymes. The aim of this work was to investigate the effect of aerobic (presence of oxygen) and respiratory (presence of oxygen, heme, and menaquinone) cultivation on the growth kinetic, catalase production, oxygen uptake, and oxidative stress response of Lactobacillus johnsonii/gasseri strains previously isolated from infant feces. Seven strains showed to consume oxygen under aerobic and respiratory conditions. The strain AL5 showed a catalase activity in both growth conditions, while AL3 showed this activity only in respiratory condition. Respiratory condition improved their tolerance to oxidative compounds (hydrogen peroxide and ROS generators) and further they showed promising probiotic features. The exploration of respiratory competent phenotypes with probiotic features may be extremely useful for the development of competitive starter or probiotic cultures.

  10. Assessment of Lactobacillus gasseri as a Candidate Oral Vaccine Vector ▿

    PubMed Central

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R.; Dean, Gregg A.

    2011-01-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3+ colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens. PMID:21900526

  11. Identification and Characterization of Novel Surface Proteins in Lactobacillus johnsonii and Lactobacillus gasseri

    PubMed Central

    Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf

    2002-01-01

    We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842

  12. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products.

    PubMed

    Anwar, Munir A; Kralj, Slavko; Piqué, Anna Villar; Leemhuis, Hans; van der Maarel, Marc J E C; Dijkhuizen, Lubbert

    2010-04-01

    Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with beta(2-6) and beta(2-1) linkages, respectively. Here, we report an evaluation of fructan synthesis in three Lactobacillus gasseri strains, identification of the fructansucrase-encoding genes and characterization of the recombinant proteins and fructan (oligosaccharide) products. High-performance anion-exchange chromatography and nuclear magnetic resonance analysis of the fructo-oligosaccharides (FOS) and polymers produced by the L. gasseri strains and the recombinant enzymes revealed that, in situ, L. gasseri strains DSM 20604 and 20077 synthesize inulin (and oligosaccharides) and levan products, respectively. L. gasseri DSM 20604 is only the second Lactobacillus strain shown to produce inulin polymer and FOS in situ, and is unique in its distribution of FOS synthesized, ranging from DP2 to DP13. The probiotic bacterium L. gasseri DSM 20243 did not produce any fructan, although we identified a fructansucrase-encoding gene in its genome sequence. Further studies showed that this L. gasseri DSM 20243 gene was prematurely terminated by a stop codon. Exchanging the stop codon for a glutamine codon resulted in a recombinant enzyme producing inulin and FOS. The three recombinant fructansucrase enzymes characterized from three different L. gasseri strains have very similar primary protein structures, yet synthesize different fructan products. An interesting feature of the L. gasseri strains is that they were unable to ferment raffinose, whereas their respective recombinant enzymes converted raffinose into fructan and FOS.

  13. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri.

    PubMed

    Sanozky-Dawes, Rosemary; Selle, Kurt; O'Flaherty, Sarah; Klaenhammer, Todd; Barrangou, Rodolphe

    2015-09-01

    Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 Lactobacillus gasseri strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5'-NTAA-3' flanking the 3' end of the protospacer. The system in L. gasseri JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri. Collectively, these results open avenues for applications for bacteriophage protection and genome modification in L. gasseri, and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria.

  14. Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei†

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Altermann, Eric; Barrangou, Rodolphe; McGrath, Stephen; Claesson, Marcus J.; Li, Yin; Leahy, Sinead; Walker, Carey D.; Zink, Ralf; Neviani, Erasmo; Steele, Jim; Broadbent, Jeff; Klaenhammer, Todd R.; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe

    2006-01-01

    Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli. PMID:16672450

  15. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization.

    PubMed

    Francl, Alyssa L; Hoeflinger, Jennifer L; Miller, Michael J

    2012-04-01

    Improving the annotation of sugar catabolism-related genes requires functional characterization. Our objective was to identify the genes necessary for lactose utilization by Lactobacillus gasseri ATCC 33323 (NCK334). The mechanism of lactose transport in many lactobacilli is a lactose/galactose-specific permease, yet no orthologue was found in NCK334. Characterization of an EI knockout strain [EI (enzyme I) is required for phosphotransferase system transporter (PTS) function] demonstrated that L. gasseri requires PTS(s) to utilize lactose. In order to determine which PTS(s) were necessary for lactose utilization, we compared transcript expression profiles in response to lactose for the 15 complete PTSs identified in the NCK334 genome. PTS 6CB (LGAS_343) and PTS 8C (LGAS_497) were induced in the presence of lactose 107- and 53-fold, respectively. However, L. gasseri ATCC 33323 PTS 6CB, PTS 8C had a growth rate similar to that of the wild-type on semisynthetic deMan, Rogosa, Sharpe (MRS) medium with lactose. Expression profiles of L. gasseri ATCC 33323 PTS 6CB, PTS 8C in response to lactose identified PTS 9BC (LGAS_501) as 373-fold induced, whereas PTS 9BC was not induced in NCK334. Elimination of growth on lactose required the inactivation of both PTS 6CB and PTS 9BC. Among the six candidate phospho-β-galactosidase genes present in the NCK334 genome, LGAS_344 was found to be induced 156-fold in the presence of lactose. In conclusion, we have determined that: (1) NCK334 uses a PTS to import lactose; (2) PTS 6CB and PTS 8C gene expression is strongly induced by lactose; and (3) elimination of PTS 6CB and PTS 9BC is required to prevent growth on lactose.

  16. Effect of pretreatment with Lactobacillus gasseri OLL2716 on first-line Helicobacter pylori eradication therapy

    PubMed Central

    Deguchi, Ryuzo; Nakaminami, Hidemasa; Rimbara, Emiko; Noguchi, Norihisa; Sasatsu, Masanori; Suzuki, Takayoshi; Matsushima, Masashi; Koike, Jun; Igarashi, Muneki; Ozawa, Hideki; Fukuda, Ryuki; Takagi, Atsushi

    2012-01-01

    Background and Aim Helicobacter pylori eradication clearly decreases peptic ulcer recurrence rates. H. pylori eradication is achieved in 70–90% of cases, but treatment failures due to poor patient compliance and resistant organisms do occur. Lactobacillus gasseri can suppress both clarithromycin-susceptible and -resistant strains of H. pylori in vitro. The aim of this study was to determine the effect of pretreatment with L. gasseri- containing yogurt on H. pylori eradication. We conducted a randomized, controlled clinical trial in patients with H. pylori infection. Methods A total of 229 patients were randomized into either a 1-week triple therapy of rabeprazole (10 mg bid), amoxicillin (750 mg bid), and clarithromycin (200 mg bid) or triple therapy plus L. gasseri-containing yogurt. In the yogurt-plus-triple therapy groups, yogurt containing L. gasseri OLL2716 (112 g) was given twice daily for 4 weeks (3 weeks pretreatment and also 1 week during eradication therapy). Clarithromycin resistance was determined by the detection of a mutation in 23S rRNA using nested polymerase chain reaction and the direct sequencing of DNA from pretreatment feces. H. pylori eradication was diagnosed based on the urea breath test and a stool antigen test after 8 weeks of eradication. Results The status of H. pylori susceptibility to clarithromycin was successively determined in 188 out of 229 samples. The rate of infection with clarithromycin-resistant strains of H. pylori was 27.1%. Overall eradication (intention to treat/per protocol) was 69.3/74.5% for the triple-only group, and 82.6/85.6% for the yogurt-plus-triple group (P = 0.018/P = 0.041). Eradication of primary clarithromycin-resistant strains tended to be higher for yogurt-plus-triple therapy than triple-only therapy (38.5 vs 28.0%, respectively, P = 0.458). Conclusion This study confirmed that the major cause of treatment failure is resistance to clarithromycin. A 4-week treatment with L. gasseri-containing yogurt

  17. Lactobacillus gasseri K7 modulates the blood cell transcriptome of conventional mice infected with Escherichia coli O157:H7.

    PubMed

    Sagaya, F M; Hacin, B; Tompa, G; Ihan, A; Špela, Š; Černe, M; Hurrell, R F; Matijašić, B B; Rogelj, I; Vergères, G

    2014-05-01

    As the immune cells underlying the intestinal barrier sense luminal microbial signals, blood cell transcriptomics may identify subclinical changes triggered by gut bacteria that may otherwise not be detected. We have therefore investigated how Lactobacillus gasseri K7 and enterohemorrhagic Escherichia coli O157:H7 modulate the blood cell transcriptome of mice possessing an intact microbiota. We have analysed the transcriptome of five groups of C57BL/6J mice: (i) control, (ii) inoculated with a single dose of E. coli, (iii) inoculated during 2 weeks with Lact. gasseri, (iv) co-inoculated with E. coli and Lact. gasseri, (v) inoculated with Lact. gasseri prior to E. coli infection. The transcriptome could distinguish between the five treatment groups. Gene characteristics of bacterial infection, in particular inflammation, were upregulated in the mice inoculated with E. coli. Lact. gasseri had only mild effects on the transcriptome but modified the gene expression induced by E. coli. The transcriptome differentiates mice inoculated orally with E. coli, Lact. gasseri and combinations of these two strains. These results suggest that the blood cell transcriptome can be used as a source of biomarkers to monitor the impact of probiotics in subclinical models of infectious disease. © 2014 The Society for Applied Microbiology.

  18. Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65.

    PubMed

    Morais, I M C; Cordeiro, A L; Teixeira, G S; Domingues, V S; Nardi, R M D; Monteiro, A S; Alves, R J; Siqueira, E P; Santos, V L

    2017-09-19

    Lactobacillus species produce biosurfactants that can contribute to the bacteria's ability to prevent microbial infections associated with urogenital and gastrointestinal tracts and the skin. Here, we described the biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65 . The biosurfactants produced by L. jensenii P 6A and L. gasseri P 65 reduced the water surface tension from 72 to 43.2 mN m -1 and 42.5 mN m -1 as their concentration increased up to the critical micelle concentration (CMC) values of 7.1 and 8.58 mg mL -1 , respectively. Maximum emulsifying activity was obtained at concentrations of 1 and 5 mg mL -1 for the P 6A and P 65 strains, respectively. The Fourier transform infrared spectroscopy data revealed that the biomolecules consist of a mixture of carbohydrates, lipids and proteins. The gas chromatography-mass spectrum analysis of L. jensenii P 6A biosurfactant showed a major peak for 14-methypentadecanoic acid, which was the main fatty acid present in the biomolecule; conversely, eicosanoic acid dominated the biosurfactant produced by L. gasseri P 65 . Although both biosurfactants contain different percentages of the sugars galactose, glucose and ribose; rhamnose was only detected in the biomolecule produced by L. jensenii P 6A . Emulsifying activities were stable after a 60-min incubation at 100 °C, at pH 2-10, and after the addition of potassium chloride and sodium bicarbonate, but not in the presence of sodium chloride. The biomolecules showed antimicrobial activity against clinical isolates of Escherichia coli and Candida albicans, with MIC values of 16 µg mL -1 , and against Staphylococcus saprophyticus, Enterobacter aerogenes and Klebsiella pneumoniae at 128 µg mL -1 . The biosurfactants also disrupted preformed biofilms of microorganisms at varying concentrations, being more efficient against E. aerogenes (64%) (P 6A biosurfactant), and E. coli (46

  19. Oral administration of heat-killed Lactobacillus gasseri OLL2809 reduces cedar pollen antigen-induced peritoneal eosinophilia in Mice.

    PubMed

    Sashihara, Toshihiro; Ikegami, Shuji; Sueki, Natsuko; Yamaji, Taketo; Kino, Kohsuke; Taketomo, Naoki; Gotoh, Minoru; Okubo, Kimihiro

    2008-12-01

    Lactobacillus gasseri OLL2809 strongly stimulates the production of interleukin (IL)-12 (p70) by innate immune cells. Thus, it is expected to ameliorate allergic diseases. We investigated whether the oral administration of heat-killed L. gasseri OLL2809 suppressed eosinophilia in cedar pollen antigen-challenged mice. BALB/c mice sensitized with Japanese cedar pollen extract were intraperitoneally challenged with the same extract. The mice were orally given heat-killed L. gasseri OLL2809 at doses of 0.5, 1, or 2mg/day throughout the experimental period (21 d). After 24 hours of the challenge, the eosinophil number and cytokine levels in the peritoneal lavage fluid and the serum antigen-specific IgG levels were determined. On administering varying amounts of heat-killed L. gasseri OLL2809, the number of eosinophils among the total number of cells was significantly reduced in all groups. In addition, the eosinophil number significantly decreased, and the eosinophil-suppression rate significantly increased by 44% in the 2-mg group. Although the serum immunoglobulin (Ig) G2a and IgG1 levels were not affected, the IgG2a/IgG1 ratio increased significantly in the 2-mg group compared with that of the control group. Furthermore, the administration of heat-killed L. gasseri OLL2809 resulted in the induction of IL-2 and reduction in granulocyte-macrophage colony-stimulating factor levels in peritoneal lavage fluid. We demonstrated that the oral administration of heat-killed L. gasseri OLL2809 suppresses eosinophilia via the modulation of Th1/Th2 balance. These observations suggested that heat-killed L. gasseri OLL2809 might potentially ameliorate the increased number of eosinophils in patients with Japanese cedar pollinosis.

  20. Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†

    PubMed Central

    Russell, W. M.; Klaenhammer, T. R.

    2001-01-01

    The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918

  1. Para-psychobiotic Lactobacillus gasseri CP2305 ameliorates stress-related symptoms and sleep quality.

    PubMed

    Nishida, K; Sawada, D; Kawai, T; Kuwano, Y; Fujiwara, S; Rokutan, K

    2017-12-01

    To confirm the stress-relieving effects of heat-inactivated, enteric-colonizing Lactobacillus gasseri CP2305 (paraprobiotic CP2305) in medical students taking a cadaver dissection course. Healthy students (21 males and 11 females) took paraprobiotic CP2305 daily for 5 weeks during a cadaver dissection course. The General Health Questionnaire and the Pittsburgh Sleep Quality Index were employed to assess stress-related somatic symptoms and sleep quality respectively. The aggravation of stress-associated somatic symptoms was observed in female students (P = 0·029). Sleep quality was improved in the paraprobiotic CP2305 group (P = 0·038), particularly in men (P = 0·004). Among men, paraprobiotic CP2305 shortened sleep latency (P = 0·035) and increased sleep duration (P = 0·048). Diarrhoea-like symptoms were also effectively controlled with CP2305 (P = 0·005) in men. Thus, we observed sex-related differences in the effects of paraprobiotic CP2305. In addition, CP2305 affected the growth of faecal Bacteroides vulgatus and Dorea longicatena, which are involved in intestinal inflammation. CP2305 is a potential paraprobiotic that regulates stress responses, and its beneficial effects may depend on specific cell component(s). This study characterizes the effects of a stress-relieving para-psychobiotic in humans. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  2. Biosynthesis of inulin from sucrose using inulosucrase from Lactobacillus gasseri DSM 20604.

    PubMed

    Ni, Dawei; Zhu, Yingying; Xu, Wei; Bai, Yuxiang; Zhang, Tao; Mu, Wanmeng

    2018-04-01

    Inulin is composed of fructose residues connected by β-(2, 1) glycosidic linkages with many promising physiochemical and physiological properties. In this study, an inulin-producing inulosucrase gene from Lactobacillus gasseri DSM 20604 was cloned, expressed and purified. SDS-PAGE and gel filtration found that the recombinant inulosucrase is a monomeric protein with a molecular weight of 63KDa. The optimal pH for its sucrose hydrolysis and transfructosylation activities was pH 5.5. The optimal temperatures were measured to be 45, 25, and 35°C for sucrose hydrolysis, transfructosylation, and total activity, respectively. Biosynthesis studies showed that the optimal enzyme dosage was 4.5U/g sucrose. Higher sucrose concentrations immensely contributed to inulin biosynthesis; the inulin yield reached its maximum after 1.5h of reaction. Structural analyses of the polysaccharide produced by the recombinant enzyme from sucrose revealed that it is an inulin-type fructan with a molecular weight of 5.858×10 6 Da. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Lactobacillus salivarius and L. gasseri down-regulate Aggregatibacter actinomycetemcomitans exotoxins expression.

    PubMed

    Nissen, Lorenzo; Sgorbati, Barbara; Biavati, Bruno; Belibasakis, Georgios N

    2014-01-01

    Beneficial microbes, such as lactobacilli establish a symbiosis with the host and confer health-associated effects, by limiting the growth of indigenous pathogens and challenging microbes introduced by altered foods. Nevertheless, there is scarce information on the effects of beneficial microbes on the virulence properties of bacterial species associated with oral diseases, such as periodontitis. Aggregatibacter actinomycetemcomitans is a Gram-negative species highly implicated in the etiology of localized aggressive periodontitis. The objective of this study was to investigate the effect of lactobacilli on the expression of the two major virulence factors of A. actinomycetemcomitans . Lactobacillus salivarius and L. gasseri were selected as beneficial species. The gene expressions of leukotoxin ( LtxA ) and cytolethal distending toxin ( CdtB ) by A. actinomycetemcomitans were analyzed in response to challenge by lactobacilli cell-free supernatants. Neither lactobacilli affected the growth, but strongly attenuated the expressions of both CdtB and LtxA in the two A. actinomycetemcomitans strains tested. This reduction of the expression of these two exotoxins was time-dependent. These fundamental findings may indicate that lactobacilli can reduce the virulence of putative opportunistic oral pathogens, and may provide insights to future therapeutic approaches for the respective diseases.

  4. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa).

    PubMed

    Sungur, Tolga; Aslim, Belma; Karaaslan, Cagtay; Aktas, Busra

    2017-10-01

    Lactobacilli, commonly used as probiotics, have been shown to maintain vaginal health and contribute to host microbiota interaction. Exopolysaccharides (EPSs) produced by lactobacillus have been found to have an important role in probiotic activity; however, there is limited knowledge concerning their impact on cervical cancer and urogenital health. The objective of this study is to investigate and compare EPSs of L. gasseri strains (G10 and H15), isolated from a healthy human vagina, for their capability to inhibit cervical cancer cell (HeLa) growth and modulate immune response. HeLa cells were treated with live culture at ∼10 8  CFU/ml or increasing concentration of lyophilized EPS (L-EPS) (100, 200, or 400 μg/ml) of L. gasseri strains and their ability to adhere to host cells, inhibit proliferation, and modulate immune response were evaluated. Additionally, monosaccharide composition of the L-EPSs produced by L. gasseri strains was determined by HPLC. The sugar component was the same; however, relative proportions of the individual monosaccharides except mannose were different. Although they both produce similar amount of EPS, the most adhesive strain was G10. Both live and L-EPS of L. gasseri strains were capable of inhibiting the cell proliferation of HeLa cells with the impact of L-EPS being strain specific. L-EPSs of L. gasseri strains induced apoptosis in HeLa cells in a strain dependent manner. The ability to induce apoptosis by G10 associated with an upregulation of Bax and Caspase 3. L. gasseri strains showed an anti-inflammatory impact on HeLa cells by decreasing the production of TNF-α and increasing the IL-10 production. In conclusion, diversity in sugar composition of EPS might contribute to adhesion and proliferation properties. Although our results suggest a relationship between the ability of a strain to induce apoptosis and its sugar composition of EPS, further research is required to determine the probiotic mechanisms of action by

  5. Regulatory effect of paraprobiotic Lactobacillus gasseri CP2305 on gut environment and function.

    PubMed

    Sugawara, Tomonori; Sawada, Daisuke; Ishida, Yu; Aihara, Kotaro; Aoki, Yumeko; Takehara, Isao; Takano, Kazuhiko; Fujiwara, Shigeru

    2016-01-01

    Lactobacillus gasseri CP2305 (CP2305) is a strain of Lactobacillus isolated from a stool sample from a healthy adult that showed beneficial effects on health as a paraprobiotic. In a previous study, we demonstrated that CP2305-fermented heat-treated milk modified gut functions more than artificially acidified sour milk. Thus, the regulatory activity of the former beverage was attributed to the inactivated CP2305 cells. The aim of this study was to elucidate the contribution of non-viable paraprobiotic CP2305 cells to regulating human gut functions. We thus conducted a randomized, placebo-controlled, double-blinded parallel group trial. The trial included 118 healthy participants with relatively low or high stool frequencies. The test beverage was prepared by adding 1×10(10) washed, heat-treated, and dried CP2305 cells directly to the placebo beverage. The participants ingested a bottle of the assigned beverage daily for 3 weeks and answered daily questionnaires about defecation and quality of life. Fecal samples were collected and the fecal characteristics, microbial metabolite contents of the feces and composition of fecal microbiota were evaluated. The number of evacuations and the scores for fecal odors were significantly improved in the group that consumed the CP2305-containing beverage compared with those of the group that consumed the placebo (p=0.035 and p=0.040, respectively). Regarding the fecal contents of microbial metabolites, the level of fecal p-cresol was significantly decreased in the CP2305 group relative to that of the placebo group (p=0.013). The Bifidobacterium content of the intestinal microbiota was significantly increased in the CP2305 group relative to that of the placebo group (p<0.008), whereas the content of Clostridium cluster IV was significantly decreased (p<0.003). The parasympathetic nerve activity of the autonomic nervous system became dominant and the total power of autonomic activity was elevated in the CP2305 group (p=0.0401 and

  6. Regulatory effect of paraprobiotic Lactobacillus gasseri CP2305 on gut environment and function

    PubMed Central

    Sugawara, Tomonori; Sawada, Daisuke; Ishida, Yu; Aihara, Kotaro; Aoki, Yumeko; Takehara, Isao; Takano, Kazuhiko; Fujiwara, Shigeru

    2016-01-01

    Background Lactobacillus gasseri CP2305 (CP2305) is a strain of Lactobacillus isolated from a stool sample from a healthy adult that showed beneficial effects on health as a paraprobiotic. In a previous study, we demonstrated that CP2305-fermented heat-treated milk modified gut functions more than artificially acidified sour milk. Thus, the regulatory activity of the former beverage was attributed to the inactivated CP2305 cells. Objective The aim of this study was to elucidate the contribution of non-viable paraprobiotic CP2305 cells to regulating human gut functions. We thus conducted a randomized, placebo-controlled, double-blinded parallel group trial. Design The trial included 118 healthy participants with relatively low or high stool frequencies. The test beverage was prepared by adding 1×1010 washed, heat-treated, and dried CP2305 cells directly to the placebo beverage. The participants ingested a bottle of the assigned beverage daily for 3 weeks and answered daily questionnaires about defecation and quality of life. Fecal samples were collected and the fecal characteristics, microbial metabolite contents of the feces and composition of fecal microbiota were evaluated. Results The number of evacuations and the scores for fecal odors were significantly improved in the group that consumed the CP2305-containing beverage compared with those of the group that consumed the placebo (p=0.035 and p=0.040, respectively). Regarding the fecal contents of microbial metabolites, the level of fecal p-cresol was significantly decreased in the CP2305 group relative to that of the placebo group (p=0.013). The Bifidobacterium content of the intestinal microbiota was significantly increased in the CP2305 group relative to that of the placebo group (p<0.008), whereas the content of Clostridium cluster IV was significantly decreased (p<0.003). The parasympathetic nerve activity of the autonomic nervous system became dominant and the total power of autonomic activity was elevated

  7. Culture Supernatants of Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and Adhesion to HeLa Cells.

    PubMed

    Matsuda, Yuko; Cho, Otomi; Sugita, Takashi; Ogishima, Daiki; Takeda, Satoru

    2018-03-30

    Vulvovaginal candidiasis (VVC) is a common superficial infection of the vaginal mucous membranes caused by the fungus Candida albicans. The aim of this study was to assess the mechanisms underlying the inhibitory effects of the culture supernatants of Lactobacillus gasseri and L. crispatus, the predominant microbiota in Asian healthy women, on C. albicans biofilm formation. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was also investigated. Candida albicans biofilm was formed on polystyrene flat-bottomed 96-well plates, and the inhibitory effects on the initial colonization and maturation phases were determined using the XTT reduction assay. The expression levels of biofilm formation-associated genes (HWP1, ECE1, ALS3, BCR1, EFG1, TEC1, and CPH1) were determined by reverse transcription quantitative polymerase chain reaction. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was evaluated by enumerating viable C. albicans cells. The culture supernatants of both Lactobacillus species inhibited the initial colonization and maturation of C. albicans biofilm. The expression levels of all biofilm formation-related genes were downregulated in the presence of Lactobacillus culture supernatant. The culture supernatant also inhibited C. albicans adhesion to HeLa cells. The culture supernatants of L. gasseri and L. crispatus inhibited C. albicans biofilm formation by downregulating biofilm formation-related genes and C. albicans adhesion to HeLa cells. These findings support the notion that Lactobacillus metabolites may be useful alternatives to antifungal drugs for the management of VVC.

  8. Oral immunization of mice with engineered Lactobacillus gasseri NM713 strain expressing Streptococcus pyogenes M6 antigen.

    PubMed

    Mansour, Nahla M; Abdelaziz, Sahar A

    2016-08-01

    The aim of this in vivo study was to evaluate the effects of a recombinant probiotic strain, Lactobacillus gasseri NM713, which expresses the conserved region of streptococcal M6 protein (CRR6), as an oral vaccine against Streptococcus pyogenes. A dose of 10(9) cells of the recombinant strain in 150 μL PBS buffer was administered orally to a group of mice. One control group received an equivalent dose of Lb. gasseri NM613 (containing the empty plasmid without insert) or and another control group received PBS buffer. Each group contained 30 mice. The immunization protocol was followed on three consecutive days, after which two booster doses were administered at two week intervals. Fecal and serum samples were collected from the mice on Days 18, 32, 46, 58 after the first immunization and Day 0 prior to immunization. Anti-CRR6 IgA and IgG concentrations were measured by ELISA in fecal and sera samples, respectively, to assess immune responses. Vaccination with the recombinant Lb. gasseri NM713 strain induced significant protection after nasal challenge with S. pyogenes, only a small percentage of this group developing streptococcal infection (10%) or dying of it (3.3%) compared with the NM613 and PBS control groups, high percentages of which developed streptococcal infection (43.3% and 46.7%, respectively) and died of it (46.7% and 53%, respectively). These results indicate that recombinant Lb. gasseri NM713 has potential as an oral delivery vaccine against streptococcus group A. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  9. Designing primers and evaluation of the efficiency of propidium monoazide - Quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius.

    PubMed

    Lai, Chieh-Hsien; Wu, Sih-Rong; Pang, Jen-Chieh; Ramireddy, Latha; Chiang, Yu-Cheng; Lin, Chien-Ku; Tsen, Hau-Yang

    2017-07-01

    The purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA) real-time quantitative polymerase chain reaction (qPCR) to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4-5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable. Copyright © 2016. Published by Elsevier B.V.

  10. [Beneficial effects of consumption of a dairy product containing two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714 in healthy children].

    PubMed

    Lara-Villoslada, F; Sierra, S; Boza, J; Xaus, J; Olivares, M

    2007-01-01

    In the last decades there has been an increasing interest in the manipulation of intestinal microbiota with probiotics for the prevention and treatment of certain paediatric diseases. In addition, it has been suggested that probiotics could play a role in the development of immune system. Recent studies suggest that the administration of two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714 improves intestinal function of healthy adults and enhances the immune response. Since there are few studies reporting the use of probiotic in children, the main consumers of these products, the aim of the present study was to analyze the effects of the administration of the mentioned probiotic strains in healthy children. 30 children (age range 3-12) with no gastrointestinal pathology were included in the study. In addition to their usual diet, during the first 3 weeks they received 200 ml of a conventional yogurt containing Lactobacillus bulgaricus and Streptococcus thermophilus. During the following three weeks this yogurt was substi-tuted for 80 ml of a probiotic product (Max Defensas, Puleva Food S.L.) containing the same amounts of Streptococcus thermophilus and the L. bulgaricus was substituted by a mixture of the target probiotic strains: L. coryniformis CECT5711 and L. gasseri CECT5714. Samples of faeces and saliva were taken at the beginning of the protocol, at week 3 and at the end of the study. Intestinal microbiota, faecal citotoxicity and the inhibition of Salmonella cholerasusis ssp. cholerasuis adhesion to intestinal mucins by the faeces were analyzed. Finally, IgA concentration was determined in the faecal and saliva samples. Tolerance of the probiotic product was good in all the children included in the study. An increase in faecal lactobacilli counts was shown at the end of the experimental protocol (P < 0,05). In addition citotoxicity of faecal samples was significantly (p < 0.05) reduced after probiotic consumption

  11. Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis.

    PubMed

    Bauer, Paige V; Duca, Frank A; Waise, T M Zaved; Dranse, Helen J; Rasmussen, Brittany A; Puri, Akshita; Rasti, Mozhgan; O'Brien, Catherine A; Lam, Tony K T

    2018-03-06

    Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A cell surface aggregation-promoting factor from Lactobacillus gasseri contributes towards inhibition of Trichomonas vaginalis adhesion to human vaginal ectocervical cells.

    PubMed

    Phukan, Niha; Brooks, Anna E S; Simoes-Barbosa, Augusto

    2018-05-21

    Trichomoniasis, a prevalent sexually transmitted infection, is commonly symptomatic in women. The causative agent is Trichomonas vaginalis , an extracellular protozoan parasite. The host-protective mechanisms and molecules of vaginal lactobacilli that could counteract with this pathogen are largely unknown. This study examines the inhibition promoted by Lactobacillus gasseri against the adhesion of T. vaginalis to host cells, a critical virulence aspect of this pathogen. We observed that the vaginal L. gasseri ATCC 9857 is highly inhibitory by various contact-dependent mechanisms and surface proteins are largely responsible for this inhibitory phenotype. We found that the aggregation-promoting factor APF-2 from these bacteria significantly contributes towards inhibiting the adhesion of T. vaginalis to human vaginal ectocervical cells. Understanding the molecules and mechanisms used by lactobacilli to protect the host against T. vaginalis might help in the development of novel and specific therapeutic strategies that take advantage of the natural microbiota. Copyright © 2018 American Society for Microbiology.

  13. Lipoteichoic acids are embedded in cell walls during logarithmic phase, but exposed on membrane vesicles in Lactobacillus gasseri JCM 1131T.

    PubMed

    Shiraishi, T; Yokota, S; Sato, Y; Ito, T; Fukiya, S; Yamamoto, S; Sato, T; Yokota, A

    2018-06-15

    Lipoteichoic acid (LTA) is a cell surface molecule specific to Gram-positive bacteria. How LTA localises on the cell surface is a fundamental issue in view of recognition and immunomodulation in hosts. In the present study, we examined LTA localisation using strain JCM 1131T of Lactobacillus gasseri, which is a human intestinal lactic acid bacterium, during various growth phases by immunoelectron microscopy. We first evaluated the specificity of anti-LTA monoclonal antibody clone 55 used as a probe. The glycerophosphate backbone comprising almost intact size (20 to 30 repeating units) of LTA was required for binding. The antibody did not bind to other cellular components, including wall-teichoic acid. Immunoelectron microscopy indicated that LTA was embedded in the cell wall during the logarithmic phase, and was therefore not exposed on the cell surface. Similar results were observed for Lactobacillus fermentum ATCC 9338 and Lactobacillus rhamnosus ATCC 7469T. By contrast, membrane vesicles were observed in the logarithmic phase of L. gasseri with LTA exposed on their surface. In the stationary and death phases, LTA was exposed on cell wall-free cell membrane generated by autolysis. The dramatic alternation of localisation in different growth phases and exposure on the surface of membrane vesicles should relate with complicated interaction between bacteria and host.

  14. Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman.

    PubMed

    Maldonado-Barragán, Antonio; Caballero-Guerrero, Belén; Martín, Virginia; Ruiz-Barba, José Luis; Rodríguez, Juan Miguel

    2016-03-12

    Lactobacillus gasseri is one of the dominant Lactobacillus species in the vaginal ecosystem. Some strains of this species have a high potential for being used as probiotics in order to maintain vaginal homeostasis, since they may confer colonization resistance against pathogens in the vagina by direct inhibition through production of antimicrobial compounds, as bacteriocins. In this work we have studied bacteriocin production of gassericin E (GasE), a novel bacteriocin produced by L. gasseri EV1461, a strain isolated from the vagina of a healthy woman, and whose production was shown to be promoted by the presence of certain specific bacteria in co-culture. Biochemical and genetic characterization of this novel bacteriocin are addressed. We found that the inhibitory spectrum of L. gasseri EV1461 was broad, being directed to species both related and non-related to the producing strain. Interestingly, L. gasseri EV1461 inhibited the grown of pathogens usually associated with bacterial vaginosis (BV). The antimicrobial activity was due to the production of a novel bacteriocin, gassericin E (GasE). Production of this bacteriocin in broth medium only was achieved at high cell densities. At low cell densities, bacteriocin production ceased and only was restored after the addition of a supernatant from a previous bacteriocin-producing EV1461 culture (autoinduction), or through co-cultivation with several other Gram-positive strains (inducing bacteria). DNA sequence of the GasE locus revealed the presence of two putative operons which could be involved in biosynthesis and immunity of this bacteriocin (gaeAXI), and in regulation, transport and processing (gaePKRTC). The gaePKR encodes a putative three-component regulatory system, involving an autoinducer peptide (GaeP), a histidine protein kinase (GaeK) and a response regulator (GaeR), while the gaeTC encodes for an ABC transporter (GaeT) and their accessory protein (GaeC), involved in transport and processing of the

  15. Administration of probiotics Lactobacillus rhamnosus GG and Lactobacillus gasseri K7 during pregnancy and lactation changes mouse mesenteric lymph nodes and mammary gland microbiota.

    PubMed

    Treven, P; Mrak, V; Bogovič Matijašić, B; Horvat, S; Rogelj, I

    2015-04-01

    The milk and mammary gland (MG) microbiome can be influenced by several factors, such as mode of delivery, breastfeeding, maternal lifestyle, health status, and diet. An increasing number of studies show a variety of positive effects of consumption of probiotics during pregnancy and breastfeeding on the mother and the newborn. The aim of this study was to investigate the effect of oral administration of probiotics Lactobacillus gasseri K7 (LK7) and Lactobacillus rhamnosus GG (LGG) during pregnancy and lactation on microbiota of the mouse mesenteric lymph nodes (MLN), MG, and milk. Pregnant FVB/N mice were fed skim milk or probiotics LGG or LK7 resuspended in skim milk during gestation and lactation. On d 3 and 8 postpartum, blood, feces, MLN, MG, and milk were analyzed for the presence of LGG or LK7. The effects of probiotics on MLN, MG, and milk microbiota was evaluated by real-time PCR and by 16S ribosomal DNA 454-pyrosequencing. In 5 of 8 fecal samples from the LGG group and in 5 of 8 fecal samples from the LK7 group, more than 1 × 10(3) of live LGG or LK7 bacterial cells were detected, respectively, whereas no viable LGG or LK7 cells were detected in the control group. Live lactic acid bacteria but no LGG or LK7 were detected in blood, MLN, and MG. Both probiotics significantly increased the total bacterial load as assessed by copies of 16S ribosomal DNA in MLN, and a similar trend was observed in MG. Metagenomic sequencing revealed that both probiotics increased the abundance of Firmicutes in MG, especially the abundance of lactic acid bacteria. The Lactobacillus genus appeared exclusively in MG from probiotic groups. Both probiotics influenced MLN microbiota by decreasing diversity (Chao1) and increasing the distribution of species (Shannon index). The LGG probiotic also affected the MG microbiota as it increased diversity and distribution of species and proportions of the genera Lactobacillus and Bifidobacterium. These results provide evidence that

  16. Probiotic (yogurt) containing Lactobacillus gasseri OLL2716 is effective for preventing Candida albicans-induced mucosal inflammation and proliferation in the forestomach of diabetic rats.

    PubMed

    Terayama, Yui; Matsuura, Tetsuro; Uchida, Masayuki; Narama, Isao; Ozaki, Kiyokazu

    2016-06-01

    Oral and esophageal candidiasis sometimes leads to mucosal hyperplasia, and progresses to carcinoma. We have produced an animal model for hyperplastic mucosal candidiasis in the forestomach that has a proliferative lesion of the squamous epithelium with chronic inflammation and C. albicans infection, some of which advanced to squamous cell carcinoma. There are many reports of the antibacterial effects of probiotics, but consensus about their antifungal effect has not been reached. In the present study, we investigate whether probiotic (yogurt) containing Lactobacillus gasseri OLL2716 (LG21 yogurt) can prevent proliferative and inflammatory changes caused by C. albicans in this mucosal candidiasis animal model. Diabetes was induced in 8-week-old WBN/Kob rats by intravenous administration of alloxan. One group of diabetic rats received a saline containing C. albicans and LG21 yogurt orally (DC+LG21 group) for 30 weeks, and another group received only C. albicans (DC group) for 30 weeks. They were sacrificed at 40 weeks of age, and analyzed histopathologically. In the DC+LG21 group, squamous hyperplasia at the greater curvature was significantly milder, and the Ki-67 positive index was significantly lower compared with the DC group. Suppurative inflammation with C. albicans also tended to be suppressed at the greater curvature. These findings suggest that probiotic (yogurt) containing Lactobacillus gasseri OLL2716 can suppress squamous hyperplastic change and inflammation associated with C. albicans infection in the forestomach.

  17. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens.

    PubMed

    Atassi, Fabrice; Servin, Alain L

    2010-03-01

    The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.

  18. The effects of administration of the Lactobacillus gasseri strain CP2305 on quality of life, clinical symptoms and changes in gene expression in patients with irritable bowel syndrome.

    PubMed

    Nobutani, K; Sawada, D; Fujiwara, S; Kuwano, Y; Nishida, K; Nakayama, J; Kutsumi, H; Azuma, T; Rokutan, K

    2017-01-01

    To clarify the effects of Lactobacillus gasseri CP2305 (CP2305) on quality of life and clinical symptoms and its functional mechanisms in patients with irritable bowel syndrome (IBS). After the patients were administered CP2305 daily for 4 weeks, the IBS-severity index score was significantly improved compared with that of the placebo group, and this improvement was accompanied by a reduction in health-related worry and changes in intestinal microbiota. The gene expression profiling of the peripheral blood leucocytes showed that CP2305 treatment significantly up-regulated genes related to eukaryotic initiation factor 2 (EIF2) signalling. Eighty-two genes were down-regulated in IBS patients compared with healthy controls. The expression of 23 of these genes exhibited a CP2305-dependent increase associated with an improvement in IBS severity. The majority of the restored genes were related to EIF2 signalling. CP2305 administration is a potential candidate therapeutic option for patients with IBS. Although probiotics have been proposed to benefit IBS patients, objective clinical evidence and elucidation of the functional mechanism remain insufficient. Our study demonstrated that CP2305 administration beneficially influences IBS patients in both subjective and objective evaluations, and gene expression profiling provided insights into the functional mechanism. © 2016 The Society for Applied Microbiology.

  19. Lactobacillus gasseri OLL2809 and its RNA suppress proliferation of CD4(+) T cells through a MyD88-dependent signalling pathway.

    PubMed

    Yoshida, Ayako; Yamada, Kiyoshi; Yamazaki, Yasumasa; Sashihara, Toshihiro; Ikegami, Shuuji; Shimizu, Makoto; Totsuka, Mamoru

    2011-08-01

    Recent studies have shown that probiotics are beneficial in prevention and improvement of inflammatory diseases. Accumulating evidence indicates that probiotics can modulate immune cell responses, although the specific molecular mechanism by which probiotics work remains elusive. Because T cells express receptors for microbial components, we examined whether the probiotic strain Lactobacillus gasseri OLL2809 (LG2809) and its components regulate murine CD4(+) T-cell activation. LG2809, as well as two other Lactobacillus strains, inhibited proliferation of CD4(+) T cells; LG2809 had the strongest suppressive activity among them. RNA isolated from LG2809 was also shown to have suppressive activity. We observed this suppressive effect in the culture of CD4(+) T cells stimulated with anti-CD3/CD28 treatment, suggesting a direct effect on CD4(+) T cells. In contrast, the suppressive effect was not observed for CD4(+) T cells from myeloid differentiation primary response gene 88 (MyD88) protein-deficient mice, and was abrogated in the presence of an anti-oxidant reagent, N-acetyl-cysteine (NAC). These results demonstrate that the suppressive effect of LG2809 and its RNA occurred through a MyD88-dependent signalling pathway and suggest involvement of a reactive oxygen species-dependent mechanism. LG2809 RNA injected subcutaneously suppressed delayed-type-hypersensitivity response in DO11.10 mice, and the suppression was abrogated by treatment with NAC. Collectively, these results suggest that suppression of T-cell proliferation by RNA may be one of the mechanisms when a probiotic bacterial strain exerts suppressive effects on inflammatory responses. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  20. Enhancement of Oral Tolerance Induction in DO11.10 Mice by Lactobacillus gasseri OLL2809 via Increase of Effector Regulatory T Cells.

    PubMed

    Aoki-Yoshida, Ayako; Yamada, Kiyoshi; Hachimura, Satoshi; Sashihara, Toshihiro; Ikegami, Shuji; Shimizu, Makoto; Totsuka, Mamoru

    2016-01-01

    Food allergy is a serious problem for infants and young children. Induction of antigen-specific oral tolerance is one therapeutic strategy. Enhancement of oral tolerance induction by diet is a promising strategy to prevent food allergy in infants. Thus, in this study, we evaluate the effect of probiotic Lactobacillus gasseri OLL2809 (LG2809) on oral tolerance induction in a mouse model. The degree of oral tolerance induction was evaluated by measuring the proliferation and level of IL-2 production of splenic CD4+ T cells from DO11.10 mice fed ovalbumin (OVA) alone or OVA with LG2809. Oral administration of LG2809 significantly decreased the rate of proliferation and IL-2 production by CD4+ T cells from OVA-fed mice. LG2809 increased a ratio of CD4+ T-cell population, producing high levels of IL-10 and having strong suppressive activity. Moreover, LG2809 increased a ratio of plasmacytoid dendritic cells (pDCs) among the lamina propria (LP) in small intestine. When used as antigen presenting cells to naïve CD4+ T cells from DO11.10 mice, LP cells from BALB/c mice fed LG2809 induced higher IL-10 production and stronger suppressive activity than those from non-treated mice. These results suggest that oral administration of LG2809 increases the population of pDCs in the LP, resulting in the enhancement of oral tolerance induction by increasing the ratio of effector regulatory T cells. LG2809 could, therefore, act as a potent immunomodulator to prevent food allergies by promoting oral tolerance.

  1. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation

    PubMed Central

    Guerrero-Preston, Rafael; White, James Robert; Godoy-Vitorino, Filipa; Rodríguez-Hilario, Arnold; Navarro, Kelvin; González, Herminio; Michailidi, Christina; Jedlicka, Anne; Canapp, Sierra; Bondy, Jessica; Dziedzic, Amanda; Mora-Lagos, Barbara; Rivera-Alvarez, Gustavo; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Westra, William; Koch, Wayne; Kang, Hyunseok; Marchionni, Luigi; Kim, Young; Sidransky, David

    2017-01-01

    Microbiome studies show altered microbiota in head and neck squamous cell carcinoma (HNSCC), both in terms of taxonomic composition and metabolic capacity. These studies utilized a traditional bioinformatics methodology, which allows for accurate taxonomic assignment down to the genus level, but cannot accurately resolve species level membership. We applied Resphera Insight, a high-resolution methodology for 16S rRNA taxonomic assignment that is able to provide species-level context in its assignments of 16S rRNA next generation sequencing (NGS) data. Resphera Insight applied to saliva samples from HNSCC patients and healthy controls led to the discovery that a subset of HNSCC saliva samples is significantly enriched with commensal species from the vaginal flora, including Lactobacillus gasseri/johnsonii (710x higher in saliva) and Lactobacillus vaginalis (52x higher in saliva). These species were not observed in normal saliva from Johns Hopkins patients, nor in 16S rRNA NGS saliva samples from the Human Microbiome Project (HMP). Interestingly, both species were only observed in saliva from Human Papilloma Virus (HPV) positive and HPV negative oropharyngeal cancer patients. We confirmed the representation of both species in HMP data obtained from mid-vagina (n=128) and vaginal introitus (n=121) samples. Resphera Insight also led to the discovery that Fusobacterium nucleatum, an oral cavity flora commensal bacterium linked to colon cancer, is enriched (600x higher) in saliva from a subset of HNSCC patients with advanced tumors stages. Together, these high-resolution analyses on 583 samples suggest a possible role for bacterial species in the therapeutic outcome of HPV positive and HPV negative HNSCC patients. PMID:29340028

  2. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation.

    PubMed

    Guerrero-Preston, Rafael; White, James Robert; Godoy-Vitorino, Filipa; Rodríguez-Hilario, Arnold; Navarro, Kelvin; González, Herminio; Michailidi, Christina; Jedlicka, Anne; Canapp, Sierra; Bondy, Jessica; Dziedzic, Amanda; Mora-Lagos, Barbara; Rivera-Alvarez, Gustavo; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Westra, William; Koch, Wayne; Kang, Hyunseok; Marchionni, Luigi; Kim, Young; Sidransky, David

    2017-12-19

    Microbiome studies show altered microbiota in head and neck squamous cell carcinoma (HNSCC), both in terms of taxonomic composition and metabolic capacity. These studies utilized a traditional bioinformatics methodology, which allows for accurate taxonomic assignment down to the genus level, but cannot accurately resolve species level membership. We applied Resphera Insight, a high-resolution methodology for 16S rRNA taxonomic assignment that is able to provide species-level context in its assignments of 16S rRNA next generation sequencing (NGS) data. Resphera Insight applied to saliva samples from HNSCC patients and healthy controls led to the discovery that a subset of HNSCC saliva samples is significantly enriched with commensal species from the vaginal flora, including Lactobacillus gasseri/johnsonii (710x higher in saliva) and Lactobacillus vaginalis (52x higher in saliva). These species were not observed in normal saliva from Johns Hopkins patients, nor in 16S rRNA NGS saliva samples from the Human Microbiome Project (HMP). Interestingly, both species were only observed in saliva from Human Papilloma Virus (HPV) positive and HPV negative oropharyngeal cancer patients. We confirmed the representation of both species in HMP data obtained from mid-vagina (n=128) and vaginal introitus (n=121) samples. Resphera Insight also led to the discovery that Fusobacterium nucleatum , an oral cavity flora commensal bacterium linked to colon cancer, is enriched (600x higher) in saliva from a subset of HNSCC patients with advanced tumors stages. Together, these high-resolution analyses on 583 samples suggest a possible role for bacterial species in the therapeutic outcome of HPV positive and HPV negative HNSCC patients.

  3. Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial.

    PubMed

    Dennis-Wall, Jennifer C; Culpepper, Tyler; Nieves, Carmelo; Rowe, Cassie C; Burns, Alyssa M; Rusch, Carley T; Federico, Ashton; Ukhanova, Maria; Waugh, Sheldon; Mai, Volker; Christman, Mary C; Langkamp-Henken, Bobbi

    2017-03-01

    Background: Rhinoconjunctivitis-specific quality of life is often reduced during seasonal allergies. The Mini Rhinoconjunctivitis Quality of Life Questionnaire (MRQLQ) is a validated tool used to measure quality of life in people experiencing allergies (0 = not troubled to 6 = extremely troubled). Probiotics may improve quality of life during allergy season by increasing the percentage of regulatory T cells (Tregs) and inducing tolerance. Objective: The objective of this study was to determine whether consuming Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and B. longum MM-2 compared with placebo would result in beneficial effects on MRQLQ scores throughout allergy season in individuals who typically experience seasonal allergies. Secondary outcomes included changes in immune markers as part of a potential mechanism for changes in MRQLQ scores. Design: In this double-blind, placebo-controlled, parallel, randomized clinical trial, 173 participants (mean ± SEM: age 27 ± 1 y) who self-identified as having seasonal allergies received either a probiotic (2 capsules/d, 1.5 billion colony-forming units/capsule) or placebo during spring allergy season for 8 wk. MRQLQ scores were collected weekly throughout the study. Fasting blood samples were taken from a subgroup (placebo, n = 37; probiotic, n = 35) at baseline and week 6 (predicted peak of pollen) to determine serum immunoglobulin (Ig) E concentrations and Treg percentages. Results: The probiotic group reported an improvement in the MRQLQ global score from baseline to pollen peak (-0.68 ± 0.13) when compared with the placebo group (-0.19 ± 0.14; P = 0.0092). Both serum total IgE and the percentage of Tregs increased from baseline to week 6, but changes were not different between groups. Conclusions: This combination probiotic improved rhinoconjunctivitis-specific quality of life during allergy season for healthy individuals with self-reported seasonal allergies; however, the associated mechanism is

  4. Lactobacillus

    MedlinePlus

    ... eye symptoms. Preventing diarrhea caused by antibiotics. Taking probiotics products containing lactobacillus strains helps prevent diarrhea caused ... the first 1-2 years of life, lactobacillus probiotics can reduce the chance of the child developing ...

  5. Characterization and complete genome sequences of L. rhamnosus DSM 14870 and L. gasseri DSM 14869 contained in the EcoVag® probiotic vaginal capsules.

    PubMed

    Marcotte, Harold; Krogh Andersen, Kasper; Lin, Yin; Zuo, Fanglei; Zeng, Zhu; Larsson, Per Göran; Brandsborg, Erik; Brønstad, Gunnar; Hammarström, Lennart

    2017-12-01

    Lactobacillus rhamnosus DSM 14870 and Lactobacillus gasseri DSM 14869 were previously isolated from the vaginal epithelial cells (VEC) of healthy women and selected for the development of the vaginal EcoVag ® probiotic capsules. EcoVag ® was subsequently shown to provide long-term cure and reduce relapse of bacterial vaginosis (BV) as an adjunct to antibiotic therapy. To identify genes potentially involved in probiotic activity, we performed genome sequencing and characterization of the two strains. The complete genome analysis of both strains revealed the presence of genes encoding functions related to adhesion, exopolysaccharide (EPS) biosynthesis, antimicrobial activity, and CRISPR adaptive immunity but absence of antibiotic resistance genes. Interesting features of L. rhamnosus DSM 14870 genome include the presence of the spaCBA-srtC gene encoding spaCBA pili and interruption of the gene cluster encoding long galactose-rich EPS by integrases. Unique to L. gasseri DSM 14869 genome was the presence of a gene encoding a putative (1456 amino acid) new adhesin containing two rib/alpha-like repeats. L. rhamnosus DSM 14870 and L. gasseri DSM 14869 showed acidification of the culture medium (to pH 3.8) and a strong adhesion capability to the Caco-2 cell line and VEC. L. gasseri DSM 14869 could produce a thick (40nm) EPS layer and hydrogen peroxide. L. rhamnosus DSM 14870 was shown to produce SpaCBA pili and a 20nm EPS layer, and could inhibit the growth of Gardnerella vaginalis, a bacterium commonly associated with BV. The genome sequences provide a basis for further elucidation of the molecular basis for their probiotic functions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods

    PubMed Central

    2010-01-01

    Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602

  7. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods.

    PubMed

    Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J

    2010-09-17

    Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.

  8. Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease

    PubMed Central

    Martinez, Raquel M.; Hulten, Kristina G.; Bui, Uyen

    2014-01-01

    Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry. PMID:24131686

  9. [The change of vaginal lactobacillus in patients with high-risk human papillomavirus infection].

    PubMed

    Zhou, D; Cui, Y; Wu, F L; Deng, W H

    2016-07-05

    To study the distribution characteristics of lactobacillus in the vaginal mucosa of patients with HPV infection. The planting density of lactobacillus in vaginal secretions of 95 cases with HPV16/18 infection and 90 cases of normal women of childbearing age were observed by oil microscope. And the strains of vaginal lactobacilli in two groups were analyzed using species-specific polymerase chain reaction (Species-specific PCR) and the distribution of vaginal lactobacilli in patients with HPV16/18 infection were investigated. In HPV16/18 infective groups, the planting density of lactobacillus in the vaginal mucosa was 104 (68-186)/HP. It was significantly lower than that of the normal group (234 (161-326)/HP, P<0.05). Compared with the normal group, the positive rates of lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri were significantly lower in HPV16/18 infection group (P<0.05). The HPV16/18 infection is associated with the decreased number of lactobacillus and the imbalance of vaginal flora; Lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri may play a key role in maintaining the vaginal micro ecological environment.

  10. Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane.

    PubMed

    Calonghi, N; Parolin, C; Sartor, G; Verardi, L; Giordani, B; Frisco, G; Marangoni, A; Vitali, B

    2017-08-24

    Vaginal lactobacilli offer protection against recurrent urinary and vaginal infections. The precise mechanisms underlying the interaction between lactobacilli and the host epithelium remain poorly understood at the molecular level. Deciphering such events can provide valuable information on the mode of action of commensal and probiotic bacteria in the vaginal environment. We investigated the effects exerted by five Lactobacillus strains of vaginal origin (Lactobacillus crispatus BC1 and BC2, Lactobacillus gasseri BC9 and BC11 and Lactobacillus vaginalis BC15) on the physical properties of the plasma membrane in a cervical cell line (HeLa). The interaction of the vaginal lactobacilli with the cervical cells determined two kinds of effects on plasma membrane: (1) modification of the membrane polar lipid organisation and the physical properties (L. crispatus BC1 and L. gasseri BC9); (2) modification of α5β1 integrin organisation (L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15). These two mechanisms can be at the basis of the protective role of lactobacilli against Candida albicans adhesion. Upon stimulation with all Lactobacillus strains, we observed a reduction of the basal oxidative stress in HeLa cells that could be related to modifications in physical properties and organisation of the plasma membrane. These results confirm the strictly strain-specific peculiarities of Lactobacillus and deepen the understanding of the mechanisms underlying the health-promoting role of this genus within the vaginal ecosystem.

  11. An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity.

    PubMed

    Piwat, S; Sophatha, B; Teanpaisan, R

    2015-07-01

    There is limited information concerning the adhesion and aggregation of human oral lactobacilli. In this study, the adhesion of 10 Lactobacillus species was investigated using H357 oral keratinocyte cells as an in vitro model for oral mucosa. Coaggregation with the representative oral pathogen, Streptococcus mutans ATCC 25175, and the physicochemical cell properties was also evaluated. The results demonstrated significant variations in adhesion (42-96%) and aggregation (autoaggregation, 14-95%; coaggregation, 19-65%). All strains showed a high affinity for chloroform, and most strains had a moderate-to-high hydrophobicity. All strains, except Lactobacillus casei and Lactobacillus gasseri, showed a moderate affinity for ethyl acetate. There was a strong association of autoaggregation with coaggregation (rs = 0·883, P < 0·001). The highest mean for autoaggregation (74%) and coaggregation (47%) belonged to the Lact. gasseri strains. Correlations between the adhesion and surface characteristics and aggregation were observed among the Lactobacillus fermentum and Lactobacillus paracasei strains; however, there was a variation in the strains properties within and between species. This study indicated that the Lact. gasseri, Lact. fermentum, and Lact. paracasei strains might be potential probiotics for the human oral cavity given their desirable properties. It should also be emphasized that a selective process for probiotic strains is required. Adhesion to host tissues and bacterial aggregation (auto- and coaggregation) are the highly important criteria for selecting strains with probiotic potential. These abilities are commonly involved with surface-charged characteristics. This is the first study to investigate the oral Lactobacillus species using an oral keratinocyte cell line. Significant results were found for the correlations between the adhesion and surface charge characteristics and for aggregation among certain strains of Lactobacillus gasseri, Lactobacillus

  12. [Diversity of Lactobacillus in vagina of vulvovaginal candidiasis].

    PubMed

    2015-04-07

    To investigate the Lactobacillus species in the vaginas of vulvovaginal candidiasis and to assess the prevalence of each Lactobacillus species in vulvovaginal candidiasis. 154 vaginal samples were analyzed, 92 of which were from fertile healthy women, and 62 of which were from women with vulvovaginal candidiasis; and species-specific PCR showed the prevalence of each Lactobacillus species Species-specific PCR was used to investigate the prevalence of each Lactobacillus species in healthy Chinese women and the women with vulvovaginal candidiasis. In women with vulvovaginal candidiasis: L. iners (6.5%), L. cripatus (79.0%), L. gasseri (37.1%), L. jensenii (74.2%), L. acidophilus (16.1%), L. brevis (19.4%), L. plantarum (1.6%), L. johnsonii (51.6%), L. fermentum (8.1%), L. salivarius (9.7%), L. reuter (1.6%), L. paracasei (8.1%), L. delbrueckii (3. 2% ) ; More than two different Lactobacillus species coexisted in 98% of women with vulvovaginal candidiasis, and no anyone species existed in 2% of them; In fertile women: L. iners (82.6%), L. cripatus (70.7%), L. gasseri (67.4%), L. jensenii (40.2%), L. acidophilus (39.1%), L. brevis (23.9%), L. plantarum (5.4%), L. rhamnosus (1.1%), L. paracasei (1.1%), L. reuter (1.1%) i, L. johnsonii (3.3%), L. fermentum (2.2%), L. salivarius (2.2%); More than two different Lactobacillus species coexisted in 97% of fertile women, and only one species existed in 3% of fertile women. Species of lactobacillus in women with vulvovaginal candidiasis did not significantly reduced compared with healthy women. Lactobacillus inert may be a marker of the change of vaginal microenvironment; Lactobacillus crispatus is a dominant lactobacillus in the vaginal of fertile healthy women, pregnant women and women with vulvovaginal candidiasis.

  13. Antimicrobial activity of lactobacillus strains against uropathogens.

    PubMed

    Shim, Yoon Hee; Lee, Seung Joo; Lee, Jung Won

    2016-10-01

    The use of lactobacillus probiotics has been proposed as an alternative to prophylactic antibiotics for preventing urinary tract infection (UTI) in the era of antibiotic resistance. In this study, the antimicrobial activity of lactobacillus strains against uropathogens, was evaluated and compared with that of antibiotics. To evaluate inhibitory activities of lactobacilli against uropathogens, six lactobacillus strains (L. gasseri, L. rhamnosus, L. acidophilus, L. plantarum, L. paracasei, L. acidophilus) and four representative uropathogens of infantile UTI (extended-spectrum beta-lactamase [ESBL](-) Escherichia coli, ESBL(+) E. coli, Proteus vulgaris, Enterococcus fecalis) were selected. Lactobacillus strain in vitro inhibition of each uropathogen was evaluated on MRS agar well diffusion assay and compared with that of commercial antibiotic discs. Average inhibitory zone for each of the six lactobacillus strains against the four uropathogens showed slightly different but consistent inhibition (inhibitory zone diameter, 10.5-20.0 mm). This was different to that of the antibiotic discs, which had a wider range of inhibition (inhibitory zone diameter, <6.0-27.5 mm) depending on the uropathogen resistance pattern. The inhibitory zone of the six lactobacillus strains was between that of sensitive and resistant antibiotics (P < 0.05). Lactobacillus strains had similar moderate antimicrobial activities against uropathogens. Further research is needed to ascertain the strains with the best probiotic potential. © 2016 Japan Pediatric Society.

  14. Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens.

    PubMed

    Askelson, Tyler E; Campasino, Ashley; Lee, Jason T; Duong, Tri

    2014-02-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics.

  15. Evaluation of Phytate-Degrading Lactobacillus Culture Administration to Broiler Chickens

    PubMed Central

    Askelson, Tyler E.; Campasino, Ashley; Lee, Jason T.

    2014-01-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics. PMID:24271165

  16. Assessment and comparison of probiotic potential of four Lactobacillus species isolated from feces samples of Iranian infants.

    PubMed

    Halimi, Shahnaz; Mirsalehian, Akbar

    2016-02-01

    The probiotic potential of Lactobacillus species isolated from infant feces was investigated. For this study, the antibiotic susceptibility, tolerance in gut-related conditions, antimicrobial activity, and ability to adhere to a human colorectal adenocarcinoma cell line (Caco-2 cells) of four common Lactobacillus species (Lactobacillus paracasei [n = 15], Lactobacillus rhamnosus [n = 45], Lactobacillus gasseri [n = 20] and Lactobacillus fermentum [n = 18]) were assessed. Most isolates that which were sensitive to imipenem, ampicillin, gentamycin, erythromycin and tetracycline were selected for other tests. L. gasseri isolates had the greatest sensitivity to gastric and intestinal fluids (<10% viability). L. fermentum (FH5, FH13 and FH18) had the highest adhesion to Caco-2 cells. The lowest antibacterial activity against pathogenic bacteria was shown by L. gasseri strains in spot tests. Furthermore, non-adjusted cell-free culture supernatants with low pH had greater antimicrobial activity, which was related to organic acid. The results showed that some isolates of L. rhamnosus and L. fermentum are suitable for use as a probiotic. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  17. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  18. In vitro adherence of Lactobacillus strains isolated from the vaginas of healthy Iranian women.

    PubMed

    Mousavi, Elham; Makvandi, Manoochehr; Teimoori, Ali; Ataei, Angila; Ghafari, Shokouh; Najafian, Mahin; Ourang, Ziba; Samarbaf-Zadeh, Alireza

    2016-12-01

    The lactobacilli are a part of the bacterial flora of the human vagina. Detection of normal Lactobacillus species in the vaginas of healthy women in different geographical locations, and evaluation of their specific properties, can aid in the selection of the best species for preventing sexually transmitted diseases in the future. This study was performed to isolate and identify the Lactobacillus species in the vaginas of healthy women and to evaluate the adherence of these lactobacilli to Vero and HeLa cell lines. The study included 100 women. Bacteria were isolated from healthy women and purified. Phenotypic and biochemical tests were performed to identify the lactobacilli. The Lactobacillus species were detected by molecular methods using polymerase chain reaction amplification of the full length of the 16S rDNA of the isolated bacteria. Several isolates of each species were then selected to study their adherence to Vero and HeLa cell lines. Among the 50 samples taken from healthy women meeting the inclusion criteria, Lactobacillus species were identified in 33 (66%) samples. Of these lactobacilli, 14 isolates were Lactobacillus crispatus, six (18.2%) were Lactobacillus gasseri, nine (27%) were Lactobacillus rhamnosus, and the rest were either Lactobacillus salivarius (6%) or Lactobacillus plantarum (6%). L. rhamnosus showed the greatest adhesion to the cells when compared to the other tested species. All the lactobacilli isolated in this study showed a smaller capacity for cell adherence when compared with control species. L. crispatus, L. rhamnosus, and L. gasseri were the dominant Lactobacillus species in the vaginas of healthy women in Iran. L. rhamnosus attached more readily to the cells than did the other species; therefore, this isolate is a good candidate for further studies on the potential health benefits and application of lactobacilli as probiotics. Copyright © 2016. Published by Elsevier Taiwan LLC.

  19. A probiotic dairy product containing L. gasseri CECT5714 and L. coryniformis CECT5711 induces immunological changes in children suffering from allergy.

    PubMed

    Martínez-Cañavate, Ana; Sierra, Saleta; Lara-Villoslada, Federico; Romero, Julio; Maldonado, José; Boza, Julio; Xaus, Jordi; Olivares, Mónica

    2009-09-01

    The increase in the prevalence of allergic diseases in children has been attributed to an unbalanced immune response probably due to environmental factors. The immunoregulatory properties of probiotic bacteria could balance the disequilibrium in the immune response causing the allergic response. The aim of this study was to evaluate the immunological effects of the consumption of a dairy product containing two probiotic strains in children suffering from allergy. A double-blinded, randomized, control comparative study was performed with 44 allergic children. Children were randomly distributed in two groups, a control Yogurt and a Probiotic group. Both groups daily consumed 200 ml of a dairy fermented product for 3 months. The Yogurt group consumed a conventional yogurt, whereas the Probiotic group consumed a similar dairy product where Lactobacillus bulgaricus was substituted by a mixture of Lactobacillus gasseri CECT5714 and Lactobacillus coryniformis CECT5711 (at least 10(6) cfu/g each strain). Intestinal and immunological parameters were measured in fecal and blood samples. The consumption of the probiotic product induced a significant decrease in the level of IgE in plasma (p = 0.03) and an increase in CD4(+)/CD25(+) T regulatory cells (p = 0.01). The decrease in IgE was accompanied by a significant increase in mucosal IgA (p = 0.01). However, changes in other effector cells potentially involved in allergic reactions such as eosinophiles, basophiles or other IgE+ cells were not detected. The consumption of the probiotic product also induced significant changes in innate response as a significant increase in natural killer cells was detected (p = 0.03). The daily consumption of a probiotic product containing L. gasseri CECT5714 and L. coryniformis CECT5711 for 3 months induces, in allergic children, beneficial effects on immune parameters involved in the allergic response such as a reduction of IgE in plasma and an increase in regulatory T cells. The probiotic

  20. Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents.

    PubMed

    Killer, J; Havlík, J; Vlková, E; Rada, V; Pechar, R; Benada, O; Kopečný, J; Kofroňová, O; Sechovcová, H

    2014-05-01

    Three strains of regular, long, Gram-stain-positive bacterial rods were isolated using TPY, M.R.S. and Rogosa agar under anaerobic conditions from the digestive tract of wild mice (Mus musculus). All 16S rRNA gene sequences of these isolates were most similar to sequences of Lactobacillus gasseri ATCC 33323T and Lactobacillus johnsonii ATCC 33200T (97.3% and 97.2% sequence similarities, respectively). The novel strains shared 99.2-99.6% 16S rRNA gene sequence similarities. Type strains of L. gasseri and L. johnsonii were also most related to the newly isolated strains according to rpoA (83.9-84.0% similarities), pheS (84.6-87.8%), atpA (86.2-87.7%), hsp60 (89.4-90.4%) and tuf (92.7-93.6%) gene sequence similarities. Phylogenetic studies based on 16S rRNA, hsp60, rpoA, atpA and pheS gene sequences, other genotypic and many phenotypic characteristics (results of API 50 CHL, Rapid ID 32A and API ZYM biochemical tests; cellular fatty acid profiles; cellular polar lipid profiles; end products of glucose fermentation) showed that these bacterial strains represent a novel species within the genus Lactobacillus. The name Lactobacillus rodentium sp. nov. is proposed to accommodate this group of new isolates. The type strain is MYMRS/TLU1T (=DSM 24759T=CCM 7945T).

  1. Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries

    PubMed Central

    Byun, Roy; Nadkarni, Mangala A.; Chhour, Kim-Ly; Martin, F. Elizabeth; Jacques, Nicholas A.; Hunter, Neil

    2004-01-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion. PMID:15243071

  2. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries.

    PubMed

    Byun, Roy; Nadkarni, Mangala A; Chhour, Kim-Ly; Martin, F Elizabeth; Jacques, Nicholas A; Hunter, Neil

    2004-07-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion.

  3. A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use.

    PubMed

    Gregoret, V; Perezlindo, M J; Vinderola, G; Reinheimer, J; Binetti, A

    2013-05-01

    Specific strains should only be regarded as probiotics if they fulfill certain safety, technological and functional criteria. The aim of this work was to study, from a comprehensive point of view (in vitro and in vivo tests), three Lactobacillus strains (Lactobacillus paracasei JP1, Lactobacillus rhamnosus 64 and Lactobacillus gasseri 37) isolated from feces of local newborns, determining some parameters of technological, biological and functional relevance. All strains were able to adequately grow in different economic culture media (cheese whey, buttermilk and milk), which were also suitable as cryoprotectants. As selective media, LP-MRS was more effective than B-MRS for the enumeration of all strains. The strains were resistant to different technological (frozen storage, high salt content) and biological (simulated gastrointestinal digestion after refrigerated storage in acidified milk, bile exposure) challenges. L. rhamnosus 64 and L. gasseri 37, in particular, were sensible to chloramphenicol, erythromycin, streptomycin, tetracycline and vancomycin, increased the phagocytic activity of peritoneal macrophage and induced the proliferation of IgA producing cells in small intestine when administered to mice. Even when clinical trails are still needed, both strains fulfilled the main criteria proposed by FAO/WHO to consider them as potential probiotics for the formulation of new foods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  5. Diversity and functional characterization of Lactobacillus spp. isolated throughout the ripening of a hard cheese.

    PubMed

    Bautista-Gallego, J; Alessandria, V; Fontana, M; Bisotti, S; Taricco, S; Dolci, P; Cocolin, L; Rantsiou, K

    2014-07-02

    The aim of this work was to study the Lactobacillus spp. intra- and inter- species diversity in a Piedmont hard cheese made of raw milk without thermal treatment and without addition of industrial starter, and to perform a first screening for potential functional properties. A total of 586 isolates were collected during the cheese production and identified by means of molecular methods: three hundred and four were identified as Lactobacillus rhamnosus, two hundred and forty as Lactobacillus helveticus, twenty six as Lactobacillus fermentum, eleven as Lactobacillus delbrueckii, three as Lactobacillus pontis, and two as Lactobacillus gasseri and Lactobacillus reuteri, respectively. A high genetic heterogeneity was detected by using the repetitive bacterial DNA element fingerprinting (rep-PCR) with the use of (GTG)5 primer resulting in eight clusters of L. helveticus and sixteen clusters in the case of L. rhamnosus. Most of isolates showed a high auto-aggregation property, low hydrophobicity values, and a general low survival to simulated digestion process. However, sixteen isolates showed promising functional characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Lactobacillus species isolated from vaginal secretions of healthy and bacterial vaginosis-intermediate Mexican women: a prospective study

    PubMed Central

    2013-01-01

    Background Lactobacillus jensenii, L. iners, L. crispatus and L. gasseri are the most frequently occurring lactobacilli in the vagina. However, the native species vary widely according to the studied population. The present study was performed to genetically determine the identity of Lactobacillus strains present in the vaginal discharge of healthy and bacterial vaginosis (BV) intermediate Mexican women. Methods In a prospective study, 31 strains preliminarily identified as Lactobacillus species were isolated from 21 samples collected from 105 non-pregnant Mexican women. The samples were classified into groups according to the Nugent score criteria proposed for detection of BV: normal (N), intermediate (I) and bacterial vaginosis (BV). We examined the isolates using culture-based methods as well as molecular analysis of the V1–V3 regions of the 16S rRNA gene. Enterobacterial repetitive intergenic consensus (ERIC) sequence analysis was performed to reject clones. Results Clinical isolates (25/31) were classified into four groups based on sequencing and analysis of the 16S rRNA gene: L. acidophilus (14/25), L. reuteri (6/25), L. casei (4/25) and L. buchneri (1/25). The remaining six isolates were presumptively identified as Enterococcus species. Within the L. acidophilus group, L. gasseri was the most frequently isolated species, followed by L. jensenii and L. crispatus. L. fermentum, L. rhamnosus and L. brevis were also isolated, and were placed in the L. reuteri, L. casei and L. buchneri groups, respectively. ERIC profile analysis showed intraspecific variability amongst the L. gasseri and L. fermentum species. Conclusions These findings agree with previous studies showing that L. crispatus, L. gasseri and L. jensenii are consistently present in the healthy vaginal ecosystem. Additional species or phylotypes were detected in the vaginal microbiota of the non-pregnant Mexican (Hispanic-mestizo) population, and thus, these results further our understanding of

  7. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals.

    PubMed

    Savijoki, K; Kahala, M; Palva, A

    1997-02-28

    A secretion cassette, based on the expression and secretion signals of a S-layer protein (SlpA) from Lactobacillus brevis, was constructed. E. coli beta-lactamase (Bla) was used as the reporter protein to determine the functionality of the S-layer signals for heterologous expression and secretion in Lactococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus gasseri and Lactobacillus casei using a low-copy-number plasmid derived from pGK12. In all hosts tested, the bla gene was expressed under the slpA signals and all Bla activity was secreted to the culture medium. The Lb. brevis S-layer promoters were very efficiently recognized in L. lactis, Lb. brevis and Lb. plantarum, whereas in Lb. gasseri the slpA promoter region appeared to be recognized at a lower level and in Lb. casei the level of transcripts was below the detection limit. The production of Bla was mainly restricted to the exponential phase of growth. The highest yield of Bla was obtained with L. lactis and Lb. brevis. Without pH control, substantial degradation of Bla occurred during prolonged cultivations with all lactic acid bacteria (LAB) tested. When growing L. lactis and Lb. brevis under pH control, the Bla activity could be stabilized also at the stationary phase. L. lactis produced up to 80 mg/l of Bla which to our knowledge represents the highest amount of a heterologous protein secreted by LAB so far. The short production phase implied a very high rate of secretion with a calculated value of 5 x 10(5) Bla molecules/cell per h. Such a high rate was also observed with Lb. plantarum, whereas in Lb. brevis the competition between the wild type slpA gene and the secretion construct probably lowered the rate of Bla production. The results obtained indicate wide applicability of the Lb. brevis slpA signals for efficient protein production and secretion in LAB.

  8. Predominant Lactobacillus species types of vaginal microbiota in pregnant Korean women: quantification of the five Lactobacillus species and two anaerobes.

    PubMed

    Kim, Jeong Hyun; Yoo, Seung Min; Sohn, Yong Hak; Jin, Chan Hee; Yang, Yun Suk; Hwang, In Taek; Oh, Kwan Young

    2017-10-01

    To investigate the predominant Lactobacillus species types (LSTs) of vaginal microbiota in pregnant Korean women by quantifying five Lactobacillus species and two anaerobes. In all, 168 pregnant Korean women under antenatal care at Eulji University Hospital and local clinics were enrolled in the prospective cohort study during pregnancy (10-14 weeks). Vaginal samples were collected with Eswab for Quantitative polymerase chain reaction (qPCR) and stored in a -80 °C freezer. qPCR was performed for five Lactobacillus species and two anaerobes. To identify the predominant LSTs, quantifications were analyzed by the Cluster and Tree View programs of Eisen Lab. Also the quantifications were compared among classified groups. L. crispatus and L. iners were most commonly found in pregnant Korean women, followed by L. gasseri and L. jensenii; L. vaginalis was nearly absent. Five types (four predominant LSTs and one predominant anaerobe type without predominant Lactobacillus species) were classified. Five predominant LSTs were identified in vaginal microbiota of pregnant Korean women. L. crispatus and L. iners predominant types comprised a large proportion.

  9. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health

    PubMed Central

    Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah

    2015-01-01

    The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies. PMID:25859220

  10. Distinctive Intestinal Lactobacillus Communities in 6-Month-Old Infants From Rural Malawi and Southwestern Finland.

    PubMed

    Aakko, Juhani; Endo, Akihito; Mangani, Charles; Maleta, Kenneth; Ashorn, Per; Isolauri, Erika; Salminen, Seppo

    2015-12-01

    Our aim was to compare the composition and diversity of Lactobacillus microbiota in infants living in Malawi and Southwestern Finland. The composition and diversity of the Lactobacillus group was analyzed in the feces of healthy 6-month-old infants living in rural Malawi (n = 44) and Southwestern Finland (n = 31), using the quantitative polymerase chain reaction method and PCR-denaturing gradient gel electrophoresis fingerprinting. Malawian infants had higher counts of lactobacilli than their Finnish counterparts (7.45 log cells/g vs 6.86 log cells/g, P < 0.001, respectively) and the Lactobacillus community was richer and more diverse in the Malawian infants. Leuconostoc citreum and Weissella confusa were the predominant species in both study groups, but Malawian infants were more often colonized by these species (100% vs 74.2%, P < 0.001; 95.5% vs 41.9%, P < 0.001, respectively). Moreover, Lactobacillus ruminis, Lactobacillus gasseri, Lactobacillus acidophilus, and Lactobacillus mucosae were detected more often in the Malawian infants (59.1% vs 0.0%, P < 0.001; 38.6% vs 9.7%, P = 0.004; 29.5% vs 0.0%, P < 0.001; 22.7% vs 3.2%, P = 0.017, respectively). Lactobacillus casei group species, however, were only detected in the Finnish infants. Malawian infants have a more abundant Lactobacillus microbiota with a distinct composition compared with Finnish infants. The environment, including diet and hygiene, may be among the factors influencing these differences.

  11. Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity.

    PubMed

    Pridmore, Raymond David; Pittet, Anne-Cécile; Praplan, Fabienne; Cavadini, Christoph

    2008-06-01

    The human intestinal isolate Lactobacillus johnsonii NCC 533 (La1) is a probiotic strain with well-documented antimicrobial properties. Previous research has identified the production of lactic acid and bacteriocins as important factors, but that other unidentified factors are also involved. We used the recently published genome sequence of L. johnsonii NCC 533 to search for novel antipathogen factors and identified three potential gene products that may catalyze the synthesis of the known antimicrobial factor hydrogen peroxide, H(2)O(2). In this work, we confirmed the ability of NCC 533 as well as eight different L. johnsonii strains and Lactobacillus gasseri to produce H(2)O(2) when resting cells were incubated in the presence of oxygen, and that culture supernatant containing NCC 533-produced H(2)O(2) was effective in killing the model pathogen Salmonella enterica serovar Typhimurium SL1344 in vitro.

  12. Molecular detection of Lactobacillus species in the neovagina of male-to-female transsexual women

    PubMed Central

    Petricevic, Ljubomir; Kaufmann, Ulrike; Domig, Konrad J.; Kraler, Manuel; Marschalek, Julian; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    There is a general opinion that penile skin lined neovagina of transsexual women is not able to support the growth of lactobacilli. This study was undertaken to prove if lactobacilli strains could survive in neovagina and to characterise the most dominant Lactobacillus species. Sixty three male-to-female transsexual women without abnormal vaginal discharge, clinical signs of infection were recruited on an ongoing basis from among transsexual outpatients in an academic research institution and tertiary care centre. Neovaginal smears were taken for molecular Lactobacillus spp. profiling by denaturing gradient gel electrophoresis (PCR–DGGE). Lactobacillus species were detected from 47/63 transsexual women (75%). The 279 Lactobacillus signals detected by PCR-DGGE technique belonged to 13 different species. Lactobacilli of the L. delbrueckii group (L. gasseri, L. crispatus, L. johnsonii, L. iners, L. jensenii) were predominant. More than 90% of women harboured a combination of two or more neovaginal Lactobacillus species. In this study we report the frequent occurrence of lactobacilli from neovagina of transsexual women. Both, frequency and composition were similar to the normal lactic acid bacterial microflora in both women of reproductive age and postmenopausal women. PMID:24434849

  13. Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women

    PubMed Central

    Tamrakar, Renuka; Yamada, Takashi; Furuta, Itsuko; Cho, Kazutoshi; Morikawa, Mamoru; Yamada, Hideto; Sakuragi, Noriaki; Minakami, Hisanori

    2007-01-01

    Background Bacterial vaginosis (BV), the etiology of which is still uncertain, increases the risk of preterm birth. Recent PCR-based studies suggested that BV is associated with complex vaginal bacterial communities, including many newly recognized bacterial species in non-pregnant women. Methods To examine whether these bacteria are also involved in BV in pregnant Japanese women, vaginal fluid samples were taken from 132 women, classified as normal (n = 98), intermediate (n = 21), or BV (n = 13) using the Nugent gram stain criteria, and studied. DNA extracted from these samples was analyzed for bacterial sequences of any Lactobacillus, four Lactobacillus species, and four BV-related bacteria by PCR with primers for 16S ribosomal DNA including a universal Lactobacillus primer, Lactobacillus species-specific primers for L. crispatus, L. jensenii, L. gasseri, and L. iners, and BV-related bacterium-specific primers for BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Results The prevalences of L. crispatus, L. jensenii, and L. gasseri were significantly higher, while those of BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium were significantly lower in the normal group than in the BV group. Unlike other Lactobacillus species, the prevalence of L. iners did not differ between the three groups and women with L. iners were significantly more likely to have BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Linear regression analysis revealed associations of BVAB2 and Megasphaera with Nugent score, and multivariate regression analyses suggested a close relationship between Eggerthella-like bacterium and BV. Conclusion The BV-related bacteria, including BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium, are common in the vagina of pregnant Japanese women with BV. The presence of L. iners may be correlated with vaginal colonization by these BV-related bacteria. PMID:17986357

  14. Characterization of vaginal Lactobacillus species by rplK -based multiplex qPCR in Russian women.

    PubMed

    Demkin, Vladimir V; Koshechkin, Stanislav I

    2017-10-01

    We describe a multiplex qPCR assay for identification and quantitative assessment of a set of vaginal Lactobacillus species, including L. acidophilus, L. crispatus, L. gasseri, L. helveticus, L. iners, and L. jensenii. The assay extends the previously developed qPCR method for Lactobacillus detection and total quantification based on targeting the rplK gene. Both assays use only single pair of primers and a set of probes combined in three reactions, comprising a vaginal Lactobacillus diagnostic assay panel. The utility of the diagnostic panel was evaluated by analyzing of vaginal swab specimens from 145 patients with different status of vaginal health. Most frequently, only one Lactobacillus species was dominant (68,9%), mostly L. crispatus (18,6%) or L. iners (33,1%), but two or three Lactobacillus species were also being simultaneously detected (24,9%). The diagnostic panel will facilitate investigations of the role of Lactobacillus species in the health of the female reproductive system and promote studies of variability of the vaginal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Phase I Trial of a Lactobacillus crispatus Vaginal Suppository for Prevention of Recurrent Urinary Tract Infection in Women

    PubMed Central

    Czaja, Christopher A.; Stapleton, Ann E.; Yarova-Yarovaya, Yuliya; Stamm, Walter E.

    2007-01-01

    Objectives: We performed a phase I trial to assess the safety and tolerance of a Lactobacillus vaginal suppository for prevention of recurrent UTI. Methods: Premenopausal women with a history of recurrent UTI were randomized to use L. crispatus CTV-05 or placebo vaginal suppositories daily for five days. Results: 30 women were randomized (15 to L. crispatus CTV-05). No severe adverse events occurred. Mild to moderate vaginal discharge and genital irritation were reported by women in both study arms. Seven women randomized to L. crispatus CTV-05 developed pyuria without associated symptoms. Most women had high concentrations of vaginal H202-producing lactobacilli before randomization. L. crispatus, L. jensenii, and L. gasseri were the most common Lactobacillus species identified, with stable prevalence over time. Conclusions: L. crispatus CTV-05 can be given as a vaginal suppository with minimal sideeffects to healthy women with a history of recurrent UTI. Mild inflammation of the urinary tract was noted in some women. PMID:18288237

  17. Phase I trial of a Lactobacillus crispatus vaginal suppository for prevention of recurrent urinary tract infection in women.

    PubMed

    Czaja, Christopher A; Stapleton, Ann E; Yarova-Yarovaya, Yuliya; Stamm, Walter E

    2007-01-01

    We performed a phase I trial to assess the safety and tolerance of a Lactobacillus vaginal suppository for prevention of recurrent UTI. Premenopausal women with a history of recurrent UTI were randomized to use L. crispatus CTV-05 or placebo vaginal suppositories daily for five days. 30 women were randomized (15 to L. crispatus CTV-05). No severe adverse events occurred. Mild to moderate vaginal discharge and genital irritation were reported by women in both study arms. Seven women randomized to L. crispatus CTV-05 developed pyuria without associated symptoms. Most women had high concentrations of vaginal H202-producing lactobacilli before randomization. L. crispatus, L. jensenii, and L. gasseri were the most common Lactobacillus species identified, with stable prevalence over time. L. crispatus CTV-05 can be given as a vaginal suppository with minimal sideeffects to healthy women with a history of recurrent UTI. Mild inflammation of the urinary tract was noted in some women.

  18. Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage {Phi}AQ113.

    PubMed

    Zago, Miriam; Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-08-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism.

  19. Characterization of the Genome of the Dairy Lactobacillus helveticus Bacteriophage ΦAQ113

    PubMed Central

    Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-01-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism. PMID:23728811

  20. The role of prophage for genome diversification within a clonal lineage of Lactobacillus johnsonii: characterization of the defective prophage LJ771.

    PubMed

    Denou, Emmanuel; Pridmore, Raymond David; Ventura, Marco; Pittet, Anne-Cécile; Zwahlen, Marie-Camille; Berger, Bernard; Barretto, Caroline; Panoff, Jean-Michel; Brüssow, Harald

    2008-09-01

    Two independent isolates of the gut commensal Lactobacillus johnsonii were sequenced. These isolates belonged to the same clonal lineage and differed mainly by a 40.8-kb prophage, LJ771, belonging to the Sfi11 phage lineage. LJ771 shares close DNA sequence identity with Lactobacillus gasseri prophages. LJ771 coexists as an integrated prophage and excised circular phage DNA, but phage DNA packaged into extracellular phage particles was not detected. Between the phage lysin gene and attR a likely mazE ("antitoxin")/pemK ("toxin") gene cassette was detected in LJ771 but not in the L. gasseri prophages. Expressed pemK could be cloned in Escherichia coli only together with the mazE gene. LJ771 was shown to be highly stable and could be cured only by coexpression of mazE from a plasmid. The prophage was integrated into the methionine sulfoxide reductase gene (msrA) and complemented the 5' end of this gene, creating a protein with a slightly altered N-terminal sequence. The two L. johnsonii strains had identical in vitro growth and in vivo gut persistence phenotypes. Also, in an isogenic background, the presence of the prophage resulted in no growth disadvantage.

  1. Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment

    PubMed Central

    Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J.

    2014-01-01

    Lactobacilli are found in a wide variety of habitats. Four species, Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii, are common and abundant in the human vagina and absent from other habitats. These may be adapted to the vagina and possess characteristics enabling them to thrive in that environment. Furthermore, stable codominance of multiple Lactobacillus species in a single community is infrequently observed. Thus, it is possible that individual vaginal Lactobacillus species possess unique characteristics that confer to them host-specific competitive advantages. We performed comparative functional genomic analyses of representatives of 25 species of Lactobacillus, searching for habitat-specific traits in the genomes of the vaginal lactobacilli. We found that the genomes of the vaginal species were significantly smaller and had significantly lower GC content than those of the nonvaginal species. No protein families were found to be specific to the vaginal species analyzed, but some were either over- or underrepresented relative to nonvaginal species. We also found that within the vaginal species, each genome coded for species-specific protein families. Our results suggest that even though the vaginal species show no general signatures of adaptation to the vaginal environment, each species has specific and perhaps unique ways of interacting with its environment, be it the host or other microbes in the community. These findings will serve as a foundation for further exploring the role of lactobacilli in the ecological dynamics of vaginal microbial communities and their ultimate impact on host health. PMID:24488312

  2. Identification and Characterization of the Novel LysM Domain-Containing Surface Protein Sep from Lactobacillus fermentum BR11 and Its Use as a Peptide Fusion Partner in Lactobacillus and Lactococcus

    PubMed Central

    Turner, Mark S.; Hafner, Louise M.; Walsh, Terry; Giffard, Philip M.

    2004-01-01

    Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria. PMID:15184172

  3. Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species.

    PubMed

    Bidart, Gonzalo N; Rodríguez-Díaz, Jesús; Palomino-Schätzlein, Martina; Monedero, Vicente; Yebra, María J

    2017-01-01

    Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-D-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for β1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-β-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants.

  4. Comparative genomics of Lactobacillus

    PubMed Central

    Kant, Ravi; Blom, Jochen; Palva, Airi; Siezen, Roland J.; de Vos, Willem M.

    2011-01-01

    Summary The genus Lactobacillus includes a diverse group of bacteria consisting of many species that are associated with fermentations of plants, meat or milk. In addition, various lactobacilli are natural inhabitants of the intestinal tract of humans and other animals. Finally, several Lactobacillus strains are marketed as probiotics as their consumption can confer a health benefit to host. Presently, 154 Lactobacillus species are known and a growing fraction of these are subject to draft genome sequencing. However, complete genome sequences are needed to provide a platform for detailed genomic comparisons. Therefore, we selected a total of 20 genomes of various Lactobacillus strains for which complete genomic sequences have been reported. These genomes had sizes varying from 1.8 to 3.3 Mb and other characteristic features, such as G+C content that ranged from 33% to 51%. The Lactobacillus pan genome was found to consist of approximately 14 000 protein‐encoding genes while all 20 genomes shared a total of 383 sets of orthologous genes that defined the Lactobacillus core genome (LCG). Based on advanced phylogeny of the proteins encoded by this LCG, we grouped the 20 strains into three main groups and defined core group genes present in all genomes of a single group, signature group genes shared in all genomes of one group but absent in all other Lactobacillus genomes, and Group‐specific ORFans present in core group genes of one group and absent in all other complete genomes. The latter are of specific value in defining the different groups of genomes. The study provides a platform for present individual comparisons as well as future analysis of new Lactobacillus genomes. PMID:21375712

  5. Preventive effects of Lactobacillus mixture on experimental E. coli urinary tract infection in infant rats.

    PubMed

    Lee, Jung Won; Lee, Jee Hyun; Sung, Sun Hee; Lee, Seung Joo

    2013-03-01

    Urinary tract infection (UTI) is an ascending infection of fecal uropathogens, urogenital lactobacilli are suggested to play a role in the prevention of UTI. This study was to investigate whether lactobacillus mixture (LM) could prevent the experimental infantile UTI. The LM were composed of three lactobacillus strains (L. gasseri, L. rhamnosus, and L. reuteri). Mother rats were grouped as lactobacillus (LB) group I (LB I, n=22), II (LB II, n=24) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare lactobacillus colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard E. coli strain. After 72 hours later, the infant rats were sacrificed for histologic examination. Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16.22) and control 75.0% (15/20) (p=0.015). The incidence of cystitis was not significantly different among the three groups. The intravesically instilled LM significantly prevented experimental pyelonephritis in infant rats, however, LM administered orally to the pregnant and lactating mother rats did not.

  6. Preventive Effects of Lactobacillus Mixture on Experimental E. coli Urinary Tract Infection in Infant Rats

    PubMed Central

    Lee, Jung Won; Lee, Jee Hyun; Sung, Sun Hee

    2013-01-01

    Purpose Urinary tract infection (UTI) is an ascending infection of fecal uropathogens, urogenital lactobacilli are suggested to play a role in the prevention of UTI. This study was to investigate whether lactobacillus mixture (LM) could prevent the experimental infantile UTI. Materials and Methods The LM were composed of three lactobacillus strains (L. gasseri, L. rhamnosus, and L. reuteri). Mother rats were grouped as lactobacillus (LB) group I (LB I, n=22), II (LB II, n=24) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare lactobacillus colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard E. coli strain. After 72 hours later, the infant rats were sacrificed for histologic examination. Results Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16.22) and control 75.0% (15/20) (p=0.015). The incidence of cystitis was not significantly different among the three groups. Conclusion The intravesically instilled LM significantly prevented experimental pyelonephritis in infant rats, however, LM administered orally to the pregnant and lactating mother rats did not. PMID:23364986

  7. Changes in the predominant human Lactobacillus flora during in vitro fertilisation

    PubMed Central

    Jakobsson, Tell; Forsum, Urban

    2008-01-01

    Background Signature matching of nucleotide sequences in the V1 and V3 regions 16S rRNA genes using pyrosequencing technology is a powerful tool for typing vaginal Lactobacilli to the species level and has been used for investigating the vaginal microbial niche. Methods This study has characterized the normal cultivable vaginal Lactobacillus flora at varying estradiol levels in plasma; the study comprised 17 patients undergoing ovarian stimulation for In Vitro Fertilization (IVF) treatment. The vaginal status of each participant was initially assessed as normal according to Amsel and Nugent criteria. Results L. crispatus, L. gasseri and/or L. jensenii were present in 10 of the patients throughout the study period, and little variation among these three species was encountered in individual patients. The flora of three women was dominated by L. delbrüeckii, L. rhamnosus or L. vaginalis. One woman exhibited a dominance of L. iners. The flora of the remaining three women were initially dominated by L. rhamnosus or L. reuteri, but as their estrogen levels rose, their flora composition altered, to become dominated by one of the three species most common in a normal, healthy vagina. Conclusion Signature matching of nucleotide sequences in the V1 and V3 regions of 16S rRNA genes is a discriminative tool for the study of vaginal Lactobacilli and can be used to track the Lactobacillus flora under a variety of physiological conditions. PMID:18590533

  8. Assessment of phenotypic and genotypic antibiotic susceptibility of vaginal Lactobacillus sp.

    PubMed

    Štšepetova, J; Taelma, H; Smidt, I; Hütt, P; Lapp, E; Aotäht, E; Mändar, R

    2017-08-01

    To assess antibiotic susceptibility of vaginal lactobacilli strains and provide the data required for assessing the potential of antibiotic resistance risk of new strains selected as probiotic. Potential probiotic vaginal lactobacilli used in the study included 31 vaginal strains of Lactobacillus crispatus (n = 27), Lactobacillus gasseri (n = 3) and Lactobacillus jensenii (n = 1) obtained from the collection of Competence Centre on Health Technologies. Two commercial probiotic strains were used as controls (Lactobacillus rhamnosus GR-1 and Lactobacillus fermentum RC-14). The phenotypic and genotypic antibiotic resistances of the strains were determined by E-test and PCR methods. The location (chromosomal DNA or plasmid) of antibiotic resistance genes was also detected. All lactobacilli strains expressed high level of resistance to kanamycin, metronidazole, norfloxacin and trimethoprim/sulphamethoxazole. Some of the strains also expressed resistance to other antibiotics (chloramphenicol, vancomycin) indicating acquired resistance. I class integrons were found in 20% (6/31) of the strains. The RPP (ribosomal protection protein) gene was found to be positive in 30% (9/31) of the strains. Only one L. jensenii strain was determined with tet(M) gene. The tet(K) gene was positive in 26·7% (8/31) and erm(B) gene in 43·3% (13/31) of strains. Three RPP and both four tet(K) and erm(B) genes were located in plasmids. High antibiotic resistance to clinically important antibiotics was demonstrated, including metronidazole, sulphonamides, aminoglycoside and quinolones. In addition, acquired tetracycline and erythromycin resistance genes were detected in either plasmid or chromosomal DNA of certain isolates, in some of the cases for the first time in the literature. It appears that antibiotic resistance genes erm(B) and tet(K) are widely spread in vaginal lactobacilli. This study provides new data about antimicrobial resistance and genotypic diversity of vaginal

  9. Genomic characterization of a fructophilic bee symbiont Lactobacillus kunkeei reveals its niche-specific adaptation.

    PubMed

    Maeno, Shintaro; Tanizawa, Yasuhiro; Kanesaki, Yu; Kubota, Eri; Kumar, Himanshu; Dicks, Leon; Salminen, Seppo; Nakagawa, Junichi; Arita, Masanori; Endo, Akihito

    2016-12-01

    Lactobacillus kunkeei is classified as a sole obligate fructophilic lactic acid bacterium that is found in fructose-rich niches, including the guts of honeybees. The species is differentiated from other lactobacilli based on its poor growth with glucose, enhanced growth in the presence of oxygen and other electron acceptors, and production of high concentrations of acetate from the metabolism of glucose. These characteristics are similar to phylogenetically distant Fructobacillus spp. In the present study, the genomic structure of L. kunkeei was characterized by using 16 different strains, and it had significantly less genes and smaller genomes when compared with other lactobacilli. Functional gene classification revealed that L. kunkeei had lost genes specifically involved in carbohydrate transport and metabolism. The species also lacked most of the genes for respiration, although growth was enhanced in the presence of oxygen. The adhE gene of L. kunkeei, encoding a bifunctional alcohol dehydrogenase (ADH)/aldehyde dehydrogenase (ALDH) protein, lacked the part encoding the ADH domain, which is reported here for the first time in lactic acid bacteria. The deletion resulted in the lack of ADH activity, implying a requirement for electron acceptors in glucose assimilation. These results clearly indicated that L. kunkeei had undergone a specific reductive evolution in order to adapt to fructose-rich environments. The reduction characteristics were similar to those of Fructobacillus spp., but distinct from other lactobacilli with small genomes, such as Lactobacillus gasseri and Lactobacillus vaginalis. Fructose-richness thus induced an environment-specific gene reduction in phylogenetically distant microorganisms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Lactobacillus frumenti Facilitates Intestinal Epithelial Barrier Function Maintenance in Early-Weaned Piglets

    PubMed Central

    Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua

    2018-01-01

    Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance

  11. Promising Prebiotic Candidate Established by Evaluation of Lactitol, Lactulose, Raffinose, and Oligofructose for Maintenance of a Lactobacillus-Dominated Vaginal Microbiota

    PubMed Central

    McMillan, Amy; Seney, Shannon; van der Veer, Charlotte; Kort, Remco; Sumarah, Mark W.

    2017-01-01

    ABSTRACT Perturbations to the vaginal microbiota can lead to dysbiosis, including bacterial vaginosis (BV), which affects a large portion of the female population. In a healthy state, the vaginal microbiota is characterized by low diversity and colonization by Lactobacillus spp., whereas in BV, these species are displaced by a highly diverse population of bacteria associated with adverse vaginal health outcomes. Since prebiotic ingestion has been a highly effective approach to invigorate lactobacilli for improved intestinal health, we hypothesized that these compounds could stimulate lactobacilli at the expense of BV organisms to maintain vaginal health. Monocultures of commensal Lactobacillus crispatus, Lactobacillus vaginalis, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus jensenii, and Lactobacillus iners, in addition to BV-associated organisms and Candida albicans, were tested for their ability to utilize a representative group of prebiotics consisting of lactitol, lactulose, raffinose, and oligofructose. The disaccharide lactulose was found to most broadly and specifically stimulate vaginal lactobacilli, including the strongly health-associated species L. crispatus, and importantly, not to stimulate BV organisms or C. albicans. Using freshly collected vaginal samples, we showed that exposure to lactulose promoted commensal Lactobacillus growth and dominance and resulted in healthy acidity partially through lactic acid production. This provides support for further testing of lactulose to prevent dysbiosis and potentially to reduce the need for antimicrobial agents in managing vaginal health. IMPORTANCE Bacterial vaginosis (BV) and other dysbioses of the vaginal microbiota significantly affect the quality of life of millions of women. Antimicrobial therapy is often poorly effective, causes side effects, and does not prevent recurrences. We report one of very few studies that have evaluated how prebiotics—compounds that are selectively fermented

  12. Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet.

    PubMed

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F

    2013-05-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model.

  13. Fatty Liver Accompanies an Increase in Lactobacillus Species in the Hind Gut of C57BL/6 Mice Fed a High-Fat Diet123

    PubMed Central

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I.; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F.

    2013-01-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model. PMID:23486979

  14. A study of the effects of therapeutic doses of ionizing radiation in vitro on Lactobacillus isolates originating from the vagina - a pilot study.

    PubMed

    Gosiewski, Tomasz; Mróz, Tomasz; Ochońska, Dorota; Pabian, Wojciech; Bulanda, Malgorzata; Brzychczy-Wloch, Monika

    2016-05-31

    Ionizing radiation is used as a therapeutic option in the treatment of certain neoplastic lesions located, among others, in the pelvic region. The therapeutic doses of radiation employed often result in adverse effects manifesting themselves primarily in the form of genital tract infections in patients or diarrhea. The data available in the literature indicate disorders in the microbial ecosystem caused by ionizing radiation, which leads to the problems mentioned above. In the present study, we examined the influence of ionizing radiation on 52 selected strains of bacteria: Lactobacillus crispatus, L. fermentum, L. plantarum, L. reuteri, L. acidophilus L. amylovorus, L. casei, L. helveticus, L. paracasei, L. rhamnosus, L. salivarius and L. gasseri. This collection of Lactobacillus bacteria isolates of various species, obtained from the genital tract and gastrointestinal tract of healthy women, was tested for resistance to therapeutic doses of ionizing radiation. The species studied, were isolated from the genital tract (n = 30) and from the anus (n = 22) of healthy pregnant women. Three doses of 3 Gy (fractionated dose) and 50 Gy (total dose of the whole radiotherapy cycle) were applied. The greatest differences in survival of the tested strains in comparison to the control group (not subjected to radiation) were observed at the dose of 50 Gy. However, the results were not statistically significant. Survival decrease to zero was not demonstrated for any of the tested strains. Therapeutic doses of radiation do not affect the Lactobacillus bacteria significantly.

  15. Solution Structure of Acidocin B, a Circular Bacteriocin Produced by Lactobacillus acidophilus M46

    PubMed Central

    Acedo, Jeella Z.; van Belkum, Marco J.; Lohans, Christopher T.; McKay, Ryan T.; Miskolzie, Mark

    2015-01-01

    Acidocin B, a bacteriocin produced by Lactobacillus acidophilus M46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin from Lactobacillus gasseri LA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation. PMID:25681186

  16. Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG

    PubMed Central

    Burkholder, Kristin M; Bhunia, Arun K

    2009-01-01

    Background Physiological stressors may alter susceptibility of the host intestinal epithelium to infection by enteric pathogens. In the current study, cytotoxic effect, adhesion and invasion of Salmonella enterica serovar Typhimurium (S. Typhimurium) to Caco-2 cells exposed to thermal stress (41°C, 1 h) was investigated. Probiotic bacteria have been shown to reduce interaction of pathogens with the epithelium under non-stress conditions and may have a significant effect on epithelial viability during infection; however, probiotic effect on pathogen interaction with epithelial cells under physiological stress is not known. Therefore, we investigated the influence of Lactobacillus rhamnosus GG and Lactobacillus gasseri on Salmonella adhesion and Salmonella-induced cytotoxicity of Caco-2 cells subjected to thermal stress. Results Thermal stress increased the cytotoxic effect of both S. Typhimurium (P = 0.0001) and nonpathogenic E. coli K12 (P = 0.004) to Caco-2 cells, and resulted in greater susceptibility of cell monolayers to S. Typhimurium adhesion (P = 0.001). Thermal stress had no significant impact on inflammatory cytokines released by Caco-2 cells, although exposure to S. Typhimurium resulted in greater than 80% increase in production of IL-6 and IL-8. Blocking S. Typhimurium with anti-ShdA antibody prior to exposure of Salmonella decreased adhesion (P = 0.01) to non-stressed and thermal-stressed Caco-2 cells. Pre-exposure of Caco-2 cells to L. rhamnosus GG significantly reduced Salmonella-induced cytotoxicity (P = 0.001) and Salmonella adhesion (P = 0.001) to Caco-2 cells during thermal stress, while L. gasseri had no effect. Conclusion Results suggest that thermal stress increases susceptibility of intestinal epithelial Caco-2 cells to Salmonella adhesion, and increases the cytotoxic effect of Salmonella during infection. Use of L. rhamnosus GG as a probiotic may reduce the severity of infection during epithelial cell stress. Mechanisms by which thermal

  17. DNA probe for lactobacillus delbrueckii

    SciTech Connect

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  18. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  19. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee.

    PubMed

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".

  20. DNA Fingerprinting of Lactobacillus crispatus Strain CTV-05 by Repetitive Element Sequence-Based PCR Analysis in a Pilot Study of Vaginal Colonization

    PubMed Central

    Antonio, May A. D.; Hillier, Sharon L.

    2003-01-01

    Lactobacillus crispatus is one of the predominant hydrogen peroxide (H2O2)-producing species found in the vagina and is under development as a probiotic for the treatment of bacterial vaginosis. In this study, we assessed whether DNA fingerprinting by repetitive element sequence-based PCR (rep-PCR) can be used to distinguish the capsule strain of L. crispatus (CTV-05) from other endogenous strains as well as other species of vaginal lactobacilli. Vaginal and rectal lactobacilli were identified to the species level by using whole-chromosome probe DNA hybridization. The DNAs from L. crispatus, L. jensenii, L. gasseri, and an as-yet-unnamed H2O2-negative Lactobacillus species designated 1086V were subjected to rep-PCR. The results of gel electrophoresis and ethidium bromide staining of the DNA fingerprints obtained were compared. L. crispatus CTV-05 had a unique DNA fingerprint compared to all other lactobacilli. DNA fingerprints for 27 production lots of L. crispatus sampled from 1994 through 2001 were identical to that of the original strain isolated in 1993, suggesting strain stability. In a pilot study of nine women, this DNA fingerprinting method distinguished CTV-05 from other endogenous vaginal lactobacilli prior to and after vaginal capsule use. rep-PCR DNA fingerprinting is useful for strain typing and for evaluating longitudinal loss or acquisition of vaginal lactobacilli used as probiotics. PMID:12734221

  1. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  2. Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform

    PubMed Central

    Bumgardner, Sara A.; Zhang, Lin; LaVoy, Alora S.; Frank, Chad B.; Kajikawa, Akinobu; Klaenhammer, Todd R.

    2018-01-01

    Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform. PMID:29734365

  3. Ecophysiology of the developing total bacterial and lactobacillus communities in the terminal small intestine of weaning piglets.

    PubMed

    Pieper, Robert; Janczyk, Pawel; Zeyner, Annette; Smidt, Hauke; Guiard, Volker; Souffrant, Wolfgang Bernhard

    2008-10-01

    Weaning of the pig is generally regarded as a stressful event which could lead to clinical implications because of the changes in the intestinal ecosystem. The functional properties of microbiota inhabiting the pig's small intestine (SI), including lactobacilli which are assumed to exert health-promoting properties, are yet poorly described. Thus, we determined the ecophysiology of bacterial groups and within genus Lactobacillus in the SI of weaning piglets and the impact of dietary changes. The SI contents of 20 piglets, 4 killed at weaning (only sow milk and no creep feed) and 4 killed at 1, 2, 5, and 11 days post weaning (pw; cereal-based diet) were examined for bacterial cell count and bacterial metabolites by fluorescence in situ hybridization (FISH). Lactobacilli were the predominant group in the SI except at 1 day pw because of a marked reduction in their number. On day 11 pw, bifidobacteria and E. coli were not detected, and Enterobacteriaceae and members of the Clostridium coccoides/Eubacterium rectale cluster were only found occasionally. L. sobrius/L. amylovorus became dominant species whereas the abundance of L. salivarius and L. gasseri/johnsonii declined. Concentration of lactic acid increased pw whereas pH, volatile fatty acids, and ammonia decreased. Carbohydrate utilization of 76 Lactobacillus spp. isolates was studied revealing a shift from lactose and galactose to starch, cellobiose, and xylose, suggesting that the bacteria colonizing the SI of piglets adapt to the newly introduced nutrients during the early weaning period. Identification of isolates based on partial 16S rRNA gene sequence data and comparison with fermentation data furthermore suggested adaptation processes below the species level. The results of our study will help to understand intestinal bacterial ecophysiology and to develop nutritional regimes to prevent or counteract complications during the weaning transition.

  4. The effects of the Lactobacillus casei strain on obesity in children: a pilot study.

    PubMed

    Nagata, S; Chiba, Y; Wang, C; Yamashiro, Y

    2017-08-24

    There are few data regarding the role of probiotics as a dietary intervention in the management of obesity in children. An open prospective examination was conducted to clarify the effects of Lactobacillus casei strain Shirota (LcS)-containing beverages in obese children. We compared the intestinal microbiota and organic acid levels between 12 obese (average age, 10.8 years; body mass index (BMI) Z score, 2.7±1.7) and 22 control children(average age, 8.5 years; BMI Z score, 0.1±0.7), and pre- and post-intervention in the obese children. The obese group underwent diet and exercise therapy for 6 months and then were given an LcS beverage daily for another 6 months and the body weight and serological markers were monitored. Significant reductions in the faecal concentrations of Bifidobacterium (obese group, 7.9±1.5 vs non-obese group, 9.8±0.5 Log 10 cells/g; P<0.01) along with a significant decline in the Bacteroides fragilis group, Atopobium cluster and Lactobacillus gasseri subgroup, and acetic acid (obese group, 45.1±16.9 vs non-obese group, 57.9±17.6 μmol/g; P<0.05) were observed in the obese group at baseline. A significant decline in body weight (-2.9±4.6%; P<0.05) and an elevation in the high density lipoprotein cholesterol level (+11.1±17.6%; P<0.05) were observed 6 months after ingestion of the LcS beverage compared to baseline. Furthermore, a significant increase in the faecal concentration of Bifidobacterium (7.0±1.2 before ingestion vs 9.1±1.2 Log 10 cells/g after ingestion; P<0.01) and an apparent increase in the acetic acid concentration (7.0±1.2 before ingestion vs 9.1±1.2 Log 10 cells/g after ingestion; P<0.01) were observed 6 months after ingestion. LcS contributed to weight loss while also improving the lipid metabolism in obese children via a significant increase in the faecal Bifidobacterium numbers and the acetic acid concentration.

  5. Rejection of reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius using comparative genomics.

    PubMed

    Yang, Seung-Jo; Kim, Byung-Yong; Chun, Jongsik

    2017-11-01

    Lactobacillus bobalius, Lactobacillus kimchii and Lactobacillus paralimentarius belong to the genus Lactobacillus and show close phylogenetic relationships. In a previous study, L. bobalius and L. kimchii were proposed to be reclassified as later heterotypic synonyms of L. paralimentarius using high 16S rRNA gene sequence similarities (≥99.5 %) and DNA-DNA hybridization values (≥82 %). We determined high quality whole genome assemblies of the type strains of L. bobalius and L. kimchii, which were then compared with that of L. paralimentarius. Average nucleotide identity values among three genomes ranged from 91.4 to 92.3 % which are clearly below 95~96 %, the generally recognized cutoff value for bacterial species boundaries. On the basis of comparative genomic evidence, L. bobalius, L. kimchii, and L. paralimentarius should stand as separate species in the genus Lactobacillus. We therefore suggest rejecting the previous proposal to combine these three species into a single species.

  6. Genome sequence of Lactobacillus farciminis KCTC 3681.

    PubMed

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-04-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds.

  7. Protective effect of surface layer proteins isolated from four Lactobacillus strains on hydrogen-peroxide-induced HT-29 cells oxidative stress.

    PubMed

    Zhao, Bin-Bin; Meng, Jun; Zhang, Qiu-Xiang; Kang, Ting-Ting; Lu, Rong-Rong

    2017-09-01

    The objective of this study was to explore the antioxidant effect of the surface layer proteins (SLPs) and their mechanism. We investigated four SLPs which were extracted from L. casei zhang, L. rhamnosus, L. gasseri and L. acidophilus NCFM respectively using LiCl. The protective effect of SLPs on H 2 O 2 -induced HT-29 cells oxidative injury was investigated. As results, SLPs (100μg/mL) could significantly mitigate HT-29 cells cytotoxicity, improve the activities of total antioxidant capacity (T-AOC), catalase (CAT) and superoxide dismutase (SOD), decrease the contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), compared with H 2 O 2 -induced group (P<0.05). Furthermore, SLPs were also shown to attenuate the apoptosis rate (10.94-24.03%, P<0.01), suppress the elevation of intracellular reactive oxygen species (ROS) and calcium levels, restore mitochondrial membrane potential (MMP) and block the activation of apoptosis-related proteins of caspase-3 and caspase-9 (P<0.05). Considering all the parameters analyzed, we concluded that Lactobacillus SLPs play an essential role in the antioxidant capacity of HT-29 cells induced by H 2 O 2 , and the mechanism could be attributed to SLPs' ability to enhance the activity of the intracellular antioxidant enzyme system, reduce ROS accumulation and to inhibit apoptosis by regulating mitochondrial pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    PubMed

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture.

  9. Lactobacillus iners: Friend or Foe?

    PubMed

    Petrova, Mariya I; Reid, Gregor; Vaneechoutte, Mario; Lebeer, Sarah

    2017-03-01

    The vaginal microbial community is typically characterized by abundant lactobacilli. Lactobacillus iners, a fairly recently detected species, is frequently present in the vaginal niche. However, the role of this species in vaginal health is unclear, since it can be detected in normal conditions as well as during vaginal dysbiosis, such as bacterial vaginosis, a condition characterized by an abnormal increase in bacterial diversity and lack of typical lactobacilli. Compared to other Lactobacillus species, L. iners has more complex nutritional requirements and a Gram-variable morphology. L. iners has an unusually small genome (ca. 1 Mbp), indicative of a symbiotic or parasitic lifestyle, in contrast to other lactobacilli that show niche flexibility and genomes of up to 3-4 Mbp. The presence of specific L. iners genes, such as those encoding iron-sulfur proteins and unique σ-factors, reflects a high degree of niche specification. The genome of L. iners strains also encodes inerolysin, a pore-forming toxin related to vaginolysin of Gardnerella vaginalis. Possibly, this organism may have clonal variants that in some cases promote a healthy vagina, and in other cases are associated with dysbiosis and disease. Future research should examine this friend or foe relationship with the host. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Lactobacillus hammesii sp. nov., isolated from French sourdough.

    PubMed

    Valcheva, Rosica; Korakli, Maher; Onno, Bernard; Prévost, Hervé; Ivanova, Iskra; Ehrmann, Matthias A; Dousset, Xavier; Gänzle, Michael G; Vogel, Rudi F

    2005-03-01

    Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38(T) and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA-DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38(T) (=DSM 16381(T)=CIP 108387(T)=TMW 1.1236(T)).

  11. Biofilms of vaginal Lactobacillus in vitro test.

    PubMed

    Wei, Xiao-Yu; Zhang, Rui; Xiao, Bing-Bing; Liao, Qin-Ping

    2017-01-01

    This paper focuses on biofilms of Lactobacillus spp. - a type of normal flora isolated from healthy human vaginas of women of childbearing age; thereupon, it broadens the research scope of investigation of vaginal normal flora. The static slide culture method was adopted to foster biofilms, marked by specific fluorescence staining. Laser scanning confocal and scanning electron microscopy were used to observe the microstructure of the biofilms. Photographs taken from the microstructure were analysed to calculate the density of the biofilms. The body of Lactobacillus spp., though red, turned yellow when interacting with the green extracellular polysaccharides. The structure of the biofilm and aquaporin within the biofilm were imaged. Lactobacillus density increases over time. This study provides convincing evidence that Lactobacillus can form biofilms and grow over time in vitro. This finding establishes an important and necessary condition for selecting proper strains for the pharmaceutics of vaginal ecology.

  12. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lactobacillus paralimentarius sp. nov., isolated from sourdough.

    PubMed

    Cai, Y; Okada, H; Mori, H; Benno, Y; Nakase, T

    1999-10-01

    Six strains of lactic acid bacteria isolated from sourdough were characterized taxonomically. They were Gram-positive, catalase-negative, facultatively anaerobic rods that did not produce gas from glucose. Morphological and physiological data indicated that the strains belong to the genus Lactobacillus and they were similar to Lactobacillus alimentarius in phenotypic characteristics. These strains shared the same phenotypic characteristics and exhibited intragroup DNA homology values of over 89.8%, indicating that they comprised a single species. The G + C content of the DNA for the strains was 37.2-38.0 mol%. The 16S rRNA sequence of representative strain TB 1T was determined and aligned with that of other Lactobacillus species. This strain was placed in the genus Lactobacillus on the basis of phylogenetic analysis. L. alimentarius was the most closely related species in the phylogenetic tree and this species also showed the highest sequence homology value (96%) with strain TB 1T. DNA-DNA hybridization indicated that strain TB 1T did not belong to L. alimentarius. It is proposed that these strains are placed in the genus Lactobacillus as a new species, Lactobacillus paralimentarius sp. nov. The type strain of L. paralimentarius is TB 1T, which has been deposited in the Japan Collection of Microorganisms (JCM) as strain JCM 10415T.

  14. Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus.

    PubMed

    Ricciardi, Annamaria; Parente, Eugenio; Guidone, Angela; Ianniello, Rocco Gerardo; Zotta, Teresa; Abu Sayem, S M; Varcamonti, Mario

    2012-07-02

    Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum are three closely related species which are widespread in food and non-food environments, and are important as starter bacteria or probiotics. In order to evaluate the phenotypic diversity of stress tolerance in the L. plantarum group and the ability to mount an adaptive heat shock response, the survival of exponential and stationary phase and of heat adapted exponential phase cells of six L. plantarum subsp. plantarum, one L. plantarum subsp. argentoratensis, one L. pentosus and two L. paraplantarum strains selected in a previous work upon exposure to oxidative, heat, detergent, starvation and acid stresses was compared to that of the L. plantarum WCFS1 strain. Furthermore, to evaluate the genotypic diversity in stress response genes, ten genes (encoding for chaperones DnaK, GroES and GroEL, regulators CtsR, HrcA and CcpA, ATPases/proteases ClpL, ClpP, ClpX and protease FtsH) were amplified using primers derived from the WCFS1 genome sequence and submitted to restriction with one or two endonucleases. The results were compared by univariate and multivariate statistical methods. In addition, the amplicons for hrcA and ctsR were sequenced and compared by multiple sequence alignment and polymorphism analysis. Although there was evidence of a generalized stress response in the stationary phase, with increase of oxidative, heat, and, to a lesser extent, starvation stress tolerance, and for adaptive heat stress response, with increased tolerance to heat, acid and detergent, different growth phases and adaptation patterns were found. Principal component analysis showed that while heat, acid and detergent stresses respond similarly to growth phase and adaptation, tolerance to oxidative and starvation stresses implies completely unrelated mechanisms. A dendrogram obtained using the data from multilocus restriction typing (MLRT) of stress response genes clearly separated two groups of L

  15. Targeting Mucosal Dendritic Cells with Microbial Antigens from Probiotic Lactic Acid Bacteria

    DTIC Science & Technology

    2008-03-01

    Lactoba- cillus gasseri, Lactobacillus plantarum , Lactobacillus delbreuckii, Lactobacillus rhamnosus, Lactobacillus salivarius and Lactobacillus ... Lactobacillus plantarum Helicobacter pylori UreB Mouse [105] S. pneumoniae PsaA Mouse [104] Lactococcus lactis C. tetani TTFC Mouse [81...anthracis (the causative agent of anthrax). An antigen-specific immune response can be elicited using specific strains of Lactobacillus acidophilus

  16. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T).

  17. Draft Genome Sequence of Lactobacillus pobuzihii E100301T

    PubMed Central

    Chiu, Chi-ming; Chang, Chi-huan; Pan, Shwu-fen; Wu, Hui-chung; Li, Shiao-wen; Chang, Chuan-hsiung; Lee, Yun-shien; Chiang, Chih-ming

    2013-01-01

    Lactobacillus pobuzihii E100301T is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301T. PMID:23661478

  18. Draft Genome Sequence of Lactobacillus pobuzihii E100301T.

    PubMed

    Chiu, Chi-Ming; Chang, Chi-Huan; Pan, Shwu-Fen; Wu, Hui-Chung; Li, Shiao-Wen; Chang, Chuan-Hsiung; Lee, Yun-Shien; Chiang, Chih-Ming; Chen, Yi-Sheng

    2013-05-09

    Lactobacillus pobuzihii E100301(T) is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301(T).

  19. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2013-11-01

    A Gram-stain-positive bacterial strain, S4-3(T), was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain S4-3(T) showed 97.9-98.7 % 16S rRNA gene sequence similarities, 84.4-94.1 % pheS gene sequence similarities and 94.4-96.9 % rpoA gene sequence similarities to the type strains of Lactobacillus nantensis, Lactobacillus mindensis, Lactobacillus crustorum, Lactobacillus futsaii, Lactobacillus farciminis and Lactobacillus kimchiensis. dnaK gene sequence similarities between S4-3(T) and Lactobacillus nantensis LMG 23510(T), Lactobacillus mindensis LMG 21932(T), Lactobacillus crustorum LMG 23699(T), Lactobacillus futsaii JCM 17355(T) and Lactobacillus farciminis LMG 9200(T) were 95.4, 91.5, 90.4, 91.7 and 93.1 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus heilongjiangensis sp. nov., is proposed and the type strain is S4-3(T) ( = LMG 26166(T) = NCIMB 14701(T)).

  20. Isolated Lactobacillus chronic prosthetic knee infection.

    PubMed

    Bennett, David M; Shekhel, Tatyana; Radelet, Matt; Miller, Michael D

    2014-01-01

    Lactobacillus is a gram-positive rod bacteria found primarily in the gastrointestinal and female genital tracts. Prosthetic infections in implants are being increasingly reported. The authors present a case of a 58-year-old patient with Lactobacillus septic prosthetic knee joint infection. To the authors’ knowledge, this is the first reported case of chronic prosthetic knee infection with isolated Lactobacillus species. Lactobacillus has been most commonly implicated with bacteremia and endocarditis and rarely with pneumonia, meningitis, and endovascular infection, and a vast majority of the cases are reported in immunocompromised patients. In the current case, diabetes mellitus, hepatitis, malnutrition, anemia, and liver failure were comorbid conditions, placing the patient at increased risk of infection. The findings suggest that further case series are necessary to establish the significance of Lactobacillus as an etiologic agent in chronic low-virulence, and potentially vancomycin-resistant, prosthetic joint infection. The need also exists for further research aimed at the risk of prosthetic joint infection with oral intake of certain probiotic foods and supplements. The goal of this case report is to bring to light the potential of this organism to be a cause of subtle chronic prosthetic joint infection.

  1. Genetic engineering of Lactobacillus diolivorans.

    PubMed

    Pflügl, Stefan; Marx, Hans; Mattanovich, Diethard; Sauer, Michael

    2013-07-01

    In this study, we developed a toolbox for genetic manipulation of Lactobacillus diolivorans, a promising production organism for 1,3-propanediol from glycerol. Two major findings play a key role for successful transformation of this organism: (1) the absence of a native plasmid, because a native plasmid is a major obstacle for transformation of L. diolivorans, and (2) the absence of DNA methylation. A suitable expression plasmid, pSHM, for homologous and heterologous protein expression in L. diolivorans was constructed. This plasmid is based on the replication origin repA of L. diolivorans. The native glyceraldehyde-3-phosphate dehydrogenase promoter is used for constitutive expression of the genes of interest. Functional expression of genes in L. diolivorans was shown with two examples: production of green fluorescent protein resulted in a 40- to 60-fold higher fluorescence of the obtained clones compared with the wild-type strain. Finally, the homologous overexpression of a putatively NADPH-dependent 1,3-propanediol oxidoreductase improved 1,3-propanediol production by 20% in batch cultures. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Pyrimidine Biosynthesis in Lactobacillus leichmannii

    PubMed Central

    Hutson, Judith Y.; Downing, Mancourt

    1968-01-01

    Tracer studies of pyrimidine biosynthesis in Lactobacillus leichmannii (ATCC 7830) indicated that, while aspartate is utilized in the usual manner, the guanido carbon of arginine, rather than carbon dioxide, is utilized as a pyrimidine precursor. The guanido carbon of arginine also contributes, to some extent, to the carbon dioxide pool utilized for purine biosynthesis. The enzyme of the first reaction leading from arginine to pyrimidines, arginine deiminase, was investigated in crude bacterial extracts. It was inhibited by thymidylic acid and purine ribonucleotides, and to a lesser extent by purine deoxynucleotides and deoxycytidylic acid. Under the assay conditions employed, a number of nucleotides had no effect on the enzyme activity of the aspartate transcarbamylase of L. leichmannii. Growth of the cells in media containing uracil, compared to growth in media without uracil, resulted in a four- to fivefold decrease in the concentrations of aspartate transcar-bamylase and dihydroorotase and a twofold increase in the concentration of arginine deiminase, as estimated from specific enzyme activity in crude extracts of the cells. A small increase in specific enzyme activity of ornithine transcarbamylase and carbamate kinase was also observed in extracts obtained from cells grown on uracil. No appreciable change in concentration of any of the five enzymes studied was detected when the cells were grown in media containing thymidine or guanylic acid. A hypothetical scheme which suggests a relationship between the control of purine and pyrimidine biosynthesis in this bacterium and which is consistent with the experimental results obtained is presented. PMID:5686000

  3. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain.

  4. Reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius.

    PubMed

    Pang, Huili; Kitahara, Maki; Tan, Zhongfang; Wang, Yanping; Qin, Guangyong; Ohkuma, Moriya; Cai, Yimin

    2012-10-01

    Characterization and identification of strain CW 1 ( = JCM 17161) isolated from corn silage were performed. Strain CW 1 was a Gram-positive, catalase-negative and homofermentative rod that produced the DL-form of lactic acid. This strain exhibited more than 99.6% 16S rRNA gene sequence similarity and greater than 82% DNA-DNA reassociation with type strains of Lactobacillus kimchii, L. bobalius and L. paralimentarius. To clarify the taxonomic positions of these type strains, phenotypic characterization, 16S rRNA gene sequencing, ribotyping and DNA-DNA relatedness were examined. The three type strains displayed different L-arabinose, lactose, melibiose, melezitose, raffinose and N-acetyl-β-glucosaminidase fermentation patterns. Phylogenetic analysis showed that L. paralimentarius is a closer neighbour of L. kimchii and L. bobalius, sharing 99.5-99.9% 16S rRNA gene sequence similarity, which was confirmed by the high DNA-DNA relatedness (≥82%) between L. paralimentarius JCM 10415(T), L. bobalius JCM 16180(T) and L. kimchii JCM 10707(T). Therefore, it is proposed that L. kimchii and L. bobalius should be reclassified as later synonyms of L. paralimentarius.

  5. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough.

    PubMed

    Valcheva, Rosica; Ferchichi, Mounir F; Korakli, Maher; Ivanova, Iskra; Gänzle, Michael G; Vogel, Rudi F; Prévost, Hervé; Onno, Bernard; Dousset, Xavier

    2006-03-01

    A polyphasic taxonomic study of the bacterial flora isolated from traditional French wheat sourdough, using phenotypic characterization and phylogenetic as well as genetic methods, revealed a consistent group of isolates that could not be assigned to any recognized species. These results were confirmed by randomly amplified polymorphic DNA and amplified fragment length polymorphism fingerprinting analyses. Cells were Gram-positive, homofermentative rods. Comparative 16S rRNA gene sequence analysis of the representative strain LP33T indicated that these strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives Lactobacillus farciminis, Lactobacillus alimentarius, Lactobacillus paralimentarius and Lactobacillus mindensis. DNA-DNA reassociation experiments with the three phylogenetically closest Lactobacillus species confirmed that LP33T (= DSM 16982T = CIP 108546T = TMW 1.1265T) represents the type strain of a novel species, for which the name Lactobacillus nantensis sp. nov. is proposed.

  6. Manganese acquisition by Lactobacillus plantarum

    SciTech Connect

    Archibald, F.S.; Duong, M.N.

    1984-04-01

    Lactobacillus plantarum has an unusually high Mn(II) requirement for growth and accumulated over 30 mM intracellular Mn(II). The acquisition of Mn(II) by L. plantarum occurred via a specific active transport system powered by the transmembrane proton gradient. The Mn(II) uptake system has a K/sub m/ of 0.2 ..mu..M and a V/sub max/ of 24 nmol mg/sup -1/ of protein min/sup -1/. Above a medium Mn(II) concentration of 200 ..mu..M, the intracellular Mn(II) level was independent of the medium Mn(II) and unresponsive to oxygen stresses but was reduced by phosphate limitation. At a pH of 5.5, citrate, isocitrate, and cis-aconitate effectivelymore » promoted MN(II) uptake, although measurable levels of 1,5-(/sup 14/C)citrate were not accumulated. When cells were presented with equimolar Mn(II) and Cd(II), Cd(II) was preferentially taken up by the Mn(II) transport system. Both Mn(II) and Cd(II) uptake were greatly increased by Mn(II) starvation. Mn(II) uptake by Mn(II)-starved cells was subject to a negative feedback regulatory mechanism functioning less than 1 min after exposure of the cells to Mn(II) and independent of protein synthesis. When presented with a relatively large amount of exogenous Mn(II), Mn(II)-starved cells exhibited a measurable efflux of their internal Mn(II), but the rate was only a small fraction of the maximal Mn(II) uptake rate.« less

  7. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides.

    PubMed

    Knockaert, Dries; Raes, Katleen; Wille, Christophe; Struijs, Karin; Van Camp, John

    2012-08-30

    Food-isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L⁻¹), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4-vinylguaiacol (4-VG) and hydroferulic acid (HFA). Conversion to 4-VG started simultaneously with the degradation of FA, while formation of HFA started in the mid-exponential phase. Lactobacillus collinoides only formed 4-VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria. Copyright © 2012 Society of Chemical Industry.

  8. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    PubMed Central

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  9. Genome sequence of Lactobacillus rhamnosus ATCC 8530.

    PubMed

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry

    2012-02-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  10. Lactobacillus delivery of bioactive interleukin-22.

    PubMed

    Lin, Yin; Krogh-Andersen, Kasper; Hammarström, Lennart; Marcotte, Harold

    2017-08-23

    Interleukin-22 (IL-22) plays a prominent role in epithelial regeneration and dampening of chronic inflammatory responses by protecting intestinal stem cells from immune-mediated tissue damage. IL-22 has a considerable therapeutic potential in graft-versus-host disease (GVHD), which is a frequent and challenging complication following allogeneic stem cell transplantation. The aim of our study was to engineer Lactobacillus for delivery of IL-22 directly to the intestinal mucosa as a new therapeutic strategy for GVHD. The secretion and surface anchoring of mouse IL-22 by Lactobacillus paracasei BL23 was demonstrated by Western blot and flow cytometry. Both secreted and anchored mouse IL-22 produced by Lactobacillus was biologically active, as determined by its ability to induce IL-10 secretion in the Colo 205 human colon cancer cell line. We have demonstrated the secretion and surface anchoring of bioactive IL-22 by Lactobacillus. Our results suggest that IL-22 expressing lactobacilli may potentially be a useful mucosal therapeutic agent for the treatment of GVHD, provided that chromosomal integration of the IL-22 expression cassettes can be achieved.

  11. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. Copyright © 2016. Published by Elsevier B.V.

  12. Lactobacillus salivarius 1077 (NRRL B-50053) bacteriocin

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  13. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains.

    PubMed Central

    Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N

    1997-01-01

    Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109

  14. Antagonistic Activity of Lactobacillus Isolates against Salmonella typhi In Vitro

    PubMed Central

    Abdel-Daim, Amira; Hassouna, Nadia; Hafez, Mohamed; Ashor, Mohamed Seif Aldeen; Aboulwafa, Mohammad M.

    2013-01-01

    Background. Enteric fever is a global health problem, and rapidly developing resistance to various drugs makes the situation more alarming. The potential use of Lactobacillus to control typhoid fever represents a promising approach, as it may exert protective actions through various mechanisms. Methods. In this study, the probiotic potential and antagonistic activities of 32 Lactobacillus isolates against Salmonella typhi were evaluated. The antimicrobial activity of cell free supernatants of Lactobacillus isolates, interference of Lactobacillus isolates with the Salmonella adherence and invasion, cytoprotective effect of Lactobacillus isolates, and possibility of concurrent use of tested Lactobacillus isolates and antibiotics were evaluated by testing their susceptibilities to antimicrobial agents, and their oxygen tolerance was also examined. Results. The results revealed that twelve Lactobacillus isolates could protect against Salmonella typhi infection through interference with both its growth and its virulence properties, such as adherence, invasion, and cytotoxicity. These Lactobacillus isolates exhibited MIC values for ciprofloxacin higher than those of Salmonella typhi and oxygen tolerance and were identified as Lactobacillus plantarum. Conclusion. The tested Lactobacillus plantarum isolates can be introduced as potential novel candidates that have to be subjected for in vivo and application studies for treatment and control of typhoid fever. PMID:24191248

  15. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Franden, Mary Ann; Mc Millan, James D.; Finkelstein, Mark

    1998-01-01

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid.

  16. Lactobacillus versmoldensis sp. nov., isolated from raw fermented sausage.

    PubMed

    Kröckel, L; Schillinger, U; Franz, C M A P; Bantleon, A; Ludwig, W

    2003-03-01

    Lactobacillus versmoldensis sp. nov. (KU-3T) was isolated from raw fermented sausages. The new species was present in high numbers, and frequently dominated the lactic acid bacteria (LAB) populations of the products. 16S rDNA sequence data revealed that the isolates are closely related to the species Lactobacillus kimchii DSM 13961T, Lactobacillus paralimentarius DSM 13238T, Lactobacillus alimentarius DSM 20249T and Lactobacillus farciminis DSM 20184T. DNA-DNA reassociation data, however, clearly distinguished the new isolates from these species; they showed a low degree of DNA relatedness with the type strains of this group of phylogenetically closely related lactobacilli. These results warrant separate species status for strain KU-3T, for which the name Lactobacillus versmoldensis sp. nov. is proposed. The type strain is KU-3T (=DSM 14857T =NCCB 100034T =ATCC BAA-478T).

  17. The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion.

    PubMed

    Dellaglio, Franco; Felis, Giovanna E; Torriani, Sandra

    2002-01-01

    On the basis of considerable published evidence, it is concluded that the species Lactobacillus casei is not correctly represented by the strain actually designated as the type strain ATCC 393. It is proposed that the Judicial Commission consider: (1) that ATCC 393T is scientifically unsuitable as the type strain of Lactobacillus casei and should be reclassified as Lactobacillus zeae; (2) that Lactobacillus casei ATCC 334 and Lactobacillus paracasei strains are members of the same taxon and therefore can be united within the name Lactobacillus casei (Rules 42 and 23a), the name Lactobacillus paracasei being rejected; and (3) designating ATCC 334 as the neotype strain for the species

  18. A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences.

    PubMed

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-06-01

    Species-specific primers targeting the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough. The 16S-23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388-1406 of the 16S rRNA gene and to positions 207-189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331). Clone libraries of the resulting amplicons were constructed using a pCR2.1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S-23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNA(Ile) and tRNA(Ala) genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested. Designed species-specific primers enable a rapid and accurate identification of L. mindensis, L. paralimentarius, L. panis, L. pontis and L. frumenti species among other lactobacilli. The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.

  19. Effects of probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary Streptococcus mutans and Lactobacillus levels

    PubMed Central

    Tehrani, Maryam Hajnorouzali; Akhlaghi, Najmeh; Talebian, Leila; Emami, Jaber; Keyhani, Siamak Etzad

    2016-01-01

    Aims: The aim of the present study was to evaluate the effect of a probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary counts of Streptococcus mutans (SM) and Lactobacillus (LB) in children 3–6 years of age. Settings and Design: Sixty-one healthy children were randomly allocated into two parallel blocks in this double-blind, randomized controlled trial (IRCT2014120320202N1) from May to June 2015. Subjects and Methods: Finally 53 participants consumed five drops of placebo (n = 23) or probiotic (n = 30) every night for 2 weeks. Before intervention and 1 day after completion of the intervention, unstimulated salivary samples were collected, and microbiologic evaluations were carried out. Statistical Analysis: Data were analyzed with descriptive statistical methods Wilcoxon signed ranks, Mann–Whitney, and logistic regression. Results: SM level decreased significantly in probiotic group after intervention (P = 0.045), and there were significant differences in salivary SM counts after intervention between two groups (P = 0.04). In probiotic group, LB counts decreased significantly after intervention (P = 0.048); however, there were no significant differences between two groups (P = 0.216). Conclusions: Use of this probiotic drop decreased salivary counts of SM; however, LB counts did not change. In addition, use of the drop in children with higher salivary counts appeared to be more effective. PMID:27994413

  20. Extending viability of Lactobacillus plantarum and Lactobacillus johnsonii by microencapsulation in alginate microgels.

    PubMed

    Tiani, Kendra A; Yeung, Timothy W; McClements, D Julian; Sela, David A

    2018-03-01

    To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.

  1. The aggregation-promoting factor in Lactobacillus delbrueckii ssp. bulgaricus: confirmation of the presence and expression of the apf gene and in silico analysis of the corresponding protein.

    PubMed

    Yungareva, Tsvetelina; Urshev, Zoltan

    2018-06-19

    In lactobacilli the aggregation phenotype is linked to their ability to colonize the intestinal and urogenital tracts and to counteract pathogenic bacteria. In all available complete genome sequences of Lactobacillus delbrueckii ssp. bulgaricus there are at least two genes putatively related to aggregation, one of which is annotated as aggregation-promoting factor (apf). Here we report the results from the in silico analysis of this gene and its product. The apf gene was present in the genome of all 70 tested L. delbr. ssp. bulgaricus strains. Its expression was confirmed for a selection of five strains with aggregation phenotype and two aggregation-negative strains. The mature Apf protein had a length of 257-284 amino acids with predicted molecular weight in the range of 28.64-30.36 kDa and isoelectric point of 10.6 ± 0.1, showing some similarity to Apf1 and Apf2 from L. johnsonii NCC533 and Apf1 and Apf2 from L. gasseri which are similar in size (28-35 kDa) and share a similar high isoelectric point (pI > 9). Predictive analyzes have indicated that Apf is a secretory protein. The 30 amino acid signal peptide and the predicted cleavage site in the pre-protein suggested that it was processed by Type I Signal protease. In the mature Apf protein a glutamine-rich N-terminal region was followed by an unusual lysine/alanine-rich region with variable length, supposed to be positively charged under physiological conditions, interacting with bacterial teichoic acids. The alignment of the C-termini of the Apf proteins showed similarity to conserved C-terminal domains in aggregation-related proteins in other lactobacilli such as Apf1 of Lactobacillus johnsonii ATCC 11506 and the secretory protein Sep of L. fermentum BR11, that may be involved in non-covalent binding to carbohydrates. The C-terminal anchor and the cationic domain in Apf may serve as mediators of physical cell-to-cell interaction in L. delbr. ssp. bulgaricus.

  2. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  3. Genome Sequence of Lactobacillus farciminis KCTC 3681▿

    PubMed Central

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-01-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds. PMID:21257766

  4. Lactobacillus allii sp. nov. isolated from scallion kimchi

    PubMed Central

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-01-01

    A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1–98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T). PMID:29043955

  5. Lactobacillus allii sp. nov. isolated from scallion kimchi.

    PubMed

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-12-01

    A novel strain of lactic acid bacteria, WiKim39 T , was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39 T belonged to the genus Lactobacillus, and shared 97.1-98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39 T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39 T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39 T (=KCTC 21077 T =JCM 31938 T ).

  6. Mg2+ improves the thermotolerance of probiotic Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8.

    PubMed

    Yang, Y; Huang, S; Wang, J; Jan, G; Jeantet, R; Chen, X D

    2017-04-01

    Food-related carbohydrates and proteins are often used as thermoprotectants for probiotic lactobacilli during industrial production and processing. However, the effect of inorganic salts is rarely reported. Magnesium is the second-most abundant cation in bacteria, and commonly found in various foods. Mg 2+ homeostasis is important in Salmonella and has been reported to play a critical role in their thermotolerance. However, the role of Mg 2+ in thermotolerance of other bacteria, in particular probiotic bacteria, still remains a hypothesis. In this study, the effect of Mg 2+ on thermotolerance of probiotic lactobacilli was investigated in three well-documented probiotic strains, Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8, in comparison with Zn 2+ and Na + . Concentrations of Mg 2+ between 10 and 50 mmol l -1 were found to increase the bacterial survival upon heat challenge. Remarkably, Mg 2+ addition at 20 mmol l -1 led to a 100-fold higher survival of L. rhamnosus GG upon heat challenge. This preliminary study also showed that Mg 2+ shortened the heat-induced extended lag time of bacteria, which indicated the improvement in bacterial recovery from thermal injury. In order to improve the productivity and stability of live probiotics, extensive investigations have been carried out to improve thermotolerance of probiotics. However, most of these studies focused on the effects of carbohydrates, proteins or amino acids. The roles of inorganic salts in various food materials, which have rarely been reported, should be considered when incorporating probiotics into these foods. In this study, Mg 2+ was found to play a significant role in the thermotolerance of probiotic lactobacilli. A novel strategy may be available in the near future by employing magnesium salts as protective agents of probiotics during manufacturing process. © 2017 The Society for Applied Microbiology.

  7. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri.

    PubMed

    Ianniello, R G; Zheng, J; Zotta, T; Ricciardi, A; Gänzle, M G

    2015-09-01

    This study evaluated the aerobic and respiratory metabolism in Lactobacillus reuteri and Lactobacillus spicheri, two heterofermentative species used in sourdough fermentation. In silico genome analysis, production of metabolites and gene expression of pyruvate oxidase, pyruvate dehydrogenase and cytochrome oxidase were assessed in anaerobic and aerobic cultures of Lact. reuteri and Lact. spicheri. Respiring homofermentative Lactobacillus casei N87 and Lact. rhamnosus N132 were used for comparison. Aerobiosis and respiration increased the biomass production of heterofermentative strains compared to anaerobic cultivation. Respiration led to acetoin production by Lact. rhamnosus and Lact. casei, but not in heterofermentative strains, in which lactate and acetate were the major end-products. Lactobacillus spicheri LP38 showed the highest oxygen uptake. Pyruvate oxidase, respiratory cytochromes, NADH oxidase and NADH peroxidase were present in the genome of Lact. spicheri LP38. Both Lact. spicheri LP38 and Lact. rhamnosus N132 overexpressed pox in aerobic cultures, while cydA was up-regulated only when haeme was supplied; pdh was repressed during aerobic growth. Aerobic and respiratory growth provided physiological and metabolic advantages also in heterofermentative lactobacilli. The exploitation of oxygen-tolerant phenotypes of Lact. spicheri may be useful for the development of improved starter cultures. © 2015 The Society for Applied Microbiology.

  8. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    PubMed

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  9. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens

    PubMed Central

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-01-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis (Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis (Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment. PMID:28580872

  10. Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., isolated from silage.

    PubMed

    Tohno, Masanori; Tanizawa, Yasuhiro; Irisawa, Tomohiro; Masuda, Takaharu; Sakamoto, Mitsuo; Arita, Masanori; Ohkuma, Moriya; Kobayashi, Hisami

    2017-09-01

    Three Gram-stain positive, non-motile, non-spore-forming, catalase-negative and rod-shaped bacterial strains (IWT5T, IWT25T and IWT140), isolated from silage, were investigated by using a polyphasic taxonomic approach. Strains IWT5T and IWT25T grew at 10-37 °C and 30-37 °C, and at pH 4.0-7.5 and 4.0-7.0, respectively. The G+C contents of genomic DNA of strains IWT5T and IWT25T were 43.2 and 44.4 mol%, respectively. Strains IWT5T and IWT25T contained C16 : 0, C18 : 1 ω9c and summed feature 7 (unknown 18.846/C19 : 1 ω6c/C19 : 0cyclo ω10c) as the major fatty acids. Strain IWT5T was most closely related to the type strains of Lactobacillus mixtipabuli (99.9 % 16S rRNA gene sequence similarity) and Lactobacillus silagei (99.5 %). For IWT25T, the 16S rRNA gene sequence similarities with the closely related neighbour type strains L. mixtipabuli and L. silagei were 99.5 and 99.5 %, respectively. The 16S rRNA gene sequence similarities among the three novel isolates were 99.5-99.9 %. The average nucleotide identities of strains IWT5T and IWT25T to other neighbours of the genus Lactobacillus were less than 82 % and the genomes of IWT25T and IWT140 shared 97.3 % average nucleotide identity, demonstrating that the three strains were allocated to two different novel species of the genus Lactobacillus. Together with multilocus sequence analysis, phenotypic and chemotaxonomic characteristics, strains IWT5T (=JCM 31144T=DSM 102973T) and IWT25T (=JCM 31145T=DSM 102974T) are proposed as the type strains of novel species of the genus Lactobacillus, with the names Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., respectively.

  11. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties.

    PubMed

    Klopper, Kyle B; Deane, Shelly M; Dicks, Leon M T

    2018-03-01

    Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).

  12. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1.

    PubMed

    Leonard, Michael T; Valladares, Ricardo B; Ardissone, Alexandria; Gonzalez, Claudio F; Lorca, Graciela L; Triplett, Eric W

    2014-05-08

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model.

  13. In vitro antagonistic growth effects of Lactobacillus fermentum and lactobacillus salivarius and their fermentative broth on periodontal pathogens.

    PubMed

    Chen, Ling-Ju; Tsai, Hsiu-Ting; Chen, Wei-Jen; Hsieh, Chu-Yang; Wang, Pi-Chieh; Chen, Chung-Shih; Wang, Lina; Yang, Chi-Chiang

    2012-10-01

    As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis in vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, although different inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health.

  14. Eruca sativa might influence the growth, survival under simulated gastrointestinal conditions and some biological features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus strains.

    PubMed

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-10-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power.

  15. Eruca sativa Might Influence the Growth, Survival under Simulated Gastrointestinal Conditions and Some Biological Features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus Strains

    PubMed Central

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-01-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power. PMID:25275269

  16. In vitro activity of farnesol against vaginal Lactobacillus spp.

    PubMed

    Wang, Fengjuan; Liu, Zhaohui; Zhang, Dai; Niu, Xiaoxi

    2017-05-01

    Farnesol, a quorum-sensing molecule in Candida albicans, can affect the growth of certain microorganisms. The objective of this study was to evaluate the in vitro activity of farnesol against vaginal Lactobacillus spp., which play a crucial role in the maintenance of vaginal health. Growth and metabolic viability of vaginal Lactobacillus spp. incubated with different concentrations of farnesol were determined by measuring the optical density of the cultures and with the MTT assay. Morphology of the farnesol-treated cells was evaluated using a scanning electron microscope. In vitro adherence of vaginal Lactobacillus cells treated with farnesol was determined by co-incubating with vaginal epithelial cells (VECs). The minimum inhibitory concentration (MIC) of farnesol for vaginal Lactobacillus spp. was 1500μM. No morphological changes were observed when the farnesol-treated Lactobacillus cells were compared with farnesol-free cells, and 100μM farnesol would reduce the adherence of vaginal Lactobacillus to VECs. Farnesol acted as a potential antimicrobial agent, had little impact on the growth, metabolism, and cytomorphology of the vaginal Lactobacillus spp.; however, it affected their adhering capacity to VECs. The safety of farnesol as an adjuvant for antimicrobial agents during the treatment of vaginitis needs to be studied further. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lactobacillus kimchii sp. nov., a new species from kimchi.

    PubMed

    Yoon, J H; Kang, S S; Mheen, T I; Ahn, J S; Lee, H J; Kim, T K; Park, C S; Kho, Y H; Kang, K H; Park, Y H

    2000-09-01

    A bacteriocin-producing lactic acid bacterium, which was isolated from the Korean fermented-vegetable food kimchi, was subjected to a polyphasic taxonomic study using phenotypic characterization and phylogenetic and genetic methods. This organism (MT-1077T) has phenotypic properties that are consistent with the description characterizing the genus Lactobacillus. Phylogenetic analysis based on 16S rDNA sequences showed clearly that strain MT-1077T is a member of the genus Lactobacillus. The closest phylogenetic relatives are Lactobacillus alimentarius KCTC 3593T and Lactobacillus farciminis LMG 9200T, with levels of 16S rDNA similarity of 98.4 and 98.2%, respectively. Levels of 16S rDNA similarity between strain MT-1077T and other Lactobacillus species were less than 93.0%. Differences in some phenotypic characteristics and DNA-DNA relatedness data indicated that strain MT-1077T should be distinguished from L. alimentarius KCTC 3593T and L. farciminis LMG 9200T. On the basis of the data presented, it is proposed that strain MT-1077T should be placed in the genus Lactobacillus as a new species, Lactobacillus kimchii sp. nov. The type strain of the new species is strain MT-1077T (= KCTC 8903PT = JCM 10707T).

  18. Lactobacillus species: taxonomic complexity and controversial susceptibilities.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M

    2015-05-15

    The genus Lactobacillus is a taxonomically complex and is composed of over 170 species that cannot be easily differentiated phenotypically and often require molecular identification. Although they are part of the normal human gastrointestinal and vaginal flora, they can also be occasional human pathogens. They are extensively used in a variety of commercial products including probiotics. Their antimicrobial susceptibilities are poorly defined in part because of their taxonomic complexity and are compounded by the different methods recommended by Clinical Laboratory Standards Institute and International Dairy Foundation. Their use as probiotics for prevention of Clostridium difficile infection is prevalent among consumers worldwide but raises the question of will the use of any concurrent antibiotic effect their ability to survive. Lactobacillus species are generally acid resistant and are able to survive ingestion. They are generally resistant to metronidazole, aminoglycosides and ciprofloxacin with L. acidophilus being susceptible to penicillin and vancomycin, whereas L. rhamnosus and L. casei are resistant to metronidazole and vancomycin. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Characterization of amygdalin-degrading Lactobacillus species.

    PubMed

    Menon, R; Munjal, N; Sturino, J M

    2015-02-01

    Cyanogenic glycosides are phytotoxic secondary metabolites produced by some crop plants. The aim of this study was to identify lactic acid bacteria (LAB) capable of catabolizing amygdalin, a model cyanogenic glycoside, for use in the biodetoxification of amygdalin-containing foods and feeds. Amygdalin-catabolizing lactobacilli were characterized using a combination of cultivation-dependent and molecular assays. Lactobacillus paraplantarum and Lactobacillus plantarum grew robustly on amygdalin (Amg(+)), while other LAB species typically failed to catabolize amygdalin (Amg(-)). Interestingly, high concentrations of amygdalin and two of its metabolic derivatives (mandelonitrile and benzaldehyde) inhibited the growth of Lact. plantarum RENO 0093. The differential regulation of genes tentatively involved in cyanohydrin metabolism illustrated that the metabolism of amygdalin- and glucose-grown cultures also differed significantly. Amygdalin fermentation was a relatively uncommon phenotype among the LAB and generally limited to strains from the Lact. plantarum group. Phenotype microarrays (PM) enabled strain-level discrimination between closely related strains within a species and suggested that phenotypic differences might affect niche specialization. Amygdalin-degrading lactobacilli with practical application in the biodetoxification of amygdalin were characterized. These strains show potential for use as starter cultures to improve the safety of foods and feeds. © 2014 The Society for Applied Microbiology.

  20. [Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species].

    PubMed

    Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei

    2009-02-01

    We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.

  1. A Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development

    PubMed Central

    Yu, Rosa R.; Cheng, Andrew T.; Lagenaur, Laurel A.; Huang, Wenjun; Weiss, Deborah E.; Treece, Jim; Sanders-Beer, Brigitte E.; Hamer, Dean H.; Lee, Peter P.; Xu, Qiang; Liu, Yang

    2015-01-01

    Background We sought to establish a nonhuman primate model of vaginal Lactobacillus colonization suitable for evaluating live microbial microbicide candidates. Methods Vaginal and rectal microflora in Chinese rhesus macaques (Macaca mulatta) were analyzed, with cultivable bacteria identified by 16S rRNA gene sequencing. Live lactobacilli were intravaginally administered to evaluate bacterial colonization. Results Chinese rhesus macaques harbored abundant vaginal Lactobacillus, with Lactobacillus johnsonii as the predominant species. Like humans, most examined macaques harbored only one vaginal Lactobacillus species. Vaginal and rectal Lactobacillus isolates from the same animal exhibited different genetic and biochemical profiles. Vaginal Lactobacillus was cleared by a vaginal suppository of azithromycin, and endogenous L. johnsonii was subsequently restored by intravaginal inoculation. Importantly, prolonged colonization of a human vaginal Lactobacillus jensenii was established in these animals. Conclusions The Chinese rhesus macaque harbors vaginal Lactobacillus and is a potentially useful model to support the pre-clinical evaluation of Lactobacillus-based topical microbicides. PMID:19367737

  2. Lactobacillus salivarius LA307 and Lactobacillus rhamnosus LA305 attenuate skin inflammation in mice.

    PubMed

    Holowacz, S; Blondeau, C; Guinobert, I; Guilbot, A; Hidalgo, S; Bisson, J F

    2018-02-27

    Oral probiotics potential for the management of dermatological diseases is vast. However, results of available studies in skin diseases, such as atopic dermatitis (AD), are inconsistent, partly because probiotic effects are strain specific. Careful selection of probiotic strains is therefore indispensable to ensure efficacy of treatment. In this study, Lactobacillus salivarius LA307, Lactobacillus rhamnosus LA305 and Bifidobacterium bifidum PI22, three strains that were previously identified for their interesting immunomodulatory properties in allergy and/or colitis models, were assessed in the prevention of chronic skin inflammation induced by repeated applications of 12-O-tetradecanoylphorbol-13-acetate in hairless SKH-1 mice. Macroscopic and microscopic evaluation of skin lesions was performed together with measurements of serum levels of interleukin (IL)-1β, IL-6, tumour necrosis factor alpha (TNF-α), IL-17, IL-22, IL-10 and IL-4. Daily oral treatment with the three strains at the dose of 1×10 9 cfu/day for 3 weeks limited the development of chronic skin inflammation, the effects being strain dependent. Indeed the two Lactobacillus strains significantly limited the intensity of skin inflammation both at the macroscopic and microscopic levels. Macroscopic observations were correlated to the histological observations and the resulting microscopic score. This limitation of the development of AD-like skin lesions involved the modulation of cytokine production. Treatment with the two Lactobacillus strains induced a decrease in the serum levels of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, IL-17, IL-22 and at the opposite an increase in the production of the anti-inflammatory cytokine IL-10 and also of IL-4. Globally, B. bifidum PI22 had lower benefits. These results obtained in mice suggest that L. salivarius LA307 and L. rhamnosus LA305 could be good candidates for preserving skin integrity and homeostasis via the modulation of the gut microbiota and that

  3. Lactobacillus rhamnosus GG (ATCC 53103) and platelet aggregation in vitro.

    PubMed

    Korpela, R; Moilanen, E; Saxelin, M; Vapaatalo, H

    1997-06-17

    Lactobacillus rhamnosus GG is an experimentally and clinically well documented probiotic used in different dairy products. The present study aimed to investigate the safety aspects of Lactobacillus rhamnosus GG, particularly with respect to platelet aggregation, the initiating event in thrombosis. Platelet rich plasma was separated from the blood of healthy volunteers, and the effects of Lactobacillus rhamnosus GG (ATCC 53103), Lactobacillus rhamnosus (ATCC 7469) and Enterococcus faecium T2L6 in different dilutions on spontaneous, ADP- and adrenaline-induced aggregation were tested. The bacteria did not influence spontaneous aggregation. Only Enterococcus faecium T2L6 enhanced the adrenaline-induced aggregation, with a less clear effect on ADP-induced aggregation.

  4. Genome Sequence of Lactobacillus plantarum Strain UCMA 3037.

    PubMed

    Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias; Vernoux, Jean-Paul

    2013-05-23

    Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem.

  5. Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88

    PubMed Central

    Ladero, Victor; Alvarez-Sieiro, Patricia; Redruello, Begoña; del Rio, Beatriz; Linares, Daniel M.; Martin, M. Cruz; Fernández, María

    2013-01-01

    Here, we report a 3.2-Mbp draft assembly for the genome of Lactobacillus plantarum IPLA 88. The sequence of this sourdough isolate provides insight into the adaptation of this versatile species to different environments. PMID:23887921

  6. Isolation of a DNA Probe for Lactobacillus curvatus

    PubMed Central

    Petrick, Hendrik A. R.; Ambrosio, Riccardo E.; Holzapfel, Wilhelm H.

    1988-01-01

    A genomic library of Lactobacillus curvatus DSM 20019 was constructed in bacteriophage λ gt11. A 1.2-kilobase DNA probe specific for L. curvatus was isolated from this library. When this probe was hybridized to DNA from Lactobacillus isolates from different sources classified by conventional techniques, differing degrees of hybridization were obtained. This could imply that these isolates may have been incorrectly classified. Images PMID:16347554

  7. Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage.

    PubMed

    Zou, Yuanqiang; Liu, Feng; Fang, Chengxiang; Wan, Daiwei; Yang, Rentao; Su, Qingqing; Yang, Ruifu; Zhao, Jiao

    2013-05-01

    Two Lactobacillus strains, designated LY-73(T) and LY-30B, were isolated from a dairy beverage, sold in Shenzhen market, China. The two isolates were Gram-positive, non-spore-forming, non-motile, facultatively anaerobic rods that were heterofermentative and did not exhibit catalase activity. Sequencing of the 16S rRNA, pheS and rpoA genes revealed that the two isolates shared 99.5, 99.8 and 99.9 % sequence similarity, which indicates that they belong to the same species. Phylogenetic analysis demonstrated clustering of the two isolates with the genus Lactobacillus. Strain LY-73(T) showed highest 16S rRNA gene sequence similarities with Lactobacillus harbinensis KACC 12409(T) (97.73%), Lactobacillus perolens DSM 12744(T) (96.96 %) and Lactobacillus selangorensis DSM 13344(T) (93.10 %). Comparative analyses of their rpoA and pheS gene sequences indicated that the novel strains were significantly different from other Lactobacillus species. Low DNA-DNA reassociation values (50.5 %) were obtained between strain LY-73(T) and its phylogenetically closest neighbours. The G+C contents of the DNA of the two novel isolates were 56.1 and 56.5 mol%. Straight-chain unsaturated fatty acids C18 : 1ω9c (78.85 and 74.29 %) were the dominant components, and the cell-wall peptidoglycan was of the l-Lys-d-Asp type. Based on phenotypic characteristics, and chemotaxonomic and genotypic data, the novel strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus shenzhenensis sp. nov. is proposed, with LY-73(T) ( = CCTCC M 2011481(T) = KACC 16878(T)) as the type strain.

  8. Effects of feeding lactobacillus GG on lethal irradiation in mice

    SciTech Connect

    Dong, M.Y.; Chang, T.W.; Gorbach, S.L.

    1987-05-01

    Mice exposed to 1400 rads of total body irradiation experienced 80%-100% mortality in 2 wk. Bacteremia was demonstrated in all dead animals. Feeding Lactobacillus GG strain reduced Pseudomonas bacteremia and prolonged survival time in animals colonized with this organism. In animals not colonized with Pseudomonas, feeding Lactobacillus GG also produced some reduction in early deaths, and there was less Gram-negative bacteremia in these animals compared with controls.

  9. Lactobacillus insicii sp. nov., isolated from fermented raw meat.

    PubMed

    Ehrmann, Matthias A; Kröckel, Lothar; Lick, Sonja; Radmann, Pia; Bantleon, Annegret; Vogel, Rudi F

    2016-01-01

    The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8 % 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4 %), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3 %), Lactobacillus versmoldensis DSM 14857T (96.9 %) and Lactobacillus furfuricola JCM 18764T (97.2 %). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70 % and the DNA G+C content was 36.3 mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T ( = CECT 8802T = DSM 29801T).

  10. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains.

    PubMed

    Almståhl, Annica; Lingström, Peter; Eliasson, Lars; Carlén, Anette

    2013-07-01

    The objective was to analyse the ability of Lactobacillus strains isolated from supragingival plaque of subjects with hyposalivation and from healthy controls to ferment sugars and sugar alcohols. Fifty strains isolated from interproximal plaque from subjects with radiation-induced hyposalivation (25 strains), subjects with primary Sjögren's syndrome (16 strains) and from subjects with normal salivary secretion rate (9 strains) were tested. Growth and pH were determined after 24 and 48 h of anaerobic incubation in vials containing basal media with 1 % of glucose, fructose, sucrose, mannitol, sorbitol or xylitol. No differences between strains isolated from hyposalivated subjects and controls were detected. All strains lowered the pH to <5.0 from fructose and the majority of the strains from glucose and sucrose. A pH of <5.5 was seen for 52 % of the strains using mannitol, 50 % using sorbitol and 36 % using xylitol. The ability to produce acids from sugars and sugar alcohols was highest among strains of Lactobacillus rhamnosus, Lactobacillus casei and Lactobacillus paracasei and lowest among Lactobacillus fermentum strains. A large number of Lactobacillus strains are able to ferment not only sugars but also the sugar substitutes mannitol, sorbitol and xylitol to pH levels critical for enamel demineralisation. Our findings suggest that products containing mannitol, sorbitol and/or xylitol may contribute to the acidogenic potential of the dental plaque and especially in hyposalivated subjects with high numbers of lactobacilli.

  11. Lactobacillus curtus sp. nov., isolated from beer in Finland.

    PubMed

    Asakawa, Yuki; Takesue, Nobuchika; Asano, Shizuka; Shimotsu, Satoshi; Iijima, Kazumaru; Suzuki, Koji; Motoyama, Yasuo; Aizawa, Masayuki

    2017-10-01

    A Gram-stain-positive, catalase-negative and short-rod-shaped organism, designated VTT E-94560, was isolated from beer in Finland and deposited in the VTT culture collection as a strain of Lactobacillus rossiae. However, the results of 16S rRNA gene sequence analysis showed that VTT E-94560 was only related to Lactobacillus rossiae JCM 16176 T with 97.0 % sequence similarity, lower than the 98.7 % regarded as the boundary for the species differentiation. Additional phylogenetic studies on the pheS gene, rpoA gene and 16S-23S rRNA internally transcribed spacer region further reinforced the taxonomically independent status of VTT E-94560 and its related Lactobacillus species including L. rossiae and Lactobacillus siliginis. Strain VTT E-94560 also exhibited several differences in its carbohydrate fermentation profiles from those related Lactobacillus species. In addition, DNA-DNA relatedness between VTT E-94560 and these two type strains was 4 % (L. rossiae JCM 16176 T ) and 12 % (L. siliginins JCM 16155 T ), respectively, which were lower than the 70 % cut-off for general species delineation, indicating that these three strains are not taxonomically identical at the species level. These studies revealed that VTT E-94560 represents a novel species, for which the name Lactobacillus curtus sp. nov. is proposed. The type strain is VTT E-94560 T (=JCM 31185 T ).

  12. Biodiversity of Lactobacillus sanfranciscensis strains isolated from five sourdoughs.

    PubMed

    Kitahara, M; Sakata, S; Benno, Y

    2005-01-01

    Five different sourdoughs were investigated for the composition of lactic acid bacteria (LAB) and the biodiversity of Lactobacillus sanfranciscensis strains. A total of 57 strains were isolated from five sourdoughs. Isolated strains were all identified by the 16S rDNA sequence and species-specific primers for L. sanfranciscensis. Results of identification showed that LAB strains were L. sanfranciscensis, Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus fermentum, Lactobacillus pontis, Lactobacillus casei, Weisella confusa and Pediococcus pentosaceus. A total of 21 strains were identified as L. sanfranciscensis and these isolates were detected in all five sourdoughs. Ribotyping was applied to investigate the relationship between intraspecies diversity of L. sanfranciscensis and sourdough. A total of 22 strains of L. sanfranciscensis including L. sanfranciscensis JCM 5668T were compared by ribotyping. The dendrogram of 21 ribotyping patterns showed four clusters, and L. sanfranciscensis JCM 5668T was independent of the others. The different biotypes of L. sanfranciscensis were present in two sourdoughs compared with other three sourdoughs. The LAB compositions of five sourdoughs were different and the relationship between intraspecies diversity of L. sanfranciscensis strains and five sourdoughs was shown by ribotyping. This study demonstrated that ribotyping was useful for distinguishing L. sanfranciscensis strains. A further important result is that the intra-species diversity of L. sanfranciscensis strains seems to be related to the sourdough preparation.

  13. Testing of viscous anti-HIV microbicides using Lactobacillus

    PubMed Central

    Moncla, B.J.; Pryke, K.; Rohan, L. C.; Yang, H.

    2012-01-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30 min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive brief, about 2 sec, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. PMID:22226641

  14. Testing of viscous anti-HIV microbicides using Lactobacillus.

    PubMed

    Moncla, B J; Pryke, K; Rohan, L C; Yang, H

    2012-02-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  16. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    PubMed

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  17. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  18. Lactobacillus panisapium sp. nov., from honeybee Apis cerana bee bread.

    PubMed

    Wang, Cong; Huang, Yan; Li, Li; Guo, Jun; Wu, Zhengyun; Deng, Yu; Dai, Lirong; Ma, Shichun

    2018-03-01

    A novel facultatively anaerobic, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative bacterium of the genus Lactobacillus, designated strain Bb 2-3 T , was isolated from bee bread of Apis cerana collected from a hive in Kunming, China. The strain was regular rod-shaped. Optimal growth occurred at 37 °C, pH 6.5 with 5.0 g l -1 NaCl. The predominant fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 iso. Respiratory quinones were not detected. Seven glycolipids, three lipids, phosphatidylglycerol and diphosphatidylglycerol were detected. The peptidoglycan type A4α l-Lys-d-Asp was determined. Strain Bb 2-3 T was closely related to Lactobacillus bombicola DSM 28793 T , Lactobacillus apis LMG 26964 T and Lactobacillus helsingborgensis DSM 26265 T , with 97.8, 97.6 and 97.0 % 16S rRNA gene sequence similarity, respectively. A comparison of two housekeeping genes, rpoA and pheS, revealed that strain Bb 2-3 T was well separated from the reference strains of species of the genus Lactobacillus. The average nucleotide identity between strain Bb 2-3 T and the type strains of closely related species was lower than the 95-96 % threshold value for delineation of genomic prokaryotic species. The G+C content of the genomic DNA of strain Bb 2-3 T was 37.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain Bb 2-3 T is proposed to represent a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus panisapium sp. nov. The type strain is Bb 2-3 T (=DSM 102188 T =ACCC 19955 T ).

  19. Lactobacillus alimentarius sp. nov., nom rev. and Lactobacillus farciminis sp. nov., nom. rev.

    PubMed

    Reuter, G

    1983-01-01

    In 1970 two new species within the so-called subgenus "Streptobacterium" Orla-Jensen of the genus Lactobacillus were described (Reuter, 1970). They were named L. alimentarius with the type strain "R 13" (DSM 20249) and L. farciminis with the type strain "Rv 4na" (DSM 20184). Since these two names have so far not been included in the "Approved Lists of Bacterial Names" (Skerman et al., 1980) they are revived for the same organisms with the same type strains. Copyright © 1983 Gustav Fischer Verlag, Stuttgart/New York. Published by Elsevier GmbH.. All rights reserved.

  20. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Urease enzyme preparation from Lactobacillus... Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic bacterium Lactobacillus...

  1. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Franden, M.A.; McMillan, J.D.; Finkelstein, M.

    1998-08-25

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid. 4 figs.

  2. Characterization of Selected Lactobacillus Strains for Use as Probiotics

    PubMed Central

    Song, Minyu; Yun, Bohyun; Moon, Jae-Hak; Park, Dong-June; Lim, Kwangsei; Oh, Sejong

    2015-01-01

    The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products. PMID:26761878

  3. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.

    PubMed

    Ehrmann, Matthias A; Müller, Martin R A; Vogel, Rudi F

    2003-01-01

    Genotypic fingerprinting to analyse the bacterial flora of an industrial sourdough revealed a coherent group of strains which could not be associated with a valid species. Comparative 16S rDNA sequence analysis showed that these strains formed a homogeneous cluster distinct from their closest relatives, Lactobacillus farciminis, Lactobacillus alimentarius and Lactobacillus kimchii. To characterize them further, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic properties have been determined. The DNA G +C content was 37.5 0.2 mol%. The peptidoglycan was of the lysine-D-iso-asparagine (L-Lys-D-Asp) type. The strains were homofermentative, Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They were found as a major stable component of a rye flour sourdough fermentation. Physiological, biochemical as well as genotypic data suggested them to be a new species of the genus Lactobacillus. This was confirmed by DNA-DNA hybridization of genomic DNA, and the name Lactobacillus mindensis is proposed. The type strain of this species is DSM 14500T (=LMG 21508T).

  4. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp.

    PubMed

    Archer, A C; Kurrey, N K; Halami, P M

    2018-03-14

    This study aimed at characterizing the adhesion and immune-stimulatory properties of native probiotic Lactobacillus fermentum (MCC 2759 and MCC 2760) and Lactobacillus delbrueckii MCC 2775. Adhesion of the strains was assessed in Caco-2 and HT-29 cell lines. Expression of adhesion and immune markers were evaluated in Caco-2 cells by real-time qPCR. The cultures displayed >80% of adhesion to both cell lines and also induced the expression of mucin-binding protein (mub) gene in the presence of mucin, bile and pancreatin. Adhesion was mediated by carbohydrate and proteinaceous factors. The cultures stimulated the expression of inflammatory cytokines in Caco-2 cells. However, pro-inflammatory genes were down-regulated upon challenge with lipopolysaccharide and IL-10 was up-regulated by the cultures. Cell wall extract of L. fermentum MCC 2760 induced the expression of IL-6 by 5·47-fold, whereas crude culture filtrate enhanced the expression of IL-10 by 14·87-fold compared to LPS control. The bacterial cultures exhibited strong adhesion and anti-inflammatory properties. This is the first report to reveal the role of adhesion markers of L. fermentum and L. delbrueckii by qPCR. The strain-specific anti-inflammatory property of native cultures may be useful to alleviate inflammatory conditions and develop a target-based probiotic. © 2018 The Society for Applied Microbiology.

  5. Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus

    PubMed Central

    De Angelis, Maria; Bottacini, Francesca; Fosso, Bruno; Kelleher, Philip; Calasso, Maria; Di Cagno, Raffaella; Ventura, Marco; Picardi, Ernesto; van Sinderen, Douwe; Gobbetti, Marco

    2014-01-01

    Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches. PMID:25264826

  6. Different immune regulatory potential of Lactobacillus plantarum and Lactobacillus sakei isolated from Kimchi.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Rim; Gim, Min Geun; Chung, Dae Kyun

    2014-12-28

    It is known that lactic acid bacteria (LAB) have many beneficial health effects, including antioxidative activity and immune regulation. In this study, the immune regulatory effects of Lactobacillus sakei and Lactobacillus plantarum, which are found in different types of kimchi, were evaluated. L. sakei and its lipoteichoic acid (LTA) have greater immune stimulating potential in IL-12, IFN-γ, and TNF-α production as compared with L. plantarum in an in vitro condition. On the other hand, L. plantarum is assumed to repress the Th1 immune response in murine experiments. After being injected with LPS, L. plantarum-fed mice maintained a healthier state, and the level of TNF-α in their blood was lower than in other bacterial strainfed mice and in the LPS-only control mice. Additionally, IL-12 production was significantly decreased and the production of IL-4 was greatly increased in the splenocytes from L. plantarum-fed mice. Further experiments revealed that the pre-injection of purified LTA from L. plantarum (pLTA), L. sakei (sLTA), and S. aureus (aLTA) decreased TNF-α and IL-4 production in LPS-injected mice. Mouse IL-12, however, was significantly increased by aLTA pre-injection. In conclusion, the L. sakei and L. plantarum strains have immune regulation effects, but the effects differ in cytokine production and the regulatory effects of the Th1/Th2 immune response.

  7. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups.

    PubMed

    Ricciardi, A; Ianniello, R G; Parente, E; Zotta, T

    2015-09-01

    Members of the Lactobacillus casei and Lactobacillus plantarum groups are capable of aerobic and respiratory growth. However, they grow poorly in aerobiosis in the currently available chemically defined media, suggesting that aerobic and respiratory growth require further supplementation. The effect of Tween 80, L-alanine, L-asparagine, L-aspartate, L-proline and L-serine on anaerobic and respiratory growth of Lact. casei N87 was investigated using a 2(5) factorial design. The effectiveness of modified CDM (mCDM) was validated on 21 strains of Lact. casei and Lact. plantarum groups. Tween 80 supplementation did not affect anaerobic growth, but improved respiratory growth. L-asparagine, L-proline and L-serine were stimulatory for respiring cells, while the presence of L-aspartate, generally, impaired biomass production. mCDM promoted the growth of Lact. casei and Lact. plantarum, with best results for strains showing a respiratory phenotype. The nutritional requirements of anaerobic and respiratory cultures of members of the Lact. casei and Lact. plantarum groups differ. Tween 80 and selected amino acids derived from pathways related to TCA cycle, pyruvate conversion and NADH recycling are required for respiration. The availability of mCDM will facilitate the study of aerobic metabolism of lactobacilli under controlled conditions. © 2015 The Society for Applied Microbiology.

  8. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface.

    PubMed

    Song, Young-Gyun; Lee, Sung-Hoon

    2017-04-01

    Candida albicans biofilm is associated with denture-related stomatitis and oral candidiasis of elderly. Probiotics are beneficial bacteria and have antibacterial activity against pathogenic bacteria. The purpose of this study was to investigate the antifungal activity of various probiotics against C. albicans and the inhibitory effects of probiotics on Candida biofilm on the denture surface. The spent culture media of various probiotics were investigated the antifungal efficacy against C. albicans. Candida biofilm was formed on a denture base resin and was then treated with Lactobacillus rhamnosus and Lactobacillus casei. Also, the biofilms of L. rhamnosus and L. casei were formed and were sequentially treated with C. albicans. Colony-forming units of C. albicans on the denture surface were counted after spreading on agar plate. The denture base resin was treated with the spent culture media for 30days, after which the denture surface roughness was analyzed with an atomic force microscope. L. rhamnosus and L. casei exhibited stronger antifungal activity than other probiotics. The spent culture medium of L. rhamnosus and L. casei exhibited the antifungal activity against blastoconidia and biofilm of C. albicans. L. rhamnosus and L. casei showed the antifungal activity against Candida biofilm, and the biofilm of L. rhamnosus and L. casei inhibited formation of Candida biofilm on denture surface. Neither of the probiotics affected the surface roughness of the denture base resin. L. rhamnosus and L. casei may be the ideal probiotics for the prevention and treatment of denture-related stomatitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus.

    PubMed

    Kang, Mi-Sun; Lim, Hae-Soon; Oh, Jong-Suk; Lim, You-Jin; Wuertz-Kozak, Karin; Harro, Janette M; Shirtliff, Mark E; Achermann, Yvonne

    2017-03-01

    The increasing prevalence of methicillin-resistant Staphylococcus aureus has become a major public health threat. While lactobacilli were recently found useful in combating various pathogens, limited data exist on their therapeutic potential for S. aureus infections. The aim of this study was to determine whether Lactobacillus salivarius was able to produce bactericidal activities against S. aureus and to determine whether the inhibition was due to a generalized reduction in pH or due to secreted Lactobacillus product(s). We found an 8.6-log10 reduction of planktonic and a 6.3-log10 reduction of biofilm S. aureus. In contrast, the previously described anti-staphylococcal effects of L. fermentum only caused a 4.0-log10 reduction in planktonic S. aureus cells, with no effect on biofilm S. aureus cells. Killing of S. aureus was partially pH dependent, but independent of nutrient depletion. Cell-free supernatant that was pH neutralized and heat inactivated or proteinase K treated had significantly reduced killing of L. salivarius than with pH-neutralized supernatant alone. Proteomic analysis of the L. salivarius secretome identified a total of five secreted proteins including a LysM-containing peptidoglycan binding protein and a protein peptidase M23B. These proteins may represent potential novel anti-staphylococcal agents that could be effective against S. aureus biofilms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Genome sequence and analysis of Lactobacillus helveticus

    PubMed Central

    Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

    2013-01-01

    The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

  11. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  12. Health-Promoting Properties of Lactobacillus helveticus

    PubMed Central

    Taverniti, Valentina; Guglielmetti, Simone

    2012-01-01

    Lactobacillus helveticus is an important industrial thermophilic starter that is predominantly employed in the fermentation of milk for the manufacture of several cheeses. In addition to its technological importance, a growing body of scientific evidence shows that strains belonging to the L. helveticus species have health-promoting properties. In this review, we synthesize the results of numerous primary literature papers concerning the ability of L. helveticus strains to positively influence human health. Several in vitro studies showed that L. helveticus possesses many common probiotic properties, such as the ability to survive gastrointestinal transit, adhere to epithelial cells, and antagonize pathogens. In vivo studies in murine models showed that L. helveticus could prevent gastrointestinal infections, enhance protection against pathogens, modulate host immune responses, and affect the composition of the intestinal microbiota. Interventional studies and clinical trials have also demonstrated a number of health-promoting properties of L. helveticus. Finally, several studies suggested that specific enzymatic activities of L. helveticus could indirectly benefit the human host by enhancing the bioavailability of nutrients, removing allergens and other undesired molecules from food, and producing bioactive peptides through the digestion of food proteins. In conclusion, this review demonstrates that in light of the scientific literature presented, L. helveticus can be included among the bacterial species that are generally considered to be probiotic. PMID:23181058

  13. Lactobacillus salivarius: bacteriocin and probiotic activity.

    PubMed

    Messaoudi, S; Manai, M; Kergourlay, G; Prévost, H; Connil, N; Chobert, J-M; Dousset, X

    2013-12-01

    Lactic acid bacteria (LAB) antimicrobial peptides typically exhibit antibacterial activity against food-borne pathogens, as well as spoilage bacteria. Therefore, they have attracted the greatest attention as tools for food biopreservation. In some countries LAB are already extensively used as probiotics in food processing and preservation. LAB derived bacteriocins have been utilized as oral, topical antibiotics or disinfectants. Lactobacillus salivarius is a promising probiotic candidate commonly isolated from human, porcine, and avian gastrointestinal tracts (GIT), many of which are producers of unmodified bacteriocins of sub-classes IIa, IIb and IId. It is a well-characterized bacteriocin producer and probiotic organism. Bacteriocins may facilitate the introduction of a producer into an established niche, directly inhibit the invasion of competing strains or pathogens, or modulate the composition of the microbiota and influence the host immune system. This review gives an up-to-date overview of all L. salivarius strains, isolated from different origins, known as bacteriocin producing and/or potential probiotic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Genomic Diversity of Lactobacillus salivarius▿ †

    PubMed Central

    Raftis, Emma J.; Salvetti, Elisa; Torriani, Sandra; Felis, Giovanna E.; O'Toole, Paul W.

    2011-01-01

    Strains of Lactobacillus salivarius are increasingly employed as probiotic agents for humans or animals. Despite the diversity of environmental sources from which they have been isolated, the genomic diversity of L. salivarius has been poorly characterized, and the implications of this diversity for strain selection have not been examined. To tackle this, we applied comparative genomic hybridization (CGH) and multilocus sequence typing (MLST) to 33 strains derived from humans, animals, or food. The CGH, based on total genome content, including small plasmids, identified 18 major regions of genomic variation, or hot spots for variation. Three major divisions were thus identified, with only a subset of the human isolates constituting an ecologically discernible group. Omission of the small plasmids from the CGH or analysis by MLST provided broadly concordant fine divisions and separated human-derived and animal-derived strains more clearly. The two gene clusters for exopolysaccharide (EPS) biosynthesis corresponded to regions of significant genomic diversity. The CGH-based groupings of these regions did not correlate with levels of production of bound or released EPS. Furthermore, EPS production was significantly modulated by available carbohydrate. In addition to proving difficult to predict from the gene content, EPS production levels correlated inversely with production of biofilms, a trait considered desirable in probiotic commensals. L. salivarius displays a high level of genomic diversity, and while selection of L. salivarius strains for probiotic use can be informed by CGH or MLST, it also requires pragmatic experimental validation of desired phenotypic traits. PMID:21131523

  15. Distribution Dynamics of Recombinant Lactobacillus in the Gastrointestinal Tract of Neonatal Rats

    PubMed Central

    Bao, Sujin; Zhu, Libin; Zhuang, Qiang; Wang, Lucia; Xu, Pin-Xian; Itoh, Keiji; Holzman, Ian R.; Lin, Jing

    2013-01-01

    One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates. PMID:23544119

  16. Lactobacillus cypricasei Lawson et al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et al. 2000.

    PubMed

    Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean

    2006-07-01

    The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.

  17. Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats.

    PubMed

    Amdekar, Sarika; Singh, Vinod; Kumar, Avnish; Sharma, Poonam; Singh, Rambir

    2013-01-01

    In view of well-established immunomodulatory properties of Lactobacillus, present investigation was carried out to evaluate antioxidant and anti-inflammatory potential of Lactobacillus casei and Lactobacillus acidophilus, against inflammatory pathway and oxidative stress developed in an experimental model of arthritis. Collagen-induced arthritis (CIA) model was used. Oral administration of L. casei, L. acidophilus, standard antiarthritic drug indomethacin, and vehicle were started after induced arthritis and continued up to day 28. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, IL-17, IL-4, and IL-10 levels were estimated in serum. In parallel, oxidative stress parameters were also measured from synovial effsuate. All rats were graded for arthritis score at the end of each week. L. casei, L. acidophilus, and indomethacin treatment significantly downregulated proinflammatory and upregulated anti-inflammatory cytokines at P<0.0001. They have significantly decreased oxidative stress in synovial effsuate (P<0.0001) and also arthritis score (P<0.05). Protection provided by L. casei and L. acidophilus was more pronounced than that of indomethacin. These lines of evidence suggest that L. casei and L. acidophilus exert potent protective effect against CIA. It further establishes effective anti-inflammatory and antioxidant properties of Lactobacillus. However, additional clinical investigations are needed to prove the efficacy of Lactobacillus in treatment/management of rheumatoid arthritis.

  18. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia).

    PubMed

    Chen, Yi-Sheng; Miyashita, Mika; Suzuki, Ken-ichiro; Sato, Hajime; Hsu, Jar-Sheng; Yanagida, Fujitoshi

    2010-08-01

    Twenty-one homofermentative lactic acid bacteria were isolated from fermented cummingcordia (pobuzihi), a traditional food in Taiwan. The isolates had identical 16S rRNA gene sequences that were distinct from those of other lactobacilli, and their closest neighbours in the 16S rRNA gene sequence phylogenetic tree were strains of Lactobacillus acidipiscis. Levels of DNA-DNA relatedness between representative pobuzihi isolates and strains of L. acidipiscis were 17% and below. Furthermore, the new isolates could be differentiated clearly from L. acidipiscis NBRC 102163T and NBRC 102164 in terms of acid production from L-arabinose, rhamnose, mannitol, lactose and 5-ketogluconate. It was concluded that the new isolates represent a single novel species of the genus Lactobacillus, for which the name Lactobacillus pobuzihii sp. nov. is proposed. The type strain is E100301T (=RIFY 6501T =NBRC 103219T =KCTC 13174T).

  20. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds

    PubMed Central

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-01-01

    Two strains, KBL13T and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13T and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA–DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13T and GBL13, belong to the same species. In the representative strain, KBL13T, the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231T (=ATCC 11741T; AF089108) is the type strain most closely related to the strain KBL13T as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA–DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13T represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13T (=JCM 14209T=DSM 18933T). PMID:18048734

  1. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds.

    PubMed

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-12-01

    Two strains, KBL13(T) and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13(T) and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA-DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13(T) and GBL13, belong to the same species. In the representative strain, KBL13(T), the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231(T) (=ATCC 11741(T); AF089108) is the type strain most closely related to the strain KBL13(T) as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA-DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13(T) represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13(T) (=JCM 14209(T)=DSM 18933(T)).

  2. Lactobacillus cerevisiae sp. nov., isolated from a spoiled brewery sample.

    PubMed

    Koob, Jennifer; Jacob, Fritz; Wenning, Mareike; Hutzler, Mathias

    2017-09-01

    A Gram-stain-positive, non-motile, rod-shaped bacterium, designated TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T), was isolated from spoiled beer. This bacterium did not form spores, and was catalase-negative and facultatively anaerobic. Its taxonomic position was determined in a polyphasic study. The 16S rRNA gene sequence similarity data showed that the strain belonged to the Lactobacillus genus with the nearest neighbours being Lactobacillus koreensis DCY50T (sequence similarity 99.5 %), Lactobacillus yonginensis THK-V8T (99.2 %) and Lactobacillus parabrevis LMG 11984T (98.7 %). Sequence comparisons of additional phylogenetic markers, pheS and rpoA, confirmed the 16S rRNA gene sequence tree topology. The maximum rpoA sequence similarity was 92.3 % with L. yonginensis THK-V8T. The DNA G+C content of the isolate was 50.0 mol%. The DNA-DNA relatedness showed that strain TUM BP 140423000-2250T could be clearly distinguished from L. koreensis DCY 50T (30.8±0.4 %) and L. yonginensis THK-V8T (23.6±5.9 %). The major fatty acids were C18 : 1ω9c, summed feature 7 (comprised of C19 : 0 cyclo ω10c/C19 : 1ω6c) and C16 : 0. Based on phenotypic and genotypic studies, the authors propose classifying the new isolate as a representative of a novel species of the genus Lactobacillus, Lactobacillus cerevisiae sp. nov. The type strain is deposited at the Research Centre Weihenstephan for Brewing and Food Quality as TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T).

  3. Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri

    PubMed Central

    TANIZAWA, Yasuhiro; KOBAYASHI, Hisami; KAMINUMA, Eli; SAKAMOTO, Mitsuo; OHKUMA, Moriya; NAKAMURA, Yasukazu; ARITA, Masanori; TOHNO, Masanori

    2017-01-01

    Whole-genome sequencing was performed for Lactobacillus parakefiri JCM 8573T to confirm its hitherto controversial taxonomic position. Here, we report its first reliable reference genome. Genome-wide metrics, such as average nucleotide identity and digital DNA-DNA hybridization, and phylogenomic analysis based on multiple genes supported its taxonomic status as a distinct species in the genus Lactobacillus. The availability of a reliable genome sequence will aid future investigations on the industrial applications of L. parakefiri in functional foods such as kefir grains. PMID:28748134

  4. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).

  5. Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov.

    PubMed

    Meroth, Christiane B; Hammes, Walter P; Hertel, Christian

    2004-03-01

    The microbiota of two industrially processed rice sourdoughs was characterised by bacteriological culture in combination with PCR-denaturing gradient gel electrophoresis (DGGE) and 16S/28S rDNA sequence analysis. Rice sourdough I was continuously propagated for several years by back-slopping every week, whereas sourdough II was processed by using a commercial starter culture and back-slopping daily for three days. In rice sourdough II Candida krusei and Saccharomyces cerevisiae as well as Lactobacillus fermentum, Lactobacillus gallinarum, Lactobacillus kimchii, Lactobacillus plantarum, and Lactobacillus pontis dominated at the first day of fermentation. RAPD analysis of lactobacilli revealed identical profiles for each of the species except for L. fermentum and L. pontis indicating the presence of different strains. Fluctuations within the LAB community during fermentation were monitored by PCR-DGGE. L. pontis decreased in numbers over time and L. curvatus became dominant after 3 days of fermentation. Rice sourdough I contained S. cerevisiae, Lactobacillus paracasei (present with three different RAPD types), Lactobacillus paralimentarius, and a Lactobacillus strain which could not be allotted to any valid species. Phylogenetic analysis based on 16S rDNA sequences revealed Lactobacillus brevis as the closest relative (97.3% sequence similarity). Differences in some phenotypic characteristics and DNA-DNA relatedness indicated that the strain represents a new Lactobacillus species, for which the name Lactobacillus spicheri is proposed.

  6. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  7. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  8. Aspartate protects Lactobacillus casei against acid stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics.

  9. Crystal structure of tannase from Lactobacillus plantarum.

    PubMed

    Ren, Bin; Wu, Mingbo; Wang, Qin; Peng, Xiaohong; Wen, Hua; McKinstry, William J; Chen, Qianming

    2013-08-09

    Tannins are water-soluble polyphenolic compounds in plants. Hydrolyzable tannins are derivatives of gallic acid (3,4,5-trihydroxybenzoic acid) or its meta-depsidic forms that are esterified to polyol, catechin, or triterpenoid units. Tannases are a family of esterases that catalyze the hydrolysis of the galloyl ester bond in hydrolyzable tannins to release gallic acid. The enzymes have found wide applications in food, feed, beverage, pharmaceutical, and chemical industries since their discovery more than a century ago, although little is known about them at the molecular level, including the details of the catalytic and substrate binding sites. Here, we report the first three-dimensional structure of a tannase from Lactobacillus plantarum. The enzyme displays an α/β structure, featured by a large cap domain inserted into the classical serine hydrolase fold. A catalytic triad was identified in the structure, which is composed of Ser163, His451, and Asp419. During the binding of gallic acid, the carboxyl group of the molecule forges hydrogen-bonding interactions with the catalytic triad of the enzyme while the three hydroxyl groups make contacts with Asp421, Lys343, and Glu357 to form another hydrogen-bonding network. Mutagenesis studies demonstrated that these residues are indispensable for the activity of the enzyme. Structural studies of the enzyme in complex with a number of substrates indicated that the interactions at the galloyl binding site are the determinant force for the binding of substrates. The single galloyl binding site is responsible for the esterase and depsidase activities of the enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study.

    PubMed

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  11. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.

    PubMed

    Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo

    2013-10-15

    Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Complete Genome Sequence of Lactobacillus kefiranofaciens ZW3▿

    PubMed Central

    Wang, Yanping; Wang, Jingrui; Ahmed, Zaheer; Bai, Xiaojia; Wang, Jinju

    2011-01-01

    Lactobacillus kefiranofaciens ZW3 was isolated in Tibet, China, from kefir grain, a traditional dairy product that is known to provide many health benefits to humans. Here, we present the genome features of L. kefiranofaciens ZW3 and the identification of a gene cluster related to the synthesis of exopolysaccharide, an important constituent of the Tibetan kefir. PMID:21705607

  13. Complete genome sequence of Lactobacillus kefiranofaciens ZW3.

    PubMed

    Wang, Yanping; Wang, Jingrui; Ahmed, Zaheer; Bai, Xiaojia; Wang, Jinju

    2011-08-01

    Lactobacillus kefiranofaciens ZW3 was isolated in Tibet, China, from kefir grain, a traditional dairy product that is known to provide many health benefits to humans. Here, we present the genome features of L. kefiranofaciens ZW3 and the identification of a gene cluster related to the synthesis of exopolysaccharide, an important constituent of the Tibetan kefir.

  14. Characterization and adsorption of Lactobacillus virulent phage P1.

    PubMed

    Chen, X; Xi, Y; Zhang, H; Wang, Z; Fan, M; Liu, Y; Wu, W

    2016-09-01

    Bacteriophage infection of lactic acid bacteria is considered an important problem worldwide in the food fermentation industry, as it may produce low quality or unsafe foods, cause fermentation failure, and result in economic losses. To increase current knowledge on the properties of Lactobacillus virulent phages, we evaluated the effect of divalent cations, temperature, pH, and chloramphenicol on the adsorption ability of Lactobacillus virulent phage P1. Phage P1 was isolated from the abnormal fermentation liquid of Lactobacillus plantarum IMAU10120. The results showed that this phage belonged to the Siphoviridae family. The latent period of this phage was 45min, and the burst time was 90min. Burst size was 132.88±2.37 phage counts expressed per milliliter per infective center. This phage showed good tolerance at different temperatures, but incubation at 50°C only affected its adsorption. Adsorption rate reached a maximum value between 30 and 42°C. A high adsorption value of phage infectivity was obtained from pH 6 to 8. Moreover, calcium ions promoted and increased the adsorption capacity of phage P1, but magnesium ions had negative effects. Chloramphenicol had no effect on phage adsorption. This study increased current knowledge on the characterization and biological aspects of Lactobacillus virulent phages, and may provide some basic information that can be used to design successful antiphage strategies in the food industry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    USDA-ARS?s Scientific Manuscript database

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  16. Draft Genome Sequence of Lactobacillus helveticus ATCC 12046

    PubMed Central

    2018-01-01

    ABSTRACT Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production. PMID:29449405

  17. Draft Genome Sequence of Lactobacillus helveticus ATCC 12046.

    PubMed

    Palomino, María Mercedes; Burguener, Germán F; Campos, Josefina; Allievi, Mariana; Fina-Martin, Joaquina; Prado Acosta, Mariano; Fernández Do Porto, Darío A; Ruzal, Sandra M

    2018-02-15

    Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production. Copyright © 2018 Palomino et al.

  18. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  19. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans.

    PubMed

    Wasfi, Reham; Abd El-Rahman, Ola A; Zafer, Mai M; Ashour, Hossam M

    2018-03-01

    Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Lactobacillus plantarum culture supernatants improve intestinal tissue exposed to deoxynivalenol.

    PubMed

    Maidana, L G; Gerez, J; Pinho, F; Garcia, S; Bracarense, A P F L

    2017-10-02

    In the present study, histological, morphometrical and ultrastructural analysis were performed to investigate intestinal mucosa changes in piglets exposed to deoxynivalenol alone or associated with two strains of Lactobacillus plantarum and the respective culture supernatants. Jejunal explants were incubated for 4h in culture medium with a) only culture medium (DMEM, control group), b) deoxynivalenol (DON, 10μM), c) heat-inactivated Lactobacillus plantarum strain1 - LP1 (1.1×10 8 CFU/ml) plus DON, d) heat-inactivated Lactobacillus plantarum strain2-LP2 (2.0×10 9 CFU/ml) plus DON, e) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON, and f) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON. Explants exposed to DON and DON plus LP1 and LP2 showed a significant increase in histological changes (mainly villi atrophy and apical necrosis) and a significant decrease in villi height when compared to unexposed explants. However, explants treated with CS1+DON and CS2+DON remained similar to the control group both in histological and morphometrical aspects. DON also induced a significant decrease in goblet cell density compared to control whereas CS1+DON treatment induced an increase in the number of goblet cells in comparison to DON explants. In addition, ultrastructural assessment showed control, CS1+DON and CS2+DON explants with well delineated finger shape villi, meanwhile DON-treated, LP1+DON and LP2+DON explants showed a severe villi atrophy with leukocytes exudation on the intestinal surface. Taken together, our results indicate that the culture supernatant treatment reduced the toxic effects induced by DON on intestinal tissue and may contribute as an alternative strategy to reduce mycotoxin toxicity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Probiotic properties of native Lactobacillus spp. strains for dairy calves.

    PubMed

    Fernández, S; Fraga, M; Silveyra, E; Trombert, A N; Rabaza, A; Pla, M; Zunino, P

    2018-04-10

    The use of native microorganisms with probiotic capacity is an alternative tool for the treatment and prevention of several diseases that affect animals, such as neonatal calf diarrhoea. The selection of probiotic strains within a collection is based on different in vitro and in vivo assays, which predict their potential. The aim of this study was to characterise a group of native Lactobacillus spp. strains isolated from faeces of healthy calves using an in vitro approach and to assess their ability to colonise the gastrointestinal tract (GIT) of calves. Native Lactobacillus spp. strains were evaluated on their capacity to survive low pH conditions and bile salts presence, biofilm formation and adhesion to both mucus and Caco-2 cells. Based on the in vitro characterisation, four strains (Lactobacillus johnsonii TP1.1, Lactobacillus reuteri TP1.3B, L. johnsonii TP1.6 and Lactobacillus amylovorus TP8.7) were selected to evaluate their capacity to colonise and persist in the GIT of calves. The assessment of enteric persistence involved an in vivo assay with oral administration of probiotics and quantification in faeces of the administered bacterial species with real-time quantitative PCR (qPCR). The study was conducted using 15 calves (1-month-old) which were divided into five groups of three animals, four of which were treated with four different selected strains and one was the control group. Strains TP1.3B and TP1.6 managed to persist in treated animals until ten days after the end of the administration period, indicating that they could be promising candidates for the design of probiotics for calves.

  2. First Functional and Mutational Analysis of Group 3 N-Acetylneuraminate Lyases from Lactobacillus antri and Lactobacillus sakei 23K

    PubMed Central

    García-García, María Inmaculada; Gil-Ortiz, Fernando; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2014-01-01

    N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1. PMID:24817128

  3. Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates.

    PubMed

    Strahinic, I; Busarcevic, M; Pavlica, D; Milasin, J; Golic, N; Topisirovic, L

    2007-04-01

    The objective of this study was to characterize the lactobacilli from the human oral cavity as a potential source of probiotic strains. Samples were collected from four different locations within the oral cavity: surface of healthy tooth, oral mucous membrane, surface of tooth decay and deep tooth decay. On the basis of morphological and biochemical properties eight categories were formed and 26 isolates were selected for further characterization. The isolates were determined as Lactobacillus sp. using primers specific for 16S rDNA. Sequencing of 16S rDNA genes and repetitive sequence-based polymerase chain reactions were used for determination to species and subspecies levels. Predominant species were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius and Lactobacillus paracasei subsp. paracasei, while Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus gasseri were also present. The isolates Lactobacillus salivarius BGHO1, Lactobacillus fermentum BGHO36 and BGHO64, Lactobacillus gasseri BGHO89 and Lactobacillus delbrueckii subsp. lactis BGHO99 exhibited antagonistic action on the growth of Staphylococcus aureus, Enterococcus faecalis, Micrococcus flavus, Salmonella enteritidis, Streptococcus pneumoniae and Streptococcus mutans, but not on growth of Candida albicans. Moreover, the isolates L. salivarius BGHO1 and L. gasseri BGHO89 were tolerant to low pH and high concentration of bile salts. Taken together, these findings imply that L. salivarius BGHO1 and L. gasseri BGHO89 might be subjects for additional investigation as potential probiotic strains.

  4. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    NASA Astrophysics Data System (ADS)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  5. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli.

    PubMed

    Kumar, Manesh; Dhaka, Pankaj; Vijay, Deepthi; Vergis, Jess; Mohan, Vysakh; Kumar, Ashok; Kurkure, Nitin V; Barbuddhe, Sukhadeo B; Malik, S V S; Rawool, Deepak B

    2016-09-01

    The in vitro and in vivo antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus were evaluated individually and synergistically against multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC). In vitro evaluation of each probiotic strain when co-cultured with MDR-EAEC isolates revealed a reduction in MDR-EAEC counts (eosin-methylene blue agar) in a dose- and time-dependent manner: probiotics at a dose rate of 10(10) CFU inhibited MDR-EAEC isolates at 72 h post-inoculation (PI), whereas at lower concentrations (10(8) and 10(9) CFU) MDR-EAEC isolates were inhibited at 96 h PI. The synergistic antimicrobial effect of both probiotic strains (each at 10(10) CFU) was highly significant (P < 0.01) and inhibited the growth of MDR-EAEC isolates at 24 h PI. For in vivo evaluation, weaned mice were fed orally with 10(7) CFU of MDR-EAEC. At Day 3 post-infection, treated mice were fed orally with the probiotic strains (each at 10(10) CFU). Compared with the control, post-treatment a significant (P < 0.01) reduction in MDR-EAEC counts was observed in faeces by Day 2 and in intestinal tissues of treated mice by Days 3 and 4 as evidenced by plate count (mean 2.71 log and 2.27 log, respectively) and real-time PCR (mean 1.62 log and 1.57 log, respectively) methods. Histopathologically, comparatively mild changes were observed in the ileum and colon from Days 3 to 5 post-treatment with probiotics; however, from Day 6 the changes were regenerative or normal. These observations suggest that these probiotic strains can serve as alternative therapeutics against MDR-EAEC-associated infections in humans and animals. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. [Progress in research of relationship between vaginal Lactobacillus and preterm delivery].

    PubMed

    He, Y N; Xiong, H Y; Zheng, Y J

    2017-03-10

    The vaginal flora in most healthy women is dominated by Lactobacillus species. The absence of Lactobacillus species in vaginal flora might lead to a series of symptoms, especially in pregnant women causing adverse pregnancy outcomes, such as preterm delivery. This review focuses on the progress in the research of the relationship between vaginal Lactobacillus and preterm delivery, providing reference for the reduction of the incidence of preterm delivery.

  7. Assessment of in vitro oxalate degradation by Lactobacillus species cultured from veterinary probiotics.

    PubMed

    Cho, Jenny G; Gebhart, Connie J; Furrow, Eva; Lulich, Jody P

    2015-09-01

    To culture Lactobacillus spp from veterinary probiotics and measure their in vitro oxalate-degrading capacity. 2 commercial veterinary probiotics containing Lactobacillus spp. Lactobacillus spp were cultured anaerobically on selective deMan, Rogosa, Sharpe agar medium and subcultured for speciation by 16S rDNA gene sequencing. Isolates were inoculated into broth containing sodium oxalate (5 mg/L) and incubated anaerobically for 72 hours. An oxalate-degrading isolate of Lactobacillus acidophilus (American Type Culture Collection [ATCC] 53544) was the positive control sample; sterile broth containing a known quantity of sodium oxalate was the negative control sample. Oxalate concentrations were detected with ion chromatography. Oxalate degradation was assessed with Dunnett tests to detect differences in mean oxalate concentration for each isolate, compared with results for the negative control. Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei or Lactobacillus zeae (too closely related to differentiate) were isolated from probiotic 1, and L plantarum was isolated from probiotic 2. Sequencing of the 16S rDNA gene confirmed 100% homology to type species. Lactobacillus acidophilus (ATCC 53544) and L acidophilus from probiotic 1 significantly decreased oxalate concentrations by 85.3 and 161.9 mg/L, respectively. Lactobacillus plantarum from probiotics 1 and 2 significantly increased oxalate concentrations by 56.1 and 36.1 mg/L, respectively. Lactobacillus casei did not alter oxalate concentrations. Lactobacillus acidophilus isolates significantly reduced oxalate concentrations. In vivo studies are needed to determine whether probiotics containing L acidophilus decrease urine oxalate concentrations and reduce risk of urolith recurrence in dogs with a history of calcium oxalate urolithiasis.

  8. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species.

    PubMed

    Duarte, Francisca Nayara Dantas; Rodrigues, Jéssica Bezerra; da Costa Lima, Maiara; Lima, Marcos Dos Santos; Pacheco, Maria Teresa Bertoldo; Pintado, Maria Manuela Estevez; de Souza Aquino, Jailane; de Souza, Evandro Leite

    2017-08-01

    The prebiotic effects of a cashew apple (Anacardium occidentale L.) agro-industrial byproduct powder (CAP) on different potentially probiotic Lactobacillus strains, namely Lactobacillus acidophilus LA-05, Lactobacillus casei L-26 and Lactobacillus paracasei L-10, were assessed using in vitro experimental models. Accordingly, the growth of the Lactobacillus strains when cultivated in a broth containing CAP (20 or 30 g L -1 ), glucose (20 g L -1 ) or fructooligosaccharides (FOS) (20 g L -1 ) was monitored over 48 h; the prebiotic activity scores of CAP were determined; and the changes in pH values, production of organic acids and consumption of sugars in growth media were verified. During the 48-h cultivation, similar viable cell counts were observed for the Lactobacillus strains grown in the different media tested. The CAP presented positive prebiotic activity scores toward all the tested Lactobacillus strains, indicating a desirable selective fermentable activity relative to enteric organisms. The cultivation of the Lactobacillus strains in broth containing glucose, FOS or CAP resulted in high viable cell counts, a decreased pH, the production of organic acids and the consumption of sugars over time, revealing intense bacterial metabolic activity. The CAP exerts potential prebiotic effects on different potentially probiotic Lactobacillus strains and should be an added-value ingredient for the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Degradation of sinigrin by Lactobacillus agilis strain R16.

    PubMed

    Llanos Palop, M; Smiths, J P; Brink, B T

    1995-07-01

    Forty-two lactobacilli were screened for their potential to degrade glucosinolate sinigrin. One of them, strain R16, demonstrated a high level of sinigrin degradation; it was identified as Lactobacillus agilis. The sinigrin degrading activity of L. agilis R16 could only be demonstrated when intact cells were used. The products of sinigrin degradation are allyl-isothiocyanate (AITC) and glucose (which is further fermented to DL-lactic acid), suggesting that myrosinase activity is involved. The activity was induced by the presence of sinigrin. Glucose inhibited the myrosinase activity, even in induced cells. Lactobacillus agilis R16 was able to grow on an extract of brown mustard seed and caused glucosinolate degradation.

  10. Lactobacillus perolens sp. nov., a soft drink spoilage bacterium.

    PubMed

    Back, W; Bohak, I; Ehrmann, M; Ludwig, W; Pot, B; Kersters, K; Schleifer, K H

    1999-09-01

    Lactic acid bacteria that are able to spoil soft drinks with low pH comprise a limited number of acidotolerant or acidophilic species of the genera Lactobacillus, Leuconostoc and Weissella. Various Gram-positive rods causing turbidity and off-flavour were isolated from orange lemonades. Physiological and biochemical studies including SDS-PAGE whole-cell protein analysis showed a homogeneous group of organisms. The 16S rRNA gene sequence analysis of two representatives revealed that they formed a phylogenetically distinct line within the genus Lactobacillus. All strains were facultatively heterofermentative, producing L-lactic acid. Based on the data presented a new species L. perolens is proposed. The name refers to the off-flavour caused by high amounts of diacetyl. The type strain of L. perolens is DSM 12744 (LMG 18936). A rRNA targeted oligonucleotide probe was designed that allows a fast and reliable identification of L. perolens.

  11. Inducible transport of citrate in Lactobacillus rhamnosus ATCC 7469.

    PubMed

    de Figueroa, R M; Benito de Cárdenas, I L; Sesma, F; Alvarez, F; de Ruiz Holgado, A P; Oliver, G

    1996-10-01

    Lactobacillus rhamnosus ATCC 7469 exhibited diauxie when grown in a medium containing both glucose and citrate as energy source. Glucose was used as the primary energy source during the glucose-citrate diauxie. Uptake of citrate was carried out by an inducible citrate transport system. The induction of citrate uptake system was repressed in the presence of glucose. This repression was reversible and mediated by cAMP.

  12. Probiotic Properties of Lactobacillus Strains Isolated from Tibetan Kefir Grains

    PubMed Central

    Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying

    2013-01-01

    The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing

  13. Characterization of Lipoteichoic Acids as Lactobacillus delbrueckii Phage Receptor Components

    PubMed Central

    Räisänen, Liisa; Schubert, Karin; Jaakonsaari, Tiina; Alatossava, Tapani

    2004-01-01

    Lipoteichoic acids (LTAs) were purified from Lactobacillus delbrueckii subsp. lactis ATCC 15808 and its LL-H adsorption-resistant mutant, Ads-5, by hydrophobic interaction chromatography. L. delbrueckii phages (LL-H, the LL-H host range mutant, and JCL1032) were inactivated by these poly(glycerophosphate) type of LTAs in vitro in accordance to their adsorption to intact ATCC 15808 and Ads-5 cells. PMID:15292157

  14. Draft genome sequence of Lactobacillus mali KCTC 3596.

    PubMed

    Kim, Dong-Wook; Choi, Sang-Haeng; Kang, Aram; Nam, Seong-Hyeuk; Kim, Dae-Soo; Kim, Ryong Nam; Kim, Aeri; Park, Hong-Seog

    2011-09-01

    We announce the draft genome sequence of the type strain Lactobacillus mali KCTC 3596 (2,652,969 bp, with a G+C content of 36.0%), which is one of the most prevalent lactic acid bacteria present during the manufacturing process of apple juice. The genome consists of 122 large contigs (>100 bp). All of the contigs were assembled by Newbler Assembler 2.3 (454 Life Science). Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  15. Effects of Lactobacillus formosensis S215T and Lactobacillus buchneri on quality and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage.

    PubMed

    Mangwe, M C; Rangubhet, K T; Mlambo, V; Yu, B; Chiang, H I

    2016-11-01

    This study investigated the influence of two microbial inoculants; Lactobacillus formosensis and Lactobacillus buchneri on fermentation quality, chemical composition, aerobic stability and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage. Sweet potato vines were ensiled for 28 and 60 days; without inoculant (CON), with Lact. buchneri (LB) or with Lact. formosensis (LF), both inoculants applied to achieve 1 × 10 6  CFU g -1 fresh forage. Lactobacillus formosensis silage had lower pH and higher lactic acid than all treatments. Yeasts and moulds were not detected in LB silage after ensiling. Lactobacillus buchneri silage was more aerobically stable than all treatments, whereas LF was more stable than CON silage. In vitro ruminal biological activity of condensed tannins was lower in microbial-inoculated silages than CON after ensiling. Lactobacillus formosensis improved fermentability by reducing silage pH and improved aerobic stability by producing more propionate, which inhibited yeast activity. Lactobacillus buchneri improved aerobic stability of the silage by producing more acetate. Both strains effectively reduced the antinutritional effect of condensed tannins after ensiling. Lactobacillus formosensis has the potential to be used as a silage inoculant because of its ability to improve fermentability and aerobic stability in sweet potato vines silage. © 2016 The Society for Applied Microbiology.

  16. Lactobacillus arizonensis sp. nov., isolated from jojoba meal.

    PubMed

    Swezey, J L; Nakamura, L K; Abbott, T P; Peterson, R E

    2000-09-01

    Five strains of simmondsin-degrading, lactic-acid-producing bacteria were isolated from fermented jojoba meal. These isolates were facultatively anaerobic, gram-positive, non-motile, non-spore-forming, homofermentative, rod-shaped organisms. They grew singly and in short chains, produced lactic acid but no gas from glucose, and did not exhibit catalase activity. Growth occurred at 15 and 45 degrees C. All strains fermented cellobiose, D-fructose, D-galactose, D-glucose, lactose, maltose, D-mannitol, D-mannose, melibiose, D-ribose, salicin, D-sorbitol, sucrose and trehalose. Some strains fermented L-(-)-arabinose and L-rhamnose. D-Xylose was not fermented and starch was not hydrolysed. The mean G+C content of the DNA was 48 mol%. Phylogenetic analyses of 16S rDNA established that the isolates were members of the genus Lactobacillus. DNA reassociation of 45% or less was obtained between the new isolates and the reference strains of species with G+C contents of about 48 mol%. The isolates were differentiated from other homofermentative Lactobacillus spp. on the basis of 16S rDNA sequence divergence, DNA relatedness, stereoisomerism of the lactic acid produced, growth temperature and carbohydrate fermentation. The data support the conclusion that these organisms represent strains of a new species, for which the name Lactobacillus arizonensis is proposed. The type strain of L. arizonensis is NRRL B-14768T (= DSM 13273T).

  17. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery.

    PubMed

    Petricevic, Ljubomir; Domig, Konrad J; Nierscher, Franz Josef; Sandhofer, Michael J; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-05-30

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery.

  18. Physiological Changes of Surface Membrane in Lactobacillus with Prebiotics.

    PubMed

    Pan, Mingfang; Kumaree, Kishore K; Shah, Nagendra P

    2017-03-01

    Synbiotics are always considered to be beneficial in healthy manipulation of gut environment; however, the purpose of this research was to investigate the dominance of synbiotic over the individual potential of probiotics and prebiotics. Four different types of prebiotics, fructo-oligosaccharides, raffinose, inulin, and cellobiose, were evaluated based on their varying degree of polymerization, combined each with 2 different Lactobacilli strains, including Lactobacillus paracasei 276 and Lactobacillus plantarum WCFS1. The effects of synbiotics combination on the surface structure were evaluated by analyzing auto-aggregation, membrane hydrophobicity, and adhesion to Caco-2 cells. Our results showed that both Lactobacilli exhibited significantly greater degree of attachment to Caco-2 cells (23.31% and 16.85%, respectively) when using cellobiose as a substrate than with other prebiotics (P < 0.05). Intestinal adhesion ability was in correlation with the percent of auto-aggregation, both Lactobacillus exhibited higher percent of auto-aggregation in cellobiose compared to other prebiotics. These behavioral changes in terms of attachment and auto-aggregation were further supported with the changes noticed from infrared spectra (FT-IR). © 2017 Institute of Food Technologists®.

  19. TEMPERATURE-SENSITIVE DEXTRANSUCRASE SYNTHESIS BY A LACTOBACILLUS.

    PubMed

    DUNICAN, L K; SEELEY, H W

    1963-11-01

    Dunican, L. K. (Cornell University, Ithaca, New York), and H. W. Seeley, Jr. Temperature-sensitive dextransucrase synthesis by a lactobacillus. J. Bacteriol. 86:1079-1083. 1963.-Dextran synthesis was found to be temperature-dependent in Lactobacillus strain RWM-13. Dextran was not formed above 37 C, although growth of cells occurred up to 42 C. Logarithmically growing cells transferred from 30 C to 40 C ceased producing dextran while growth decreased nominally. An examination of the extracts of cells broken by sonic treatment showed that as the temperature of growth was increased above 37 C the production of dextransucrase decreased. By use of an inhibitor of invertase, 10(-4)m AgNO(3), it was shown that invertase replaced dextransucrase activity at temperatures above 37 C. In contrast to dextransucrase in Leuconostoc mesenteroides, the enzyme in Lactobacillus strain RWM-13 was constitutive and thus resembled that of Streptococcus bovis. Thermosensitivity of dextransucrase synthesis has not been observed in Leuconostoc or Streptococcus.

  20. Effects of Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici on the nematode Caenorhabditis elegans include possible antitumor activity.

    PubMed

    Fasseas, Michael K; Fasseas, Costas; Mountzouris, Konstantinos C; Syntichaki, Popi

    2013-03-01

    This study examined the effects of three lactic acid bacteria (LAB) strains on the nematode Caenorhabditis elegans. Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici were found to inhibit the development and growth of the worm. Compared to Escherichia coli used as the control, L. reuteri and P. acidilactici reduced the lifespan of wild-type and short-lived daf-16 worms. On the contrary, L. salivarius extended the lifespan of daf-16 worms when used live, but reduced it as UV-killed bacteria. The three LAB induced the expression of genes involved in pathogen response and inhibited the growth of tumor-like germ cells, without affecting DAF16 localization or increasing corpse cells. Our results suggest the possible use of C. elegans as a model for studying the antitumor attributes of LAB. The negative effects of these LAB strains on the nematode also indicate their potential use against parasitic nematodes.

  1. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt.

    PubMed

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage.

  2. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection

    PubMed Central

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-01-01

    BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects. PMID:24567124

  3. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection.

    PubMed

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-02-24

    Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.

  4. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina.

    PubMed

    France, Michael T; Mendes-Soares, Helena; Forney, Larry J

    2016-12-15

    Lactobacillus crispatus and Lactobacillus iners are common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from an L. iners-dominated community to one dominated by L. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes of L. iners and L. crispatus to gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species. The microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by either Lactobacillus iners or Lactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes of L. iners and L. crispatus differ in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal microbiome and

  5. Influence of Lactobacillus acidophilus and Lactobacillus plantarum on wound healing in male Wistar rats - an experimental study.

    PubMed

    Gudadappanavar, Anupama M; Hombal, Prashant R; Timashetti, Somling S; Javali, S B

    2017-01-01

    Probiotics have been documented with various pleotropic effects other than improving general gut health, but the potential benefits of strain-specific Lactobacillus on wound healing are unknown. Hence, the objective of the study is to evaluate and compare the wound healing property of Lactobacillus acidophilus and Lactobacillus plantarum on various wound models in male Wistar rats. Excision wound, resutured incision wound, and dead space wounds were inflicted under light thiopentone anesthesia in male Wistar rats ( n = 6, in each group). The rats received one of the Lactobacillus orally as per their weight for a period of 10 days in resutured incision (assessed by wound breaking strength) and dead space wounds (granuloma dry weight, histopathology of granulation tissue, and biochemical hydroxyproline estimation), whereas in excision wounds, treatment was monitored by planimetry. Data were expressed as mean ± standard error of mean and analyzed by ANOVA followed by Tukey's multiple post hoc test. P < 0.05 was considered as statistically significant. L. acidophilus showed a significant difference ( P < 0.05) in all the three models, namely, enhanced wound contraction and decreased days for complete epithelization in excision wound; increased breaking strength in resutured incision wound; increased granuloma dry weight and cellular infiltration in granulation tissue with marked increase in collagen content indicating wound healing. The study suggests that the wound healing activity of L. acidophilus if could be extrapolated to clinical situations may decrease dosage and duration of treatment and can be a potential adjuvant to reduce hospitalization with efficient recovery after injury and sustained good health.

  6. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina

    PubMed Central

    France, Michael T.; Mendes-Soares, Helena

    2016-01-01

    ABSTRACT Lactobacillus crispatus and Lactobacillus iners are common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from an L. iners-dominated community to one dominated by L. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes of L. iners and L. crispatus to gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species. IMPORTANCE The microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by either Lactobacillus iners or Lactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes of L. iners and L. crispatus differ in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal

  7. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  9. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  10. Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: kinetics of formation and matrix characterization.

    PubMed

    Leccese Terraf, María Cecilia; Juárez Tomás, María Silvina; Rault, Lucie; Le Loir, Yves; Even, Sergine; Nader-Macías, María Elena Fátima

    2016-09-01

    Adhesion and biofilm formation are strain properties that reportedly contribute to the permanence of lactobacilli in the human vagina. The kinetics of biofilm formation and the chemical nature of the biofilm matrix formed by Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 and Lactobacillus rhamnosus CRL 1332, vaginal beneficial strains, were evaluated in this work. Crystal violet-stained microplate assay and techniques of epifluorescence, electron and confocal microscopy were applied. The highest density and complexity of biofilms of both vaginal lactobacilli were observed at 72 h of incubation. Protease, proteinase K, α-chymotrypsin and trypsin treatments efficiently detached L. reuteri CRL 1324 biofilm that was also partially affected by α-amylase. However, L. rhamnosus CRL 1332 biofilm was slightly affected by protease, proteinase K and α-amylase. Confocal microscopy revealed greater amount of polysaccharides in L. rhamnosus CRL 1332 biofilm matrix than in L. reuteri CRL 1324 biofilm matrix. The results indicate that proteins are one of the main components of the L. reuteri CRL 1324 biofilm, while the biofilm matrix of L. rhamnosus CRL 1332 is composed of carbohydrates and proteins. The results obtained support the knowledge, understanding and characterization of two biofilm-forming vaginal Lactobacillus strains.

  11. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo.

    PubMed

    Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih

    2016-10-31

    The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  12. Assertiveness of Lactobacillus sakei and Lactobacillus curvatus in a fermented sausage model.

    PubMed

    Janßen, Dorothee; Eisenbach, Lara; Ehrmann, Matthias A; Vogel, Rudi F

    2018-04-20

    Fresh meat harbors autochthonous microbiota with unknown risk potential, which is introduced in raw fermented sausages. Their growth can be limited by the use of safe, competitive starter strains. In the lack of time and cost-effective methods to track those starters at strain level, their assertiveness upon meat fermentation is widely unknown. Lactobacillus (L.) sakei and L. curvatus, which can be isolated from a variety of habitats, are frequently used as starter cultures. We monitored the assertiveness of 9 L. sakei and 9 L. curvatus strains in a model fermentation using MALDI-TOF-MS. An "in-house" MALDI-TOF-MS database with sub-proteome spectra of L. sakei and L. curvatus strains, as well as members of the autochthonous, spontaneously growing meat microbiota was established, validated and recognition rates were determined for each L. curvatus and L. sakei strain used. Competition studies were performed with standardized sausage batter, which was inoculated with a total of 10 6 cells of sets of 4-5 strains each of L. sakei and L. curvatus and 10 6 Staphylococcus carnosus ssp. carnosus cells. The pH and redox potential were monitored continuously. On days 0, 2 and 5 samples were taken to determine the CfU/g and a total of 96 isolates per sample were identified via MALDI-TOF-MS. MALDI-TOF-MS generally proved suitable for identification of isolates on strain level within the starter sets employed, but the recognition rate varied depending on the strain. Competition studies revealed dominance or co-dominance of strains within each set. However, their assertiveness significantly depended on the composition of the strain sets. Still, co-dominance or cooperation appeared effective to outgrow other members of the autochthonous meat microbiota, rather than dominance of single strains. For the latter, the ability to produce bacteriocins suggested itself for a crucial role in the assertiveness of starter strains. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme..., nontoxicogenic bacterium Lactobacillus fermentum. It contains the enzyme urease (CAS Reg. No. 9002-13-5), which...

  14. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...

  15. Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533.

    PubMed

    Kazou, Maria; Alexandraki, Voula; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-01-26

    Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese. Copyright © 2017 Kazou et al.

  16. Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533

    PubMed Central

    Kazou, Maria; Alexandraki, Voula; Pot, Bruno; Tsakalidou, Effie

    2017-01-01

    ABSTRACT Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese. PMID:28126948

  17. Microbiological Quality of Panicum maximum Grass Silage with Addition of Lactobacillus sp. as Starter

    NASA Astrophysics Data System (ADS)

    Sumarsih, S.; Sulistiyanto, B.; Utama, C. S.

    2018-02-01

    The aim of the research was to evaluate microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp as starter. The completely randomized design was been used on this research with 4 treaments and 3 replications. The treatments were P0 ( Panicum maximum grass silage without addition Lactobacillus sp ), P1 ( Panicum maximum grass silage with 2% addition Lactobacillus sp), P2 (Panicum maximum grass silage with 4% addition Lactobacillus sp) and P3 (Panicum maximum grass silage with 6% addition Lactobacillus sp).The parameters were microbial populations of Panicum maximum grass silage (total lactic acid bacteria, total bacteria, total fungi, and Coliform bacteria. The data obtained were analyzed variance (ANOVA) and further tests performed Duncan’s Multiple Areas. The population of lactic acid bacteria was higher (P<0.05) and the total bacteria, fungi and Coliform were lower (P<0.05) with addition Lactobacillus sp. Microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp was better than no addition Lactobacillus sp.

  18. Oral Lactobacillus Counts Predict Weight Gain Susceptibility: A 6-Year Follow-Up Study

    PubMed Central

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A.H.; Heitmann, Berit L.

    2017-01-01

    Background Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. Aim We examined the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35–65 years at baseline. Design Prospective observational study. Results In unadjusted analysis the level of oral Lactobacillus was inversely associated with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium intake of complex carbohydrates predicted diminished weight gain. A closer examination of these relations showed that BMI change and Lactobacillus level was unrelated for those with high complex carbohydrate consumption. Conclusion A high level of oral Lactobacillus seems related to weight loss among those with medium and low intakes of complex carbohydrates. Absence, or a low level of oral Lactobacillus, may potentially be a novel marker to identify those at increased risk of weight gain. PMID:29020671

  19. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Oral Lactobacillus Counts Predict Weight Gain Susceptibility: A 6-Year Follow-Up Study.

    PubMed

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A H; Heitmann, Berit L

    2017-01-01

    Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. We examined the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35-65 years at baseline. Prospective observational study. In unadjusted analysis the level of oral Lactobacillus was inversely associated with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium intake of complex carbohydrates predicted diminished weight gain. A closer examination of these relations showed that BMI change and Lactobacillus level was unrelated for those with high complex carbohydrate consumption. A high level of oral Lactobacillus seems related to weight loss among those with medium and low intakes of complex carbohydrates. Absence, or a low level of oral Lactobacillus, may potentially be a novel marker to identify those at increased risk of weight gain. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  1. Development and evaluation of a suppository formulation containing Lactobacillus and its application in vaginal diseases.

    PubMed

    Kale, Vinita V; Trivedi, Rashmi V; Wate, Sanjay P; Bhusari, Kishor P

    2005-11-01

    Lactobacillus has long been considered the protective flora in the vagina that displaces and kills vaginal pathogens. Lactic acid, H2O2, and antibacterial agents such as lactocin and bacitracin produced by Lactobacillus act against the vaginal pathogens. The first objective of this research was to develop a local application pharmaceutical formulation of a vaginal suppository containing lyophilized culture of Lactobacillus. The second objective was to establish its in vivo performance by developing in vitro methods of evaluation. Lyophilized culture of Lactobacillus sporogenes was selected for this study. Three formulations of the suppositories were prepared by the molding method. Formulations I, II, and III contained cocoa butter, glycerinated gelatin, and PEG 1000 base, respectively. The prepared suppositories were characterized for physical properties. Assembly to simulate the application site was designed. Methods to evaluate the viability, production of lactic acid, and H2O2 produced by the released Lactobacillus at the application site were developed and the antagonistic activity was demonstrated. From the physical characteristics of the suppository formulations, the glycerinated gelatin suppository (formulation II) containing lyophilized Lactobacillus was found to be satisfactory. The developed assembly was satisfactory in simulating the application site. The Lactobacillus released was viable and exhibited the production of lactic acid, hydrogen peroxide, and antagonistic activity against the uropathogen. The suppository formulation containing Lactobacillus and the methods of its evaluation were successfully developed in this research work and have several applications in the vaginal diseases of women.

  2. Genome sequences of five Lactobacillus sp. isolates from traditional Turkish sourdough

    USDA-ARS?s Scientific Manuscript database

    A high level of variation in microflora can be observed in lactic acid bacteria (LAB) profiles of sourdoughs. Here, we present draft genome sequences of Lactobacillus reuteri E81, L. reuteri LR5A, L. rhamnosus LR2, L. plantarum PFC-311 and a novel Lactobacillus sp. PFC-70 isolated from traditional T...

  3. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...

  4. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...

  5. Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must.

    PubMed

    Mañes-Lázaro, Rosario; Ferrer, Sergi; Rodas, Ana María; Urdiain, Mercedes; Pardo, Isabel

    2008-12-01

    A Lactobacillus strain, designated 203(T), previously isolated from Bobal grape must was characterized phylogenetically, genotypically and phenotypically in order to establish whether it represents a novel species. On the basis of the 16S rRNA gene sequence, strain 203(T) was shown to belong to the genus Lactobacillus, falling within the Lactobacillus alimentarius-Lactobacillus farciminis group and being closely related to the type strains of L. alimentarius, Lactobacillus kimchii and Lactobacillus paralimentarius. DNA-DNA hybridization results confirmed the separate status of strain 203(T) at the species level. To establish the similarities and differences between 203(T) and the three aforementioned closest species, the following methods were used: amplified rDNA restriction analysis, analysis of the 16S-23S rDNA intergenic spacer region, random amplification of polymorphic DNA (RAPD) profiling, ribotyping, carbohydrate fermentation and physiological tests. Strain 203(T) could be differentiated genetically using RAPD analysis and ribotyping. Phenotypically, it can be distinguished from its closest relatives by its ability to grow at pH 3.3, by gas production from gluconate and by certain carbohydrate fermentations. On the basis of these data, strain 203(T) represents a novel species of the genus Lactobacillus, for which the name Lactobacillus bobalius sp. nov. is proposed. The type strain is 203(T) (=CECT 7310(T) =DSM 19674(T)).

  6. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    USDA-ARS?s Scientific Manuscript database

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  7. Complete genome sequence of Lactobacillus johnsonii FI9785, a competitive exclusion agent against pathogens in poultry.

    PubMed

    Wegmann, Udo; Overweg, Karin; Horn, Nikki; Goesmann, Alexander; Narbad, Arjan; Gasson, Michael J; Shearman, Claire

    2009-11-01

    Lactobacillus johnsonii is a member of the acidophilus group of lactobacilli. Because of their probiotic properties, including attachment to epithelial cells, immunomodulation, and competitive exclusion of pathogens, representatives of this group are being intensively studied. Here we report the complete annotated genome sequence of Lactobacillus johnsonii FI9785, a strain which prevents the colonization of specific-pathogen-free chicks by Clostridium perfringens.

  8. Multiplex PCR for the Detection of Lactobacillus pontis and Two Related Species in a Sourdough Fermentation

    PubMed Central

    Müller, Martin R. A.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2000-01-01

    A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation. PMID:10788389

  9. Draft Genome Sequences of Lactobacillus equicursoris CIP 110162T and Lactobacillus sp. Strain CRBIP 24.137, Isolated from Thoroughbred Racehorse Feces and Human Urine, Respectively.

    PubMed

    Cousin, Sylvie; Loux, Valentin; Ma, Laurence; Creno, Sophie; Clermont, Dominique; Bizet, Chantal; Bouchier, Christiane

    2013-08-22

    We report the draft genome sequences of strain Lactobacillus equicursoris CIP 110162(T), isolated from racehorse breed feces, and Lactobacillus sp. strain CRBIP 24.137, isolated from human urine; the two strains are closely related. The total lengths of the 116 and 62 scaffolds are about 2.157 and 2.358 Mb, with G+C contents of 46 and 45% and 2,279 and 2,342 coding sequences (CDSs), respectively.

  10. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines

    PubMed Central

    Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.

    2013-01-01

    Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines. PMID:23405290

  11. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    PubMed

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Antibiotic susceptibility of Lactobacillus strains isolated from domestic geese.

    PubMed

    Dec, M; Wernicki, A; Puchalski, A; Urban-Chmiel, R

    2015-01-01

    The aim of this study was to determine the antibiotic susceptibility of 93 Lactobacillus strains isolated from domestic geese raised on Polish farms. The minimal inhibitory concentration (MIC) of 13 antimicrobial substances was determined by the broth microdilution method. All strains were sensitive to the cell wall inhibitors ampicillin and amoxicillin (MIC ≤ 8 μg/ml). Resistance to inhibitors of protein synthesis and to fluoroquinolone inhibitors of replication was found in 44.1% and 60.2% of isolates, respectively; 26.9% strains were resistant to neomycin (MIC ≥ 64 μg/ml), 23.6% to tetracycline (MIC ≥ 32 μg/ml), 15% to lincomycin (MIC ≥ 64 μg/ml), 18.3% to doxycycline (MIC ≥ 32 μg/ml), 9.7% to tylosin (MIC ≥ 32 μg/ml), 56% to flumequine (MIC ≥ 256 μg/ml) and 22.6% to enrofloxacin (MIC ≥ 64 μg/ml). Bimodal distribution of MICs indicative of acquired resistance and unimodal distribution of the high MIC values indicative of intrinsic resistance were correlated with Lactobacillus species. Eleven (11.8%) strains displayed multiple resistance for at least three classes of antibiotics. Data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorisation of susceptible and resistant strains of Lactobacillus genus and help to assess the hazards associated with the occurrence of drug resistance among natural intestinal microflora.

  13. Subspecies diversity in bacteriocin production by intestinal Lactobacillus salivarius strains

    PubMed Central

    O’ Shea, Eileen F.; O’ Connor, Paula M.; Raftis, Emma J.; O’ Toole, Paul W.; Stanton, Catherine; Cotter, Paul D.; Ross, R. Paul; Hill, Colin

    2012-01-01

    A recent comparative genomic hybridization study in our laboratory revealed considerable plasticity within the bacteriocin locus of gastrointestinal strains of Lactobacillus salivarius. Most notably, these analyses led to the identification of two novel unmodified bacteriocins, salivaricin L and salivaricin T, produced by the neonatal isolate L. salivarius DPC6488 with immunity, regulatory and export systems analogous to those of abp118, a two-component bacteriocin produced by the well characterized reference strain L. salivarius UCC118. In this addendum we discuss the intraspecific diversity of our seven bacteriocin-producing L. salivarius isolates on a genome-wide level, and more specifically, with respect to their salivaricin loci. PMID:22892690

  14. Crystallographic and mutational analyses of tannase from Lactobacillus plantarum.

    PubMed

    Matoba, Yasuyuki; Tanaka, Naomi; Noda, Masafumi; Higashikawa, Fumiko; Kumagai, Takanori; Sugiyama, Masanori

    2013-11-01

    Tannin acylhydrolase (EC 3.1.1.20) referred commonly as tannase catalyzes the hydrolysis of the galloyl ester bond of tannins to release gallic acid. Although the enzyme is useful for various industries, the tertiary structure is not yet determined. In this study, we determined the crystal structure of tannase produced by Lactobacillus plantarum. The tannase structure belongs to a member of α/β-hydrolase superfamily with an additional "lid" domain. A glycerol molecule derived from cryoprotectant solution was accommodated into the tannase active site. The binding manner of glycerol to tannase seems to be similar to that of the galloyl moiety in the substrate. Copyright © 2013 Wiley Periodicals, Inc.

  15. Subspecies diversity in bacteriocin production by intestinal Lactobacillus salivarius strains.

    PubMed

    O' Shea, Eileen F; O' Connor, Paula M; Raftis, Emma J; O' Toole, Paul W; Stanton, Catherine; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2012-01-01

    A recent comparative genomic hybridization study in our laboratory revealed considerable plasticity within the bacteriocin locus of gastrointestinal strains of Lactobacillus salivarius. Most notably, these analyses led to the identification of two novel unmodified bacteriocins, salivaricin L and salivaricin T, produced by the neonatal isolate L. salivarius DPC6488 with immunity, regulatory and export systems analogous to those of abp118, a two-component bacteriocin produced by the well characterized reference strain L. salivarius UCC118. In this addendum we discuss the intraspecific diversity of our seven bacteriocin-producing L. salivarius isolates on a genome-wide level, and more specifically, with respect to their salivaricin loci.

  16. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. [Lactobacillus sake; Lactobacillus curvatus; Lactobacillus farciminis; Staphylococcus aureus; Salmonella typimurium

    SciTech Connect

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showingmore » a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.« less

  17. Influence of the Probiotic Lactobacillus acidophilus NCFM
and Lactobacillus rhamnosus HN001 on Proteolysis Patterns
of Edam Cheese

    PubMed Central

    Cichosz, Grażyna; Nalepa, Beata; Kowalska, Marika

    2014-01-01

    Summary The objective of this study is to determine the viability of Lactobacillus acidophilus NCFM and Lactobacillus rhamnosus HN001 in Edam cheese as well as the effect of probiotic bacteria on paracasein proteolysis and changes in the water activity during ripening. The use of probiotics L. rhamnosus HN001 and L. acidophilus NCFM in Edam cheese slightly changed its chemical composition, but the change was not significant. The pH values were significantly correlated with the changes in Lactobacillus count (R=–0.807) and the level of phosphotungstic acid-soluble nitrogen compounds in total nitrogen (PTA-SN/TN) (R=0.775). After 10 weeks of ripening, the highest level of trichloroacetic acid-soluble nitrogen compounds in total nitrogen (TCA-SN/TN) was observed in the cheese containing L. rhamnosus HN001 (11.87%) and slightly lower level in the cheese containing L. acidophilus NCFM (7.60%) and control cheese (6.24%). The highest level of PTA-SN/TN fraction was noted in cheese containing L. acidophilus NCFM (3.48%) but the lowest level was observed in control cheese (2.24%) after ten weeks of ripening. The changes in the levels of PTA-SN/TN (R=–0.813) and TCA-SN/TN (R=–0.717) fractions were significantly (p<0.05) correlated with the viability of probiotic counts. Water activity (aw) strongly correlated with the PTA-SN/TN level (R=–0.824) and bacteria viability (R=–0.728). All of the analyzed cheeses were characterized by high counts of L. rhamnosus HN001 and L. acidophilus NCFM during ten weeks of ripening. PMID:27904317

  18. Lactobacillus plantarum L9 but not Lactobacillus acidophilus LA reduces tumour necrosis factor induced bacterial translocation in Caco-2 cells.

    PubMed

    Wang, B; Chen, J; Wang, S; Zhao, X; Lu, G; Tang, X

    2017-05-30

    Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis and multiple organ dysfunction syndromes. Inflammatory cytokines increase paracellular permeability that allows increased luminal bacteria to translocate across mucosal epithelium and further deteriorate the gut barrier. In order to reduce this risk, the prophylactic use of probiotics has been recently addressed. In this paper, we investigate the protective role toward tumour necrosis factor (TNF)-α induced non-pathogenic Escherichia coli translocation across Caco-2 monolayers of Lactobacillus strains. According to our experimental data, Lactobacillus plantarum L9 and Lactobacillus acidophilus LA have good capacities to adhere to Caco-2 cells. Addition of L. plantarum L9 and L. acidophilus LA to the enterocyte monolayer surface result in significant inhibition of E. coli adhesion and cell internalisation. However, L. plantarum L9 and L. acidophilus LA did not inhibit the growth of the non-pathogenic E. coli B5 after 24 h incubation. Exposure to TNF-α for 6 h caused a dramatic increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability. Pretreatment with L. plantarum L9 prevent TNF-α induced transcellular bacterial translocation and IL-8 production in Caco-2 cells. L. plantarum L9 also did not affect the integrity of the monolayers, as indicated by lactate dehydrogenase release, horseradish peroxidase permeability, and transepithelial electrical resistance. L. plantarum L9 showed the potential to protect enterocytes from an acute inflammatory response and therefore could be good potential prophylactic agents in counteracting bacterial translocation.

  19. Potential of Lactobacillus plantarum IBB3036 and Lactobacillus salivarius IBB3154 to persistence in chicken after in ovo delivery.

    PubMed

    Aleksandrzak-Piekarczyk, Tamara; Puzia, Weronika; Żylińska, Joanna; Cieśla, Jarosław; Gulewicz, Krzysztof A; Bardowski, Jacek K; Górecki, Roman K

    2018-03-25

    The aim of this study was to characterize and compare selected Lactobacillus strains originating from different environments (cow milk and hen feces) with respect to their applicative potential to colonize gastrointestinal track of chickens before hatching from an egg. In vitro phenotypic characterization of lactobacilli strains included the investigation of the important prerequisites for persistence in gastrointestinal tract, such as a capability to survive in the presence of bile salts and at low pH, enzymatic and sugar metabolic profiles, adhesion abilities, and resistance to osmolytes, temperature, and antibiotics. Regarding the resistance of lactobacilli to most of the various stress factors tested, the milk isolate Lactobacillus plantarum IBB3036 showed better abilities than the chicken feces isolate Lactobacillus salivarius IBB3154. However, regarding the acidification tolerance and adherence ability, L. salivarius IBB3154 revealed better characteristics. Use of these two selected lactobacilli isolates together with proper prebiotics resulted in the preparation of two S1 and S2 bioformulations, which were injected in ovo into hen Cobb500 FF fertilized eggs. Furthermore, in vivo tests assessing the persistence of L. plantarum IBB3036 and L. salivarius IBB3154 in the chicken gastrointestinal tract was monitored by PCR-based classical and quantitative techniques and revealed the presence of both strains in fecal samples collected 3 days after hatching. Subsequently, the number of L. salivarius IBB3154 increased significantly in the chicken intestine, whereas the presence of L. plantarum IBB3036 was gradually decreased. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth.

    PubMed

    Keski-Nisula, Leea; Kyynäräinen, Hanna-Reetta; Kärkkäinen, Ulla; Karhukorpi, Jari; Heinonen, Seppo; Pekkanen, Juha

    2013-05-01

    To estimate the transmission of maternal vaginal microbiota to neonates during term delivery, focusing on Lactobacillus flora in relation to various obstetric clinical factors. Fifty consecutive pregnant healthy women with singleton term pregnancies and their newborn infants. Vertical transmission of Lactobacillus flora to the newborn during delivery was evaluated in 45 mother-newborn pairs. Lactobacillus-dominant mixed flora was detected in 90% (N = 45) of vaginal samples, but only in 28% (N = 14) of neonatal cultures (transmission rate 31%). All neonates with Lactobacillus-dominant mixed flora had findings similar to those in maternal cultures. Cocci-dominant flora was the most common finding in neonates. Administration of antibiotics to the mother during the intrapartum period before birth and duration of rupture of membranes (ROM), regardless of maternal antibiotic treatment, were associated significantly with a decreased transmission rate of Lactobacillus-dominant mixed flora to neonates. Maternal intrapartum antibiotics and prolonged expectant management after ROM were associated with decreased transmission rate of vaginal Lactobacillus flora to the neonate during birth. As early colonization of Lactobacillus flora may have a preventive role in the development of allergic diseases later, the significance of intrapartum prophylactic antibiotics needs to be highlighted in forthcoming studies, especially as regards immunological development of the offspring. ©2013 The Author(s)/Acta Paediatrica ©2013 Foundation Acta Paediatrica.

  1. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics.

    PubMed

    Lhomme, Emilie; Orain, Servane; Courcoux, Philippe; Onno, Bernard; Dousset, Xavier

    2015-11-20

    Fourteen bakeries located in different regions of France were selected. These bakers use natural sourdough and organic ingredients. Consequently, different organic sourdoughs used for the manufacture of French bread were studied by the enumeration of lactic acid bacteria (LAB) and 16S rRNA sequencing of the isolates. In addition, after DNA extraction the bacterial diversity was assessed by pyrosequencing of the 16S rDNA V1-V3 region. Although LAB counts showed significant variations (7.6-9.5log10CFU/g) depending on the sourdough studied, their identification through a polyphasic approach revealed a large predominance of Lactobacillus sanfranciscensis in all samples. In ten sourdoughs, both culture and independent methods identified L. sanfranciscensis as the dominant LAB species identified. In the remaining sourdoughs, culture methods identified 30-80% of the LAB as L. sanfranciscensis whereas more than 95% of the reads obtained by pyrosequencing belonged to L. sanfranciscensis. Other sub-dominant species, such as Lactobacillus curvatus, Lactobacillus hammesii, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei, were also identified. Quantification of L. sanfranciscensis by real-time PCR confirmed the predominance of this species ranging from 8.24 to 10.38log10CFU/g. Regarding the acidification characteristics, sourdough and related bread physico-chemical characteristics varied, questioning the involvement of sub-dominant species or L. sanfranciscensis intra-species diversity and/or the role of the baker's practices. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection.

    PubMed

    Percopo, Caroline M; Dyer, Kimberly D; Garcia-Crespo, Katia E; Gabryszewski, Stanislaw J; Shaffer, Arthur L; Domachowske, Joseph B; Rosenberg, Helene F

    2014-06-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient μMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.

  4. Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm.

    PubMed

    Vuotto, C; Barbanti, F; Mastrantonio, P; Donelli, G

    2014-10-01

    To evaluate the ability of the probiotic strain Lactobacillus brevis CD2 to inhibit the opportunistic anaerobe Prevotella melaninogenica (PM1), a well-known causative agent of periodontitis. The inhibitory effect of Lactobacillus CD2 on Prevotella PM1 biofilm was assessed both by exposing the anaerobe to the supernatant of the probiotic strain and by growing the two strains to obtain single or mixed biofilms. The inhibitory effect of CD2 on PM1 was also checked by the agar overlay method. The development of PM1 biofilm was strongly affected (56% decrease in OD value) by the CD2 supernatant after 96 h. A dose-dependent biofilm reduction was also observed at 1/10 and 1/100 dilutions of supernatant. Confocal microscopy on the mixed biofilms revealed the ability of CD2 to prevail on PM1, greatly reducing the biofilm of the latter. It has been hypothesized a multifactorial nature of the inhibition mechanism, the strong adherence ability of CD2 strain together with the released metabolites presumably contributing to the reduction in the PM1 biofilm detected by confocal microscopy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  6. Rapid molecular identification and characteristics of Lactobacillus strains.

    PubMed

    Markiewicz, L H; Biedrzycka, E; Wasilewska, E; Bielecka, M

    2010-09-01

    Eleven type strains and 24 Lactobacillus isolates, preliminarily classified to the species due to phenotypic features, were investigated. Standard methods of identification with species-specific PCRs and typing with PFGE (with ApaI, NotI and SmaI restriction enzymes) allowed us to distinguish 16 unique strains belonging to 5 species (L. acidophilus, L. delbrueckii ssp. bulgaricus, L. plantarum, L. rhamnosus, L. salivarius). Alternative approach with 16S-23S rDNA ARDRA identification (with merely two restrictases, BsuRI and TaqI) and PCR-based typing (RAPD with two random- and rep-PCR with (GTG)(5) primers) showed to be more discriminative, i.e. 21 unique strains were classified in the same species as above. As a result, 7 out of 24 phenotypically species-assigned isolates were reclassified. The alternative procedure of rapid identification and typing of Lactobacillus isolates appeared to be equally effective and shortened from 1 week to 2-3 d (in comparison to the standard methods).

  7. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    PubMed Central

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  8. Characterization of an intracellular oligopeptidase from Lactobacillus paracasei.

    PubMed Central

    Tobiassen, R O; Sørhaug, T; Stepaniak, L

    1997-01-01

    An intracellular oligopeptidase from Lactobacillus paracasei Lc-01 has been purified to homogeneity by Fast Flow Q Sepharose, hydroxyapatite, and Mono Q chromatography. The molecular mass of the enzyme was determined to be 140 kDa by gel filtration and approximately 30 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and SDS-capillary electrophoresis. The pI of the enzyme was at pH 4.5. The enzyme expressed maximum activity at pH 8.0 and 40 degrees C. Oligopeptidase activity on bradykinin was inhibited strongly by 1,10-phenantroline and EDTA and partly by p-chloromercuribenzoic acid but not by phosphoramidon or phenylmethylsulfonyl fluoride. Marked inhibition by beta-casein fragment 58 to 72 was demonstrated. The enzyme showed neither general aminopeptidase nor caseinolytic activity, and it degraded only oligopeptides between 8 and 13 amino acids. The enzyme readily hydrolyzed the Phe-Ser and Pro-Phe bonds of bradykinin; the Phe-His bond of angiotensin I; the Pro-Gln, Gln-Phe, and Phe-Gly bonds of substance P; and the Pro-Tyr bond of neurotensin. Weak activity toward the Ala-Tyr and Pro-Ser bonds of alpha(s1)-casein fragment 157 to 164, was observed. The N-terminal amino acid sequence of the oligopeptidase showed a high degree of homology to the lactacin B inducer from Lactobacillus acidophilus. PMID:9097425

  9. Potentially probiotic Lactobacillus strains from traditional Kurdish cheese.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Shahidi, Fakhri; Mortazavi, Seyed Ali; Milani, Elnaz; Eshaghi, Zarrin

    2014-03-01

    In this study, the probiotic potential of Lactobacillus strains isolated from traditional Kurdish cheese was investigated. The Lactobacillus strains were examined for resistance to gastric acidity and bile toxicity, antimicrobial activities, autoaggregation, coaggregation, hydrophobicity, adhesion to Caco-2 cells, and antibiotic susceptibility. The results showed that all strains tested tolerate acid gastric conditions (pH 2.0 and 3.0), and all of them were bile resistant (at 0.3 and 1% concentration). Although no antibacterial activity was detected in vitro assay for the treated (neutralized to pH 6.5 and treated with catalase) cell-free culture supernatant (CFCS) of strains, untreated CFCS showed strong antagonistic activity against two known pathogens bacteria. All strains exhibited a strong autoaggregating phenotype and manifested a high degree of coaggregation with pathogens. On the other hand, majority of studied strains were found sensitive to different antibiotics, such as ampicillin, penicillin, ciprofloxacin, chloramphenicol, erythromycin, rifampicin, and tetracycline, and were resistant to vancomycin and streptomycin. Finally, isolated strains showed good hydrophobicity and adherence to Caco-2 cell line, so they could be exploited for food manufacture.

  10. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    PubMed Central

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  11. The genome of the Lactobacillus sanfranciscensis temperate phage EV3

    PubMed Central

    2013-01-01

    Background Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. Results Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. Conclusions EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far. PMID:24308641

  12. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk.

    PubMed

    Riaz Rajoka, Muhammad Shahid; Zhao, Haobin; Lu, Yao; Lian, Ziyang; Li, Na; Hussain, Nazim; Shao, Dongyan; Jin, Mingliang; Li, Qi; Shi, Junling

    2018-05-15

    Lactic acid bacteria have been categorized as probiotics and play a crucial role in human health by stimulating the supply of nutrients, shaping the immune system, and preventing the colonization of pathogenic microbes. This study investigated the mechanisms for the action of three potential probiotic Lactobacillus strains: Lactobacillus casei SR1, Lactobacillus casei SR2, and Lactobacillus paracasei SR4 isolated from human breast milk. These Lactobacillus strains were identified via 16S DNA sequencing and characterized via biochemical assays including acid resistance, bile resistance, antioxidant activity, and antibiotic susceptibility. The bioactivity of the cell-free culture supernatant (CFCS) secreted by these strains on the cervix cancer (HeLa) cell line was also evaluated via cytotoxicity assay and apoptosis analysis. The mechanism of anticancer activity was also investigated via RT-qPCR and western blotting. The results demonstrated that these newly isolated Lactobacillus strains from human milk displayed noticeable probiotic characteristics such as excellent antibiotic susceptibility, outstanding antioxidant activity, and promising resistance to low pH and high concentration of bile salts. The results of the conducted bioactivity assays verified that the CFCSs had acceptable anticancer effects on cervix cancer (HeLa) cells by upregulating the expression of apoptotic genes BAX, BAD, caspase3, caspase8, and caspase9 and by downregulating the expression of the BCl-2 gene. Overall, these results indicate that the Lactobacillus strains isolated from human breast milk could be considered as a topical medication with a potential therapeutic index due to their efficacy against cervix cancer cells.

  13. Effects of antibiotic treatment on the lactobacillus composition of vaginal microbiota.

    PubMed

    Melkumyan, A R; Priputnevich, T V; Ankirskaya, A S; Murav'eva, V V; Lubasovskaya, L A

    2015-04-01

    We analyzed sensitivity of 123 vaginal lactobacillus strains to antibacterial substances. All lactobacillus strains were sensitive to ampicillin, cefazolin, cefotaxime, and vancomycin, and insensitive to metronidazole, trimethoprim/sulfamethoxazole, and levofloxacin. Lactobacillus strains demonstrated different sensitivity to gentamycin, clindamycin, erythromycin, ciprofloxacin, and tetracycline. The phenomenon of preferential selective influence of antibacterial drugs on the composition of lactobacilli of the vaginal microbiota, in which some lactobacilli survive as part of the vaginal microbiota and have a selective advantage over other types of lactobacilli, should be taken into account during treatment of vaginal infections and dysbiosis.

  14. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): Characterization, Manufacture, Mechanisms of Action, and Quality Control of a Specific Probiotic Combination for Primary Prevention of Clostridium difficile Infection.

    PubMed

    Auclair, Julie; Frappier, Martin; Millette, Mathieu

    2015-05-15

    A specific probiotic formulation composed of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+) has been marketed in North America since 1996. The strains and the commercial products have been evaluated for safety, identity, gastrointestinal survival, and stability throughout shelf life. The capacity of both the fermented beverages and the capsules to reduce incidences of antibiotic-associated diarrhea and Clostridium difficile infection (CDI) has been demonstrated in human clinical trials. Individual strains and the finished products have shown antimicrobial activity against C. difficile and toxin A/B neutralization capacity in vitro. The use of this specific probiotic formulation as part of a bundle of preventive measures to control CDI in healthcare settings is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Homodimeric β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: Expression in Lactobacillus plantarum and Biochemical Characterization

    PubMed Central

    2012-01-01

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ∼170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS. PMID:22283494

  16. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei.

    PubMed

    Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth.

  17. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization.

    PubMed

    Nguyen, Tien-Thanh; Nguyen, Hoang Anh; Arreola, Sheryl Lozel; Mlynek, Georg; Djinović-Carugo, Kristina; Mathiesen, Geir; Nguyen, Thu-Ha; Haltrich, Dietmar

    2012-02-22

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ~170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS.

  18. Lactobacillus paracasei and Lactobacillus plantarum strains downregulate proinflammatory genes in an ex vivo system of cultured human colonic mucosa.

    PubMed

    Bäuerl, Christine; Llopis, Marta; Antolín, María; Monedero, Vicente; Mata, Manuel; Zúñiga, Manuel; Guarner, Francisco; Pérez Martínez, Gaspar

    2013-03-01

    Significant health benefits have been demonstrated for certain probiotic strains through intervention studies; however, there is a shortage of experimental evidence relative to the mechanisms of action. Here, noninvasive experimental procedure based on a colon organ culture system has been used that, in contrast to most experimental in vitro models reported, can preserve natural immunohistochemical features of the human mucosa. This system has been used to test whether commensal lactobacilli (Lactobacillus paracasei BL23, Lactobacillus plantarum 299v and L. plantarum 299v (A(-))) were able to hinder inflammation-like signals induced by phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO). Whole genome microarrays have been applied to analyze expression differences, from which mRNA markers could be inferred to monitor the effect of putative probiotic strains under such conditions. Regarding the gene expression, PMA/IO treatment induced not only interleukin (IL)-2 and interferon gamma (IFN-γ), as expected, but also other relevant genes related to immune response and inflammation, such as IL-17A, chemokine (C-X-C motif) ligand (CXCL) 9 and CXCL11. The ex vivo culturing did not modify the pattern of expression of those genes or others related to inflammation. Interestingly, this study demonstrated that lactobacilli downregulated those genes and triggered a global change of the transcriptional profile that indicated a clear homeostasis restoring effect and a decrease in signals produced by activated T cells.

  19. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  20. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus.

    PubMed

    Ansari, Fereshteh; Pourjafar, Hadi; Jodat, Vahid; Sahebi, Javad; Ataei, Amir

    2017-12-01

    In this study, we examined a novel method of microencapsulation with calcium alginate-chitosan and Eudragit S100 nanoparticles for the improving viability of probiotic bacteria, Lactobacillus acidophilus and Lactobacillus rhamnosus. Extrusion technique was carried out in microencapsulation process. The viability of two probiotics in single coated beads (with only chitosan), double coated beads (with chitosan and Eudragit nanoparticles), and as free cells (unencapsulated) were conducted in simulated gastric juice (pH 1.55, without pepsin) followed by incubation in simulated intestinal juice (pH 7.5, with 1% bile salt). In case of single coated beads, presumably, lack of sufficient strength of chitosan under simulated gastric condition was the main reason of 4-log and 5-log reduction of the counts of the L. acidophilus and L. rhamnosus respectively. The results showed that with the second coat forming (Eudragit nanoparticles) over the first coat (chitosan), the strength of the beads and then viability rate of the bacteria were increased in comparison with the single coated beads.

  1. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    PubMed Central

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  3. The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content.

    PubMed

    Boekhorst, Jos; Siezen, Roland J; Zwahlen, Marie-Camille; Vilanova, David; Pridmore, Raymond D; Mercenier, Annick; Kleerebezem, Michiel; de Vos, Willem M; Brüssow, Harald; Desiere, Frank

    2004-11-01

    The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of Lactobacillus plantarum (3.3 Mb) and Lactobacillus johnsonii (2.0 Mb). L. johnsonii is predominantly found in the gastrointestinal tract, while L. plantarum is also found on plants and plant-derived material, and is used in a variety of industrial fermentations. The L. plantarum and L. johnsonii chromosomes have only 28 regions with conservation of gene order, totalling about 0.75 Mb; these regions are not co-linear, indicating major chromosomal rearrangements. Metabolic reconstruction indicates many differences between L. johnsonii and L. plantarum: numerous enzymes involved in sugar metabolism and in biosynthesis of amino acids, nucleotides, fatty acids and cofactors are lacking in L. johnsonii. Major differences were seen in the number and types of putative extracellular proteins, which are of interest because of their possible role in host-microbe interactions. The differences between L. plantarum and L. johnsonii, both in genome organization and gene content, are exceptionally large for two bacteria of the same genus, emphasizing the difficulty in taxonomic classification of lactobacilli.

  4. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces.

    PubMed

    Osawa, Ro; Fujisawa, Tomohiko; Pukall, Rüdiger

    2006-07-01

    A Gram-positive, rod-shaped, non-endospore-forming bacterium, strain ASB1(T), able to degrade tannin, was isolated from faeces of the Japanese large wood mouse, Apodemus speciosus. Comparative analysis of the 16S rRNA gene sequence revealed that the strain could be assigned as a member of the genus Lactobacillus. The nearest phylogenetic neighbours were determined as Lactobacillus animalis DSM 20602(T) (98.9 % 16S rRNA gene sequence similarity) and Lactobacillus murinus ASF 361 (98.9 %). Subsequent polyphasic analysis, including automated ribotyping and DNA-DNA hybridization experiments, confirmed that the isolate represents a novel species, for which the name Lactobacillus apodemi sp. nov. is proposed. The DNA G+C content of the novel strain is 38.5 mol%. The cell-wall peptidoglycan is of type A4alpha L-lys-D-asp. The type strain is ASB1(T) (=DSM 16634(T)=CIP 108913(T)).

  5. Antibiotic Resistances of Yogurt Starter Cultures Streptococcus thermophilus and Lactobacillus bulgaricus

    PubMed Central

    Sozzi, Tommaso; Smiley, Martin B.

    1980-01-01

    Twenty-nine strains of Lactobacillus bulgaricus and 15 strains of Streptococcus thermophilus were tested for resistance to 35 antimicrobial agents by using commercially available sensitivity disks. Approximately 35% of the isolates had uncharacteristic resistance patterns. PMID:16345654

  6. Complete Genome Sequence of the Probiotic Lactobacillus casei Strain BL23▿

    PubMed Central

    Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Bourand, Alexa; Loux, Valentin; Yebra, Maria Jesus; Monedero, Vicente; Correia, Karine; Jacques, Noémie; Beaufils, Sophie; Poncet, Sandrine; Joyet, Philippe; Milohanic, Eliane; Casarégola, Serge; Auffray, Yanick; Pérez-Martínez, Gaspar; Gibrat, Jean-François; Zagorec, Monique; Francke, Christof; Hartke, Axel; Deutscher, Josef

    2010-01-01

    The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar. PMID:20348264

  7. Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species.

    PubMed

    Aguirre Santos, Elsa Anaheim; Schieber, Andreas; Weber, Fabian

    2018-07-01

    Hydroxycinnamic acids are a major group of phenolic compounds widely distributed in plants. Among them, chlorogenic acids and caffeic acid have been in the focus of interest due to their impact on food quality and their putative health benefits. Numerous microorganisms like lactic acid bacteria are able to hydrolyze chlorogenic acids by cinnamoyl esterase enzymes. Data on the specificity of theses enzymes regarding the cleavage of distinct isomers of mono- or dichlorogenic acids is lacking. Lactobacillus reuteri, Lactobacillus helveticus, and Lactobacillus fermentum were screened for their ability to hydrolyze chlorogenic acid isomers in culture medium. Concentrations of chlorogenic acids and the released caffeic acid were determined by UHPLC-ESI-MS. The highest hydrolysis rate (100%) was observed for the hydrolysis of 5-CQA by Lactobacillus helveticus. A so far unknown metabolic pathway for the cleavage of 4-CQA is proposed including isomerization to 5-CQA and 3-CQA followed by hydrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Efficacy of supercritical carbon dioxide for inactivating Lactobacillus plantarum in apple cider

    USDA-ARS?s Scientific Manuscript database

    Juice makers have traditionally used thermal pasteurization to prevent deterioration by spoilage bacteria such as Lactobacillus plantarum; however this thermal processing causes adverse effects on product quality such as undesirable taste and destruction of heat sensitive nutrients. For this reason,...

  9. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    PubMed Central

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  10. [Identification and phylogenetic analysis of one strain of Lactobacillus delbrueckii subsp. bulgaricus separated from yoghourt].

    PubMed

    Wang, Chuan; Zhang, Chaowu; Pei, Xiaofang; Liu, Hengchuan

    2007-11-01

    For being further applied and studied, one strain of Lactobacillus delbrueckii subsp. bulgaricus (wch9901) separated from yoghourt which had been identified by phenotype characteristic analysis was identified by 16S rDNA and phylogenetic analyzed. The 16S rDNA of wch9901 was amplified with the genomic DNA of wch9901 as template, and the conservative sequences of the 16S rDNA as primers. Inserted 16S rDNA amplified into clonal vector pGEM-T under the function of T4 DNA ligase to construct recombined plasmid pGEM-wch9901 16S rDNA. The recombined plasmid was identified by restriction enzyme digestion, and the eligible plasmid was presented to sequencing company for DNA sequencing. Nucleic acid sequence was blast in GenBank and phylogenetic tree was constructed using neighbor-joining method of distance methods by Mega3.1 soft. Results of blastn showed that the homology of 16S rDNA of wch9901 with the 16S rDNA of Lactobacillus delbrueckii subsp. bulgaricus strains was higher than 96%. On the phylogenetic tree, wch9901 formed a separate branch and located between Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch and another evolution branch which was composed of Lactobacillus delbrueckii subsp. bulgaricus DL2 evolution cluster and Lactobacillus delbrueckii subsp. bulgaricus JSQ evolution cluster. The distance between wch9901 evolution branch and Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch was the closest. wch9901 belonged to Lactobacillus delbrueckii subsp. bulgaricus. wch9901 showed the closest evolution relationship to Lactobacillus delbrueckii subsp. bulgaricus LGM2.

  11. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection*

    PubMed Central

    Percopo, Caroline M.; Dyer, Kimberly D.; Garcia-Crespo, Katia E.; Gabryszewski, Stanislaw J.; Shaffer, Arthur L.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2014-01-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice (PVM), a property known as heterologous immunity. Lactobacillus-priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. As B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, here we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway immunoglobulins IgG, IgA and IgM and lung tissues with dense, B cell (B220+) enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of bronchus-associated lymphoid tissue. No B cells were detected in lung tissue of Lactobacillus-primed B-cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway immunoglobulins. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-gamma, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, L. plantarum-primed, B-cell deficient μMT and Jh mice were fully protected from an otherwise lethal PVM infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection. PMID:24748495

  12. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)). © 2015 IUMS.

  13. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model.

    PubMed

    Bhandari, Praveen; Prabha, Vijay

    2015-07-01

    Urogenital infections of bacterial origin have a high incidence among the female population at reproductive age, affecting the fertility. Strains of Escherichia coli can colonize the vagina and replace natural microflora. Lactobacillus the predominant vaginal microorganism in healthy women, maintains the acidic vaginal pH which inhibits pathogenic microorganisms. Studies on Lactobacillus have shown that these can inhibit E. coli growth and vaginal colonization. An alternative therapeutic approach to antimicrobial therapy is to re-establish Lactobacillus in this microbiome through probiotic administration to resurge fertility. Therefore, the aim of the present study was to determine the capability of L. plantarum 2621 strain with probiotic properties, to prevent the vaginal colonization of E. coli causing agglutination of sperms and to evaluate its profertility effect in a murine model. Screened mice were divided into five groups i.e. control group, E. coli group, Lactobacillus group, prophylactic and therapeutic groups. The control group was infused with 20 µl PBS, E.coli group was administered with 10 [6] cfu/20 µl E. coli, and probiotic group was administered with Lactobacillus (10 [8] cfu/20 µl) for 10 consecutive days. In prophylactic group, the vagina was colonized with 10 consecutive doses of Lactobacillus (10 [8] cfu/20 µl). After 24 h, it was followed by 10 day intravaginal infection with E. coli (10 [6] cfu/20 µl) whereas for the therapeutic group vagina was colonized with (10 [6] cfu/20 µl) E. coli for 10 consecutive days, followed by 10 day intravaginal administration with Lactobacillus after 24 h. Upon mating and completion of gestation period, control, probiotic and the therapeutic groups had litters in contrast to the prophylactic group and the group administered with E. coli. Results indicated that Lactobacillus intermitted colonization of pathogenic strains that resulted in reinforcement of natural microflora and resurge fertility.

  14. Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products.

    PubMed

    Chao, Shiou-Huei; Kudo, Yuko; Tsai, Ying-Chieh; Watanabe, Koichi

    2012-03-01

    Three Gram-stain-positive strains were isolated from fermented mustard and were rod-shaped, non-motile, asporogenous, facultatively anaerobic, homofermentative and did not exhibit catalase activity. Comparative analyses of 16S rRNA, pheS and rpoA gene sequences demonstrated that the novel strains were members of the genus Lactobacillus. On the basis of 16S rRNA gene sequence analysis, the type strains of Lactobacillus crustorum (98.7% similarity), Lactobacillus farciminis (98.9%) and Lactobacillus mindensis (97.9%) were the closest neighbours. However, DNA-DNA reassociation values with these strains were less than 50%. Phenotypic and genotypic features demonstrated that these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus futsaii sp. nov. is proposed; the type strain is YM 0097(T) (=JCM 17355(T)=BCRC 80278(T)).

  15. The use of Lactobacillus GG in irritable bowel syndrome in children: a double-blind randomized control trial.

    PubMed

    Bauserman, Melissa; Bausserman, Melissa; Michail, Sonia

    2005-08-01

    To determine whether oral administration of the probiotic Lactobacillus GG under randomized, double-blinded, placebo-controlled conditions would improve symptoms of irritable bowel syndrome (IBS) in children. Fifty children fulfilling the Rome II criteria for IBS were given Lactobacillus GG or placebo for 6 weeks. Response to therapy was recorded and collected on a weekly basis using the Gastrointestinal Symptom Rating Scale (GSRS). Lactobacillus GG was not superior to placebo in relieving abdominal pain (40.0% response rate in the placebo group vs 44.0% in the Lactobacillus GG group; P=.774). There was no difference in the other gastrointestinal symptoms, except for a lower incidence of perceived abdominal distention (P=.02 favoring Lactobacillus GG). Lactobacillus GG was not superior to placebo in the treatment of abdominal pain in children with IBS but may help relieve such symptoms as perceived abdominal distention.

  16. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988.

    PubMed

    Vancanneyt, M; Mengaud, J; Cleenwerck, I; Vanhonacker, K; Hoste, B; Dawyndt, P; Degivry, M C; Ringuet, D; Janssens, D; Swings, J

    2004-03-01

    Fourteen homofermentative lactic acid bacteria that were isolated from kefir grains and kefir fermented milks were assigned to either Lactobacillus kefiranofaciens or Lactobacillus kefirgranum, based on their characteristic morphotypes, phenotypic features and SDS-PAGE profiles of whole-cell proteins. Further genotypic analyses on representative strains from both taxa demonstrated that L. kefiranofaciens and L. kefirgranum share 100 % 16S rDNA sequence similarity and belong phylogenetically to the Lactobacillus acidophilus species group. DNA-DNA binding values of >79 % and analogous DNA G+C contents of 37-38 mol% showed that the strains studied belonged to one species: L. kefirgranum is a later synonym of L. kefiranofaciens. An emended description is proposed for L. kefiranofaciens. Due to the specific morphological and biochemical characteristics of these taxa in kefir grain formation, it is proposed that L. kefirgranum should be reclassified as L. kefiranofaciens subsp. kefirgranum subsp. nov.

  17. Characterization of a Feruloyl Esterase from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species. PMID:23793626

  18. Characterization of a feruloyl esterase from Lactobacillus plantarum.

    PubMed

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de Las Rivas, Blanca; Muñoz, Rosario

    2013-09-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species.

  19. Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages

    PubMed Central

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. PMID:25002431

  20. Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics

    PubMed Central

    Salas-Jara, María José; Ilabaca, Alejandra; Vega, Marco; García, Apolinaria

    2016-01-01

    Probiotics are live bacteria, generally administered in food, conferring beneficial effects to the host because they help to prevent or treat diseases, the majority of which are gastrointestinal. Numerous investigations have verified the beneficial effect of probiotic strains in biofilm form, including increased resistance to temperature, gastric pH and mechanical forces to that of their planktonic counterparts. In addition, the development of new encapsulation technologies, which have exploited the properties of biofilms in the creation of double coated capsules, has given origin to fourth generation probiotics. Up to now, reviews have focused on the detrimental effects of biofilms associated with pathogenic bacteria. Therefore, this work aims to amalgamate information describing the biofilms of Lactobacillus strains which are used as probiotics, particularly L. rhamnosus, L. plantarum, L. reuteri, and L. fermentum. Additionally, we have reviewed the development of probiotics using technology inspired by biofilms. PMID:27681929

  1. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value andmore » dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.« less

  2. Anaerobic sludge digestion in the presence of lactobacillus additive

    SciTech Connect

    Ghosh, S.; Klass, D.L.

    1980-01-01

    A laboratory evaluation of a lactobacillus fermentation product was performed to study its effects as an additive on the anaerobic digestion of sewage sludge under conventional and overloaded high-rate conditions. The overloaded conditions were those experienced in commercial municipal digesters. It was concluded from this work that the use of the additive at low concentrations permits digester operation at least up to double the loading of untreated digesters and at higher methane yields and volatile solids reductions without affecting effluent quality. The additive also imparts iproved digester stability and rapid response to loading rate and detention time excursions and upsets.more » The beneficial effets of the additive observed in the laboratory remain to be established with other feeds such as biomass, and in large-scale commercial digestion tests that are now in progress.« less

  3. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  4. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    PubMed

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  5. Molecular characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages.

    PubMed

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2014-09-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.

    PubMed

    Kung, Hsien-Feng; Lee, Yi-Chen; Huang, Ya-Ling; Huang, Yu-Ru; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2017-10-01

    Histamine is a toxic chemical and is the causative agent of food poisoning. This foodborne toxin may be degraded by the oxidative deamination activity of certain microorganisms. In this study, we isolated four histamine-degrading Lactobacillus plantarum bacteria from miso products. Among them, L. plantarum D-103 exhibited 100% degradation of histamine in de Man Rogosa Sharpe (MRS) broth containing 50 ppm of histamine after 24 h of incubation at 30°C. The optimal growth, histamine oxidase, and histamine-degrading activity of L. plantarum D-103 were observed in histamine MRS broth at pH 7.0, 3% NaCl, and 30°C. It also exhibited tolerance to broad ranges of pH (4 to 10) and salt concentrations (0 to 12%) in histamine MRS broth. Therefore, the histamine-degrading L. plantarum D-103 might be used as an additive culture to prevent histamine accumulation in miso products during fermentation.

  7. Lactobacillus plantarum and Its Probiotic and Food Potentialities.

    PubMed

    Seddik, Hamza Ait; Bendali, Farida; Gancel, Frédérique; Fliss, Ismail; Spano, Giuseppe; Drider, Djamel

    2017-06-01

    The number of studies claiming probiotic health effects of Lactobacillus plantarum is escalating. Lb. plantarum is a lactic acid bacterium found in diverse ecological niches, highlighting its particular capabilities of adaptation and genome plasticity. Another function that needs to be underlined is the capabilities of Lb. plantarum to produce diverse and potent bacteriocins, which are antimicrobial peptides with possible applications as food preservative or antibiotic complementary agents. Taken together, all these characteristics design Lb. plantarum as a genuine model for academic research and viable biological agent with promising applications. The present review aims at shedding light on the safety of Lb. plantarum and run through the main studies underpinning its beneficial claims. The mechanisms explaining probiotic-related features are discussed.

  8. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  9. Complete genomic sequence of the Lactobacillus temperate phage LF1.

    PubMed

    Yoon, Bo Hyun; Chang, Hyo Ihl

    2011-10-01

    Bacteriophage LF1, a newly isolated temperate phage from a mitomycin-C-induced lysate of wild type Lactobacillus fermentum, was found to contain a double-strand DNA of 42,606 base pairs (bp) with a G+C content of 45%. Bioinformatic analysis of the phage genome revealed 57 putative open reading frames (ORFs). The predicted protein products of ORFs were determined and described. According to morphological analysis by transmission electron microscopy (TEM), LF1 has an isometric head and a non-contractile tail, indicating that it belongs to the family Siphoviridae. The temperate phage LF1 has a good genetic mosaic relationship with ΦPYB5 in the packaging module. To our knowledge, this is first report of genomic sequencing and characterization of temperate phage LF1 from wild-type L. fermentum isolated from Kimchi in Korea.

  10. Persistent bacteremia secondary to delayed identification of Lactobacillus in the setting of mitral valve endocarditis.

    PubMed

    Stroupe, Cody; Pendley, Joseph; Isang, Emmanuel; Helms, Benjamin

    2017-01-01

    Lactobacillus species causing infective endocarditis is rare. Most reported cases arise from the oral ingestion of Lactobacillus via dairy or nutritional supplements in patients with congenital valve disease or replacement. We present a case of native valve bacterial endocarditis caused by Lactobacillus arising from dental abscesses. Additionally, there was an error in identification of the Lactobacillus as Corynebacterium , which led to inadequate treatment. A 51-year-old male presented to an outside clinic with several weeks of subjective fevers and malaise. The provider obtained two sets of blood cultures. Both grew Gram-positive bacilli identified as Corynebacterium . Once hospitalized he persistently had positive blood cultures despite treatment with vancomycin and gentamicin. The specimens were sent to a reference lab. The cultures were confirmed to be Lactobacillus zeae resistant to vancomycin and gentamicin. Once he was started on appropriate therapy his blood cultures showed no further growth of bacteria. The infected teeth were removed as it was felt they were the source of the bacteremia. This case presents two interesting topics in one encounter. First, Lactobacillus is not a common culprit in endocarditis. Secondly, the incorrect identification of the gram-positive bacilli bacteria led to prolonged bacteremia in our patient. The patient was evaluated by cardiothoracic surgery at our facility and it was determined that he would likely need a mitral valve replacement versus repair. The decision was made to treat the patient with six weeks Penicillin-VK prior to the operation. He is currently completing his antibiotic therapy.

  11. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogenss.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Nowaczek, Anna; Wernicki, Andrzej

    2016-03-01

    This study was conducted to identify and evaluate the antimicrobial activity of some Lactobacillus isolates of chicken origin. Among 90 isolates 14 Lactobacillus species were distinguished using MALDI-TOF mass spectrometry and 16S-ARDRA. The dominant species was L. salivarius (34.4%), followed by L. johnsonii (23.3%), L. crispatus (13.3%) and L. reuteri (11.1%). All lactobacilli were screened for antimicrobial activity against wild-type strains of Salmonella enterica, Escherichia coli, and Clostridium perfringens. Results from the agar slab method showed that all Lactobacillus isolates were able to produce active compounds on solid media with antagonistic properties against these pathogens. The highest sensitivity to lactobacilli was observed in C. perfringens strains, and the lowest in E. coli. Lactobacillus salivarius exhibited particularly strong antagonism towards all of the indicator bacteria. Strains of L. ingluviei and L. johnsonii and one strain of L. salivarius (10d) selectively inhibited the growth of C. perfringens. No antimicrobial activity of many Lactobacillus isolates was observed when cell-free culture supernatant was used in a well diffusion assay. All Lactobacillus isolates exhibited the ability to produce H2O2 and proved to be hydrophobic (excluding one of L. salivarius). [Int Microbiol 19(1):57-67 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  12. Lactobacillus reuteri 100-23 modulates urea hydrolysis in the murine stomach.

    PubMed

    Wilson, Charlotte M; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M; O'Toole, Paul W; Zomer, Aldert; Tannock, Gerald W

    2014-10-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  14. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Huys, Geert; Vandamme, Peter; De Vuyst, Luc; Vancanneyt, Marc

    2007-07-01

    A polyphasic taxonomic study of the lactic acid bacteria (LAB) population in three traditional Belgian sourdoughs, sampled between 2002 and 2004, revealed a group of isolates that could not be assigned to any recognized LAB species. Initially, sourdough isolates were screened by means of (GTG)(5)-PCR fingerprinting. Four isolates displaying unique (GTG)(5)-PCR patterns were further investigated by means of phenylalanyl-tRNA synthase (pheS) gene sequence analysis and represented a bifurcated branch that could not be allocated to any LAB species present in the in-house pheS database. Their phylogenetic affiliation was determined using 16S rRNA gene sequence analysis and showed that the four sourdough isolates belong to the Lactobacillus plantarum group with Lactobacillus mindensis, Lactobacillus farciminis and Lactobacillus nantensis as closest relatives. Further genotypic and phenotypic studies, including whole-cell protein analysis (SDS-PAGE), amplified fragment length polymorphism (AFLP) fingerprinting, DNA-DNA hybridization, DNA G+C content analysis, growth characteristics and biochemical features, demonstrated that the new sourdough isolates represent a novel Lactobacillus species for which the name Lactobacillus crustorum sp. nov. is proposed. The type strain of the new species is LMG 23699(T) (=CCUG 53174(T)).

  15. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  16. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay

    PubMed Central

    Sepp, Epp; Songisepp, Epp; Claus, Sandrine P.; Mikelsaar, Marika

    2015-01-01

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population. PMID:26437083

  17. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits.

    PubMed

    Chen, Yi-Sheng; Wang, Li-Ting; Liao, Yu-Jou; Lan, Yi-Shan; Chang, Chi-Huan; Chang, Yu-Chung; Wu, Hui-Chung; Lo, Huei-Yin; Otoguro, Misa; Yanagida, Fujitoshi

    2017-12-01

    Two Gram-stain-positive, catalase-negative, rod-shaped, bacterial strains (313 T and 311) were isolated from banana fruits in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both strains corresponded to the type strain of Lactobacillus nantensis (99.19 %), followed by Lactobacillus crustorum (98.99 %), Lactobacillus heilongjiangensis (98.59 %) and Lactobacillus farciminis (98.52 %). Phylogenetic analysis based on the sequences of two housekeeping genes, pheS and rpoA, revealed that these two strains were well separated from the Lactobacillus reference strains. DNA-DNA relatedness values revealed genotype separation of the two strains from the above four species. The DNA G+C content of strain 313 T was 35.5 mol%. The strains were homofermentative and mainly produced l-lactic acid from glucose. The major cellular fatty acids of strain 313 T were 18 : 1ω6c and/or 18 : 1ω7c, 16 : 0, and 19 : 1ω6c and/or 19 : 0 cyclo ω10c. Based on their physiological and genotypic characteristics, the isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillusmusae sp. nov. is proposed. The type strain is 313 T =NBRC 112868 T =BCRC 81020 T ).

  18. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F.

    PubMed

    Tyler, C A; Kopit, L; Doyle, C; Yu, A O; Hugenholtz, J; Marco, M L

    2016-05-01

    This study examined the fermentative growth and polyol production of Lactobacillus florum and other plant-associated lactic acid bacteria (LAB). Sugar consumption and end-product production were measured for Lact. florum 2F in the presence of fructose, glucose and both sugars combined. The genome of Lact. florum was examined for genes required for mannitol and erythritol biosynthesis. The capacity for other plant-associated LAB to synthesize polyols was also assessed. Lactobacillus florum exhibited higher growth rates and cell yields in the presence of both fructose and glucose. Lactobacillus florum 2F produced lactate, acetate and ethanol as well as erythritol and mannitol. Lactobacillus florum 2F synthesized mannitol during growth on fructose and erythritol during growth on glucose. Gene and protein homology searches identified a mannitol dehydrogenase in the Lact. florum 2F genome but not the genes responsible for erythritol biosynthesis. Lastly, we found that numerous other heterofermentative LAB species synthesize erythritol and/or mannitol. Lactobacillus florum is a recently identified, plant-associated, fructophilic LAB species. Our results show that Lact. florum growth rates and heterofermentation end-products differ depending on the sugar substrates present and growth yields can be improved when combinations of sugars are provided. Lactobacillus florum 2F produces erythritol and mannitol, two polyols that are relevant to foods and potentially also in plant environments. The capacity for polyol biosynthesis appears to be common among plant-associated, LAB species. © 2016 The Society for Applied Microbiology.

  19. Intestinal Lactobacillus community structure and its correlation with diet of Southern Chinese elderly subjects.

    PubMed

    Pan, Yuanyuan; Wang, Fang; Sun, Da-Wen; Li, Quanyang

    2016-09-01

    This study aimed to investigate the relationship between the intestinal Lactobacillus species and diet of elderly subjects in a longevity area in Southern China. Healthy elderly subjects ranging from 80 to 99 years old were respectively selected from the regions of Bama and Nanning, Guangxi, China. The nested polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) technology was used to analyze the intestinal Lactobacillus community structure. Results showed that Weissella confusa, L. mucosae, L. crispatus, L. salivarius, and L. delbrueckii were the representative Lactobacillus of elderly subjects. Among them, L. crispatus and L. delbrueckii were the dominant Lactobacillus of all species. In comparison to Nanning elderly subjects, the detection frequencies of W. confusa and L. salivarius were significantly increased in Bama elderly subjects (P < 0.01), whereas L. mucosae was significantly decreased (P < 0.01). Interestingly, it was also found that there were 4 kinds of representative Lactobacillus, which were significantly correlated with dietary fiber. W. confusa (P < 0.01) and L. salivarius (P < 0.05) were significantly positively correlated with the intake of dietary fiber, while L. mucosae (P < 0.01) and L. crispatus (P < 0.05) were significantly negatively correlated with the intake of dietary fiber, respectively. Results confirmed that different diets had obvious effects on the intestinal Lactobacillus community structure of elderly subjects in Southern China, which may provide a certain theoretical basis for the elderly's healthy food strategic design and probiotics product development.

  20. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay.

    PubMed

    Le Roy, Caroline I; Štšepetova, Jelena; Sepp, Epp; Songisepp, Epp; Claus, Sandrine P; Mikelsaar, Marika

    2015-10-13

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.

  1. Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach

    PubMed Central

    Wilson, Charlotte M.; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M.; O'Toole, Paul W.; Zomer, Aldert

    2014-01-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. PMID:25063664

  2. In vitro antagonistic effect of Lactobacillus on organisms associated with bacterial vaginosis.

    PubMed

    Strus, Magdalena; Malinowska, Magdalena; Heczko, Piotr B

    2002-01-01

    To assess antagonistic properties of Lactobacillus strains isolated from the vaginas of healthy women as compared to the most common bacterial agents related to vaginosis. Antagonistic activity of different Lactobacillus strains isolated from the vaginas of healthy women not treated for infections with an antibiotic for the previous three months was screened using an agar slab method. The activity was tested against test organisms associated with bacterial vaginosis and/or urinary tract infections: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli, Gardnerella vaginalis, Peptostreptococcus anaerobius and Prevotella bivia. Many of the 146 Lactobacillus strains tested exerted apparent antagonistic activities against gram-positive aerobic cocci and gram-negative rods, such as S aureus and E coli, and a marked number of Lactobacillus strains inhibited facultative bacteria, such as Gardnerella vaginalis and the anaerobes P anaerobius and P bivia. Only a few lactobacilli were able to inhibit growth of E faecalis and S agalactiae. Indicator bacteria growth inhibition probably relies upon several different complementary mechanisms. The specific indicator bacteria species determines which mechanism predominates. Lactobacillus strains taken from normal vaginal flora demonstrated antagonistic activity against a variety of bacteria related to vaginal and urinary tract infections. The specific occurrence rates of active Lactobacillus strains are different, and this difference is dependent on the indicator bacteria species.

  3. Manufacture of probiotic Minas Frescal cheese with Lactobacillus casei Zhang.

    PubMed

    Dantas, Aline B; Jesus, Vitor F; Silva, Ramon; Almada, Carine N; Esmerino, E A; Cappato, Leandro P; Silva, Marcia C; Raices, Renata S L; Cavalcanti, Rodrigo N; Carvalho, Celio C; Sant'Ana, Anderson S; Bolini, Helena M A; Freitas, Monica Q; Cruz, Adriano G

    2016-01-01

    In this study, the addition of Lactobacillus casei Zhang in the manufacture of Minas Frescal cheese was investigated. Minas Frescal cheeses supplemented with probiotic bacteria (Lactobacillus casei Zhang) were produced by enzymatic coagulation and direct acidification and were subjected to physicochemical (pH, proteolysis, lactic acid, and acetic acid), microbiological (probiotic and lactic bacteria counts), and rheological analyses (uniaxial compression and creep test), instrumental color determination (luminosity, yellow intensity, and red intensity) and sensory acceptance test. The addition of L. casei Zhang resulted in low pH values and high proteolysis indexes during storage (from 5.38 to 4.94 and 0.470 to 0.702, respectively). Additionally, the cheese protocol was not a hurdle for growth of L. casei Zhang, as the population reached 8.16 and 9.02 log cfu/g by means of the direct acidification and enzymatic coagulation protocol, respectively, after 21 d of refrigerated storage. The rheology data showed that all samples presented a more viscous-like behavior, which rigidity tended to decrease during storage and lower luminosity values were also observed. Increased consumer acceptance was observed for the control sample produced by direct acidification (7.8), whereas the cheeses containing L. casei Zhang presented lower values for all sensory attributes, especially flavor and overall liking (5.37 and 4.61 for enzymatic coagulation and 5.57 and 4.72 for direct acidification, respectively). Overall, the addition of L. casei Zhang led to changes in all parameters and affected negatively the sensory acceptance. The optimization of L. casei Zhang dosage during the manufacturing of probiotic Minas Frescal cheese should be performed. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Functional Analysis of the Lactobacillus casei BL23 Sortases

    PubMed Central

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2012-01-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  5. Lactobacillus acidophilus modulates the virulence of Clostridium difficile.

    PubMed

    Yun, B; Oh, S; Griffiths, M W

    2014-01-01

    Clostridium difficile is a spore-forming, toxin-producing, anaerobic bacterium that colonizes the human gastrointestinal tract. This pathogen causes antibiotic-associated diarrhea and colitis in animals and humans. Antibiotic-associated diseases may be treated with probiotics, and interest is increasing in such uses of probiotics. This study investigated the effect of Lactobacillus strains on the quorum-sensing signals and toxin production of C. difficile. In addition, an in vivo experiment was designed to assess whether Lactobacillus acidophilus GP1B is able to control C. difficile-associated disease. Autoinducer-2 activity was measured for C. difficile using the Vibrio harveyi coupled bioluminescent assay. Cell extract (10μg/mL) of L. acidophilus GP1B exhibited the highest inhibitory activity among 5 to 40μg/mL cell-extract concentrations. Real-time PCR data indicated decreased transcriptional levels in luxS, tcdA, tcdB, and txeR genes in the presence of 10μg/mL of cell extract of L. acidophilus GP1B. Survival rates at 5d for mice given the pathogen alone with L. acidophilus GP1B cell extract or L. acidophilus GP1B were 10, 70, and 80%, respectively. In addition, the lactic acid-produced L. acidophilus GP1B exhibits an inhibitory effect against the growth of C. difficile. Both the L. acidophilus GP1B and GP1B cell extract have significant antipathogenic effects on C. difficile. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei

    PubMed Central

    Rousseau, Geneviève M.; Capra, María L.; Quiberoni, Andrea; Tremblay, Denise M.; Labrie, Simon J.

    2015-01-01

    Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts. PMID:26475105

  7. Characterization of Two Virulent Phages of Lactobacillus plantarum

    PubMed Central

    Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea

    2012-01-01

    We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172

  8. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    PubMed

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.

    PubMed

    O'Sullivan, Daniel J; McSweeney, Paul L H; Cotter, Paul D; Giblin, Linda; Sheehan, Jeremiah J

    2016-04-01

    Nonstarter lactic acid bacteria are commonly implicated in undesirable gas formation in several varieties, including Cheddar, Dutch-, and Swiss-type cheeses, primarily due to their ability to ferment a wide variety of substrates. This effect can be magnified due to factors that detrimentally affect the composition or activity of starter bacteria, resulting in the presence of greater than normal amounts of fermentable carbohydrates and citrate. The objective of this study was to determine the potential for a facultatively heterofermentative Lactobacillus (Lactobacillus casei DPC6987) isolated from a cheese plant environment to promote gas defects in the event of compromised starter activity. A Swiss-type cheese was manufactured, at pilot scale and in triplicate, containing a typical starter culture (Streptococcus thermophilus and Lactobacillus helveticus) together with propionic acid bacteria. Lactobacillus helveticus populations were omitted in certain vats to mimic starter failure. Lactobacillus casei DPC6987 was added to each experimental vat at 4 log cfu/g. Cheese compositional analysis and X-ray computed tomography revealed that the failure of starter bacteria, in this case L. helveticus, coupled with the presence of a faculatively heterofermentative Lactobacillus (L. casei) led to excessive eye formation during ripening. The availability of excess amounts of lactose, galactose, and citrate during the initial ripening stages likely provided the heterofermentative L. casei with sufficient substrates for gas formation. The accrual of these fermentable substrates was notable in cheeses lacking the L. helveticus starter population. The results of this study are commercially relevant, as they demonstrate the importance of viability of starter populations and the control of specific nonstarter lactic acid bacteria to ensure appropriate eye formation in Swiss-type cheese. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights

  10. Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula

    PubMed Central

    Haarman, Monique; Knol, Jan

    2006-01-01

    The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants. PMID:16597930

  11. The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the "gastric barrier effect" in patients chronically treated with PPI: a pilot study.

    PubMed

    Del Piano, Mario; Anderloni, Andrea; Balzarini, Marco; Ballarè, Marco; Carmagnola, Stefania; Montino, Franco; Orsello, Marco; Pagliarulo, Michela; Tari, Roberto; Soattini, Liliana; Sforza, Filomena; Mogna, Luca; Mogna, Giovanni

    2012-10-01

    Gastroesophageal reflux disease is a very widespread condition. In Europe, it is estimated that about 175 million people suffer from this disease and have to chronically take drugs to increase gastric pH. The proton pump inhibitors (PPIs) such as omeprazole, lansoprazole, and esomeprazole are the most widely used drug typology in this regard. However, the inhibition of normal gastric acid secretion has important side effects, the most important being bacterial overgrowth in the stomach and duodenum with a concentration of >10⁵ viable cells/mL. As a major consequence of this, many harmful or even pathogenic bacteria contained in some foods could survive the gastric transit and colonize either the stomach itself, the duodenum, or the gut, where they could establish acute and even chronic infections with unavoidable consequences for the host's health. In other words, the "gastric barrier effect" is strongly reduced or even disrupted. To date, there are no real strategies to deal with this widespread, although still relatively little known, problem. The aim of this study was to confirm the gastric bacterial overgrowth in long-term PPI consumers and to assess the efficacy of some probiotic bacteria, belonging to both genera Lactobacillus and Bifidobacterium, in the reduction of gastric and duodenal bacterial overgrowth, therefore partially restoring the gastric barrier effect against foodborne pathogenic bacteria. For this purpose, probiotics with a strong demonstrated inhibitory activity on gram-negative bacteria, such as Escherichia coli, were tested in a human intervention trial involving a total of 30 subjects treated with PPIs for either 3 to 12 consecutive months (short-term) or >12 consecutive months (long-term). An additional 10 subjects not taking PPIs were enrolled and used as a control group representing the general population. Four selected probiotics Probiotical SpA (Novara, Italy), namely Lactobacillus rhamnosus LR06 (DSM 21981), Lactobacillus pentosus

  12. Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-zhe; Chen, Hsin-Chih; Chiang, Yu-Cheng; Tsen, Hau-Yang

    2009-01-01

    PCR primers specific for the detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum were designed based on the elongation factor Tu gene (tuf). The specificity of these four primer sets were confirmed by PCR with 88 bacterial strains of Lactobacillus, Enterococcus, Bifidobacterium, and other bacterial species. Results indicated that these primer sets generated predicted PCR products of 397, 230, 202, and 161 bp for L. acidophilus, L. delbrueckii, L. casei group, and B. longum, respectively. Bacterial species other than the target organisms tested did not generate false-positive results. When these four primer sets were combined for the simultaneous detection of the lactic acid bacteria (LAB) in fermented milk products including yogurt, the LAB species listed on the labels of these products could be identified without the preenrichment step. The identification limit for each LAB strain with this multiplex PCR method was N X 10(3) CFU/ml in milk samples. The results of our multiplex PCR method were confirmed by PCR assay using primers based on the 16S rDNA or the 16S-23S intergenic spacer region and by biochemical tests using the API 50 CHL kit. When this multiplex PCR method was used with the determination of counts of total viable LAB and bifidobacteria, the quality of commercial fermented milk products could be assured.

  13. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 Attenuate Gardnerella vaginalis-Infected Bacterial Vaginosis in Mice.

    PubMed

    Jang, Se-Eun; Jeong, Jin-Ju; Choi, Su-Young; Kim, Hyunji; Han, Myung Joo; Kim, Dong-Hyun

    2017-05-23

    Oral administration of a probiotic mixture (PM; Respecta ® ) consisting of Lactobacillus rhamnosus HN001 (L1), Lactobacillus acidophilus La-14 (L2), and lactoferrin RCXTM results in colonization of these probiotics in the vagina of healthy women. Therefore, we examined whether vaginal colonization of the PM ingredients L1 and L2 could attenuate bacterial vaginosis (BV). BV was induced in mice via β-estradiol-3-benzoate-induced immunosuppression and intravaginal inoculation with Gardnerella vaginalis (GV). Inflammatory markers were analyzed using enzyme-linked immunosorbent assay, immunoblotting, quantitative polymerase chain reaction, and flow cytometry. Oral or intravaginal administration of PM resulted in colonization of L1 and L2 in the vagina. Oral or intravaginal administration of L1, L2, or PM significantly inhibited GV-induced epithelial cell disruption, myeloperoxidase activity, NF-κB activation, and IL-1β and TNF-α expression ( p < 0.05). Administration of these probiotics also inhibited IL-17 and RORγt expression but increased IL-10 and Foxp3 expression. Of these probiotics, L2 most effectively attenuated GV-induced BV, followed by L1 and PM. Oral administration was more effective against GV-induced BV than intravaginal administration. L1 and L2 also significantly inhibited the adherence of GV to HeLa cells (a human cervical cancer cell line) and GV growth in vitro. In addition, L1 and L2 inhibited lipopolysaccharide-induced NF-κB activation in macrophages and the differentiation of splenocytes into Th17 cells in vitro, but increased their differentiation into Treg cells. Our study suggests that L1, L2, and PM attenuated GV-induced vaginosis by regulating both vaginal and systemic innate and adaptive immune responses rather than direct competition or killing of GV in the vagina.

  14. Detoxification of Aflatoxin B1 by Antifungal Compounds from Lactobacillus brevis and Lactobacillus paracasei, Isolated from Dairy Products.

    PubMed

    Gomaa, Eman Zakaria; Abdelall, Manal Farouk; El-Mahdy, Omima Mohammed

    2018-06-01

    Aflatoxins are a large group of highly toxic, mutagenic, and carcinogenic mycotoxins produced by specific species of fungi. Potential contamination of food commodities by these compounds causes extensive damage that lead to great economic losses. This study explored the potential use of antifungal compounds, produced by Lactobacillus brevis and Lactobacillus paracasei, for growth inhibition and subsequent aflatoxin B1 production from select strains of Aspergillus flavus and Aspergillus parasiticus. Lactobacilli strains were isolated from traditional Egyptian dairy products, whereas fungal strains were isolated from infected cereal seeds. There were noticeable decreases in mycelium biomass and aflatoxin production as well. L. brevis exhibited the highest reduction of aflatoxin B1 production by A. flavus and A. parasiticus, 96.31 and 90.43%, respectively. The concentrations of amino acids of the antifungal compound produced by L. brevis were significantly higher than that produced by L. paracasei. Asparagine, glutamine, glycine, alanine, and leucine were the most concentrated amino acids for both strains. The antifungal compounds produced by L. brevis and L. paracasei were active in a wide range of pH, heat stable and inactivated by proteolytic enzymes (protease K and trypsin A). The expression of Omt-A gene that involved in the later step of aflatoxin production was evaluated by real-time PCR. There was a vigorous reduction at transcriptional level of Omt-A gene observed in A. flavus that is treated by L. brevis and L. paracasei (80 and 70%, respectively). However, the reduction of Omt-A gene observed in A. parasiticus that is treated by L. brevis and L. paracasei was 64.5 and 52%, respectively. Treating maize seeds with antifungal compounds exhibited great efficiency in controlling fungal infection and increasing seed germination. The results confirmed that lactic acid bacteria are a promising strategy to control food contamination of fermented food and dairy

  15. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.

    PubMed

    Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z

    2014-04-01

    The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 Attenuate Gardnerella vaginalis-Infected Bacterial Vaginosis in Mice

    PubMed Central

    Jang, Se-Eun; Jeong, Jin-Ju; Choi, Su-Young; Kim, Hyunji; Han, Myung Joo; Kim, Dong-Hyun

    2017-01-01

    Oral administration of a probiotic mixture (PM; Respecta®) consisting of Lactobacillus rhamnosus HN001 (L1), Lactobacillus acidophilus La-14 (L2), and lactoferrin RCXTM results in colonization of these probiotics in the vagina of healthy women. Therefore, we examined whether vaginal colonization of the PM ingredients L1 and L2 could attenuate bacterial vaginosis (BV). BV was induced in mice via β-estradiol-3-benzoate-induced immunosuppression and intravaginal inoculation with Gardnerella vaginalis (GV). Inflammatory markers were analyzed using enzyme-linked immunosorbent assay, immunoblotting, quantitative polymerase chain reaction, and flow cytometry. Oral or intravaginal administration of PM resulted in colonization of L1 and L2 in the vagina. Oral or intravaginal administration of L1, L2, or PM significantly inhibited GV-induced epithelial cell disruption, myeloperoxidase activity, NF-κB activation, and IL-1β and TNF-α expression (p < 0.05). Administration of these probiotics also inhibited IL-17 and RORγt expression but increased IL-10 and Foxp3 expression. Of these probiotics, L2 most effectively attenuated GV-induced BV, followed by L1 and PM. Oral administration was more effective against GV-induced BV than intravaginal administration. L1 and L2 also significantly inhibited the adherence of GV to HeLa cells (a human cervical cancer cell line) and GV growth in vitro. In addition, L1 and L2 inhibited lipopolysaccharide-induced NF-κB activation in macrophages and the differentiation of splenocytes into Th17 cells in vitro, but increased their differentiation into Treg cells. Our study suggests that L1, L2, and PM attenuated GV-induced vaginosis by regulating both vaginal and systemic innate and adaptive immune responses rather than direct competition or killing of GV in the vagina. PMID:28545241

  18. A Lactobacillus-Deficient Vaginal Microbiota Dominates Postpartum Women in Rural Malawi

    PubMed Central

    2018-01-01

    ABSTRACT The bacterial community found in the vagina is an important determinant of a woman's health and disease status. A healthy vaginal microbiota is associated with low species richness and a high proportion of one of a number of different Lactobacillus spp. When disrupted, the resulting abnormal vaginal microbiota is associated with a number of disease states and poor pregnancy outcomes. Studies up until now have concentrated on relatively small numbers of American and European populations that may not capture the full complexity of the community or adequately predict what constitutes a healthy microbiota in all populations. In this study, we sampled and characterized the vaginal microbiota found on vaginal swabs taken postpartum from a cohort of 1,107 women in rural Malawi. We found a population dominated by Gardnerella vaginalis and devoid of the most common vaginal Lactobacillus species, even if the vagina was sampled over a year postpartum. This Lactobacillus-deficient anaerobic community, commonly labeled community state type (CST) 4, could be subdivided into four further communities. A Lactobacillus iners-dominated vaginal microbiota became more common the longer after delivery the vagina was sampled, but G. vaginalis remained the dominant organism. These results outline the difficulty in all-encompassing definitions of what a healthy or abnormal postpartum vaginal microbiota is. Previous identification of community state types and associations among bacterial species, bacterial vaginosis, and adverse birth outcomes may not represent the complex heterogeneity of the microbiota present. (This study has been registered at ClinicalTrials.gov as NCT01239693.) IMPORTANCE A bacterial community in the vaginal tract is dominated by a small number of Lactobacillus species, and when not present there is an increased incidence of inflammatory conditions and adverse birth outcomes. A switch to a vaginal bacterial community lacking in Lactobacillus species is common

  19. Lactobacillus-deficient vaginal microbiota dominate post-partum women in rural Malawi.

    PubMed

    Doyle, Ronan; Gondwe, Austridia; Fan, Yue-Mei; Maleta, Kenneth; Ashorn, Per; Klein, Nigel; Harris, Kathryn

    2018-01-05

    The bacterial community found in the vagina is an important determinant of a woman's health and disease. A healthy vaginal microbiota is associated with a lower species richness and high proportions of one of a number of different Lactobacillus spp.. When disrupted the resulting abnormal vaginal microbiota is associated with a number of disease states and poor pregnancy outcomes. Studies up until now have concentrated on relatively small numbers of American and European populations which may not capture the full complexity of the community, nor adequately predict what constitutes a healthy microbiota in all populations. In this study we sampled and characterised the vaginal microbiota from a cohort of 1107 women in rural Malawi found on vaginal swabs taken post-partum. We found a population dominated by Gardnerella vaginalis and devoid of the most common vaginal Lactobacillus species, even if the vagina was sampled over a year post-partum. The Lactobacillus -deficient anaerobic community commonly labelled community state type (CST) 4 could be sub-divided into four further communities. A Lactobacillus iners dominated vaginal microbiota became more common the longer after delivery the vagina was sampled, but G. vaginalis remained the dominant organism. These results outline the difficulty in all-encompassing definitions of what a healthy or abnormal vaginal microbiota is post-partum. Previous identification of community state types and associations between bacterial species, bacterial vaginosis and adverse birth outcomes may not represent the complex heterogeneity of the microbiota present. Importance A bacterial community in the vaginal tract that is dominated by small number of bacterial Lactobacillus species and when they are not present, there is a greater incidence of inflammatory conditions and adverse birth outcomes. A switch to a vaginal bacterial community lacking in Lactobacillus species is common after pregnancy. In this study we characterised the vaginal

  20. A Decade of Experience in Primary Prevention of Clostridium difficile Infection at a Community Hospital Using the Probiotic Combination Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+).

    PubMed

    Maziade, Pierre-Jean; Pereira, Pascale; Goldstein, Ellie J C

    2015-05-15

    In August 2003, the 284-bed community hospital Pierre-Le Gardeur (PLGH) in Quebec experienced a major outbreak associated with the Clostridium difficile NAP1/027/BI strain. Augmented standard preventive measures (SPMs) were not able to control this outbreak. It was decided in February 2004 to give to every adult inpatient on antibiotics, without any exclusion, a probiotic (Bio-K+: Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2) within 12 hours of the antibiotic prescription. Augmented SPMs were continued. The use of the probiotic in addition to SPMs was associated with a marked reduction of C. difficile infection (CDI). During the 10 years of observation, 44 835 inpatients received Bio-K+, and the CDI rate at PLGH declined from 18.0 cases per 10,000 patient-days and remained at low mean levels of 2.3 cases per 10,000 patient-days. Additionally, 10-year data collected by the Ministry of Health in Quebec comparing the CDI rate between Quebec hospitals showed that CDI rates at PLGH were consistently and continuously lower compared with those at similar hospitals. Blood cultures were monitored at PLGH for Lactobacillus bacteremia through the 10 years' experience, and no Lactobacillus bacteremias were detected. Despite the limitation of an observational study, we concluded that the probiotic Bio-K+ was safe and effective in decreasing our primary CDI rate. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Lactobacillus for preventing recurrent urinary tract infections in women: meta-analysis.

    PubMed

    Grin, Peter M; Kowalewska, Paulina M; Alhazzan, Waleed; Fox-Robichaud, Alison E

    2013-02-01

    Urinary tract infections (UTIs) are the most common infections affecting women, and often recur. Lactobacillus probiotics could potentially replace low dose, long term antibiotics as a safer prophylactic for recurrent UTI (rUTI). This systematic review and meta-analysis was performed to compile the results of existing randomized clinical trials (RCTs) to determine the efficacy of probiotic Lactobacillus species in preventing rUTI. MEDLINE and EMBASE were searched from inception to July 2012 for RCTs using a Lactobacillus prophylactic against rUTI in premenopausal adult women. A random-effects model meta-analysis was performed using a pooled risk ratio, comparing incidence of rUTI in patients receiving Lactobacillus to control. Data from 294 patients across five studies were included. There was no statistically significant difference in the risk for rUTI in patients receiving Lactobacillus versus controls, as indicated by the pooled risk ratio of 0.85 (95% confidence interval of 0.58-1.25, p = 0.41). A sensitivity analysis was performed, excluding studies using ineffective strains and studies testing for safety. Data from 127 patients in two studies were included. A statistically significant decrease in rUTI was found in patients given Lactobacillus, denoted by the pooled risk ratio of 0.51 (95% confidence interval 0.26-0.99, p = 0.05) with no statistical heterogeneity (I2 = 0%). Probiotic strains of Lactobacillus are safe and effective in preventing rUTI in adult women. However, more RCTs are required before a definitive recommendation can be made since the patient population contributing data to this meta-analysis was small.

  2. [Confocal laser scanning electron microscopy for assessment of vaginal Lactobacillus crispatus biofilm].

    PubMed

    Wu, Li-jie; Wang, Ben; Liao, Qin-ping; Zhang, Rui

    2015-12-18

    To investigate the female vaginal Lactobacillus crispatus biofilm by using confocal laser scanning microscopy (CLSM),thus revealing the formation of biofilm. The cover slide biofilm culture approach in vitro was employed for induction of the vaginal Lactobacillus crispatus biofilm formation. Following the culture for 2, 4, 8, 12, 16, 20, 24, 48, 72, 96 and 120 hours, the cover slide was removed for subsequent staining with the fluoresce in isothiocyanate-conjugated concanavalin A(FITC-ConA) and propidium (PI).This was followed by determination of the formation and characteristics of the vaginal Lactobacillus crispatus biofilm by using CLSM. The CLSM images of biofilm formation at different time points were captured, suggesting that the vaginal Lactobacillus crispatus adhesion occurred at h 4, which was in reversible attachment, then more and more Lactobacillus crispatus aggregated at h 8 to h 20, which was in irreversible attachment.Lactobacillus crispatus clustered at h 20, with early development of biofilm architecture.Then the biofilm with extracellular matrix around the bacteria was set up at h 24,with gradual matureation at h 24 to h 48.The biofilm dispersed at h 72. The biofilm density of cultivating for 20 hours was 42.7 × 10⁻³ ± 6.8 × 10⁻³ ,and for 24 hours increased to 102.5 × 10⁻³ ± 23.1 × 10⁻³, suggesting a significant difference, P<0.05. This meant that mature biofilm was formed at h 24. The vaginal Lactobacillus crispatus is able to form typical biofilm with distinct developmental phases and architecture characteristics.Mature biofilm is formed at h 24 to h 48, then the biofilm begins to disperse.

  3. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese.

    PubMed

    Oberg, Craig J; Oberg, Taylor S; Culumber, Michele D; Ortakci, Fatih; Broadbent, Jeffery R; McMahon, Donald J

    2016-01-01

    A Gram-stain positive, rod-shaped, non-spore-forming strain (WDC04T), which may be associated with late gas production in cheese, was isolated from aged Cheddar cheese following incubation on MRS agar (pH 5.2) at 6 °C for 35 days. Strain WDC04T had 97 % 16S rRNA gene sequence similarity with Lactobacillus hokkaidonensis DSM 26202T, Lactobacillus oligofermentans 533, 'Lactobacillus danicus' 9M3, Lactobacillus suebicus CCUG 32233T and Lactobacillus vaccinostercus DSM 20634T. API 50 CH carbohydrate fermentation panels indicated strain WDC04T could only utilize one of the 50 substrates tested, ribose, although it does slowly utilize galactose. In the API ZYM system, strain WDC04T was positive for leucine arylamidase, valine arylamidase, cysteine arylamidase (weakly), naphthol-AS-BI-phosphohydrolase and β-galactosidase activities. Total genomic DNA was sequenced from strain WDC04T using a whole-genome shotgun strategy on a 454 GS Titanium pyrosequencer. The sequence was assembled into a 1.90 Mbp draft genome consisting of 105 contigs with preliminary genome annotation performed using the RAST algorithm (rast.nmpdr.org). Genome analysis confirmed the pentose phosphate pathway for ribose metabolism as well as galactose, N-acetylglucosamine, and glycerol fermentation pathways. Genomic analysis places strain WDC04T in the obligately heterofermentative group of lactobacilli and metabolic results confirm this conclusion. The result of genome sequencing, along with 16S rRNA gene sequence analysis, indicates WDC04T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus wasatchensis sp. nov. is proposed. The type strain is WDC04T ( = DSM 29958T = LMG 28678T).

  4. Effect of lactobacillus in preventing post-antibiotic vulvovaginal candidiasis: a randomised controlled trial

    PubMed Central

    Pirotta, Marie; Gunn, Jane; Chondros, Patty; Grover, Sonia; O'Malley, Paula; Hurley, Susan; Garland, Suzanne

    2004-01-01

    Objective To test whether oral or vaginal lactobacillus can prevent vulvovaginitis after antibiotic treatment. Design Randomised, placebo controlled, double blind, factorial 2×2 trial. Setting Fifty general practices and 16 pharmacies in Melbourne, Australia. Participants Non-pregnant women aged 18-50 years who required a short course of oral antibiotics for a non-gynaecological infection: 278 were enrolled in the study, and results were available for 235. Interventions Lactobacillus preparations taken orally or vaginally, or both, from enrolment until four days after completion of their antibiotic course. Main outcome measures Participants' reports of symptoms of post-antibiotic vulvovaginitis, with microbiological evidence of candidiasis provided by a self obtained vaginal swab. Results Overall, 55/235 (23% (95% confidence interval 18% to 29%)) women developed post-antibiotic vulvovaginitis. Compared with placebo, the odds ratio for developing post-antibiotic vulvovaginitis with oral lactobacillus was 1.06 (95% confidence interval 0.58 to 1.94) and with vaginal lactobacillus 1.38 (0.75 to 2.54). Compliance with antibiotics and interventions was high. The trial was terminated after the second interim analysis because of lack of effect of the interventions. Given the data at this time, the chances of detecting a significant reduction in vulvovaginitis with oral or vaginal lactobacillus treatment were less than 0.032 and 0.0006 respectively if the trial proceeded to full enrolment. Conclusions The use of oral or vaginal forms of lactobacillus to prevent post-antibiotic vulvovaginitis is not supported by these results. Further research on this subject is unlikely to be fruitful, unless new understandings about the pathogenesis of post-antibiotic vulvovaginitis indicate a possible role for lactobacillus. PMID:15333452

  5. Viability and Stress Response of Putative Probiotic Lactobacillus plantarum Strains in Honey Environment.

    PubMed

    Landry, Bemmo Kamdem Ulrich; François, Zambou Ngoufack; Wang, Rui-Yan; Taicheng, Zhu; Li, Yin

    2017-12-01

    Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04 × 10 6  CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86 × 10 4  CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~ 50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.

  6. Lactobacillus ixorae sp. nov., isolated from a flower (West-Indian jasmine).

    PubMed

    Techo, Sujitra; Miyashita, Mika; Shibata, Chiyo; Tanaka, Naoto; Wisetkhan, Preeyarach; Visessanguan, Wonnop; Tanasupawat, Somboon

    2016-12-01

    A Gram-stain-positive, lactic acid bacterium, strain Ru20-1T, was isolated from a flower (West-Indian jasmine) collected from Kalasin province, Thailand. A polyphasic approach was used to determine the taxonomic position of this strain. Studies of morphological and biochemical characteristics revealed that strain Ru20-1T belonged to the genus Lactobacillus. The strain was heterofermentative, non-spore-forming and rod-shaped. It produced dl-lactic acid. Based on 16S rRNA gene sequence similarity, this strain was closely related to Lactobacillus lindneri LMG 14528T (96.8 %), Lactobacillus sanfranciscensis NRIC 1548T (95.4 %) and Lactobacillus florum NRIC 0771T (95.2 %), respectively. In addition, the pheS gene sequence of strain Ru20-1T was closely related to those of L. sanfranciscensis NRIC 1548T (92.0 %), L. lindneri LMG 14528T (89.0 %) and L. florum NRIC 0771T(85.0 %). Phylogenetic analysis indicated that strain Ru20-1T was clearly separated from closely related species of the genus Lactobacillus. The DNA G+C content of strain Ru20-1T was 47.8 mol %. The cell-wall peptidoglycan type was l-Lys-d-Asp. The major cellular fatty acids were C18 : 1ω9c, C20 : 0, C20 : 1ω9c and summed feature 7 (unknown 18.846 and/or C19 : 1ω6c and/or C19 : 0 cyclo). On the basis of the data provided, strain Ru20-1T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus ixorae sp. nov. is proposed. The type strain is Ru20-1T (=LMG 29008T=NBRC 111239T=PCU 346T=TISTR 2381T).

  7. Calcium phosphate supplementation increases faecal Lactobacillus spp. in a randomised trial of young adults.

    PubMed

    Dahl, W J; Ford, A L; Coppola, J A; Lopez, D; Combs, W; Rohani, A; Ukhanova, M; Culpepper, T; Tompkins, T A; Christman, M; Mai, V

    2016-02-01

    The aim of the studies was to determine the effects of calcium carbonate and calcium phosphate supplementation on faecal Lactobacillus spp., with and without a probiotic supplement, in healthy adults. Study 1 comprised of a randomised, double-blind, crossover design; participants (n=15) received 2 capsules/d of 250 mg elemental calcium as calcium carbonate (Ca1) and calcium phosphate (Ca2) each for 2-week periods, with 2-week baseline and washout periods. Study 2 was a randomised, double-blind, crossover design; participants (n=17) received 2 capsules/d of Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011 (probiotic) alone, the probiotic with 2 capsules/d of Ca1, and probiotic with 2 capsules/d of Ca2 each for 2-week periods with 2-week baseline and washout periods. In both studies, stools were collected during the baseline, intervention and washout periods for Lactobacillus spp. quantification and qPCR analyses. Participants completed daily questionnaires of stool frequency and compliance. In Study 1, neither calcium supplement influenced viable counts of resident Lactobacillus spp., genome equivalents of lactic acid bacteria or stool frequency. In Study 2, faecal Lactobacillus spp. counts were significantly enhanced from baseline when the probiotic was administered with Ca2 (4.83±0.30, 5.79±0.31) (P=0.02), but not with Ca1 (4.98±0.31) or with the probiotic alone (5.36±0.31, 5.55±0.29) (not significant). Detection of L. helveticus R0052 and L. rhamnosus R0011 was significantly increased with all treatments, but did not differ among treatments. There were no changes in weekly stool frequency. Calcium phosphate co-administration may increase gastrointestinal survival of orally-administered Lactobacillus spp.

  8. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    PubMed

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed

  9. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-03

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. Copyright © 2011. Published by Elsevier B.V.

  10. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    PubMed Central

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  12. Bile tolerance and its effect on antibiotic susceptibility of probiotic Lactobacillus candidates.

    PubMed

    Hyacinta, Májeková; Hana, Kiňová Sepová; Andrea, Bilková; Barbora, Čisárová

    2015-05-01

    Before use in practice, it is necessary to precisely identify and characterize a new probiotic candidate. Eight animal lactobacilli and collection strain Lactobacillus reuteri CCM 3625 were studied from the point of saccharide fermentation profiles, bile salt resistance, antibiogram profiles, and influence of bile on sensitivity to antibiotics. Studied lactobacilli differed in their sugar fermentation ability determined by API 50CHL and their identification based on these profiles did not correspond with molecular-biological one in most cases. Survival of strains Lactobacillus murinus C and L. reuteri KO4b was not affected by presence of bile. The resistance of genus Lactobacillus to vancomycin and quinolones (ofloxacin, ciprofloxacin) was confirmed in all strains tested. This study provides the new information about oxgall (0.5 and 1 %) effect on the lactobacilli antibiotic susceptibility. Antibiotic profiles were not noticeably affected, and both bile concentrations tested had comparable impact on the lactobacilli antibiotic sensitivity. Interesting change was noticed in L. murinus C, where the resistance to cephalosporins was reverted to susceptibility. Similarly, susceptibility of L. reuteri E to ceftazidime arose after incubation in both concentration of bile. After influence of 1 % bile, Lactobacillus mucosae D lost its resistance to gentamicin. On the base of gained outcomes, the best probiotic properties manifested L. reuteri KO4b, Lactobacillus plantarum KG4, and L. reuteri E due to their survival in the presence of bile.

  13. Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations.

    PubMed

    Nielsen, Dennis S; Schillinger, Ulrich; Franz, Charles M A P; Bresciani, José; Amoa-Awua, Wisdom; Holzapfel, Wilhelm H; Jakobsen, Mogens

    2007-07-01

    Three Gram-positive, catalase-negative, motile, rod-shaped strains, designated L486, L489(T) and L499, were isolated from fermenting cocoa. These organisms produced DL-lactic acid from glucose without gas formation. Ammonia was not produced from arginine. Acid was produced from amygdalin, D-cellobiose, aesculin, D-fructose, D-glucose, D-galactose, D-mannitol, D-mannose, N-acetylglucosamine, L-rhamnose, sucrose, salicin and D-trehalose. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type. A 16S rRNA gene sequence analysis revealed that the isolates belong phylogenetically to the genus Lactobacillus and are closely related to Lactobacillus nagelii, Lactobacillus vini and Lactobacillus satsumensis. Low DNA-DNA reassociation values were obtained between the isolates and the phylogenetically closest neighbours. On the basis of the genetic and phenotypic results, the isolates are considered to represent a novel species, for which the name Lactobacillus ghanensis is proposed. The type strain is L489(T) (=DSM 18630(T)=CCUG 53453(T)).

  14. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    PubMed Central

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  15. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection.

  17. Genotyping by randomly amplified polymorphic DNA of bacteriocin producing Lactobacillus acidophilus strains from Nigeria.

    PubMed

    Alli, John Adeolu; Iwalokun, Bamidele A; Oluwadun, Afolabi; Okonko, Iheanyi Omezuruike

    2015-01-01

    Yogurt and starter culture producers are still searching strains of Lactobacillus acidophilus to produce healthier yogurt with a longer shelf life and better texture, taste, and quality. This study determined the genotyping of bacteriocin producing Lactobacillus acidophilus strains recovered from Nigerian yogurts. Yogurt samples were collected from four different states of South West regions of Nigeria. Isolates were obtained from MRS Medium and biochemically characterized. This was further confirmed by API50CH. The bacteriocin positivity and activity was determined. Genomic characterization of our Lactobacillus acidophilus strains was done with randomly amplified polymorphic DNA-PCR. All yogurt samples containing Lactobacillus acidophilus strains meet the probiotic requirement of ≥10(6) cfu/mL. The gel picture revealed 6 RAPD clonal types of Lactobacillus acidophilus strains with RAPD type C observed to be more common. Significant differences existed in the mean growth inhibition zone (t = -7.32, P < 0.05 for E. coli ATCC; t = -6.19, P < 0.05 for E. coli clinical isolates; t = -6.16, P < 0.05 for Enterobacter sp; t = -11.92, P < 0.05 for Salmonella typhi, t = -1.10, P > 0.05 Staphylococcus aureus). No correlation between the bacteriocin production, activity, and their RAPD clonal division (X(2) = 7.49, P = 0.1610, df = 5). In conclusion, L. acidophilus isolated in Nigeria samples met the probiotic requirements of ≥10(6) cfu/mL and produce bacteriocins with good spectrum of activity.

  18. The protective effect of Lactobacillus and Bifidobacterium as the gut microbiota members against chronic urticaria.

    PubMed

    Rezazadeh, Akram; Shahabi, Shahram; Bagheri, Morteza; Nabizadeh, Edris; Jazani, Nima Hosseini

    2018-06-01

    Chronic Urticaria is a common disorder which is defined by recurrent occurrence of wheals and sometimes angioedema. It has a notable influence on the patients' quality of life. Regulation of the immune system is one of the important roles of the gut microbiota. The effect of dysbiosis considering some members of gut microbiota in patients with chronic urticaria has been demonstrated in our previous study. Comparing the frequency and bacterial load of Lactobacillus, Bifidobacterium, and Bacteroides between patients with chronic urticaria and healthy controls. 20 patients with chronic urticaria and 20 age and sex matched healthy individuals were included in the present study. Stool samples were analyzed for determining the frequency and bacterial load of Lactobacillus, Bifidobacterium, and Bacteroides genera. There were no significant differences among the frequencies of detectable Lactobacillus, Bifidobacterium, or Bacteroides in stool samples of patients with chronic urticaria and healthy controls. The relative amounts of Lactobacillus and Bifidobacterium were significantly higher in fecal samples from controls compared to patients with chronic urticaria (P = 0.038 and 0.039, respectively). It is the first study on the implication of Lactobacillus, Bifidobacterium, and Bacteroides genera as gut microbiota members in patients with chronic urticaria. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants.

    PubMed

    Marzotto, Marta; Maffeis, Claudio; Paternoster, Thomas; Ferrario, Rossano; Rizzotti, Lucia; Pellegrino, Maristella; Dellaglio, Franco; Torriani, Sandra

    2006-11-01

    This study focuses on the potentiality of a putative probiotic strain, Lactobacillus paracasei A, to survive gastrointestinal (GI) passage and modulate the resident microbiota of healthy infants. In a placebo-controlled study, 26 children aged 12-24 months received 100 g/day of either fermented milk containing strain A or pasteurized yogurt for four weeks. Fecal samples were analyzed before starting the administration, after 1, 3 and 4 weeks of consumption and after washout. The fate of strain A was followed by means of a newly developed PCR targeting a strain-specific genomic marker. The composition and dynamics of fecal microbial communities during the study were analyzed by culturing on selective media and by the PCR-denaturing gradient gel electrophoresis (DGGE) technique using universal and group-specific (Lactobacillus and Bifidobacterium) primers. The variation in enzymatic activities in infant feces during probiotic consumption was also analyzed. Strain A survived in fecal samples in most (92%) of the infants examined after 1 week of consumption, and temporarily dominated the intestinal Lactobacillus community. The administration of L. paracasei A led to a significant increment in the Lactobacillus population, while a moderate effect upon the main bacterial groups in the GI ecosystem was observed. Strain A also affected the diversity of the Lactobacillus and Bifidobacterium populations. The fecal bacterial structure of 1 - 2-year-old infants seems to combine neonate and adult-like features. The microbiota of these subjects promptly responded to probiotic consumption, later restoring the endogenous equilibrium.

  20. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kôso, a Japanese Sugar-Vegetable Fermented Beverage.

    PubMed

    Chiou, Tai-Ying; Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-14

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. Copyright © 2016 Chiou et al.

  1. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kôso, a Japanese Sugar-Vegetable Fermented Beverage

    PubMed Central

    Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-01

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. PMID:26769925

  2. Combination of Multiplex PCR and PCR-Denaturing Gradient Gel Electrophoresis for Monitoring Common Sourdough-Associated Lactobacillus Species

    PubMed Central

    Settanni, Luca; Valmorri, Sara; van Sinderen, Douwe; Suzzi, Giovanna; Paparella, Antonello; Corsetti, Aldo

    2006-01-01

    A combination of denaturing gradient gel electrophoresis (DGGE) and a previously described multiplex PCR approach was employed to detect sourdough lactobacilli. Primers specific for certain groups of Lactobacillus spp. were used to amplify fragments, which were analyzed by DGGE. DGGE profiles obtained from Lactobacillus type strains acted as standards to analyze lactobacilli from four regional Abruzzo (central Italy) sourdoughs. PMID:16672538

  3. Novel feruloyl esterase from Lactobacillus fermentum NRRL B-1932 and analysis of the recombinant enzyme produced in Escherichia coli.

    USDA-ARS?s Scientific Manuscript database

    Using agar plates containing ethyl ferulate as the sole carbon source, 33 Lactobacillus strains were screened for feruloyl esterase (FE) activity. Among a dozen species showing a clearing zone on the opaque plate containing ethyl ferulate, Lactobacillus fermentum NRRL B-1932 demonstrated the stronge...

  4. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii.

    PubMed

    Tanigawa, Kana; Watanabe, Koichi

    2011-03-01

    Currently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080(T), was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.

  5. The genomes and comparative genomics of Lactobacillus delbrueckii phages.

    PubMed

    Riipinen, Katja-Anneli; Forsman, Päivi; Alatossava, Tapani

    2011-07-01

    Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.

  6. Study of probiotic potential of four wild Lactobacillus rhamnosus strains.

    PubMed

    Tuo, Yanfeng; Zhang, Weiqin; Zhang, Lanwei; Ai, Lianzhong; Zhang, Yingchun; Han, Xue; Yi, Huaxi

    2013-06-01

    The four wild Lactobacillus rhamnosus strains were examined in vitro for resistance to simulated gastro and intestinal juices, adhesion to HT-29 cells, antagonistic activity against enteric pathogens and immunomodulating activity. The strains L. rhamnosus SB5L, J5L and IN1L were able to survive in simulated gastro juice while the strain L. rhamnosus SB31L lost viability exposed to simulated gastro juice for 3 h. The four strains had high viability in simulated small intestinal juice with little loss (<1.0 cycle reduction). The strains SB5L, J5L and IN1L antagonized against Escherichia coli ATCC 25922, Salmonella enterica serovar Typhimurium ATCC 14028, Shigella sonnei ATCC 25931. The strain L. rhamnosus IN1L had the highest adhesive capability to HT-29 cells in vitro (251 bacteria cells per 100 HT-29 cells) compared to the other three L. rhamnosus strains. The live bacteria, cell wall and DNA of the four L. rhamnosus induced the secretion of pro-inflammatory cytokines IL-12 (p70), IFN-γ and TNF-α by human peripheral blood mononuclear cells (PBMCs). The levels of IL-12 (p70), IFN-γ and TNF-α produced by stimulated PBMCs were significantly higher (P < 0.05) than those of the control. Those data indicated that the four L. rhamnosus strains have the potential as the probiotic for human being use, although further studies are still needed. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Role of Lactobacillus reuteri in Human Health and Diseases

    PubMed Central

    Mu, Qinghui; Tavella, Vincent J.; Luo, Xin M.

    2018-01-01

    Lactobacillus reuteri (L. reuteri) is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases. PMID:29725324

  8. Genome shuffling of Lactobacillus plantarum C88 improves adhesion.

    PubMed

    Zhao, Yujuan; Duan, Cuicui; Gao, Lei; Yu, Xue; Niu, Chunhua; Li, Shengyu

    2017-01-01

    Genome shuffling is an important method for rapid improvement in microbial strains for desired phenotypes. In this study, ultraviolet irradiation and nitrosoguanidine were used as mutagens to enhance the adhesion of the wild-type Lactobacillus plantarum C88. Four strains with better property were screened after mutagenesis to develop a library of parent strains for three rounds of genome shuffling. Fusants F3-1, F3-2, F3-3, and F3-4 were screened as the improved strains. The in vivo and in vitro tests results indicated that the population after three rounds of genome shuffling exhibited improved adhesive property. Random Amplified Polymorphic DNA results showed significant differences between the parent strain and recombinant strains at DNA level. These results suggest that the adhesive property of L. plantarum C88 can be significantly improved by genome shuffling. Improvement in the adhesive property of bacterial cells by genome shuffling enhances the colonization of probiotic strains which further benefits to exist probiotic function.

  9. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice.

    PubMed

    Tian, Fengwei; Zhai, Qixiao; Zhao, Jianxin; Liu, Xiaoming; Wang, Gang; Zhang, Hao; Zhang, Heping; Chen, Wei

    2012-12-01

    Lead causes a broad range of adverse effects in humans and animals. The objective was to evaluate the potency of lactobacilli to bind lead in vitro and the protective effects of a selected Lactobacillus plantarum CCFM8661 against lead-induced toxicity in mice. Nine strains of bacteria were used to investigate their binding abilities of lead in vitro, and L. plantarum CCFM8661 was selected for animal experiments because of its excellent lead binding capacity. Both living and dead L. plantarum CCFM8661 were used to treat 90 male Kunming mice during or after the exposure to 1 g/L lead acetate in drinking water. The results showed oral administration of both living and dead L. plantarum CCFM8661 offered a significant protective effect against lead toxicity by recovering blood δ-aminolevulinic acid dehydratase activity, decreasing the lead levels in blood and tissues, and preventing alterations in the levels of glutathione, glutathione peroxidase, malondialdehyde, superoxide dismutase, and reactive oxygen species caused by lead exposure. Moreover, L. plantarum CCFM8661 was more effective when administered consistently during the entire lead exposure, not after the exposure. Our results suggest that L. plantarum CCFM8661 has the potency to provide a dietary strategy against lead toxicity.

  10. Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate.

    PubMed

    Hiraga, Kazumi; Ueno, Yoshie; Oda, Kohei

    2008-05-01

    In this study, the glutamate decarboxylase (GAD) gene from Lactobacillus brevis IFO12005 (Biosci. Biotechnol. Biochem., 61, 1168-1171 (1997)), was cloned and expressed. The deduced amino acid sequence showed 99.6% and 53.1% identity with GAD of L. brevis ATCC367 and L. lactis respectively. The His-tagged recombinant GAD showed an optimum pH of 4.5-5.0, and 54 kDa on SDS-PAGE. The GAD activity and stability was significantly dependent on the ammonium sulfate concentration, as observed in authentic GAD. Gel filtration showed that the inactive form of the GAD was a dimer. In contrast, the ammonium sulfate-activated form was a tetramer. CD spectral analyses at pH 5.5 revealed that the structures of the tetramer and the dimer were similar. Treatment of the GAD with high concentrations of ammonium sulfate and subsequent dilution with sodium glutamate was essential for tetramer formation and its activation. Thus the biochemical properties of the GAD from L. brevis IFO12005 were significantly different from those from other sources.

  11. Enteric coating of granules containing the probiotic Lactobacillus acidophilus.

    PubMed

    Pyar, Hassan; Peh, Kok-Khiang

    2014-06-01

    In the present study, a capsule formulation composed of enteric coated granules of Lactobacillus acidophilus ATCC 4962 was developed using Eudragit L30D-55 as enteric polymer. Optimization of the capsule formulation was achieved with a maximum viable cell count after 2 h of incubation in acid medium and disintegration time of 1 h in buffer pH 6.8. The amount of Eudragit L30D-55 in the capsules correlated with gastric juice resistance. The best protective qualities against artificial gastric juice were observed when capsules were prepared from granules composed of L. acidophilus, corn starch, lactose monohydrate, polyvinylpyrrolidone and coated with 12.5 % (m/V) of Eudragit L30D-55. Capsule formulation of L. acidophilus in edible broth medium suspension serves as a cheap alternative to the expensive freeze-drying procedure for preparing L. acidophilus. In addition, the enteric coating using Eudragit L30D-55 could protect probiotics from the acidic gastric environment and enhance the bioactivity of probiotics along with replacement of pathogenic microbes in human intestine.

  12. Lactobacillus acidophilus—Rutin Interplay Investigated by Proteomics

    PubMed Central

    Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna

    2015-01-01

    Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus. PMID:26544973

  13. Lactobacillus acidophilus-Rutin Interplay Investigated by Proteomics.

    PubMed

    Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna

    2015-01-01

    Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus.

  14. Purification and Characterization of an Arginine Aminopeptidase from Lactobacillus sakei

    PubMed Central

    Sanz, Yolanda; Toldrá, Fidel

    2002-01-01

    An arginine aminopeptidase (EC 3.4.11.6) that exclusively hydrolyzes basic amino acids from the amino (N) termini of peptide substrates has been purified from Lactobacillus sakei. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included hydrophobic interaction, gel filtration, and anion-exchange chromatography. This procedure resulted in a recovery rate of 4.2% and a 500-fold increase in specific activity. The aminopeptidase appeared to be a trimeric enzyme with a molecular mass of 180 kDa. The activity was optimal at pH 5.0 and 37°C. The enzyme was inhibited by sulfhydryl group reagents and several divalent cations (Cu2+, Hg2+, and Zn2+) but was activated by reducing agents, metal-chelating agents, and sodium chloride. The enzyme showed a preference for arginine at the N termini of aminoacyl derivatives and peptides. The Km values for Arg-7-amido-4-methylcoumarin (AMC) and Lys-AMC were 15.9 and 26.0 μM, respectively. The nature of the amino acid residue at the C terminus of dipeptides has an effect on hydrolysis rates. The activity was maximal toward dipeptides with Arg, Lys, or Ala as the C-terminal residue. The properties of the purified enzyme, its potential function in the release of arginine, and its further metabolism are discussed because, as a whole, it could constitute a survival mechanism for L. sakei in the meat environment. PMID:11916721

  15. Efficacy of Lactobacillus reuteri DSM 17938 for infantile colic

    PubMed Central

    Gutiérrez-Castrellón, Pedro; Indrio, Flavia; Bolio-Galvis, Alexis; Jiménez-Gutiérrez, Carlos; Jimenez-Escobar, Irma; López-Velázquez, Gabriel

    2017-01-01

    Abstract Background: 5% to 40% of infants cry excessively, usually accompanied by fussiness and excessive of gas. There are no uniform criteria for treatment of infantile colic. Lactobacillus reuteri DSM 17938 has been used with promising results. The objective of this network-meta-analysis (NMA) is to compare the efficacy of L reuteri DSM 17938 with other interventions for infantile colic. Methods: RCTs, published between 1960 and 2015 for the treatment of infantile colic were included. Primary outcome was duration of crying after 21 to 28 days of treatment. Different databases were searched. Information was analyzed using control group as central axis. A random effect model was used. Hedges standard mean difference (SMD) and odds ratio (OR) were calculated. A SUCRA analysis was performed to evaluate superiority for each intervention. Results: 32 RCTs were analyzed, including 2242 patients. Studies with L reuteri DSM 17938 versus Ctrl., Diet versus Ctrl. and Acupuncture versus Ctrl. were the most influential studies in the NMA. L reuteri DSM 17938 [WMD −51.3 h (CI95% −72.2 to −30.5 h), P .0001] and dietetic approaches [WMD −37.4 h (CI95% −56.1 to −18.7 h), P .0001] were superior compared to the other treatments. Conclusions: L reuteri DSM 17938 and some dietetic approaches are better to other interventions for treatment of infantile colic. PMID:29390535

  16. [Construction of Lactobacillus rhamnosus GG particles surface display system].

    PubMed

    Su, Runyu; Nie, Boyao; Yuan, Shengling; Tao, Haoxia; Liu, Chunjie; Yang, Bailiang; Wang, Yanchun

    2017-01-25

    To describe a novel particles surface display system which is consisted of gram-positive enhancer matrix (GEM) particles and anchor proteins for bacteria-like particles vaccines, we treated Lactobacillus rhamnosus GG bacteria with 10% heated-TCA for preparing GEM particles, and then identified the harvested GEM particles by electron microscopy, RT-PCR and SDS-PAGE. Meanwhile, Escherichia coli was induced to express hybrid proteins PA3-EGFP and P60-EGFP, and GEM particles were incubated with them. Then binding of anchor proteins were determined by Western blotting, transmission electron microscopy, fluorescence microscopy and spectrofluorometry. GEM particles preserved original size and shape, and proteins and DNA contents of GEM particles were released substantially. The two anchor proteins both had efficiently immobilized on the surface of GEM. GEM particles that were bounded by anchor proteins were brushy. The fluorescence of GEM particles anchoring PA3 was slightly brighter than P60, but the difference was not significant (P>0.05). GEM particles prepared from L. rhamnosus GG have a good binding efficiency with anchor proteins PA3-EGFP and P60-EGFP. Therefore, this novel foreign protein surface display system could be used for bacteria-like particle vaccines.

  17. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

    PubMed Central

    2014-01-01

    Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains. PMID:25186587

  18. Metabolic flux analysis of carbon balance in Lactobacillus strains.

    PubMed

    Zhang, Yixing; Zeng, Fan; Hohn, Keith; Vadlani, Praveen V

    2016-11-01

    Metabolic flux analyses were performed based on the carbon balance of six different Lactobacillus strains used in this study. Results confirmed that L. delbrueckii, L. plantarum ATCC 21028, L. plantarum NCIMB 8826 ΔldhL1, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB metabolized glucose via EMP: whereas, L. brevis metabolized glucose via PK pathway. Xylose was metabolized through the PK pathway in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB. Operation of both EMP and PK pathways was found in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB when glucose plus xylose were used as carbon source. The information of detailed carbon flow may help the strain and biomass selection in a designed process of lactic acid biosynthesis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1397-1403, 2016. © 2016 American Institute of Chemical Engineers.

  19. Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei.

    PubMed

    Ferreira, A; Vecino, X; Ferreira, D; Cruz, J M; Moldes, A B; Rodrigues, L R

    2017-07-01

    Cosmetic and personal care products including toothpaste, shampoo, creams, makeup, among others, are usually formulated with petroleum-based surfactants, although in the last years the consume trend for "green" products is inducing the replacement of surface-active agents in these formulations by natural surfactants, so-called biosurfactants. In addition to their surfactant capacity, many biosurfactants can act as good emulsifiers, which is an extra advantage in the preparation of green cosmetic products. In this work, a biosurfactant obtained from Lactobacillus paracasei was used as a stabilizing agent in oil-in-water emulsions containing essential oils and natural antioxidant extract. In the presence of biosurfactant, maximum percentages of emulsion volumes (EV=100%) were observed, with droplets sizes about 199nm. These results were comparable with the ones obtained using sodium dodecyl sulfate (SDS), a synthetic well known surfactant with high emulsify capacity. Moreover, the biosurfactant and emulsions cytotoxicity was evaluated using a mouse fibroblast cell line. Solutions containing 5g/L of biosurfactant presented cell proliferation values of 97%, whereas 0.5g/L of SDS showed a strong inhibitory effect. Overall, the results herein gathered are very promising towards the development of new green cosmetic formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Adhesion properties of potentially probiotic Lactobacillus kefiri to gastrointestinal mucus.

    PubMed

    Carasi, Paula; Ambrosis, Nicolás M; De Antoni, Graciela L; Bressollier, Philippe; Urdaci, María C; Serradell, María de los Angeles

    2014-02-01

    We investigated the mucus-binding properties of aggregating and non-aggregating potentially probiotic strains of kefir-isolated Lactobacillus kefiri, using different substrates. All the strains were able to adhere to commercial gastric mucin (MUCIN) and extracted mucus from small intestine (SIM) and colon (CM). The extraction of surface proteins from bacteria using LiCl or NaOH significantly reduced the adhesion of three selected strains (CIDCA 8348, CIDCA 83115 and JCM 5818); although a significant proportion (up to 50%) of S-layer proteins were not completely eliminated after treatments. The surface (S-layer) protein extracts from all the strains of Lb. kefiri were capable of binding to MUCIN, SIM or CM, and no differences were observed among them. The addition of their own surface protein extract increased adhesion of CIDCA 8348 and 83115 to MUCIN and SIM, meanwhile no changes in adhesion were observed for JCM 5818. None of the seven sugars tested had the ability to inhibit the adhesion of whole bacteria to the three mucus extracts. Noteworthy, the degree of bacterial adhesion reached in the presence of their own surface protein (S-layer) extract decreased to basal levels in the presence of some sugars, suggesting an interaction between the added sugar and the surface proteins. In conclusion, the ability of these food-isolated bacteria to adhere to gastrointestinal mucus becomes an essential issue regarding the biotechnological potentiality of Lb. kefiri for the food industry.

  1. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.

    PubMed

    Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk

    2016-12-01

    This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.

  2. Production and physicochemical properties of recombinant Lactobacillus plantarum tannase.

    PubMed

    Curiel, José Antonio; Rodríguez, Héctor; Acebrón, Iván; Mancheño, José Miguel; De Las Rivas, Blanca; Muñoz, Rosario

    2009-07-22

    Tannase is an enzyme with important biotechnological applications in the food industry. Previous studies have identified the tannase encoding gene in Lactobacillus plantarum and also have reported the description of the purification of recombinant L. plantarum tannase through a protocol involving several chromatographic steps. Here, we describe the high-yield production of pure recombinant tannase (17 mg/L) by a one-step affinity procedure. The purified recombinant tannase exhibits optimal activity at pH 7 and 40 degrees C. Addition of Ca(2+) to the reaction mixture greatly increased tannase activity. The enzymatic activity of tannase was assayed against 18 simple phenolic acid esters. Only esters derived from gallic acid and protocatechuic acid were hydrolyzed. In addition, tannase activity was also assayed against the tannins tannic acid, gallocatechin gallate, and epigallocatechin gallate. Despite L. plantarum tannase representing a novel family of tannases, which shows no significant similarity to tannases from fungal sources, both families of enzymes shared similar substrate specificity range. The physicochemical characteristics exhibited by L. plantarum recombinant tannase make it an adequate alternative to the currently used fungal tannases.

  3. Use of Lactobacillus johnsonii in broilers challenged with Salmonella sofia.

    PubMed

    Olnood, Chen G; Beski, Sleman S M; Choct, Mingan; Iji, Paul A

    2015-09-01

    The effects of Lactobacillus johnsonii (L. johnsonii) on gut microflora, bird performance and intestinal development were assessed using 288 one-day-old Cobb broilers challenged with Salmonella sofia ( S . sofia ). The experiment was a 3 × 2 factorial design which consisted of three treatments, a negative control (NC) with no additives, a positive control (PC) containing antimicrobials (zinc-bacitracin, 50 mg/kg) and a probiotic group (Pro), and with the two factors being unchallenged or challenged with S . sofia . A probiotic preparation of L . johnsonii (10 9 cfu/chick) was administered to chicks individually by oral gavage on days 1, 3, 7 and 12. Chicks were individually challenged with S. sofia (10 7 cfu/chick) by oral gavage on d 2, 8 and 13. Results showed that the challenge itself markedly reduced ( P < 0.05) bird performance and feed intake. And, transient clinical symptoms of the infection with S . sofia were observed from the second time they were challenged with S . sofia in the negative challenge groups. The novel probiotic candidate L . johnsonii reduced the number of S . sofia and Clostridium perfringens in the gut environment, and improved the birds' colonization resistance to S . sofia .

  4. Physiological Response of Lactobacillus plantarum to Salt and Nonelectrolyte Stress

    PubMed Central

    Glaasker, Erwin; Tjan, Frans S. B.; Ter Steeg, Pieter F.; Konings, Wil N.; Poolman, Bert

    1998-01-01

    In this report, we compared the effects on the growth of Lactobacillus plantarum of raising the medium molarity by high concentrations of KCl or NaCl and iso-osmotic concentrations of nonionic compounds. Analysis of cellular extracts for organic constituents by nuclear magnetic resonance spectroscopy showed that salt-stressed cells do not contain detectable amounts of organic osmolytes, whereas sugar-stressed cells contain sugar (and some sugar-derived) compounds. The cytoplasmic concentrations of lactose and sucrose in growing cells are always similar to the concentrations in the medium. By using the activity of the glycine betaine transport system as a measure of hyperosmotic conditions, we show that, in contrast to KCl and NaCl, high concentrations of sugars (lactose or sucrose) impose only a transient osmotic stress because external and internal sugars equilibrate after some time. Analysis of lactose (and sucrose) uptake also indicates that the corresponding transport systems are neither significantly induced nor activated directly by hyperosmotic conditions. The systems operate by facilitated diffusion and have very high apparent affinity constants for transport (>50 mM for lactose), which explains why low sugar concentrations do not protect against hyperosmotic conditions. We conclude that the more severe growth inhibition by salt stress than by equiosmolal concentrations of sugars reflects the inability of the cells to accumulate K+ (or Na+) to levels high enough to restore turgor as well as deleterious effects of the electrolytes intracellularly. PMID:9721316

  5. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  6. Evaluation in vitro of the antagonistic substances produced by Lactobacillus spp. isolated from chickens

    PubMed Central

    Lima, Edna T.; Andreatti Filho, Raphael L.; Okamoto, Adriano S.; Noujaim, José C.; Barros, Mércia R.; Crocci, Adalberto J.

    2007-01-01

    To determine the inhibitory capacity of lactic acid bacteria due to the action of antagonistic substances, we tested 474 isolates of Lactobacillus from the crop and cecum of chickens against gram-positive and gram-negative indicator microorganisms by the spot-on-the-lawn and well-diffusion antagonism methods. Of the 474 isolates, 265 demonstrated antimicrobial activity against the indicator microorganisms. Isolates identified as L. reuteri, L. salivarius, or Lactobacillus spp. inhibited Enterococcus faecalis, E. faecium, Listeria monocytogenes, and Salmonella spp. but not L. casei, L. delbrueckii, L. fermentum, or L. helveticus by the well-diffusion simultaneous antagonism method under anaerobic incubation conditions. The antagonistic substances produced by some of the Lactobacillus isolates were inactivated after treatment by proteolytic enzymes, which suggested that the substances could be antimicrobial peptides or bacteriocins. PMID:17479773

  7. Lactobacillus as a rare cause of an infected total knee replacement: a case report

    PubMed Central

    2009-01-01

    Introduction We report a rare case of an infected revision total knee replacement as a result of a Lactobacillus species infection. Lactobacillus infections have been associated with prolonged broad-spectrum antibiotic use. This can have implications in revision surgery, especially when patients have been on previous long-term suppressive antibiotic therapy. Case presentation An 81-year-old British man with a previous history of complex revision knee arthroplasty for infection presented with a hot, swollen knee joint. He had previously been on long-term suppressive antibiotic therapy. Aspiration of the knee joint yielded a culture of Lactobacillus species. Conclusion In patients undergoing revision joint arthroplasty, especially for previous infection, the presence of common and uncommon bacterial species must be excluded and eradicated before further surgical intervention. PMID:19830207

  8. Bacteriocins from Lactobacillus plantarum – production, genetic organization and mode of action

    PubMed Central

    Todorov, Svetoslav D.

    2009-01-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented. PMID:24031346

  9. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    PubMed

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106.

  10. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  11. Association between Obesity and Cervical Microflora Dominated by Lactobacillus iners in Korean Women

    PubMed Central

    Oh, Hea Young; Seo, Sang-Soo; Kong, Ji-Sook; Lee, Jae-Kwan

    2015-01-01

    Lactobacillus spp. are associated with the maintenance of reproductive health, but obesity reduces fertility and is a risk factor for obstetric and neonatal complications. We assessed the association between obesity and the cervical Lactobacillus composition, which has not been examined previously. Pyrosequencing was performed using cervical swabs collected from 76 normal participants with negative results for cervical intraepithelial neoplasia (CIN) and 57 participants with CIN, based on histological examinations. Cluster analysis of nine Lactobacillus spp. was performed, and five cluster types were identified. The association between obesity and the Lactobacillus community was assessed by logistic regression analysis after adjustment for confounding factors. The proportion of Lactobacillus iners increased and that of Lactobacillus crispatus decreased according to body mass index (BMI) categories, i.e., underweight (BMI of <18.5 kg m−2), normal weight (BMI of 18.5 to 22.9 kg m−2), overweight (BMI of 23.0 to 24.9 kg m−2), and obese (BMI of ≥25 kg m−2). The L. iners-dominant type had a significant association with obesity (odds ratio [OR], 7.55 [95% confidence interval [CI], 1.18 to 48.2]), compared to the L. crispatus-dominant type. The group with high values for the ratio obtained by dividing the relative abundance of L. iners by that of L. crispatus had a significant association with obesity (OR, 6.54 [95% CI, 1.22 to 35.1]), compared to the low-ratio group. Associations between obesity and the L. iners/L. crispatus ratio were observed among young women (OR, 6.26 [95% CI, 1.15 to 33.9]) but not older women and in the normal group (OR, 6.97 [95% CI, 1.20 to 70.4]) but not the CIN group. Obesity was associated with cervical microflora dominated by L. iners in reproductive-age women without dysplasia. PMID:26269625

  12. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder.

    PubMed

    Aizawa, Emiko; Tsuji, Hirokazu; Asahara, Takashi; Takahashi, Takuya; Teraishi, Toshiya; Yoshida, Sumiko; Ota, Miho; Koga, Norie; Hattori, Kotaro; Kunugi, Hiroshi

    2016-09-15

    Bifidobacterium and Lactobacillus in the gut have been suggested to have a beneficial effect on stress response and depressive disorder. We examined whether these bacterial counts are reduced in patients with major depressive disorder (MDD) than in healthy controls. Bifidobacterium and Lactobacillus counts in fecal samples were estimated in 43 patients and 57 controls using bacterial rRNA-targeted reverse transcription-quantitative polymerase chain reaction The patients had significantly lower Bifidobacterium counts (P=0.012) and tended to have lower Lactobacillus counts (P=0.067) than the controls. Individuals whose bacterial counts below the optimal cut-off point (9.53 and 6.49log10 cells/g for Bifidobacterium and Lactobacillus, respectively) were significantly more common in the patients than in the controls for both bacteria (Bifidobacterium: odds ratio 3.23, 95% confidence interval [CI] 1.38-7.54, P=0.010; Lactobacillus: 2.57, 95% CI 1.14-5.78, P=0.027). Using the same cut-off points, we observed an association between the bacterial counts and Irritable bowel syndrome. Frequency of fermented milk consumption was associated with higher Bifidobacterium counts in the patients. The findings should be interpreted with caution since effects of gender and diet were not fully taken into account in the analysis. Our results provide direct evidence, for the first time, that individuals with lower Bifidobacterium and/or Lactobacillus counts are more common in patients with MDD compared to controls. Our findings provide new insight into the pathophysiology of MDD and will enhance future research on the use of pro- and prebiotics in the treatment of MDD. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    PubMed

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  14. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    PubMed Central

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  15. Comparative genomics of Lactobacillus kefiranofaciens ZW3 and related members of Lactobacillus. spp reveal adaptations to dairy and gut environments.

    PubMed

    Xing, Zhuqing; Geng, Weitao; Li, Chao; Sun, Ye; Wang, Yanping

    2017-10-09

    It is important for probiotics that are currently utilized in the dairy industry to have clear genetic backgrounds. In this study, the genetic characteristics of Lactobacillus kefiranofaciens ZW3 were studied by undertaking a comparative genomics study, and key genes for adaptation to different environments were investigated and validated in vitro. Evidence for horizontal gene transfer resulting in strong self-defense mechanisms was detected in the ZW3 genome. We identified a series of genes relevant for dairy environments and the intestinal tract, particularly for extracellular polysaccharide (EPS) production. Reverse transcription-qPCR (RT-qPCR) revealed significant increases in the relative expression of pgm, ugp, and uge during the mid-logarithmic phase, whereas the expression of pgi was higher at the beginning of the stationary phase. The enzymes encoded by these four genes concertedly regulated carbon flux, which in turn modulated the production of EPS precursors. Moreover, ZW3 tolerated pH 3.5 and 3% bile salt and retained cell surface hydrophobicity and auto-aggregation. In conclusion, we explored the potential of ZW3 for utilization in both the dairy industry and in probiotic applications. Additionally, we elucidated the regulation of the relevant genes involved in EPS production.

  16. Effect of orally administered Lactobacillus brevis HY7401 in a food allergy mouse model.

    PubMed

    Lee, Jeongmin; Bang, Jieun; Woo, Hee-Jong

    2013-11-28

    We had found that orally administered Lactobacillus species were effective immune modulators in ovalbumin (OVA)-sensitized mice. To validate these findings, we investigated the effects of orally administered Lactobacillus brevis HY7401 in OVA-T cell receptor transgenic mice. This strain showed a tendency to induce Th1 cytokines and inhibit Th2 cytokines. All assayed isotypes of OVA-specific antibody were effectively reduced. Systemic anaphylaxis was also relatively reduced with the probiotic administration. These results reveal that L. brevis HY7401 might be useful to promote anti-allergic processes through oral administration.

  17. Probiotics in digestive diseases: focus on Lactobacillus GG.

    PubMed

    Pace, F; Pace, M; Quartarone, G

    2015-12-01

    Probiotics are becoming increasingly important in basic and clinical research, but they are also a subject of considerable economic interest due to their expanding popularity. They are live micro-organisms which, when administered in adequate amounts, confer a health benefit to the host. From this very well-known definition, it is clear that, unlike drugs, probiotics might be useful in healthy subjects to reduce the risk of developing certain diseases or to optimise some physiological functions. They also may offer some advantages in already ill persons in relieving symptoms and signs, e.g. people with acute diarrhea. According to current definitions, probiotics should survive both gastric acid and bile to reach the small intestine and colon, where they exert their effects. Many of these are available in a lyophilized (freeze-dried) pill form, though some are available in yogurt or as packets (sachets), which can be mixed into non-carbonated drinks. The present review focuses on three main issues: 1) understanding why, at present, probiotics are so interesting for doctors and consumers; 2) reviewing the available data on probiotic use in digestive diseases, in particular irritable bowel syndrome (IBS), (prevention of) infectious diarrhea, inflammatory bowel disease (IBD), non-alcoholic fatty liver disease (NAFLD), and colorectal cancer (CRC); 3) highlighting the individual profile of Lactobacillus GG (LGG) in the above contexts, providing an assessment as well as recommendations on its use in gastro-intestinal tract (GIT) disorders. Research studies conducted in animals and humans with the main probiotics strains for GIT diseases, and published from the early 1990s to 2014 have been considered. PubMed, Medline and Ovid were the main sources adopted for data retrieving. The increasing attention on probiotics is a direct consequence of the improvement in the techniques for studying microbiota. Until recently, its composition has been analysed by culture-based methods

  18. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.

    PubMed

    Luoma, S; Peltoniemi, K; Joutsjoki, V; Rantanen, T; Tamminen, M; Heikkinen, I; Palva, A

    2001-03-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.

  19. Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis

    PubMed Central

    Luoma, Susanna; Peltoniemi, Kirsi; Joutsjoki, Vesa; Rantanen, Terhi; Tamminen, Marja; Heikkinen, Inka; Palva, Airi

    2001-01-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration. PMID:11229915

  20. Lactobacillus rhamnosus strain GG is a potential probiotic for calves

    PubMed Central

    2004-01-01

    Abstract Diarrhea is a common occurrence in neonatal calves. Several veterinary probiotics claiming to prevent or treat calf diarrhea are available, but have not been well studied. This study assessed the capability of Lactobacillus rhamnosus strain GG (LGG) to maintain viability in the gastrointestinal tract of calves. We also determined whether LGG can be administered in an oral rehydration solution (ORS) without compromising the efficacy of the ORS or the viability of LGG, and whether LGG produces D-lactate or not. To investigate the intestinal survival of LGG, 15 calves were randomized into 3 groups and LGG was administered orally with their morning milk feeding on 3 consecutive days at a low (LD), medium (MD), or high (HD) dosage. Fecal samples were collected on days 0 (control), 1, 2, 3, 5, and 7 and incubated for 72 h on deMan, Rogosa, Sharpe agar. Twenty-four hours after the 1st feeding, LGG was recovered from 1 out of 5 calves in the LD group, 4 out of 5 calves in the MD group, and 5 out of 5 calves in the HD group. To determine if LGG caused the glucose levels in the ORS to drop below effective levels, 1.5 L of the ORS was incubated with LGG for 2 h at 37°C and the glucose concentration was measured every 20 min using a glucose meter. This ORS was then further incubated for 10 h and aliquots analyzed by high performance liquid chromatography to determine if D-lactate was produced by LGG. Glucose concentrations did not change over the 2 h of incubation, and no D-lactate was produced after 48 h. The LGG maintained viability in ORS. Therefore, this study demonstrated that LGG survives intestinal transit in the young calf, produces no D-lactate, and can be administered in an ORS. PMID:15581218

  1. Mechanistic studies of ribonucleoside triphosphate reductase from Lactobacillus leichmannii

    SciTech Connect

    Harris, G.M.

    1984-01-01

    The mechanism of action of the adenosylcobalamin (AdoCbl)-dependent ribonucleoside triphosphate reductase (RTPR) was investigated using isotope effect and substrate specificity studies. These experiments were conducted on RTPR purified by a new method from Lactobacillus leichmannii. Isotope effect studies using (3{prime}-{sup 3}H)UTP and (3{prime}-{sup 3}H)ATP demonstrated that the 3{prime} C-H bond of the nucleotide is cleaved in order to cleave the 2{prime} C-OH bond. AdoCbl does not act as a direct H abstractor from the 3{prime} position of the substrate, but instead is thought to act as a radical chain initiator to generate an amino acid radical on the enzyme. Furthermore » support for this enzyme mediated cleavage of the 3{prime} C-H bond of the nucleotide and the novel role of AdoCbl came from studies using (3{prime}{sup 3}H)2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate ((3{prime}-{sup 3}H)CIUTP). Evidence is presented that during the course of this reaction, the {sup 3}H abstracted from the 3{prime} position of (3{prime}-{sup 3}H)CIUTP was either exchanged with the solvent or returned to the {beta} face of the 2{prime} position to produce (2{prime}{sup 3}H)-2{prime}-deoxy-3{prime}-ketoUTP. This result demonstrates that RTPR is capable of catalyzing a rearrangement reaction. The significance of the RTPR-catalyzed rearrangement with respect to the AdoCbl-dependent enzymes which catalyze rearrangements is discussed.« less

  2. Simulated microgravity affects some biological characteristics of Lactobacillus acidophilus.

    PubMed

    Shao, Dongyan; Yao, Linbo; Riaz, Muhammad Shahid; Zhu, Jing; Shi, Junling; Jin, Mingliang; Huang, Qingsheng; Yang, Hui

    2017-04-01

    The effects of weightlessness on enteric microorganisms have been extensively studied, but have mainly been focused on pathogens. As a major component of the microbiome of the human intestinal tract, probiotics are important to keep the host healthy. Accordingly, understanding their changes under weightlessness conditions has substantial value. This study was carried out to investigate the characteristics of Lactobacillus acidophilus, a typical probiotic for humans, under simulated microgravity (SMG) conditions. The results revealed that SMG had no significant impact on the morphology of L. acidophilus, but markedly shortened its lag phase, enhanced its growth rate, acid tolerance ability up to pH < 2.5, and the bile resistance at the bile concentration of <0.05%. SMG also decreased the sensitivity of L. acidophilus to cefalexin, sulfur gentamicin, and sodium penicillin. No obvious effect of SMG was observed on the adhesion ability of L. acidophilus to Caco-2 cells. Moreover, after SMG treatment, both the culture of L. acidophilus and its liquid phase exhibited higher antibacterial activity against S. typhimurium and S. aureus in a time-dependent manner. The SMG treatment also increased the in vitro cholesterol-lowering ability of L. acidophilus by regulating the expression of the key cholesterol metabolism genes CYP7A1, ABCB11, LDLR, and HMGCR in the HepG2 cell line. Thus, the SMG treatment did have considerable influence on some biological activities and characteristics of L. acidophilus related to human health. These findings provided valuable information for understanding the influence of probiotics on human health under simulated microgravity conditions, at least.

  3. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis

    PubMed Central

    2010-01-01

    Background Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish. Results Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall two-dimensional gel electrophoresis (2-DE) protein expression pattern was similar for the different strains, though distinct differences were seen between the two subspecies (sakei and carnosus), and a variation of about 20% in the number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher expression of stress related proteins growing on both carbon sources. Conclusions It is obvious from the data obtained in this study that the proteomic approach efficiently identifies differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application point of view, an understanding of regulatory mechanisms, actions of catabolic

  4. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis.

    PubMed

    McLeod, Anette; Zagorec, Monique; Champomier-Vergès, Marie-Christine; Naterstad, Kristine; Axelsson, Lars

    2010-04-22

    Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish. Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall two-dimensional gel electrophoresis (2-DE) protein expression pattern was similar for the different strains, though distinct differences were seen between the two subspecies (sakei and carnosus), and a variation of about 20% in the number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher expression of stress related proteins growing on both carbon sources. It is obvious from the data obtained in this study that the proteomic approach efficiently identifies differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application point of view, an understanding of regulatory mechanisms, actions of catabolic enzymes and proteins, and

  5. Lactobacillus acidophilus suppresses intestinal inflammation by inhibiting endoplasmic reticulum stress.

    PubMed

    Kim, Da Hye; Kim, Soochan; Lee, Jin Ha; Kim, Jae Hyeon; Che, Xiumei; Ma, Hyun Woo; Seo, Dong Hyuk; Kim, Tae Il; Kim, Won Ho; Kim, Seung Won; Cheon, Jae Hee

    2018-06-22

    Nuclear factor kappa B (NF-κB) activation and endoplasmic reticulum (ER) stress signaling play significant roles in the pathogenesis of inflammatory bowel disease (IBD). Thus, we evaluated whether new therapeutic probiotics have anti-colitic effects and we investigated their mechanisms related to NF-κB and ER-stress pathways. Luciferase, nitric oxide (NO), and cytokine assays using HT-29 or RAW264.7 cells were conducted. Mouse colitis was induced using dextran sulfate sodium (DSS) and confirmed by disease activity index and histology. Macrophages and T-cell subsets in isolated peritoneal cavity cells (PCCs) and splenocytes were analyzed by flow cytometry. Gene and cytokine expression profiles were determined using RT-PCR. Lactobacillus acidophilus (LA1) and Pediococcus pentosaceus inhibited NO production in RAW264.7 cells, but only LA1 inhibited Tnfa and induced Il10 expression. LA1 increased the life span of DSS-treated mice and attenuated the severity of colitis by inducing M2 macrophages in PCCs and Th2 and Treg cells in splenocytes. The restoration of goblet cells in the colon was accompanied by the induction of Il10 expression and the suppression of proinflammatory cytokines. Additionally, we found that LA1 exerts an anti-colitic effect by improving ER stress in HT-29 cells as well as in vivo. We showed that LA1 significantly interferes with ER stress and suppresses NF-κB activation. Our findings suggest that LA1 can be used as a potent immunomodulator in IBD treatment and the regulation of ER stress may have significant implications in treating IBD. This article is protected by copyright. All rights reserved.

  6. The groESL Chaperone Operon of Lactobacillus johnsonii†

    PubMed Central

    Walker, D. Carey; Girgis, Hany S.; Klaenhammer, Todd R.

    1999-01-01

    The Lactobacillus johnsonii VPI 11088 groESL operon was localized on the chromosome near the insertion element IS1223. The operon was initially cloned as a series of three overlapping PCR fragments, which were sequenced and used to design primers to amplify the entire operon. The amplified fragment was used as a probe to recover the chromosomal copy of the groESL operon from a partial library of L. johnsonii VPI 11088 (NCK88) DNA, cloned in the shuttle vector pTRKH2. The 2,253-bp groESL fragment contained three putative open reading frames, two of which encoded the ubiquitous GroES and GroEL chaperone proteins. Analysis of the groESL promoter region revealed three transcription initiation sites, as well as three sets of inverted repeats (IR) positioned between the transcription and translation start sites. Two of the three IR sets bore significant homology to the CIRCE elements, implicated in negative regulation of the heat shock response in many bacteria. Northern analysis and primer extension revealed that multiple temperature-sensitive promoters preceded the groESL chaperone operon, suggesting that stress protein production in L. johnsonii is strongly regulated. Maximum groESL transcription activity was observed following a shift to 55°C, and a 15 to 30-min exposure of log-phase cells to this temperature increased the recovery of freeze-thawed L. johnsonii VPI 11088. These results suggest that a brief, preconditioning heat shock can be used to trigger increased chaperone production and provide significant cross-protection from the stresses imposed during the production of frozen culture concentrates. PMID:10388700

  7. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    PubMed

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  8. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium

    PubMed Central

    Wen, Zezhang T.; Liao, Sumei; Bitoun, Jacob P.; De, Arpan; Jorgensen, Ashton; Feng, Shihai; Xu, Xiaoming; Chain, Patrick S. G.; Caufield, Page W.; Koo, Hyun; Li, Yihong

    2017-01-01

    Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P < 0.001), while biofilms by L. fermentum reduced by >1-log (P < 0.001). L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P < 0.001), but drastically reduced the survival rates following exposure to hydrogen peroxide (P < 0.001), as compared to the respective mono-species cultures. When analyzed by RNA-seq, more than 134 genes were identified in S. mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community. PMID:29326887

  9. Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia.

    PubMed

    Choi, Il-Dong; Kim, Sung-Hwan; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Hong, Seong Soo; Sim, Jae-Hun; Ahn, Young-Tae

    2016-03-01

    The triglyceride-lowering effect of probiotics Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 were investigated. Male SD Wistar rats were randomly divided into three groups and fed high-fat diet (HFD), HFD and probiotics (5 X 10(9) CFU/day of L. plantarum KY1032 and 5 X 10(9) CFU/day of L. curvatus HY7601), or normal diet for 6 weeks. Probiotic treatment significantly lowered the elevated plasma triglyceride and increased plasma free fatty acid, glycerol, and plasma apolipoprotein A-V (ApoA-V) levels. The probiotic-treated group showed elevated hepatic mRNA expression of PPARα, bile acid receptor (FXR), and ApoA-V. These results demonstrate that L. plantarum KY1032 and L. curvatus HY7601 lower triglycerides in hypertriglyceridemic rats by upregulating ApoA-V, PPARα, and FXR.

  10. Milk fermented by Lactobacillus species from Brazilian artisanal cheese protect germ-free-mice against Salmonella Typhimurium infection.

    PubMed

    Acurcio, L B; Sandes, S H C; Bastos, R W; Sant'anna, F M; Pedroso, S H S P; Reis, D C; Nunes, Á C; Cassali, G D; Souza, M R; Nicoli, J R

    2017-08-24

    Ingestion of milks fermented by Lactobacillus strains showing probiotic properties is an important tool to maintain gastrointestinal health. In this study, Lactobacillus rhamnosus D1 and Lactobacillus plantarum B7, isolated from Brazilian artisanal cheese, were used as starters for the functional fermented milks to assess their probiotic properties in a gnotobiotic animal model. Male germ-free Swiss mice received a single oral dose of milk fermented by each sample, and were challenged with Salmonella Typhimurium five days afterwards. Milk fermented by both Lactobacillus strains maintained counts above 10 8 cfu/ml during cold storage. Lactobacillus strains colonised the gut of the germ-free-mice, maintaining their antagonistic effect. This colonisation led to a protective effect against Salmonella challenge, as demonstrated by reduced pathogen translocation and histological lesions, when compared to control group, especially for Lactobacillus rhamnosus D1. Additionally, mRNA expression of inflammatory (interferon gamma, interleukin (IL)-6, tumour necrosis factor alpha) and anti-inflammatory (transforming growth factor β1) cytokines was augmented in animals previously colonised and then challenged, when compared to other experimental groups. Lactobacillus plantarum B7 colonisation also promoted higher expression of IL-17, showing a proper maturation of colonised germ-free-mice immune system. IL-5 was stimulated by both strains' colonisation and not by S. Typhimurium challenge.

  11. Isolation of lactobacillus reuteri from Peyer's patches and their effects on sIgA production and gut microbiota diversity.

    PubMed

    Wang, Panpan; Li, Ya; Xiao, Hang; Shi, Yonghui; Le, Guo-Wei; Sun, Jin

    2016-09-01

    We previously reported that specific Lactobacillus reuteri colonized within mouse Peyer's patches (PP) effectively prevented high fat diet induced obesity and low-grade chronic inflammation. We further investigated the role of PP Lactobacillus reuteri on sIgA production in rats in this study. Lactobacilli were isolated from rat PP. All isolates were L. reuteri and belonged to three phenotypes according to amplified fragment length polymorphism analysis. Typical strains of two main clusters, PP1 and PP2, were used to treat control and vitamin A deficient (VAD) rats, respectively. The feeding of PP1 and PP2 affected sIgA and Lactobacillus diversity by strain-specific manner. Free sIgA was significantly increased by PP1 (p = 0.069) and PP2 (p < 0.05) in the control rats but not in the VAD rats. Only PP1 significantly changed PP Lactobacillus diversity in the control rats (p < 0.05). However, PP2 specifically changed ileal Lactobacillus diversity in both control and VAD rats. Fecal sIgA was correlated with PP Lactobacillus diversity (R(2) = 0.7958, p = 0.011). Modulation of sIgA production by PP L. reuteri of rat is dependent on vitamin A and change of Lactobacillus diversity in PP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    PubMed Central

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( < 1 % 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  13. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria.

    PubMed

    Abdelmaksoud, Abdallah A; Koparde, Vishal N; Sheth, Nihar U; Serrano, Myrna G; Glascock, Abigail L; Fettweis, Jennifer M; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2016-03-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.

  14. High-level expression of recombinant beta-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a Sakacin P-based expression system.

    PubMed

    Halbmayr, Elisabeth; Mathiesen, Geir; Nguyen, Thu-Ha; Maischberger, Thomas; Peterbauer, Clemens K; Eijsink, Vincent G H; Haltrich, Dietmar

    2008-06-25

    This work presents the cloning and expression of the genes encoding heterodimeric beta-galactosidases from Lactobacillus reuteri L103, Lactobacillus acidophilus R22, Lactobacillus plantarum WCFS1, and Lactobacillus sakei Lb790. These enzymes consist of two subunits of approximately 73 and 35 kDa, which are encoded by two overlapping genes, lacL and lacM, respectively. We have cloned these genes into the lactobacillal expression vectors pSIP403 and pSIP409, which are based on the sakacin P operon of L. sakei ( Sørvig et al. Microbiology 2005, 151, 2439- 2449 ), and expressed them in the host strains L. plantarum WCFS1 and L. sakei Lb790. Results varied considerably, ranging from 2.23 to 61.1 U/mg of beta-galactosidase activity, depending on the origin of the lacLM genes, the host strain, and the expression vector used. Highest expression levels were obtained in a laboratory cultivation of L. plantarum WCFS1 harboring the plasmid pEH3R containing the lacLM gene from L. reuteri L103. These cultivations yielded approximately 23 000 U of beta-galactosidase activity per liter, corresponding to the formation of roughly 100 mg of recombinant protein per liter of fermentation medium, and beta-galactosidase levels amounted to 55% of the total intracellular protein of the host organism. To further verify the suitability of this expression system, recombinant beta-galactosidase from L. reuteri was purified to apparent homogeneity. The properties of the purified enzyme were essentially identical with the properties of purified native beta-galactosidase from L. reuteri L103. The presented results lead the way to efficient overproduction of beta-galactosidase in a food-grade expression system, which is of high interest for applications in food industry.

  15. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Weckx, Stefan

    2015-10-12

    Lactobacillus fermentum 222 and Lactobacillus plantarum 80, isolates from a spontaneous Ghanaian cocoa bean fermentation process, proved to be interesting functional starter culture strains for cocoa bean fermentations. Lactobacillus fermentum 222 is a thermotolerant strain, able to dominate the fermentation process, thereby converting citrate and producing mannitol. Lactobacillus plantarum 80 is an acid-tolerant and facultative heterofermentative strain that is competitive during cocoa bean fermentation processes. In this study, whole-genome sequencing and comparative genome analysis was used to investigate the mechanisms of these strains to dominate the cocoa bean fermentation process. Through functional annotation and analysis of the high-coverage contigs obtained through 454 pyrosequencing, plantaricin production was predicted for L. plantarum 80. For L. fermentum 222, genes encoding a complete arginine deiminase pathway were attributed. Further, in-depth functional analysis revealed the capacities of these strains associated with carbohydrate and amino acid metabolism, such as the ability to use alternative external electron acceptors, the presence of an extended pyruvate metabolism, and the occurrence of several amino acid conversion pathways. A comparative genome sequence analysis using publicly available genome sequences of strains of the species L. plantarum and L. fermentum revealed unique features of both strains studied. Indeed, L. fermentum 222 possessed genes encoding additional citrate transporters and enzymes involved in amino acid conversions, whereas L. plantarum 80 is the only member of this species that harboured a gene cluster involved in uptake and consumption of fructose and/or sorbose. In-depth genome sequence analysis of the candidate functional starter culture strains L. fermentum 222 and L. plantarum 80 revealed their metabolic capacities, niche adaptations and functionalities that enable them to dominate the cocoa bean fermentation

  16. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    PubMed

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (P<0.01). B. subtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (P<0.05). The viability of Lactobacillus increased when co-cultured with B. subtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (P<0.05). The role of Bacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.

  17. Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults.

    PubMed

    Ait Seddik, Hamza; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2017-04-01

    Sixty-seven (67) lactic acid bacteria (LAB) isolates belonging to Lactobacillus genus were isolated from human feces and tested for their auto-aggregation and cell surface hydrophobicity in order to establish their adhesion capabilities, a prerequisite for probiotic selection. Strains with the upmost auto-aggregation and cell surface hydrophobicity scores were identified by MALDI-TOF spectrometry and 16S rDNA sequencing as Lactobacillus plantarum (p25lb1 and p98lb1) and Lactobacillus salivarius (p85lb1 and p104lb1). These strains were also able to adhere to human epithelial colorectal adenocarcinoma Caco-2 cells, with percentages ranging from 4.68 to 9.59%. They displayed good survival under conditions mimicking the gastrointestinal environment and remarkably impeded adhesion and invasion of human Caco-2 by Listeria monocytogenes and Enteropathogenic Escherichia coli. It should also be noted that Lb. plantarum p98lb1 was able to reduce in vitro cholesterol concentration by about 32%, offering an additional health attribute. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Characterization of bacterial isolates from the microbiota of mothers' breast milk and their infants.

    PubMed

    Kozak, Kimberly; Charbonneau, Duane; Sanozky-Dawes, Rosemary; Klaenhammer, Todd

    2015-01-01

    This investigation assessed the potential of isolating novel probiotics from mothers and their infants. A subset of 21 isolates among 126 unique bacteria from breast milk and infant stools from 15 mother-infant pairs were examined for simulated GI transit survival, adherence to Caco-2 cells, bacteriocin production, and lack of antibiotic resistance. Of the 21 selected isolates a Lactobacillus crispatus isolate and 3 Lactobacillus gasseri isolates demonstrated good profiles of in vitro GI transit tolerance and Caco-2 cell adherence. Bacteriocin production was observed only by L. gasseri and Enterococcus faecalis isolates. Antibiotic resistance was widespread, although not universal, among isolates from infants. Highly similar isolates (≥ 97% similarity by barcode match) of Bifidobacterium longum subsp. infantis (1 match), Lactobacillus fermentum (2 matches), Lactobacillus gasseri (6 matches), and Enterococcus faecalis (1 match) were isolated from 5 infant-mother pairs. Antibiotic resistance profiles between these isolate matches were similar, except in one case where the L. gasseri isolate from the infant exhibited resistance to erythromycin and tetracycline, not observed in matching mother isolate. In a second case, L. gasseri isolates differed in resistance to ampicillin, chloramphenicol and vancomycin between the mother and infant. In this study, gram positive bacteria isolated from mothers' breast milk as well as their infants exhibited diversity in GI transit survival and acid inhibition of pathogens, but demonstrated limited ability to produce bacteriocins. Mothers and their infants offer the potential for identification of probiotics; however, even in the early stages of development, healthy infants contain isolates with antibiotic resistance.

  19. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages

    PubMed Central

    Moreno Guerrero, S. S.; Ramírez Pacheco, A.; García Garibay, M.; Eslava, C.

    2017-01-01

    Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages. PMID:28758133

  20. Conversion of Biomass Hydrolysates and Other Substrates to Ethanol and Other Chemicals by Lactobacillus buchneri

    USDA-ARS?s Scientific Manuscript database

    A Lactobacillus buchneri strain NRRL B-30929 can convert xylose and glucose into ethanol and chemicals. In this paper, L. buchneri NRRL B-30929 was initially compared with the type strains L. buchneri NRRL 1837 and DSM 5987 for growth and fermentation using single substrate derived from plant mater...

  1. A new methodology for rapid detection of Lactobacillus delbrueckii subsp. bulgaricus based on multiplex PCR.

    PubMed

    Nikolaou, Anastasios; Saxami, Georgia; Kourkoutas, Yiannis; Galanis, Alex

    2011-02-01

    In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

    PubMed

    Hammer, Austin J; Walters, Amber; Carroll, Courtney; Newell, Peter D; Chaston, John M

    2017-07-06

    The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429 bp, with 3,454 predicted genes. Copyright © 2017 Hammer et al.

  3. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-06-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents.

  4. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  5. Identification of salivary Lactobacillus rhamnosus species by DNA profiling and a specific probe.

    PubMed

    Richard, B; Groisillier, A; Badet, C; Dorignac, G; Lonvaud-Funel, A

    2001-03-01

    The Lactobacillus genus has been shown to be associated with the dental carious process, but little is known about the species related to the decay, although Lactobacillus rhamnosus is suspected to be the most implicated species. Conventional identification methods based on biochemical criteria lead to ambiguous results, since the Lactobacillus species found in saliva are phenotypically close. To clarify the role of this genus in the evolution of carious disease, this work aimed to find a rapid and reliable method for identifying the L. rhamnosus species. Methods based on hybridization with DNA probes and DNA amplification by PCR were used. The dominant salivary Lactobacillus species (reference strains from the ATCC) were selected for this purpose as well as some wild strains isolated from children's saliva. DNA profiling using semirandom polymorphic DNA amplification (semi-RAPD) generated specific patterns for L. rhamnosus ATCC 7469. The profiles of all L. rhamnosus strains tested were similar and could be grouped; these strains shared four common fragments. Wild strains first identified with classic methods shared common patterns with the L. rhamnosus species and could be reclassified. One fragment of the profile was purified, cloned, used as a probe and found to be specific to the L. rhamnosus species. These results may help to localize this species within its ecological niche and to elucidate the progression of the carious process.

  6. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  7. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  8. Genome Sequence of Rough and Smooth Variants of Pleomorphic Strain Lactobacillus farciminis CNCM-I-3699

    PubMed Central

    Tareb, R.; Bernardeau, M.

    2015-01-01

    The probiotic Lactobacillus farciminis CNCM-I-3699 is a pleomorphic strain exhibiting smooth and rough variants. We report their complete genomes consisting of a chromosome of 2, 4 Mb and a plasmid of 6,417 bp. The smooth variant differs by the presence of an additional plasmid of 35,418 bp. PMID:26383668

  9. Complete Genome Sequence for Lactobacillus helveticus CNRZ 32, an Industrial Cheese Starter and Cheese Flavor Adjunct

    PubMed Central

    Hughes, Joanne E.; Welker, Dennis L.; Tompkins, Thomas A.; Steele, James L.

    2013-01-01

    Lactobacillus helveticus is a lactic acid bacterium widely used in the manufacture of cheese and for production of bioactive peptides from milk proteins. We present the complete genome sequence for L. helveticus CNRZ 32, a strain particularly recognized for its ability to reduce bitterness and accelerate flavor development in cheese. PMID:23969047

  10. Isolation of histamine-producing Lactobacillus buchneri from Swiss cheese implicated in a food poisoning outbreak.

    PubMed Central

    Sumner, S S; Speckhard, M W; Somers, E B; Taylor, S L

    1985-01-01

    A histamine-producing strain of Lactobacillus buchneri was isolated from Swiss cheese that had been implicated in an outbreak of histamine poisoning. It produced up to 4,070 nmol of histamine per ml in MRS broth supplemented with 0.1% histidine. The identification of this isolate was based on its biochemical, bacteriological, and DNA characterizations. PMID:4083875

  11. Novel antibacterial polypeptide laparaxin produced by Lactobacillus paracasei strain NRRL B-50314 via fermentation

    USDA-ARS?s Scientific Manuscript database

    This study reports the production and characterization of a novel antibacterial polypeptide, designated laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. Crude laparaxin has antibacterial activity against a wide variety of Gram-positive bacteria, including: lactic acid bacteria ...

  12. Novel antibacterial polypeptide produced by Lactobacillus paracasei strain NRRL B-50314

    USDA-ARS?s Scientific Manuscript database

    This study reports the production and characterization of a novel antibacterial polypeptide, designated as laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. The crude laparaxin has antibacterial activity against a range of Gram-positive bacteria including the following: lactic a...

  13. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages.

    PubMed

    Rocha-Ramírez, L M; Pérez-Solano, R A; Castañón-Alonso, S L; Moreno Guerrero, S S; Ramírez Pacheco, A; García Garibay, M; Eslava, C

    2017-01-01

    Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF- κ B pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus . The results obtained from the tested strains ( Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF- α , IL-12p70, and IL-6. However, IL-1 β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus , S. typhimurium , and E. coli , were increased by pretreatment with Lactobacillus . The nuclear translocation NF- κ B pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages.

  14. Genetic expression profile analysis of the temporal inhibition of quercetin and naringenin on Lactobacillus rhamnosus GG

    USDA-ARS?s Scientific Manuscript database

    The plant polyphenols, quercetin and naringenin, are considered healthy dietary compounds; however, little is known of their effects on the probiotic Lactobacillus rhamnosus GG (LGG). In this study, it was discovered that both quercetin and naringenin produced temporary inhibition of LGG growth, par...

  15. Colon-specific delivery of lactobacillus rhamnosus GG using pectin hydrogel beads

    USDA-ARS?s Scientific Manuscript database

    The probiotic bacteria, Lactobacillus rhamnosus GG (LGG), has shown beneficial effects on human health, and is accepted by increasing populations for the prevention and treatment of irritable bowel diseases. To increase the bioavailability and efficacy of LGG, the probiotic was encapsulated in hydro...

  16. Bacteriophage endolysins expressed in yeast kill strains of Lactobacillus that contaminate fermentations

    USDA-ARS?s Scientific Manuscript database

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Species of Lactobacillus are the predominant contaminants that reduce ethanol yields and cause “stuck” fermentations, decreasing the profitability of biofuel production with expen...

  17. Proteomic Analyses of Ethanol Tolerance in Lactobacillus buchneri NRRL B-30929

    USDA-ARS?s Scientific Manuscript database

    The Lactobacillus buchneri NRRL B-30929 strain, isolated from a fuel ethanol production facility, exhibits high tolerance to environmental ethanol concentrations. In this study, the ethanol tolerance trait was elucidated at the molecular level by using proteomics comparison and analyses. Cellular p...

  18. Proteomic analyses of ethanol tolerance in Lactobacillus buchneri NRRL B-30929

    USDA-ARS?s Scientific Manuscript database

    The Lactobacillus buchneri NRRL B-30929 strain, isolated from a fuel ethanol production facility, exhibits high tolerance to environmental ethanol concentrations. This study aimed to identify proteins produced by B-30929 in response to environmental ethanol. Cellular proteins expressed by B-30929 gr...

  19. Draft Genome Sequence of Lactobacillus kunkeei AR114 Isolated from Honey Bee Gut.

    PubMed

    Porcellato, Davide; Frantzen, Cyril; Rangberg, Anbjørg; Umu, Ozgun C; Gabrielsen, Christina; Nes, Ingolf F; Amdam, Gro V; Diep, Dzung B

    2015-03-19

    Lactobacillus kunkeei is a common inhabitant in honey bee gut, being present in several parts of the world. Here, we describe the draft genome of L. kunkeei AR114, an isolate from late foraging season in Norway. Copyright © 2015 Porcellato et al.

  20. Accumulation of Polyphosphate in Lactobacillus spp. and Its Involvement in Stress Resistance

    PubMed Central

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel

    2014-01-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  1. Screening of Exopolysaccharide-Producing Lactobacillus and Bifidobacterium Strains Isolated from the Human Intestinal Microbiota▿

    PubMed Central

    Ruas-Madiedo, Patricia; Moreno, José Antonio; Salazar, Nuria; Delgado, Susana; Mayo, Baltasar; Margolles, Abelardo; de los Reyes-Gavilán, Clara G.

    2007-01-01

    Using phenotypic approaches, we have detected that 17% of human intestinal Lactobacillus and Bifidobacterium strains could be exopolysaccharide (EPS) producers. However, PCR techniques showed that only 7% harbored genes related to the synthesis of heteropolysaccharides. This is the first work to screen the human intestinal ecosystem for the detection of EPS-producing strains. PMID:17483284

  2. The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture

    USDA-ARS?s Scientific Manuscript database

    Several starter cultures used in the production of fermented beverages were screened for lactic acid bacteria that produced water-insoluble polysaccharides from sucrose. The strain producing the greatest amount was identified as Lactobacillus satsumensis by its 16S RNA sequence. This strain produc...

  3. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations

    SciTech Connect

    Nakamura, L.K.

    1981-01-01

    The morphology, physiology and fermentation characteristics of this hitherto unrecognized species are described. The new Lactobacillus species can be differentiated from L. acidophilus, L. jensenii, and L. leichmannii on the basis of starch fermentation, G + C content, vitamin requirements and stereoisomerism of lactic acid produced. The type strain of L. amylovorus is NRRL B-4540. (Refs. 39).

  4. Lifestyles in transition: evolution and natural history of the genus Lactobacillus.

    PubMed

    Duar, Rebbeca M; Lin, Xiaoxi B; Zheng, Jinshui; Martino, Maria Elena; Grenier, Théodore; Pérez-Muñoz, María Elisa; Leulier, François; Gänzle, Michael; Walter, Jens

    2017-08-01

    Lactobacillus species are found in nutrient-rich habitats associated with food, feed, plants, animals and humans. Due to their economic importance, the metabolism, genetics and phylogeny of lactobacilli have been extensively studied. However, past research primarily examined lactobacilli in experimental settings abstracted from any natural history, and the ecological context in which these bacteria exist and evolve has received less attention. In this review, we synthesize phylogenetic, genomic and metabolic metadata of the Lactobacillus genus with findings from fine-scale phylogenetic and functional analyses of representative species to elucidate the evolution and natural history of its members. The available evidence indicates a high level of niche conservatism within the well-supported phylogenetic groups within the genus, with lifestyles ranging from free-living to strictly symbiotic. The findings are consistent with a model in which host-adapted Lactobacillus lineages evolved from free-living ancestors, with present-day species displaying substantial variations in terms of the reliance on environmental niches and the degree of host specificity. This model can provide a framework for the elucidation of the natural and evolutionary history of Lactobacillus species and valuable information to improve the use of this important genus in industrial and therapeutic applications. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Genome Sequence of the Cheese-Starter Strain Lactobacillus delbrueckii subsp. lactis CRL 581.

    PubMed

    Hebert, Elvira María; Raya, Raúl R; Brown, Lucía; Font de Valdez, Graciela; Savoy de Giori, Graciela; Taranto, María Pía

    2013-08-08

    We report the genome sequence of Lactobacillus delbrueckii subsp. lactis CRL 581 (1,911,137 bp, GC 49.7%), a proteolytic strain isolated from a homemade Argentinian hard cheese which has a key role in bacterial nutrition and releases bioactive health-beneficial peptides from milk proteins.

  6. Complete Genome Sequence of the Yogurt Isolate Lactobacillus delbrueckii subsp. bulgaricus ACA-DC 87.

    PubMed

    Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-08-24

    Lactobacillus delbrueckii subsp. bulgaricus is widely used in the production of yogurt and cheese. In this study, we present the complete genome sequence of L. delbrueckii subsp. bulgaricus ACA-DC 87 isolated from traditional Greek yogurt. Whole-genome analysis may reveal desirable technological traits of the strain for dairy fermentations. Copyright © 2017 Alexandraki et al.

  7. Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Pang, Xiaoyang; Liu, Cuiping; Lyu, Pengcheng; Zhang, Shuwen; Liu, Lu; Lu, Jing; Ma, Changlu; Lv, Jiaping

    2016-12-14

    Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.

  8. Characterization of Lactobacillus fermentum PL9988 Isolated from Healthy Elderly Korean in a Longevity Village.

    PubMed

    Park, Jong-Su; Shin, Eunju; Hong, Hyunjin; Shin, Hyun-Jung; Cho, Young-Hoon; Ahn, Ki-Hyun; Paek, Kyungsoo; Lee, Yeonhee

    2015-09-01

    In this work, we wanted to develop a probiotic from famous longevity villages in Korea. We visited eight longevity villages in Korea to collect fecal samples from healthy adults who were aged above 80 years and had regular bowel movements, and isolated lactic-acid-producing bacteria from the samples. Isolated colonies that appeared on MRS agar containing bromophenol blue were identified by means of 16S rRNA sequencing, and 102 of the isolates were identified as lactic-acid-producing bacteria (18 species). Lactobacillus fermentum was the most frequently found species. Eight isolates were selected on the basis of their ability to inhibit the growth of six intestinal pathogens (Escherichia coli O157:H7, Salmonella enterica subsp. enterica Typhimurium, Salmonella enterica subsp. enterica Enteritidis, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes) and their susceptibility to 15 antimicrobial agents. Among these eight isolates, four Lactobacillus fermentum isolates were found not to produce any harmful enzymes or metabolites. Among them, Lactobacillus fermentum isolate no. 24 showed the strongest binding to intestinal epithelial cells, the highest immune-enhancing activity, anti-inflammation activity, and anti-oxidation activity as well as the highest survival rates in the presence of artificial gastric juice and bile solution. This isolate, designated Lactobacillus fermentum PL9988, has all the characteristics for a good probiotic.

  9. Mutation and Selection of Lactobacillus plantarum Strains That Do Not Produce Carbon Dioxide from Malate †

    PubMed Central

    Daeschel, M. A.; McFeeters, R. F.; Fleming, H. P.; Klaenhammer, T. R.; Sanozky, R. B.

    1984-01-01

    A differential medium was developed to distinguish between malate-decarboxylating (MDC+) and -non-decarboxylating (MDC−) strains of Lactobacillus plantarum. MDC− strains produced a visible acid reaction in the medium, whereas MDC+ strains did not. Use of the medium allowed for rapid screening and isolation of mutagenized cells that had lost the ability to produce CO2 from malate. PMID:16346479

  10. Carrageenan :the difference between PNG and KCL gel precipitation method as Lactobacillus acidophilus encapsulation material

    NASA Astrophysics Data System (ADS)

    Setijawati, D.; Nursyam, H.; Salis, H.

    2018-04-01

    The study on the effects of using of materials and methods in the preparation of the microcapsules Lactobacillus acidophilus towards the viability has been done. The research method used is experimental laboratory design. Variable research was kind of material (A) as the first factor with sub factor (A1 = Eucheuma cottonii) (A2 = Eucheuma spinosum) (A3 = mixture of Eucheuma cottonii and Eucheuma spinosum 1:1 ratio), while the second factor is a method of extraction to produce caragenan (B) with sub factor (B1 = Philipine Natural Grade modification) (B2 = KCl gel Press Precipitation). Analysis of different influences uses Analysis Of Varians followed by