Sample records for lactobacillus helveticus cnrz32

  1. Genetic Characterization and Physiological Role of Endopeptidase O from Lactobacillus helveticus CNRZ32

    PubMed Central

    Chen, Yo-Shen; Steele, James L.

    1998-01-01

    A previously identified insert expressing an endopeptidase from a Lactobacillus helveticus CNRZ32 genomic library was characterized. Nucleotide sequence analysis revealed an open reading frame of 1,941 bp encoding a putative protein of 71.2 kDa which contained a zinc-protease motif. Protein homology searches revealed that this enzyme has 40% similarity with endopeptidase O (PepO) from Lactococcus lactis P8-2-47. Northern hybridization revealed that pepO is monocistronic and is expressed throughout the growth phase. CNRZ32 derivatives lacking PepO activity were constructed via gene replacement. Enzyme assays revealed that the PepO mutant had significantly reduced endopeptidase activity when compared to CNRZ32 with two of the three substrates examined. Growth studies indicated that PepO has no detectable effect on growth rate or acid production by Lactobacillus helveticus CNRZ32 in amino acid defined or skim milk medium. PMID:9726890

  2. Complete Genome Sequence for Lactobacillus helveticus CNRZ 32, an Industrial Cheese Starter and Cheese Flavor Adjunct

    PubMed Central

    Hughes, Joanne E.; Welker, Dennis L.; Tompkins, Thomas A.; Steele, James L.

    2013-01-01

    Lactobacillus helveticus is a lactic acid bacterium widely used in the manufacture of cheese and for production of bioactive peptides from milk proteins. We present the complete genome sequence for L. helveticus CNRZ 32, a strain particularly recognized for its ability to reduce bitterness and accelerate flavor development in cheese. PMID:23969047

  3. DNA sequence analysis, expression, distribution, and physiological role of the Xaa-prolyldipeptidyl aminopeptidase gene from Lactobacillus helveticus CNRZ32.

    PubMed

    Yüksel, G U; Steele, J L

    1996-02-01

    Lactobacillus helveticus CNRZ32 possesses an Xaa-prolyldipeptidyl aminopeptidase (PepX), which releases amino-terminal dipeptides from peptides containing proline residues in the penultimate position. The PepX gene, designated pepX, from Lb. helveticus CNRZ32 was sequenced. Analysis of the sequence identified a putative 2379-bp pepX open-reading frame, which encodes a polypeptide of 793 amino acid residues with a deduced molecular mass of 88,111 Da. The gene shows significant sequence identity with sequenced pepX genes from lactic acid bacteria. The product of the gene contains a motif that is almost identical with the active-site motif of the serine-dependent PepX from lactococci. The introduction of pepX into Lactococcus lactis LM0230 on either pGK12 (a low-copy-number plasmid vector) or pIL253 (a high-copy-number plasmid vector) did not result in a significant increase in PepX activity, while the introduction of pepX into CNRZ32 on pGK12 resulted in a four-fold increase in PepX activity. Southern hybridization experiments revealed that the pepX gene from CNRZ32 is well conserved in lactobacilli, pediococci and streptococci. The physiological role of PepX during growth in lactobacillus MRS (a rich medium containing protein hydrolysates along with other ingredients) and milk was examined by comparing growth of CNRZ32 and a CNRZ32 PepX-negative derivative. No difference in growth rate or acid production was observed between CNRZ32 and its PepX-negative derivative in MRS. However, the CNRZ32 PepX-negative derivative grew in milk at a reduced specific growth rate when compared to wild-type CNRZ32. Introduction of the cloned PepX determinant into the CNRZ32 PepX-negative derivative resulted in a construct with a specific growth rate similar to that of wild-type CNRZ32.

  4. Role of Cystathionine β-Lyase in Catabolism of Amino Acids to Sulfur Volatiles by Genetic Variants of Lactobacillus helveticus CNRZ 32

    PubMed Central

    Lee, Won-Jae; Banavara, Dattatreya S.; Hughes, Joanne E.; Christiansen, Jason K.; Steele, James L.; Broadbent, Jeffery R.; Rankin, Scott A.

    2007-01-01

    Catabolism of sulfur-containing amino acids plays an important role in the development of cheese flavor. During ripening, cystathionine β-lyase (CBL) is believed to contribute to the formation of volatile sulfur compounds (VSCs) such as methanethiol and dimethyl disulfide. However, the role of CBL in the generation of VSCs from the catabolism of specific sulfur-containing amino acids is not well characterized. The objective of this study was to investigate the role of CBL in VSC formation by Lactobacillus helveticus CNRZ 32 using genetic variants of L. helveticus CNRZ 32 including the CBL-null mutant, complementation of the CBL-null mutant, and the CBL overexpression mutant. The formation of VSCs from methionine, cystathionine, and cysteine was determined in a model system using gas chromatography-mass spectrometry with solid-phase microextraction. With methionine as a substrate, CBL overexpression resulted in higher VSC production than that of wild-type L. helveticus CNRZ 32 or the CBL-null mutant. However, there were no differences in VSC production between the wild type and the CBL-null mutant. With cystathionine, methanethiol production was detected from the CBL overexpression variant and complementation of the CBL-null mutant, implying that CBL may be involved in the conversion of cystathionine to methanethiol. With cysteine, no differences in VSC formation were observed between the wild type and genetic variants, indicating that CBL does not contribute to the conversion of cysteine. PMID:17337535

  5. Early lysis of Lactobacillus helveticus CNRZ 303 in Swiss cheese is not prophage-related.

    PubMed

    Deutsch, Stéphanie Marie; Neveu, Anthony; Guezenec, Stéphane; Ritzenthaler, Paul; Lortal, Sylvie

    2003-03-15

    Lactobacillus helveticus is mainly used as starter in Swiss-type cheeses. Often, lysogenic strains are eliminated because of the risk of early lysis and acidification failure due to phage expression. On the other hand, L. helveticus lysis was shown to positively influence cheese proteolysis during ripening. In order to better assess the relationship between lysis and lysogeny, a prophage-cured derivative of L. helveticus CNRZ 303 was isolated (LH 303-G11) and relysogenised (LH 303-G11R), as demonstrated by hybridisation using the whole phage DNA as probe. The growth, lysis in buffered solutions and lytic activities in zymogram using either Micrococcus luteus or L. helveticus as substrate were identical between the mother strain and its cured derivatives. Only morphological differences were observed by scanning electron microscopy: the cells of the cured derivative were shorter in length. The mother strain and its cured and relysogenised derivatives were assayed in triplicate in experimental Swiss cheeses (scale 1:100). No differences were noted during the cheese making: the three strains exhibited identical kinetics of acidification, leading to similar cheeses at day 1 in terms of gross composition and pH. Phages were detected only in the cheeses made with the mother strain and the relysogenised derivative. The lysis of L. helveticus, estimated by viability decrease and release of the intracellular marker D-lactate deshydrogenase, started early before brining and continued during the cold room ripening. No obvious differences of lysis extent were observed. These results demonstrated for the first time that, in the case of LH 303, the extensive lysis observed in cheese is mainly due to autolysin activity and not to prophage induction.

  6. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  7. Distinctive proteolytic activity of cell envelope proteinase of Lactobacillus helveticus isolated from airag, a traditional Mongolian fermented mare's milk.

    PubMed

    Miyamoto, Mari; Ueno, Hiroshi M; Watanabe, Masayuki; Tatsuma, Yumi; Seto, Yasuyuki; Miyamoto, Taku; Nakajima, Hadjime

    2015-03-16

    Airag is a traditional fermented milk of Mongolia that is usually made from raw mare's milk. Lactobacillus helveticus is one of the lactic acid bacteria most frequently isolated from airag. In this study, we investigated the genetic and physiological characteristics of L. helveticus strains isolated from airag and clarified their significance in airag by comparing them with strains from different sources. Six strains of L. helveticus were isolated from five home-made airag samples collected from different regions of Mongolia. The optimal temperature for acidification in skim milk was 30 to 35°C for all the Mongolian strains, which is lower than those for the reference strains (JCM 1554 and JCM 1120(T)) isolated from European cheeses. All of the strains had a prtH1-like gene encoding a variant type of cell envelope proteinase (CEP). The CEP amino acid sequence in Snow Brand Typeculture (SBT) 11087 isolated from airag shared 71% identity with PrtH of L. helveticus CNRZ32 (AAD50643.1) but 98% identity with PrtH of Lactobacillus kefiranofaciens ZW3 (AEG40278.1) isolated from a traditional fermented milk in Tibet. The proteolytic activities of the CEP from SBT11087 on artificial substrate (N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide) and pure casein were measured using an intact-cell degradation assay. The activity of the CEP from SBT11087 was observed to be weak and exhibited a lower optimal temperature (40°C) than those from the reference strains (45-50°C). The specificity of the SBT11087 CEP for αS1-casein was typical of the CEPs previously reported in L. helveticus, as determined through the degradation profiles obtained through gel electrophoresis and mass spectrometry analyses. In contrast, the degradation profile of β-casein revealed that the CEP of SBT11087 primarily hydrolyzes its C-terminal domain and hydrolyzed nine of the 16 cleavage sites shared among the CEPs of other L. helveticus strains. Thus, the CEP of SBT11087 is distinct from those from

  8. Draft Genome Sequence of Lactobacillus helveticus ATCC 12046

    PubMed Central

    2018-01-01

    ABSTRACT Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production. PMID:29449405

  9. Draft Genome Sequence of Lactobacillus helveticus ATCC 12046.

    PubMed

    Palomino, María Mercedes; Burguener, Germán F; Campos, Josefina; Allievi, Mariana; Fina-Martin, Joaquina; Prado Acosta, Mariano; Fernández Do Porto, Darío A; Ruzal, Sandra M

    2018-02-15

    Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production. Copyright © 2018 Palomino et al.

  10. Health-Promoting Properties of Lactobacillus helveticus

    PubMed Central

    Taverniti, Valentina; Guglielmetti, Simone

    2012-01-01

    Lactobacillus helveticus is an important industrial thermophilic starter that is predominantly employed in the fermentation of milk for the manufacture of several cheeses. In addition to its technological importance, a growing body of scientific evidence shows that strains belonging to the L. helveticus species have health-promoting properties. In this review, we synthesize the results of numerous primary literature papers concerning the ability of L. helveticus strains to positively influence human health. Several in vitro studies showed that L. helveticus possesses many common probiotic properties, such as the ability to survive gastrointestinal transit, adhere to epithelial cells, and antagonize pathogens. In vivo studies in murine models showed that L. helveticus could prevent gastrointestinal infections, enhance protection against pathogens, modulate host immune responses, and affect the composition of the intestinal microbiota. Interventional studies and clinical trials have also demonstrated a number of health-promoting properties of L. helveticus. Finally, several studies suggested that specific enzymatic activities of L. helveticus could indirectly benefit the human host by enhancing the bioavailability of nutrients, removing allergens and other undesired molecules from food, and producing bioactive peptides through the digestion of food proteins. In conclusion, this review demonstrates that in light of the scientific literature presented, L. helveticus can be included among the bacterial species that are generally considered to be probiotic. PMID:23181058

  11. Genome sequence and analysis of Lactobacillus helveticus

    PubMed Central

    Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

    2013-01-01

    The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

  12. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties.

    PubMed

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-07-17

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.

  13. prtH2, Not prtH, Is the Ubiquitous Cell Wall Proteinase Gene in Lactobacillus helveticus▿

    PubMed Central

    Genay, M.; Sadat, L.; Gagnaire, V.; Lortal, S.

    2009-01-01

    Lactobacillus helveticus strains possess an efficient proteolytic system that releases peptides which are essential for lactobacillus growth in various fermented dairy products and also affect textural properties or biological activities. Cell envelope proteinases (CEPs) are bacterial enzymes that hydrolyze milk proteins. In the case of L. helveticus, two CEPs with low percentages of amino acid identity have been described, i.e., PrtH and PrtH2. However, the distribution of the genes that encode CEPs still remains unclear, rendering it difficult to further control the formation of particular peptides. This study evaluated the diversity of genes that encode CEPs in a collection of strains of L. helveticus isolated from various biotopes, both in terms of the presence or absence of these genes and in terms of nucleotide sequence, and studied their transcription in dairy matrices. After defining three sets of primers for both the prtH and prtH2 genes, we studied the distribution of the genes by using PCR and Southern blotting experiments. The prtH2 gene was ubiquitous in the 29 strains of L. helveticus studied, whereas only 18 of them also exhibited the prtH gene. Sequencing of a 350-bp internal fragment of these genes revealed the existence of intraspecific diversity. Finally, expression of these two CEP-encoding genes was followed during the growth in dairy matrices of two strains, ITG LH77 and CNRZ32, which possess one and two CEP-encoding genes, respectively. Both genes were shown to be expressed by L. helveticus at each stage of growth in milk and at different stages of mini-Swiss-type cheese making and ripening. PMID:19286786

  14. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.

    PubMed

    Luoma, S; Peltoniemi, K; Joutsjoki, V; Rantanen, T; Tamminen, M; Heikkinen, I; Palva, A

    2001-03-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.

  15. Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis

    PubMed Central

    Luoma, Susanna; Peltoniemi, Kirsi; Joutsjoki, Vesa; Rantanen, Terhi; Tamminen, Marja; Heikkinen, Inka; Palva, Airi

    2001-01-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration. PMID:11229915

  16. Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage {Phi}AQ113.

    PubMed

    Zago, Miriam; Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-08-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism.

  17. Characterization of the Genome of the Dairy Lactobacillus helveticus Bacteriophage ΦAQ113

    PubMed Central

    Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-01-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism. PMID:23728811

  18. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.

    PubMed

    O'Sullivan, Daniel J; McSweeney, Paul L H; Cotter, Paul D; Giblin, Linda; Sheehan, Jeremiah J

    2016-04-01

    Nonstarter lactic acid bacteria are commonly implicated in undesirable gas formation in several varieties, including Cheddar, Dutch-, and Swiss-type cheeses, primarily due to their ability to ferment a wide variety of substrates. This effect can be magnified due to factors that detrimentally affect the composition or activity of starter bacteria, resulting in the presence of greater than normal amounts of fermentable carbohydrates and citrate. The objective of this study was to determine the potential for a facultatively heterofermentative Lactobacillus (Lactobacillus casei DPC6987) isolated from a cheese plant environment to promote gas defects in the event of compromised starter activity. A Swiss-type cheese was manufactured, at pilot scale and in triplicate, containing a typical starter culture (Streptococcus thermophilus and Lactobacillus helveticus) together with propionic acid bacteria. Lactobacillus helveticus populations were omitted in certain vats to mimic starter failure. Lactobacillus casei DPC6987 was added to each experimental vat at 4 log cfu/g. Cheese compositional analysis and X-ray computed tomography revealed that the failure of starter bacteria, in this case L. helveticus, coupled with the presence of a faculatively heterofermentative Lactobacillus (L. casei) led to excessive eye formation during ripening. The availability of excess amounts of lactose, galactose, and citrate during the initial ripening stages likely provided the heterofermentative L. casei with sufficient substrates for gas formation. The accrual of these fermentable substrates was notable in cheeses lacking the L. helveticus starter population. The results of this study are commercially relevant, as they demonstrate the importance of viability of starter populations and the control of specific nonstarter lactic acid bacteria to ensure appropriate eye formation in Swiss-type cheese. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights

  19. Population Dynamics of Lactobacillus helveticus in Swiss Gruyère-Type Cheese Manufactured With Natural Whey Cultures.

    PubMed

    Moser, Aline; Schafroth, Karl; Meile, Leo; Egger, Lotti; Badertscher, René; Irmler, Stefan

    2018-01-01

    Lactobacillus helveticus , a ubiquitous bacterial species in natural whey cultures (NWCs) used for Swiss Gruyère cheese production, is considered to have crucial functions for cheese ripening such as enhancing proteolysis. We tracked the diversity and abundance of L. helveticus strains during 6 months of ripening in eight Swiss Gruyère-type cheeses using a culture-independent typing method. The study showed that the L. helveticus population present in NWCs persisted in cheese and demonstrated a stable multi-strain coexistence during cheese ripening. With regard to proteolysis, one of the eight L. helveticus populations exhibited less protein degradation during ripening.

  20. Population Dynamics of Lactobacillus helveticus in Swiss Gruyère-Type Cheese Manufactured With Natural Whey Cultures

    PubMed Central

    Moser, Aline; Schafroth, Karl; Meile, Leo; Egger, Lotti; Badertscher, René; Irmler, Stefan

    2018-01-01

    Lactobacillus helveticus, a ubiquitous bacterial species in natural whey cultures (NWCs) used for Swiss Gruyère cheese production, is considered to have crucial functions for cheese ripening such as enhancing proteolysis. We tracked the diversity and abundance of L. helveticus strains during 6 months of ripening in eight Swiss Gruyère-type cheeses using a culture-independent typing method. The study showed that the L. helveticus population present in NWCs persisted in cheese and demonstrated a stable multi-strain coexistence during cheese ripening. With regard to proteolysis, one of the eight L. helveticus populations exhibited less protein degradation during ripening. PMID:29670601

  1. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  2. Population structure of Lactobacillus helveticus isolates from naturally fermented dairy products based on multilocus sequence typing.

    PubMed

    Sun, Zhihong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Yu, Jie; Bilige, Menghe; Zhang, Heping; Chen, Yongfu

    2015-05-01

    Lactobacillus helveticus is an economically important lactic acid bacterium used in industrial dairy fermentation. In the present study, the population structure of 245 isolates of L. helveticus from different naturally fermented dairy products in China and Mongolia were investigated using an multilocus sequence typing scheme with 11 housekeeping genes. A total of 108 sequence types were detected, which formed 8 clonal complexes and 27 singletons. Results from Structure, SplitsTree, and ClonalFrame software analyses demonstrated the presence of 3 subpopulations in the L. helveticus isolates used in our study, namely koumiss, kurut-tarag, and panmictic lineages. Most L. helveticus isolates from particular ecological origins had specific population structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Evaluation of the microbial community in industrial rye sourdough upon continuous back-slopping propagation revealed Lactobacillus helveticus as the dominant species.

    PubMed

    Viiard, E; Mihhalevski, A; Rühka, T; Paalme, T; Sarand, I

    2013-02-01

    To assess the structure and stability of a dominant lactic acid bacteria (LAB) population during the propagation of rye sourdough in an industrial semi-fluid production over a period of 7 months. The sourdough was started from a 6-year-old freeze-dried sourdough originating from the same bakery. A unique microbial consortium consisting mainly of bacteria belonging to species Lactobacillus helveticus, Lactobacillus panis and Lactobacillus pontis was identified based on culture-dependent (Rep-PCR) and culture-independent [denaturing gradient gel electrophoresis (DGGE)] methods. Three of the isolated Lact. helveticus strains showed remarkable adaptation to the sourdough conditions. They differed from the type strain by the ability to ferment compounds specific to plant material, like salicin, cellobiose and sucrose, but did not ferment lactose. We showed remarkable stability of a LAB consortium in rye sourdough started from lyophilized sourdough and propagated in a large bakery for 7 months. Lactobacillus helveticus was detected as the dominant species in the consortium and was shown to be metabolically adapted to the sourdough environment. The use of an established and adapted microbial consortium as a starter is a good alternative to commercial starter strains. © 2012 The Society for Applied Microbiology.

  4. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.

    PubMed

    Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo

    2013-10-15

    Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Hydrolysis of Sequenced β-Casein Peptides Provides New Insight into Peptidase Activity from Thermophilic Lactic Acid Bacteria and Highlights Intrinsic Resistance of Phosphopeptides

    PubMed Central

    Deutsch, Stéphanie-Marie; Molle, Daniel; Gagnaire, Valérie; Piot, Michel; Atlan, Danièle; Lortal, Sylvie

    2000-01-01

    The peptidases of thermophilic lactic acid bacteria have a key role in the proteolysis of Swiss cheeses during warm room ripening. To compare their peptidase activities toward a dairy substrate, a tryptic/chymotryptic hydrolysate of purified β-casein was used. Thirty-four peptides from 3 to 35 amino acids, including three phosphorylated peptides, constitute the β-casein hydrolysate, as shown by tandem mass spectrometry. Cell extracts prepared from Lactobacillus helveticus ITG LH1, ITG LH77, and CNRZ 32, Lactobacillus delbrueckii subsp. lactis ITG LL14 and ITG LL51, L. delbrueckii subsp. bulgaricus CNRZ 397 and NCDO 1489, and Streptococcus thermophilus CNRZ 385, CIP 102303, and TA 060 were standardized in protein. The peptidase activities were assessed with the β-casein hydrolysate as the substrate at pH 5.5 and 24°C (conditions of warm room ripening) by (i) free amino acid release, (ii) reverse-phase chromatography, and (iii) identification of undigested peptides by mass spectrometry. Regardless of strain, L. helveticus was the most efficient in hydrolyzing β-casein peptides. Interestingly, cell extracts of S. thermophilus were not able to release a significant level of free proline from the β-casein hydrolysate, which was consistent with the identification of numerous dipeptides containing proline. With the three lactic acid bacteria tested, the phosphorylated peptides remained undigested or weakly hydrolyzed indicating their high intrinsic resistance to peptidase activities. Finally, several sets of peptides differing by a single amino acid in a C-terminal position revealed the presence of at least one carboxypeptidase in the cell extracts of these species. PMID:11097915

  6. Functional Probiotic Characterization and In Vivo Cholesterol-Lowering Activity of Lactobacillus helveticus Isolated from Fermented Cow Milk.

    PubMed

    Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2016-10-28

    We characterized the probiotic properties of Lactobacillus helveticus strains KII13 and KHI1 isolated from fermented cow milk by in vitro and in vivo studies. The strains exhibited tolerance to simulated orogastrointestinal condition, adherence to Caco-2 cells, and antimicrobial activity. Both L. helveticus strains produced bioactive tripeptides, isoleucylprolyl-proline and valyl-prolyl-proline, during fermentation of milk. KII13 showed higher in vitro cholesterol-lowering activity (47%) compared with KHI1 (28%) and L. helveticus ATCC 15009 (22%), and hence, it was selected for in vivo study of cholesterol-lowering activity in atherogenic diet-fed hypercholesterolemic mice. For the study, mice were divided into four groups ( viz ., normal diet control group, atherogenic diet control group (HCD), KII13- atherogenic diet group (HCD-KII13), and Lactobacillus acidophilus ATCC 43121-atherogenic diet group (HCD- L.ac ) as positive control). The serum total cholesterol level was significantly decreased by 8.6% and 7.78% in the HCD-KII13 and HCD- L.ac groups ( p < 0.05), respectively, compared with the HCD group. Low-density lipoprotein cholesterol levels in both HCD-KII13 and HCD- L.ac groups were decreased by 13% and 11%, respectively, compared with the HCD group (both, p < 0.05). Analysis of cholesterol metabolism-related gene expression in mice liver showed increased expression of LDLR and SREBF2 genes in mice fed with KII13. By comparing all the results, we conclude that L. helveticus KII13 could be used as a potential probiotic strain to produce antihypertensive peptides and reduce serum cholesterol.

  7. Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model

    PubMed Central

    de Moreno de LeBlanc, Alejandra; Matar, Chantal; LeBlanc, Nicole; Perdigón, Gabriela

    2005-01-01

    Introduction Antitumour activity is one of the health-promoting effects attributed to the lactic acid bacteria and their products of fermentation. Previous studies in mice demonstrated that bioactive compounds released in milk fermented by Lactobacillus helveticus R389 contribute to its immunoenhancing and antitumour properties. The aim of the present work was to study the effects of the consumption of milk fermented by L. helveticus R389 or its proteolytic-deficient variant, L. helveticus L89, on a murine hormone-dependent breast cancer model. Methods Mice were fed with milk fermented by L. helveticus R389 or L. helveticus L89, during 2 or 7 days. The tumour control group received no special feeding. At the end of the feeding period, the mice were challenged by a subcutaneous injection of tumour cells in the mammary gland. Four days post-injection, the mice received fermented milk on a cyclical basis. The rate of tumour development and the cytokines in serum, mammary gland tissue and tumour-isolated cells were monitored. Bcl-2-positive cells in mammary glands and cellular apoptosis in tumour tissue were also studied. Results Seven days of cyclical administration of milk fermented by either bacterial strain delayed or stopped the tumour development. Cytokines demonstrated that L. helveticus R389 modulated the immune response challenged by the tumour. IL-10 and IL-4 were increased in all the samples from this group. In comparison with the tumour control, all test groups showed a decrease of IL-6, a cytokine involved in oestrogen synthesis. Seven days of cyclical feeding with milk fermented by L. helveticus R389 produced an increase in the number of apoptotic cells, compared with all other groups. Conclusion This study demonstrated that 7 days of cyclical administration of milk fermented by both strains of L. helveticus diminishes tumour growth, stimulating an antitumour immune response. Compounds released during milk fermentation with L. helveticus R389 would be

  8. Amplicon Sequencing of the slpH Locus Permits Culture-Independent Strain Typing of Lactobacillus helveticus in Dairy Products

    PubMed Central

    Moser, Aline; Wüthrich, Daniel; Bruggmann, Rémy; Eugster-Meier, Elisabeth; Meile, Leo; Irmler, Stefan

    2017-01-01

    The advent of massive parallel sequencing technologies has opened up possibilities for the study of the bacterial diversity of ecosystems without the need for enrichment or single strain isolation. By exploiting 78 genome data-sets from Lactobacillus helveticus strains, we found that the slpH locus that encodes a putative surface layer protein displays sufficient genetic heterogeneity to be a suitable target for strain typing. Based on high-throughput slpH gene sequencing and the detection of single-base DNA sequence variations, we established a culture-independent method to assess the biodiversity of the L. helveticus strains present in fermented dairy food. When we applied the method to study the L. helveticus strain composition in 15 natural whey cultures (NWCs) that were collected at different Gruyère, a protected designation of origin (PDO) production facilities, we detected a total of 10 sequence types (STs). In addition, we monitored the development of a three-strain mix in raclette cheese for 17 weeks. PMID:28775722

  9. Biodiversity among Lactobacillus helveticus Strains Isolated from Different Natural Whey Starter Cultures as Revealed by Classification Trees

    PubMed Central

    Gatti, Monica; Trivisano, Carlo; Fabrizi, Enrico; Neviani, Erasmo; Gardini, Fausto

    2004-01-01

    Lactobacillus helveticus is a homofermentative thermophilic lactic acid bacterium used extensively for manufacturing Swiss type and aged Italian cheese. In this study, the phenotypic and genotypic diversity of strains isolated from different natural dairy starter cultures used for Grana Padano, Parmigiano Reggiano, and Provolone cheeses was investigated by a classification tree technique. A data set was used that consists of 119 L. helveticus strains, each of which was studied for its physiological characters, as well as surface protein profiles and hybridization with a species-specific DNA probe. The methodology employed in this work allowed the strains to be grouped into terminal nodes without difficult and subjective interpretation. In particular, good discrimination was obtained between L. helveticus strains isolated, respectively, from Grana Padano and from Provolone natural whey starter cultures. The method used in this work allowed identification of the main characteristics that permit discrimination of biotypes. In order to understand what kind of genes could code for phenotypes of technological relevance, evidence that specific DNA sequences are present only in particular biotypes may be of great interest. PMID:14711641

  10. Lactobacillus helveticus MIMLh5-Specific Antibodies for Detection of S-Layer Protein in Grana Padano Protected-Designation-of-Origin Cheese

    PubMed Central

    Brockmann, Eeva-Christine; Huovinen, Tuomas; Guglielmetti, Simone; Mora, Diego; Taverniti, Valentina; Arioli, Stefania; De Noni, Ivano; Lamminmäki, Urpo

    2014-01-01

    Single-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was also capable of binding to the S-layer protein of L. helveticus ATCC 15009. All five anti-S-layer scFvs were expressed in Escherichia coli XL1-Blue, and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein of L. helveticus MIMLh5, was used to detect the S-layer protein in Grana Padano protected-designation-of-origin (PDO) cheese extracts by Western blotting. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (and dairy-based) foods. PMID:24242242

  11. Epifluorescence and atomic force microscopy: Two innovative applications for studying phage-host interactions in Lactobacillus helveticus.

    PubMed

    Zago, Miriam; Scaltriti, Erika; Fornasari, Maria Emanuela; Rivetti, Claudio; Grolli, Stefano; Giraffa, Giorgio; Ramoni, Roberto; Carminati, Domenico

    2012-01-01

    Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥6log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Oral intake of Lactobacillus helveticus-fermented milk whey decreased transepidermal water loss and prevented the onset of sodium dodecylsulfate-induced dermatitis in mice.

    PubMed

    Baba, Hidehiko; Masuyama, Akihiro; Yoshimura, Chiaki; Aoyama, Yoshiko; Takano, Toshiaki; Ohki, Kohji

    2010-01-01

    We investigated the effects of oral intake of Lactobacillus helveticus-fermented milk whey on the intact and sodium dodecylsulfate (SDS)-exposed skin of Hos:HR-1 hairless mice. The mice were allowed to drink 10% L. helveticus-fermented milk whey in distilled water ad libitum for 5 weeks. SDS solution was topically applied to the dorsal skin at 4 weeks, leading to the development of dermatitis. The skin moisture content, transepidermal water loss, and sizes of the dermatitis areas were periodically measured. Compared with oral intake of water alone, oral intake of water containing L. helveticus-fermented milk whey for 4 weeks significantly lowered transepidermal water loss from intact skin, significantly reduced in size the areas of early SDS-induced dermatitis, and ameliorated both the SDS-induced decrease in moisture content and the increase in transepidermal water loss. These results suggest that oral intake of L. helveticus-fermented milk whey might be effective in promoting the epidermal barrier function and in preventing the onset of dermatitis.

  13. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress.

    PubMed

    Liang, S; Wang, T; Hu, X; Luo, J; Li, W; Wu, X; Duan, Y; Jin, F

    2015-12-03

    Increasing numbers of studies have suggested that the gut microbiota is involved in the pathophysiology of stress-related disorders. Chronic stress can cause behavioral, cognitive, biochemical, and gut microbiota aberrations. Gut bacteria can communicate with the host through the microbiota-gut-brain axis (which mainly includes the immune, neuroendocrine, and neural pathways) to influence brain and behavior. It is hypothesized that administration of probiotics can improve chronic-stress-induced depression. In order to examine this hypothesis, the chronic restraint stress depression model was established in this study. Adult specific pathogen free (SPF) Sprague-Dawley rats were subjected to 21 days of restraint stress followed by behavioral testing (including the sucrose preference test (SPT), elevated-plus maze test, open-field test (OFT), object recognition test (ORT), and object placement test (OPT)) and biochemical analysis. Supplemental Lactobacillus helveticus NS8 was provided every day during stress until the end of experiment, and selective serotonin reuptake inhibitor (SSRI) citalopram (CIT) served as a positive control. Results showed that L. helveticus NS8 improved chronic restraint stress-induced behavioral (anxiety and depression) and cognitive dysfunction, showing an effect similar to and better than that of CIT. L. helveticus NS8 also resulted in lower plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, higher plasma interleukin-10 (IL-10) levels, restored hippocampal serotonin (5-HT) and norepinephrine (NE) levels, and more hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression than in chronic stress rats. Taken together, these results indicate an anti-depressant effect of L. helveticus NS8 in rats subjected to chronic restraint stress depression and that this effect could be due to the microbiota-gut-brain axis. They also suggest the therapeutic potential of L. helveticus NS8 in stress-related and possibly other

  14. Survey on the phage resistance mechanisms displayed by a dairy Lactobacillus helveticus strain.

    PubMed

    Zago, Miriam; Orrù, Luigi; Rossetti, Lia; Lamontanara, Antonella; Fornasari, Maria Emanuela; Bonvini, Barbara; Meucci, Aurora; Carminati, Domenico; Cattivelli, Luigi; Giraffa, Giorgio

    2017-09-01

    In this study the presence and functionality of phage defence mechanisms in Lactobacillus helveticus ATCC 10386, a strain of dairy origin which is sensitive to ΦLh56, were investigated. After exposure of ATCC 10386 to ΦLh56, the whole-genome sequences of ATCC 10386 and of a phage-resistant derivative (LhM3) were compared. LhM3 showed deletions in the S-layer protein and a higher expression of the genes involved in the restriction/modification (R/M) system. Genetic data were substantiated by measurements of bacteriophage adsorption rates, efficiency of plaquing, cell wall protein size and by gene expression analysis. In LhM3 two phage resistance mechanisms, the inhibition of phage adsorption and the upregulation of Type I R/M genes, take place and explain its resistance to ΦLh56. Although present in both ATCC 10386 and LhM3 genomes, the CRISPR machinery did not seem to play a role in the phage resistance of LhM3. Overall, the natural selection of phage resistant strains resulted successful in detecting variants carrying multiple phage defence mechanisms in L. helveticus. The concurrent presence of multiple phage-resistance systems should provide starter strains with increased fitness and robustness in dairy ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Lactobacillus helveticus-fermented milk improves learning and memory in mice.

    PubMed

    Ohsawa, Kazuhito; Uchida, Naoto; Ohki, Kohji; Nakamura, Yasunori; Yokogoshi, Hidehiko

    2015-07-01

    To investigate the effects of Calpis sour milk whey, a Lactobacillus helveticus-fermented milk product, on learning and memory. We evaluated improvement in scopolamine-induced memory impairment using the spontaneous alternation behaviour test, a measure of short-term memory. We also evaluated learning and working memory in mice using the novel object recognition test, which does not involve primary reinforcement (food or electric shocks). A total of 195 male ddY mice were used in the spontaneous alternation behaviour test and 60 in the novel object recognition test. Forced orally administered Calpis sour milk whey powder (200 and 2000 mg/kg) significantly improved scopolamine-induced cognitive impairments (P < 0.05 and P < 0.01, respectively) and object recognition memory (2000 mg/kg; P < 0.05). These results suggest that Calpis sour milk whey may be useful for the prevention of neurodegenerative disorders, such as Alzheimer's disease, and enhancing learning and memory in healthy human subjects; however, human clinical studies are necessary.

  16. Isolation and characterization of Lactobacillus helveticus DSM 20075 variants with improved autolytic capacity.

    PubMed

    Spus, Maciej; Liu, Hua; Wels, Michiel; Abee, Tjakko; Smid, Eddy J

    2017-01-16

    Lactobacillus helveticus is widely used in dairy fermentations and produces a range of enzymes, which upon cell lysis can be released into the cheese matrix and impact degradation of proteins, peptides and lipids. In our study we set out to explore the potential of Lb. helveticus DSM 20075 for increased autolytic capacity triggered by conditions such as low pH and high salt concentrations encountered in cheese environments. Lb. helveticus DSM 20075 was subjected to varied incubation temperatures (ranging from 37 to 50°C). High-temperature incubation (in the range of 45 to 50°C) allowed us to obtain a collection of six variant strains (V45-V50), which in comparison to the wild-type strain, showed higher growth rates at elevated temperatures (42°C-45°C). Moreover, variant strain V50 showed a 4-fold higher, in comparison to wild type, autolytic capacity in cheese-like conditions. Next, strain V50 was used as an adjunct in lab-scale cheese making trials to measure its impact on aroma formation during ripening. Specifically, in cheeses made with strain V50, the relative abundance of benzaldehyde increased 3-fold compared to cheeses made with the wild-type strain. Analysis of the genome sequence of strain V50 revealed multiple mutations in comparison to the wild-type strain DSM 20075 including a mutation found in a gene coding for a metal ion transporter, which can potentially be linked to intracellular accumulation of Mn 2+ and benzaldehyde formation. The approach of high-temperature incubation can be applied in dairy industry for the selection of (adjunct) cultures targeted at accelerated cheese ripening and aroma formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Proteome analysis of Lactobacillus helveticus H9 during growth in skim milk.

    PubMed

    Chen, Y F; Zhao, W J; Wu, R N; Sun, Z H; Zhang, W Y; Wang, J C; Bilige, M; Zhang, H P

    2014-12-01

    Lactobacillus helveticus H9 was isolated from traditionally fermented yak milk in Tibet (China) with the ability to produce the antihypertensive peptides Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) during milk fermentation. To understand the changes in the protein expression of L. helveticus H9, proteome analysis was performed at 3 different growth stages, lag phase (pH 6.1), log phase (pH 5.1), and stationary phase (pH 4.5) using 2-dimensional electrophoresis (2-DE). Further analysis showed that 257 differential protein spots were found and 214 protein spots were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). The cellular functions of the differentially expressed proteins were complex. Interestingly, the proteolytic system-related proteins aminopeptidase N (PepN), aminopeptidase E (PepE), endopeptidase O2 (PepO2), and oligopeptide transport system permease protein (OppC) were observed only on the maps of pH 5.1 and pH 4.5, which was consistent with the presence of angiotensin I-converting enzyme (ACE)-inhibitory peptides VPP and IPP during these 2 growth stages (log phase and stationary phase). These results, combined with a previous study of gene expression of the proteolytic system, led us to conclude that the Opp transport system, pepE, and pepO2 are likely related to the production of ACE-inhibitory peptides. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Exploitation of the diverse insertion sequence element content of dairy Lactobacillus helveticus starters as a rapid method to identify different strains.

    PubMed

    Kaleta, Pawel; Callanan, Michael J; O'Callaghan, John; Fitzgerald, Gerald F; Beresford, Thomas P; Ross, R Paul

    2009-10-01

    The species Lactobacillus helveticus is a commonly used thermophilic starter and/or adjunct culture for Swiss and Cheddar cheese manufacture. Its use is normally associated with flavour improvement which is known to be associated with culture traits such as rapid autolysis and high proteolytic activity. The genome of the commercial strain, DPC4571, was recently sequenced and found to have an abundance of IS sequences in terms of both abundance (213 intact) and diversity (21 types). Given this unique diversity for a lactic acid bacterium, we investigated whether PCR-based IS fingerprinting could be used as a discriminatory tool to distinguish between different strains of Lb. helveticus. A set of ten primers targeting five of the most numerous groups (ISL1201, ISLhe65, ISLhe2, ISLhe15 and ISL2) of IS elements was designed. Multiplex-PCR with all primers resulted in 1-12 discreet amplicons for each strain tested. The resultant fingerprints (in the 0.5 kb-3 kb range) were found to be strain specific and reproducible. This approach thus provides a valuable method to distinguish between Lb. helveticus strains while giving some indication of the relative abundance of IS sequences in each strain.

  19. Comparative Genomics of Completely Sequenced Lactobacillus helveticus Genomes Provides Insights into Strain-Specific Genes and Resolves Metagenomics Data Down to the Strain Level.

    PubMed

    Schmid, Michael; Muri, Jonathan; Melidis, Damianos; Varadarajan, Adithi R; Somerville, Vincent; Wicki, Adrian; Moser, Aline; Bourqui, Marc; Wenzel, Claudia; Eugster-Meier, Elisabeth; Frey, Juerg E; Irmler, Stefan; Ahrens, Christian H

    2018-01-01

    Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences' long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus -to our knowledge-identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus . Notably, the functional Clusters of Orthologous Groups of proteins categories "cell wall/membrane biogenesis" and "defense mechanisms" were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences proved to be

  20. A comprehensive post-market review of studies on a probiotic product containing Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011.

    PubMed

    Foster, L M; Tompkins, T A; Dahl, W J

    2011-12-01

    The probiotic preparation Lacidofil® has been commercially available in Europe, Asia and North America since 1995. This product is a combination of two strains, Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011. The strains have been evaluated for safety, identity and mechanisms of probiotic action in vitro, in animal models and human clinical trials. The strains adhered to human epithelial cells, helped to maintain the barrier function and blocked the adhesion of a number of pathogens, allowing them to be cleared from the intestine. The strains also elicited an anti-inflammatory response by down-regulating IL-1β, IL-8 and TNF-α. In various stress models, the probiotic combination facilitated better coping and outcomes which may be through the maintenance of barrier function and suppressing inflammation. Overall, pre-clinical studies suggest a potential anti-infectious role for the strains and the combination. Clinical studies, primarily in children, have identified Lacidofil as an effective supplement for various gastrointestinal diseases such as antibiotic-associated diarrhoea and acute gastroenteritis. Recent research has also indicated that Lacidofil may be beneficial for individuals with atopic dermatitis or vaginal dysbacteriosis.

  1. Lactobacillus helveticus as a tool to change proteolysis and functionality in Swiss-type cheeses.

    PubMed

    Sadat-Mekmene, L; Richoux, R; Aubert-Frogerais, L; Madec, M-N; Corre, C; Piot, M; Jardin, J; le Feunteun, S; Lortal, S; Gagnaire, V

    2013-03-01

    Lactobacillus helveticus exhibits a great biodiversity in terms of protease gene content, with 1 to 4 cell envelope proteinases. Among them, proteinases PrtH and PrtH2 were shown to have different cleavage specificity on pure α(s1)-casein. The aim of this work was to investigate the proteolytic activity of 2L. helveticus strains in cheese matrix: ITGLH77 (PrtH2 only) and ITGLH1 (at least 2 proteinases, PrtH and PrtH2). Cell viability, proteolysis, autolysis, and stretchability of experimental Emmental cheeses were measured during ripening. The peptides identified by mass spectrometry showed very different profiles in the 2 cheeses. Regardless of the casein origin, the number of different peptides containing more than 20 amino acids was greater in cheeses manufactured with strain ITGLH77. This accumulation of large peptides, including those from α(s1)- and α(s2)-caseins, was in agreement with the lower overall extent of proteolysis obtained in ITGLH77 cheeses, which can be attributed to the presence of one cell envelope proteinase of the lactobacilli strains or lesser release of intracellular peptidases into the cheese aqueous phase. In parallel, stretchability was measured throughout ripening time. Emmental strands observed by confocal laser scanning microscopy showed microstructure similar to that of mozzarella strands. Stretchability was correlated with a specific type of peptide (hydrophobic), as shown by principal component analysis, and with a lower degree of proteolysis. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Characterization of volatile compounds produced by Lactobacillus helveticus strains in a hard cheese model.

    PubMed

    Cuffia, Facundo; Bergamini, Carina V; Wolf, Irma V; Hynes, Erica R; Perotti, María C

    2018-01-01

    Starter cultures of Lactobacillus helveticus used in hard cooked cheeses play an important role in flavor development. In this work, we studied the capacity of three strains of L. helveticus, two autochthonous (Lh138 and Lh209) and one commercial (LhB02), to grow and to produce volatile compounds in a hard cheese extract. Bacterial counts, pH, profiles of organic acids, carbohydrates, and volatile compounds were analyzed during incubation of extracts for 14 days at 37 ℃. Lactobacilli populations were maintained at 10 6 CFU ml -1 for Lh138, while decreases of approx. 2 log orders were found for LhB02 and Lh209. Both Lh209 and LhB02 slightly increased the acetic acid content whereas mild increase in lactic acid was produced by Lh138. The patterns of volatiles were dependent on the strain which reflect their distinct enzymatic machineries: LhB02 and Lh209 produced a greater diversity of compounds, while Lh138 was the least producer strain. Extracts inoculated with LhB02 and Lh 209 were characterized by ketones, esters, alcohols, aldehydes, and acids, whereas in the extracts with Lh138 the main compounds belonged to aromatic, aldehydes, and ketones groups. Therefore, Lh209 and LhB02 could represent the best cheese starters to improve and intensify the flavor, and even a starter composed by combinations of LhB02 or Lh209 with Lh138 could also be a strategy to diversify cheese flavor.

  3. Fermentation characteristics and angiotensin I-converting enzyme-inhibitory activity of Lactobacillus helveticus isolate H9 in cow milk, soy milk, and mare milk.

    PubMed

    Wang, Jicheng; Li, Changkun; Xue, Jiangang; Yang, Jie; Zhang, Qing; Zhang, Heping; Chen, Yongfu

    2015-06-01

    Lactobacillus helveticus isolate H9 demonstrated high angiotensin I-converting enzyme (ACE)-inhibitory activity in previous research. Here, we evaluated the fermentation characteristics (pH, titratable acidity, free amino nitrogen, and viable bacterial counts), ACE-inhibitory activity, and contents of Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) peptides of stored yogurt (4°C for 28 d) fermented by L. helveticus isolate H9 (initially inoculated at 4 concentrations), from cow, mare, and soy milks. During storage, the pH and titratable acidity remained stable in yogurts produced from all milk types and all inoculation concentrations. The viable bacterial counts in all stored yogurts ranged between 10(6.72) and 10(8.59) cfu/g. The highest ACE-inhibitory activity (70.9-74.5%) was achieved at inoculation concentrations of 5×10(6) cfu/mL. The ACE-inhibitory tripeptides VPP and IPP as determined by ultra-performance liquid chromatography-tandem mass spectrometry were not produced in yogurt made from soy milk or mare milk. These evaluations indicate that L. helveticus H9 has good probiotic properties and would be a promising candidate for production of fermented food with probiotic properties. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Comparative Genomics of Completely Sequenced Lactobacillus helveticus Genomes Provides Insights into Strain-Specific Genes and Resolves Metagenomics Data Down to the Strain Level

    PubMed Central

    Schmid, Michael; Muri, Jonathan; Melidis, Damianos; Varadarajan, Adithi R.; Somerville, Vincent; Wicki, Adrian; Moser, Aline; Bourqui, Marc; Wenzel, Claudia; Eugster-Meier, Elisabeth; Frey, Juerg E.; Irmler, Stefan; Ahrens, Christian H.

    2018-01-01

    Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences' long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus—to our knowledge—identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus. Notably, the functional Clusters of Orthologous Groups of proteins categories “cell wall/membrane biogenesis” and “defense mechanisms” were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences

  5. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome.

    PubMed

    Ohland, Christina L; Kish, Lisa; Bell, Haley; Thiesen, Aducio; Hotte, Naomi; Pankiv, Evelina; Madsen, Karen L

    2013-09-01

    Modulation of the gut microbiota with diet and probiotic bacteria can restore intestinal homeostasis in inflammatory conditions and alter behavior via the gut-brain axis. The purpose of this study was to determine whether the modulatory effects of probiotics differ depending on diet and mouse genotype. At weaning, wild type (WT) and IL-10 deficient (IL-10(-/-)) 129/SvEv mice were placed on a standard mouse chow or a Western-style diet (fat 33%, refined carbohydrate 49%)±Lactobacillus helveticus ROO52 (10(9)cfu/d) for 21 days. Animal weight and food eaten were monitored weekly. Intestinal immune function was analysed for cytokine expression using the Meso Scale Discovery platform. Spatial memory and anxiety-like behavior was assessed in a Barnes maze. Terminal restriction fragment length polymorphism (TRFLP) was used to analyze the fecal microbiota. Both WT and IL-10(-/-) mice on a Western diet had increased weight gain along with changes in gut microbiota and cytokine expression and altered anxiety-like behavior. The ability of L. helveticus to modulate these factors was genotype- and diet-dependent. Anxiety-like behavior and memory were negatively affected by Western-style diet depending on inflammatory state, but this change was prevented with L. helveticus administration. However, probiotics alone decreased anxiety-like behavior in WT mice on a chow diet. Mice on the Western diet had decreased inflammation and fecal corticosterone, but these markers did not correlate with changes in behavior. Analysis of bacterial phyla from WT and IL-10(-/-)mice showed discrete clustering of the groups to be associated with both diet and probiotic supplementation, with the diet-induced shift normalized to some degree by L. helveticus. These findings suggest that the type of diet consumed by the host and the presence or absence of active inflammation may significantly alter the ability of probiotics to modulate host physiological function. Copyright © 2013 Elsevier Ltd. All

  6. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese.

    PubMed

    Cremonesi, Paola; Vanoni, Laura; Morandi, Stefano; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena

    2011-03-30

    A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay.

    PubMed

    Le Roy, Caroline I; Štšepetova, Jelena; Sepp, Epp; Songisepp, Epp; Claus, Sandrine P; Mikelsaar, Marika

    2015-10-13

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.

  8. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay

    PubMed Central

    Sepp, Epp; Songisepp, Epp; Claus, Sandrine P.; Mikelsaar, Marika

    2015-01-01

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population. PMID:26437083

  9. Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species.

    PubMed

    Aguirre Santos, Elsa Anaheim; Schieber, Andreas; Weber, Fabian

    2018-07-01

    Hydroxycinnamic acids are a major group of phenolic compounds widely distributed in plants. Among them, chlorogenic acids and caffeic acid have been in the focus of interest due to their impact on food quality and their putative health benefits. Numerous microorganisms like lactic acid bacteria are able to hydrolyze chlorogenic acids by cinnamoyl esterase enzymes. Data on the specificity of theses enzymes regarding the cleavage of distinct isomers of mono- or dichlorogenic acids is lacking. Lactobacillus reuteri, Lactobacillus helveticus, and Lactobacillus fermentum were screened for their ability to hydrolyze chlorogenic acid isomers in culture medium. Concentrations of chlorogenic acids and the released caffeic acid were determined by UHPLC-ESI-MS. The highest hydrolysis rate (100%) was observed for the hydrolysis of 5-CQA by Lactobacillus helveticus. A so far unknown metabolic pathway for the cleavage of 4-CQA is proposed including isomerization to 5-CQA and 3-CQA followed by hydrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Diversity and functional characterization of Lactobacillus spp. isolated throughout the ripening of a hard cheese.

    PubMed

    Bautista-Gallego, J; Alessandria, V; Fontana, M; Bisotti, S; Taricco, S; Dolci, P; Cocolin, L; Rantsiou, K

    2014-07-02

    The aim of this work was to study the Lactobacillus spp. intra- and inter- species diversity in a Piedmont hard cheese made of raw milk without thermal treatment and without addition of industrial starter, and to perform a first screening for potential functional properties. A total of 586 isolates were collected during the cheese production and identified by means of molecular methods: three hundred and four were identified as Lactobacillus rhamnosus, two hundred and forty as Lactobacillus helveticus, twenty six as Lactobacillus fermentum, eleven as Lactobacillus delbrueckii, three as Lactobacillus pontis, and two as Lactobacillus gasseri and Lactobacillus reuteri, respectively. A high genetic heterogeneity was detected by using the repetitive bacterial DNA element fingerprinting (rep-PCR) with the use of (GTG)5 primer resulting in eight clusters of L. helveticus and sixteen clusters in the case of L. rhamnosus. Most of isolates showed a high auto-aggregation property, low hydrophobicity values, and a general low survival to simulated digestion process. However, sixteen isolates showed promising functional characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii.

    PubMed

    Santos Rocha, Clarissa; Gomes-Santos, Ana Cristina; Garcias Moreira, Thais; de Azevedo, Marcela; Diniz Luerce, Tessalia; Mariadassou, Mahendra; Longaray Delamare, Ana Paula; Langella, Philippe; Maguin, Emmanuelle; Azevedo, Vasco; Caetano de Faria, Ana Maria; Miyoshi, Anderson; van de Guchte, Maarten

    2014-01-01

    Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.

  12. Antioxidative properties of milk protein preparations fermented by Polish strains of Lactobacillus helveticus.

    PubMed

    Skrzypczak, Katarzyna W; Gustaw, Waldemar Z; Jabłońska-Ryś, Ewa D; Michalak-Majewska, Monika; Sławińska, Aneta; Radzki, Wojciech P; Gustaw, Klaudia M; Waśko, Adam D

    2017-01-01

    The increasing significance of food products containing substances with antioxidative activi- ties is currently being observed. This is mainly due to the fact that pathogenic changes underlying some diseases are related to the carcinogenic effects of free radicals. Antioxidative compounds play an important role in supporting and enhancing the body’s defense mechanisms, which is useful in preventing some civili- zation diseases. Unfortunately, it has been already proved that some synthetic antioxidants pose a potential risk in vivo. Therefore, antioxidant compounds derived from a natural source are extremely valuable. Milk is a source of biologically active precursors, which when enclosed in structural protein sequences are inactive. The hydrolysis process, involving bacterial proteolytic enzymes, might release biopeptides that act in various ways, including having antioxidant properties. The objective of this study was to determine the antioxidant properties of milk protein preparations fermented by Polish strains of L. helveticus. The research also focused on evaluating the dynamics of milk acidification by these strains and analyzing the textural properties of the skim milk fermented products obtained. The research studied Polish strains of L. helveticus: B734, 141, T80 and T105, which have not yet been used industrially. The antioxidant properties of 1% (w/v) solutions of milk protein preparations (skim milk powder, caseinoglycomacropeptide and α-lactoalbumin) fermented by these strains were determined by neutralizing the free radicals with 2,2-diphenyl-1-picrylhydrazyl (DPPH˙). Moreover, solutions of skim milk powder (SMP) fermented by the microorganisms being tested were analyzed on gel electrophoresis (SDS-PAGE). The dynamics of milk acidification by these microorganisms was also analyzed L. helveticus strains were used to prepare fermented regenerated skim milk products that were subjected to texture profile analysis (TPA) performed using a TA

  13. Simultaneous Presence of PrtH and PrtH2 Proteinases in Lactobacillus helveticus Strains Improves Breakdown of the Pure αs1-Casein▿ †

    PubMed Central

    Sadat-Mekmene, L.; Jardin, J.; Corre, C.; Mollé, D.; Richoux, R.; Delage, M.-M.; Lortal, S.; Gagnaire, V.

    2011-01-01

    Lactobacillus helveticus can possess one or two cell envelope proteinases (CEPs), called PrtH2 and PrtH. The aim of this work was to explore the diversity of 15 strains of L. helveticus, isolated from various origins, in terms of their proteolytic activities and specificities on pure caseins or on milk casein micelles. CEP activity differed 14-fold when the strains were assayed on a synthetic substrate, but no significant differences were detected between strains possessing one or two CEPs. No correlation was observed between the proteolytic activities of the strains and their rates of acidification in milk. The kinetics of hydrolysis of purified αs1- and β-casein by L. helveticus whole cells was monitored using Tris-Tricine sodium dodecyl sulfate (SDS) electrophoresis, and for four strains, the peptides released were identified using mass spectrometry. While rapid hydrolysis of pure β-casein was observed for all strains, the hydrolysis kinetics of αs1-casein was the only criterion capable of distinguishing between the strains based on the number of CEPs. Fifty-four to 74 peptides were identified for each strain. When only PrtH2 was present, 22 to 30% of the peptides originated from αs1-casein. The percentage increased to 41 to 49% for strains in which both CEPs were expressed. The peptide size ranged from 6 to 33 amino acids, revealing a broad range of cleavage specificities, involving all classes of amino acids (Leu, Val, Ala, Ile, Glu, Gln, Lys, Arg, Met, and Pro). Regions resistant to proteolysis were identified in both caseins. When strains were grown in milk, a drastic reduction in the number of peptides was observed, reflecting changes in accessibility and/or peptide assimilation during growth. PMID:21037305

  14. Ecophysiological adaptations of anaerobic bacteria to low pH. [Sarcina ventriculi; Lactobacillus helveticus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, S.D.

    1986-01-01

    The ecological and physiological adaptations of anaerobic bacteria to low pH were investigated in field and laboratory studies. Determinations of hydrogen kinetic parameters demonstrated that overall hydrogen metabolism was inhibited in acid ecosystems. In particular, hydrogen metabolism became progressively uncoupled at low pH. This uncoupling resulted in a slowing of carbon flow during anaerobic digestion and the accumulation of intermediary metabolites. The addition of carbon electron donors to acid bog sediments resulted in the accumulation of hydrogen and a slowing of the overall rates of anaerobic digestion. As an adaptation to low pH, anaerobic bacterial populations shifted from production ofmore » acid intermediary metabolites (e.g. acetate and lactate) to the production of neutral intermediary metabolites (e.g. ethanol). This shift was observed both in situ and in pure cultures of hydrolytic strains isolated from bog sediments. Detailed physiological studies of Sarcina ventriculi showed an adaptation to growth at low pH by mechanisms which allowed the continued production of ethanol from glucose and the maintenance of a proton motive force at low cytoplasmic pH values. Further physiological studies Lactobacillus helveticus showed that the accumulation of acidic end-product (lactic acid) strongly influenced cellular electrochemical parameters. Based on the results of computer simulations and laboratory studies of the physiology of the organism in the presence of organic acids, a new model for the passive coupling of energy conservation to the efflux of lactic acid in an electroneutral process is proposed.« less

  15. Effect of cream fermentation on microbiological, physicochemical and rheological properties of L. helveticus-butter.

    PubMed

    Ewe, Joo-Ann; Loo, Su-Yi

    2016-06-15

    The primary objective of this study was to evaluate the physicochemical and rheological properties of butter produced by Lactobacillus helveticus fermented cream. The incorporation of putative probiotic - the L. helveticus, to ferment cream prior to butter production was anticipated to alter the nutritional composition of butter. Changes in crude macronutrients and the resultant modification relating to textural properties of butter induced upon metabolic activities of L. helveticus in cream were focused in this research. Fermented butter (LH-butter) was produced by churning the cream that was fermented by lactobacilli at 37 °C for 24 h. Physicochemical analysis, proximate analysis and rheology properties of LH-butter were compared with butter produced using unfermented cream (control). LH-butter showed a significantly (P<0.05) higher fat content and acid value; lower moisture and ash; and was softer than the control. Cream fermentation modified nutritional and textural properties of butter in which LH-butter contained higher health beneficial unsaturated fatty acids than the control and thus rendered the product softer. Its enrichment with probiotics could thus further enhance its functional property. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages.

    PubMed

    Rocha-Ramírez, L M; Pérez-Solano, R A; Castañón-Alonso, S L; Moreno Guerrero, S S; Ramírez Pacheco, A; García Garibay, M; Eslava, C

    2017-01-01

    Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF- κ B pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus . The results obtained from the tested strains ( Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF- α , IL-12p70, and IL-6. However, IL-1 β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus , S. typhimurium , and E. coli , were increased by pretreatment with Lactobacillus . The nuclear translocation NF- κ B pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages.

  17. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages

    PubMed Central

    Moreno Guerrero, S. S.; Ramírez Pacheco, A.; García Garibay, M.; Eslava, C.

    2017-01-01

    Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages. PMID:28758133

  18. Characterization of angiotensin-converting enzyme inhibitory activity of fermented milk produced by Lactobacillus helveticus.

    PubMed

    Chen, Yongfu; Li, Changkun; Xue, Jiangang; Kwok, Lai-yu; Yang, Jie; Zhang, Heping; Menghe, Bilige

    2015-08-01

    Hypertension affects up to 30% of the adult population in most countries. It is a known risk factor for cardiovascular diseases, including coronary heart disease, peripheral artery disease, and stroke. Owing to the increased health awareness of consumers, the application of angiotensin-converting enzyme (ACE)-inhibitory peptides produced by Lactobacillushelveticus to prevent or control high blood pressure has drawn wide attention. A total of 59 L. helveticus strains were isolated from traditional fermented dairy products and the ACE-inhibitory activity of the fermented milks produced with the isolated microorganisms was assayed. The ACE-inhibitory activity of 38 L. helveticus strains was more than 50%, and 3 strains (IMAU80872, IMAU80852, and IMAU80851) expressing the highest ACE-inhibitory activity were selected for further studies. Particularly, the gastrointestinal protease tolerance and thermostability of the ACE-inhibitory activity in the fermented milks were assessed. Based on these 2 criteria, IMAU80872 was found to be superior over the other 2 strains. Furthermore, IMAU80872 exhibited a high in vitro ACE-inhibitory activity at the following fermentation conditions: fermentation temperature at 40°C, inoculation concentration of 1×10(6) cfu/mL, and fermentation for 18h. Finally, by using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis, we observed changes of the metabolome along the milk fermentation process of IMAU80872. Furthermore, 6 peptides were identified, which might have ACE-inhibitory activity. In conclusion, we identified a novel ACE-inhibitory L. helveticus strain suitable for the production of fermented milk or other functional dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. S-Layer Protein Mediates the Stimulatory Effect of Lactobacillus helveticus MIMLh5 on Innate Immunity

    PubMed Central

    Taverniti, Valentina; Stuknyte, Milda; Minuzzo, Mario; Arioli, Stefania; De Noni, Ivano; Scabiosi, Christian; Cordova, Zuzet Martinez; Junttila, Ilkka; Hämäläinen, Sanna; Turpeinen, Hannu; Mora, Diego; Karp, Matti; Pesu, Marko

    2013-01-01

    The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention. PMID:23220964

  20. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    PubMed

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture.

  1. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects.

    PubMed

    Messaoudi, Michaël; Lalonde, Robert; Violle, Nicolas; Javelot, Hervé; Desor, Didier; Nejdi, Amine; Bisson, Jean-François; Rougeot, Catherine; Pichelin, Matthieu; Cazaubiel, Murielle; Cazaubiel, Jean-Marc

    2011-03-01

    In a previous clinical study, a probiotic formulation (PF) consisting of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 (PF) decreased stress-induced gastrointestinal discomfort. Emerging evidence of a role for gut microbiota on central nervous system functions therefore suggests that oral intake of probiotics may have beneficial consequences on mood and psychological distress. The aim of the present study was to investigate the anxiolytic-like activity of PF in rats, and its possible effects on anxiety, depression, stress and coping strategies in healthy human volunteers. In the preclinical study, rats were daily administered PF for 2 weeks and subsequently tested in the conditioned defensive burying test, a screening model for anti-anxiety agents. In the clinical trial, volunteers participated in a double-blind, placebo-controlled, randomised parallel group study with PF administered for 30 d and assessed with the Hopkins Symptom Checklist (HSCL-90), the Hospital Anxiety and Depression Scale (HADS), the Perceived Stress Scale, the Coping Checklist (CCL) and 24 h urinary free cortisol (UFC). Daily subchronic administration of PF significantly reduced anxiety-like behaviour in rats (P < 0·05) and alleviated psychological distress in volunteers, as measured particularly by the HSCL-90 scale (global severity index, P < 0·05; somatisation, P < 0·05; depression, P < 0·05; and anger-hostility, P < 0·05), the HADS (HADS global score, P < 0·05; and HADS-anxiety, P < 0·06), and by the CCL (problem solving, P < 0·05) and the UFC level (P < 0·05). L. helveticus R0052 and B. longum R0175 taken in combination display anxiolytic-like activity in rats and beneficial psychological effects in healthy human volunteers.

  2. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    PubMed Central

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  3. Feasibility of Genome-Wide Screening for Biosafety Assessment of Probiotics: A Case Study of Lactobacillus helveticus MTCC 5463.

    PubMed

    Senan, S; Prajapati, J B; Joshi, C G

    2015-12-01

    Recent years have witnessed an explosion in genome sequencing of probiotic strains for accurate identification and characterization. Regulatory bodies are emphasizing on the need for performing phase I safety studies for probiotics. The main hypothesis of this study was to explore the feasibility of using genome databases for safety screening of strains. In this study, we attempted to develop a framework for the safety assessment of a potential probiotic strain, Lactobacillus helveticus MTCC 5463 based on genome mining for genes associated with antibiotic resistance, production of harmful metabolites, and virulence. The sequencing of MTCC 5463 was performed using GS-FLX Titanium reagents. Genes coding for antibiotic resistance and virulence were identified using Antibiotic Resistance Genes Database and Virulence Factors Database. Results indicated that MTCC 5463 carried antibiotic resistance genes associated with beta-lactam and fluoroquinolone. There is no threat of transfer of these genes to host gut commensals because the genes are not plasmid encoded. The presence of genes for adhesion, biofilm, surface proteins, and stress-related proteins provides robustness to the strain. The presence of hemolysin gene in the genome revealed a theoretical risk of virulence. The results of in silico analysis complemented the in vitro studies and human clinical trials, confirming the safety of the probiotic strain. We propose that the safety assessment of probiotic strains administered live at high doses using a genome-wide screening could be an effective and time-saving tool for identifying prognostic biomarkers of biosafety.

  4. Complete genome sequence of the Campylobacter helveticus type strain ATCC 51209T

    USDA-ARS?s Scientific Manuscript database

    Campylobacter helveticus has been isolated from domestic dogs and cats. Although C. helveticus is closely related to the emerging human pathogen C. upsaliensis, no C. helveticus-associated cases of human illness have been reported. This study describes the whole-genome sequence of the C. helveticus ...

  5. Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species.

    PubMed

    Minervini, F; Algaron, F; Rizzello, C G; Fox, P F; Monnet, V; Gobbetti, M

    2003-09-01

    Sodium caseinates prepared from bovine, sheep, goat, pig, buffalo or human milk were hydrolyzed by a partially purified proteinase of Lactobacillus helveticus PR4. Peptides in each hydrolysate were fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest angiotensin I-converting-enzyme (ACE)-inhibitory or antibacterial activity were sequenced by mass spectrum and Edman degradation analyses. Various ACE-inhibitory peptides were found in the hydrolysates: the bovine alpha(S1)-casein (alpha(S1)-CN) 24-47 fragment (f24-47), f169-193, and beta-CN f58-76; ovine alpha(S1)-CN f1-6 and alpha(S2)-CN f182-185 and f186-188; caprine beta-CN f58-65 and alpha(S2)-CN f182-187; buffalo beta-CN f58-66; and a mixture of three tripeptides originating from human beta-CN. A mixture of peptides with a C-terminal sequence, Pro-Gly-Pro, was found in the most active fraction of the pig sodium caseinate hydrolysate. The highest ACE-inhibitory activity of some peptides corresponded to the concentration of the ACE inhibitor (S)-N-(1-[ethoxycarbonyl]-3-phenylpropyl)-ala-pro maleate (enalapril) of 49.253 micro g/ml (100 micro mol/liter). Several of the above sequences had features in common with other ACE-inhibitory peptides reported in the literature. The 50% inhibitory concentration (IC(50)) of some of the crude peptide fractions was very low (16 to 100 micro g/ml). Some identified peptides were chemically synthesized, and the ACE-inhibitory activity and IC(50)s were confirmed. An antibacterial peptide corresponding to beta-CN f184-210 was identified in human sodium caseinate hydrolysate. It showed a very large spectrum of inhibition against gram-positive and -negative bacteria, including species of potential clinical interest, such as Enterococcus faecium, Bacillus megaterium, Escherichia coli, Listeria innocua, Salmonella spp., Yersinia enterocolitica, and Staphylococcus aureus. The MIC for E. coli F19 was ca. 50 micro g/ml. Once generated

  6. Angiotensin I-Converting-Enzyme-Inhibitory and Antibacterial Peptides from Lactobacillus helveticus PR4 Proteinase-Hydrolyzed Caseins of Milk from Six Species

    PubMed Central

    Minervini, F.; Algaron, F.; Rizzello, C. G.; Fox, P. F.; Monnet, V.; Gobbetti, M.

    2003-01-01

    Sodium caseinates prepared from bovine, sheep, goat, pig, buffalo or human milk were hydrolyzed by a partially purified proteinase of Lactobacillus helveticus PR4. Peptides in each hydrolysate were fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest angiotensin I-converting-enzyme (ACE)-inhibitory or antibacterial activity were sequenced by mass spectrum and Edman degradation analyses. Various ACE-inhibitory peptides were found in the hydrolysates: the bovine αS1-casein (αS1-CN) 24-47 fragment (f24-47), f169-193, and β-CN f58-76; ovine αS1-CN f1-6 and αS2-CN f182-185 and f186-188; caprine β-CN f58-65 and αS2-CN f182-187; buffalo β-CN f58-66; and a mixture of three tripeptides originating from human β-CN. A mixture of peptides with a C-terminal sequence, Pro-Gly-Pro, was found in the most active fraction of the pig sodium caseinate hydrolysate. The highest ACE-inhibitory activity of some peptides corresponded to the concentration of the ACE inhibitor (S)-N-(1-[ethoxycarbonyl]-3-phenylpropyl)-ala-pro maleate (enalapril) of 49.253 μg/ml (100 μmol/liter). Several of the above sequences had features in common with other ACE-inhibitory peptides reported in the literature. The 50% inhibitory concentration (IC50) of some of the crude peptide fractions was very low (16 to 100 μg/ml). Some identified peptides were chemically synthesized, and the ACE-inhibitory activity and IC50s were confirmed. An antibacterial peptide corresponding to β-CN f184-210 was identified in human sodium caseinate hydrolysate. It showed a very large spectrum of inhibition against gram-positive and -negative bacteria, including species of potential clinical interest, such as Enterococcus faecium, Bacillus megaterium, Escherichia coli, Listeria innocua, Salmonella spp., Yersinia enterocolitica, and Staphylococcus aureus. The MIC for E. coli F19 was ca. 50 μg/ml. Once generated, the bioactive peptides were resistant to further

  7. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat.

    PubMed

    Luo, Jia; Wang, Tao; Liang, Shan; Hu, Xu; Li, Wei; Jin, Feng

    2014-03-01

    Evidence suggests that the hyperammonemia (HA)-induced neuroinflammation and alterations in the serotonin (5-HT) system may contribute to cognitive decline and anxiety disorder during hepatic encephalopathy (HE). Probiotics that maintain immune system homeostasis and regulate the 5-HT system may be potential treatment for HA-mediated neurological disorders in HE. In this study, we tested the efficacy of probiotic Lactobacillus helveticus strain NS8 in preventing cognitive decline and anxiety-like behavior in HA rats. Chronic HA was induced by intraperitoneal injection of ammonium acetate for four weeks in male Sprague-Dawley rats. HA rats were then given Lactobacillus helveticus strain NS8 (10(9) CFU mL(-1)) in drinking water as a daily supplementation. The Morris water maze task assessed cognitive function, and the elevated plus maze test evaluated anxiety-like behavior. Neuroinflammation was assessed by measuring the inflammatory markers: inducible nitric oxide synthase, prostaglandin E2, and interleukin-1 β in the brain. 5-HT system activity was evaluated by measuring 5-HT and its metabolite, 5-HIAA, and the 5-HT precursor, tryptophan. Probiotic treatment of HA rats significantly reduced the level of inflammatory markers, decreased 5-HT metabolism, restored cognitive function and improved anxiety-like behavior. These results indicate that probiotic L. helveticus strain NS8 is beneficial for the treatment of cognitive decline and anxiety-like behavior in HA rats.

  8. Effect of Lactobacillus helveticus and Propionibacterium freudenrichii ssp. shermanii combinations on propensity for split defect in Swiss cheese.

    PubMed

    White, S R; Broadbent, J R; Oberg, C J; McMahon, D J

    2003-03-01

    One of the least controlled defects in Swiss cheese is development of splits that appear during refrigerated storage after cheese is removed from the warm room. Such fissures, or cracks, in the body of the cheese can be as short as 1 cm, or long enough to span a 90-kg block. A 2 x 2 x 2 factorial experiment was used to determine the effect of different Lactobacillus helveticus/Propionibacterium freudenreichii ssp. shermanii starter culture combinations on the occurrence of split defect in Swiss cheese. Eights vats of cheese were made in summer and eight in winter. Each 90-kg block of cheese was cut into twenty-four 4-kg blocks and graded based on the presence of splits. Only small variations were found in the composition of cheeses made during the same season. There were no correlations between moisture, pH, fat, protein, calcium, lactose contents, D/L lactate ratio, or protein degradation that could be used to predict splits after 90 d of storage. However, cheese made in the summer had 2% higher moisture content and a greater prevalence of splits. There was a sixfold increase in amount of downgraded cheese between the best and worst culture combinations used during cheese manufacture. After 90-d storage, 14 to 90% of cheese had splits in the summer, and 1 to 6% in the winter. Split formation increased with time from 60 to 120 d of storage and extent of split formation was influenced by both the lactobacilli and propionibacteria cultures used.

  9. Calcium phosphate supplementation increases faecal Lactobacillus spp. in a randomised trial of young adults.

    PubMed

    Dahl, W J; Ford, A L; Coppola, J A; Lopez, D; Combs, W; Rohani, A; Ukhanova, M; Culpepper, T; Tompkins, T A; Christman, M; Mai, V

    2016-02-01

    The aim of the studies was to determine the effects of calcium carbonate and calcium phosphate supplementation on faecal Lactobacillus spp., with and without a probiotic supplement, in healthy adults. Study 1 comprised of a randomised, double-blind, crossover design; participants (n=15) received 2 capsules/d of 250 mg elemental calcium as calcium carbonate (Ca1) and calcium phosphate (Ca2) each for 2-week periods, with 2-week baseline and washout periods. Study 2 was a randomised, double-blind, crossover design; participants (n=17) received 2 capsules/d of Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011 (probiotic) alone, the probiotic with 2 capsules/d of Ca1, and probiotic with 2 capsules/d of Ca2 each for 2-week periods with 2-week baseline and washout periods. In both studies, stools were collected during the baseline, intervention and washout periods for Lactobacillus spp. quantification and qPCR analyses. Participants completed daily questionnaires of stool frequency and compliance. In Study 1, neither calcium supplement influenced viable counts of resident Lactobacillus spp., genome equivalents of lactic acid bacteria or stool frequency. In Study 2, faecal Lactobacillus spp. counts were significantly enhanced from baseline when the probiotic was administered with Ca2 (4.83±0.30, 5.79±0.31) (P=0.02), but not with Ca1 (4.98±0.31) or with the probiotic alone (5.36±0.31, 5.55±0.29) (not significant). Detection of L. helveticus R0052 and L. rhamnosus R0011 was significantly increased with all treatments, but did not differ among treatments. There were no changes in weekly stool frequency. Calcium phosphate co-administration may increase gastrointestinal survival of orally-administered Lactobacillus spp.

  10. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression.

    PubMed

    Romijn, Amy R; Rucklidge, Julia J; Kuijer, Roeline G; Frampton, Chris

    2017-08-01

    This trial investigated whether probiotics improved mood, stress and anxiety in a sample selected for low mood. We also tested whether the presence or severity of irritable bowel syndrome symptoms, and levels of proinflammatory cytokines, brain-derived neurotrophic factor and other blood markers, would predict or impact treatment response. Seventy-nine participants (10 dropouts) not currently taking psychotropic medications with at least moderate scores on self-report mood measures were randomly allocated to receive either a probiotic preparation (containing Lactobacillus helveticus and Bifidobacterium longum) or a matched placebo, in a double-blind trial for 8 weeks. Data were analysed as intent-to-treat. No significant difference was found between the probiotic and placebo groups on any psychological outcome measure (Cohen's d range = 0.07-0.16) or any blood-based biomarker. At end-point, 9 (23%) of those in the probiotic group showed a ⩾60% change on the Montgomery-Åsberg Depression Rating Scale (responders), compared to 10 (26%) of those in the placebo group ([Formula: see text], p = ns). Baseline vitamin D level was found to moderate treatment effect on several outcome measures. Dry mouth and sleep disruption were reported more frequently in the placebo group. This study found no evidence that the probiotic formulation is effective in treating low mood, or in moderating the levels of inflammatory and other biomarkers. The lack of observed effect on mood symptoms may be due to the severity, chronicity or treatment resistance of the sample; recruiting an antidepressant-naive sample experiencing mild, acute symptoms of low mood, may well yield a different result. Future studies taking a preventative approach or using probiotics as an adjuvant treatment may also be more effective. Vitamin D levels should be monitored in future studies in the area. The results of this trial are preliminary; future studies in the area should not be discouraged.

  11. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    PubMed

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  12. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9.

    PubMed

    Chen, Yongfu; Liu, Wenjun; Xue, Jiangang; Yang, Jie; Chen, Xia; Shao, Yuyu; Kwok, Lai-yu; Bilige, Menghe; Mang, Lai; Zhang, Heping

    2014-11-01

    Hypertension is a major global health issue which elevates the risk of a large world population to chronic life-threatening diseases. The inhibition of angiotensin-converting enzyme (ACE) is an effective target to manage essential hypertension. In this study, the fermentation properties (titratable acidity, free amino nitrogen, and fermentation time) and ACE-inhibitory (ACEI) activity of fermented milks produced by 259 Lactobacillus helveticus strains previously isolated from traditional Chinese and Mongolian fermented foods were determined. Among them, 37 strains had an ACEI activity of over 50%. The concentrations of the antihypertensive peptides, Ile-Pro-Pro and Val-Pro-Pro, were further determined by ultra performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. The change of ACEI activity of the fermented milks of 3 strains exhibiting the highest ACEI activity upon gastrointestinal protease treatment was assayed. Fermented milks produced by strain H9 (IMAU60208) had the highest in vitro ACEI activity (86.4 ± 1.5%), relatively short fermentation time (7.5 h), and detectable Val-Pro-Pro (2.409 ± 0.229 µM) and Ile-Pro-Pro (1.612 ± 0.114 µM) concentrations. Compared with the control, a single oral dose of H9-fermented milk significantly attenuated the systolic, diastolic, and mean blood pressure of spontaneously hypertensive rats (SHR) by 15 to 18 mmHg during the 6 to 12 h after treatment. The long-term daily H9-fermented milk intake over 7 wk exerted significant antihypertensive effect to SHR, but not normotensive rats, and the systolic and diastolic blood pressure were significantly lower, by 12 and 10 mmHg, respectively, compared with the control receiving saline. The feeding of H9-fermented milk to SHR resulted in a significantly higher weight gain at wk 7 compared with groups receiving saline, commercial yogurt, and captopril. Our study identified a novel probiotic L. helveticus strain originated from kurut sampled from Tibet

  13. Evaluation in vitro of the antagonistic substances produced by Lactobacillus spp. isolated from chickens

    PubMed Central

    Lima, Edna T.; Andreatti Filho, Raphael L.; Okamoto, Adriano S.; Noujaim, José C.; Barros, Mércia R.; Crocci, Adalberto J.

    2007-01-01

    To determine the inhibitory capacity of lactic acid bacteria due to the action of antagonistic substances, we tested 474 isolates of Lactobacillus from the crop and cecum of chickens against gram-positive and gram-negative indicator microorganisms by the spot-on-the-lawn and well-diffusion antagonism methods. Of the 474 isolates, 265 demonstrated antimicrobial activity against the indicator microorganisms. Isolates identified as L. reuteri, L. salivarius, or Lactobacillus spp. inhibited Enterococcus faecalis, E. faecium, Listeria monocytogenes, and Salmonella spp. but not L. casei, L. delbrueckii, L. fermentum, or L. helveticus by the well-diffusion simultaneous antagonism method under anaerobic incubation conditions. The antagonistic substances produced by some of the Lactobacillus isolates were inactivated after treatment by proteolytic enzymes, which suggested that the substances could be antimicrobial peptides or bacteriocins. PMID:17479773

  14. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium†

    PubMed Central

    Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel

    2000-01-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802

  15. Characterization of vaginal Lactobacillus species by rplK -based multiplex qPCR in Russian women.

    PubMed

    Demkin, Vladimir V; Koshechkin, Stanislav I

    2017-10-01

    We describe a multiplex qPCR assay for identification and quantitative assessment of a set of vaginal Lactobacillus species, including L. acidophilus, L. crispatus, L. gasseri, L. helveticus, L. iners, and L. jensenii. The assay extends the previously developed qPCR method for Lactobacillus detection and total quantification based on targeting the rplK gene. Both assays use only single pair of primers and a set of probes combined in three reactions, comprising a vaginal Lactobacillus diagnostic assay panel. The utility of the diagnostic panel was evaluated by analyzing of vaginal swab specimens from 145 patients with different status of vaginal health. Most frequently, only one Lactobacillus species was dominant (68,9%), mostly L. crispatus (18,6%) or L. iners (33,1%), but two or three Lactobacillus species were also being simultaneously detected (24,9%). The diagnostic panel will facilitate investigations of the role of Lactobacillus species in the health of the female reproductive system and promote studies of variability of the vaginal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression

    PubMed Central

    Romijn, Amy R; Rucklidge, Julia J; Kuijer, Roeline G; Frampton, Chris

    2017-01-01

    Objectives: This trial investigated whether probiotics improved mood, stress and anxiety in a sample selected for low mood. We also tested whether the presence or severity of irritable bowel syndrome symptoms, and levels of proinflammatory cytokines, brain-derived neurotrophic factor and other blood markers, would predict or impact treatment response. Method: Seventy-nine participants (10 dropouts) not currently taking psychotropic medications with at least moderate scores on self-report mood measures were randomly allocated to receive either a probiotic preparation (containing Lactobacillus helveticus and Bifidobacterium longum) or a matched placebo, in a double-blind trial for 8 weeks. Data were analysed as intent-to-treat. Results: No significant difference was found between the probiotic and placebo groups on any psychological outcome measure (Cohen’s d range = 0.07–0.16) or any blood-based biomarker. At end-point, 9 (23%) of those in the probiotic group showed a ⩾60% change on the Montgomery–Åsberg Depression Rating Scale (responders), compared to 10 (26%) of those in the placebo group (χ12=0.107, p = ns). Baseline vitamin D level was found to moderate treatment effect on several outcome measures. Dry mouth and sleep disruption were reported more frequently in the placebo group. Conclusions: This study found no evidence that the probiotic formulation is effective in treating low mood, or in moderating the levels of inflammatory and other biomarkers. The lack of observed effect on mood symptoms may be due to the severity, chronicity or treatment resistance of the sample; recruiting an antidepressant-naive sample experiencing mild, acute symptoms of low mood, may well yield a different result. Future studies taking a preventative approach or using probiotics as an adjuvant treatment may also be more effective. Vitamin D levels should be monitored in future studies in the area. The results of this trial are preliminary; future studies in the

  17. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    PubMed

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Induction of a Humoral Immune Response following an Escherichia coli O157:H7 Infection with an Immunomodulatory Peptidic Fraction Derived from Lactobacillus helveticus-Fermented Milk

    PubMed Central

    LeBlanc, Jason; Fliss, Ismail; Matar, Chantal

    2004-01-01

    Numerous beneficial effects have been attributed to probiotic lactic acid bacteria (LAB), such as the stimulation of the immune system, the prevention of enteric infections by enteropathogens, and the regression of immunodependent tumors. It has been shown that biologically active metabolites released during fermentation, in particular biopeptides, could act as immunomodulatory agents. However, no studies have been conducted to evaluate the implication of these bioactive peptides in the induction of a protective immune response against enteric infections. The present study aimed to evaluate the possible immunomodulatory and anti-infectious effects of a peptidic fraction released in milk fermented by Lactobacillus helveticus. The immune response in the mucosa-associated lymphoid tissue was monitored following an administration of the potentially bioactive peptidic fraction. The total immunoglobulin A (IgA) immune response was evaluated after an Escherichia coli O157:H7 infection in a BALB/c murine model. Immunohistochemical and enzyme-linked immunosorbent assays revealed an increase in the number of IgA-secreting B lymphocytes in the intestinal lamina propria and an enhanced total secretory and systemic IgA response. Cytokine profiling also revealed stimulation of a Th2 response in mice fed the peptidic fraction, whereas infected controls demonstrated a proinflammatory Th1 response. These results indicate that bioactive peptides released during fermentation by LAB could contribute to the known immunomodulatory effects of probiotic bacteria. PMID:15539524

  19. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters.

    PubMed

    Rossetti, Lia; Carminati, Domenico; Zago, Miriam; Giraffa, Giorgio

    2009-03-15

    A Qualified Presumption of Safety (QPS) approach was applied to dominant lactic acid bacteria (LAB) associated with Grana Padano cheese whey starters. Thirty-two strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum, and representing the overall genotypic LAB diversity associated with 24 previously collected whey starters [Rossetti, L., Fornasari, M.E., Gatti, M., Lazzi, C., Neviani, E., Giraffa, G., 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. International Journal of Food Microbiology 127, 168-171], were analyzed. All L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus isolates were susceptible to four (i.e. vancomycin, gentamicin, tetracycline, and erythromycin) of the clinically most relevant antibiotics. One L. fermentum strain displayed phenotypic resistance to tetracycline (Tet(R)), with MIC of 32 microg/ml, and gentamycin (Gm(R)), with MIC of 32 microg/ml. PCR was applied to this strain to test the presence of genes tet(L), tet(M), tet(S), and aac(6')-aph(2')-Ia, which are involved in horizontal transfer of Tet(R) and Gm(R), respectively but no detectable amplification products were observed. According to QPS criteria, we conclude that Grana cheese whey starters do not present particular safety concerns.

  20. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    PubMed

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed

  1. Vaginal lactobacilli profile in pregnant women with normal & abnormal vaginal flora.

    PubMed

    Yeruva, Thirupathaiah; Rajkumar, Hemalatha; Donugama, Vasundhara

    2017-10-01

    Lactobacilli species that are better adapted to vaginal environment of women may colonize better and offer protection against vaginal pathogenic bacteria. In this study, the distribution of common Lactobacillus species was investigated in pregnant women. Sixty seven pregnant women were included in the study and vaginal samples were collected for Gram staining. Women were classified as normal vaginal flora, intermediate flora and bacterial vaginosis (BV) based on Nugent's score. Vaginal samples were also collected for the identification of Lactobacillus spp. by multiplex polymerase chain reaction (PCR) profiling of 16S rDNA amplification method. Lactobacillus crispatus (100%) was the most predominant Lactobacillus spp. present in pregnant women with normal flora, followed by L. iners (77%), L. jensenii (74%) and L. helveticus (60%). While, L. iners was commonly present across groups in women with normal, intermediate or BV flora, L. crispatus, L. jensenii and L. helveticus decreased significantly as the vaginal flora changed to intermediate and BV. In women with BV, except L. iners other species of lactobacilli was less frequently prevalent. Species such as L. rhamnosus, L. fermentum, L. paracasei and L. casei were not detected in any vaginal sample. L. crispatus, L. jensinii and L. helveticus were predominant species in women with normal flora. L. crispatus alone or in combination with L. jensinii and L. helveticus may be evaluated for probiotic properties for the prevention and treatment of BV.

  2. Reduced-fat Cheddar and Swiss-type cheeses harboring exopolysaccharide-producing probiotic Lactobacillus mucosae DPC 6426.

    PubMed

    Ryan, P M; Burdíková, Z; Beresford, T; Auty, M A E; Fitzgerald, G F; Ross, R P; Sheehan, J J; Stanton, C

    2015-12-01

    Exopolysaccharide-producing Lactobacillus mucosae DPC 6426 was previously shown to have promising hypocholesterolemic activity in the atherosclerosis-prone apolipoprotein-E-deficient (apoE(-/-)) murine model. The aim of this study was to investigate the suitability of reduced-fat Cheddar and Swiss-type cheeses as functional (carrier) foods for delivery of this probiotic strain. All cheeses were manufactured at pilot-scale (500-L vats) in triplicate, with standard commercially available starters: for Cheddar, Lactococcus lactis; and for Swiss-type cheese, Streptococcus thermophilus, Lactobacillus helveticus, and Propionibacterium freudenreichii. Lactobacillus mucosae DPC 6426 was used as an adjunct culture during cheese manufacture, at a level of ~10(6) cfu·mL(-1) cheese milk (subsequently present in the cheese curd at>10(7) cfu·g(-1)). The adjunct strain remained viable at >5×10(7) cfu·g(-1) in both Swiss-type and Cheddar cheeses following ripening for 6 mo. Sensory analysis revealed that the presence of the adjunct culture imparted a more appealing appearance in Swiss-type cheese, but had no significant effect on the sensory characteristics of Cheddar cheeses. Moreover, the adjunct culture had no significant effect on cheese composition, proteolysis, pH, or instrumentally quantified textural characteristics of Cheddar cheeses. These data indicate that low-fat Swiss-type and Cheddar cheeses represent suitable food matrices for the delivery of the hypocholesterolemic Lactobacillus mucosae DPC 6426 in an industrial setting. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Identification and characterization of the dominant lactic acid bacteria isolated from traditional fermented milk in Mongolia.

    PubMed

    Sun, Z H; Liu, W J; Zhang, J C; Yu, J; Gao, W; Jiri, M; Menghe, B; Sun, T S; Zhang, H P

    2010-05-01

    Five samples of Airag and 20 of Tarag (both in Mongolia) were collected from scattered households. One hundred strains of lactic acid bacteria (LAB) were isolated and identified from these samples according to phenotypic characterization and 16S rRNA gene sequence analysis. Eighty-five isolates belonged to the genus Lactobacillus, 15 being classified as coccoid LAB. All isolates belonged to 5 genera and 11 to different species and subspecies. Lactobacillus (Lb.) helveticus was predominant population in Airag samples, Lb. fermentum and Lb. helveticus were the major LAB microflora in Tarag.

  4. Eradication of Helicobacter pylori infection by the probiotic strains Lactobacillus johnsonii MH-68 and L. salivarius ssp. salicinius AP-32.

    PubMed

    Hsieh, Pei-Shan; Tsai, Yi-Chun; Chen, Yi-Chun; Teh, Su-Fen; Ou, Chung-Mou; King, V An-Erl

    2012-12-01

    The current therapy for Helicobacter pylori infection includes antimicrobial agents and proton pump inhibitors. We have examined the ability of Lactobacillus spp. to inhibit H. pylori infection. Probiotic strains isolated from samples of adult feces, infant feces, breast milk, and vaginal swab collected from healthy volunteers in Taiwan and commercially available strains were screened for antagonism toward H. pylori. Inhibition liquid culture assay was used to screen potential anti-H. pylori activity. Then, we performed agar plate inhibition assay, and assays to determine the capacity of probiotics for adhesion, and inhibition and killing of H. pylori, and measured the levels of IL-8 and IL-10. Using animal models, we studied regulation of gastric acid and histopathological changes accompanying anti-H. pylori activity. We found that six of the tested strains suppressed urease activity of H. pylori: Lactobacillus acidophilus TYCA08, L. acidophilus TYCA15, L. johnsonii MH-68, and L. salivarius subsp. salicinius AP-32 were more effective than the others. In vivo, L. johnsonii MH-68 and L. salivarius subsp. salicinius AP-32 alone or in combination, reduced the H. pylori load in the gastric mucosa, and also reduced inflammatory chemokine expression and lymphocyte infiltration. Lactobacillus johnsonii MH-68 and L. salivarius subsp. salicinius AP-32 effectively suppress H. pylori viability, and when used as probiotics, they may help decrease the occurrence of gastritis, and even reduce the risk of H. pylori infection. © 2012 Blackwell Publishing Ltd.

  5. Molecular identification and quantification of lactic acid bacteria in traditional fermented dairy foods of Russia.

    PubMed

    Yu, J; Wang, H M; Zha, M S; Qing, Y T; Bai, N; Ren, Y; Xi, X X; Liu, W J; Menghe, B L G; Zhang, H P

    2015-08-01

    Russian traditional fermented dairy foods have been consumed for thousands of years. However, little research has focused on exploiting lactic acid bacteria (LAB) resources and analyzing the LAB composition of Russian traditional fermented dairy foods. In the present study, we cultured LAB isolated from fermented mare and cow milks, sour cream, and cheese collected from Kalmykiya, Buryats, and Tuva regions of Russia. Seven lactobacillus species and the Bifidobacterium genus were quantified by quantitative PCR. The LAB counts in these samples ranged from 3.18 to 9.77 log cfu/mL (or per gram). In total, 599 LAB strains were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. The identified LAB belonged to 7 genera and 30 species by 16S rRNA and murE gene sequencing and multiplex PCR assay. The predominant LAB isolates were Lactobacillus helveticus (176 strains) and Lactobacillus plantarum (63 strains), which represented 39.9% of all isolates. The quantitative PCR results revealed that counts of 7 lactobacilli species and Bifidobacterium spp. of 30 fermented cow milk samples ranged from 1.19±0.34 (Lactobacillus helveticus in Tuva) to 8.09±0.71 (Lactobacillus acidophilus in Kalmykiya) log cfu/mL of fermented cow milk (mean ± standard error). The numbers of Bifidobacterium spp., Lb. plantarum, Lb. helveticus, and Lb. acidophilus revealed no significant difference between the 3 regions; nevertheless, Lactobacillus paracasei, Lactobacillus fermentum, Lactobacillus sakei, and Lactobacillus delbrueckii ssp. bulgaricus exhibited different degrees of variation across 3 regions. The results demonstrate that traditional fermented dairy products from different regions of Russia have complex compositions of LAB species. The diversity of LAB might be related to the type of fermented dairy product, geographical origin, and manufacturing process. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Ethenoguanines Undergo Glycosylation by Nucleoside 2′-Deoxyribosyltransferases at Non-Natural Sites

    PubMed Central

    Ye, Wenjie; Paul, Debamita; Gao, Lina; Seckute, Jolita; Jayaraj, Karupiah; Zhang, Zhenfa; Kaminski, P. Alexandre

    2014-01-01

    Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N 2,3-ethenoguanine) at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2′-deoxyribosyltransferase enzymes (DRT Type II) from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O 9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted in N7 and N1

  7. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  8. Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria.

    PubMed

    Aspmo, Stein Ivar; Horn, Svein Jarle; Eijsink, Vincent G H

    2005-07-01

    Hydrolysates of cod viscera were tested as an alternative to commonly used complex nitrogen sources (peptones and/or extracts) for the type strains of the lactic acid bacteria Lactococcus lactis, Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus casei, Lactobacillus sakei and Pediococcus pentosaceus. Comparative studies with MRS-like media containing different nitrogen sources showed that all the fish hydrolysates performed equally well or better than commercial extracts/peptones for all selected lactic acid bacteria.

  9. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  10. Lactobacillus paracasei GMNL-32 exerts a therapeutic effect on cardiac abnormalities in NZB/W F1 mice

    PubMed Central

    Rajendran, Peramaiyan; Tzang, Bor-Show; Yeh, Yu-Lan; Shen, Chia-Yao; Chen, Ray-Jade; Ho, Tsung-Jung; Vijaya Padma, Viswanadha

    2017-01-01

    Systemic lupus erythematosus (SLE) is a disease that mostly affects women. Accelerated atherosclerosis is a high-risk factor associated with SLE patients. SLE associated with cardiovascular disease is one of the most important causes of death. In this study, we demonstrated that Lactobacillus paracasei GMNL-32 (GMNL-32), a probiotic species, exhibits anti-fibrosis and anti-apoptotic effects on the cardiac tissue of NZB/WF1 mice. Female NZB/W F1 mice, a well-known and commonly used lupus-prone mouse strain, were treated with or without GMNL-32 administration for 12 weeks. Oral administration of GMNL-32 to NZB/WF1 mice significantly increased the ventricular thickness when compared to that of NZB/WF1 mice. Administration of GMNL-32 significantly attenuated the cardiac cell apoptosis that was observed in exacerbate levels in the control NZB/WF1 mice. Further, the cellular morphology that was slightly distorted in the NZB/WF1 was effectively alleviated in the treatment group mice. In addition, GMNL-32 reduced the level of Fas death receptor-related pathway of apoptosis signaling and enhanced anti-apoptotic proteins. These results indicate that GMNL-32 exhibit an effective protective effect on cardiac cells of SLE mice. Thus, GMNL-32 may be a potential therapeutic strategy against SLE associated arthrosclerosis. PMID:28934296

  11. Isolation and identification of lactic acid bacteria from koumiss in Eastern Inner Mongolia of China

    NASA Astrophysics Data System (ADS)

    Bai, Lijuan; Ji, Shujuan

    2017-01-01

    Koumiss is a traditional fermented dairy product and known as its unique physiological actions. Isolation and identification of LAB in it will yield valuable knowledge. In total, 55 LAB strains were isolated and identified of 12 koumiss samples collected in limited regions of Eastern Inner Mongolia. 16S rRNA sequence analysis results showed that were Lactobacillus helveticus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus delbrueckii, Enterococcus. durans, Leuconostoc lactis and Leuconostoc mesenteroides. It is benefit to further research on koumiss.

  12. Genomic Heterogeneity and O-Antigenic Diversity of Campylobacter upsaliensis and Campylobacter helveticus Strains Isolated from Dogs and Cats in Germany

    PubMed Central

    Moser, I.; Rieksneuwöhner, B.; Lentzsch, P.; Schwerk, P.; Wieler, L. H.

    2001-01-01

    A serotyping scheme based on heat-stable surface antigens was established for 101 Campylobacter upsaliensis and 10 Campylobacter helveticus strains isolated from 261 dogs and 46 cats of different ages originating from two geographically distinct regions in Germany. The prevalence of C. upsaliensis varied between 27.8% in juvenile dogs (<12 months of age) and 55.4% in adult dogs (P < 0.05). Of the cats, 19.6% harbored C. upsaliensis, whereas 21.7% carried C. helveticus. Of the C. upsaliensis isolates from both host species, 93.1% belonged to five different serogroups, two of them being prevalent at rates of 47.5 and 27.7%, with different frequencies in both regions. Six (54.6%) of the C. helveticus isolates also belonged to serotypes found among C. upsaliensis strains, whereas five (45.4%) possessed an O antigen unique for C. helveticus. In contrast, a considerable degree of genomic diversity of the isolates was assessed by macrorestriction analyses with the endonucleases SmaI and XhoI, using pulsed-field gel electrophoresis as well as enterobacterial repetitive intergenic consensus sequence PCR (ERIC PCR). Restriction with SmaI pointed towards the existence of clonal groups associated to some extent with serotypes, while restriction with XhoI disintegrated these groups to smaller noncoherent subgroups. Analysis of ERIC PCR profiles did not exhibit any associations with serotypes. In conclusion these data demonstrate the genomic heterogeneity among C. upsaliensis strains and indicate that the combination of SmaI restriction with serotyping is a useful tool to investigate the expansion of clonal groups of C. upsaliensis. PMID:11427567

  13. Antimicrobial susceptibility of microflora from ovine cheese.

    PubMed

    Kmeť, V; Drugdová, Z

    2012-07-01

    Strains identified in ovine cheese and bryndza by matrix-assisted laser desorption/ionization time-of-flight analysis belonged to ten species of non-enterococcal lactic acid bacteria and included Lactobacillus casei/Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Lactococcus lactis, Pediococcus pentosaceus and Pediococcus acidilactici. The susceptibility toward antibiotics was determined in lactobacilli, lactococci and pediococci and also in Escherichia coli for comparison. Analysis of L. fermentum and pediococci revealed the presence of non-wild-type epidemiological cut-offs in streptomycin, clindamycin or gentamicin. E. coli were resistant to ampicillin, tetracycline, enrofloxacin and florfenicol. No extended spectrum β-lactamases were detected.

  14. Antagonistic Activity of Lactobacillus Isolates against Salmonella typhi In Vitro

    PubMed Central

    Abdel-Daim, Amira; Hassouna, Nadia; Hafez, Mohamed; Ashor, Mohamed Seif Aldeen; Aboulwafa, Mohammad M.

    2013-01-01

    Background. Enteric fever is a global health problem, and rapidly developing resistance to various drugs makes the situation more alarming. The potential use of Lactobacillus to control typhoid fever represents a promising approach, as it may exert protective actions through various mechanisms. Methods. In this study, the probiotic potential and antagonistic activities of 32 Lactobacillus isolates against Salmonella typhi were evaluated. The antimicrobial activity of cell free supernatants of Lactobacillus isolates, interference of Lactobacillus isolates with the Salmonella adherence and invasion, cytoprotective effect of Lactobacillus isolates, and possibility of concurrent use of tested Lactobacillus isolates and antibiotics were evaluated by testing their susceptibilities to antimicrobial agents, and their oxygen tolerance was also examined. Results. The results revealed that twelve Lactobacillus isolates could protect against Salmonella typhi infection through interference with both its growth and its virulence properties, such as adherence, invasion, and cytotoxicity. These Lactobacillus isolates exhibited MIC values for ciprofloxacin higher than those of Salmonella typhi and oxygen tolerance and were identified as Lactobacillus plantarum. Conclusion. The tested Lactobacillus plantarum isolates can be introduced as potential novel candidates that have to be subjected for in vivo and application studies for treatment and control of typhoid fever. PMID:24191248

  15. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses.

    PubMed

    Mucchetti, G; Locci, F; Massara, P; Vitale, R; Neviani, E

    2002-10-01

    Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.

  16. Pyrosequencing analysis of the microbial diversity of airag, khoormog and tarag, traditional fermented dairy products of mongolia.

    PubMed

    Oki, Kaihei; Dugersuren, Jamyan; Demberel, Shirchin; Watanabe, Koichi

    2014-01-01

    Here, we used pyrosequencing to obtain a detailed analysis of the microbial diversities of traditional fermented dairy products of Mongolia. From 22 Airag (fermented mare's milk), 5 Khoormog (fermented camel's milk) and 26 Tarag (fermented milk of cows, goats and yaks) samples collected in the Mongolian provinces of Arhangai, Bulgan, Dundgobi, Tov, Uburhangai and Umnugobi, we obtained a total of 81 operational taxonomic units, which were assigned to 15 families, 21 genera and 41 species in 3 phyla. The genus Lactobacillus is a core bacterial component of Mongolian fermented milks, and Lactobacillus helveticus, Lactobacillus kefiranofaciens and Lactobacillus delbrueckii were the predominant species of lactic acid bacteria (LAB) in the Airag, Khoormog and Tarag samples, respectively. By using this pyrosequencing approach, we successfully detected most LAB species that have been isolated as well as seven LAB species that have not been found in our previous culture-based study. A subsequent analysis of the principal components of the samples revealed that L. delbrueckii, L. helveticus, L. kefiranofaciens and Streptococcus thermophilus were the main factors influencing the microbial diversity of these Mongolian traditional fermented dairy products and that this diversity correlated with the animal species from which the milk was sourced.

  17. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively.

    PubMed

    Stephan, Roger; Grim, Christopher J; Gopinath, Gopal R; Mammel, Mark K; Sathyamoorthy, Venugopal; Trach, Larisa H; Chase, Hannah R; Fanning, Séamus; Tall, Ben D

    2014-10-01

    Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA-DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05(T) = LMG 24057(T) = DSM 19144(T)) and Franconibacter helveticus comb. nov. (type strain 513/05(T) = LMG 23732(T) = DSM 18396(T)), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05(T) = LMG 23730(T) = DSM 18397(T)).

  18. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively

    PubMed Central

    Grim, Christopher J.; Gopinath, Gopal R.; Mammel, Mark K.; Sathyamoorthy, Venugopal; Trach, Larisa H.; Chase, Hannah R.; Fanning, Séamus; Tall, Ben D.

    2014-01-01

    Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA–DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05T = LMG 24057T = DSM 19144T) and Franconibacter helveticus comb. nov. (type strain 513/05T = LMG 23732T = DSM 18396T), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05T = LMG 23730T = DSM 18397T). PMID:25028159

  19. Grana Padano cheese whey starters: microbial composition and strain distribution.

    PubMed

    Rossetti, Lia; Fornasari, Maria Emanuela; Gatti, Monica; Lazzi, Camilla; Neviani, Erasmo; Giraffa, Giorgio

    2008-09-30

    The aim of this work was to evaluate the species composition and the genotypic strain heterogeneity of dominant lactic acid bacteria (LAB) isolated from whey starter cultures used to manufacture Grana Padano cheese. Twenty-four Grana Padano cheese whey starters collected from dairies located over a wide geographic production area in the north of Italy were analyzed. Total thermophilic LAB streptococci and lactobacilli were quantified by agar plate counting. Population structure of the dominant and metabolically active LAB species present in the starters was profiled by reverse transcriptase, length heterogeneity-PCR (RT-LH-PCR), a culture-independent technique successfully applied to study whey starter ecosystems. The dominant bacterial species were Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum. Diversity in the species composition allowed the whey cultures to be grouped into four main typologies, the one containing L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus being the most frequent one (45% of the cultures analyzed), followed by that containing only the two lactobacilli (40%). Only a minor fraction of the cultures contained L. helveticus alone (4%) or all the four LAB species (11%). Five hundred and twelve strains were isolated from the 24 cultures and identified by M13-PCR fingerprinting coupled with 16S rRNA gene sequencing. Most of the strains were L. helveticus (190 strains; 37% of the total), L delbrueckii subsp. lactis (90 strains; 18%) and S. thermophilus (215 strains; 42%). This result was in good agreement with the qualitative whey starter composition observed by RT-LH-PCR. M13-PCR fingerprinting indicated a markedly low infra-species diversity, i.e. the same biotypes were often found in more than one culture. The distribution of the biotypes into the different cultures was mainly dairy plant-specific rather than correlated with the different production areas.

  20. A study of the effects of therapeutic doses of ionizing radiation in vitro on Lactobacillus isolates originating from the vagina - a pilot study.

    PubMed

    Gosiewski, Tomasz; Mróz, Tomasz; Ochońska, Dorota; Pabian, Wojciech; Bulanda, Malgorzata; Brzychczy-Wloch, Monika

    2016-05-31

    Ionizing radiation is used as a therapeutic option in the treatment of certain neoplastic lesions located, among others, in the pelvic region. The therapeutic doses of radiation employed often result in adverse effects manifesting themselves primarily in the form of genital tract infections in patients or diarrhea. The data available in the literature indicate disorders in the microbial ecosystem caused by ionizing radiation, which leads to the problems mentioned above. In the present study, we examined the influence of ionizing radiation on 52 selected strains of bacteria: Lactobacillus crispatus, L. fermentum, L. plantarum, L. reuteri, L. acidophilus L. amylovorus, L. casei, L. helveticus, L. paracasei, L. rhamnosus, L. salivarius and L. gasseri. This collection of Lactobacillus bacteria isolates of various species, obtained from the genital tract and gastrointestinal tract of healthy women, was tested for resistance to therapeutic doses of ionizing radiation. The species studied, were isolated from the genital tract (n = 30) and from the anus (n = 22) of healthy pregnant women. Three doses of 3 Gy (fractionated dose) and 50 Gy (total dose of the whole radiotherapy cycle) were applied. The greatest differences in survival of the tested strains in comparison to the control group (not subjected to radiation) were observed at the dose of 50 Gy. However, the results were not statistically significant. Survival decrease to zero was not demonstrated for any of the tested strains. Therapeutic doses of radiation do not affect the Lactobacillus bacteria significantly.

  1. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo.

    PubMed

    Fuglsang, Anders; Rattray, Fergal P; Nilsson, Dan; Nyborg, Niels C B

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus, were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test strains in this study, in general, produce inhibitory substances in varying amounts. Using a spectrophotometric assay based on amino group derivatization with ortho-phthaldialdehyde as a measure of relative peptide content, it was shown that there is a significant correlation between peptide formation and ACE inhibition, indicating that peptide measurement constitutes a convenient selection method. The effect of active fermentates on in vivo ACE activity was demonstrated in normotensive rats. The pressor effect of angiotensin I (0.3 microg/kg) upon intravenous injection was significantly lower when rats were pre-fed with milks fermented using two strains of Lactobacillus helveticus. An increased response to bradykinin (10 microg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise to an inhibition of ACE. The inhibition in vivo was low compared to what can be achieved with classical ACE inhibitors. The clinical relevance of this finding is discussed. This work is the first in which an effect of fermented milk on ACE in vivo has been demonstrated, measured as decreased ability to convert angiotensin I to angiotensin II.

  2. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters.

    PubMed

    Vogelmann, Stephanie A; Seitter, Michael; Singer, Ulrike; Brandt, Markus J; Hertel, Christian

    2009-04-15

    The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.

  3. Pyrosequencing Analysis of the Microbial Diversity of Airag, Khoormog and Tarag, Traditional Fermented Dairy Products of Mongolia

    PubMed Central

    OKI, Kaihei; DUGERSUREN, Jamyan; DEMBEREL, Shirchin; WATANABE, Koichi

    2014-01-01

    Here, we used pyrosequencing to obtain a detailed analysis of the microbial diversities of traditional fermented dairy products of Mongolia. From 22 Airag (fermented mare’s milk), 5 Khoormog (fermented camel’s milk) and 26 Tarag (fermented milk of cows, goats and yaks) samples collected in the Mongolian provinces of Arhangai, Bulgan, Dundgobi, Tov, Uburhangai and Umnugobi, we obtained a total of 81 operational taxonomic units, which were assigned to 15 families, 21 genera and 41 species in 3 phyla. The genus Lactobacillus is a core bacterial component of Mongolian fermented milks, and Lactobacillus helveticus, Lactobacillus kefiranofaciens and Lactobacillus delbrueckii were the predominant species of lactic acid bacteria (LAB) in the Airag, Khoormog and Tarag samples, respectively. By using this pyrosequencing approach, we successfully detected most LAB species that have been isolated as well as seven LAB species that have not been found in our previous culture-based study. A subsequent analysis of the principal components of the samples revealed that L. delbrueckii, L. helveticus, L. kefiranofaciens and Streptococcus thermophilus were the main factors influencing the microbial diversity of these Mongolian traditional fermented dairy products and that this diversity correlated with the animal species from which the milk was sourced. PMID:25003019

  4. Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88

    PubMed Central

    Ladero, Victor; Alvarez-Sieiro, Patricia; Redruello, Begoña; del Rio, Beatriz; Linares, Daniel M.; Martin, M. Cruz; Fernández, María

    2013-01-01

    Here, we report a 3.2-Mbp draft assembly for the genome of Lactobacillus plantarum IPLA 88. The sequence of this sourdough isolate provides insight into the adaptation of this versatile species to different environments. PMID:23887921

  5. Three new insertion sequence elements ISLdl2, ISLdl3, and ISLdl4 in Lactobacillus delbrueckii: isolation, molecular characterization, and potential use for strain identification.

    PubMed

    Ravin, Victor; Alatossava, Tapani

    2003-05-01

    A group of new insertion sequence (IS) elements, ISLdl2, ISLdl3, and ISLdl4, from Lactobacillus delbrueckii subsp. lactis ATCC 15808 was isolated, characterized, and used for strain identification together with ISLdl1, recently characterized as an L. delbrueckii IS element belonging to the ISL3 family. ISLdl2 was 1367 bp in size and had a 24 bp IR and an 8 bp DR. The single ORF of ISLdl2 encoded a protein of 392 aa similar to transposases of the IS256 family. ISLdl3 had a single ORF encoding a protein of 343 aa similar to transposases of the IS30 family. Finally, ISLdl4 had a single ORF encoding a protein of 406 aa and displayed homology to the transposases of the IS110 family. ISLdl4 was only slight different from ISL4 (Accession No. AY040213). ISLdl1, ISLdl2, and ISLdl4 were present in all of the 10 L. delbrueckii subsp. lactis and subsp. delbrueckii strains tested, as well as in three of the 11 L. delbrueckii subsp. bulgaricus strains tested. ISLdl3 was present only in four closely related strains of L. delbrueckii subsp. lactis. These IS elements were not observed in Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus helveticus, or Lactobacillus plantarum. A cluster of IS elements, ISLdl1, ISLdl2, ISLdl3, ISLdl4, and ISL6, was observed in L. delbrueckii subsp. lactis strain ATCC 15808. Within this cluster, ISLdl4 was inserted into ISLdl1 between the left IR and the start codon of ORF455, encoding a putative transposase. Most of the integration sites of the IS elements were strain-specific. We have observed that IS elements can migrate from one strain to another as integral parts of bacterial DNA by using phage LL-H as a vehicle. We demonstrate for the first time that inverse PCR and vectorette PCR methods with primers based on sequences of the IS elements could be used for identification of L. delbrueckii strains.

  6. Effects of selected lactic acid bacteria on the characteristics of amaranth sourdough.

    PubMed

    Jekle, Mario; Houben, Andreas; Mitzscherling, Martin; Becker, Thomas

    2010-10-01

    As the processing of amaranth in baked goods is challenging, the use of sourdough fermentation is a promising possibility to exploit the advantages of this raw material. In this study the fermentation properties of Lactobacillus plantarum, Lactobacillus paralimentarius and Lactobacillus helveticus in amaranth-based sourdough were examined in order to validate them as starter cultures. pH, total titratable acidity (TTA) and lactic/acetic acid ratio of the sourdough and sensory properties of the resulting wheat bread were evaluated using fermentation temperatures of 30 and 35 °C. While fermentation pH, TTA and lactic acid concentration showed small variations with the use of L. plantarum and L. paralimentarius, L. helveticus reached the most intensive acidification after initial adaptation to the substrate. Acetic acid production was independent of lactic acid metabolism. Furthermore, the lactic/acetic acid ratio exceeded recommendation by 10-35 times (fermentation quotient 25-82). Sensory evaluation showed no significant differences between the two fermentation temperatures but differences among the three micro-organisms. The results provide relevant information on the fermentation properties required of a customised starter for amaranth flour. Copyright © 2010 Society of Chemical Industry.

  7. Resistance of two temperate Lactobacillus paracasei bacteriophages to high pressure homogenization, thermal treatments and chemical biocides of industrial application.

    PubMed

    Mercanti, D J; Guglielmotti, D M; Patrignani, F; Reinheimer, J A; Quiberoni, A

    2012-02-01

    Temperate bacteriophages ф iLp84 and ф iLp1308, previously isolated from mitomycin C-induction of Lactobacillus paracasei strains 84 and CNRZ1308, respectively, were tested for their resistance to several physical and chemical treatments applied in dairy industry. Long-term survival at 4 °C, -20 °C and -80 °C, resistance to either thermal treatments of 63 °C, 72 °C and 90 °C, high pressure homogenization (HPH, 100 MPa) or classic (ethanol, sodium hypochlorite and peracetic acid) and new commercial sanitizers, namely A (quaternary ammonium chloride), B (hydrogen peroxide, peracetic acid and peroctanoic acid), C (alkaline chloride foam), D (p-toluensulfonchloroamide, sodium salt) and E (ethoxylated nonylphenol and phosphoric acid), were determined. Phages were almost completely inactivated after eight months of storage at 25 °C, but viability was not affected at 4 °C, -20 °C or -80 °C. Both phages tolerated well HPH treatments. Phage iLp1308 showed higher thermal resistance than ф iLp84, but neither resisted 90 °C for 2 min. Best chemical inactivation was accomplished using peracetic acid or biocides A, C and E, whereas biocides B and D were completely ineffective. These results help to improve selection of chemical agents and physical treatments to effectively fight against phage infections in dairy plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  9. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee.

    PubMed

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".

  10. Milk fermentation products of L. helveticus R389 activate calcineurin as a signal to promote gut mucosal immunity

    PubMed Central

    Vinderola, Gabriel; Matar, Chantal; Perdigón, Gabriela

    2007-01-01

    Background Fermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract. We reported previously that the fermentation of milk at constant pH 6 by L. helveticus R389 increased its content of peptide fractions, and the oral administration of the non-bacterial fraction (FMSpH6) to mice increased total secretory IgA in the intestinal lumen and enhanced the number of IgA and various cytokines producing cells as well as the secretion of IL-6 by small intestine epithelial cells. We also demonstrated that this FMSpH6 was effective for the prevention of Salmonella typhimurium infection in mice. In this work, we studied in mice the impact of the oral administration of the supernatant of milk fermented by L. helveticus R389 on the gut physiology by measuring parameters such as calcium channels and E-cadherin expression, the activation of the biological signal calcineurin and mast and goblet cells, as a way to determine some mechanisms involved in the immunomodulating effects of the milk fermentation products, observed in previous studies. We analyzed the impact of the supernatant of milk fermented by L. helveticus R389 at pH6-controlled on the expression of calcineurin and on the reinforcement of the ephitelial barrier, measuring parameters such as calcium channels and E-cadherin expression and in the reinforcement of the non-specific immunity determining mast cells and goblet cells associated to the gut. Results We observed an enhanced expression of TRPV6 channels in the duodenum, indicating an improved capacity for dietary Ca2+ uptake. We demonstrated an enhanced expression of calcineurin in the small intestine, able to upregulate immune parameters such as IL-2 and TNF production, with an increase in the number of these cytokines secreting cells. We determined an increase in the number of mucosal mast cells and goblet cells, which would mean an improved state of mucosal surveillance at sites of

  11. Milk fermentation products of L. helveticus R389 activate calcineurin as a signal to promote gut mucosal immunity.

    PubMed

    Vinderola, Gabriel; Matar, Chantal; Perdigón, Gabriela

    2007-09-07

    Fermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract. We reported previously that the fermentation of milk at constant pH 6 by L. helveticus R389 increased its content of peptide fractions, and the oral administration of the non-bacterial fraction (FMSpH6) to mice increased total secretory IgA in the intestinal lumen and enhanced the number of IgA and various cytokines producing cells as well as the secretion of IL-6 by small intestine epithelial cells. We also demonstrated that this FMSpH6 was effective for the prevention of Salmonella typhimurium infection in mice. In this work, we studied in mice the impact of the oral administration of the supernatant of milk fermented by L. helveticus R389 on the gut physiology by measuring parameters such as calcium channels and E-cadherin expression, the activation of the biological signal calcineurin and mast and goblet cells, as a way to determine some mechanisms involved in the immunomodulating effects of the milk fermentation products, observed in previous studies. We analyzed the impact of the supernatant of milk fermented by L. helveticus R389 at pH6-controlled on the expression of calcineurin and on the reinforcement of the ephitelial barrier, measuring parameters such as calcium channels and E-cadherin expression and in the reinforcement of the non-specific immunity determining mast cells and goblet cells associated to the gut. We observed an enhanced expression of TRPV6 channels in the duodenum, indicating an improved capacity for dietary Ca2+ uptake. We demonstrated an enhanced expression of calcineurin in the small intestine, able to upregulate immune parameters such as IL-2 and TNF production, with an increase in the number of these cytokines secreting cells. We determined an increase in the number of mucosal mast cells and goblet cells, which would mean an improved state of mucosal surveillance at sites of infection. The oral

  12. Antibiotic susceptibility of Lactobacillus strains isolated from domestic geese.

    PubMed

    Dec, M; Wernicki, A; Puchalski, A; Urban-Chmiel, R

    2015-01-01

    The aim of this study was to determine the antibiotic susceptibility of 93 Lactobacillus strains isolated from domestic geese raised on Polish farms. The minimal inhibitory concentration (MIC) of 13 antimicrobial substances was determined by the broth microdilution method. All strains were sensitive to the cell wall inhibitors ampicillin and amoxicillin (MIC ≤ 8 μg/ml). Resistance to inhibitors of protein synthesis and to fluoroquinolone inhibitors of replication was found in 44.1% and 60.2% of isolates, respectively; 26.9% strains were resistant to neomycin (MIC ≥ 64 μg/ml), 23.6% to tetracycline (MIC ≥ 32 μg/ml), 15% to lincomycin (MIC ≥ 64 μg/ml), 18.3% to doxycycline (MIC ≥ 32 μg/ml), 9.7% to tylosin (MIC ≥ 32 μg/ml), 56% to flumequine (MIC ≥ 256 μg/ml) and 22.6% to enrofloxacin (MIC ≥ 64 μg/ml). Bimodal distribution of MICs indicative of acquired resistance and unimodal distribution of the high MIC values indicative of intrinsic resistance were correlated with Lactobacillus species. Eleven (11.8%) strains displayed multiple resistance for at least three classes of antibiotics. Data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorisation of susceptible and resistant strains of Lactobacillus genus and help to assess the hazards associated with the occurrence of drug resistance among natural intestinal microflora.

  13. Lactobacillus

    MedlinePlus

    ... eye symptoms. Preventing diarrhea caused by antibiotics. Taking probiotics products containing lactobacillus strains helps prevent diarrhea caused ... the first 1-2 years of life, lactobacillus probiotics can reduce the chance of the child developing ...

  14. Effect of ultrasound on lactic acid production by Lactobacillus strains in date (Phoenix dactylifera var. Kabkab) syrup.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Saraiva, Jorge A; Jambrak, Anet Režek; Barba, Francisco J; Mota, Maria J

    2018-03-01

    Date syrup is rich in fermentable sugars and may be used as a substrate for different microbial fermentations, including lactic acid fermentation processes. The beneficial effects of ultrasounds (US) on bioprocesses have been reported for several microorganisms, due to the enhancement of cell growth, as well as improvements in yields and productivities. Therefore, US treatments (30 kHz, 100 W, 10-30 min) were applied to two lactobacilli (Lactobacillus helveticus PTCC 1332 and Lactobacillus acidophilus PTCC 1643), during fermentation using date syrup as substrate. The effects on lactic acid fermentation were evaluated by analyzing cell growth (dry cell weight and viable cell count), substrate consumption (quantification of glucose and fructose), and product formation (quantification of lactic acid) over time. The effects of US were also evaluated on cell membrane permeability. Both lactobacilli were able to grow well on date syrup without the need for addition of further ingredients. The US effects were highly dependent on treatment duration: treatments of 10- and 20-min stimulated lactobacilli growth, while the treatment extension to 30 min negatively affected cell growth. Similarly, the 10- and 20-min treatments increased sugar consumption and lactic acid production, contrarily to the 30-min treatment. All US treatments increased cell membrane permeability, with a more pronounced effect at more extended treatments. The results of this work showed that application of appropriate US treatments could be a useful tool for stimulation of lactic acid production from date syrup, as well as for other fermentative processes that use date syrup as substrate.

  15. Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice.

    PubMed

    Tzang, Bor-Show; Liu, Chung-Hsien; Hsu, Kuo-Ching; Chen, Yi-Hsing; Huang, Chih-Yang; Hsu, Tsai-Ching

    2017-09-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterised by a dysregulation of the immune system, which causes inflammation responses, excessive oxidative stress and a reduction in the number of cluster of differentiation (CD)4+CD25+forkhead box P3 (FoxP3)+ T cells. Supplementation with certain Lactobacillus strains has been suggested to be beneficial in the comprehensive treatment of SLE. However, little is known about the effect and mechanism of certain Lactobacillus strains on SLE. To investigate the effects of Lactobacillus on SLE, NZB/W F1 mice were orally gavaged with Lactobacillus paracasei GMNL-32 (GMNL-32), Lactobacillus reuteri GMNL-89 (GMNL-89) and L. reuteri GMNL-263 (GMNL-263). Supplementation with GMNL-32, GMNL-89 and GMNL-263 significantly increased antioxidant activity, reduced IL-6 and TNF-α levels and significantly decreased the toll-like receptors/myeloid differentiation primary response gene 88 signalling in NZB/W F1 mice. Notably, supplementation with GMNL-263, but not GMNL-32 and GMNL-89, in NZB/W F1 mice significantly increased the differentiation of CD4+CD25+FoxP3+ T cells. These findings reveal beneficial effects of GMNL-32, GMNL-89 and GMNL-263 on NZB/W F1 mice and suggest that these specific Lactobacillus strains can be used as part of a comprehensive treatment of SLE patients.

  16. Oral Lactobacillus reuteri GMN-32 treatment reduces blood glucose concentrations and promotes cardiac function in rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Lin, Chih-Hsueh; Lin, Cheng-Chieh; Shibu, Marthandam Asokan; Liu, Chiu-Shong; Kuo, Chia-Hua; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hsieh, Cheng-Hong; Chen, Yi-Hsing; Huang, Chih-Yang

    2014-02-01

    Impaired regulation of blood glucose levels in diabetes mellitus (DM) patients and the associated elevation of blood glucose levels are known to increase the risk of diabetic cardiomyopathy (DC). In the present study, a probiotic bacterium, Lactobacillus reuteri GMN-32, was evaluated for its potential to reduce blood glucose levels and to provide protection against DC risks in streptozotocin (STZ)-induced DM rats. The blood glucose levels of the STZ-induced DM rats when treated with L. reuteri GMN-32 decreased from 4480 to 3620 mg/l (with 10⁷ colony-forming units (cfu)/d) and 3040 mg/l (with 10⁹ cfu/d). Probiotic treatment also reduced the changes in the heart caused by the effects of DM. Furthermore, the Fas/Fas-associated protein with death domain pathway-induced caspase 8-mediated apoptosis that was observed in the cardiomyocytes of the STZ-induced DM rats was also found to be controlled in the probiotic-treated rats. The results highlight that L. reuteri GMN-32 treatment reduces blood glucose levels, inhibits caspase 8-mediated apoptosis and promotes cardiac function in DM rats as observed from their ejection fraction and fractional shortening values. In conclusion, the administration of L. reuteri GMN-32 probiotics can regulate blood glucose levels, protect cardiomyocytes and prevent DC in DM rats.

  17. Bacterial Cinnamoyl Esterase Activity Screening for the Production of a Novel Functional Food Product▿ †

    PubMed Central

    Guglielmetti, Simone; De Noni, Ivano; Caracciolo, Federica; Molinari, Francesco; Parini, Carlo; Mora, Diego

    2008-01-01

    Lactobacillus helveticus MIMLh5 was selected for its strong cinnamoyl esterase activity on chlorogenic acid and employed for the preparation of a food product containing a high concentration of free caffeic acid. The novel food product was demonstrated to display high total antioxidant power and potential probiotic properties. PMID:18165367

  18. Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults.

    PubMed

    Ait Seddik, Hamza; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2017-04-01

    Sixty-seven (67) lactic acid bacteria (LAB) isolates belonging to Lactobacillus genus were isolated from human feces and tested for their auto-aggregation and cell surface hydrophobicity in order to establish their adhesion capabilities, a prerequisite for probiotic selection. Strains with the upmost auto-aggregation and cell surface hydrophobicity scores were identified by MALDI-TOF spectrometry and 16S rDNA sequencing as Lactobacillus plantarum (p25lb1 and p98lb1) and Lactobacillus salivarius (p85lb1 and p104lb1). These strains were also able to adhere to human epithelial colorectal adenocarcinoma Caco-2 cells, with percentages ranging from 4.68 to 9.59%. They displayed good survival under conditions mimicking the gastrointestinal environment and remarkably impeded adhesion and invasion of human Caco-2 by Listeria monocytogenes and Enteropathogenic Escherichia coli. It should also be noted that Lb. plantarum p98lb1 was able to reduce in vitro cholesterol concentration by about 32%, offering an additional health attribute. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia.

    PubMed

    Yu, J; Wang, W H; Menghe, B L G; Jiri, M T; Wang, H M; Liu, W J; Bao, Q H; Lu, Q; Zhang, J C; Wang, F; Xu, H Y; Sun, T S; Zhang, H P

    2011-07-01

    Spontaneous milk fermentation has a long history in Mongolia, and beneficial microorganisms have been handed down from one generation to the next for use in fermented dairy products. The objective of this study was to investigate the diversity of lactic acid bacteria (LAB) communities in fermented yak, mare, goat, and cow milk products by analyzing 189 samples collected from 13 different regions in Mongolia. The LAB counts in these samples varied from 3.41 to 9.03 log cfu/mL. Fermented yak and mare milks had almost identical mean numbers of LAB, which were significantly higher than those in fermented goat milk but slightly lower than those in fermented cow milk. In total, 668 isolates were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. Each isolate was considered to be presumptive LAB based on gram-positive and catalase-negative properties, and was identified at the species level by 16S rRNA gene sequencing, multiplex PCR assay, and restriction fragment length polymorphism analysis. All isolates from Mongolian dairy products were accurately identified as Enterococcus faecalis (1 strain), Enterococcus durans (3 strains), Lactobacillus brevis (3 strains), Lactobacillus buchneri (2 strains), Lactobacillus casei (16 strains), Lactobacillus delbrueckii ssp. bulgaricus (142 strains), Lactobacillus diolivorans (17 strains), Lactobacillus fermentum (42 strains), Lactobacillus helveticus (183 strains), Lactobacillus kefiri (6 strains), Lactobacillus plantarum ssp. plantarum (7 strains), Lactococcus lactis ssp. lactis (7 strains), Leuconostoc lactis (22 strains), Leuconostoc mesenteroides (21 strains), Streptococcus thermophilus (195 strains), and Weissella cibaria (1 strain). The predominant LAB were Strep. thermophilus and Lb. helveticus, which were isolated from all sampling sites. The results demonstrate that traditional fermented dairy products from different regions of Mongolia have complex compositions of LAB species. Such diversity of

  20. Indigenous lactobacilli strains of food and human sources reverse enteropathogenic E. coli O26:H11-induced damage in intestinal epithelial cell lines: effect on redistribution of tight junction proteins.

    PubMed

    Jariwala, Ruchi; Mandal, Hemanti; Bagchi, Tamishraha

    2017-09-01

    The aim of the study was to investigate the neutralizing effect of lactobacilli isolated from indigenous food and human sources on enteropathogenic Escherichia coli (EPEC) O26 : H11-induced epithelial barrier dysfunction in vitro. This was assessed by transepithelial electrical resistance (TEER) and permeability assays using intestinal cell lines, HT-29 and Caco-2. Furthermore, the expression and distribution of tight junction (TJ) proteins were analysed by qRT-PCR and immunofluorescence assay, respectively. The nine strains used in the study were from different species viz. Lactobacillus fermentum, Lactobacillushelveticus, Lactobacillus salivarius and Lactobacillus plantarum. All strains were able to reverse the decrease in TEER and corresponding increase in permeability across E. coli-infected monolayers. Maximum reversal was observed after 18 h [up to 93.8±2.0 % by L. rhamnosus GG followed by L. fermentum IIs11.2 (92.6±2.2 %) and L. plantarum GRI-2 (91.9±0.9 %)] of lactobacilli exposure following EPEC O26 : H11 infection. All strains were able to redistribute the TJ proteins to the cell periphery either partially or completely. Moreover, L. helveticus FA-7 was also able to significantly increase the mRNA expression of ZO-1 and claudin-1 (2.5-fold and 3.0-fold, respectively; P<0.05). The rapid reversal observed by these strains could be mostly because of the redistribution rather than increased mRNA expression of TJ proteins. In conclusion, L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 were good in all the aspects studied, and the other strains were good in some aspects. L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 can therefore be used for potential therapeutic purpose against intestinal epithelial dysfunction.

  1. Preparation, characterization and in vitro antioxidative potential of synbiotic fermented dairy products.

    PubMed

    Shah, C; Mokashe, N; Mishra, V

    2016-04-01

    The present study, evaluates the antioxidative potential of two synbiotic dairy products viz. synbiotic lassi with honey and whey based synbiotic drink with inulin and orange juice, along with their physicochemical and microbiological activity during storage period. Antioxidative potential of raw ingredients and probiotic cultures used to prepare synbiotic products was also evaluated. Synbiotic lassi with honey was prepared using Streptococcus thermophilus MTCC 5460 (MD2) and Lactobacillus helveticus MTCC 5463 (V3) as probiotics and honey as prebiotic. For preparation of whey based synbiotic drink, Lactobacillus helveticus MTCC 5463 and inulin were used as probiotic and prebiotic, respectively and orange juice was also incorporated. Titratable acidity and pH of both synbiotic products followed a similar pattern of increase or decrease during storage. Furthermore, no major changes were observed in viability of probiotic cultures under storage conditions adapted. The hydroxyl radical scavenging activity of synbiotic lassi with honey was found to significantly decrease from 107.76 to 79.41 % at the end of storage whereas, the activity of whey based synbiotic drink was 100.32 % which declined sharply to 79.21 % on 7th day but further increased to 102.59 % on 14th day. The DPPH (α, α-Diphenyl-β-Picrylhydrazyl) radical scavenging activity of freshly prepared synbiotic lassi with honey was 28.43 % which decreased to 23.03 % on 7th day while for whey based synbiotic drink decreased from 26.85 % (0 day) to 17.12 % (7th day) and continued to decline. Moreover, probiotic strains used for synbiotic preparation also demonstrated good antioxidative activity.

  2. Distinctive Intestinal Lactobacillus Communities in 6-Month-Old Infants From Rural Malawi and Southwestern Finland.

    PubMed

    Aakko, Juhani; Endo, Akihito; Mangani, Charles; Maleta, Kenneth; Ashorn, Per; Isolauri, Erika; Salminen, Seppo

    2015-12-01

    Our aim was to compare the composition and diversity of Lactobacillus microbiota in infants living in Malawi and Southwestern Finland. The composition and diversity of the Lactobacillus group was analyzed in the feces of healthy 6-month-old infants living in rural Malawi (n = 44) and Southwestern Finland (n = 31), using the quantitative polymerase chain reaction method and PCR-denaturing gradient gel electrophoresis fingerprinting. Malawian infants had higher counts of lactobacilli than their Finnish counterparts (7.45 log cells/g vs 6.86 log cells/g, P < 0.001, respectively) and the Lactobacillus community was richer and more diverse in the Malawian infants. Leuconostoc citreum and Weissella confusa were the predominant species in both study groups, but Malawian infants were more often colonized by these species (100% vs 74.2%, P < 0.001; 95.5% vs 41.9%, P < 0.001, respectively). Moreover, Lactobacillus ruminis, Lactobacillus gasseri, Lactobacillus acidophilus, and Lactobacillus mucosae were detected more often in the Malawian infants (59.1% vs 0.0%, P < 0.001; 38.6% vs 9.7%, P = 0.004; 29.5% vs 0.0%, P < 0.001; 22.7% vs 3.2%, P = 0.017, respectively). Lactobacillus casei group species, however, were only detected in the Finnish infants. Malawian infants have a more abundant Lactobacillus microbiota with a distinct composition compared with Finnish infants. The environment, including diet and hygiene, may be among the factors influencing these differences.

  3. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  4. The Effect of Lactobacillus casei 32G on the Mouse Cecum Microbiota and Innate Immune Response Is Dose and Time Dependent

    PubMed Central

    Aktas, Busra; De Wolfe, Travis J.; Tandee, Kanokwan; Safdar, Nasia; Darien, Benjamin J.; Steele, James L.

    2015-01-01

    Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-α) in a manner consistent with an anti-inflammatory response

  5. Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats.

    PubMed

    Han, Xufeng; Wang, Lei; Li, Wei; Li, Bibo; Yang, Yuxin; Yan, Hailong; Qu, Lei; Chen, Yulin

    2015-01-01

    The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.

  6. Rejection of reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius using comparative genomics.

    PubMed

    Yang, Seung-Jo; Kim, Byung-Yong; Chun, Jongsik

    2017-11-01

    Lactobacillus bobalius, Lactobacillus kimchii and Lactobacillus paralimentarius belong to the genus Lactobacillus and show close phylogenetic relationships. In a previous study, L. bobalius and L. kimchii were proposed to be reclassified as later heterotypic synonyms of L. paralimentarius using high 16S rRNA gene sequence similarities (≥99.5 %) and DNA-DNA hybridization values (≥82 %). We determined high quality whole genome assemblies of the type strains of L. bobalius and L. kimchii, which were then compared with that of L. paralimentarius. Average nucleotide identity values among three genomes ranged from 91.4 to 92.3 % which are clearly below 95~96 %, the generally recognized cutoff value for bacterial species boundaries. On the basis of comparative genomic evidence, L. bobalius, L. kimchii, and L. paralimentarius should stand as separate species in the genus Lactobacillus. We therefore suggest rejecting the previous proposal to combine these three species into a single species.

  7. A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences.

    PubMed

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-06-01

    Species-specific primers targeting the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough. The 16S-23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388-1406 of the 16S rRNA gene and to positions 207-189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331). Clone libraries of the resulting amplicons were constructed using a pCR2.1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S-23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNA(Ile) and tRNA(Ala) genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested. Designed species-specific primers enable a rapid and accurate identification of L. mindensis, L. paralimentarius, L. panis, L. pontis and L. frumenti species among other lactobacilli. The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.

  8. X-Prolyl Dipeptidyl Aminopeptidase Gene (pepX) Is Part of the glnRA Operon in Lactobacillus rhamnosus

    PubMed Central

    Varmanen, Pekka; Savijoki, Kirsi; Åvall, Silja; Palva, Airi; Tynkkynen, Soile

    2000-01-01

    A peptidase gene expressing X-prolyl dipeptidyl aminopeptidase (PepX) activity was cloned from Lactobacillus rhamnosus 1/6 by using the chromogenic substrate l-glycyl-l-prolyl-β-naphthylamide for screening of a genomic library in Escherichia coli. The nucleotide sequence of a 3.5-kb HindIII fragment expressing the peptidase activity revealed one complete open reading frame (ORF) of 2,391 nucleotides. The 797-amino-acid protein encoded by this ORF was shown to be 40, 39, and 36% identical with PepXs from Lactobacillus helveticus, Lactobacillus delbrueckii, and Lactococcus lactis, respectively. By Northern analysis with a pepX-specific probe, transcripts of 4.5 and 7.0 kb were detected, indicating that pepX is part of a polycistronic operon in L. rhamnosus. Cloning and sequencing of the upstream region of pepX revealed the presence of two ORFs of 360 and 1,338 bp that were shown to be able to encode proteins with high homology to GlnR and GlnA proteins, respectively. By multiple primer extension analyses, the only functional promoter in the pepX region was located 25 nucleotides upstream of glnR. Northern analysis with glnA- and pepX-specific probes indicated that transcription from glnR promoter results in a 2.0-kb dicistronic glnR-glnA transcript and also in a longer read-through polycistronic transcript of 7.0 kb that was detected with both probes in samples from cells in exponential growth phase. The glnA gene was disrupted by a single-crossover recombinant event using a nonreplicative plasmid carrying an internal part of glnA. In the disruption mutant, glnRA-specific transcription was derepressed 10-fold compared to the wild type, but the 7.0-kb transcript was no longer detectable with either the glnA- or pepX-specific probe, demonstrating that pepX is indeed part of glnRA operon in L. rhamnosus. Reverse transcription-PCR analysis further supported this operon structure. An extended stem-loop structure was identified immediately upstream of pepX in the gln

  9. X-prolyl dipeptidyl aminopeptidase gene (pepX) is part of the glnRA operon in Lactobacillus rhamnosus.

    PubMed

    Varmanen, P; Savijoki, K; Avall, S; Palva, A; Tynkkynen, S

    2000-01-01

    A peptidase gene expressing X-prolyl dipeptidyl aminopeptidase (PepX) activity was cloned from Lactobacillus rhamnosus 1/6 by using the chromogenic substrate L-glycyl-L-prolyl-beta-naphthylamide for screening of a genomic library in Escherichia coli. The nucleotide sequence of a 3.5-kb HindIII fragment expressing the peptidase activity revealed one complete open reading frame (ORF) of 2,391 nucleotides. The 797-amino-acid protein encoded by this ORF was shown to be 40, 39, and 36% identical with PepXs from Lactobacillus helveticus, Lactobacillus delbrueckii, and Lactococcus lactis, respectively. By Northern analysis with a pepX-specific probe, transcripts of 4.5 and 7.0 kb were detected, indicating that pepX is part of a polycistronic operon in L. rhamnosus. Cloning and sequencing of the upstream region of pepX revealed the presence of two ORFs of 360 and 1,338 bp that were shown to be able to encode proteins with high homology to GlnR and GlnA proteins, respectively. By multiple primer extension analyses, the only functional promoter in the pepX region was located 25 nucleotides upstream of glnR. Northern analysis with glnA- and pepX-specific probes indicated that transcription from glnR promoter results in a 2.0-kb dicistronic glnR-glnA transcript and also in a longer read-through polycistronic transcript of 7.0 kb that was detected with both probes in samples from cells in exponential growth phase. The glnA gene was disrupted by a single-crossover recombinant event using a nonreplicative plasmid carrying an internal part of glnA. In the disruption mutant, glnRA-specific transcription was derepressed 10-fold compared to the wild type, but the 7.0-kb transcript was no longer detectable with either the glnA- or pepX-specific probe, demonstrating that pepX is indeed part of glnRA operon in L. rhamnosus. Reverse transcription-PCR analysis further supported this operon structure. An extended stem-loop structure was identified immediately upstream of pepX in the gln

  10. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3.

    PubMed

    Douillard, François P; Mora, Diego; Eijlander, Robyn T; Wels, Michiel; de Vos, Willem M

    2018-01-01

    Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3

  11. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3

    PubMed Central

    Mora, Diego; Eijlander, Robyn T.; Wels, Michiel; de Vos, Willem M.

    2018-01-01

    Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3

  12. Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.

    PubMed

    Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline

    2008-03-01

    The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.

  13. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides.

    PubMed

    Knockaert, Dries; Raes, Katleen; Wille, Christophe; Struijs, Karin; Van Camp, John

    2012-08-30

    Food-isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L⁻¹), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4-vinylguaiacol (4-VG) and hydroferulic acid (HFA). Conversion to 4-VG started simultaneously with the degradation of FA, while formation of HFA started in the mid-exponential phase. Lactobacillus collinoides only formed 4-VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria. Copyright © 2012 Society of Chemical Industry.

  14. Comparative genomics of Lactobacillus

    PubMed Central

    Kant, Ravi; Blom, Jochen; Palva, Airi; Siezen, Roland J.; de Vos, Willem M.

    2011-01-01

    Summary The genus Lactobacillus includes a diverse group of bacteria consisting of many species that are associated with fermentations of plants, meat or milk. In addition, various lactobacilli are natural inhabitants of the intestinal tract of humans and other animals. Finally, several Lactobacillus strains are marketed as probiotics as their consumption can confer a health benefit to host. Presently, 154 Lactobacillus species are known and a growing fraction of these are subject to draft genome sequencing. However, complete genome sequences are needed to provide a platform for detailed genomic comparisons. Therefore, we selected a total of 20 genomes of various Lactobacillus strains for which complete genomic sequences have been reported. These genomes had sizes varying from 1.8 to 3.3 Mb and other characteristic features, such as G+C content that ranged from 33% to 51%. The Lactobacillus pan genome was found to consist of approximately 14 000 protein‐encoding genes while all 20 genomes shared a total of 383 sets of orthologous genes that defined the Lactobacillus core genome (LCG). Based on advanced phylogeny of the proteins encoded by this LCG, we grouped the 20 strains into three main groups and defined core group genes present in all genomes of a single group, signature group genes shared in all genomes of one group but absent in all other Lactobacillus genomes, and Group‐specific ORFans present in core group genes of one group and absent in all other complete genomes. The latter are of specific value in defining the different groups of genomes. The study provides a platform for present individual comparisons as well as future analysis of new Lactobacillus genomes. PMID:21375712

  15. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.

    PubMed

    Takala, T M; Saris, P E J; Tynkkynen, S S H

    2003-01-01

    A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.

  16. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T).

  17. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats

    PubMed Central

    2012-01-01

    Background The objectives of the present study were to investigate the efficacy of the mixed culture of Lactobacillus acidophilus (DSM 20242), Bifidobacterium bifidum (DSM 20082) and Lactobacillus helveticus (CK60) in the fermentation of maize and the evaluation of the effect of the fermented meal on the lipid profile of rats. Methods Rats were randomly assigned to 3 groups and each group placed on a Diet A (high fat diet into which a maize meal fermented with a mixed culture of Lb acidophilus (DSM 20242), B bifidum (DSM 20082) and Lb helveticus (CK 60) was incorporated), B (unfermented high fat diet) or C (commercial rat chow) respectively after the first group of 7 rats randomly selected were sacrificed to obtain the baseline data. Thereafter 7 rats each from the experimental and control groups were sacrificed weekly for 4 weeks and the plasma, erythrocytes, lipoproteins and organs of the rats were assessed for cholesterol, triglyceride and phospholipids. Results Our results revealed that the mixed culture of Lb acidophilus (DSM 20242), B bifidum (DSM 20082) and Lb helveticus (CK 60) were able to grow and ferment maize meal into ‘ogi’ of acceptable flavour. In addition to plasma and hepatic hypercholesterolemia and hypertriglyceridemia, phospholipidosis in plasma, as well as cholesterogenesis, triglyceride constipation and phospholipidosis in extra-hepatic tissues characterized the consumption of unfermented hyperlipidemic diets. However, feeding the animals with the fermented maize diet reversed the dyslipidemia. Conclusion The findings of this study indicate that consumption of mixed culture lactic acid bacteria (Lb acidophilus (DSM 20242), Bifidobacterium bifidum (DSM 20082) and Lb helveticus (CK 60) fermented food results in the inhibition of fat absorption. It also inhibits the activity of HMG CoA reductase. This inhibition may be by feedback inhibition or repression of the transcription of the gene encoding the enzyme via activation of the sterol

  18. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats.

    PubMed

    Banjoko, Immaculata Oyeyemi; Adeyanju, Muinat Moronke; Ademuyiwa, Oladipo; Adebawo, Olugbenga Obajimi; Olalere, Rahman Abiodun; Kolawole, Martin Oluseye; Adegbola, Ibrahim Akorede; Adesanmi, Tope Adebusola; Oladunjoye, Tosin Oluyinka; Ogunnowo, Adeyemi Adeola; Shorinola, Ahmeed Adekola; Daropale, Oluwasetemi; Babatope, Esther Bunmi; Osibogun, Adeboye Olufemi; Ogunfowokan, Deborah Tolulope; Jentegbe, Temitope Adeola; Apelehin, Tinuola Gbemi; Ogunnowo, Oluwaseyi; Olokodana, Oluwanifemi; Fetuga, Falilat Yetunde; Omitola, Morenike; Okafor, Linda Adugo; Ebohon, Catherine Lohi; Ita, James Oluwafemi; Disu, Kazeem Ayoola; Ogherebe, Omokaro; Eriobu, Stella Uche; Bakare, Anthony Alaba

    2012-12-11

    The objectives of the present study were to investigate the efficacy of the mixed culture of Lactobacillus acidophilus (DSM 20242), Bifidobacterium bifidum (DSM 20082) and Lactobacillus helveticus (CK60) in the fermentation of maize and the evaluation of the effect of the fermented meal on the lipid profile of rats. Rats were randomly assigned to 3 groups and each group placed on a Diet A (high fat diet into which a maize meal fermented with a mixed culture of Lb acidophilus (DSM 20242), B bifidum (DSM 20082) and Lb helveticus (CK 60) was incorporated), B (unfermented high fat diet) or C (commercial rat chow) respectively after the first group of 7 rats randomly selected were sacrificed to obtain the baseline data. Thereafter 7 rats each from the experimental and control groups were sacrificed weekly for 4 weeks and the plasma, erythrocytes, lipoproteins and organs of the rats were assessed for cholesterol, triglyceride and phospholipids. Our results revealed that the mixed culture of Lb acidophilus (DSM 20242), B bifidum (DSM 20082) and Lb helveticus (CK 60) were able to grow and ferment maize meal into 'ogi' of acceptable flavour. In addition to plasma and hepatic hypercholesterolemia and hypertriglyceridemia, phospholipidosis in plasma, as well as cholesterogenesis, triglyceride constipation and phospholipidosis in extra-hepatic tissues characterized the consumption of unfermented hyperlipidemic diets. However, feeding the animals with the fermented maize diet reversed the dyslipidemia. The findings of this study indicate that consumption of mixed culture lactic acid bacteria (Lb acidophilus (DSM 20242), Bifidobacterium bifidum (DSM 20082) and Lb helveticus (CK 60) fermented food results in the inhibition of fat absorption. It also inhibits the activity of HMG CoA reductase. This inhibition may be by feedback inhibition or repression of the transcription of the gene encoding the enzyme via activation of the sterol regulatory element binding protein (SREBP

  19. Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents.

    PubMed

    Killer, J; Havlík, J; Vlková, E; Rada, V; Pechar, R; Benada, O; Kopečný, J; Kofroňová, O; Sechovcová, H

    2014-05-01

    Three strains of regular, long, Gram-stain-positive bacterial rods were isolated using TPY, M.R.S. and Rogosa agar under anaerobic conditions from the digestive tract of wild mice (Mus musculus). All 16S rRNA gene sequences of these isolates were most similar to sequences of Lactobacillus gasseri ATCC 33323T and Lactobacillus johnsonii ATCC 33200T (97.3% and 97.2% sequence similarities, respectively). The novel strains shared 99.2-99.6% 16S rRNA gene sequence similarities. Type strains of L. gasseri and L. johnsonii were also most related to the newly isolated strains according to rpoA (83.9-84.0% similarities), pheS (84.6-87.8%), atpA (86.2-87.7%), hsp60 (89.4-90.4%) and tuf (92.7-93.6%) gene sequence similarities. Phylogenetic studies based on 16S rRNA, hsp60, rpoA, atpA and pheS gene sequences, other genotypic and many phenotypic characteristics (results of API 50 CHL, Rapid ID 32A and API ZYM biochemical tests; cellular fatty acid profiles; cellular polar lipid profiles; end products of glucose fermentation) showed that these bacterial strains represent a novel species within the genus Lactobacillus. The name Lactobacillus rodentium sp. nov. is proposed to accommodate this group of new isolates. The type strain is MYMRS/TLU1T (=DSM 24759T=CCM 7945T).

  20. Evolutionary history of Lissotriton helveticus: multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula.

    PubMed

    Recuero, Ernesto; García-París, Mario

    2011-07-01

    The Pleistocene was characterized by climatic changes that greatly altered the distribution of organisms. Population extinctions, bottlenecks, isolation, range expansions and contractions were often associated with glaciations, leaving signatures in the spatial patterns of genetic diversity across species. Lissotriton helveticus belongs to a Pan-European lineage of newts that were strongly affected by glaciations and represent an excellent model to analyse the effect of generalized climatic changes in phylogeographic patterns. We studied the genetic diversity of the species using data from two mitochondrial and three nuclear genes analyzed in a Bayesian phylogenetic framework to investigate the historical processes shaping spatial patterns of genetic diversity. Mitochondrial haplotypes cluster in four different groups present in the Iberian Peninsula and of Pleistocene origin, probably by allopatric fragmentation. Nuclear genes present no obvious geographic structure patterns, suggesting gene flow and generalized incomplete lineage sorting. Populations north of the Pyrenees are closely related to those from northeastern Iberia, suggesting recent range expansion from this region. Historical demographic analyses indicate a demographic expansion starting about 100,000years ago and more recent population declines. Compared to other Lissotriton species, L. helveticus includes only relatively young genetic lineages, suggesting a Central European pre-Pleistocene distribution followed by complete extirpation of the species during glaciations in that area. Historical demographic trends in the Iberian Peninsula are reversed with respect to the more Mediterranean species Lissotriton boscai, indicating different responses of both species to climate changes. Diversity patterns among Lissotriton species seem to be defined by four main factors: ancestral distributions, colonization capabilities, interactions with other species and effective population sizes. Differences in these

  1. Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases.

    PubMed

    Rossetti, Lia; Giraffa, Giorgio

    2005-11-01

    About a thousand lactic acid bacteria (LAB) isolated from dairy products, especially cheeses, were identified and typed by species-specific PCR and RAPD-PCR, respectively. RAPD-PCR profiles, which were obtained by using the M13 sequence as a primer, allowed us to implement a large database of different fingerprints, which were analysed by BioNumerics software. Cluster analysis of the combined RAPD-PCR fingerprinting profiles enabled us to implement a library, which is a collection of library units, which in turn is a selection of representative database entries. A library unit, in this case, can be considered to be a definable taxon. The strains belonged to 11 main RAPD-PCR fingerprinting library units identified as Lactobacillus casei/paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Enterococcus faecium, Enterococcus faecalis, Streptococcus thermophilus and Lactococcus lactis. The possibility to routinely identify newly typed, bacterial isolates by consulting the library of the software was valued. The proposed method could be suggested to refine previous strain identifications, eliminate redundancy and dispose of a technologically useful LAB strain collection. The same approach could also be applied to identify LAB strains isolated from other food ecosystems.

  2. Lactobacillus plantarum MTD/1, Its Impact on Silage and In vitro Rumen Fermentation

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to quantify the impact of Lactobacillus plantarum MTD/1 on silage and in vitro rumen fermentation on alfalfa and corn silage. Four trials were conducted in alfalfa in second (35 and 32% DM) and third harvest (38 and 31% DM), and two in forage corn, hybrids Mycogen 797...

  3. Lactobacillus hammesii sp. nov., isolated from French sourdough.

    PubMed

    Valcheva, Rosica; Korakli, Maher; Onno, Bernard; Prévost, Hervé; Ivanova, Iskra; Ehrmann, Matthias A; Dousset, Xavier; Gänzle, Michael G; Vogel, Rudi F

    2005-03-01

    Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38(T) and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA-DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38(T) (=DSM 16381(T)=CIP 108387(T)=TMW 1.1236(T)).

  4. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties.

    PubMed

    Klopper, Kyle B; Deane, Shelly M; Dicks, Leon M T

    2018-03-01

    Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).

  5. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2013-11-01

    A Gram-stain-positive bacterial strain, S4-3(T), was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain S4-3(T) showed 97.9-98.7 % 16S rRNA gene sequence similarities, 84.4-94.1 % pheS gene sequence similarities and 94.4-96.9 % rpoA gene sequence similarities to the type strains of Lactobacillus nantensis, Lactobacillus mindensis, Lactobacillus crustorum, Lactobacillus futsaii, Lactobacillus farciminis and Lactobacillus kimchiensis. dnaK gene sequence similarities between S4-3(T) and Lactobacillus nantensis LMG 23510(T), Lactobacillus mindensis LMG 21932(T), Lactobacillus crustorum LMG 23699(T), Lactobacillus futsaii JCM 17355(T) and Lactobacillus farciminis LMG 9200(T) were 95.4, 91.5, 90.4, 91.7 and 93.1 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus heilongjiangensis sp. nov., is proposed and the type strain is S4-3(T) ( = LMG 26166(T) = NCIMB 14701(T)).

  6. Genotyping by randomly amplified polymorphic DNA of bacteriocin producing Lactobacillus acidophilus strains from Nigeria.

    PubMed

    Alli, John Adeolu; Iwalokun, Bamidele A; Oluwadun, Afolabi; Okonko, Iheanyi Omezuruike

    2015-01-01

    Yogurt and starter culture producers are still searching strains of Lactobacillus acidophilus to produce healthier yogurt with a longer shelf life and better texture, taste, and quality. This study determined the genotyping of bacteriocin producing Lactobacillus acidophilus strains recovered from Nigerian yogurts. Yogurt samples were collected from four different states of South West regions of Nigeria. Isolates were obtained from MRS Medium and biochemically characterized. This was further confirmed by API50CH. The bacteriocin positivity and activity was determined. Genomic characterization of our Lactobacillus acidophilus strains was done with randomly amplified polymorphic DNA-PCR. All yogurt samples containing Lactobacillus acidophilus strains meet the probiotic requirement of ≥10(6) cfu/mL. The gel picture revealed 6 RAPD clonal types of Lactobacillus acidophilus strains with RAPD type C observed to be more common. Significant differences existed in the mean growth inhibition zone (t = -7.32, P < 0.05 for E. coli ATCC; t = -6.19, P < 0.05 for E. coli clinical isolates; t = -6.16, P < 0.05 for Enterobacter sp; t = -11.92, P < 0.05 for Salmonella typhi, t = -1.10, P > 0.05 Staphylococcus aureus). No correlation between the bacteriocin production, activity, and their RAPD clonal division (X(2) = 7.49, P = 0.1610, df = 5). In conclusion, L. acidophilus isolated in Nigeria samples met the probiotic requirements of ≥10(6) cfu/mL and produce bacteriocins with good spectrum of activity.

  7. Eruca sativa might influence the growth, survival under simulated gastrointestinal conditions and some biological features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus strains.

    PubMed

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-10-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power.

  8. Eruca sativa Might Influence the Growth, Survival under Simulated Gastrointestinal Conditions and Some Biological Features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus Strains

    PubMed Central

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-01-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power. PMID:25275269

  9. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    PubMed

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  10. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens

    PubMed Central

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-01-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis (Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis (Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment. PMID:28580872

  11. In vitro antagonistic growth effects of Lactobacillus fermentum and lactobacillus salivarius and their fermentative broth on periodontal pathogens.

    PubMed

    Chen, Ling-Ju; Tsai, Hsiu-Ting; Chen, Wei-Jen; Hsieh, Chu-Yang; Wang, Pi-Chieh; Chen, Chung-Shih; Wang, Lina; Yang, Chi-Chiang

    2012-10-01

    As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis in vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, although different inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health.

  12. Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., isolated from silage.

    PubMed

    Tohno, Masanori; Tanizawa, Yasuhiro; Irisawa, Tomohiro; Masuda, Takaharu; Sakamoto, Mitsuo; Arita, Masanori; Ohkuma, Moriya; Kobayashi, Hisami

    2017-09-01

    Three Gram-stain positive, non-motile, non-spore-forming, catalase-negative and rod-shaped bacterial strains (IWT5T, IWT25T and IWT140), isolated from silage, were investigated by using a polyphasic taxonomic approach. Strains IWT5T and IWT25T grew at 10-37 °C and 30-37 °C, and at pH 4.0-7.5 and 4.0-7.0, respectively. The G+C contents of genomic DNA of strains IWT5T and IWT25T were 43.2 and 44.4 mol%, respectively. Strains IWT5T and IWT25T contained C16 : 0, C18 : 1 ω9c and summed feature 7 (unknown 18.846/C19 : 1 ω6c/C19 : 0cyclo ω10c) as the major fatty acids. Strain IWT5T was most closely related to the type strains of Lactobacillus mixtipabuli (99.9 % 16S rRNA gene sequence similarity) and Lactobacillus silagei (99.5 %). For IWT25T, the 16S rRNA gene sequence similarities with the closely related neighbour type strains L. mixtipabuli and L. silagei were 99.5 and 99.5 %, respectively. The 16S rRNA gene sequence similarities among the three novel isolates were 99.5-99.9 %. The average nucleotide identities of strains IWT5T and IWT25T to other neighbours of the genus Lactobacillus were less than 82 % and the genomes of IWT25T and IWT140 shared 97.3 % average nucleotide identity, demonstrating that the three strains were allocated to two different novel species of the genus Lactobacillus. Together with multilocus sequence analysis, phenotypic and chemotaxonomic characteristics, strains IWT5T (=JCM 31144T=DSM 102973T) and IWT25T (=JCM 31145T=DSM 102974T) are proposed as the type strains of novel species of the genus Lactobacillus, with the names Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., respectively.

  13. Growth, survival, and peptidolytic activity of Lactobacillus plantarum I91 in a hard-cheese model.

    PubMed

    Bergamini, C V; Peralta, G H; Milesi, M M; Hynes, E R

    2013-09-01

    In this work, we studied the growth, survival, and peptidolytic activity of Lactobacillus plantarum I91 in a hard-cheese model consisting of a sterile extract of Reggianito cheese. To assess the influence of the primary starter and initial proteolysis level on these parameters, we prepared the extracts with cheeses that were produced using 2 different starter strains of Lactobacillus helveticus 138 or 209 (Lh138 or Lh209) at 3 ripening times: 3, 90, and 180 d. The experimental extracts were inoculated with Lb. plantarum I91; the control extracts were not inoculated and the blank extracts were heat-treated to inactivate enzymes and were not inoculated. All extracts were incubated at 34°C for 21 d, and then the pH, microbiological counts, and proteolysis profiles were determined. The basal proteolysis profiles in the extracts of young cheeses made with either strain tested were similar, but many differences between the proteolysis profiles of the extracts of the Lh138 and Lh209 cheeses were found when riper cheeses were used. The pH values in the blank and control extracts did not change, and no microbial growth was detected. In contrast, the pH value in experimental extracts decreased, and this decrease was more pronounced in extracts obtained from either of the young cheeses and from the Lh209 cheese at any stage of ripening. Lactobacillus plantarum I91 grew up to 8 log during the first days of incubation in all of the extracts, but then the number of viable cells decreased, the extent of which depended on the starter strain and the age of the cheese used for the extract. The decrease in the counts of Lb. plantarum I91 was observed mainly in the extracts in which the pH had diminished the most. In addition, the extracts that best supported the viability of Lb. plantarum I91 during incubation had the highest free amino acids content. The effect of Lb. plantarum I91 on the proteolysis profile of the extracts was marginal. Significant changes in the content of free

  14. Lactobacillus allii sp. nov. isolated from scallion kimchi.

    PubMed

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-12-01

    A novel strain of lactic acid bacteria, WiKim39 T , was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39 T belonged to the genus Lactobacillus, and shared 97.1-98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39 T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39 T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39 T (=KCTC 21077 T =JCM 31938 T ).

  15. Lactobacillus allii sp. nov. isolated from scallion kimchi

    PubMed Central

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-01-01

    A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1–98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T). PMID:29043955

  16. [Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species].

    PubMed

    Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei

    2009-02-01

    We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.

  17. Fermented goats' milk produced with selected multiple starters as a potentially functional food.

    PubMed

    Minervini, Fabio; Bilancia, Maria Teresa; Siragusa, Sonya; Gobbetti, Marco; Caponio, Francesco

    2009-09-01

    A screening among five lactic acid bacteria, used alone or in combination, led to select a mixed starter (Streptococcus thermophilus CR12, Lactobacillus casei LC01, Lactobacillus helveticus PR4, Lactobacillus plantarum 1288) capable to produce a fermented goats' milk containing gamma-aminobutyric acid (GABA) and angiotensin-I converting enzyme (ACE)-inhibitory peptides. The fermented milk was characterized by cell counts of lactic acid bacteria not lower than 7.0 log cfu g(-1), even after 45 days of storage at 4 degrees C. Fermentation of goats' milk resulted in the production of ca. 28 mg kg(-1) of GABA. Furthermore the fermented goats' milk had an in vitro ACE-inhibitory activity of ca. 73%. Prolonged cold storage did not significantly affect both the concentration of GABA and the ACE-inhibitory activity. Moreover, the taurine content did not significantly vary during both fermentation and the entire storage period.

  18. Screening of Lactobacillus isolates from gastrointestinal tract of guinea fowl for probiotic qualities using in vitro tests to select species-specific probiotic candidates.

    PubMed

    Vineetha, P G; Tomar, S; Saxena, V K; Susan, C; Sandeep, S; Adil, K; Mukesh, K

    2016-08-01

    A total of 32 Lactobacillus isolates, 8 each from the crop (LGFCP1-LGFCP8), proventriculus (LGFP9-LGFP16), ileum (LGFI17-LGFI24) and caeca (LGFCM25-LGFCM32) were isolated from 25 adult guinea fowl (Pearl variety), 22-28 weeks of age, and characterised morphologically, physiologically, biochemically and by molecular methods. Isolates were screened for their probiotic quality using range of in vitro tests: aggregation test, cell surface hydrophobicity, resistance to bile salts and acidic conditions, enzymatic tests and coaggregation and antagonistic test. Based on in vitro test results and a novel scoring method, the two best isolates were selected and partial 16S rRNA sequencing was done. BLAST (Basic Local Alignment Search Tool) analysis of sequence of isolate LGFCP4 showed 99% genetic identity with Lactobacillus plantarum and LGFP16 with Lactobacillus reuteri. The study shows that these two microbial agents may be suitable as potential probiotic candidates in guinea fowl, as well as in a feed supplement for other poultry species.

  19. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of chosen lactic acid bacteria strains on Staphylococcus aureus in vitro as well as in meat and raw sausages.

    PubMed

    Gomółka-Pawlicka, M; Uradziński, J; Wiszniewska, A

    2004-01-01

    The present study was aimed at determining the influence of 15 strains of lactic acid bacteria on the growth of 2 Staphylococcus aureus strains in vitro as well as in meat and raw sausages. The investigations were performed within the framework of three alternate stages which differed in respect to the products studied, the number of Lactobacillus sp. strains and, partly, methodological approach. The study also considered water activity (a(w)) and pH of the products investigated. The results obtained are demonstrated in 5 diagrams. It was found that among 15 strains of Lactobacillus aureus investigated only one strain, Lactobacillus helveticus T 78, showed antagonistic effect on studied strains of Staphylococcus aureus both in vitro as well as in meat and raw sausages. Five other strains of Lactobacillus spp. displayed the antagonistic effect in vitro only. The temperature and incubation time of sausages, but also the type of sausage stuffing were found to have a distinct or slight influence, respectively, on the antagonistic interaction between the bacteria. However, this phenomenon was affected by neither a(w) nor pH.

  1. Influence of starter culture ratios and warm room treatment on free fatty acid and amino acid in Swiss cheese.

    PubMed

    Ji, T; Alvarez, V B; Harper, W J

    2004-07-01

    Quantification of water-soluble volatile free fatty acids (FFA) and free amino acids (FAA) was performed as a ripening index and an indirect measure of flavor development in Swiss-type cheeses. The objective of this research was to assess the effect of warm room treatment (WRT) and usage ratio of starter cultures, Streptococcus thermophilus and Lactobacillus helveticus vs. propionibacteria, on the concentration of FFA and FAA in pilot plant-scale Swiss cheese. A capillary gas chromatograph equipped with a flame ionization detector was used for the analysis of FFA in Swiss cheese. Free amino acids were analyzed by the Cd-ninhydrin method. Starter culture ratios did not affect development of FAA during the cheese ripening. However, duration of WRT had an effect on the concentration of FAA in the Swiss cheese. Free amino acids increased considerably during WRT. A continuous increase in FAA was shown during 70-d ripening time after WRT. The concentrations of C2:0 and C3:0 fatty acids were affected by starter culture ratios after 2-wk WRT, but these differences had mostly disappeared after 3-wk WRT. Similar concentrations of FFA and FAA reported in previous studies were developed in Swiss cheese with a 3-wk WRT and a 0.33:1 ratio of Streptococcus thermophilus and Lactobacillus helveticus to propionibacteria.

  2. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria.

    PubMed

    Choi, Suk-Ho

    2016-01-01

    Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

  3. Antimicrobial activity of lactobacillus strains against uropathogens.

    PubMed

    Shim, Yoon Hee; Lee, Seung Joo; Lee, Jung Won

    2016-10-01

    The use of lactobacillus probiotics has been proposed as an alternative to prophylactic antibiotics for preventing urinary tract infection (UTI) in the era of antibiotic resistance. In this study, the antimicrobial activity of lactobacillus strains against uropathogens, was evaluated and compared with that of antibiotics. To evaluate inhibitory activities of lactobacilli against uropathogens, six lactobacillus strains (L. gasseri, L. rhamnosus, L. acidophilus, L. plantarum, L. paracasei, L. acidophilus) and four representative uropathogens of infantile UTI (extended-spectrum beta-lactamase [ESBL](-) Escherichia coli, ESBL(+) E. coli, Proteus vulgaris, Enterococcus fecalis) were selected. Lactobacillus strain in vitro inhibition of each uropathogen was evaluated on MRS agar well diffusion assay and compared with that of commercial antibiotic discs. Average inhibitory zone for each of the six lactobacillus strains against the four uropathogens showed slightly different but consistent inhibition (inhibitory zone diameter, 10.5-20.0 mm). This was different to that of the antibiotic discs, which had a wider range of inhibition (inhibitory zone diameter, <6.0-27.5 mm) depending on the uropathogen resistance pattern. The inhibitory zone of the six lactobacillus strains was between that of sensitive and resistant antibiotics (P < 0.05). Lactobacillus strains had similar moderate antimicrobial activities against uropathogens. Further research is needed to ascertain the strains with the best probiotic potential. © 2016 Japan Pediatric Society.

  4. [Diversity of Lactobacillus in vagina of vulvovaginal candidiasis].

    PubMed

    2015-04-07

    To investigate the Lactobacillus species in the vaginas of vulvovaginal candidiasis and to assess the prevalence of each Lactobacillus species in vulvovaginal candidiasis. 154 vaginal samples were analyzed, 92 of which were from fertile healthy women, and 62 of which were from women with vulvovaginal candidiasis; and species-specific PCR showed the prevalence of each Lactobacillus species Species-specific PCR was used to investigate the prevalence of each Lactobacillus species in healthy Chinese women and the women with vulvovaginal candidiasis. In women with vulvovaginal candidiasis: L. iners (6.5%), L. cripatus (79.0%), L. gasseri (37.1%), L. jensenii (74.2%), L. acidophilus (16.1%), L. brevis (19.4%), L. plantarum (1.6%), L. johnsonii (51.6%), L. fermentum (8.1%), L. salivarius (9.7%), L. reuter (1.6%), L. paracasei (8.1%), L. delbrueckii (3. 2% ) ; More than two different Lactobacillus species coexisted in 98% of women with vulvovaginal candidiasis, and no anyone species existed in 2% of them; In fertile women: L. iners (82.6%), L. cripatus (70.7%), L. gasseri (67.4%), L. jensenii (40.2%), L. acidophilus (39.1%), L. brevis (23.9%), L. plantarum (5.4%), L. rhamnosus (1.1%), L. paracasei (1.1%), L. reuter (1.1%) i, L. johnsonii (3.3%), L. fermentum (2.2%), L. salivarius (2.2%); More than two different Lactobacillus species coexisted in 97% of fertile women, and only one species existed in 3% of fertile women. Species of lactobacillus in women with vulvovaginal candidiasis did not significantly reduced compared with healthy women. Lactobacillus inert may be a marker of the change of vaginal microenvironment; Lactobacillus crispatus is a dominant lactobacillus in the vaginal of fertile healthy women, pregnant women and women with vulvovaginal candidiasis.

  5. Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces

    PubMed Central

    Park, Sun-Young; Cho, Seong-A; Kim, Sae-Hun; Lim, Sang-Dong

    2014-01-01

    Obesity is strongly associated with several metabolic and chronic diseases and has become a major public health problem of worldwide concern. This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum Q180. Lactobacillus plantarum Q180 was isolated from the faces of healthy adults and found to have a lipase inhibitory activity of 83.61±2.32% and inhibited adipocyte differentiation of 3T3-L1 cells (14.63±1.37%) at a concentration of 100 μg/mL. The strain was investigated for its physiological characteristics. The optimum growth temperature of L. plantarum Q180 was 37℃. Lactobacillus plantarum Q180 showed higher sensitivity to novobiocin in a comparison of fifteen different antibiotics and showed the highest resistance to rifampicin, polymyxin B and vancomycin. The strain showed higher β-galactosidase and N-acetyl-β-glucosaminidase activities. It also did not produce carcinogenic enzymes such as β-glucuronidase. The survival rate of L. plantarum Q180 in MRS broth containing 0.3% bile was 97.8%. Moreover, the strain showed a 97.2% survival rate after incubation for 3 h in pH 2.0. Lactobacillus plantarum Q180 was displayed resistance to Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus with rates of 55.6%, 38.0% and 47.6%, respectively. These results demonstrate that L. plantarum Q180 has potential as a probiotic with anti-obesity effects. PMID:26761499

  6. The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion.

    PubMed

    Dellaglio, Franco; Felis, Giovanna E; Torriani, Sandra

    2002-01-01

    On the basis of considerable published evidence, it is concluded that the species Lactobacillus casei is not correctly represented by the strain actually designated as the type strain ATCC 393. It is proposed that the Judicial Commission consider: (1) that ATCC 393T is scientifically unsuitable as the type strain of Lactobacillus casei and should be reclassified as Lactobacillus zeae; (2) that Lactobacillus casei ATCC 334 and Lactobacillus paracasei strains are members of the same taxon and therefore can be united within the name Lactobacillus casei (Rules 42 and 23a), the name Lactobacillus paracasei being rejected; and (3) designating ATCC 334 as the neotype strain for the species

  7. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1.

    PubMed

    Leonard, Michael T; Valladares, Ricardo B; Ardissone, Alexandria; Gonzalez, Claudio F; Lorca, Graciela L; Triplett, Eric W

    2014-05-08

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model.

  8. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough.

    PubMed

    Valcheva, Rosica; Ferchichi, Mounir F; Korakli, Maher; Ivanova, Iskra; Gänzle, Michael G; Vogel, Rudi F; Prévost, Hervé; Onno, Bernard; Dousset, Xavier

    2006-03-01

    A polyphasic taxonomic study of the bacterial flora isolated from traditional French wheat sourdough, using phenotypic characterization and phylogenetic as well as genetic methods, revealed a consistent group of isolates that could not be assigned to any recognized species. These results were confirmed by randomly amplified polymorphic DNA and amplified fragment length polymorphism fingerprinting analyses. Cells were Gram-positive, homofermentative rods. Comparative 16S rRNA gene sequence analysis of the representative strain LP33T indicated that these strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives Lactobacillus farciminis, Lactobacillus alimentarius, Lactobacillus paralimentarius and Lactobacillus mindensis. DNA-DNA reassociation experiments with the three phylogenetically closest Lactobacillus species confirmed that LP33T (= DSM 16982T = CIP 108546T = TMW 1.1265T) represents the type strain of a novel species, for which the name Lactobacillus nantensis sp. nov. is proposed.

  9. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri.

    PubMed

    Ianniello, R G; Zheng, J; Zotta, T; Ricciardi, A; Gänzle, M G

    2015-09-01

    This study evaluated the aerobic and respiratory metabolism in Lactobacillus reuteri and Lactobacillus spicheri, two heterofermentative species used in sourdough fermentation. In silico genome analysis, production of metabolites and gene expression of pyruvate oxidase, pyruvate dehydrogenase and cytochrome oxidase were assessed in anaerobic and aerobic cultures of Lact. reuteri and Lact. spicheri. Respiring homofermentative Lactobacillus casei N87 and Lact. rhamnosus N132 were used for comparison. Aerobiosis and respiration increased the biomass production of heterofermentative strains compared to anaerobic cultivation. Respiration led to acetoin production by Lact. rhamnosus and Lact. casei, but not in heterofermentative strains, in which lactate and acetate were the major end-products. Lactobacillus spicheri LP38 showed the highest oxygen uptake. Pyruvate oxidase, respiratory cytochromes, NADH oxidase and NADH peroxidase were present in the genome of Lact. spicheri LP38. Both Lact. spicheri LP38 and Lact. rhamnosus N132 overexpressed pox in aerobic cultures, while cydA was up-regulated only when haeme was supplied; pdh was repressed during aerobic growth. Aerobic and respiratory growth provided physiological and metabolic advantages also in heterofermentative lactobacilli. The exploitation of oxygen-tolerant phenotypes of Lact. spicheri may be useful for the development of improved starter cultures. © 2015 The Society for Applied Microbiology.

  10. Isolated Lactobacillus chronic prosthetic knee infection.

    PubMed

    Bennett, David M; Shekhel, Tatyana; Radelet, Matt; Miller, Michael D

    2014-01-01

    Lactobacillus is a gram-positive rod bacteria found primarily in the gastrointestinal and female genital tracts. Prosthetic infections in implants are being increasingly reported. The authors present a case of a 58-year-old patient with Lactobacillus septic prosthetic knee joint infection. To the authors’ knowledge, this is the first reported case of chronic prosthetic knee infection with isolated Lactobacillus species. Lactobacillus has been most commonly implicated with bacteremia and endocarditis and rarely with pneumonia, meningitis, and endovascular infection, and a vast majority of the cases are reported in immunocompromised patients. In the current case, diabetes mellitus, hepatitis, malnutrition, anemia, and liver failure were comorbid conditions, placing the patient at increased risk of infection. The findings suggest that further case series are necessary to establish the significance of Lactobacillus as an etiologic agent in chronic low-virulence, and potentially vancomycin-resistant, prosthetic joint infection. The need also exists for further research aimed at the risk of prosthetic joint infection with oral intake of certain probiotic foods and supplements. The goal of this case report is to bring to light the potential of this organism to be a cause of subtle chronic prosthetic joint infection.

  11. Detrimental effect of temperature increase on the fitness of an amphibian ( Lissotriton helveticus)

    NASA Astrophysics Data System (ADS)

    Galloy, Valérie; Denoël, Mathieu

    2010-03-01

    Increases of global temperatures have resulted in measurable shifts in the distribution, phenology and survival of some plant and animal species. However, the mechanisms showing links between global warming and biodiversity declines remain unclear. The aim of this study was to examine whether a key parameter of fitness, i.e. offspring number, could be affected by a temperature increase. To this end, we compared egg-laying traits at naturally occurring temperatures (14 °C, 18 °C and 22 °C) in palmate newts, Lissotriton helveticus. Our study suggests that water temperature increase has a negative effect on the fecundity of female newts. Females lay half as many eggs at high temperatures as they do at low temperatures, which results in a lower number of hatchlings. This study shows that global warming would affect amphibian populations. It complements other studies in pointing out that changes in phenology may not be driven only by warmer earlier temperatures but also by counter-selection during late-breeding, particularly in long-term breeders such as newts. More experimental studies should be carried out to understand the complex consequences of global warming and the proximate mechanisms of amphibian decline.

  12. Lactobacillus cypricasei Lawson et al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et al. 2000.

    PubMed

    Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean

    2006-07-01

    The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.

  13. Extending viability of Lactobacillus plantarum and Lactobacillus johnsonii by microencapsulation in alginate microgels.

    PubMed

    Tiani, Kendra A; Yeung, Timothy W; McClements, D Julian; Sela, David A

    2018-03-01

    To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.

  14. Lactobacillus versmoldensis sp. nov., isolated from raw fermented sausage.

    PubMed

    Kröckel, L; Schillinger, U; Franz, C M A P; Bantleon, A; Ludwig, W

    2003-03-01

    Lactobacillus versmoldensis sp. nov. (KU-3T) was isolated from raw fermented sausages. The new species was present in high numbers, and frequently dominated the lactic acid bacteria (LAB) populations of the products. 16S rDNA sequence data revealed that the isolates are closely related to the species Lactobacillus kimchii DSM 13961T, Lactobacillus paralimentarius DSM 13238T, Lactobacillus alimentarius DSM 20249T and Lactobacillus farciminis DSM 20184T. DNA-DNA reassociation data, however, clearly distinguished the new isolates from these species; they showed a low degree of DNA relatedness with the type strains of this group of phylogenetically closely related lactobacilli. These results warrant separate species status for strain KU-3T, for which the name Lactobacillus versmoldensis sp. nov. is proposed. The type strain is KU-3T (=DSM 14857T =NCCB 100034T =ATCC BAA-478T).

  15. Lactobacillus paralimentarius sp. nov., isolated from sourdough.

    PubMed

    Cai, Y; Okada, H; Mori, H; Benno, Y; Nakase, T

    1999-10-01

    Six strains of lactic acid bacteria isolated from sourdough were characterized taxonomically. They were Gram-positive, catalase-negative, facultatively anaerobic rods that did not produce gas from glucose. Morphological and physiological data indicated that the strains belong to the genus Lactobacillus and they were similar to Lactobacillus alimentarius in phenotypic characteristics. These strains shared the same phenotypic characteristics and exhibited intragroup DNA homology values of over 89.8%, indicating that they comprised a single species. The G + C content of the DNA for the strains was 37.2-38.0 mol%. The 16S rRNA sequence of representative strain TB 1T was determined and aligned with that of other Lactobacillus species. This strain was placed in the genus Lactobacillus on the basis of phylogenetic analysis. L. alimentarius was the most closely related species in the phylogenetic tree and this species also showed the highest sequence homology value (96%) with strain TB 1T. DNA-DNA hybridization indicated that strain TB 1T did not belong to L. alimentarius. It is proposed that these strains are placed in the genus Lactobacillus as a new species, Lactobacillus paralimentarius sp. nov. The type strain of L. paralimentarius is TB 1T, which has been deposited in the Japan Collection of Microorganisms (JCM) as strain JCM 10415T.

  16. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study.

    PubMed

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  17. Biotransformation Strategy To Reduce Allergens in Propolis

    PubMed Central

    Gardana, Claudio; Barbieri, Andrea; Simonetti, Paolo

    2012-01-01

    Propolis (bee glue) is a resinous, sticky, dark-colored material produced by honeybees. Propolis today, due to its medicinal properties, is increasingly popular and is extensively used in food, beverages, and cosmetic products. Besides its numerous positive properties, propolis may also have adverse effects, such as, principally, allergic eczematous contact dermatitis in apiarists and in consumers with an allergic predisposition. In this study, we found appropriate conditions for removing caffeate esters, which are the main allergenic components, from raw propolis. The proposed method consists of the resuspension of propolis in a food grade solvent, followed by a biotransformation based on the cinnamoyl esterase activity of Lactobacillus helveticus. We showed that the reduction of caffeate esters by L. helveticus did not affect the content of flavonoids, which are the main bioactive molecules of propolis. Furthermore, we verified that the biotransformation of propolis did not cause a loss of antimicrobial activity. Finally, we demonstrated that the ability of L. helveticus to hydrolyze caffeate esters in propolis is strain specific. In conclusion, the proposed strategy is simple, employs food grade materials, and is effective in selectively removing allergenic molecules without affecting the bioactive fraction of propolis. This is the first study demonstrating that the allergenic caffeate esters of propolis can be eliminated by means of a bacterial biotransformation procedure. PMID:22522681

  18. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk.

    PubMed

    Sudun; Wulijideligen; Arakawa, Kensuke; Miyamoto, Mari; Miyamoto, Taku

    2013-01-01

    The interaction between nine lactic acid bacteria (LAB) and five yeast strains isolated from airag of Inner Mongolia Autonomic Region, China was investigated. Three representative LAB and two yeasts showed symbioses were selected and incubated in 10% (w/v) reconstituted skim milk as single and mixed cultures to measure viable count, titratable acidity, ethanol and sugar content every 24 h for 1 week. LAB and yeasts showed high viable counts in the mixed cultures compared to the single cultures. Titratable acidity of the mixed cultures was obviously enhanced compared with that of the single cultures, except for the combinations of Lactobacillus reuteri 940B3 with Saccharomyces cerevisiae 4C and Lactobacillus helveticus 130B4 with Candida kefyr 2Y305. C. kefyr 2Y305 produced large amounts of ethanol (maximum 1.35 g/L), whereas non-lactose-fermenting S. cerevisiae 4C produced large amounts of ethanol only in the mixed cultures. Total glucose and galactose content increased while lactose content decreased in the single cultures of Leuconostoc mesenteroides 6B2081 and Lb. helveticus 130B4. However, both glucose and galactose were completely consumed and lactose was markedly reduced in the mixed cultures with yeasts. The result suggests that yeasts utilize glucose and galactose produced by LAB lactase to promote cell growth. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  19. Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tango, M.S.A.; Ghaly, A.E.

    1999-12-01

    A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentationmore » time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.« less

  20. Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats.

    PubMed

    Amdekar, Sarika; Singh, Vinod; Kumar, Avnish; Sharma, Poonam; Singh, Rambir

    2013-01-01

    In view of well-established immunomodulatory properties of Lactobacillus, present investigation was carried out to evaluate antioxidant and anti-inflammatory potential of Lactobacillus casei and Lactobacillus acidophilus, against inflammatory pathway and oxidative stress developed in an experimental model of arthritis. Collagen-induced arthritis (CIA) model was used. Oral administration of L. casei, L. acidophilus, standard antiarthritic drug indomethacin, and vehicle were started after induced arthritis and continued up to day 28. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, IL-17, IL-4, and IL-10 levels were estimated in serum. In parallel, oxidative stress parameters were also measured from synovial effsuate. All rats were graded for arthritis score at the end of each week. L. casei, L. acidophilus, and indomethacin treatment significantly downregulated proinflammatory and upregulated anti-inflammatory cytokines at P<0.0001. They have significantly decreased oxidative stress in synovial effsuate (P<0.0001) and also arthritis score (P<0.05). Protection provided by L. casei and L. acidophilus was more pronounced than that of indomethacin. These lines of evidence suggest that L. casei and L. acidophilus exert potent protective effect against CIA. It further establishes effective anti-inflammatory and antioxidant properties of Lactobacillus. However, additional clinical investigations are needed to prove the efficacy of Lactobacillus in treatment/management of rheumatoid arthritis.

  1. Lactobacillus delivery of bioactive interleukin-22.

    PubMed

    Lin, Yin; Krogh-Andersen, Kasper; Hammarström, Lennart; Marcotte, Harold

    2017-08-23

    Interleukin-22 (IL-22) plays a prominent role in epithelial regeneration and dampening of chronic inflammatory responses by protecting intestinal stem cells from immune-mediated tissue damage. IL-22 has a considerable therapeutic potential in graft-versus-host disease (GVHD), which is a frequent and challenging complication following allogeneic stem cell transplantation. The aim of our study was to engineer Lactobacillus for delivery of IL-22 directly to the intestinal mucosa as a new therapeutic strategy for GVHD. The secretion and surface anchoring of mouse IL-22 by Lactobacillus paracasei BL23 was demonstrated by Western blot and flow cytometry. Both secreted and anchored mouse IL-22 produced by Lactobacillus was biologically active, as determined by its ability to induce IL-10 secretion in the Colo 205 human colon cancer cell line. We have demonstrated the secretion and surface anchoring of bioactive IL-22 by Lactobacillus. Our results suggest that IL-22 expressing lactobacilli may potentially be a useful mucosal therapeutic agent for the treatment of GVHD, provided that chromosomal integration of the IL-22 expression cassettes can be achieved.

  2. Distribution Dynamics of Recombinant Lactobacillus in the Gastrointestinal Tract of Neonatal Rats

    PubMed Central

    Bao, Sujin; Zhu, Libin; Zhuang, Qiang; Wang, Lucia; Xu, Pin-Xian; Itoh, Keiji; Holzman, Ian R.; Lin, Jing

    2013-01-01

    One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates. PMID:23544119

  3. In vitro activity of farnesol against vaginal Lactobacillus spp.

    PubMed

    Wang, Fengjuan; Liu, Zhaohui; Zhang, Dai; Niu, Xiaoxi

    2017-05-01

    Farnesol, a quorum-sensing molecule in Candida albicans, can affect the growth of certain microorganisms. The objective of this study was to evaluate the in vitro activity of farnesol against vaginal Lactobacillus spp., which play a crucial role in the maintenance of vaginal health. Growth and metabolic viability of vaginal Lactobacillus spp. incubated with different concentrations of farnesol were determined by measuring the optical density of the cultures and with the MTT assay. Morphology of the farnesol-treated cells was evaluated using a scanning electron microscope. In vitro adherence of vaginal Lactobacillus cells treated with farnesol was determined by co-incubating with vaginal epithelial cells (VECs). The minimum inhibitory concentration (MIC) of farnesol for vaginal Lactobacillus spp. was 1500μM. No morphological changes were observed when the farnesol-treated Lactobacillus cells were compared with farnesol-free cells, and 100μM farnesol would reduce the adherence of vaginal Lactobacillus to VECs. Farnesol acted as a potential antimicrobial agent, had little impact on the growth, metabolism, and cytomorphology of the vaginal Lactobacillus spp.; however, it affected their adhering capacity to VECs. The safety of farnesol as an adjuvant for antimicrobial agents during the treatment of vaginitis needs to be studied further. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lactobacillus kimchii sp. nov., a new species from kimchi.

    PubMed

    Yoon, J H; Kang, S S; Mheen, T I; Ahn, J S; Lee, H J; Kim, T K; Park, C S; Kho, Y H; Kang, K H; Park, Y H

    2000-09-01

    A bacteriocin-producing lactic acid bacterium, which was isolated from the Korean fermented-vegetable food kimchi, was subjected to a polyphasic taxonomic study using phenotypic characterization and phylogenetic and genetic methods. This organism (MT-1077T) has phenotypic properties that are consistent with the description characterizing the genus Lactobacillus. Phylogenetic analysis based on 16S rDNA sequences showed clearly that strain MT-1077T is a member of the genus Lactobacillus. The closest phylogenetic relatives are Lactobacillus alimentarius KCTC 3593T and Lactobacillus farciminis LMG 9200T, with levels of 16S rDNA similarity of 98.4 and 98.2%, respectively. Levels of 16S rDNA similarity between strain MT-1077T and other Lactobacillus species were less than 93.0%. Differences in some phenotypic characteristics and DNA-DNA relatedness data indicated that strain MT-1077T should be distinguished from L. alimentarius KCTC 3593T and L. farciminis LMG 9200T. On the basis of the data presented, it is proposed that strain MT-1077T should be placed in the genus Lactobacillus as a new species, Lactobacillus kimchii sp. nov. The type strain of the new species is strain MT-1077T (= KCTC 8903PT = JCM 10707T).

  5. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  6. Testing of viscous anti-HIV microbicides using Lactobacillus

    PubMed Central

    Moncla, B.J.; Pryke, K.; Rohan, L. C.; Yang, H.

    2012-01-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30 min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive brief, about 2 sec, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. PMID:22226641

  7. Testing of viscous anti-HIV microbicides using Lactobacillus.

    PubMed

    Moncla, B J; Pryke, K; Rohan, L C; Yang, H

    2012-02-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Draft Genome Sequence of Lactobacillus pobuzihii E100301T.

    PubMed

    Chiu, Chi-Ming; Chang, Chi-Huan; Pan, Shwu-Fen; Wu, Hui-Chung; Li, Shiao-Wen; Chang, Chuan-Hsiung; Lee, Yun-Shien; Chiang, Chih-Ming; Chen, Yi-Sheng

    2013-05-09

    Lactobacillus pobuzihii E100301(T) is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301(T).

  9. Biofilms of vaginal Lactobacillus in vitro test.

    PubMed

    Wei, Xiao-Yu; Zhang, Rui; Xiao, Bing-Bing; Liao, Qin-Ping

    2017-01-01

    This paper focuses on biofilms of Lactobacillus spp. - a type of normal flora isolated from healthy human vaginas of women of childbearing age; thereupon, it broadens the research scope of investigation of vaginal normal flora. The static slide culture method was adopted to foster biofilms, marked by specific fluorescence staining. Laser scanning confocal and scanning electron microscopy were used to observe the microstructure of the biofilms. Photographs taken from the microstructure were analysed to calculate the density of the biofilms. The body of Lactobacillus spp., though red, turned yellow when interacting with the green extracellular polysaccharides. The structure of the biofilm and aquaporin within the biofilm were imaged. Lactobacillus density increases over time. This study provides convincing evidence that Lactobacillus can form biofilms and grow over time in vitro. This finding establishes an important and necessary condition for selecting proper strains for the pharmaceutics of vaginal ecology.

  10. Draft Genome Sequence of Lactobacillus pobuzihii E100301T

    PubMed Central

    Chiu, Chi-ming; Chang, Chi-huan; Pan, Shwu-fen; Wu, Hui-chung; Li, Shiao-wen; Chang, Chuan-hsiung; Lee, Yun-shien; Chiang, Chih-ming

    2013-01-01

    Lactobacillus pobuzihii E100301T is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301T. PMID:23661478

  11. Lactobacillus insicii sp. nov., isolated from fermented raw meat.

    PubMed

    Ehrmann, Matthias A; Kröckel, Lothar; Lick, Sonja; Radmann, Pia; Bantleon, Annegret; Vogel, Rudi F

    2016-01-01

    The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8 % 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4 %), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3 %), Lactobacillus versmoldensis DSM 14857T (96.9 %) and Lactobacillus furfuricola JCM 18764T (97.2 %). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70 % and the DNA G+C content was 36.3 mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T ( = CECT 8802T = DSM 29801T).

  12. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Urease enzyme preparation from Lactobacillus... Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic bacterium Lactobacillus...

  13. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effects of probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary Streptococcus mutans and Lactobacillus levels

    PubMed Central

    Tehrani, Maryam Hajnorouzali; Akhlaghi, Najmeh; Talebian, Leila; Emami, Jaber; Keyhani, Siamak Etzad

    2016-01-01

    Aims: The aim of the present study was to evaluate the effect of a probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary counts of Streptococcus mutans (SM) and Lactobacillus (LB) in children 3–6 years of age. Settings and Design: Sixty-one healthy children were randomly allocated into two parallel blocks in this double-blind, randomized controlled trial (IRCT2014120320202N1) from May to June 2015. Subjects and Methods: Finally 53 participants consumed five drops of placebo (n = 23) or probiotic (n = 30) every night for 2 weeks. Before intervention and 1 day after completion of the intervention, unstimulated salivary samples were collected, and microbiologic evaluations were carried out. Statistical Analysis: Data were analyzed with descriptive statistical methods Wilcoxon signed ranks, Mann–Whitney, and logistic regression. Results: SM level decreased significantly in probiotic group after intervention (P = 0.045), and there were significant differences in salivary SM counts after intervention between two groups (P = 0.04). In probiotic group, LB counts decreased significantly after intervention (P = 0.048); however, there were no significant differences between two groups (P = 0.216). Conclusions: Use of this probiotic drop decreased salivary counts of SM; however, LB counts did not change. In addition, use of the drop in children with higher salivary counts appeared to be more effective. PMID:27994413

  15. Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei†

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Altermann, Eric; Barrangou, Rodolphe; McGrath, Stephen; Claesson, Marcus J.; Li, Yin; Leahy, Sinead; Walker, Carey D.; Zink, Ralf; Neviani, Erasmo; Steele, Jim; Broadbent, Jeff; Klaenhammer, Todd R.; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe

    2006-01-01

    Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli. PMID:16672450

  16. Identification by 16S rRNA Gene Sequencing of Lactobacillus salivarius Bacteremic Cholecystitis

    PubMed Central

    Woo, Patrick C. Y.; Fung, Ami M. Y.; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2002-01-01

    An anaerobic, nonsporulating, gram-positive bacterium was isolated from blood and bile pus cultures of a 70-year-old man with bacteremic acute cholecystitis. The API 20A system showed that it was 70% Actinomyces naeslundii and 30% Bifidobacterium species, whereas the Vitek ANI system and the ATB ID32A Expression system showed that it was “unidentified.” The 16S rRNA gene of the strain was amplified and sequenced. There were 3 base differences between the nucleotide sequence of the isolate and that of Lactobacillus salivarius subsp. salivarius or L. salivarius subsp. salicinius, indicating that the isolate was a strain of L. salivarius. The patient responded to cholecystectomy and a 2-week course of antibiotic treatment. Identification of the organism in the present study was important because the duration of antibiotic therapy would have been entirely different depending on the organism. If the bacterium had been identified as Actinomyces, penicillin for 6 months would have been the regimen of choice. However, it was Lactobacillus, and a 2-week course of antibiotic was sufficient. PMID:11773128

  17. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk.

    PubMed

    Riaz Rajoka, Muhammad Shahid; Zhao, Haobin; Lu, Yao; Lian, Ziyang; Li, Na; Hussain, Nazim; Shao, Dongyan; Jin, Mingliang; Li, Qi; Shi, Junling

    2018-05-15

    Lactic acid bacteria have been categorized as probiotics and play a crucial role in human health by stimulating the supply of nutrients, shaping the immune system, and preventing the colonization of pathogenic microbes. This study investigated the mechanisms for the action of three potential probiotic Lactobacillus strains: Lactobacillus casei SR1, Lactobacillus casei SR2, and Lactobacillus paracasei SR4 isolated from human breast milk. These Lactobacillus strains were identified via 16S DNA sequencing and characterized via biochemical assays including acid resistance, bile resistance, antioxidant activity, and antibiotic susceptibility. The bioactivity of the cell-free culture supernatant (CFCS) secreted by these strains on the cervix cancer (HeLa) cell line was also evaluated via cytotoxicity assay and apoptosis analysis. The mechanism of anticancer activity was also investigated via RT-qPCR and western blotting. The results demonstrated that these newly isolated Lactobacillus strains from human milk displayed noticeable probiotic characteristics such as excellent antibiotic susceptibility, outstanding antioxidant activity, and promising resistance to low pH and high concentration of bile salts. The results of the conducted bioactivity assays verified that the CFCSs had acceptable anticancer effects on cervix cancer (HeLa) cells by upregulating the expression of apoptotic genes BAX, BAD, caspase3, caspase8, and caspase9 and by downregulating the expression of the BCl-2 gene. Overall, these results indicate that the Lactobacillus strains isolated from human breast milk could be considered as a topical medication with a potential therapeutic index due to their efficacy against cervix cancer cells.

  18. Characterization of culturable vaginal Lactobacillus species among women with and without bacterial vaginosis from the United States and India: a cross-sectional study.

    PubMed

    Madhivanan, Purnima; Raphael, Eva; Rumphs, Alnecia; Krupp, Karl; Ravi, Kavitha; Srinivas, Vijaya; Arun, Anjali; Reingold, Arthur L; Klausner, Jeffrey D; Riley, Lee W

    2014-07-01

    Lactobacillus species play an integral part in the health of the vaginal microbiota. We compared vaginal Lactobacillus species in women from India and the USA with and without bacterial vaginosis (BV). Between July 2009 and November 2010, a cross-sectional study was conducted among 40 women attending a women's health clinic in Mysore, India, and a sexually transmitted diseases clinic in San Francisco, USA. Women were diagnosed with BV using Amsel's criteria and the Nugent score. Lactobacillus 16S rDNA was sequenced to speciate the cultured isolates. Ten Indian and 10 US women without BV were compared with an equal number of women with BV. Lactobacilli were isolated from all healthy women, but from only 10% of Indian and 50% of US women with BV. 16S rDNA from 164 Lactobacillus colonies was sequenced from healthy women (126 colonies) and women with BV (38 colonies). Seven cultivable Lactobacillus species were isolated from 11 Indian women and nine species from 15 US women. The majority of Lactobacillus species among Indian women were L. crispatus (25.0%), L. jensenii (25.0%) and L. reuteri (16.7%). Among US women, L. crispatus (32.0%), L. jensenii (20.0%) and L. coleohominis (12.0%) predominated. L. jensenii and L. crispatus dominated the vaginal flora of healthy Indian and US women. Indian women appeared to have a higher percentage of obligate heterofermentative species, suggesting the need for a larger degree of metabolic flexibility and a more challenging vaginal environment. © 2014 The Authors.

  19. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  20. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  1. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Franden, Mary Ann; Mc Millan, James D.; Finkelstein, Mark

    1998-01-01

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid.

  2. [The change of vaginal lactobacillus in patients with high-risk human papillomavirus infection].

    PubMed

    Zhou, D; Cui, Y; Wu, F L; Deng, W H

    2016-07-05

    To study the distribution characteristics of lactobacillus in the vaginal mucosa of patients with HPV infection. The planting density of lactobacillus in vaginal secretions of 95 cases with HPV16/18 infection and 90 cases of normal women of childbearing age were observed by oil microscope. And the strains of vaginal lactobacilli in two groups were analyzed using species-specific polymerase chain reaction (Species-specific PCR) and the distribution of vaginal lactobacilli in patients with HPV16/18 infection were investigated. In HPV16/18 infective groups, the planting density of lactobacillus in the vaginal mucosa was 104 (68-186)/HP. It was significantly lower than that of the normal group (234 (161-326)/HP, P<0.05). Compared with the normal group, the positive rates of lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri were significantly lower in HPV16/18 infection group (P<0.05). The HPV16/18 infection is associated with the decreased number of lactobacillus and the imbalance of vaginal flora; Lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri may play a key role in maintaining the vaginal micro ecological environment.

  3. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Franden, M.A.; McMillan, J.D.; Finkelstein, M.

    1998-08-25

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid. 4 figs.

  4. Genome sequence of Lactobacillus farciminis KCTC 3681.

    PubMed

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-04-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds.

  5. Assessment of in vitro oxalate degradation by Lactobacillus species cultured from veterinary probiotics.

    PubMed

    Cho, Jenny G; Gebhart, Connie J; Furrow, Eva; Lulich, Jody P

    2015-09-01

    To culture Lactobacillus spp from veterinary probiotics and measure their in vitro oxalate-degrading capacity. 2 commercial veterinary probiotics containing Lactobacillus spp. Lactobacillus spp were cultured anaerobically on selective deMan, Rogosa, Sharpe agar medium and subcultured for speciation by 16S rDNA gene sequencing. Isolates were inoculated into broth containing sodium oxalate (5 mg/L) and incubated anaerobically for 72 hours. An oxalate-degrading isolate of Lactobacillus acidophilus (American Type Culture Collection [ATCC] 53544) was the positive control sample; sterile broth containing a known quantity of sodium oxalate was the negative control sample. Oxalate concentrations were detected with ion chromatography. Oxalate degradation was assessed with Dunnett tests to detect differences in mean oxalate concentration for each isolate, compared with results for the negative control. Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei or Lactobacillus zeae (too closely related to differentiate) were isolated from probiotic 1, and L plantarum was isolated from probiotic 2. Sequencing of the 16S rDNA gene confirmed 100% homology to type species. Lactobacillus acidophilus (ATCC 53544) and L acidophilus from probiotic 1 significantly decreased oxalate concentrations by 85.3 and 161.9 mg/L, respectively. Lactobacillus plantarum from probiotics 1 and 2 significantly increased oxalate concentrations by 56.1 and 36.1 mg/L, respectively. Lactobacillus casei did not alter oxalate concentrations. Lactobacillus acidophilus isolates significantly reduced oxalate concentrations. In vivo studies are needed to determine whether probiotics containing L acidophilus decrease urine oxalate concentrations and reduce risk of urolith recurrence in dogs with a history of calcium oxalate urolithiasis.

  6. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.

    PubMed

    Ehrmann, Matthias A; Müller, Martin R A; Vogel, Rudi F

    2003-01-01

    Genotypic fingerprinting to analyse the bacterial flora of an industrial sourdough revealed a coherent group of strains which could not be associated with a valid species. Comparative 16S rDNA sequence analysis showed that these strains formed a homogeneous cluster distinct from their closest relatives, Lactobacillus farciminis, Lactobacillus alimentarius and Lactobacillus kimchii. To characterize them further, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic properties have been determined. The DNA G +C content was 37.5 0.2 mol%. The peptidoglycan was of the lysine-D-iso-asparagine (L-Lys-D-Asp) type. The strains were homofermentative, Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They were found as a major stable component of a rye flour sourdough fermentation. Physiological, biochemical as well as genotypic data suggested them to be a new species of the genus Lactobacillus. This was confirmed by DNA-DNA hybridization of genomic DNA, and the name Lactobacillus mindensis is proposed. The type strain of this species is DSM 14500T (=LMG 21508T).

  7. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  8. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    PubMed

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  9. Lactobacillus curtus sp. nov., isolated from beer in Finland.

    PubMed

    Asakawa, Yuki; Takesue, Nobuchika; Asano, Shizuka; Shimotsu, Satoshi; Iijima, Kazumaru; Suzuki, Koji; Motoyama, Yasuo; Aizawa, Masayuki

    2017-10-01

    A Gram-stain-positive, catalase-negative and short-rod-shaped organism, designated VTT E-94560, was isolated from beer in Finland and deposited in the VTT culture collection as a strain of Lactobacillus rossiae. However, the results of 16S rRNA gene sequence analysis showed that VTT E-94560 was only related to Lactobacillus rossiae JCM 16176 T with 97.0 % sequence similarity, lower than the 98.7 % regarded as the boundary for the species differentiation. Additional phylogenetic studies on the pheS gene, rpoA gene and 16S-23S rRNA internally transcribed spacer region further reinforced the taxonomically independent status of VTT E-94560 and its related Lactobacillus species including L. rossiae and Lactobacillus siliginis. Strain VTT E-94560 also exhibited several differences in its carbohydrate fermentation profiles from those related Lactobacillus species. In addition, DNA-DNA relatedness between VTT E-94560 and these two type strains was 4 % (L. rossiae JCM 16176 T ) and 12 % (L. siliginins JCM 16155 T ), respectively, which were lower than the 70 % cut-off for general species delineation, indicating that these three strains are not taxonomically identical at the species level. These studies revealed that VTT E-94560 represents a novel species, for which the name Lactobacillus curtus sp. nov. is proposed. The type strain is VTT E-94560 T (=JCM 31185 T ).

  10. Biodiversity of Lactobacillus sanfranciscensis strains isolated from five sourdoughs.

    PubMed

    Kitahara, M; Sakata, S; Benno, Y

    2005-01-01

    Five different sourdoughs were investigated for the composition of lactic acid bacteria (LAB) and the biodiversity of Lactobacillus sanfranciscensis strains. A total of 57 strains were isolated from five sourdoughs. Isolated strains were all identified by the 16S rDNA sequence and species-specific primers for L. sanfranciscensis. Results of identification showed that LAB strains were L. sanfranciscensis, Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus fermentum, Lactobacillus pontis, Lactobacillus casei, Weisella confusa and Pediococcus pentosaceus. A total of 21 strains were identified as L. sanfranciscensis and these isolates were detected in all five sourdoughs. Ribotyping was applied to investigate the relationship between intraspecies diversity of L. sanfranciscensis and sourdough. A total of 22 strains of L. sanfranciscensis including L. sanfranciscensis JCM 5668T were compared by ribotyping. The dendrogram of 21 ribotyping patterns showed four clusters, and L. sanfranciscensis JCM 5668T was independent of the others. The different biotypes of L. sanfranciscensis were present in two sourdoughs compared with other three sourdoughs. The LAB compositions of five sourdoughs were different and the relationship between intraspecies diversity of L. sanfranciscensis strains and five sourdoughs was shown by ribotyping. This study demonstrated that ribotyping was useful for distinguishing L. sanfranciscensis strains. A further important result is that the intra-species diversity of L. sanfranciscensis strains seems to be related to the sourdough preparation.

  11. A food additive with prebiotic properties of an α-d-glucan from lactobacillus plantarum DM5.

    PubMed

    Das, Deeplina; Baruah, Rwivoo; Goyal, Arun

    2014-08-01

    An α-d-glucan produced by Lactobacillus plantarum DM5 was explored for in vitro prebiotic activities. Glucan-DM5 demonstrated 21.6% solubility, 316.9% water holding capacity, 86.2% flocculation activity, 71.4% emulsification activity and a degradation temperature (Td) of 292.2°C. Glucan-DM5 exhibited lowest digestibility of 0.54% by artificial gastric juice, 0.21% by intestinal fluid and 0.32% by α-amylase whereas the standard prebiotic inulin, showed 25.23%, 5.97% and 19.13%, hydrolysis, respectively. Prebiotic activity assay of glucan-DM5 displayed increased growth of probiotic bacteria such as Bifidobacterium infantis and Lactobacillus acidophilus, but did not support the growth of non-probiotic bacteria such as Escherichia coli and Enterobacter aerogenes. The overall findings indicated that glucan from L. plantarum DM5 can serve as a potential prebiotic additive for food products. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation.

    PubMed

    Nionelli, Luana; Pontonio, Erica; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2018-02-02

    Aiming at meeting the consumers' demand in terms of bio-preservation, the potential of the combination of the lactic acid bacteria fermentation and the addition of hop extract as natural preservative in breadmaking, was exploited. The antifungal properties of a hop (Humulus lupulus) extract were investigated, showing a significant inhibition of the hyphal growth of Aspergillus parasiticus, Penicillium carneum, Penicillium polonicum, Penicillium paneum, Penicillium chermesinum, Aspergillus niger, Penicillium roqueforti. Lactic acid bacteria belonging to species of Enterococcus feacium, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus helveticus, Lactobacillus curvatus, Pediococcus pentosaceus, and Pediococcus acidilactici were isolated from hop and subjected to selection based on kinetics of growth and acidification. The sourdough (hS) enriched with hop extract (hE), started with three selected strains, had phenols concentration and antioxidant activity higher than those obtained in the same condition but without the hE. Hop-sourdough used in breadmaking delayed the fungal growth (14 days), giving a bread characterized by free aminoacids concentration, antioxidant and phytase activities higher than bread started only with baker's yeast, with or without the addition of hE. Specific volume and cell-total area of the bread containing hE improved, and its sensory profile was characterized by typical sourdough attributes, and a moderate bitter/herbaceous perception.

  13. Lactobacillus rhamnosus GG (ATCC 53103) and platelet aggregation in vitro.

    PubMed

    Korpela, R; Moilanen, E; Saxelin, M; Vapaatalo, H

    1997-06-17

    Lactobacillus rhamnosus GG is an experimentally and clinically well documented probiotic used in different dairy products. The present study aimed to investigate the safety aspects of Lactobacillus rhamnosus GG, particularly with respect to platelet aggregation, the initiating event in thrombosis. Platelet rich plasma was separated from the blood of healthy volunteers, and the effects of Lactobacillus rhamnosus GG (ATCC 53103), Lactobacillus rhamnosus (ATCC 7469) and Enterococcus faecium T2L6 in different dilutions on spontaneous, ADP- and adrenaline-induced aggregation were tested. The bacteria did not influence spontaneous aggregation. Only Enterococcus faecium T2L6 enhanced the adrenaline-induced aggregation, with a less clear effect on ADP-induced aggregation.

  14. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. Copyright © 2016. Published by Elsevier B.V.

  15. Modeling Lactic Fermentation of Gowé Using Lactobacillus Starter Culture.

    PubMed

    de J C Munanga, Bettencourt; Loiseau, Gérard; Grabulos, Joël; Mestres, Christian

    2016-12-01

    A global model of the lactic fermentation step of gowé was developed by assembling blocks hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation. Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was modeled using Rosso's primary model and the gamma concept as a secondary model. The optimum values of pH and temperature were 8.3 ± 0.3, 44.6 ± 1.2 °C and 8.3 ± 0.3, 3.2 ± 37.1 °C with μ max values of 1.8 ± 0.2 and 1.4 ± 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum , respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis , with a yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model was developed to predict the pH drop during gowé fermentation. The global model was partially validated during manufacturing of gowé. The global model could be a tool to aid in the choice of suitable starters and to determine the conditions for the use of the starter.

  16. Predominant Lactobacillus species types of vaginal microbiota in pregnant Korean women: quantification of the five Lactobacillus species and two anaerobes.

    PubMed

    Kim, Jeong Hyun; Yoo, Seung Min; Sohn, Yong Hak; Jin, Chan Hee; Yang, Yun Suk; Hwang, In Taek; Oh, Kwan Young

    2017-10-01

    To investigate the predominant Lactobacillus species types (LSTs) of vaginal microbiota in pregnant Korean women by quantifying five Lactobacillus species and two anaerobes. In all, 168 pregnant Korean women under antenatal care at Eulji University Hospital and local clinics were enrolled in the prospective cohort study during pregnancy (10-14 weeks). Vaginal samples were collected with Eswab for Quantitative polymerase chain reaction (qPCR) and stored in a -80 °C freezer. qPCR was performed for five Lactobacillus species and two anaerobes. To identify the predominant LSTs, quantifications were analyzed by the Cluster and Tree View programs of Eisen Lab. Also the quantifications were compared among classified groups. L. crispatus and L. iners were most commonly found in pregnant Korean women, followed by L. gasseri and L. jensenii; L. vaginalis was nearly absent. Five types (four predominant LSTs and one predominant anaerobe type without predominant Lactobacillus species) were classified. Five predominant LSTs were identified in vaginal microbiota of pregnant Korean women. L. crispatus and L. iners predominant types comprised a large proportion.

  17. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection

    PubMed Central

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-01-01

    BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects. PMID:24567124

  18. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection.

    PubMed

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-02-24

    Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.

  19. First Functional and Mutational Analysis of Group 3 N-Acetylneuraminate Lyases from Lactobacillus antri and Lactobacillus sakei 23K

    PubMed Central

    García-García, María Inmaculada; Gil-Ortiz, Fernando; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2014-01-01

    N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1. PMID:24817128

  20. Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-zhe; Chen, Hsin-Chih; Chiang, Yu-Cheng; Tsen, Hau-Yang

    2009-01-01

    PCR primers specific for the detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum were designed based on the elongation factor Tu gene (tuf). The specificity of these four primer sets were confirmed by PCR with 88 bacterial strains of Lactobacillus, Enterococcus, Bifidobacterium, and other bacterial species. Results indicated that these primer sets generated predicted PCR products of 397, 230, 202, and 161 bp for L. acidophilus, L. delbrueckii, L. casei group, and B. longum, respectively. Bacterial species other than the target organisms tested did not generate false-positive results. When these four primer sets were combined for the simultaneous detection of the lactic acid bacteria (LAB) in fermented milk products including yogurt, the LAB species listed on the labels of these products could be identified without the preenrichment step. The identification limit for each LAB strain with this multiplex PCR method was N X 10(3) CFU/ml in milk samples. The results of our multiplex PCR method were confirmed by PCR assay using primers based on the 16S rDNA or the 16S-23S intergenic spacer region and by biochemical tests using the API 50 CHL kit. When this multiplex PCR method was used with the determination of counts of total viable LAB and bifidobacteria, the quality of commercial fermented milk products could be assured.

  1. Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage.

    PubMed

    Zou, Yuanqiang; Liu, Feng; Fang, Chengxiang; Wan, Daiwei; Yang, Rentao; Su, Qingqing; Yang, Ruifu; Zhao, Jiao

    2013-05-01

    Two Lactobacillus strains, designated LY-73(T) and LY-30B, were isolated from a dairy beverage, sold in Shenzhen market, China. The two isolates were Gram-positive, non-spore-forming, non-motile, facultatively anaerobic rods that were heterofermentative and did not exhibit catalase activity. Sequencing of the 16S rRNA, pheS and rpoA genes revealed that the two isolates shared 99.5, 99.8 and 99.9 % sequence similarity, which indicates that they belong to the same species. Phylogenetic analysis demonstrated clustering of the two isolates with the genus Lactobacillus. Strain LY-73(T) showed highest 16S rRNA gene sequence similarities with Lactobacillus harbinensis KACC 12409(T) (97.73%), Lactobacillus perolens DSM 12744(T) (96.96 %) and Lactobacillus selangorensis DSM 13344(T) (93.10 %). Comparative analyses of their rpoA and pheS gene sequences indicated that the novel strains were significantly different from other Lactobacillus species. Low DNA-DNA reassociation values (50.5 %) were obtained between strain LY-73(T) and its phylogenetically closest neighbours. The G+C contents of the DNA of the two novel isolates were 56.1 and 56.5 mol%. Straight-chain unsaturated fatty acids C18 : 1ω9c (78.85 and 74.29 %) were the dominant components, and the cell-wall peptidoglycan was of the l-Lys-d-Asp type. Based on phenotypic characteristics, and chemotaxonomic and genotypic data, the novel strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus shenzhenensis sp. nov. is proposed, with LY-73(T) ( = CCTCC M 2011481(T) = KACC 16878(T)) as the type strain.

  2. Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov.

    PubMed

    Meroth, Christiane B; Hammes, Walter P; Hertel, Christian

    2004-03-01

    The microbiota of two industrially processed rice sourdoughs was characterised by bacteriological culture in combination with PCR-denaturing gradient gel electrophoresis (DGGE) and 16S/28S rDNA sequence analysis. Rice sourdough I was continuously propagated for several years by back-slopping every week, whereas sourdough II was processed by using a commercial starter culture and back-slopping daily for three days. In rice sourdough II Candida krusei and Saccharomyces cerevisiae as well as Lactobacillus fermentum, Lactobacillus gallinarum, Lactobacillus kimchii, Lactobacillus plantarum, and Lactobacillus pontis dominated at the first day of fermentation. RAPD analysis of lactobacilli revealed identical profiles for each of the species except for L. fermentum and L. pontis indicating the presence of different strains. Fluctuations within the LAB community during fermentation were monitored by PCR-DGGE. L. pontis decreased in numbers over time and L. curvatus became dominant after 3 days of fermentation. Rice sourdough I contained S. cerevisiae, Lactobacillus paracasei (present with three different RAPD types), Lactobacillus paralimentarius, and a Lactobacillus strain which could not be allotted to any valid species. Phylogenetic analysis based on 16S rDNA sequences revealed Lactobacillus brevis as the closest relative (97.3% sequence similarity). Differences in some phenotypic characteristics and DNA-DNA relatedness indicated that the strain represents a new Lactobacillus species, for which the name Lactobacillus spicheri is proposed.

  3. Identification and Characterization of Novel Surface Proteins in Lactobacillus johnsonii and Lactobacillus gasseri

    PubMed Central

    Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf

    2002-01-01

    We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842

  4. Microbiological Quality of Panicum maximum Grass Silage with Addition of Lactobacillus sp. as Starter

    NASA Astrophysics Data System (ADS)

    Sumarsih, S.; Sulistiyanto, B.; Utama, C. S.

    2018-02-01

    The aim of the research was to evaluate microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp as starter. The completely randomized design was been used on this research with 4 treaments and 3 replications. The treatments were P0 ( Panicum maximum grass silage without addition Lactobacillus sp ), P1 ( Panicum maximum grass silage with 2% addition Lactobacillus sp), P2 (Panicum maximum grass silage with 4% addition Lactobacillus sp) and P3 (Panicum maximum grass silage with 6% addition Lactobacillus sp).The parameters were microbial populations of Panicum maximum grass silage (total lactic acid bacteria, total bacteria, total fungi, and Coliform bacteria. The data obtained were analyzed variance (ANOVA) and further tests performed Duncan’s Multiple Areas. The population of lactic acid bacteria was higher (P<0.05) and the total bacteria, fungi and Coliform were lower (P<0.05) with addition Lactobacillus sp. Microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp was better than no addition Lactobacillus sp.

  5. Mosaic tetracycline resistance genes and their flanking regions in Bifidobacterium thermophilum and Lactobacillus johnsonii.

    PubMed

    van Hoek, Angela H A M; Mayrhofer, Sigrid; Domig, Konrad J; Flórez, Ana B; Ammor, Mohammed S; Mayo, Baltasar; Aarts, Henk J M

    2008-01-01

    For the first time, mosaic tetracycline resistance genes were identified in Lactobacillus johnsonii and in Bifidobacterium thermophilum strains. The L. johnsonii strain investigated contains a complex hybrid gene, tet(O/W/32/O/W/O), whereas the five bifidobacterial strains possess two different mosaic tet genes: i.e., tet(W/32/O) and tet(O/W). As reported by others, the crossover points of the mosaic tet gene segments were found at similar positions within the genes, suggesting a hot spot for recombination. Analysis of the sequences flanking these genes revealed that the upstream part corresponds to the 5' end of the mosaic open reading frame. In contrast, the downstream region was shown to be more variable. Surprisingly, in one of the B. thermophilum strains a third tet determinant was identified, coding for the efflux pump Tet(L).

  6. Genome Sequence of Lactobacillus farciminis KCTC 3681▿

    PubMed Central

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-01-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds. PMID:21257766

  7. Effects of Lactobacillus formosensis S215T and Lactobacillus buchneri on quality and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage.

    PubMed

    Mangwe, M C; Rangubhet, K T; Mlambo, V; Yu, B; Chiang, H I

    2016-11-01

    This study investigated the influence of two microbial inoculants; Lactobacillus formosensis and Lactobacillus buchneri on fermentation quality, chemical composition, aerobic stability and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage. Sweet potato vines were ensiled for 28 and 60 days; without inoculant (CON), with Lact. buchneri (LB) or with Lact. formosensis (LF), both inoculants applied to achieve 1 × 10 6  CFU g -1 fresh forage. Lactobacillus formosensis silage had lower pH and higher lactic acid than all treatments. Yeasts and moulds were not detected in LB silage after ensiling. Lactobacillus buchneri silage was more aerobically stable than all treatments, whereas LF was more stable than CON silage. In vitro ruminal biological activity of condensed tannins was lower in microbial-inoculated silages than CON after ensiling. Lactobacillus formosensis improved fermentability by reducing silage pH and improved aerobic stability by producing more propionate, which inhibited yeast activity. Lactobacillus buchneri improved aerobic stability of the silage by producing more acetate. Both strains effectively reduced the antinutritional effect of condensed tannins after ensiling. Lactobacillus formosensis has the potential to be used as a silage inoculant because of its ability to improve fermentability and aerobic stability in sweet potato vines silage. © 2016 The Society for Applied Microbiology.

  8. A Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development

    PubMed Central

    Yu, Rosa R.; Cheng, Andrew T.; Lagenaur, Laurel A.; Huang, Wenjun; Weiss, Deborah E.; Treece, Jim; Sanders-Beer, Brigitte E.; Hamer, Dean H.; Lee, Peter P.; Xu, Qiang; Liu, Yang

    2015-01-01

    Background We sought to establish a nonhuman primate model of vaginal Lactobacillus colonization suitable for evaluating live microbial microbicide candidates. Methods Vaginal and rectal microflora in Chinese rhesus macaques (Macaca mulatta) were analyzed, with cultivable bacteria identified by 16S rRNA gene sequencing. Live lactobacilli were intravaginally administered to evaluate bacterial colonization. Results Chinese rhesus macaques harbored abundant vaginal Lactobacillus, with Lactobacillus johnsonii as the predominant species. Like humans, most examined macaques harbored only one vaginal Lactobacillus species. Vaginal and rectal Lactobacillus isolates from the same animal exhibited different genetic and biochemical profiles. Vaginal Lactobacillus was cleared by a vaginal suppository of azithromycin, and endogenous L. johnsonii was subsequently restored by intravaginal inoculation. Importantly, prolonged colonization of a human vaginal Lactobacillus jensenii was established in these animals. Conclusions The Chinese rhesus macaque harbors vaginal Lactobacillus and is a potentially useful model to support the pre-clinical evaluation of Lactobacillus-based topical microbicides. PMID:19367737

  9. Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease

    PubMed Central

    Martinez, Raquel M.; Hulten, Kristina G.; Bui, Uyen

    2014-01-01

    Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry. PMID:24131686

  10. Mg2+ improves the thermotolerance of probiotic Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8.

    PubMed

    Yang, Y; Huang, S; Wang, J; Jan, G; Jeantet, R; Chen, X D

    2017-04-01

    Food-related carbohydrates and proteins are often used as thermoprotectants for probiotic lactobacilli during industrial production and processing. However, the effect of inorganic salts is rarely reported. Magnesium is the second-most abundant cation in bacteria, and commonly found in various foods. Mg 2+ homeostasis is important in Salmonella and has been reported to play a critical role in their thermotolerance. However, the role of Mg 2+ in thermotolerance of other bacteria, in particular probiotic bacteria, still remains a hypothesis. In this study, the effect of Mg 2+ on thermotolerance of probiotic lactobacilli was investigated in three well-documented probiotic strains, Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8, in comparison with Zn 2+ and Na + . Concentrations of Mg 2+ between 10 and 50 mmol l -1 were found to increase the bacterial survival upon heat challenge. Remarkably, Mg 2+ addition at 20 mmol l -1 led to a 100-fold higher survival of L. rhamnosus GG upon heat challenge. This preliminary study also showed that Mg 2+ shortened the heat-induced extended lag time of bacteria, which indicated the improvement in bacterial recovery from thermal injury. In order to improve the productivity and stability of live probiotics, extensive investigations have been carried out to improve thermotolerance of probiotics. However, most of these studies focused on the effects of carbohydrates, proteins or amino acids. The roles of inorganic salts in various food materials, which have rarely been reported, should be considered when incorporating probiotics into these foods. In this study, Mg 2+ was found to play a significant role in the thermotolerance of probiotic lactobacilli. A novel strategy may be available in the near future by employing magnesium salts as protective agents of probiotics during manufacturing process. © 2017 The Society for Applied Microbiology.

  11. Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach

    PubMed Central

    Wilson, Charlotte M.; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M.; O'Toole, Paul W.; Zomer, Aldert

    2014-01-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. PMID:25063664

  12. Lactobacillus reuteri 100-23 modulates urea hydrolysis in the murine stomach.

    PubMed

    Wilson, Charlotte M; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M; O'Toole, Paul W; Zomer, Aldert; Tannock, Gerald W

    2014-10-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Huys, Geert; Vandamme, Peter; De Vuyst, Luc; Vancanneyt, Marc

    2007-07-01

    A polyphasic taxonomic study of the lactic acid bacteria (LAB) population in three traditional Belgian sourdoughs, sampled between 2002 and 2004, revealed a group of isolates that could not be assigned to any recognized LAB species. Initially, sourdough isolates were screened by means of (GTG)(5)-PCR fingerprinting. Four isolates displaying unique (GTG)(5)-PCR patterns were further investigated by means of phenylalanyl-tRNA synthase (pheS) gene sequence analysis and represented a bifurcated branch that could not be allocated to any LAB species present in the in-house pheS database. Their phylogenetic affiliation was determined using 16S rRNA gene sequence analysis and showed that the four sourdough isolates belong to the Lactobacillus plantarum group with Lactobacillus mindensis, Lactobacillus farciminis and Lactobacillus nantensis as closest relatives. Further genotypic and phenotypic studies, including whole-cell protein analysis (SDS-PAGE), amplified fragment length polymorphism (AFLP) fingerprinting, DNA-DNA hybridization, DNA G+C content analysis, growth characteristics and biochemical features, demonstrated that the new sourdough isolates represent a novel Lactobacillus species for which the name Lactobacillus crustorum sp. nov. is proposed. The type strain of the new species is LMG 23699(T) (=CCUG 53174(T)).

  14. Effects of copper supplement on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture.

    PubMed

    Rodríguez, L Mato; Alatossava, T

    2008-10-01

    To determine the effects of supplemented copper (Cu2+) on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture. Thirteen strains belonging to Lactobacillus delbrueckii, Lactobacillus helveticus, Lactobacillus rhamnosus, Streptococcus thermophilus or Propionibacterium freudenreichii species were exposed to various copper concentrations in the proper growth medium at relevant growth temperatures, and the effects of supplemented copper on bacterial growth and cell viability were determined by optical density and pH measurements, also by platings. Among the species considered, L. delbrueckii was the most copper resistant and S. thermophilus the most sensitive to copper. Anaerobic conditions increased this sensitivity significantly. There was also a considerable amount of variation in copper resistance at strain level. Copper resistance is both a species- and strain-dependent property and may reflect variability in copper-binding capacities by cell wall components among species and strains. In addition, the chemical state of copper may be involved. This study revealed that copper resistance is a highly variable property among starter and adjunct strains, and this variability should be considered when strains are selected for Emmental cheese manufacture.

  15. Oral Lactobacillus Counts Predict Weight Gain Susceptibility: A 6-Year Follow-Up Study

    PubMed Central

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A.H.; Heitmann, Berit L.

    2017-01-01

    Background Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. Aim We examined the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35–65 years at baseline. Design Prospective observational study. Results In unadjusted analysis the level of oral Lactobacillus was inversely associated with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium intake of complex carbohydrates predicted diminished weight gain. A closer examination of these relations showed that BMI change and Lactobacillus level was unrelated for those with high complex carbohydrate consumption. Conclusion A high level of oral Lactobacillus seems related to weight loss among those with medium and low intakes of complex carbohydrates. Absence, or a low level of oral Lactobacillus, may potentially be a novel marker to identify those at increased risk of weight gain. PMID:29020671

  16. Oral Lactobacillus Counts Predict Weight Gain Susceptibility: A 6-Year Follow-Up Study.

    PubMed

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A H; Heitmann, Berit L

    2017-01-01

    Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. We examined the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35-65 years at baseline. Prospective observational study. In unadjusted analysis the level of oral Lactobacillus was inversely associated with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium intake of complex carbohydrates predicted diminished weight gain. A closer examination of these relations showed that BMI change and Lactobacillus level was unrelated for those with high complex carbohydrate consumption. A high level of oral Lactobacillus seems related to weight loss among those with medium and low intakes of complex carbohydrates. Absence, or a low level of oral Lactobacillus, may potentially be a novel marker to identify those at increased risk of weight gain. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  17. [Progress in research of relationship between vaginal Lactobacillus and preterm delivery].

    PubMed

    He, Y N; Xiong, H Y; Zheng, Y J

    2017-03-10

    The vaginal flora in most healthy women is dominated by Lactobacillus species. The absence of Lactobacillus species in vaginal flora might lead to a series of symptoms, especially in pregnant women causing adverse pregnancy outcomes, such as preterm delivery. This review focuses on the progress in the research of the relationship between vaginal Lactobacillus and preterm delivery, providing reference for the reduction of the incidence of preterm delivery.

  18. Modeling Lactic Fermentation of Gowé Using Lactobacillus Starter Culture

    PubMed Central

    de J. C. Munanga, Bettencourt; Loiseau, Gérard; Grabulos, Joël; Mestres, Christian

    2016-01-01

    A global model of the lactic fermentation step of gowé was developed by assembling blocks hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation. Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was modeled using Rosso’s primary model and the gamma concept as a secondary model. The optimum values of pH and temperature were 8.3 ± 0.3, 44.6 ± 1.2 °C and 8.3 ± 0.3, 3.2 ± 37.1 °C with μmax values of 1.8 ± 0.2 and 1.4 ± 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum, respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis, with a yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model was developed to predict the pH drop during gowé fermentation. The global model was partially validated during manufacturing of gowé. The global model could be a tool to aid in the choice of suitable starters and to determine the conditions for the use of the starter. PMID:27916901

  19. Influence of Lactobacillus acidophilus and Lactobacillus plantarum on wound healing in male Wistar rats - an experimental study.

    PubMed

    Gudadappanavar, Anupama M; Hombal, Prashant R; Timashetti, Somling S; Javali, S B

    2017-01-01

    Probiotics have been documented with various pleotropic effects other than improving general gut health, but the potential benefits of strain-specific Lactobacillus on wound healing are unknown. Hence, the objective of the study is to evaluate and compare the wound healing property of Lactobacillus acidophilus and Lactobacillus plantarum on various wound models in male Wistar rats. Excision wound, resutured incision wound, and dead space wounds were inflicted under light thiopentone anesthesia in male Wistar rats ( n = 6, in each group). The rats received one of the Lactobacillus orally as per their weight for a period of 10 days in resutured incision (assessed by wound breaking strength) and dead space wounds (granuloma dry weight, histopathology of granulation tissue, and biochemical hydroxyproline estimation), whereas in excision wounds, treatment was monitored by planimetry. Data were expressed as mean ± standard error of mean and analyzed by ANOVA followed by Tukey's multiple post hoc test. P < 0.05 was considered as statistically significant. L. acidophilus showed a significant difference ( P < 0.05) in all the three models, namely, enhanced wound contraction and decreased days for complete epithelization in excision wound; increased breaking strength in resutured incision wound; increased granuloma dry weight and cellular infiltration in granulation tissue with marked increase in collagen content indicating wound healing. The study suggests that the wound healing activity of L. acidophilus if could be extrapolated to clinical situations may decrease dosage and duration of treatment and can be a potential adjuvant to reduce hospitalization with efficient recovery after injury and sustained good health.

  20. Lactobacillus panisapium sp. nov., from honeybee Apis cerana bee bread.

    PubMed

    Wang, Cong; Huang, Yan; Li, Li; Guo, Jun; Wu, Zhengyun; Deng, Yu; Dai, Lirong; Ma, Shichun

    2018-03-01

    A novel facultatively anaerobic, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative bacterium of the genus Lactobacillus, designated strain Bb 2-3 T , was isolated from bee bread of Apis cerana collected from a hive in Kunming, China. The strain was regular rod-shaped. Optimal growth occurred at 37 °C, pH 6.5 with 5.0 g l -1 NaCl. The predominant fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 iso. Respiratory quinones were not detected. Seven glycolipids, three lipids, phosphatidylglycerol and diphosphatidylglycerol were detected. The peptidoglycan type A4α l-Lys-d-Asp was determined. Strain Bb 2-3 T was closely related to Lactobacillus bombicola DSM 28793 T , Lactobacillus apis LMG 26964 T and Lactobacillus helsingborgensis DSM 26265 T , with 97.8, 97.6 and 97.0 % 16S rRNA gene sequence similarity, respectively. A comparison of two housekeeping genes, rpoA and pheS, revealed that strain Bb 2-3 T was well separated from the reference strains of species of the genus Lactobacillus. The average nucleotide identity between strain Bb 2-3 T and the type strains of closely related species was lower than the 95-96 % threshold value for delineation of genomic prokaryotic species. The G+C content of the genomic DNA of strain Bb 2-3 T was 37.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain Bb 2-3 T is proposed to represent a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus panisapium sp. nov. The type strain is Bb 2-3 T (=DSM 102188 T =ACCC 19955 T ).

  1. Lactobacillus brevis G101 inhibits the absorption of monosodium glutamate in mice.

    PubMed

    Jang, Se-Eun; Han, Myung Joo; Kim, Se-Young; Kim, Dong-Hyun

    2014-11-28

    To evaluate the effect of Lactobacillus brevis G-101 on absorption of monosodium glutamate (MSG), we orally administered MSG with or without G-101 in mice and measured the maximum concentration (Cmax) and blood concentration curve (AUC) of MSG and γ- aminobutyric acid (GABA). Oral administration of G-101 (1 × 10(9) CFU/mouse) potently inhibited Cmax and AUC of MSG by 97.8% and 94.3%, respectively (p < 0.05), but increased those of GABA by 32.1% and 67.7%, respectively (p < 0.05). G-101 inhibited the absorption of MSG. These results suggest that G-101 may reduce the side effect of MSG by inhibiting the absorption of MSG.

  2. Growth characterization of individual rye sourdough bacteria by isothermal microcalorimetry.

    PubMed

    Mihhalevski, A; Sarand, I; Viiard, E; Salumets, A; Paalme, T

    2011-02-01

    The present work tests the feasibility of the isothermal microcalorimetry method to study the performance of individual lactic acid bacteria during solid-state fermentation in rye sourdough. Another aim was to elucidate the key factors leading to the formation of different microbial consortia in laboratory and industrial sourdough during continuous backslopping propagation. Strains of the individual LAB isolated from industrial and laboratory sourdough cycle were grown in 10 kGy irradiated rye dough in vials of an isothermal calorimeter and the power-time curves were obtained. Sugars, organic acids and free amino acids in the sourdough were measured. The OD-time curves of the LAB strains during growth in flour extract or MRS (De Man, Rogosa and Sharpe) broth were also determined. The maximum specific growth rates of Lactobacillus sakei, Lactobacillus brevis, Lactobacillus curvatus and Leuconostoc citreum strains that dominated in backslopped laboratory sourdough were higher than those of Lactobacillus helveticus, Lactobacillus panis, Lactobacillus vaginalis, Lactobacillus casei and Lactobacillus pontis strains originating from industrial sourdough. Industrial strains had higher specific growth rates below pH 4·8. It was supposed that during long-run industrial backslopping processes, the oxygen sensitive species start to dominate because of the O(2) protective effect of rye sourdough. Measurements of the power-time curves revealed that the LAB strains dominating in the industrial sourdough cycle had better acid tolerance but lower maximum growth rate and oxygen tolerance than species isolated from a laboratory sourdough cycle. Isothermal microcalorimetry combined with chemical analysis is a powerful method for characterization of sourdough fermentation process and determination of growth characteristics of individual bacteria in sourdough. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  3. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains.

    PubMed

    Almståhl, Annica; Lingström, Peter; Eliasson, Lars; Carlén, Anette

    2013-07-01

    The objective was to analyse the ability of Lactobacillus strains isolated from supragingival plaque of subjects with hyposalivation and from healthy controls to ferment sugars and sugar alcohols. Fifty strains isolated from interproximal plaque from subjects with radiation-induced hyposalivation (25 strains), subjects with primary Sjögren's syndrome (16 strains) and from subjects with normal salivary secretion rate (9 strains) were tested. Growth and pH were determined after 24 and 48 h of anaerobic incubation in vials containing basal media with 1 % of glucose, fructose, sucrose, mannitol, sorbitol or xylitol. No differences between strains isolated from hyposalivated subjects and controls were detected. All strains lowered the pH to <5.0 from fructose and the majority of the strains from glucose and sucrose. A pH of <5.5 was seen for 52 % of the strains using mannitol, 50 % using sorbitol and 36 % using xylitol. The ability to produce acids from sugars and sugar alcohols was highest among strains of Lactobacillus rhamnosus, Lactobacillus casei and Lactobacillus paracasei and lowest among Lactobacillus fermentum strains. A large number of Lactobacillus strains are able to ferment not only sugars but also the sugar substitutes mannitol, sorbitol and xylitol to pH levels critical for enamel demineralisation. Our findings suggest that products containing mannitol, sorbitol and/or xylitol may contribute to the acidogenic potential of the dental plaque and especially in hyposalivated subjects with high numbers of lactobacilli.

  4. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds.

    PubMed

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-12-01

    Two strains, KBL13(T) and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13(T) and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA-DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13(T) and GBL13, belong to the same species. In the representative strain, KBL13(T), the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231(T) (=ATCC 11741(T); AF089108) is the type strain most closely related to the strain KBL13(T) as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA-DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13(T) represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13(T) (=JCM 14209(T)=DSM 18933(T)).

  5. Lactobacillus salivarius LA307 and Lactobacillus rhamnosus LA305 attenuate skin inflammation in mice.

    PubMed

    Holowacz, S; Blondeau, C; Guinobert, I; Guilbot, A; Hidalgo, S; Bisson, J F

    2018-02-27

    Oral probiotics potential for the management of dermatological diseases is vast. However, results of available studies in skin diseases, such as atopic dermatitis (AD), are inconsistent, partly because probiotic effects are strain specific. Careful selection of probiotic strains is therefore indispensable to ensure efficacy of treatment. In this study, Lactobacillus salivarius LA307, Lactobacillus rhamnosus LA305 and Bifidobacterium bifidum PI22, three strains that were previously identified for their interesting immunomodulatory properties in allergy and/or colitis models, were assessed in the prevention of chronic skin inflammation induced by repeated applications of 12-O-tetradecanoylphorbol-13-acetate in hairless SKH-1 mice. Macroscopic and microscopic evaluation of skin lesions was performed together with measurements of serum levels of interleukin (IL)-1β, IL-6, tumour necrosis factor alpha (TNF-α), IL-17, IL-22, IL-10 and IL-4. Daily oral treatment with the three strains at the dose of 1×10 9 cfu/day for 3 weeks limited the development of chronic skin inflammation, the effects being strain dependent. Indeed the two Lactobacillus strains significantly limited the intensity of skin inflammation both at the macroscopic and microscopic levels. Macroscopic observations were correlated to the histological observations and the resulting microscopic score. This limitation of the development of AD-like skin lesions involved the modulation of cytokine production. Treatment with the two Lactobacillus strains induced a decrease in the serum levels of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, IL-17, IL-22 and at the opposite an increase in the production of the anti-inflammatory cytokine IL-10 and also of IL-4. Globally, B. bifidum PI22 had lower benefits. These results obtained in mice suggest that L. salivarius LA307 and L. rhamnosus LA305 could be good candidates for preserving skin integrity and homeostasis via the modulation of the gut microbiota and that

  6. Isolation of a DNA Probe for Lactobacillus curvatus

    PubMed Central

    Petrick, Hendrik A. R.; Ambrosio, Riccardo E.; Holzapfel, Wilhelm H.

    1988-01-01

    A genomic library of Lactobacillus curvatus DSM 20019 was constructed in bacteriophage λ gt11. A 1.2-kilobase DNA probe specific for L. curvatus was isolated from this library. When this probe was hybridized to DNA from Lactobacillus isolates from different sources classified by conventional techniques, differing degrees of hybridization were obtained. This could imply that these isolates may have been incorrectly classified. Images PMID:16347554

  7. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection.

    PubMed

    Percopo, Caroline M; Dyer, Kimberly D; Garcia-Crespo, Katia E; Gabryszewski, Stanislaw J; Shaffer, Arthur L; Domachowske, Joseph B; Rosenberg, Helene F

    2014-06-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient μMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.

  8. A Lactobacillus-Deficient Vaginal Microbiota Dominates Postpartum Women in Rural Malawi

    PubMed Central

    2018-01-01

    ABSTRACT The bacterial community found in the vagina is an important determinant of a woman's health and disease status. A healthy vaginal microbiota is associated with low species richness and a high proportion of one of a number of different Lactobacillus spp. When disrupted, the resulting abnormal vaginal microbiota is associated with a number of disease states and poor pregnancy outcomes. Studies up until now have concentrated on relatively small numbers of American and European populations that may not capture the full complexity of the community or adequately predict what constitutes a healthy microbiota in all populations. In this study, we sampled and characterized the vaginal microbiota found on vaginal swabs taken postpartum from a cohort of 1,107 women in rural Malawi. We found a population dominated by Gardnerella vaginalis and devoid of the most common vaginal Lactobacillus species, even if the vagina was sampled over a year postpartum. This Lactobacillus-deficient anaerobic community, commonly labeled community state type (CST) 4, could be subdivided into four further communities. A Lactobacillus iners-dominated vaginal microbiota became more common the longer after delivery the vagina was sampled, but G. vaginalis remained the dominant organism. These results outline the difficulty in all-encompassing definitions of what a healthy or abnormal postpartum vaginal microbiota is. Previous identification of community state types and associations among bacterial species, bacterial vaginosis, and adverse birth outcomes may not represent the complex heterogeneity of the microbiota present. (This study has been registered at ClinicalTrials.gov as NCT01239693.) IMPORTANCE A bacterial community in the vaginal tract is dominated by a small number of Lactobacillus species, and when not present there is an increased incidence of inflammatory conditions and adverse birth outcomes. A switch to a vaginal bacterial community lacking in Lactobacillus species is common

  9. Lactobacillus-deficient vaginal microbiota dominate post-partum women in rural Malawi.

    PubMed

    Doyle, Ronan; Gondwe, Austridia; Fan, Yue-Mei; Maleta, Kenneth; Ashorn, Per; Klein, Nigel; Harris, Kathryn

    2018-01-05

    The bacterial community found in the vagina is an important determinant of a woman's health and disease. A healthy vaginal microbiota is associated with a lower species richness and high proportions of one of a number of different Lactobacillus spp.. When disrupted the resulting abnormal vaginal microbiota is associated with a number of disease states and poor pregnancy outcomes. Studies up until now have concentrated on relatively small numbers of American and European populations which may not capture the full complexity of the community, nor adequately predict what constitutes a healthy microbiota in all populations. In this study we sampled and characterised the vaginal microbiota from a cohort of 1107 women in rural Malawi found on vaginal swabs taken post-partum. We found a population dominated by Gardnerella vaginalis and devoid of the most common vaginal Lactobacillus species, even if the vagina was sampled over a year post-partum. The Lactobacillus -deficient anaerobic community commonly labelled community state type (CST) 4 could be sub-divided into four further communities. A Lactobacillus iners dominated vaginal microbiota became more common the longer after delivery the vagina was sampled, but G. vaginalis remained the dominant organism. These results outline the difficulty in all-encompassing definitions of what a healthy or abnormal vaginal microbiota is post-partum. Previous identification of community state types and associations between bacterial species, bacterial vaginosis and adverse birth outcomes may not represent the complex heterogeneity of the microbiota present. Importance A bacterial community in the vaginal tract that is dominated by small number of bacterial Lactobacillus species and when they are not present, there is a greater incidence of inflammatory conditions and adverse birth outcomes. A switch to a vaginal bacterial community lacking in Lactobacillus species is common after pregnancy. In this study we characterised the vaginal

  10. Lactobacillus for preventing recurrent urinary tract infections in women: meta-analysis.

    PubMed

    Grin, Peter M; Kowalewska, Paulina M; Alhazzan, Waleed; Fox-Robichaud, Alison E

    2013-02-01

    Urinary tract infections (UTIs) are the most common infections affecting women, and often recur. Lactobacillus probiotics could potentially replace low dose, long term antibiotics as a safer prophylactic for recurrent UTI (rUTI). This systematic review and meta-analysis was performed to compile the results of existing randomized clinical trials (RCTs) to determine the efficacy of probiotic Lactobacillus species in preventing rUTI. MEDLINE and EMBASE were searched from inception to July 2012 for RCTs using a Lactobacillus prophylactic against rUTI in premenopausal adult women. A random-effects model meta-analysis was performed using a pooled risk ratio, comparing incidence of rUTI in patients receiving Lactobacillus to control. Data from 294 patients across five studies were included. There was no statistically significant difference in the risk for rUTI in patients receiving Lactobacillus versus controls, as indicated by the pooled risk ratio of 0.85 (95% confidence interval of 0.58-1.25, p = 0.41). A sensitivity analysis was performed, excluding studies using ineffective strains and studies testing for safety. Data from 127 patients in two studies were included. A statistically significant decrease in rUTI was found in patients given Lactobacillus, denoted by the pooled risk ratio of 0.51 (95% confidence interval 0.26-0.99, p = 0.05) with no statistical heterogeneity (I2 = 0%). Probiotic strains of Lactobacillus are safe and effective in preventing rUTI in adult women. However, more RCTs are required before a definitive recommendation can be made since the patient population contributing data to this meta-analysis was small.

  11. TEMPERATURE-SENSITIVE DEXTRANSUCRASE SYNTHESIS BY A LACTOBACILLUS.

    PubMed

    DUNICAN, L K; SEELEY, H W

    1963-11-01

    Dunican, L. K. (Cornell University, Ithaca, New York), and H. W. Seeley, Jr. Temperature-sensitive dextransucrase synthesis by a lactobacillus. J. Bacteriol. 86:1079-1083. 1963.-Dextran synthesis was found to be temperature-dependent in Lactobacillus strain RWM-13. Dextran was not formed above 37 C, although growth of cells occurred up to 42 C. Logarithmically growing cells transferred from 30 C to 40 C ceased producing dextran while growth decreased nominally. An examination of the extracts of cells broken by sonic treatment showed that as the temperature of growth was increased above 37 C the production of dextransucrase decreased. By use of an inhibitor of invertase, 10(-4)m AgNO(3), it was shown that invertase replaced dextransucrase activity at temperatures above 37 C. In contrast to dextransucrase in Leuconostoc mesenteroides, the enzyme in Lactobacillus strain RWM-13 was constitutive and thus resembled that of Streptococcus bovis. Thermosensitivity of dextransucrase synthesis has not been observed in Leuconostoc or Streptococcus.

  12. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines

    PubMed Central

    Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.

    2013-01-01

    Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines. PMID:23405290

  13. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain.

  14. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    PubMed Central

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  15. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds

    PubMed Central

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-01-01

    Two strains, KBL13T and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13T and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA–DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13T and GBL13, belong to the same species. In the representative strain, KBL13T, the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231T (=ATCC 11741T; AF089108) is the type strain most closely related to the strain KBL13T as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA–DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13T represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13T (=JCM 14209T=DSM 18933T). PMID:18048734

  16. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogenss.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Nowaczek, Anna; Wernicki, Andrzej

    2016-03-01

    This study was conducted to identify and evaluate the antimicrobial activity of some Lactobacillus isolates of chicken origin. Among 90 isolates 14 Lactobacillus species were distinguished using MALDI-TOF mass spectrometry and 16S-ARDRA. The dominant species was L. salivarius (34.4%), followed by L. johnsonii (23.3%), L. crispatus (13.3%) and L. reuteri (11.1%). All lactobacilli were screened for antimicrobial activity against wild-type strains of Salmonella enterica, Escherichia coli, and Clostridium perfringens. Results from the agar slab method showed that all Lactobacillus isolates were able to produce active compounds on solid media with antagonistic properties against these pathogens. The highest sensitivity to lactobacilli was observed in C. perfringens strains, and the lowest in E. coli. Lactobacillus salivarius exhibited particularly strong antagonism towards all of the indicator bacteria. Strains of L. ingluviei and L. johnsonii and one strain of L. salivarius (10d) selectively inhibited the growth of C. perfringens. No antimicrobial activity of many Lactobacillus isolates was observed when cell-free culture supernatant was used in a well diffusion assay. All Lactobacillus isolates exhibited the ability to produce H2O2 and proved to be hydrophobic (excluding one of L. salivarius). [Int Microbiol 19(1):57-67 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  17. Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus.

    PubMed

    Ricciardi, Annamaria; Parente, Eugenio; Guidone, Angela; Ianniello, Rocco Gerardo; Zotta, Teresa; Abu Sayem, S M; Varcamonti, Mario

    2012-07-02

    Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum are three closely related species which are widespread in food and non-food environments, and are important as starter bacteria or probiotics. In order to evaluate the phenotypic diversity of stress tolerance in the L. plantarum group and the ability to mount an adaptive heat shock response, the survival of exponential and stationary phase and of heat adapted exponential phase cells of six L. plantarum subsp. plantarum, one L. plantarum subsp. argentoratensis, one L. pentosus and two L. paraplantarum strains selected in a previous work upon exposure to oxidative, heat, detergent, starvation and acid stresses was compared to that of the L. plantarum WCFS1 strain. Furthermore, to evaluate the genotypic diversity in stress response genes, ten genes (encoding for chaperones DnaK, GroES and GroEL, regulators CtsR, HrcA and CcpA, ATPases/proteases ClpL, ClpP, ClpX and protease FtsH) were amplified using primers derived from the WCFS1 genome sequence and submitted to restriction with one or two endonucleases. The results were compared by univariate and multivariate statistical methods. In addition, the amplicons for hrcA and ctsR were sequenced and compared by multiple sequence alignment and polymorphism analysis. Although there was evidence of a generalized stress response in the stationary phase, with increase of oxidative, heat, and, to a lesser extent, starvation stress tolerance, and for adaptive heat stress response, with increased tolerance to heat, acid and detergent, different growth phases and adaptation patterns were found. Principal component analysis showed that while heat, acid and detergent stresses respond similarly to growth phase and adaptation, tolerance to oxidative and starvation stresses implies completely unrelated mechanisms. A dendrogram obtained using the data from multilocus restriction typing (MLRT) of stress response genes clearly separated two groups of L

  18. A Decade of Experience in Primary Prevention of Clostridium difficile Infection at a Community Hospital Using the Probiotic Combination Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+).

    PubMed

    Maziade, Pierre-Jean; Pereira, Pascale; Goldstein, Ellie J C

    2015-05-15

    In August 2003, the 284-bed community hospital Pierre-Le Gardeur (PLGH) in Quebec experienced a major outbreak associated with the Clostridium difficile NAP1/027/BI strain. Augmented standard preventive measures (SPMs) were not able to control this outbreak. It was decided in February 2004 to give to every adult inpatient on antibiotics, without any exclusion, a probiotic (Bio-K+: Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2) within 12 hours of the antibiotic prescription. Augmented SPMs were continued. The use of the probiotic in addition to SPMs was associated with a marked reduction of C. difficile infection (CDI). During the 10 years of observation, 44 835 inpatients received Bio-K+, and the CDI rate at PLGH declined from 18.0 cases per 10,000 patient-days and remained at low mean levels of 2.3 cases per 10,000 patient-days. Additionally, 10-year data collected by the Ministry of Health in Quebec comparing the CDI rate between Quebec hospitals showed that CDI rates at PLGH were consistently and continuously lower compared with those at similar hospitals. Blood cultures were monitored at PLGH for Lactobacillus bacteremia through the 10 years' experience, and no Lactobacillus bacteremias were detected. Despite the limitation of an observational study, we concluded that the probiotic Bio-K+ was safe and effective in decreasing our primary CDI rate. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Characterization of Selected Lactobacillus Strains for Use as Probiotics

    PubMed Central

    Song, Minyu; Yun, Bohyun; Moon, Jae-Hak; Park, Dong-June; Lim, Kwangsei; Oh, Sejong

    2015-01-01

    The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products. PMID:26761878

  20. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans.

    PubMed

    Wasfi, Reham; Abd El-Rahman, Ola A; Zafer, Mai M; Ashour, Hossam M

    2018-03-01

    Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...

  2. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...

  3. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic...

  4. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health

    PubMed Central

    Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah

    2015-01-01

    The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies. PMID:25859220

  5. Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano.

    PubMed

    Lazzi, Camilla; Povolo, Milena; Locci, Francesco; Bernini, Valentina; Neviani, Erasmo; Gatti, Monica

    2016-09-16

    In this study, the relationship between the dynamics of the growth and lysis of lactic acid bacteria in Grana Padano cheese and the formation of the volatile flavor compounds during cheese ripening was investigated. The microbial dynamics of Grana Padano cheeses that were produced in two different dairies were followed during ripening. The total and cultivable lactic microflora, community composition as determined by length heterogeneity-PCR (LH-PCR), and extent of bacterial lysis using an intracellular enzymatic activity assay were compared among cheeses after 2, 6 and 13months of ripening in two dairies. The evolution of whole and lysed microbiota was different between the two dairies. In dairy 2, the number of total cells was higher than that in dairy 1 in all samples, and the number of cells that lysed during ripening was lower. In addition, at the beginning of ripening (2months), the community structure of the cheese from dairy 2 was more complex and was composed of starter lactic acid bacteria (Lactobacillus helveticus and Lactobacillus delbrueckii) and NSLAB, possibly arising from raw milk, including Lactobacillus rhamnosus/Lactobacillus casei and Pediococcus acidilactici. On the other hand, the cheese from dairy 1 that ripened for 2months was mainly composed of the SLAB L. helveticus and L. delbrueckii. An evaluation of the free-DNA fraction through LH-PCR identified those species that had a high degree of lysis. Data on the dynamics of bacterial growth and lysis were evaluated with respect to the volatile profile and the organic acid content of the two cheeses after 13months of ripening, producing very different results. Cheese from dairy 1 showed a higher content of free fatty acids, particularly those deriving from milk fat lipolysis, benzaldehyde and organic acids, such as pGlu and citric. In contrast, cheese from dairy 2 had a greater amount of ketones, alcohols, hydrocarbons, acetic acid and propionic acid. Based on these results, we can conclude that

  6. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Urease enzyme preparation from Lactobacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme..., nontoxicogenic bacterium Lactobacillus fermentum. It contains the enzyme urease (CAS Reg. No. 9002-13-5), which...

  7. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection*

    PubMed Central

    Percopo, Caroline M.; Dyer, Kimberly D.; Garcia-Crespo, Katia E.; Gabryszewski, Stanislaw J.; Shaffer, Arthur L.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2014-01-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice (PVM), a property known as heterologous immunity. Lactobacillus-priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. As B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, here we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway immunoglobulins IgG, IgA and IgM and lung tissues with dense, B cell (B220+) enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of bronchus-associated lymphoid tissue. No B cells were detected in lung tissue of Lactobacillus-primed B-cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway immunoglobulins. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-gamma, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, L. plantarum-primed, B-cell deficient μMT and Jh mice were fully protected from an otherwise lethal PVM infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection. PMID:24748495

  9. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)). © 2015 IUMS.

  10. Evaluation of Phytate-Degrading Lactobacillus Culture Administration to Broiler Chickens

    PubMed Central

    Askelson, Tyler E.; Campasino, Ashley; Lee, Jason T.

    2014-01-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics. PMID:24271165

  11. Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens.

    PubMed

    Askelson, Tyler E; Campasino, Ashley; Lee, Jason T; Duong, Tri

    2014-02-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics.

  12. In vitro antagonistic effect of Lactobacillus on organisms associated with bacterial vaginosis.

    PubMed

    Strus, Magdalena; Malinowska, Magdalena; Heczko, Piotr B

    2002-01-01

    To assess antagonistic properties of Lactobacillus strains isolated from the vaginas of healthy women as compared to the most common bacterial agents related to vaginosis. Antagonistic activity of different Lactobacillus strains isolated from the vaginas of healthy women not treated for infections with an antibiotic for the previous three months was screened using an agar slab method. The activity was tested against test organisms associated with bacterial vaginosis and/or urinary tract infections: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli, Gardnerella vaginalis, Peptostreptococcus anaerobius and Prevotella bivia. Many of the 146 Lactobacillus strains tested exerted apparent antagonistic activities against gram-positive aerobic cocci and gram-negative rods, such as S aureus and E coli, and a marked number of Lactobacillus strains inhibited facultative bacteria, such as Gardnerella vaginalis and the anaerobes P anaerobius and P bivia. Only a few lactobacilli were able to inhibit growth of E faecalis and S agalactiae. Indicator bacteria growth inhibition probably relies upon several different complementary mechanisms. The specific indicator bacteria species determines which mechanism predominates. Lactobacillus strains taken from normal vaginal flora demonstrated antagonistic activity against a variety of bacteria related to vaginal and urinary tract infections. The specific occurrence rates of active Lactobacillus strains are different, and this difference is dependent on the indicator bacteria species.

  13. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species.

    PubMed

    Duarte, Francisca Nayara Dantas; Rodrigues, Jéssica Bezerra; da Costa Lima, Maiara; Lima, Marcos Dos Santos; Pacheco, Maria Teresa Bertoldo; Pintado, Maria Manuela Estevez; de Souza Aquino, Jailane; de Souza, Evandro Leite

    2017-08-01

    The prebiotic effects of a cashew apple (Anacardium occidentale L.) agro-industrial byproduct powder (CAP) on different potentially probiotic Lactobacillus strains, namely Lactobacillus acidophilus LA-05, Lactobacillus casei L-26 and Lactobacillus paracasei L-10, were assessed using in vitro experimental models. Accordingly, the growth of the Lactobacillus strains when cultivated in a broth containing CAP (20 or 30 g L -1 ), glucose (20 g L -1 ) or fructooligosaccharides (FOS) (20 g L -1 ) was monitored over 48 h; the prebiotic activity scores of CAP were determined; and the changes in pH values, production of organic acids and consumption of sugars in growth media were verified. During the 48-h cultivation, similar viable cell counts were observed for the Lactobacillus strains grown in the different media tested. The CAP presented positive prebiotic activity scores toward all the tested Lactobacillus strains, indicating a desirable selective fermentable activity relative to enteric organisms. The cultivation of the Lactobacillus strains in broth containing glucose, FOS or CAP resulted in high viable cell counts, a decreased pH, the production of organic acids and the consumption of sugars over time, revealing intense bacterial metabolic activity. The CAP exerts potential prebiotic effects on different potentially probiotic Lactobacillus strains and should be an added-value ingredient for the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must.

    PubMed

    Mañes-Lázaro, Rosario; Ferrer, Sergi; Rodas, Ana María; Urdiain, Mercedes; Pardo, Isabel

    2008-12-01

    A Lactobacillus strain, designated 203(T), previously isolated from Bobal grape must was characterized phylogenetically, genotypically and phenotypically in order to establish whether it represents a novel species. On the basis of the 16S rRNA gene sequence, strain 203(T) was shown to belong to the genus Lactobacillus, falling within the Lactobacillus alimentarius-Lactobacillus farciminis group and being closely related to the type strains of L. alimentarius, Lactobacillus kimchii and Lactobacillus paralimentarius. DNA-DNA hybridization results confirmed the separate status of strain 203(T) at the species level. To establish the similarities and differences between 203(T) and the three aforementioned closest species, the following methods were used: amplified rDNA restriction analysis, analysis of the 16S-23S rDNA intergenic spacer region, random amplification of polymorphic DNA (RAPD) profiling, ribotyping, carbohydrate fermentation and physiological tests. Strain 203(T) could be differentiated genetically using RAPD analysis and ribotyping. Phenotypically, it can be distinguished from its closest relatives by its ability to grow at pH 3.3, by gas production from gluconate and by certain carbohydrate fermentations. On the basis of these data, strain 203(T) represents a novel species of the genus Lactobacillus, for which the name Lactobacillus bobalius sp. nov. is proposed. The type strain is 203(T) (=CECT 7310(T) =DSM 19674(T)).

  15. Lactobacillus ixorae sp. nov., isolated from a flower (West-Indian jasmine).

    PubMed

    Techo, Sujitra; Miyashita, Mika; Shibata, Chiyo; Tanaka, Naoto; Wisetkhan, Preeyarach; Visessanguan, Wonnop; Tanasupawat, Somboon

    2016-12-01

    A Gram-stain-positive, lactic acid bacterium, strain Ru20-1T, was isolated from a flower (West-Indian jasmine) collected from Kalasin province, Thailand. A polyphasic approach was used to determine the taxonomic position of this strain. Studies of morphological and biochemical characteristics revealed that strain Ru20-1T belonged to the genus Lactobacillus. The strain was heterofermentative, non-spore-forming and rod-shaped. It produced dl-lactic acid. Based on 16S rRNA gene sequence similarity, this strain was closely related to Lactobacillus lindneri LMG 14528T (96.8 %), Lactobacillus sanfranciscensis NRIC 1548T (95.4 %) and Lactobacillus florum NRIC 0771T (95.2 %), respectively. In addition, the pheS gene sequence of strain Ru20-1T was closely related to those of L. sanfranciscensis NRIC 1548T (92.0 %), L. lindneri LMG 14528T (89.0 %) and L. florum NRIC 0771T(85.0 %). Phylogenetic analysis indicated that strain Ru20-1T was clearly separated from closely related species of the genus Lactobacillus. The DNA G+C content of strain Ru20-1T was 47.8 mol %. The cell-wall peptidoglycan type was l-Lys-d-Asp. The major cellular fatty acids were C18 : 1ω9c, C20 : 0, C20 : 1ω9c and summed feature 7 (unknown 18.846 and/or C19 : 1ω6c and/or C19 : 0 cyclo). On the basis of the data provided, strain Ru20-1T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus ixorae sp. nov. is proposed. The type strain is Ru20-1T (=LMG 29008T=NBRC 111239T=PCU 346T=TISTR 2381T).

  16. Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane.

    PubMed

    Calonghi, N; Parolin, C; Sartor, G; Verardi, L; Giordani, B; Frisco, G; Marangoni, A; Vitali, B

    2017-08-24

    Vaginal lactobacilli offer protection against recurrent urinary and vaginal infections. The precise mechanisms underlying the interaction between lactobacilli and the host epithelium remain poorly understood at the molecular level. Deciphering such events can provide valuable information on the mode of action of commensal and probiotic bacteria in the vaginal environment. We investigated the effects exerted by five Lactobacillus strains of vaginal origin (Lactobacillus crispatus BC1 and BC2, Lactobacillus gasseri BC9 and BC11 and Lactobacillus vaginalis BC15) on the physical properties of the plasma membrane in a cervical cell line (HeLa). The interaction of the vaginal lactobacilli with the cervical cells determined two kinds of effects on plasma membrane: (1) modification of the membrane polar lipid organisation and the physical properties (L. crispatus BC1 and L. gasseri BC9); (2) modification of α5β1 integrin organisation (L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15). These two mechanisms can be at the basis of the protective role of lactobacilli against Candida albicans adhesion. Upon stimulation with all Lactobacillus strains, we observed a reduction of the basal oxidative stress in HeLa cells that could be related to modifications in physical properties and organisation of the plasma membrane. These results confirm the strictly strain-specific peculiarities of Lactobacillus and deepen the understanding of the mechanisms underlying the health-promoting role of this genus within the vaginal ecosystem.

  17. Effects of antibiotic treatment on the lactobacillus composition of vaginal microbiota.

    PubMed

    Melkumyan, A R; Priputnevich, T V; Ankirskaya, A S; Murav'eva, V V; Lubasovskaya, L A

    2015-04-01

    We analyzed sensitivity of 123 vaginal lactobacillus strains to antibacterial substances. All lactobacillus strains were sensitive to ampicillin, cefazolin, cefotaxime, and vancomycin, and insensitive to metronidazole, trimethoprim/sulfamethoxazole, and levofloxacin. Lactobacillus strains demonstrated different sensitivity to gentamycin, clindamycin, erythromycin, ciprofloxacin, and tetracycline. The phenomenon of preferential selective influence of antibacterial drugs on the composition of lactobacilli of the vaginal microbiota, in which some lactobacilli survive as part of the vaginal microbiota and have a selective advantage over other types of lactobacilli, should be taken into account during treatment of vaginal infections and dysbiosis.

  18. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth.

    PubMed

    Keski-Nisula, Leea; Kyynäräinen, Hanna-Reetta; Kärkkäinen, Ulla; Karhukorpi, Jari; Heinonen, Seppo; Pekkanen, Juha

    2013-05-01

    To estimate the transmission of maternal vaginal microbiota to neonates during term delivery, focusing on Lactobacillus flora in relation to various obstetric clinical factors. Fifty consecutive pregnant healthy women with singleton term pregnancies and their newborn infants. Vertical transmission of Lactobacillus flora to the newborn during delivery was evaluated in 45 mother-newborn pairs. Lactobacillus-dominant mixed flora was detected in 90% (N = 45) of vaginal samples, but only in 28% (N = 14) of neonatal cultures (transmission rate 31%). All neonates with Lactobacillus-dominant mixed flora had findings similar to those in maternal cultures. Cocci-dominant flora was the most common finding in neonates. Administration of antibiotics to the mother during the intrapartum period before birth and duration of rupture of membranes (ROM), regardless of maternal antibiotic treatment, were associated significantly with a decreased transmission rate of Lactobacillus-dominant mixed flora to neonates. Maternal intrapartum antibiotics and prolonged expectant management after ROM were associated with decreased transmission rate of vaginal Lactobacillus flora to the neonate during birth. As early colonization of Lactobacillus flora may have a preventive role in the development of allergic diseases later, the significance of intrapartum prophylactic antibiotics needs to be highlighted in forthcoming studies, especially as regards immunological development of the offspring. ©2013 The Author(s)/Acta Paediatrica ©2013 Foundation Acta Paediatrica.

  19. Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula

    PubMed Central

    Haarman, Monique; Knol, Jan

    2006-01-01

    The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants. PMID:16597930

  20. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo.

    PubMed

    Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih

    2016-10-31

    The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  1. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    PubMed Central

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( < 1 % 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  2. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria.

    PubMed

    Abdelmaksoud, Abdallah A; Koparde, Vishal N; Sheth, Nihar U; Serrano, Myrna G; Glascock, Abigail L; Fettweis, Jennifer M; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2016-03-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.

  3. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    NASA Astrophysics Data System (ADS)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  4. Lactobacillus cerevisiae sp. nov., isolated from a spoiled brewery sample.

    PubMed

    Koob, Jennifer; Jacob, Fritz; Wenning, Mareike; Hutzler, Mathias

    2017-09-01

    A Gram-stain-positive, non-motile, rod-shaped bacterium, designated TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T), was isolated from spoiled beer. This bacterium did not form spores, and was catalase-negative and facultatively anaerobic. Its taxonomic position was determined in a polyphasic study. The 16S rRNA gene sequence similarity data showed that the strain belonged to the Lactobacillus genus with the nearest neighbours being Lactobacillus koreensis DCY50T (sequence similarity 99.5 %), Lactobacillus yonginensis THK-V8T (99.2 %) and Lactobacillus parabrevis LMG 11984T (98.7 %). Sequence comparisons of additional phylogenetic markers, pheS and rpoA, confirmed the 16S rRNA gene sequence tree topology. The maximum rpoA sequence similarity was 92.3 % with L. yonginensis THK-V8T. The DNA G+C content of the isolate was 50.0 mol%. The DNA-DNA relatedness showed that strain TUM BP 140423000-2250T could be clearly distinguished from L. koreensis DCY 50T (30.8±0.4 %) and L. yonginensis THK-V8T (23.6±5.9 %). The major fatty acids were C18 : 1ω9c, summed feature 7 (comprised of C19 : 0 cyclo ω10c/C19 : 1ω6c) and C16 : 0. Based on phenotypic and genotypic studies, the authors propose classifying the new isolate as a representative of a novel species of the genus Lactobacillus, Lactobacillus cerevisiae sp. nov. The type strain is deposited at the Research Centre Weihenstephan for Brewing and Food Quality as TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T).

  5. Genome shuffling of Lactobacillus plantarum C88 improves adhesion.

    PubMed

    Zhao, Yujuan; Duan, Cuicui; Gao, Lei; Yu, Xue; Niu, Chunhua; Li, Shengyu

    2017-01-01

    Genome shuffling is an important method for rapid improvement in microbial strains for desired phenotypes. In this study, ultraviolet irradiation and nitrosoguanidine were used as mutagens to enhance the adhesion of the wild-type Lactobacillus plantarum C88. Four strains with better property were screened after mutagenesis to develop a library of parent strains for three rounds of genome shuffling. Fusants F3-1, F3-2, F3-3, and F3-4 were screened as the improved strains. The in vivo and in vitro tests results indicated that the population after three rounds of genome shuffling exhibited improved adhesive property. Random Amplified Polymorphic DNA results showed significant differences between the parent strain and recombinant strains at DNA level. These results suggest that the adhesive property of L. plantarum C88 can be significantly improved by genome shuffling. Improvement in the adhesive property of bacterial cells by genome shuffling enhances the colonization of probiotic strains which further benefits to exist probiotic function.

  6. [Confocal laser scanning electron microscopy for assessment of vaginal Lactobacillus crispatus biofilm].

    PubMed

    Wu, Li-jie; Wang, Ben; Liao, Qin-ping; Zhang, Rui

    2015-12-18

    To investigate the female vaginal Lactobacillus crispatus biofilm by using confocal laser scanning microscopy (CLSM),thus revealing the formation of biofilm. The cover slide biofilm culture approach in vitro was employed for induction of the vaginal Lactobacillus crispatus biofilm formation. Following the culture for 2, 4, 8, 12, 16, 20, 24, 48, 72, 96 and 120 hours, the cover slide was removed for subsequent staining with the fluoresce in isothiocyanate-conjugated concanavalin A(FITC-ConA) and propidium (PI).This was followed by determination of the formation and characteristics of the vaginal Lactobacillus crispatus biofilm by using CLSM. The CLSM images of biofilm formation at different time points were captured, suggesting that the vaginal Lactobacillus crispatus adhesion occurred at h 4, which was in reversible attachment, then more and more Lactobacillus crispatus aggregated at h 8 to h 20, which was in irreversible attachment.Lactobacillus crispatus clustered at h 20, with early development of biofilm architecture.Then the biofilm with extracellular matrix around the bacteria was set up at h 24,with gradual matureation at h 24 to h 48.The biofilm dispersed at h 72. The biofilm density of cultivating for 20 hours was 42.7 × 10⁻³ ± 6.8 × 10⁻³ ,and for 24 hours increased to 102.5 × 10⁻³ ± 23.1 × 10⁻³, suggesting a significant difference, P<0.05. This meant that mature biofilm was formed at h 24. The vaginal Lactobacillus crispatus is able to form typical biofilm with distinct developmental phases and architecture characteristics.Mature biofilm is formed at h 24 to h 48, then the biofilm begins to disperse.

  7. In vitro adherence of Lactobacillus strains isolated from the vaginas of healthy Iranian women.

    PubMed

    Mousavi, Elham; Makvandi, Manoochehr; Teimoori, Ali; Ataei, Angila; Ghafari, Shokouh; Najafian, Mahin; Ourang, Ziba; Samarbaf-Zadeh, Alireza

    2016-12-01

    The lactobacilli are a part of the bacterial flora of the human vagina. Detection of normal Lactobacillus species in the vaginas of healthy women in different geographical locations, and evaluation of their specific properties, can aid in the selection of the best species for preventing sexually transmitted diseases in the future. This study was performed to isolate and identify the Lactobacillus species in the vaginas of healthy women and to evaluate the adherence of these lactobacilli to Vero and HeLa cell lines. The study included 100 women. Bacteria were isolated from healthy women and purified. Phenotypic and biochemical tests were performed to identify the lactobacilli. The Lactobacillus species were detected by molecular methods using polymerase chain reaction amplification of the full length of the 16S rDNA of the isolated bacteria. Several isolates of each species were then selected to study their adherence to Vero and HeLa cell lines. Among the 50 samples taken from healthy women meeting the inclusion criteria, Lactobacillus species were identified in 33 (66%) samples. Of these lactobacilli, 14 isolates were Lactobacillus crispatus, six (18.2%) were Lactobacillus gasseri, nine (27%) were Lactobacillus rhamnosus, and the rest were either Lactobacillus salivarius (6%) or Lactobacillus plantarum (6%). L. rhamnosus showed the greatest adhesion to the cells when compared to the other tested species. All the lactobacilli isolated in this study showed a smaller capacity for cell adherence when compared with control species. L. crispatus, L. rhamnosus, and L. gasseri were the dominant Lactobacillus species in the vaginas of healthy women in Iran. L. rhamnosus attached more readily to the cells than did the other species; therefore, this isolate is a good candidate for further studies on the potential health benefits and application of lactobacilli as probiotics. Copyright © 2016. Published by Elsevier Taiwan LLC.

  8. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model.

    PubMed

    Bhandari, Praveen; Prabha, Vijay

    2015-07-01

    Urogenital infections of bacterial origin have a high incidence among the female population at reproductive age, affecting the fertility. Strains of Escherichia coli can colonize the vagina and replace natural microflora. Lactobacillus the predominant vaginal microorganism in healthy women, maintains the acidic vaginal pH which inhibits pathogenic microorganisms. Studies on Lactobacillus have shown that these can inhibit E. coli growth and vaginal colonization. An alternative therapeutic approach to antimicrobial therapy is to re-establish Lactobacillus in this microbiome through probiotic administration to resurge fertility. Therefore, the aim of the present study was to determine the capability of L. plantarum 2621 strain with probiotic properties, to prevent the vaginal colonization of E. coli causing agglutination of sperms and to evaluate its profertility effect in a murine model. Screened mice were divided into five groups i.e. control group, E. coli group, Lactobacillus group, prophylactic and therapeutic groups. The control group was infused with 20 µl PBS, E.coli group was administered with 10 [6] cfu/20 µl E. coli, and probiotic group was administered with Lactobacillus (10 [8] cfu/20 µl) for 10 consecutive days. In prophylactic group, the vagina was colonized with 10 consecutive doses of Lactobacillus (10 [8] cfu/20 µl). After 24 h, it was followed by 10 day intravaginal infection with E. coli (10 [6] cfu/20 µl) whereas for the therapeutic group vagina was colonized with (10 [6] cfu/20 µl) E. coli for 10 consecutive days, followed by 10 day intravaginal administration with Lactobacillus after 24 h. Upon mating and completion of gestation period, control, probiotic and the therapeutic groups had litters in contrast to the prophylactic group and the group administered with E. coli. Results indicated that Lactobacillus intermitted colonization of pathogenic strains that resulted in reinforcement of natural microflora and resurge fertility.

  9. Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products.

    PubMed

    Chao, Shiou-Huei; Kudo, Yuko; Tsai, Ying-Chieh; Watanabe, Koichi

    2012-03-01

    Three Gram-stain-positive strains were isolated from fermented mustard and were rod-shaped, non-motile, asporogenous, facultatively anaerobic, homofermentative and did not exhibit catalase activity. Comparative analyses of 16S rRNA, pheS and rpoA gene sequences demonstrated that the novel strains were members of the genus Lactobacillus. On the basis of 16S rRNA gene sequence analysis, the type strains of Lactobacillus crustorum (98.7% similarity), Lactobacillus farciminis (98.9%) and Lactobacillus mindensis (97.9%) were the closest neighbours. However, DNA-DNA reassociation values with these strains were less than 50%. Phenotypic and genotypic features demonstrated that these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus futsaii sp. nov. is proposed; the type strain is YM 0097(T) (=JCM 17355(T)=BCRC 80278(T)).

  10. Peptidase activity in various species of dairy thermophilic lactobacilli.

    PubMed

    Gatti, M; Fornasari, M E; Lazzi, C; Mucchetti, G; Neviani, E

    2004-01-01

    The aim of the present work was to evaluate the enzymatic potential manifested by aminopeptidase activity of different thermophilic Lactobacillus biotypes and to measure the influence of cell growth phase on enzyme expression. The activities were evaluated by the hydrolysis of beta-naphthylamide substrates for both whole and mechanically disrupted cells of L. helveticus, L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis strains, collected from both the exponential and the stationary growth phase. In general, activities were higher for cells in the exponential rather than in the stationary phase and the disrupted cells showed higher activities than the whole cells. The highest activity expressed by all strains corresponded to X-prolyl-dipeptidyl aminopeptidase while a moderate activity was observed towards Arg-betaNa, Lys-betaNa and Leu-betaNa. The lowest activity was observed for Pro-betaNa. It may be inferred that the cell structure and the cell physiology are crucial to define the level of efficiency of expression for aminopeptidase activity. The two species may be characterized by a different enzymatic system that hydrolyses N-terminal leucine. The differences of peptidase activities in L. helveticus and L. delbrueckii species acquires an importance to comprehend their role in the biochemical events occurring in cheese ripening.

  11. Growth and morphology of thermophilic dairy starters in alginate beads.

    PubMed

    Lamboley, Laurence; St-Gelais, Daniel; Champagne, Claude P; Lamoureux, Maryse

    2003-06-01

    The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight. Some assays were carried out with free cells without pH control, in order to compare the ICT populations with those of classical starters. With Streptococcus thermophilus, overall populations in the fermentor were similar, but maximum bead population for (8.2 x 10(9) cfu/g beads) was 13 times higher than that obtained in a traditional starter (4.9 x 10(8) cfu/ml). For both Lactobacillus helveticus strains studied, immobilized-cell populations were about 3 x 10(9) cfu/g beads. Production of immobilized Lb. bulgaricus 210R strain was not possible, since no increases in viable counts occurred in beads. Therefore, production of concentrated cell suspension in alginate beads was more effective for S. thermophilus. Photomicrographs of cells in alginate beads demonstrated that, while the morphology of S. thermophilus remained unchanged during the ICT fermentation, immobilized cells of Lb. helveticus appeared wider. In addition, cells of Lb. bulgaricus were curved and elongated. These morphological changes would also impair the growth of immobilized lactobacilli.

  12. Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: kinetics of formation and matrix characterization.

    PubMed

    Leccese Terraf, María Cecilia; Juárez Tomás, María Silvina; Rault, Lucie; Le Loir, Yves; Even, Sergine; Nader-Macías, María Elena Fátima

    2016-09-01

    Adhesion and biofilm formation are strain properties that reportedly contribute to the permanence of lactobacilli in the human vagina. The kinetics of biofilm formation and the chemical nature of the biofilm matrix formed by Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 and Lactobacillus rhamnosus CRL 1332, vaginal beneficial strains, were evaluated in this work. Crystal violet-stained microplate assay and techniques of epifluorescence, electron and confocal microscopy were applied. The highest density and complexity of biofilms of both vaginal lactobacilli were observed at 72 h of incubation. Protease, proteinase K, α-chymotrypsin and trypsin treatments efficiently detached L. reuteri CRL 1324 biofilm that was also partially affected by α-amylase. However, L. rhamnosus CRL 1332 biofilm was slightly affected by protease, proteinase K and α-amylase. Confocal microscopy revealed greater amount of polysaccharides in L. rhamnosus CRL 1332 biofilm matrix than in L. reuteri CRL 1324 biofilm matrix. The results indicate that proteins are one of the main components of the L. reuteri CRL 1324 biofilm, while the biofilm matrix of L. rhamnosus CRL 1332 is composed of carbohydrates and proteins. The results obtained support the knowledge, understanding and characterization of two biofilm-forming vaginal Lactobacillus strains.

  13. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  14. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    PubMed Central

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  15. Use of probiotics to reduce faecal shedding of Shiga toxin-producing Escherichia coli in sheep.

    PubMed

    Rigobelo, E E C; Karapetkov, N; Maestá, S A; Avila, F A; McIntosh, D

    2015-03-01

    Shiga toxin-producing Escherichia coli (STEC) are zoonotic, foodborne pathogens of humans. Ruminants, including sheep, are the primary reservoirs of STEC and there is a need to develop intervention strategies to reduce the entry of STEC into the food chain. The initiation of the majority of bacterial, enteric infections involves colonisation of the gut mucosal surface by the pathogen. However, probiotic bacteria can serve to decrease the severity of infection via a number of mechanisms including competition for receptors and nutrients, and/or the synthesis of organic acids and bacteriocins that create an environment unfavourable for pathogen development. The aim of the current study was to determine whether the administration of a probiotic mixture to sheep experimentally infected with a non-O157 STEC strain, carrying stx1, stx2 and eae genes, was able to decrease faecal shedding of the pathogen. The probiotic mixture contained Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus lactis, Streptococcus thermophilus and Enterococcus faecium. The numbers of non-O157 STEC in faecal samples collected from sheep receiving daily doses of the probiotic mixture were significantly lower at the 3rd, 5th and 6th week post-inoculation when compared to the levels recorded in untreated animals. It was concluded that administration of the probiotic mixture reduced faecal shedding of non-O157 STEC in sheep, and holds potential as a pre-harvest intervention method to reduce transmission to humans.

  16. Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia).

    PubMed

    Chen, Yi-Sheng; Miyashita, Mika; Suzuki, Ken-ichiro; Sato, Hajime; Hsu, Jar-Sheng; Yanagida, Fujitoshi

    2010-08-01

    Twenty-one homofermentative lactic acid bacteria were isolated from fermented cummingcordia (pobuzihi), a traditional food in Taiwan. The isolates had identical 16S rRNA gene sequences that were distinct from those of other lactobacilli, and their closest neighbours in the 16S rRNA gene sequence phylogenetic tree were strains of Lactobacillus acidipiscis. Levels of DNA-DNA relatedness between representative pobuzihi isolates and strains of L. acidipiscis were 17% and below. Furthermore, the new isolates could be differentiated clearly from L. acidipiscis NBRC 102163T and NBRC 102164 in terms of acid production from L-arabinose, rhamnose, mannitol, lactose and 5-ketogluconate. It was concluded that the new isolates represent a single novel species of the genus Lactobacillus, for which the name Lactobacillus pobuzihii sp. nov. is proposed. The type strain is E100301T (=RIFY 6501T =NBRC 103219T =KCTC 13174T).

  17. Development and evaluation of a suppository formulation containing Lactobacillus and its application in vaginal diseases.

    PubMed

    Kale, Vinita V; Trivedi, Rashmi V; Wate, Sanjay P; Bhusari, Kishor P

    2005-11-01

    Lactobacillus has long been considered the protective flora in the vagina that displaces and kills vaginal pathogens. Lactic acid, H2O2, and antibacterial agents such as lactocin and bacitracin produced by Lactobacillus act against the vaginal pathogens. The first objective of this research was to develop a local application pharmaceutical formulation of a vaginal suppository containing lyophilized culture of Lactobacillus. The second objective was to establish its in vivo performance by developing in vitro methods of evaluation. Lyophilized culture of Lactobacillus sporogenes was selected for this study. Three formulations of the suppositories were prepared by the molding method. Formulations I, II, and III contained cocoa butter, glycerinated gelatin, and PEG 1000 base, respectively. The prepared suppositories were characterized for physical properties. Assembly to simulate the application site was designed. Methods to evaluate the viability, production of lactic acid, and H2O2 produced by the released Lactobacillus at the application site were developed and the antagonistic activity was demonstrated. From the physical characteristics of the suppository formulations, the glycerinated gelatin suppository (formulation II) containing lyophilized Lactobacillus was found to be satisfactory. The developed assembly was satisfactory in simulating the application site. The Lactobacillus released was viable and exhibited the production of lactic acid, hydrogen peroxide, and antagonistic activity against the uropathogen. The suppository formulation containing Lactobacillus and the methods of its evaluation were successfully developed in this research work and have several applications in the vaginal diseases of women.

  18. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    PubMed Central

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  19. Genome sequences of five Lactobacillus sp. isolates from traditional Turkish sourdough

    USDA-ARS?s Scientific Manuscript database

    A high level of variation in microflora can be observed in lactic acid bacteria (LAB) profiles of sourdoughs. Here, we present draft genome sequences of Lactobacillus reuteri E81, L. reuteri LR5A, L. rhamnosus LR2, L. plantarum PFC-311 and a novel Lactobacillus sp. PFC-70 isolated from traditional T...

  20. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits.

    PubMed

    Chen, Yi-Sheng; Wang, Li-Ting; Liao, Yu-Jou; Lan, Yi-Shan; Chang, Chi-Huan; Chang, Yu-Chung; Wu, Hui-Chung; Lo, Huei-Yin; Otoguro, Misa; Yanagida, Fujitoshi

    2017-12-01

    Two Gram-stain-positive, catalase-negative, rod-shaped, bacterial strains (313 T and 311) were isolated from banana fruits in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both strains corresponded to the type strain of Lactobacillus nantensis (99.19 %), followed by Lactobacillus crustorum (98.99 %), Lactobacillus heilongjiangensis (98.59 %) and Lactobacillus farciminis (98.52 %). Phylogenetic analysis based on the sequences of two housekeeping genes, pheS and rpoA, revealed that these two strains were well separated from the Lactobacillus reference strains. DNA-DNA relatedness values revealed genotype separation of the two strains from the above four species. The DNA G+C content of strain 313 T was 35.5 mol%. The strains were homofermentative and mainly produced l-lactic acid from glucose. The major cellular fatty acids of strain 313 T were 18 : 1ω6c and/or 18 : 1ω7c, 16 : 0, and 19 : 1ω6c and/or 19 : 0 cyclo ω10c. Based on their physiological and genotypic characteristics, the isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillusmusae sp. nov. is proposed. The type strain is 313 T =NBRC 112868 T =BCRC 81020 T ).

  1. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): Characterization, Manufacture, Mechanisms of Action, and Quality Control of a Specific Probiotic Combination for Primary Prevention of Clostridium difficile Infection.

    PubMed

    Auclair, Julie; Frappier, Martin; Millette, Mathieu

    2015-05-15

    A specific probiotic formulation composed of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+) has been marketed in North America since 1996. The strains and the commercial products have been evaluated for safety, identity, gastrointestinal survival, and stability throughout shelf life. The capacity of both the fermented beverages and the capsules to reduce incidences of antibiotic-associated diarrhea and Clostridium difficile infection (CDI) has been demonstrated in human clinical trials. Individual strains and the finished products have shown antimicrobial activity against C. difficile and toxin A/B neutralization capacity in vitro. The use of this specific probiotic formulation as part of a bundle of preventive measures to control CDI in healthcare settings is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Effect of lactobacillus in preventing post-antibiotic vulvovaginal candidiasis: a randomised controlled trial

    PubMed Central

    Pirotta, Marie; Gunn, Jane; Chondros, Patty; Grover, Sonia; O'Malley, Paula; Hurley, Susan; Garland, Suzanne

    2004-01-01

    Objective To test whether oral or vaginal lactobacillus can prevent vulvovaginitis after antibiotic treatment. Design Randomised, placebo controlled, double blind, factorial 2×2 trial. Setting Fifty general practices and 16 pharmacies in Melbourne, Australia. Participants Non-pregnant women aged 18-50 years who required a short course of oral antibiotics for a non-gynaecological infection: 278 were enrolled in the study, and results were available for 235. Interventions Lactobacillus preparations taken orally or vaginally, or both, from enrolment until four days after completion of their antibiotic course. Main outcome measures Participants' reports of symptoms of post-antibiotic vulvovaginitis, with microbiological evidence of candidiasis provided by a self obtained vaginal swab. Results Overall, 55/235 (23% (95% confidence interval 18% to 29%)) women developed post-antibiotic vulvovaginitis. Compared with placebo, the odds ratio for developing post-antibiotic vulvovaginitis with oral lactobacillus was 1.06 (95% confidence interval 0.58 to 1.94) and with vaginal lactobacillus 1.38 (0.75 to 2.54). Compliance with antibiotics and interventions was high. The trial was terminated after the second interim analysis because of lack of effect of the interventions. Given the data at this time, the chances of detecting a significant reduction in vulvovaginitis with oral or vaginal lactobacillus treatment were less than 0.032 and 0.0006 respectively if the trial proceeded to full enrolment. Conclusions The use of oral or vaginal forms of lactobacillus to prevent post-antibiotic vulvovaginitis is not supported by these results. Further research on this subject is unlikely to be fruitful, unless new understandings about the pathogenesis of post-antibiotic vulvovaginitis indicate a possible role for lactobacillus. PMID:15333452

  3. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    PubMed

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  4. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    PubMed

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106.

  5. Gut REG3γ-Associated Lactobacillus Induces Anti-inflammatory Macrophages to Maintain Adipose Tissue Homeostasis

    PubMed Central

    Huang, Yugang; Qi, HouBao; Zhang, Zhiqian; Wang, Enlin; Yun, Huan; Yan, Hui; Su, Xiaomin; Liu, Yingquan; Tang, Zenzen; Gao, Yunhuan; Shang, Wencong; Zhou, Jiang; Wang, Tianze; Che, Yongzhe; Zhang, Yuan; Yang, Rongcun

    2017-01-01

    Gut microbiota may not only affect composition of local immune cells but also affect systemic immune cells. However, it is not completely clear how gut microbiota modulate these immune systems. Here, we found that there exist expanded macrophage pools in huREG3γtgIEC mice. REG3γ-associated Lactobacillus, which is homology to Lactobacillus Taiwanese, could enlarge macrophage pools not only in the small intestinal lamina propria but also in the spleen and adipose tissues. STAT3-mediated signal(s) was a critical factor in the Lactobacillus-mediated anti-inflammatory macrophages. We also offered evidence for critical cellular links among REG3γ-associated Lactobacillus, tissue macrophages, and obesity diseases. Anti-inflammatory macrophages in the lamina propria, which are induced by REG3γ-associated Lactobacillus, may migrate into adipose tissues and are involved in resistance against high-fat diet-mediated obesity. Thus, REG3γ-associated Lactobacillus-induced anti-inflammatory macrophages in gut tissues may play a role in adipose tissue homeostasis. PMID:28928739

  6. Secondary compounds from exotic tree plantations change female mating preferences in the palmate newt (Lissotriton helveticus).

    PubMed

    Iglesias-Carrasco, M; Head, M L; Jennions, M D; Cabido, C

    2017-10-01

    Selection can favour phenotypic plasticity in mate choice in response to environmental factors that alter the costs and benefits of being choosy, or of choosing specific mates. Human-induced environmental change could alter sexual selection by affecting the costs of mate choice, or by impairing the ability of individuals to identify preferred mates. For example, variation in mate choice could be driven by environmentally induced differences in body condition (e.g. health) that change the cost of choosiness, or by environmental effects on the ability to detect or discriminate sexual signals. We teased apart these possibilities experimentally, by comparing female mate choice in the palmate newt Lissotriton helveticus between environments that mimic water from either native oak forests or exotic eucalypt plantations. In laboratory two-choice mate trials in clean water, females with prolonged exposure (21 days) to waterborne chemicals leached from eucalypt leaves did not preferentially associate with the male with a stronger immune response, but females exposed to water with chemicals from oak leaves did. In contrast, female choice was unaffected by the immediate presence or absence of eucalypt leachates during mate choice (using only females previously held in oak-treated water). The habitat-related change in female choice we observed is likely to be driven by effects of eucalypt leachates on female physiology, rather than immediate inhibition of pheromone transmission or blocking of pheromone reception. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations.

    PubMed

    Nielsen, Dennis S; Schillinger, Ulrich; Franz, Charles M A P; Bresciani, José; Amoa-Awua, Wisdom; Holzapfel, Wilhelm H; Jakobsen, Mogens

    2007-07-01

    Three Gram-positive, catalase-negative, motile, rod-shaped strains, designated L486, L489(T) and L499, were isolated from fermenting cocoa. These organisms produced DL-lactic acid from glucose without gas formation. Ammonia was not produced from arginine. Acid was produced from amygdalin, D-cellobiose, aesculin, D-fructose, D-glucose, D-galactose, D-mannitol, D-mannose, N-acetylglucosamine, L-rhamnose, sucrose, salicin and D-trehalose. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type. A 16S rRNA gene sequence analysis revealed that the isolates belong phylogenetically to the genus Lactobacillus and are closely related to Lactobacillus nagelii, Lactobacillus vini and Lactobacillus satsumensis. Low DNA-DNA reassociation values were obtained between the isolates and the phylogenetically closest neighbours. On the basis of the genetic and phenotypic results, the isolates are considered to represent a novel species, for which the name Lactobacillus ghanensis is proposed. The type strain is L489(T) (=DSM 18630(T)=CCUG 53453(T)).

  8. [Identification and phylogenetic analysis of one strain of Lactobacillus delbrueckii subsp. bulgaricus separated from yoghourt].

    PubMed

    Wang, Chuan; Zhang, Chaowu; Pei, Xiaofang; Liu, Hengchuan

    2007-11-01

    For being further applied and studied, one strain of Lactobacillus delbrueckii subsp. bulgaricus (wch9901) separated from yoghourt which had been identified by phenotype characteristic analysis was identified by 16S rDNA and phylogenetic analyzed. The 16S rDNA of wch9901 was amplified with the genomic DNA of wch9901 as template, and the conservative sequences of the 16S rDNA as primers. Inserted 16S rDNA amplified into clonal vector pGEM-T under the function of T4 DNA ligase to construct recombined plasmid pGEM-wch9901 16S rDNA. The recombined plasmid was identified by restriction enzyme digestion, and the eligible plasmid was presented to sequencing company for DNA sequencing. Nucleic acid sequence was blast in GenBank and phylogenetic tree was constructed using neighbor-joining method of distance methods by Mega3.1 soft. Results of blastn showed that the homology of 16S rDNA of wch9901 with the 16S rDNA of Lactobacillus delbrueckii subsp. bulgaricus strains was higher than 96%. On the phylogenetic tree, wch9901 formed a separate branch and located between Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch and another evolution branch which was composed of Lactobacillus delbrueckii subsp. bulgaricus DL2 evolution cluster and Lactobacillus delbrueckii subsp. bulgaricus JSQ evolution cluster. The distance between wch9901 evolution branch and Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch was the closest. wch9901 belonged to Lactobacillus delbrueckii subsp. bulgaricus. wch9901 showed the closest evolution relationship to Lactobacillus delbrueckii subsp. bulgaricus LGM2.

  9. Effects of feeding lactobacillus GG on lethal irradiation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, M.Y.; Chang, T.W.; Gorbach, S.L.

    1987-05-01

    Mice exposed to 1400 rads of total body irradiation experienced 80%-100% mortality in 2 wk. Bacteremia was demonstrated in all dead animals. Feeding Lactobacillus GG strain reduced Pseudomonas bacteremia and prolonged survival time in animals colonized with this organism. In animals not colonized with Pseudomonas, feeding Lactobacillus GG also produced some reduction in early deaths, and there was less Gram-negative bacteremia in these animals compared with controls.

  10. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  11. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  12. Draft Genome Sequences of Lactobacillus equicursoris CIP 110162T and Lactobacillus sp. Strain CRBIP 24.137, Isolated from Thoroughbred Racehorse Feces and Human Urine, Respectively.

    PubMed

    Cousin, Sylvie; Loux, Valentin; Ma, Laurence; Creno, Sophie; Clermont, Dominique; Bizet, Chantal; Bouchier, Christiane

    2013-08-22

    We report the draft genome sequences of strain Lactobacillus equicursoris CIP 110162(T), isolated from racehorse breed feces, and Lactobacillus sp. strain CRBIP 24.137, isolated from human urine; the two strains are closely related. The total lengths of the 116 and 62 scaffolds are about 2.157 and 2.358 Mb, with G+C contents of 46 and 45% and 2,279 and 2,342 coding sequences (CDSs), respectively.

  13. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals.

    PubMed

    Savijoki, K; Kahala, M; Palva, A

    1997-02-28

    A secretion cassette, based on the expression and secretion signals of a S-layer protein (SlpA) from Lactobacillus brevis, was constructed. E. coli beta-lactamase (Bla) was used as the reporter protein to determine the functionality of the S-layer signals for heterologous expression and secretion in Lactococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus gasseri and Lactobacillus casei using a low-copy-number plasmid derived from pGK12. In all hosts tested, the bla gene was expressed under the slpA signals and all Bla activity was secreted to the culture medium. The Lb. brevis S-layer promoters were very efficiently recognized in L. lactis, Lb. brevis and Lb. plantarum, whereas in Lb. gasseri the slpA promoter region appeared to be recognized at a lower level and in Lb. casei the level of transcripts was below the detection limit. The production of Bla was mainly restricted to the exponential phase of growth. The highest yield of Bla was obtained with L. lactis and Lb. brevis. Without pH control, substantial degradation of Bla occurred during prolonged cultivations with all lactic acid bacteria (LAB) tested. When growing L. lactis and Lb. brevis under pH control, the Bla activity could be stabilized also at the stationary phase. L. lactis produced up to 80 mg/l of Bla which to our knowledge represents the highest amount of a heterologous protein secreted by LAB so far. The short production phase implied a very high rate of secretion with a calculated value of 5 x 10(5) Bla molecules/cell per h. Such a high rate was also observed with Lb. plantarum, whereas in Lb. brevis the competition between the wild type slpA gene and the secretion construct probably lowered the rate of Bla production. The results obtained indicate wide applicability of the Lb. brevis slpA signals for efficient protein production and secretion in LAB.

  14. Probiotic properties of native Lactobacillus spp. strains for dairy calves.

    PubMed

    Fernández, S; Fraga, M; Silveyra, E; Trombert, A N; Rabaza, A; Pla, M; Zunino, P

    2018-04-10

    The use of native microorganisms with probiotic capacity is an alternative tool for the treatment and prevention of several diseases that affect animals, such as neonatal calf diarrhoea. The selection of probiotic strains within a collection is based on different in vitro and in vivo assays, which predict their potential. The aim of this study was to characterise a group of native Lactobacillus spp. strains isolated from faeces of healthy calves using an in vitro approach and to assess their ability to colonise the gastrointestinal tract (GIT) of calves. Native Lactobacillus spp. strains were evaluated on their capacity to survive low pH conditions and bile salts presence, biofilm formation and adhesion to both mucus and Caco-2 cells. Based on the in vitro characterisation, four strains (Lactobacillus johnsonii TP1.1, Lactobacillus reuteri TP1.3B, L. johnsonii TP1.6 and Lactobacillus amylovorus TP8.7) were selected to evaluate their capacity to colonise and persist in the GIT of calves. The assessment of enteric persistence involved an in vivo assay with oral administration of probiotics and quantification in faeces of the administered bacterial species with real-time quantitative PCR (qPCR). The study was conducted using 15 calves (1-month-old) which were divided into five groups of three animals, four of which were treated with four different selected strains and one was the control group. Strains TP1.3B and TP1.6 managed to persist in treated animals until ten days after the end of the administration period, indicating that they could be promising candidates for the design of probiotics for calves.

  15. Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri

    PubMed Central

    TANIZAWA, Yasuhiro; KOBAYASHI, Hisami; KAMINUMA, Eli; SAKAMOTO, Mitsuo; OHKUMA, Moriya; NAKAMURA, Yasukazu; ARITA, Masanori; TOHNO, Masanori

    2017-01-01

    Whole-genome sequencing was performed for Lactobacillus parakefiri JCM 8573T to confirm its hitherto controversial taxonomic position. Here, we report its first reliable reference genome. Genome-wide metrics, such as average nucleotide identity and digital DNA-DNA hybridization, and phylogenomic analysis based on multiple genes supported its taxonomic status as a distinct species in the genus Lactobacillus. The availability of a reliable genome sequence will aid future investigations on the industrial applications of L. parakefiri in functional foods such as kefir grains. PMID:28748134

  16. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Therapeutic effects of Lactobacillus in treating irritable bowel syndrome: a meta-analysis.

    PubMed

    Tiequn, Bian; Guanqun, Chao; Shuo, Zhang

    2015-01-01

    As the lack of reliable treatment for irritable bowel syndrome (IBS) prompts interest in the development of new therapies, we aimed to systematically evaluate the effect of Lactobacillus in treating this disease. We searched MEDLIINE, PubMed, Scopus, Web of Science and the Cochrane Central Register of Controlled Trials for the period from 1966 to August 2013 for double-blind, placebo-controlled trials investigating the efficacy of Lactobacillus treatment in the management of IBS. The studies were screened for inclusion based on randomization, controls and reported measurable outcomes. We used the Jadad score to assess the quality of the articles. The STATA 11.0 and Revman 5.0 software packages were used for the meta-analysis. The STATA 11.0 software program was also used to assess indicators of publication bias according to Begg's and Egger's tests. Six randomized, placebo-controlled clinical trials met the criteria and were included in the meta-analysis. The Jadad score of the articles was >3, and three articles were of high quality. We analyzed the heterogeneity of the studies and found no heterogeneity in the meta-analysis. In the forest plot, the diamond was on the right side of the vertical line and did not intersect with the line. The pooled relative risk for clinical improvement with Lactobacillus treatment was 7.69 (95% confidence interval: 2.33-25.43, p=0.0008). For adults, the pooled relative risk for clinical improvement with Lactobacillus treatment was 17.62 (95% confidence interval: 5.12-60.65, p<0.00001). For children, the pooled relative risk for clinical improvement with Lactobacillus treatment was 3.71 (95% confidence interval:1.05-13.11, p=0.04). Using the STATA 10.0 and Revman 5.0 software programs, we confirmed that Lactobacillus exhibited significant efficacy in treating IBS. Compared with the placebo, Lactobacillus treatment was found to be associated with a significantly higher rate of treatment responders in the overall population with IBS

  18. Viability and Stress Response of Putative Probiotic Lactobacillus plantarum Strains in Honey Environment.

    PubMed

    Landry, Bemmo Kamdem Ulrich; François, Zambou Ngoufack; Wang, Rui-Yan; Taicheng, Zhu; Li, Yin

    2017-12-01

    Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04 × 10 6  CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86 × 10 4  CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~ 50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.

  19. The use of Lactobacillus GG in irritable bowel syndrome in children: a double-blind randomized control trial.

    PubMed

    Bauserman, Melissa; Bausserman, Melissa; Michail, Sonia

    2005-08-01

    To determine whether oral administration of the probiotic Lactobacillus GG under randomized, double-blinded, placebo-controlled conditions would improve symptoms of irritable bowel syndrome (IBS) in children. Fifty children fulfilling the Rome II criteria for IBS were given Lactobacillus GG or placebo for 6 weeks. Response to therapy was recorded and collected on a weekly basis using the Gastrointestinal Symptom Rating Scale (GSRS). Lactobacillus GG was not superior to placebo in relieving abdominal pain (40.0% response rate in the placebo group vs 44.0% in the Lactobacillus GG group; P=.774). There was no difference in the other gastrointestinal symptoms, except for a lower incidence of perceived abdominal distention (P=.02 favoring Lactobacillus GG). Lactobacillus GG was not superior to placebo in the treatment of abdominal pain in children with IBS but may help relieve such symptoms as perceived abdominal distention.

  20. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina.

    PubMed

    France, Michael T; Mendes-Soares, Helena; Forney, Larry J

    2016-12-15

    Lactobacillus crispatus and Lactobacillus iners are common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from an L. iners-dominated community to one dominated by L. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes of L. iners and L. crispatus to gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species. The microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by either Lactobacillus iners or Lactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes of L. iners and L. crispatus differ in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal microbiome and

  1. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina

    PubMed Central

    France, Michael T.; Mendes-Soares, Helena

    2016-01-01

    ABSTRACT Lactobacillus crispatus and Lactobacillus iners are common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from an L. iners-dominated community to one dominated by L. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes of L. iners and L. crispatus to gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species. IMPORTANCE The microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by either Lactobacillus iners or Lactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes of L. iners and L. crispatus differ in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal

  2. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F.

    PubMed

    Tyler, C A; Kopit, L; Doyle, C; Yu, A O; Hugenholtz, J; Marco, M L

    2016-05-01

    This study examined the fermentative growth and polyol production of Lactobacillus florum and other plant-associated lactic acid bacteria (LAB). Sugar consumption and end-product production were measured for Lact. florum 2F in the presence of fructose, glucose and both sugars combined. The genome of Lact. florum was examined for genes required for mannitol and erythritol biosynthesis. The capacity for other plant-associated LAB to synthesize polyols was also assessed. Lactobacillus florum exhibited higher growth rates and cell yields in the presence of both fructose and glucose. Lactobacillus florum 2F produced lactate, acetate and ethanol as well as erythritol and mannitol. Lactobacillus florum 2F synthesized mannitol during growth on fructose and erythritol during growth on glucose. Gene and protein homology searches identified a mannitol dehydrogenase in the Lact. florum 2F genome but not the genes responsible for erythritol biosynthesis. Lastly, we found that numerous other heterofermentative LAB species synthesize erythritol and/or mannitol. Lactobacillus florum is a recently identified, plant-associated, fructophilic LAB species. Our results show that Lact. florum growth rates and heterofermentation end-products differ depending on the sugar substrates present and growth yields can be improved when combinations of sugars are provided. Lactobacillus florum 2F produces erythritol and mannitol, two polyols that are relevant to foods and potentially also in plant environments. The capacity for polyol biosynthesis appears to be common among plant-associated, LAB species. © 2016 The Society for Applied Microbiology.

  3. Characterization and adsorption of Lactobacillus virulent phage P1.

    PubMed

    Chen, X; Xi, Y; Zhang, H; Wang, Z; Fan, M; Liu, Y; Wu, W

    2016-09-01

    Bacteriophage infection of lactic acid bacteria is considered an important problem worldwide in the food fermentation industry, as it may produce low quality or unsafe foods, cause fermentation failure, and result in economic losses. To increase current knowledge on the properties of Lactobacillus virulent phages, we evaluated the effect of divalent cations, temperature, pH, and chloramphenicol on the adsorption ability of Lactobacillus virulent phage P1. Phage P1 was isolated from the abnormal fermentation liquid of Lactobacillus plantarum IMAU10120. The results showed that this phage belonged to the Siphoviridae family. The latent period of this phage was 45min, and the burst time was 90min. Burst size was 132.88±2.37 phage counts expressed per milliliter per infective center. This phage showed good tolerance at different temperatures, but incubation at 50°C only affected its adsorption. Adsorption rate reached a maximum value between 30 and 42°C. A high adsorption value of phage infectivity was obtained from pH 6 to 8. Moreover, calcium ions promoted and increased the adsorption capacity of phage P1, but magnesium ions had negative effects. Chloramphenicol had no effect on phage adsorption. This study increased current knowledge on the characterization and biological aspects of Lactobacillus virulent phages, and may provide some basic information that can be used to design successful antiphage strategies in the food industry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures.

    PubMed

    Elkhtab, Ebrahim; El-Alfy, Mohamed; Shenana, Mohamed; Mohamed, Abdelaty; Yousef, Ahmed E

    2017-12-01

    Compounds with the ability to inhibit angiotensin-converting enzyme (ACE) are used medically to treat human hypertension. The presence of such compounds naturally in food is potentially useful for treating the disease state. The goal of this study was to screen lactic acid bacteria, including species commonly used as dairy starter cultures, for the ability to produce new potent ACE-inhibiting peptides during milk fermentation. Strains of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus, Lactobacillus paracasei, Lactococcus lactis, Leuconostoc mesenteroides, and Pediococcus acidilactici were tested in this study. Additionally, a symbiotic consortium of yeast and bacteria, used commercially to produce kombucha tea, was tested. Commercially sterile milk was inoculated with lactic acid bacteria strains and kombucha culture and incubated at 37°C for up to 72 h, and the liberation of ACE-inhibiting compounds during fermentation was monitored. Fermented milk was centrifuged and the supernatant (crude extract) was subjected to ultrafiltration using 3- and 10-kDa cut-off filters. Crude and ultrafiltered extracts were tested for ACE-inhibitory activity. The 10-kDa filtrate resulting from L. casei ATCC 7469 and kombucha culture fermentations (72 h) showed the highest ACE-inhibitory activity. Two-step purification of these filtrates was done using HPLC equipped with a reverse-phase column. Analysis of HPLC-purified fractions by liquid chromatography-mass spectrometry/mass spectrometry identified several new peptides with potent ACE-inhibitory activities. Some of these peptides were synthesized, and their ACE-inhibitory activities were confirmed. Use of organisms producing these unique peptides in food fermentations could contribute positively to human health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. High-level expression of recombinant beta-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a Sakacin P-based expression system.

    PubMed

    Halbmayr, Elisabeth; Mathiesen, Geir; Nguyen, Thu-Ha; Maischberger, Thomas; Peterbauer, Clemens K; Eijsink, Vincent G H; Haltrich, Dietmar

    2008-06-25

    This work presents the cloning and expression of the genes encoding heterodimeric beta-galactosidases from Lactobacillus reuteri L103, Lactobacillus acidophilus R22, Lactobacillus plantarum WCFS1, and Lactobacillus sakei Lb790. These enzymes consist of two subunits of approximately 73 and 35 kDa, which are encoded by two overlapping genes, lacL and lacM, respectively. We have cloned these genes into the lactobacillal expression vectors pSIP403 and pSIP409, which are based on the sakacin P operon of L. sakei ( Sørvig et al. Microbiology 2005, 151, 2439- 2449 ), and expressed them in the host strains L. plantarum WCFS1 and L. sakei Lb790. Results varied considerably, ranging from 2.23 to 61.1 U/mg of beta-galactosidase activity, depending on the origin of the lacLM genes, the host strain, and the expression vector used. Highest expression levels were obtained in a laboratory cultivation of L. plantarum WCFS1 harboring the plasmid pEH3R containing the lacLM gene from L. reuteri L103. These cultivations yielded approximately 23 000 U of beta-galactosidase activity per liter, corresponding to the formation of roughly 100 mg of recombinant protein per liter of fermentation medium, and beta-galactosidase levels amounted to 55% of the total intracellular protein of the host organism. To further verify the suitability of this expression system, recombinant beta-galactosidase from L. reuteri was purified to apparent homogeneity. The properties of the purified enzyme were essentially identical with the properties of purified native beta-galactosidase from L. reuteri L103. The presented results lead the way to efficient overproduction of beta-galactosidase in a food-grade expression system, which is of high interest for applications in food industry.

  6. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods

    PubMed Central

    2010-01-01

    Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602

  7. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods.

    PubMed

    Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J

    2010-09-17

    Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.

  9. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  10. Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus

    PubMed Central

    De Angelis, Maria; Bottacini, Francesca; Fosso, Bruno; Kelleher, Philip; Calasso, Maria; Di Cagno, Raffaella; Ventura, Marco; Picardi, Ernesto; van Sinderen, Douwe; Gobbetti, Marco

    2014-01-01

    Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches. PMID:25264826

  11. Bile tolerance and its effect on antibiotic susceptibility of probiotic Lactobacillus candidates.

    PubMed

    Hyacinta, Májeková; Hana, Kiňová Sepová; Andrea, Bilková; Barbora, Čisárová

    2015-05-01

    Before use in practice, it is necessary to precisely identify and characterize a new probiotic candidate. Eight animal lactobacilli and collection strain Lactobacillus reuteri CCM 3625 were studied from the point of saccharide fermentation profiles, bile salt resistance, antibiogram profiles, and influence of bile on sensitivity to antibiotics. Studied lactobacilli differed in their sugar fermentation ability determined by API 50CHL and their identification based on these profiles did not correspond with molecular-biological one in most cases. Survival of strains Lactobacillus murinus C and L. reuteri KO4b was not affected by presence of bile. The resistance of genus Lactobacillus to vancomycin and quinolones (ofloxacin, ciprofloxacin) was confirmed in all strains tested. This study provides the new information about oxgall (0.5 and 1 %) effect on the lactobacilli antibiotic susceptibility. Antibiotic profiles were not noticeably affected, and both bile concentrations tested had comparable impact on the lactobacilli antibiotic sensitivity. Interesting change was noticed in L. murinus C, where the resistance to cephalosporins was reverted to susceptibility. Similarly, susceptibility of L. reuteri E to ceftazidime arose after incubation in both concentration of bile. After influence of 1 % bile, Lactobacillus mucosae D lost its resistance to gentamicin. On the base of gained outcomes, the best probiotic properties manifested L. reuteri KO4b, Lactobacillus plantarum KG4, and L. reuteri E due to their survival in the presence of bile.

  12. Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Pang, Xiaoyang; Liu, Cuiping; Lyu, Pengcheng; Zhang, Shuwen; Liu, Lu; Lu, Jing; Ma, Changlu; Lv, Jiaping

    2016-12-14

    Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.

  13. Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533

    PubMed Central

    Kazou, Maria; Alexandraki, Voula; Pot, Bruno; Tsakalidou, Effie

    2017-01-01

    ABSTRACT Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese. PMID:28126948

  14. Lactobacillus plantarum culture supernatants improve intestinal tissue exposed to deoxynivalenol.

    PubMed

    Maidana, L G; Gerez, J; Pinho, F; Garcia, S; Bracarense, A P F L

    2017-10-02

    In the present study, histological, morphometrical and ultrastructural analysis were performed to investigate intestinal mucosa changes in piglets exposed to deoxynivalenol alone or associated with two strains of Lactobacillus plantarum and the respective culture supernatants. Jejunal explants were incubated for 4h in culture medium with a) only culture medium (DMEM, control group), b) deoxynivalenol (DON, 10μM), c) heat-inactivated Lactobacillus plantarum strain1 - LP1 (1.1×10 8 CFU/ml) plus DON, d) heat-inactivated Lactobacillus plantarum strain2-LP2 (2.0×10 9 CFU/ml) plus DON, e) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON, and f) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON. Explants exposed to DON and DON plus LP1 and LP2 showed a significant increase in histological changes (mainly villi atrophy and apical necrosis) and a significant decrease in villi height when compared to unexposed explants. However, explants treated with CS1+DON and CS2+DON remained similar to the control group both in histological and morphometrical aspects. DON also induced a significant decrease in goblet cell density compared to control whereas CS1+DON treatment induced an increase in the number of goblet cells in comparison to DON explants. In addition, ultrastructural assessment showed control, CS1+DON and CS2+DON explants with well delineated finger shape villi, meanwhile DON-treated, LP1+DON and LP2+DON explants showed a severe villi atrophy with leukocytes exudation on the intestinal surface. Taken together, our results indicate that the culture supernatant treatment reduced the toxic effects induced by DON on intestinal tissue and may contribute as an alternative strategy to reduce mycotoxin toxicity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces.

    PubMed

    Osawa, Ro; Fujisawa, Tomohiko; Pukall, Rüdiger

    2006-07-01

    A Gram-positive, rod-shaped, non-endospore-forming bacterium, strain ASB1(T), able to degrade tannin, was isolated from faeces of the Japanese large wood mouse, Apodemus speciosus. Comparative analysis of the 16S rRNA gene sequence revealed that the strain could be assigned as a member of the genus Lactobacillus. The nearest phylogenetic neighbours were determined as Lactobacillus animalis DSM 20602(T) (98.9 % 16S rRNA gene sequence similarity) and Lactobacillus murinus ASF 361 (98.9 %). Subsequent polyphasic analysis, including automated ribotyping and DNA-DNA hybridization experiments, confirmed that the isolate represents a novel species, for which the name Lactobacillus apodemi sp. nov. is proposed. The DNA G+C content of the novel strain is 38.5 mol%. The cell-wall peptidoglycan is of type A4alpha L-lys-D-asp. The type strain is ASB1(T) (=DSM 16634(T)=CIP 108913(T)).

  16. Assessment of phenotypic and genotypic antibiotic susceptibility of vaginal Lactobacillus sp.

    PubMed

    Štšepetova, J; Taelma, H; Smidt, I; Hütt, P; Lapp, E; Aotäht, E; Mändar, R

    2017-08-01

    To assess antibiotic susceptibility of vaginal lactobacilli strains and provide the data required for assessing the potential of antibiotic resistance risk of new strains selected as probiotic. Potential probiotic vaginal lactobacilli used in the study included 31 vaginal strains of Lactobacillus crispatus (n = 27), Lactobacillus gasseri (n = 3) and Lactobacillus jensenii (n = 1) obtained from the collection of Competence Centre on Health Technologies. Two commercial probiotic strains were used as controls (Lactobacillus rhamnosus GR-1 and Lactobacillus fermentum RC-14). The phenotypic and genotypic antibiotic resistances of the strains were determined by E-test and PCR methods. The location (chromosomal DNA or plasmid) of antibiotic resistance genes was also detected. All lactobacilli strains expressed high level of resistance to kanamycin, metronidazole, norfloxacin and trimethoprim/sulphamethoxazole. Some of the strains also expressed resistance to other antibiotics (chloramphenicol, vancomycin) indicating acquired resistance. I class integrons were found in 20% (6/31) of the strains. The RPP (ribosomal protection protein) gene was found to be positive in 30% (9/31) of the strains. Only one L. jensenii strain was determined with tet(M) gene. The tet(K) gene was positive in 26·7% (8/31) and erm(B) gene in 43·3% (13/31) of strains. Three RPP and both four tet(K) and erm(B) genes were located in plasmids. High antibiotic resistance to clinically important antibiotics was demonstrated, including metronidazole, sulphonamides, aminoglycoside and quinolones. In addition, acquired tetracycline and erythromycin resistance genes were detected in either plasmid or chromosomal DNA of certain isolates, in some of the cases for the first time in the literature. It appears that antibiotic resistance genes erm(B) and tet(K) are widely spread in vaginal lactobacilli. This study provides new data about antimicrobial resistance and genotypic diversity of vaginal

  17. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Physiological Changes of Surface Membrane in Lactobacillus with Prebiotics.

    PubMed

    Pan, Mingfang; Kumaree, Kishore K; Shah, Nagendra P

    2017-03-01

    Synbiotics are always considered to be beneficial in healthy manipulation of gut environment; however, the purpose of this research was to investigate the dominance of synbiotic over the individual potential of probiotics and prebiotics. Four different types of prebiotics, fructo-oligosaccharides, raffinose, inulin, and cellobiose, were evaluated based on their varying degree of polymerization, combined each with 2 different Lactobacilli strains, including Lactobacillus paracasei 276 and Lactobacillus plantarum WCFS1. The effects of synbiotics combination on the surface structure were evaluated by analyzing auto-aggregation, membrane hydrophobicity, and adhesion to Caco-2 cells. Our results showed that both Lactobacilli exhibited significantly greater degree of attachment to Caco-2 cells (23.31% and 16.85%, respectively) when using cellobiose as a substrate than with other prebiotics (P < 0.05). Intestinal adhesion ability was in correlation with the percent of auto-aggregation, both Lactobacillus exhibited higher percent of auto-aggregation in cellobiose compared to other prebiotics. These behavioral changes in terms of attachment and auto-aggregation were further supported with the changes noticed from infrared spectra (FT-IR). © 2017 Institute of Food Technologists®.

  20. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988.

    PubMed

    Vancanneyt, M; Mengaud, J; Cleenwerck, I; Vanhonacker, K; Hoste, B; Dawyndt, P; Degivry, M C; Ringuet, D; Janssens, D; Swings, J

    2004-03-01

    Fourteen homofermentative lactic acid bacteria that were isolated from kefir grains and kefir fermented milks were assigned to either Lactobacillus kefiranofaciens or Lactobacillus kefirgranum, based on their characteristic morphotypes, phenotypic features and SDS-PAGE profiles of whole-cell proteins. Further genotypic analyses on representative strains from both taxa demonstrated that L. kefiranofaciens and L. kefirgranum share 100 % 16S rDNA sequence similarity and belong phylogenetically to the Lactobacillus acidophilus species group. DNA-DNA binding values of >79 % and analogous DNA G+C contents of 37-38 mol% showed that the strains studied belonged to one species: L. kefirgranum is a later synonym of L. kefiranofaciens. An emended description is proposed for L. kefiranofaciens. Due to the specific morphological and biochemical characteristics of these taxa in kefir grain formation, it is proposed that L. kefirgranum should be reclassified as L. kefiranofaciens subsp. kefirgranum subsp. nov.

  1. Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus.

    PubMed

    Kang, Mi-Sun; Lim, Hae-Soon; Oh, Jong-Suk; Lim, You-Jin; Wuertz-Kozak, Karin; Harro, Janette M; Shirtliff, Mark E; Achermann, Yvonne

    2017-03-01

    The increasing prevalence of methicillin-resistant Staphylococcus aureus has become a major public health threat. While lactobacilli were recently found useful in combating various pathogens, limited data exist on their therapeutic potential for S. aureus infections. The aim of this study was to determine whether Lactobacillus salivarius was able to produce bactericidal activities against S. aureus and to determine whether the inhibition was due to a generalized reduction in pH or due to secreted Lactobacillus product(s). We found an 8.6-log10 reduction of planktonic and a 6.3-log10 reduction of biofilm S. aureus. In contrast, the previously described anti-staphylococcal effects of L. fermentum only caused a 4.0-log10 reduction in planktonic S. aureus cells, with no effect on biofilm S. aureus cells. Killing of S. aureus was partially pH dependent, but independent of nutrient depletion. Cell-free supernatant that was pH neutralized and heat inactivated or proteinase K treated had significantly reduced killing of L. salivarius than with pH-neutralized supernatant alone. Proteomic analysis of the L. salivarius secretome identified a total of five secreted proteins including a LysM-containing peptidoglycan binding protein and a protein peptidase M23B. These proteins may represent potential novel anti-staphylococcal agents that could be effective against S. aureus biofilms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  3. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R and Lactobacillus rhamnosus CLR2 improve quality-of-life and IBS symptoms: a double-blind, randomised, placebo-controlled study.

    PubMed

    Preston, K; Krumian, R; Hattner, J; de Montigny, D; Stewart, M; Gaddam, S

    2018-06-11

    A combination of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R and Lactobacillus rhamnosus CLR2 was compared to placebo for relief of symptoms of irritable bowel syndrome (IBS). A total of 113 subjects at 3 clinical sites were randomised in a 2:1 ratio and followed for 12 weeks. Subjects ingested either 2 capsules of active study product, containing 50×10 9 cfu of live organisms, or 2 placebo capsules daily. Endpoints included improvement in abdominal pain, days of pain, distention, stool consistency and frequency, quality of life (QOL), and adequate relief (AR) of IBS symptoms. IBS subtypes constipation (IBS-C), diarrhoea (IBS-D), and mixed (IBS-M) were evaluated separately; the effect of gender was also examined. For all efficacy endpoints improvement of 30% or more vs placebo was considered clinically significant. With the exception of pain intensity and AR, the endpoints demonstrated a therapeutic advantage of active over placebo for IBS symptoms in at least some subject subgroups. The IBS-D and female subgroups showed the largest and most consistent effects. Stool frequency and consistency were evaluated in the IBS-C and IBS-D subgroups, and improvement of active vs placebo was noted in both. QOL improvement was seen overall and in specific domains. Adverse events (AEs) were limited to 7 subjects; all were of mild or moderate intensity except one, severe cramping. Four AEs in the same subject in the placebo group were judged to be related to study product; these resolved by the end of study. There were no serious AEs.

  4. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Ye, Fei; Liu, Cunxia; Liu, Hongfeng; Wang, Maopeng; Li, Yi; Sun, Yang; Li, Xiao; Tian, Mingyao; Jin, Ningyi

    2014-12-01

    This study aims to evaluate the functional and probiotic characteristics of eight indigenous Lactobacillus strains in vitro. The selected lactobacilli include strains of Lactobacillus casei subsp. casei, Lactobacillus salivarius subsp. salicinius, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus rhamnosus. All strains tolerated both pH 2 for 3 h and 1% bile salt for 24 h. The strains CICC 23174 and CGMCC 1.557 were the most adhesive strains producing the highest quantity of EPS. Although a wide variation in the ability of the eight strains to deplete cholesterol and nitrite, antagonize pathogens, scavenge free radical, and stimulate innate immune response were observed, the strains CICC 23174 and CGMCC 1.557 showed the widest range of these useful traits. Taken together, the strains CICC 23174 and CGMCC 1.557 exhibited the best probiotic properties with the potential for use in the production of probiotic fermented foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Identification and Characterization of the Novel LysM Domain-Containing Surface Protein Sep from Lactobacillus fermentum BR11 and Its Use as a Peptide Fusion Partner in Lactobacillus and Lactococcus

    PubMed Central

    Turner, Mark S.; Hafner, Louise M.; Walsh, Terry; Giffard, Philip M.

    2004-01-01

    Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria. PMID:15184172

  6. Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533.

    PubMed

    Kazou, Maria; Alexandraki, Voula; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-01-26

    Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese. Copyright © 2017 Kazou et al.

  7. Characterization of lactic acid bacteria isolated from artisanal Travnik young cheeses, sweet creams and sweet kajmaks over four seasons.

    PubMed

    Terzic-Vidojevic, Amarela; Mihajlovic, Sanja; Uzelac, Gordana; Veljovic, Katarina; Tolinacki, Maja; Nikolic, Milica; Topisirovic, Ljubisa; Kojic, Milan

    2014-05-01

    The aim of this study was to investigate the composition of lactic acid bacteria (LAB) in autochthonous young cheeses, sweet creams and sweet kajmaks produced in the Vlašić mountain region of central Bosnia and Herzegovina near the town of Travnik over a four season period. These three products were made from cow's milk by a traditional method without the addition of a starter culture. Preliminary characterization with phenotype-based assays and identification using rep-PCR with a (GTG)5 primer and 16S rDNA sequence analysis were undertaken for 460 LAB isolates obtained from all the examined samples. Fifteen species were identified as follows: Lactococcus lactis, Lactococcus raffinolactis, Lactococcus garviae, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus helveticus, Enterococcus faecium, Enterococcus durans, Enterococcus faecalis, Enterococcus italicus, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Leuconostoc lactis, Streptococcus thermophilus and Streptococcus mitis. A wide genotypic and phenotypic heterogeneity of the species was observed, particularly within the Lc. lactis strains. In all of the tested dairy products across four seasons, a significantly positive correlation (r = 0.690) between the presence of lactococci and enterococci and a negative correlation (r = 0.722) between the presence of lactococci and leuconostocs were recorded. Forty-five percent of the lactobacilli and 54.4% of the lactococci exhibited proteolytic activity, whereas 18.7% of the total LAB isolates exhibited antimicrobial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Intestinal Lactobacillus community structure and its correlation with diet of Southern Chinese elderly subjects.

    PubMed

    Pan, Yuanyuan; Wang, Fang; Sun, Da-Wen; Li, Quanyang

    2016-09-01

    This study aimed to investigate the relationship between the intestinal Lactobacillus species and diet of elderly subjects in a longevity area in Southern China. Healthy elderly subjects ranging from 80 to 99 years old were respectively selected from the regions of Bama and Nanning, Guangxi, China. The nested polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) technology was used to analyze the intestinal Lactobacillus community structure. Results showed that Weissella confusa, L. mucosae, L. crispatus, L. salivarius, and L. delbrueckii were the representative Lactobacillus of elderly subjects. Among them, L. crispatus and L. delbrueckii were the dominant Lactobacillus of all species. In comparison to Nanning elderly subjects, the detection frequencies of W. confusa and L. salivarius were significantly increased in Bama elderly subjects (P < 0.01), whereas L. mucosae was significantly decreased (P < 0.01). Interestingly, it was also found that there were 4 kinds of representative Lactobacillus, which were significantly correlated with dietary fiber. W. confusa (P < 0.01) and L. salivarius (P < 0.05) were significantly positively correlated with the intake of dietary fiber, while L. mucosae (P < 0.01) and L. crispatus (P < 0.05) were significantly negatively correlated with the intake of dietary fiber, respectively. Results confirmed that different diets had obvious effects on the intestinal Lactobacillus community structure of elderly subjects in Southern China, which may provide a certain theoretical basis for the elderly's healthy food strategic design and probiotics product development.

  9. Molecular detection of Lactobacillus species in the neovagina of male-to-female transsexual women

    PubMed Central

    Petricevic, Ljubomir; Kaufmann, Ulrike; Domig, Konrad J.; Kraler, Manuel; Marschalek, Julian; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    There is a general opinion that penile skin lined neovagina of transsexual women is not able to support the growth of lactobacilli. This study was undertaken to prove if lactobacilli strains could survive in neovagina and to characterise the most dominant Lactobacillus species. Sixty three male-to-female transsexual women without abnormal vaginal discharge, clinical signs of infection were recruited on an ongoing basis from among transsexual outpatients in an academic research institution and tertiary care centre. Neovaginal smears were taken for molecular Lactobacillus spp. profiling by denaturing gradient gel electrophoresis (PCR–DGGE). Lactobacillus species were detected from 47/63 transsexual women (75%). The 279 Lactobacillus signals detected by PCR-DGGE technique belonged to 13 different species. Lactobacilli of the L. delbrueckii group (L. gasseri, L. crispatus, L. johnsonii, L. iners, L. jensenii) were predominant. More than 90% of women harboured a combination of two or more neovaginal Lactobacillus species. In this study we report the frequent occurrence of lactobacilli from neovagina of transsexual women. Both, frequency and composition were similar to the normal lactic acid bacterial microflora in both women of reproductive age and postmenopausal women. PMID:24434849

  10. Milk fermented by Lactobacillus species from Brazilian artisanal cheese protect germ-free-mice against Salmonella Typhimurium infection.

    PubMed

    Acurcio, L B; Sandes, S H C; Bastos, R W; Sant'anna, F M; Pedroso, S H S P; Reis, D C; Nunes, Á C; Cassali, G D; Souza, M R; Nicoli, J R

    2017-08-24

    Ingestion of milks fermented by Lactobacillus strains showing probiotic properties is an important tool to maintain gastrointestinal health. In this study, Lactobacillus rhamnosus D1 and Lactobacillus plantarum B7, isolated from Brazilian artisanal cheese, were used as starters for the functional fermented milks to assess their probiotic properties in a gnotobiotic animal model. Male germ-free Swiss mice received a single oral dose of milk fermented by each sample, and were challenged with Salmonella Typhimurium five days afterwards. Milk fermented by both Lactobacillus strains maintained counts above 10 8 cfu/ml during cold storage. Lactobacillus strains colonised the gut of the germ-free-mice, maintaining their antagonistic effect. This colonisation led to a protective effect against Salmonella challenge, as demonstrated by reduced pathogen translocation and histological lesions, when compared to control group, especially for Lactobacillus rhamnosus D1. Additionally, mRNA expression of inflammatory (interferon gamma, interleukin (IL)-6, tumour necrosis factor alpha) and anti-inflammatory (transforming growth factor β1) cytokines was augmented in animals previously colonised and then challenged, when compared to other experimental groups. Lactobacillus plantarum B7 colonisation also promoted higher expression of IL-17, showing a proper maturation of colonised germ-free-mice immune system. IL-5 was stimulated by both strains' colonisation and not by S. Typhimurium challenge.

  11. Homodimeric β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: Expression in Lactobacillus plantarum and Biochemical Characterization

    PubMed Central

    2012-01-01

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ∼170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS. PMID:22283494

  12. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization.

    PubMed

    Nguyen, Tien-Thanh; Nguyen, Hoang Anh; Arreola, Sheryl Lozel; Mlynek, Georg; Djinović-Carugo, Kristina; Mathiesen, Geir; Nguyen, Thu-Ha; Haltrich, Dietmar

    2012-02-22

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ~170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS.

  13. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt.

    PubMed

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage.

  14. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    PubMed Central

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  15. Lifestyles in transition: evolution and natural history of the genus Lactobacillus.

    PubMed

    Duar, Rebbeca M; Lin, Xiaoxi B; Zheng, Jinshui; Martino, Maria Elena; Grenier, Théodore; Pérez-Muñoz, María Elisa; Leulier, François; Gänzle, Michael; Walter, Jens

    2017-08-01

    Lactobacillus species are found in nutrient-rich habitats associated with food, feed, plants, animals and humans. Due to their economic importance, the metabolism, genetics and phylogeny of lactobacilli have been extensively studied. However, past research primarily examined lactobacilli in experimental settings abstracted from any natural history, and the ecological context in which these bacteria exist and evolve has received less attention. In this review, we synthesize phylogenetic, genomic and metabolic metadata of the Lactobacillus genus with findings from fine-scale phylogenetic and functional analyses of representative species to elucidate the evolution and natural history of its members. The available evidence indicates a high level of niche conservatism within the well-supported phylogenetic groups within the genus, with lifestyles ranging from free-living to strictly symbiotic. The findings are consistent with a model in which host-adapted Lactobacillus lineages evolved from free-living ancestors, with present-day species displaying substantial variations in terms of the reliance on environmental niches and the degree of host specificity. This model can provide a framework for the elucidation of the natural and evolutionary history of Lactobacillus species and valuable information to improve the use of this important genus in industrial and therapeutic applications. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity.

    PubMed

    Piwat, S; Sophatha, B; Teanpaisan, R

    2015-07-01

    There is limited information concerning the adhesion and aggregation of human oral lactobacilli. In this study, the adhesion of 10 Lactobacillus species was investigated using H357 oral keratinocyte cells as an in vitro model for oral mucosa. Coaggregation with the representative oral pathogen, Streptococcus mutans ATCC 25175, and the physicochemical cell properties was also evaluated. The results demonstrated significant variations in adhesion (42-96%) and aggregation (autoaggregation, 14-95%; coaggregation, 19-65%). All strains showed a high affinity for chloroform, and most strains had a moderate-to-high hydrophobicity. All strains, except Lactobacillus casei and Lactobacillus gasseri, showed a moderate affinity for ethyl acetate. There was a strong association of autoaggregation with coaggregation (rs = 0·883, P < 0·001). The highest mean for autoaggregation (74%) and coaggregation (47%) belonged to the Lact. gasseri strains. Correlations between the adhesion and surface characteristics and aggregation were observed among the Lactobacillus fermentum and Lactobacillus paracasei strains; however, there was a variation in the strains properties within and between species. This study indicated that the Lact. gasseri, Lact. fermentum, and Lact. paracasei strains might be potential probiotics for the human oral cavity given their desirable properties. It should also be emphasized that a selective process for probiotic strains is required. Adhesion to host tissues and bacterial aggregation (auto- and coaggregation) are the highly important criteria for selecting strains with probiotic potential. These abilities are commonly involved with surface-charged characteristics. This is the first study to investigate the oral Lactobacillus species using an oral keratinocyte cell line. Significant results were found for the correlations between the adhesion and surface charge characteristics and for aggregation among certain strains of Lactobacillus gasseri, Lactobacillus

  17. Assessment and comparison of probiotic potential of four Lactobacillus species isolated from feces samples of Iranian infants.

    PubMed

    Halimi, Shahnaz; Mirsalehian, Akbar

    2016-02-01

    The probiotic potential of Lactobacillus species isolated from infant feces was investigated. For this study, the antibiotic susceptibility, tolerance in gut-related conditions, antimicrobial activity, and ability to adhere to a human colorectal adenocarcinoma cell line (Caco-2 cells) of four common Lactobacillus species (Lactobacillus paracasei [n = 15], Lactobacillus rhamnosus [n = 45], Lactobacillus gasseri [n = 20] and Lactobacillus fermentum [n = 18]) were assessed. Most isolates that which were sensitive to imipenem, ampicillin, gentamycin, erythromycin and tetracycline were selected for other tests. L. gasseri isolates had the greatest sensitivity to gastric and intestinal fluids (<10% viability). L. fermentum (FH5, FH13 and FH18) had the highest adhesion to Caco-2 cells. The lowest antibacterial activity against pathogenic bacteria was shown by L. gasseri strains in spot tests. Furthermore, non-adjusted cell-free culture supernatants with low pH had greater antimicrobial activity, which was related to organic acid. The results showed that some isolates of L. rhamnosus and L. fermentum are suitable for use as a probiotic. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  18. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics.

    PubMed

    Lhomme, Emilie; Orain, Servane; Courcoux, Philippe; Onno, Bernard; Dousset, Xavier

    2015-11-20

    Fourteen bakeries located in different regions of France were selected. These bakers use natural sourdough and organic ingredients. Consequently, different organic sourdoughs used for the manufacture of French bread were studied by the enumeration of lactic acid bacteria (LAB) and 16S rRNA sequencing of the isolates. In addition, after DNA extraction the bacterial diversity was assessed by pyrosequencing of the 16S rDNA V1-V3 region. Although LAB counts showed significant variations (7.6-9.5log10CFU/g) depending on the sourdough studied, their identification through a polyphasic approach revealed a large predominance of Lactobacillus sanfranciscensis in all samples. In ten sourdoughs, both culture and independent methods identified L. sanfranciscensis as the dominant LAB species identified. In the remaining sourdoughs, culture methods identified 30-80% of the LAB as L. sanfranciscensis whereas more than 95% of the reads obtained by pyrosequencing belonged to L. sanfranciscensis. Other sub-dominant species, such as Lactobacillus curvatus, Lactobacillus hammesii, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei, were also identified. Quantification of L. sanfranciscensis by real-time PCR confirmed the predominance of this species ranging from 8.24 to 10.38log10CFU/g. Regarding the acidification characteristics, sourdough and related bread physico-chemical characteristics varied, questioning the involvement of sub-dominant species or L. sanfranciscensis intra-species diversity and/or the role of the baker's practices. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici on the nematode Caenorhabditis elegans include possible antitumor activity.

    PubMed

    Fasseas, Michael K; Fasseas, Costas; Mountzouris, Konstantinos C; Syntichaki, Popi

    2013-03-01

    This study examined the effects of three lactic acid bacteria (LAB) strains on the nematode Caenorhabditis elegans. Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici were found to inhibit the development and growth of the worm. Compared to Escherichia coli used as the control, L. reuteri and P. acidilactici reduced the lifespan of wild-type and short-lived daf-16 worms. On the contrary, L. salivarius extended the lifespan of daf-16 worms when used live, but reduced it as UV-killed bacteria. The three LAB induced the expression of genes involved in pathogen response and inhibited the growth of tumor-like germ cells, without affecting DAF16 localization or increasing corpse cells. Our results suggest the possible use of C. elegans as a model for studying the antitumor attributes of LAB. The negative effects of these LAB strains on the nematode also indicate their potential use against parasitic nematodes.

  20. Bacteria and chocolate: a successful combination for probiotic delivery.

    PubMed

    Possemiers, S; Marzorati, M; Verstraete, W; Van de Wiele, T

    2010-06-30

    In this work, chocolate has been evaluated as a potential protective carrier for oral delivery of a microencapsulated mixture of Lactobacillus helveticus CNCM I-1722 and Bifidobacterium longum CNCM I-3470. A sequential in vitro setup was used to evaluate the protection of the probiotics during passage through the stomach and small intestine, when embedded in dark and milk chocolate or liquid milk. Both chocolates offered superior protection (91% and 80% survival in milk chocolate for L. helveticus and B. longum, respectively compared to 20% and 31% found in milk). To simulate long-term administration, the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) was used. Plate counts, Denaturing Gradient Gel Electrophoresis and quantitative PCR showed that the two probiotics successfully reached the simulated colon compartments. This led to an increase in lactobacilli and bifidobacteria counts and the appearance of additional species in the fingerprints. These data indicate that the coating of the probiotics in chocolate is an excellent solution to protect them from environmental stress conditions and for optimal delivery. The simulation with our gastrointestinal model showed that the formulation of a probiotic strain in a specific food matrix could offer superior protection for the delivery of the bacterium into the colon. The chocolate example could act as a trigger for new research to identify new balanced matrices. 2010 Elsevier B.V. All rights reserved.

  1. In vitro probiotic characterization of Lactobacillus strains from fermented radish and their anti-adherence activity against enteric pathogens.

    PubMed

    Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2015-11-01

    In this study, we evaluated the probiotic properties of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus fermentum strains isolated from fermented radish. All the strains survived the simulated oro-gastrointestinal transit condition and showed significantly higher adherence to Caco-2 cells compared with the probiotic strain Lactobacillus rhamnosus GG. The strains showed broad-spectrum antimicrobial activity, autoaggregation, and coaggregation capacity with pathogens. Furthermore, the Lactobacillus strains inhibited the adherence of Yersinia enterocolitica subsp. enterocolitica, Shigella boydii, and Salmonella choleraesuis to the Caco-2 cell line. The strains possessed bile salt hydrolase activity and their cholesterol-lowering activity in vitro was above 50% in the presence of bile. Strains of L. plantarum and L. pentosus possessed the plantaricin-encoding plnEF gene. In addition, the Lactobacillus strains maintained about 80% cell viability after freeze-drying in the presence of a combination of 5% skim milk and 5% maltodextrin as cryoprotectant, and 70% recovery of cell viability was observed in the absence of any cryoprotectant.

  2. Multiplex PCR for the Detection of Lactobacillus pontis and Two Related Species in a Sourdough Fermentation

    PubMed Central

    Müller, Martin R. A.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2000-01-01

    A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation. PMID:10788389

  3. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).

  4. Degradation of sinigrin by Lactobacillus agilis strain R16.

    PubMed

    Llanos Palop, M; Smiths, J P; Brink, B T

    1995-07-01

    Forty-two lactobacilli were screened for their potential to degrade glucosinolate sinigrin. One of them, strain R16, demonstrated a high level of sinigrin degradation; it was identified as Lactobacillus agilis. The sinigrin degrading activity of L. agilis R16 could only be demonstrated when intact cells were used. The products of sinigrin degradation are allyl-isothiocyanate (AITC) and glucose (which is further fermented to DL-lactic acid), suggesting that myrosinase activity is involved. The activity was induced by the presence of sinigrin. Glucose inhibited the myrosinase activity, even in induced cells. Lactobacillus agilis R16 was able to grow on an extract of brown mustard seed and caused glucosinolate degradation.

  5. Lactobacillus vespulae sp. nov., isolated from gut of a queen wasp (Vespula vulgaris).

    PubMed

    Hoang, Van-An; Kim, Yeon-Ju; Nguyen, Ngoc-Lan; Kim, Si-Kwan; Yang, Deok-Chun

    2015-10-01

    A Gram-stain-positive, oxidase- and catalase-negative, rod-shaped, facultatively anaerobic bacterial strain, DCY75T, was isolated from a queen wasp (Vespula vulgaris). Growth occurred at 4–37 °C (optimum, 30 °C), at pH 3.5–8.0 (optimum, pH 5.0–6.0) and with ≤ 7.0 % (w/v) NaCl. Strain DCY75T produced gas during growth on glucose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DCY75T belonged to the genus Lactobacillus and was closely related to Lactobacillus sanfranciscensis ATCC 27651T and Lactobacillus lindneri DSM 20690T at sequence similarities of 96.7 and 96.4 %, respectively. A comparison of two housekeeping genes, pheS and rpoA, revealed that strain DCT75T was well separated from other species of the genus Lactobacillus. Strain DCY75T produced d- and l-lactic acid isomers in a ratio of 22.5 : 77.5 (v/v). The major fatty acids were summed feature 8 (comprising C18 :  1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω9c and C18 : 0.The peptidoglycan structure was of the A4α (l-Lys–d-Asp) type. Cell-wall sugars were glucose, galactose and ribose. The DNA G+C content was 35.5 ± 1.3 mol%. Based on phenotypic and genotypic properties, strain DCY75T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus vespulae sp. nov. is proposed. The type strain is DCY75T ( = KCTC 21023T = JCM 19742T).

  6. Association between Obesity and Cervical Microflora Dominated by Lactobacillus iners in Korean Women

    PubMed Central

    Oh, Hea Young; Seo, Sang-Soo; Kong, Ji-Sook; Lee, Jae-Kwan

    2015-01-01

    Lactobacillus spp. are associated with the maintenance of reproductive health, but obesity reduces fertility and is a risk factor for obstetric and neonatal complications. We assessed the association between obesity and the cervical Lactobacillus composition, which has not been examined previously. Pyrosequencing was performed using cervical swabs collected from 76 normal participants with negative results for cervical intraepithelial neoplasia (CIN) and 57 participants with CIN, based on histological examinations. Cluster analysis of nine Lactobacillus spp. was performed, and five cluster types were identified. The association between obesity and the Lactobacillus community was assessed by logistic regression analysis after adjustment for confounding factors. The proportion of Lactobacillus iners increased and that of Lactobacillus crispatus decreased according to body mass index (BMI) categories, i.e., underweight (BMI of <18.5 kg m−2), normal weight (BMI of 18.5 to 22.9 kg m−2), overweight (BMI of 23.0 to 24.9 kg m−2), and obese (BMI of ≥25 kg m−2). The L. iners-dominant type had a significant association with obesity (odds ratio [OR], 7.55 [95% confidence interval [CI], 1.18 to 48.2]), compared to the L. crispatus-dominant type. The group with high values for the ratio obtained by dividing the relative abundance of L. iners by that of L. crispatus had a significant association with obesity (OR, 6.54 [95% CI, 1.22 to 35.1]), compared to the low-ratio group. Associations between obesity and the L. iners/L. crispatus ratio were observed among young women (OR, 6.26 [95% CI, 1.15 to 33.9]) but not older women and in the normal group (OR, 6.97 [95% CI, 1.20 to 70.4]) but not the CIN group. Obesity was associated with cervical microflora dominated by L. iners in reproductive-age women without dysplasia. PMID:26269625

  7. Different immune regulatory potential of Lactobacillus plantarum and Lactobacillus sakei isolated from Kimchi.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Rim; Gim, Min Geun; Chung, Dae Kyun

    2014-12-28

    It is known that lactic acid bacteria (LAB) have many beneficial health effects, including antioxidative activity and immune regulation. In this study, the immune regulatory effects of Lactobacillus sakei and Lactobacillus plantarum, which are found in different types of kimchi, were evaluated. L. sakei and its lipoteichoic acid (LTA) have greater immune stimulating potential in IL-12, IFN-γ, and TNF-α production as compared with L. plantarum in an in vitro condition. On the other hand, L. plantarum is assumed to repress the Th1 immune response in murine experiments. After being injected with LPS, L. plantarum-fed mice maintained a healthier state, and the level of TNF-α in their blood was lower than in other bacterial strainfed mice and in the LPS-only control mice. Additionally, IL-12 production was significantly decreased and the production of IL-4 was greatly increased in the splenocytes from L. plantarum-fed mice. Further experiments revealed that the pre-injection of purified LTA from L. plantarum (pLTA), L. sakei (sLTA), and S. aureus (aLTA) decreased TNF-α and IL-4 production in LPS-injected mice. Mouse IL-12, however, was significantly increased by aLTA pre-injection. In conclusion, the L. sakei and L. plantarum strains have immune regulation effects, but the effects differ in cytokine production and the regulatory effects of the Th1/Th2 immune response.

  8. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection.

  9. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Lactobacillus salivarius 1077 (NRRL B-50053) bacteriocin

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  11. Characterization of Endogenous Plasmids from Lactobacillus salivarius UCC118▿ †

    PubMed Central

    Fang, Fang; Flynn, Sarah; Li, Yin; Claesson, Marcus J.; van Pijkeren, Jan-Peter; Collins, J. Kevin; van Sinderen, Douwe; O'Toole, Paul W.

    2008-01-01

    The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK homologs, and this plasmid could be cured when PemI was produced in trans. The minimal replicon of pSF118-20 was determined by deletion analysis. Shuttle vector derivatives of pSF118-20 were generated that included the replication region (pLS203) and the replication region plus mobilization genes (pLS208). The plasmid pLS203 was stably maintained without selection in Lactobacillus plantarum, Lactobacillus fermentum, and the pSF118-20-cured derivative strain of L. salivarius UCC118 (strain LS201). Cloning in pLS203 of genes encoding luciferase and green fluorescent protein, and expression from a constitutive L. salivarius promoter, demonstrated the utility of this vector for the expression of heterologous genes in Lactobacillus. This study thus expands the knowledge base and vector repertoire of probiotic lactobacilli. PMID:18390685

  12. Lactobacillus arizonensis sp. nov., isolated from jojoba meal.

    PubMed

    Swezey, J L; Nakamura, L K; Abbott, T P; Peterson, R E

    2000-09-01

    Five strains of simmondsin-degrading, lactic-acid-producing bacteria were isolated from fermented jojoba meal. These isolates were facultatively anaerobic, gram-positive, non-motile, non-spore-forming, homofermentative, rod-shaped organisms. They grew singly and in short chains, produced lactic acid but no gas from glucose, and did not exhibit catalase activity. Growth occurred at 15 and 45 degrees C. All strains fermented cellobiose, D-fructose, D-galactose, D-glucose, lactose, maltose, D-mannitol, D-mannose, melibiose, D-ribose, salicin, D-sorbitol, sucrose and trehalose. Some strains fermented L-(-)-arabinose and L-rhamnose. D-Xylose was not fermented and starch was not hydrolysed. The mean G+C content of the DNA was 48 mol%. Phylogenetic analyses of 16S rDNA established that the isolates were members of the genus Lactobacillus. DNA reassociation of 45% or less was obtained between the new isolates and the reference strains of species with G+C contents of about 48 mol%. The isolates were differentiated from other homofermentative Lactobacillus spp. on the basis of 16S rDNA sequence divergence, DNA relatedness, stereoisomerism of the lactic acid produced, growth temperature and carbohydrate fermentation. The data support the conclusion that these organisms represent strains of a new species, for which the name Lactobacillus arizonensis is proposed. The type strain of L. arizonensis is NRRL B-14768T (= DSM 13273T).

  13. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese.

    PubMed

    Oberg, Craig J; Oberg, Taylor S; Culumber, Michele D; Ortakci, Fatih; Broadbent, Jeffery R; McMahon, Donald J

    2016-01-01

    A Gram-stain positive, rod-shaped, non-spore-forming strain (WDC04T), which may be associated with late gas production in cheese, was isolated from aged Cheddar cheese following incubation on MRS agar (pH 5.2) at 6 °C for 35 days. Strain WDC04T had 97 % 16S rRNA gene sequence similarity with Lactobacillus hokkaidonensis DSM 26202T, Lactobacillus oligofermentans 533, 'Lactobacillus danicus' 9M3, Lactobacillus suebicus CCUG 32233T and Lactobacillus vaccinostercus DSM 20634T. API 50 CH carbohydrate fermentation panels indicated strain WDC04T could only utilize one of the 50 substrates tested, ribose, although it does slowly utilize galactose. In the API ZYM system, strain WDC04T was positive for leucine arylamidase, valine arylamidase, cysteine arylamidase (weakly), naphthol-AS-BI-phosphohydrolase and β-galactosidase activities. Total genomic DNA was sequenced from strain WDC04T using a whole-genome shotgun strategy on a 454 GS Titanium pyrosequencer. The sequence was assembled into a 1.90 Mbp draft genome consisting of 105 contigs with preliminary genome annotation performed using the RAST algorithm (rast.nmpdr.org). Genome analysis confirmed the pentose phosphate pathway for ribose metabolism as well as galactose, N-acetylglucosamine, and glycerol fermentation pathways. Genomic analysis places strain WDC04T in the obligately heterofermentative group of lactobacilli and metabolic results confirm this conclusion. The result of genome sequencing, along with 16S rRNA gene sequence analysis, indicates WDC04T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus wasatchensis sp. nov. is proposed. The type strain is WDC04T ( = DSM 29958T = LMG 28678T).

  14. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    PubMed Central

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  15. Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota.

    PubMed

    Nunn, Kenetta L; Wang, Ying-Ying; Harit, Dimple; Humphrys, Michael S; Ma, Bing; Cone, Richard; Ravel, Jacques; Lai, Samuel K

    2015-10-06

    Cervicovaginal mucus (CVM) can provide a barrier that precludes HIV and other sexually transmitted virions from reaching target cells in the vaginal epithelium, thereby preventing or reducing infections. However, the barrier properties of CVM differ from woman to woman, and the causes of these variations are not yet well understood. Using high-resolution particle tracking of fluorescent HIV-1 pseudoviruses, we found that neither pH nor Nugent scores nor total lactic acid levels correlated significantly with virus trapping in unmodified CVM from diverse donors. Surprisingly, HIV-1 was generally trapped in CVM with relatively high concentrations of d-lactic acid and a Lactobacillus crispatus-dominant microbiota. In contrast, a substantial fraction of HIV-1 virions diffused rapidly through CVM with low concentrations of d-lactic acid that had a Lactobacillus iners-dominant microbiota or significant amounts of Gardnerella vaginalis, a bacterium associated with bacterial vaginosis. Our results demonstrate that the vaginal microbiota, including specific species of Lactobacillus, can alter the diffusional barrier properties of CVM against HIV and likely other sexually transmitted viruses and that these microbiota-associated changes may account in part for the elevated risks of HIV acquisition linked to bacterial vaginosis or intermediate vaginal microbiota. Variations in the vaginal microbiota, especially shifts away from Lactobacillus-dominant microbiota, are associated with differential risks of acquiring HIV or other sexually transmitted infections. However, emerging evidence suggests that Lactobacillus iners frequently colonizes women with recurring bacterial vaginosis, raising the possibility that L. iners may not be as protective as other Lactobacillus species. Our study was designed to improve understanding of how the cervicovaginal mucus barrier against HIV may vary between women along with the vaginal microbiota and led to the finding that the vaginal microbiota

  16. Metabolic flux analysis of carbon balance in Lactobacillus strains.

    PubMed

    Zhang, Yixing; Zeng, Fan; Hohn, Keith; Vadlani, Praveen V

    2016-11-01

    Metabolic flux analyses were performed based on the carbon balance of six different Lactobacillus strains used in this study. Results confirmed that L. delbrueckii, L. plantarum ATCC 21028, L. plantarum NCIMB 8826 ΔldhL1, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB metabolized glucose via EMP: whereas, L. brevis metabolized glucose via PK pathway. Xylose was metabolized through the PK pathway in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB. Operation of both EMP and PK pathways was found in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB when glucose plus xylose were used as carbon source. The information of detailed carbon flow may help the strain and biomass selection in a designed process of lactic acid biosynthesis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1397-1403, 2016. © 2016 American Institute of Chemical Engineers.

  17. Antagonistic effect of chosen lactic acid bacteria strains on Yersinia enterocolitica species in model set-ups, meat and fermented sausages.

    PubMed

    Gomółka-Pawlicka, M; Uradziński, J

    2003-01-01

    The present study was aimed at determining the influence of 15 strains of lactic acid bacteria on the growth of 8 Yersinia enterocolitica strains in model set-ups, and in meat and ageing fermented sausages. The investigations were performed within the framework of three alternate stages which differed in respect to the products studied, the number of Lactobacillus sp. strains and, partly, methodological approach. The ratio between lactic acid bacteria and Yersinia enterocolitica strains studied was, depending on the variant of experiment, 1:1, 1:2 and 2:1, respectively. The study also considered water activity (aw) and pH of the products investigated. The results suggest that all the lactic acid bacteria strains used within the framework of the model set-ups had antagonistic effect on all the Salmonella sp. strains. However, this ability was not observed with respect to of tested lactic acid bacteria strains in meat and fermented sausage. This ability was possessed by one of the strains investigated--Lactobacillus helveticus T 78. The temperature and time of the incubation of sausages, but not aw and pH, were found to have a distinct influence on the antagonistic interaction between the bacteria tested.

  18. Influence of the Probiotic Lactobacillus acidophilus NCFM
and Lactobacillus rhamnosus HN001 on Proteolysis Patterns
of Edam Cheese

    PubMed Central

    Cichosz, Grażyna; Nalepa, Beata; Kowalska, Marika

    2014-01-01

    Summary The objective of this study is to determine the viability of Lactobacillus acidophilus NCFM and Lactobacillus rhamnosus HN001 in Edam cheese as well as the effect of probiotic bacteria on paracasein proteolysis and changes in the water activity during ripening. The use of probiotics L. rhamnosus HN001 and L. acidophilus NCFM in Edam cheese slightly changed its chemical composition, but the change was not significant. The pH values were significantly correlated with the changes in Lactobacillus count (R=–0.807) and the level of phosphotungstic acid-soluble nitrogen compounds in total nitrogen (PTA-SN/TN) (R=0.775). After 10 weeks of ripening, the highest level of trichloroacetic acid-soluble nitrogen compounds in total nitrogen (TCA-SN/TN) was observed in the cheese containing L. rhamnosus HN001 (11.87%) and slightly lower level in the cheese containing L. acidophilus NCFM (7.60%) and control cheese (6.24%). The highest level of PTA-SN/TN fraction was noted in cheese containing L. acidophilus NCFM (3.48%) but the lowest level was observed in control cheese (2.24%) after ten weeks of ripening. The changes in the levels of PTA-SN/TN (R=–0.813) and TCA-SN/TN (R=–0.717) fractions were significantly (p<0.05) correlated with the viability of probiotic counts. Water activity (aw) strongly correlated with the PTA-SN/TN level (R=–0.824) and bacteria viability (R=–0.728). All of the analyzed cheeses were characterized by high counts of L. rhamnosus HN001 and L. acidophilus NCFM during ten weeks of ripening. PMID:27904317

  19. Potential of Lactobacillus plantarum IBB3036 and Lactobacillus salivarius IBB3154 to persistence in chicken after in ovo delivery.

    PubMed

    Aleksandrzak-Piekarczyk, Tamara; Puzia, Weronika; Żylińska, Joanna; Cieśla, Jarosław; Gulewicz, Krzysztof A; Bardowski, Jacek K; Górecki, Roman K

    2018-03-25

    The aim of this study was to characterize and compare selected Lactobacillus strains originating from different environments (cow milk and hen feces) with respect to their applicative potential to colonize gastrointestinal track of chickens before hatching from an egg. In vitro phenotypic characterization of lactobacilli strains included the investigation of the important prerequisites for persistence in gastrointestinal tract, such as a capability to survive in the presence of bile salts and at low pH, enzymatic and sugar metabolic profiles, adhesion abilities, and resistance to osmolytes, temperature, and antibiotics. Regarding the resistance of lactobacilli to most of the various stress factors tested, the milk isolate Lactobacillus plantarum IBB3036 showed better abilities than the chicken feces isolate Lactobacillus salivarius IBB3154. However, regarding the acidification tolerance and adherence ability, L. salivarius IBB3154 revealed better characteristics. Use of these two selected lactobacilli isolates together with proper prebiotics resulted in the preparation of two S1 and S2 bioformulations, which were injected in ovo into hen Cobb500 FF fertilized eggs. Furthermore, in vivo tests assessing the persistence of L. plantarum IBB3036 and L. salivarius IBB3154 in the chicken gastrointestinal tract was monitored by PCR-based classical and quantitative techniques and revealed the presence of both strains in fecal samples collected 3 days after hatching. Subsequently, the number of L. salivarius IBB3154 increased significantly in the chicken intestine, whereas the presence of L. plantarum IBB3036 was gradually decreased. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Bacteriocins from Lactobacillus plantarum – production, genetic organization and mode of action

    PubMed Central

    Todorov, Svetoslav D.

    2009-01-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented. PMID:24031346

  1. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Weckx, Stefan

    2015-10-12

    Lactobacillus fermentum 222 and Lactobacillus plantarum 80, isolates from a spontaneous Ghanaian cocoa bean fermentation process, proved to be interesting functional starter culture strains for cocoa bean fermentations. Lactobacillus fermentum 222 is a thermotolerant strain, able to dominate the fermentation process, thereby converting citrate and producing mannitol. Lactobacillus plantarum 80 is an acid-tolerant and facultative heterofermentative strain that is competitive during cocoa bean fermentation processes. In this study, whole-genome sequencing and comparative genome analysis was used to investigate the mechanisms of these strains to dominate the cocoa bean fermentation process. Through functional annotation and analysis of the high-coverage contigs obtained through 454 pyrosequencing, plantaricin production was predicted for L. plantarum 80. For L. fermentum 222, genes encoding a complete arginine deiminase pathway were attributed. Further, in-depth functional analysis revealed the capacities of these strains associated with carbohydrate and amino acid metabolism, such as the ability to use alternative external electron acceptors, the presence of an extended pyruvate metabolism, and the occurrence of several amino acid conversion pathways. A comparative genome sequence analysis using publicly available genome sequences of strains of the species L. plantarum and L. fermentum revealed unique features of both strains studied. Indeed, L. fermentum 222 possessed genes encoding additional citrate transporters and enzymes involved in amino acid conversions, whereas L. plantarum 80 is the only member of this species that harboured a gene cluster involved in uptake and consumption of fructose and/or sorbose. In-depth genome sequence analysis of the candidate functional starter culture strains L. fermentum 222 and L. plantarum 80 revealed their metabolic capacities, niche adaptations and functionalities that enable them to dominate the cocoa bean fermentation

  2. Lactobacillus iners: Friend or Foe?

    PubMed

    Petrova, Mariya I; Reid, Gregor; Vaneechoutte, Mario; Lebeer, Sarah

    2017-03-01

    The vaginal microbial community is typically characterized by abundant lactobacilli. Lactobacillus iners, a fairly recently detected species, is frequently present in the vaginal niche. However, the role of this species in vaginal health is unclear, since it can be detected in normal conditions as well as during vaginal dysbiosis, such as bacterial vaginosis, a condition characterized by an abnormal increase in bacterial diversity and lack of typical lactobacilli. Compared to other Lactobacillus species, L. iners has more complex nutritional requirements and a Gram-variable morphology. L. iners has an unusually small genome (ca. 1 Mbp), indicative of a symbiotic or parasitic lifestyle, in contrast to other lactobacilli that show niche flexibility and genomes of up to 3-4 Mbp. The presence of specific L. iners genes, such as those encoding iron-sulfur proteins and unique σ-factors, reflects a high degree of niche specification. The genome of L. iners strains also encodes inerolysin, a pore-forming toxin related to vaginolysin of Gardnerella vaginalis. Possibly, this organism may have clonal variants that in some cases promote a healthy vagina, and in other cases are associated with dysbiosis and disease. Future research should examine this friend or foe relationship with the host. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei.

    PubMed

    Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth.

  4. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  5. Persistent bacteremia secondary to delayed identification of Lactobacillus in the setting of mitral valve endocarditis.

    PubMed

    Stroupe, Cody; Pendley, Joseph; Isang, Emmanuel; Helms, Benjamin

    2017-01-01

    Lactobacillus species causing infective endocarditis is rare. Most reported cases arise from the oral ingestion of Lactobacillus via dairy or nutritional supplements in patients with congenital valve disease or replacement. We present a case of native valve bacterial endocarditis caused by Lactobacillus arising from dental abscesses. Additionally, there was an error in identification of the Lactobacillus as Corynebacterium , which led to inadequate treatment. A 51-year-old male presented to an outside clinic with several weeks of subjective fevers and malaise. The provider obtained two sets of blood cultures. Both grew Gram-positive bacilli identified as Corynebacterium . Once hospitalized he persistently had positive blood cultures despite treatment with vancomycin and gentamicin. The specimens were sent to a reference lab. The cultures were confirmed to be Lactobacillus zeae resistant to vancomycin and gentamicin. Once he was started on appropriate therapy his blood cultures showed no further growth of bacteria. The infected teeth were removed as it was felt they were the source of the bacteremia. This case presents two interesting topics in one encounter. First, Lactobacillus is not a common culprit in endocarditis. Secondly, the incorrect identification of the gram-positive bacilli bacteria led to prolonged bacteremia in our patient. The patient was evaluated by cardiothoracic surgery at our facility and it was determined that he would likely need a mitral valve replacement versus repair. The decision was made to treat the patient with six weeks Penicillin-VK prior to the operation. He is currently completing his antibiotic therapy.

  6. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    PubMed

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  7. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    PubMed Central

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  8. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-06-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents.

  9. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  10. Comparative Survival Rates of Human-Derived Probiotic Lactobacillus paracasei and L. salivarius Strains during Heat Treatment and Spray Drying

    PubMed Central

    Gardiner, G. E.; O'Sullivan, E.; Kelly, J.; Auty, M. A. E.; Fitzgerald, G. F.; Collins, J. K.; Ross, R. P.; Stanton, C.

    2000-01-01

    Spray drying of skim milk was evaluated as a means of preserving Lactobacillus paracasei NFBC 338 and Lactobacillus salivarius UCC 118, which are human-derived strains with probiotic potential. Our initial experiments revealed that NFBC 338 is considerably more heat resistant in 20% (wt/vol) skim milk than UCC 118 is; the comparable decimal reduction times were 11.1 and 1.1 min, respectively, at 59°C. An air outlet temperature of 80 to 85°C was optimal for spray drying; these conditions resulted in powders with moisture contents of 4.1 to 4.2% and viable counts of 3.2 × 109 CFU/g for NFBC 338 and 5.2 × 107 CFU/g for UCC 118. Thus, L. paracasei NFBC 338 survived better than L. salivarius UCC 118 during spray drying; similar results were obtained when we used confocal scanning laser microscopy and LIVE/DEAD BacLight viability staining. In addition, confocal scanning laser microscopy revealed that the probiotic lactobacilli were located primarily in the powder particles. Although both spray-dried cultures appeared to be stressed, as shown by increased sensitivity to NaCl, bacteriocin production by UCC 118 was not affected by the process, nor was the activity of the bacteriocin peptide. The level of survival of NFBC 338 remained constant at ∼1 × 109 CFU/g during 2 months of powder storage at 4°C, while a decline in the level of survival of approximately 1 log (from 7.2 × 107 to 9.5 × 106 CFU/g) was observed for UCC 118 stored under the same conditions. However, survival of both Lactobacillus strains during powder storage was inversely related to the storage temperature. Our data demonstrate that spray drying may be a cost-effective way to produce large quantities of some probiotic cultures. PMID:10831444

  11. Clinical characteristics of bacteraemia caused by Lactobacillus spp. and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2000-2014.

    PubMed

    Lee, Meng-Rui; Tsai, Chia-Jung; Liang, Sheng-Kai; Lin, Ching-Kai; Huang, Yu-Tsung; Hsueh, Po-Ren

    2015-10-01

    The clinical characteristics of 89 patients with Lactobacillus bacteraemia treated at a university-affiliated hospital in northern Taiwan during 2000-2014 were retrospectively evaluated. Lactobacillus spp. were identified by 16S rRNA sequencing analysis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antimicrobial susceptibilities of the isolates were determined by broth microdilution. The most commonly isolated species was Lactobacillus salivarius (n = 21), followed by Lactobacillus paracasei (n = 16) and Lactobacillus fermentum (n = 13). Excluding three isolates with lower 16S rRNA sequence similarity, MALDI-TOF/MS provided correct identification for 84.9% (73/86) of Lactobacillus isolates. Concordant identification was lowest for Lactobacillus casei (11%). The main infection foci were intra-abdominal infection (49%) and catheter-related bloodstream infection (17%). Only one-half of the patients received adequate antibiotic treatment during the bacteraemic episode. The majority of patients with Lactobacillus bacteraemia were immunocompromised. The 7-day and in-hospital mortality rates were 21% and 62%, respectively, and underlying malignancy was associated with a higher in-hospital mortality rate (odds ratio = 2.666). There were no significant differences in mortality (7-day, 14-day, 30-day and in-hospital) among patients with bacteraemia due to different Lactobacillus spp. Minimum inhibitory concentrations were highest for glycopeptides, cephalosporins and fluoroquinolones and were lowest for carbapenems and aminopenicillins. Lactobacillus bacteraemia was associated with a high mortality rate, and patient outcome was associated with underlying malignancy. MALDI-TOF/MS was able to accurately identify 84.9% of the Lactobacillus isolates, and L. salivarius was the predominant pathogen. The accuracy rate for identification of Lactobacillus spp. by MALDI-TOF/MS was lowest for L. casei. Copyright © 2015 Elsevier B

  12. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups.

    PubMed

    Ricciardi, A; Ianniello, R G; Parente, E; Zotta, T

    2015-09-01

    Members of the Lactobacillus casei and Lactobacillus plantarum groups are capable of aerobic and respiratory growth. However, they grow poorly in aerobiosis in the currently available chemically defined media, suggesting that aerobic and respiratory growth require further supplementation. The effect of Tween 80, L-alanine, L-asparagine, L-aspartate, L-proline and L-serine on anaerobic and respiratory growth of Lact. casei N87 was investigated using a 2(5) factorial design. The effectiveness of modified CDM (mCDM) was validated on 21 strains of Lact. casei and Lact. plantarum groups. Tween 80 supplementation did not affect anaerobic growth, but improved respiratory growth. L-asparagine, L-proline and L-serine were stimulatory for respiring cells, while the presence of L-aspartate, generally, impaired biomass production. mCDM promoted the growth of Lact. casei and Lact. plantarum, with best results for strains showing a respiratory phenotype. The nutritional requirements of anaerobic and respiratory cultures of members of the Lact. casei and Lact. plantarum groups differ. Tween 80 and selected amino acids derived from pathways related to TCA cycle, pyruvate conversion and NADH recycling are required for respiration. The availability of mCDM will facilitate the study of aerobic metabolism of lactobacilli under controlled conditions. © 2015 The Society for Applied Microbiology.

  13. Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries

    PubMed Central

    Byun, Roy; Nadkarni, Mangala A.; Chhour, Kim-Ly; Martin, F. Elizabeth; Jacques, Nicholas A.; Hunter, Neil

    2004-01-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion. PMID:15243071

  14. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries.

    PubMed

    Byun, Roy; Nadkarni, Mangala A; Chhour, Kim-Ly; Martin, F Elizabeth; Jacques, Nicholas A; Hunter, Neil

    2004-07-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion.

  15. The protective effect of Lactobacillus and Bifidobacterium as the gut microbiota members against chronic urticaria.

    PubMed

    Rezazadeh, Akram; Shahabi, Shahram; Bagheri, Morteza; Nabizadeh, Edris; Jazani, Nima Hosseini

    2018-06-01

    Chronic Urticaria is a common disorder which is defined by recurrent occurrence of wheals and sometimes angioedema. It has a notable influence on the patients' quality of life. Regulation of the immune system is one of the important roles of the gut microbiota. The effect of dysbiosis considering some members of gut microbiota in patients with chronic urticaria has been demonstrated in our previous study. Comparing the frequency and bacterial load of Lactobacillus, Bifidobacterium, and Bacteroides between patients with chronic urticaria and healthy controls. 20 patients with chronic urticaria and 20 age and sex matched healthy individuals were included in the present study. Stool samples were analyzed for determining the frequency and bacterial load of Lactobacillus, Bifidobacterium, and Bacteroides genera. There were no significant differences among the frequencies of detectable Lactobacillus, Bifidobacterium, or Bacteroides in stool samples of patients with chronic urticaria and healthy controls. The relative amounts of Lactobacillus and Bifidobacterium were significantly higher in fecal samples from controls compared to patients with chronic urticaria (P = 0.038 and 0.039, respectively). It is the first study on the implication of Lactobacillus, Bifidobacterium, and Bacteroides genera as gut microbiota members in patients with chronic urticaria. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus.

    PubMed

    Ansari, Fereshteh; Pourjafar, Hadi; Jodat, Vahid; Sahebi, Javad; Ataei, Amir

    2017-12-01

    In this study, we examined a novel method of microencapsulation with calcium alginate-chitosan and Eudragit S100 nanoparticles for the improving viability of probiotic bacteria, Lactobacillus acidophilus and Lactobacillus rhamnosus. Extrusion technique was carried out in microencapsulation process. The viability of two probiotics in single coated beads (with only chitosan), double coated beads (with chitosan and Eudragit nanoparticles), and as free cells (unencapsulated) were conducted in simulated gastric juice (pH 1.55, without pepsin) followed by incubation in simulated intestinal juice (pH 7.5, with 1% bile salt). In case of single coated beads, presumably, lack of sufficient strength of chitosan under simulated gastric condition was the main reason of 4-log and 5-log reduction of the counts of the L. acidophilus and L. rhamnosus respectively. The results showed that with the second coat forming (Eudragit nanoparticles) over the first coat (chitosan), the strength of the beads and then viability rate of the bacteria were increased in comparison with the single coated beads.

  17. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  19. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    USDA-ARS?s Scientific Manuscript database

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  20. Association between Obesity and Cervical Microflora Dominated by Lactobacillus iners in Korean Women.

    PubMed

    Oh, Hea Young; Seo, Sang-Soo; Kong, Ji-Sook; Lee, Jae-Kwan; Kim, Mi Kyung

    2015-10-01

    Lactobacillus spp. are associated with the maintenance of reproductive health, but obesity reduces fertility and is a risk factor for obstetric and neonatal complications. We assessed the association between obesity and the cervical Lactobacillus composition, which has not been examined previously. Pyrosequencing was performed using cervical swabs collected from 76 normal participants with negative results for cervical intraepithelial neoplasia (CIN) and 57 participants with CIN, based on histological examinations. Cluster analysis of nine Lactobacillus spp. was performed, and five cluster types were identified. The association between obesity and the Lactobacillus community was assessed by logistic regression analysis after adjustment for confounding factors. The proportion of Lactobacillus iners increased and that of Lactobacillus crispatus decreased according to body mass index (BMI) categories, i.e., underweight (BMI of <18.5 kg m(-2)), normal weight (BMI of 18.5 to 22.9 kg m(-2)), overweight (BMI of 23.0 to 24.9 kg m(-2)), and obese (BMI of ≥25 kg m(-2)). The L. iners-dominant type had a significant association with obesity (odds ratio [OR], 7.55 [95% confidence interval [CI], 1.18 to 48.2]), compared to the L. crispatus-dominant type. The group with high values for the ratio obtained by dividing the relative abundance of L. iners by that of L. crispatus had a significant association with obesity (OR, 6.54 [95% CI, 1.22 to 35.1]), compared to the low-ratio group. Associations between obesity and the L. iners/L. crispatus ratio were observed among young women (OR, 6.26 [95% CI, 1.15 to 33.9]) but not older women and in the normal group (OR, 6.97 [95% CI, 1.20 to 70.4]) but not the CIN group. Obesity was associated with cervical microflora dominated by L. iners in reproductive-age women without dysplasia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Probiotic bacteria inhibit the bovine respiratory pathogen Mannheimia haemolytica serotype 1 in vitro.

    PubMed

    Amat, S; Subramanian, S; Timsit, E; Alexander, T W

    2017-05-01

    This study evaluated the potential of probiotic bacteria to inhibit growth and cell adhesion of the bovine respiratory pathogen Mannheimia haemoltyica serotype 1. The inhibitory effects of nine probiotic strains (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis, Streptococcus thermophilus and two Paenibacillus polymyxa strains) against M. haemolytica were evaluated using a spot-on-lawn method. Probiotic strains were then tested for their adherence to bovine bronchial epithelial (BBE) cells and the ability to displace and compete against M. haemolytica on BBE. Except for S. thermophilus, all probiotic strains inhibited the growth of M. haemolytica, with zones of inhibition ranging between 12 and 19 mm. Lactobacillus strains and Lactococcus lactis displayed greater (P < 0·05) BBE adhesion compared with M. heamolytica (8·3%) and other probiotics (<2·2%). Strains of P. polymyxa and L. acidophilus caused the greatest reduction in M. haemolytica adherence, through both displacement and competition, compared with other probiotics. The results of this study suggest that probiotics may have the potential to colonize the bovine respiratory tract, and exert antagonistic effects against M. haemolytica serotype 1. A common method to control bovine respiratory disease (BRD) in feedlots is through mass medication with antibiotics upon cattle entry (i.e. metaphylaxis). Increasingly, antimicrobial resistance in BRD bacterial pathogens has been observed in feedlots, which may have important implications for cattle health. In this study, probiotic strains were shown to adhere to bovine respiratory cells and inhibit the BRD pathogen M. haemolytica serotype 1 through competition and displacement. Probiotics may therefore offer a mitigation strategy to reduce BRD bacterial pathogens, in place of metaphylactic antimicrobials. © 2017 Her Majesty the Queen in Right of Canada

  2. Evaluation of the microbial community, acidity and proximate composition of akamu, a fermented maize food.

    PubMed

    Obinna-Echem, Patience C; Kuri, Victor; Beal, Jane

    2014-01-30

    Akamu is a lactic acid-fermented cereal-based food that constitutes a major infant complementary food in most West African countries. The identities of LAB populations from DGGE analysis and conventionally isolated LAB and yeasts from traditionally fermented akamu were confirmed by PCR sequencing analysis. The relationships between pH, acidity and lactic acid levels and proximate composition of the akamu samples were investigated. The LAB communities in the akamu samples comprised mainly Lactobacillus species, including Lb. fermentum, Lb. plantarum, Lb. delbrueckii ssp. bulgaricus and Lb. helveticus, as well as Lactococcus lactis ssp. cremoris. Identified yeasts were Candida tropicalis, Candida albicans, Clavispora lusitaniae and Saccharomyces paradoxus. Low pH (3.22-3.95) was accompanied by high lactic acid concentrations (43.10-84.29 mmol kg⁻¹). Protein (31.88-74.32 g kg⁻¹) and lipid (17.74-36.83 g kg⁻¹ contents were negatively correlated with carbohydrate content (897.48-926.20 g kg⁻¹, of which ≤1 g kg⁻¹ was sugars). Ash was either not detected or present only in trace amounts (≤4 g kg⁻¹). Energy levels ranged from 17.29 to 18.37 kJ g⁻¹. The akamu samples were predominantly starchy foods and had pH < 4.0 owing to the activities of fermentative LAB. © 2013 Society of Chemical Industry.

  3. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens.

    PubMed

    Atassi, Fabrice; Servin, Alain L

    2010-03-01

    The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.

  4. Lactobacillus plantarum L9 but not Lactobacillus acidophilus LA reduces tumour necrosis factor induced bacterial translocation in Caco-2 cells.

    PubMed

    Wang, B; Chen, J; Wang, S; Zhao, X; Lu, G; Tang, X

    2017-05-30

    Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis and multiple organ dysfunction syndromes. Inflammatory cytokines increase paracellular permeability that allows increased luminal bacteria to translocate across mucosal epithelium and further deteriorate the gut barrier. In order to reduce this risk, the prophylactic use of probiotics has been recently addressed. In this paper, we investigate the protective role toward tumour necrosis factor (TNF)-α induced non-pathogenic Escherichia coli translocation across Caco-2 monolayers of Lactobacillus strains. According to our experimental data, Lactobacillus plantarum L9 and Lactobacillus acidophilus LA have good capacities to adhere to Caco-2 cells. Addition of L. plantarum L9 and L. acidophilus LA to the enterocyte monolayer surface result in significant inhibition of E. coli adhesion and cell internalisation. However, L. plantarum L9 and L. acidophilus LA did not inhibit the growth of the non-pathogenic E. coli B5 after 24 h incubation. Exposure to TNF-α for 6 h caused a dramatic increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability. Pretreatment with L. plantarum L9 prevent TNF-α induced transcellular bacterial translocation and IL-8 production in Caco-2 cells. L. plantarum L9 also did not affect the integrity of the monolayers, as indicated by lactate dehydrogenase release, horseradish peroxidase permeability, and transepithelial electrical resistance. L. plantarum L9 showed the potential to protect enterocytes from an acute inflammatory response and therefore could be good potential prophylactic agents in counteracting bacterial translocation.

  5. The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content.

    PubMed

    Boekhorst, Jos; Siezen, Roland J; Zwahlen, Marie-Camille; Vilanova, David; Pridmore, Raymond D; Mercenier, Annick; Kleerebezem, Michiel; de Vos, Willem M; Brüssow, Harald; Desiere, Frank

    2004-11-01

    The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of Lactobacillus plantarum (3.3 Mb) and Lactobacillus johnsonii (2.0 Mb). L. johnsonii is predominantly found in the gastrointestinal tract, while L. plantarum is also found on plants and plant-derived material, and is used in a variety of industrial fermentations. The L. plantarum and L. johnsonii chromosomes have only 28 regions with conservation of gene order, totalling about 0.75 Mb; these regions are not co-linear, indicating major chromosomal rearrangements. Metabolic reconstruction indicates many differences between L. johnsonii and L. plantarum: numerous enzymes involved in sugar metabolism and in biosynthesis of amino acids, nucleotides, fatty acids and cofactors are lacking in L. johnsonii. Major differences were seen in the number and types of putative extracellular proteins, which are of interest because of their possible role in host-microbe interactions. The differences between L. plantarum and L. johnsonii, both in genome organization and gene content, are exceptionally large for two bacteria of the same genus, emphasizing the difficulty in taxonomic classification of lactobacilli.

  6. Genome Sequence of Lactobacillus plantarum Strain UCMA 3037.

    PubMed

    Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias; Vernoux, Jean-Paul

    2013-05-23

    Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem.

  7. Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants.

    PubMed

    Marzotto, Marta; Maffeis, Claudio; Paternoster, Thomas; Ferrario, Rossano; Rizzotti, Lucia; Pellegrino, Maristella; Dellaglio, Franco; Torriani, Sandra

    2006-11-01

    This study focuses on the potentiality of a putative probiotic strain, Lactobacillus paracasei A, to survive gastrointestinal (GI) passage and modulate the resident microbiota of healthy infants. In a placebo-controlled study, 26 children aged 12-24 months received 100 g/day of either fermented milk containing strain A or pasteurized yogurt for four weeks. Fecal samples were analyzed before starting the administration, after 1, 3 and 4 weeks of consumption and after washout. The fate of strain A was followed by means of a newly developed PCR targeting a strain-specific genomic marker. The composition and dynamics of fecal microbial communities during the study were analyzed by culturing on selective media and by the PCR-denaturing gradient gel electrophoresis (DGGE) technique using universal and group-specific (Lactobacillus and Bifidobacterium) primers. The variation in enzymatic activities in infant feces during probiotic consumption was also analyzed. Strain A survived in fecal samples in most (92%) of the infants examined after 1 week of consumption, and temporarily dominated the intestinal Lactobacillus community. The administration of L. paracasei A led to a significant increment in the Lactobacillus population, while a moderate effect upon the main bacterial groups in the GI ecosystem was observed. Strain A also affected the diversity of the Lactobacillus and Bifidobacterium populations. The fecal bacterial structure of 1 - 2-year-old infants seems to combine neonate and adult-like features. The microbiota of these subjects promptly responded to probiotic consumption, later restoring the endogenous equilibrium.

  8. Spectrum of bacteriocin activity of Lactobacillus plantarum BS and fingerprinting by RAPD-PCR.

    PubMed

    Elegado, Francisco B; Guerra, Marie Antonette Ruth V; Macayan, Rommel A; Mendoza, Helen A; Lirazan, Marcelina B

    2004-08-15

    The spectrum of antimicrobial activity of Lactobacillus plantarum BS against representative bacterial species was established through deferred assay and 'spot-on-lawn' assay using actively growing cells and partially purified bacteriocin extract, respectively. Only lactobacilli, pediococci, enterococci, bacilli and Listeria were inhibited from the test microorganisms. Slight bacteriocinogenic activity through 'spot-on-lawn' assay was detected against Staphylococcus aureus and Escherichia coli O157:H7. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis was used to compare the fingerprint of L. plantarum BS with other strains of L. plantarum. Using the 16S rRNA-based primer, P32, the bacteriocinogenic isolate exhibited identical RAPD-PCR fingerprints to L. plantarum ATCC 14917. Dendrograms derived from the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) were constructed to show the similarity relationships among the investigated strains based on RAPD-PCR analysis. Bands differentiating L. plantarum BS from L. plantarum ATCC 14917 were also identified by varying the annealing temperature.

  9. Inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 toward L. monocytogenes, S. thypimurium and E. coli

    NASA Astrophysics Data System (ADS)

    Marwati, T.; Cahyaningrum, N.; Widodo, S.; Januarsyah, T.; Purwoko

    2018-01-01

    Bacteriocin is a protein compound which has bactericidal ability against pathogen bacteria. This research aims to study the inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 against Listeria monocytogenes, Salmonella thypimuruim and Escherchia coli. The bacteriocin produce from Lactobacillus SCG 1223 in the MRS broth media The experimental design used was Completely Randomized Design. The variations used in this design were percentage of inoculum (5%, 10%), medium pH (4, 6), incubation temperature (27°C, 40°C), and incubation time (4, 10, 14 hours). Result showed that bacteriocin from Lactobacillus SCG 1223 had wide spectrum toward L. monocytogenes, S. thypimuruim and E. coli. The highest bacteriocin activity toward L. monocytogenes produced by Lactobacillus SCG 1223 with 10% inoculum in media with initial pH 6, incubation temperature 27°C for 14 hour, toward S. thypimurium produced by Lactobacillus SCG 1223 with in media with initial pH 6, incubation temperature 40°C for 14 hour, and toward E. coli was 1085.81 AU/ml, produced by Lactobacillus SCG 1223 in MRS broth with initial pH 4, incubation temperature 40°C for 14 hour. This study is expected to find a new food preservative that can inhibit the growth of pathogenic bacteria and extend the shelf life of food. From the economic prospective of view, bacteriocin is very promising natural alternative biopreservatives.

  10. Isolation of lactobacillus reuteri from Peyer's patches and their effects on sIgA production and gut microbiota diversity.

    PubMed

    Wang, Panpan; Li, Ya; Xiao, Hang; Shi, Yonghui; Le, Guo-Wei; Sun, Jin

    2016-09-01

    We previously reported that specific Lactobacillus reuteri colonized within mouse Peyer's patches (PP) effectively prevented high fat diet induced obesity and low-grade chronic inflammation. We further investigated the role of PP Lactobacillus reuteri on sIgA production in rats in this study. Lactobacilli were isolated from rat PP. All isolates were L. reuteri and belonged to three phenotypes according to amplified fragment length polymorphism analysis. Typical strains of two main clusters, PP1 and PP2, were used to treat control and vitamin A deficient (VAD) rats, respectively. The feeding of PP1 and PP2 affected sIgA and Lactobacillus diversity by strain-specific manner. Free sIgA was significantly increased by PP1 (p = 0.069) and PP2 (p < 0.05) in the control rats but not in the VAD rats. Only PP1 significantly changed PP Lactobacillus diversity in the control rats (p < 0.05). However, PP2 specifically changed ileal Lactobacillus diversity in both control and VAD rats. Fecal sIgA was correlated with PP Lactobacillus diversity (R(2) = 0.7958, p = 0.011). Modulation of sIgA production by PP L. reuteri of rat is dependent on vitamin A and change of Lactobacillus diversity in PP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice.

    PubMed

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L

  12. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice

    PubMed Central

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    Aim To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Methods Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. Results The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Conclusions Administration of an L. crispatus CCTCC M206119 supplement aggravated

  13. Genome sequence of Lactobacillus rhamnosus ATCC 8530.

    PubMed

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry

    2012-02-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  14. Safety evaluation of Lactobacillus delbrueckii subsp. lactis UO 004, a probiotic bacterium.

    PubMed

    Fernández, M Fernanda; Boris, Soledad; Barbés, Covadonga

    2005-03-01

    Lactobacillus delbrueckii subsp. lactis UO 004 was evaluated for its use as a potential probiotic from a safety point of view. The strain did not exhibit mucinolytic or other enzymatic activities that might be detrimental, such as those involving glycosidases (beta-D-glucosaminidase or alpha-D-galactosidase) or arylamidases (factor Xa and quimotrypsin-like activities), frequently present in Lactobacillus strains isolated from patients with endocarditis, although it was able to express protein Ca and kallikrein-like activities. On the other hand, the presence of the strain did not interfere with the growth of certain species of normal intestinal microbiota, such as Enterococcus fecalis, Escherichia coli, Bifidobacterium bifidum or Bacteroides fragilis. Moreover, the potential probiotic strain UO 004 is sensitive to antibiotics with transmissible resistance mechanisms in Lactobacillus such as chloramphenicol, erythromycin, tetracycline and vancomycin. In addition, strain L. delbrueckii UO 004 was not able to translocate towards the intestinal barrier of mice or produce changes in their activity or general health status.

  15. Promising Prebiotic Candidate Established by Evaluation of Lactitol, Lactulose, Raffinose, and Oligofructose for Maintenance of a Lactobacillus-Dominated Vaginal Microbiota

    PubMed Central

    McMillan, Amy; Seney, Shannon; van der Veer, Charlotte; Kort, Remco; Sumarah, Mark W.

    2017-01-01

    ABSTRACT Perturbations to the vaginal microbiota can lead to dysbiosis, including bacterial vaginosis (BV), which affects a large portion of the female population. In a healthy state, the vaginal microbiota is characterized by low diversity and colonization by Lactobacillus spp., whereas in BV, these species are displaced by a highly diverse population of bacteria associated with adverse vaginal health outcomes. Since prebiotic ingestion has been a highly effective approach to invigorate lactobacilli for improved intestinal health, we hypothesized that these compounds could stimulate lactobacilli at the expense of BV organisms to maintain vaginal health. Monocultures of commensal Lactobacillus crispatus, Lactobacillus vaginalis, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus jensenii, and Lactobacillus iners, in addition to BV-associated organisms and Candida albicans, were tested for their ability to utilize a representative group of prebiotics consisting of lactitol, lactulose, raffinose, and oligofructose. The disaccharide lactulose was found to most broadly and specifically stimulate vaginal lactobacilli, including the strongly health-associated species L. crispatus, and importantly, not to stimulate BV organisms or C. albicans. Using freshly collected vaginal samples, we showed that exposure to lactulose promoted commensal Lactobacillus growth and dominance and resulted in healthy acidity partially through lactic acid production. This provides support for further testing of lactulose to prevent dysbiosis and potentially to reduce the need for antimicrobial agents in managing vaginal health. IMPORTANCE Bacterial vaginosis (BV) and other dysbioses of the vaginal microbiota significantly affect the quality of life of millions of women. Antimicrobial therapy is often poorly effective, causes side effects, and does not prevent recurrences. We report one of very few studies that have evaluated how prebiotics—compounds that are selectively fermented

  16. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    PubMed

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (P<0.01). B. subtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (P<0.05). The viability of Lactobacillus increased when co-cultured with B. subtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (P<0.05). The role of Bacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.

  17. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp.

    PubMed

    Archer, A C; Kurrey, N K; Halami, P M

    2018-03-14

    This study aimed at characterizing the adhesion and immune-stimulatory properties of native probiotic Lactobacillus fermentum (MCC 2759 and MCC 2760) and Lactobacillus delbrueckii MCC 2775. Adhesion of the strains was assessed in Caco-2 and HT-29 cell lines. Expression of adhesion and immune markers were evaluated in Caco-2 cells by real-time qPCR. The cultures displayed >80% of adhesion to both cell lines and also induced the expression of mucin-binding protein (mub) gene in the presence of mucin, bile and pancreatin. Adhesion was mediated by carbohydrate and proteinaceous factors. The cultures stimulated the expression of inflammatory cytokines in Caco-2 cells. However, pro-inflammatory genes were down-regulated upon challenge with lipopolysaccharide and IL-10 was up-regulated by the cultures. Cell wall extract of L. fermentum MCC 2760 induced the expression of IL-6 by 5·47-fold, whereas crude culture filtrate enhanced the expression of IL-10 by 14·87-fold compared to LPS control. The bacterial cultures exhibited strong adhesion and anti-inflammatory properties. This is the first report to reveal the role of adhesion markers of L. fermentum and L. delbrueckii by qPCR. The strain-specific anti-inflammatory property of native cultures may be useful to alleviate inflammatory conditions and develop a target-based probiotic. © 2018 The Society for Applied Microbiology.

  18. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  19. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  20. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    PubMed Central

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  1. Lactobacillus alimentarius sp. nov., nom rev. and Lactobacillus farciminis sp. nov., nom. rev.

    PubMed

    Reuter, G

    1983-01-01

    In 1970 two new species within the so-called subgenus "Streptobacterium" Orla-Jensen of the genus Lactobacillus were described (Reuter, 1970). They were named L. alimentarius with the type strain "R 13" (DSM 20249) and L. farciminis with the type strain "Rv 4na" (DSM 20184). Since these two names have so far not been included in the "Approved Lists of Bacterial Names" (Skerman et al., 1980) they are revived for the same organisms with the same type strains. Copyright © 1983 Gustav Fischer Verlag, Stuttgart/New York. Published by Elsevier GmbH.. All rights reserved.

  2. The Lactobacillus flora in vagina and rectum of fertile and postmenopausal healthy Swedish women

    PubMed Central

    2011-01-01

    Background Lactobacillus species are the most often found inhabitants of vaginal ecosystem of fertile women. In postmenopausal women with low oestrogen levels, Lactobacillus flora is diminishing or absent. However, no studies have been performed to investigate the correlation between oestrogen levels and the lactobacilli in the gut. The aim of the present study was to investigate the relation in healthy women between vaginal and rectal microbial flora as well as possible variations with hormone levels. Methods Vaginal and rectal smears were taken from 20 healthy fertile women, average 40 years (range 28-49 years), in two different phases of the menstrual cycle, and from 20 postmenopausal women, average 60 years (range 52-85 years). Serum sex hormone levels were analyzed. Bacteria from the smears isolated on Rogosa Agar were grouped by Randomly Amplified Polymorphic DNA and identified by multiplex PCR and partial 16S rRNA gene sequencing. Results Lactobacillus crispatus was more often found in the vaginal flora of fertile women than in that of postmenopausal (p = 0.036). Fifteen of 20 fertile women had lactobacilli in their rectal smears compared to 10 postmenopausal women (p = 0.071). There was no correlation between the number of bacteria in vagina and rectum, or between the number of bacteria and hormonal levels. Neither could any association between the presence of rectal lactobacilli and hormonal levels be found. Conclusion Lactobacillus crispatus was more prevalent in the vaginal flora of fertile women, whereas the Lactobacillus flora of rectum did not correlate to the vaginal flora nor to hormonal levels. PMID:21609500

  3. [The antagonistic properties of bacteria isolated from the digestive tract of female mink housed in the area of the Chernobyl Atomic Electric Power Station].

    PubMed

    Sudenko, V I; Groma, L I; Podgorskiĭ, V S

    1996-01-01

    Differences in species composition, number and level of antagonistic activity of bacteria isolated from the digestive tract of Chernobyl female minks of various age and with different immunological state have been established. Prevalence of anaerobes (bifidobacteria) and microaerophils (lactic acid bacteria) with the increase of microorganisms concentration along the channel: stomach, small and large intestine (10(7)-10(10)/g) was found in all the departments of digestive tract of minks. Among the identified lactic-acid bacteria Lactobacillus helveticus (10(7)-10(8)/g) prevailed in the stomach of the studied female minks, L. coryniformis (10(9)-10(10)/g) in the small intestine, L. casei (10(10)/g) in the large one. Antagonistic activity was most expressed in the strains of L. helveticus and L. casei, isolated from the younger (1.5 year-old) minks. Enterococcus faecalis isolated from the stomach of 1.5 year-old female minks was distinguished by the greatest antagonistic activity among identified enterococci. Strains of E. faecium isolated from the thin intestine of the young female minks (1.5 year-old) and from the large intestine of more nature animals (2.5 years) who received thymogen were characterized by the most expressed antibiosis among enterococci isolated bacteria a conclusion was made that the mechanisms of inhibitory effect of the studied microorganisms are underlied by not only their capacity to form organic acids but also by the capacity to produce antibiotic products.

  4. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  5. Acid-producing capacity from sugars and sugar alcohols among Lactobacillus isolates collected in connection with radiation therapy.

    PubMed

    Almståhl, Annica; Rudbäck, Helena; Basic, Amina; Carlén, Anette; Alstad, Torgny

    2017-12-01

    To investigate the acid-producing capacity from sugars and sugar alcohols of oral Lactobacillus collected in connection with radiation therapy (RT) to the head and neck region. Lactobacillus were collected from the tongue, buccal mucosa and supragingival plaque in 24 patients before, during, and after RT. The acid-producing capacity of Lactobacillus isolates (n=211) was analyzed using a colorimetric fermentation test in microtiter plates. Solutions containing 2% sugars (sucrose, glucose, fructose, lactose) or sugar-alcohols (sorbitol and xylitol) were used. After 24h of incubation, bacterial acid-producing capacity was determined as strong (pH<5), weak (pH  ≥5-≤ 6) or low/absent (pH>6). Data regarding intake frequency of sugar-rich products and products with sugar-alcohols was collected. The highest acid-producing capacity using the sugars was seen for isolates collected during RT. Sorbitol was fermented to a higher extent during and post RT, especially among isolates from plaque. Lactobacillus fermenting xylitol showed the highest acid-producing capacity during RT (p<0.05). No statistically significant correlations between stimulated whole salivary secretion rate and acid-producing capacity, or between the intake frequency of sugar-rich products or sugar-alcohol containing products and Lactobacillus acid-producing capacity, were found. The results suggest that Lactobacillus isolates, collected from the tongue, buccal mucosa and supragingival plaque, have a higher acid-producing capacity using sugars and sugar-alcohols during RT than one year post RT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery.

    PubMed

    Petricevic, Ljubomir; Domig, Konrad J; Nierscher, Franz Josef; Sandhofer, Michael J; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-05-30

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery.

  7. Accumulation of Polyphosphate in Lactobacillus spp. and Its Involvement in Stress Resistance

    PubMed Central

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel

    2014-01-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  8. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success.

    PubMed

    Bull, Matthew; Plummer, Sue; Marchesi, Julian; Mahenthiralingam, Eshwar

    2013-12-01

    Lactobacillus acidophilus is a commercially significant bacterial probiotic, originally isolated from the human gastrointestinal tract and designated Bacillus acidophilus in 1900. Throughout the development of methods to identify and characterise bacteria, L. acidophilus has undergone multiple taxonomic revisions and is now the type species of a phylogenetic subgroup in the highly diverse and heterogeneous Lactobacillus genus. As a result of the limitations of differentiating phenotypically similar species by morphological and biochemical means and revisionary nature of Lactobacillus taxonomy, the characterisation of L. acidophilus has struggled with misidentification and misrepresentation. In contrast, due to its global use as a probiotic supplement in functional foods, L. acidophilus sensu stricto is now one of the most well-characterised Lactobacillus species. Here, we establish the provenance of L. acidophilus strains, unpicking historical and current misidentifications of L. acidophilus, and reviewing the probiotic, genomic and physiological characteristics of this important Lactobacillus species. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Lactobacillus as a rare cause of an infected total knee replacement: a case report

    PubMed Central

    2009-01-01

    Introduction We report a rare case of an infected revision total knee replacement as a result of a Lactobacillus species infection. Lactobacillus infections have been associated with prolonged broad-spectrum antibiotic use. This can have implications in revision surgery, especially when patients have been on previous long-term suppressive antibiotic therapy. Case presentation An 81-year-old British man with a previous history of complex revision knee arthroplasty for infection presented with a hot, swollen knee joint. He had previously been on long-term suppressive antibiotic therapy. Aspiration of the knee joint yielded a culture of Lactobacillus species. Conclusion In patients undergoing revision joint arthroplasty, especially for previous infection, the presence of common and uncommon bacterial species must be excluded and eradicated before further surgical intervention. PMID:19830207

  10. Rapid molecular identification and characteristics of Lactobacillus strains.

    PubMed

    Markiewicz, L H; Biedrzycka, E; Wasilewska, E; Bielecka, M

    2010-09-01

    Eleven type strains and 24 Lactobacillus isolates, preliminarily classified to the species due to phenotypic features, were investigated. Standard methods of identification with species-specific PCRs and typing with PFGE (with ApaI, NotI and SmaI restriction enzymes) allowed us to distinguish 16 unique strains belonging to 5 species (L. acidophilus, L. delbrueckii ssp. bulgaricus, L. plantarum, L. rhamnosus, L. salivarius). Alternative approach with 16S-23S rDNA ARDRA identification (with merely two restrictases, BsuRI and TaqI) and PCR-based typing (RAPD with two random- and rep-PCR with (GTG)(5) primers) showed to be more discriminative, i.e. 21 unique strains were classified in the same species as above. As a result, 7 out of 24 phenotypically species-assigned isolates were reclassified. The alternative procedure of rapid identification and typing of Lactobacillus isolates appeared to be equally effective and shortened from 1 week to 2-3 d (in comparison to the standard methods).

  11. Probiotic potential of lactobacillus strains isolated from sorghum-based traditional fermented food.

    PubMed

    Rao, K Poornachandra; Chennappa, G; Suraj, U; Nagaraja, H; Raj, A P Charith; Sreenivasa, M Y

    2015-06-01

    Sorghum-based traditional fermented food was screened for potential probiotic lactic acid bacteria. The isolates were identified by biochemical, physiological and genetic methods. Species identification was done by 16s rRNA sequence analysis. The functional probiotic potential of the two Lactobacillus species viz., Lactobacillus plantarum (Lact. plantarum) and Lactobacillus pentosus (Lact. pentosus) was assessed by different standard parameters. The strains were tolerant to pH 2 for 1 h and resistant to methicillin, kanamycin, vancomycin and norfloxacin. Two (Lact. plantarum COORG-3 and Lact. pentosus COORG-8) out of eight isolates recorded the cell surface hydrophobicity to be 59.12 and 64.06%, respectively. All the strains showed tolerance to artificial duodenum juice (pH 2) for 3 h, positive for bile salt hydrolase test and negative for haemolytic test. The neutralized cell-free supernatant of the strains Lact. pentosus COORG-4, Lact. plantarum COORG-1, Lact. plantarum COORG-7, Lact. pentosus COORG-8 and Lact. plantarum COORG-3 showed good antibiofilm activity. Lact. pentosus COORG-8 exhibited 74% activity against Pseudomonas aeruginosa-MTCC 7903 and Lact. plantarum COORG-7 showed 68% inhibition of biofilm against Klebsiella pneumonia MTCC 7407. Three (Lact. plantarum COORG-7, Lact. pentosus COORG-5 and Lact. pentosus COORG 8) out of eight isolates exhibited a good antimicrobial activity against Listeria monocytogenes and five isolates (Lact. pentosus COORG 2, Lact. plantarum COORG 1, Lact. plantarum COORG 4, Lact. pentosus COORG 3 and Lact. plantarum COORG 6) are active against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella pneumonia, Enterococcus faecalis. The study also evaluated the cholesterol lowering property of the Lactobacillus strains using hen egg yolk as the cholesterol source. The cholesterol in hen egg yolk was assimilated by 74.12 and 68.26% by Lact. plantarum COORG 4 and Lact. pentosus COORG 7

  12. Consistent Condom Use Increases the Colonization of Lactobacillus crispatus in the Vagina

    PubMed Central

    Ma, Liyan; Lv, Zhi; Su, Jianrong; Wang, Jianjie; Yan, Donghui; Wei, Jingjuan; Pei, Shuang

    2013-01-01

    Background Non-hormonal contraception methods have been widely used, but their effects on colonization by vaginal lactobacilli remain unclear. Objective To determine the association between non-hormonal contraception methods and vaginal lactobacilli on women’s reproductive health. Methods The cross-sectional study included 164 healthy women between 18–45 years of age. The subjects were divided into different groups on the basis of the different non-hormonal contraception methods used by them. At the postmenstrual visit (day 21 or 22 of the menstrual cycle), vaginal swabs were collected for determination of Nugent score, quantitative culture and real-time polymerase chain reaction (PCR) of vaginal lactobacilli. The prevalence, colony counts and 16S rRNA gene expression of the Lactobacillus strains were compared between the different groups by Chi-square and ANOVA statistical analysis methods. Results A Nugent score of 0–3 was more common in the condom group (93.1%) than in the group that used an interuterine device(IUD) (75.4%), (p = 0.005). The prevalence of H2O2-producing Lactobacillus was significantly higher in the condom group (82.3%) than in the IUD group (68.2%), (p = 0.016). There was a significant difference in colony count (mean ± standard error (SE), log10colony forming unit (CFU)/ml) of H2O2-producing Lactobacillus between condom users (7.81±0.14) and IUD users (6.54±0.14), (p = 0.000). The 16S rRNA gene expression (mean ± SE, log10copies/ml) of Lactobacillus crispatus was significantly higher in the condom group (8.09±0.16) than in the IUD group (6.03±0.18), (p = 0.000). Conclusion Consistent condom use increases the colonization of Lactobacillus crispatus in the vagina and may protect against both bacterial vaginosis (BV) and human immunodeficiency virus (HIV). PMID:23894682

  13. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder.

    PubMed

    Aizawa, Emiko; Tsuji, Hirokazu; Asahara, Takashi; Takahashi, Takuya; Teraishi, Toshiya; Yoshida, Sumiko; Ota, Miho; Koga, Norie; Hattori, Kotaro; Kunugi, Hiroshi

    2016-09-15

    Bifidobacterium and Lactobacillus in the gut have been suggested to have a beneficial effect on stress response and depressive disorder. We examined whether these bacterial counts are reduced in patients with major depressive disorder (MDD) than in healthy controls. Bifidobacterium and Lactobacillus counts in fecal samples were estimated in 43 patients and 57 controls using bacterial rRNA-targeted reverse transcription-quantitative polymerase chain reaction The patients had significantly lower Bifidobacterium counts (P=0.012) and tended to have lower Lactobacillus counts (P=0.067) than the controls. Individuals whose bacterial counts below the optimal cut-off point (9.53 and 6.49log10 cells/g for Bifidobacterium and Lactobacillus, respectively) were significantly more common in the patients than in the controls for both bacteria (Bifidobacterium: odds ratio 3.23, 95% confidence interval [CI] 1.38-7.54, P=0.010; Lactobacillus: 2.57, 95% CI 1.14-5.78, P=0.027). Using the same cut-off points, we observed an association between the bacterial counts and Irritable bowel syndrome. Frequency of fermented milk consumption was associated with higher Bifidobacterium counts in the patients. The findings should be interpreted with caution since effects of gender and diet were not fully taken into account in the analysis. Our results provide direct evidence, for the first time, that individuals with lower Bifidobacterium and/or Lactobacillus counts are more common in patients with MDD compared to controls. Our findings provide new insight into the pathophysiology of MDD and will enhance future research on the use of pro- and prebiotics in the treatment of MDD. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Coexpression and Secretion of Endoglucanase and Phytase Genes in Lactobacillus reuteri

    PubMed Central

    Wang, Lei; Yang, Yuxin; Cai, Bei; Cao, Pinghua; Yang, Mingming; Chen, Yulin

    2014-01-01

    A multifunctional transgenic Lactobacillus with probiotic characteristics and an ability to degrade β-glucan and phytic acid (phytate) was engineered to improve nutrient utilization, increase production performance and decrease digestive diseases in broiler chickens. The Bacillus subtilis WL001 endoglucanase gene (celW) and Aspergillus fumigatus WL002 phytase gene (phyW) mature peptide (phyWM) were cloned into an expression vector with the lactate dehydrogenase promoter of Lactobacillus casei and the secretion signal peptide of the Lactococcus lactis usp45 gene. This construct was then transformed into Lactobacillus reuteri XC1 that had been isolated from the gastrointestinal tract of broilers. Heterologous enzyme production and feed effectiveness of this genetically modified L. reuteri strain were investigated and evaluated. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that the molecular mass of phyWM and celW was approximately 48.2 and 55 kDa, respectively, consistent with their predicted molecular weights. Endoglucanase and phytase activities in the extracellular fraction of the transformed L. reuteri culture were 0.68 and 0.42 U/mL, respectively. Transformed L. reuteri improved the feed conversion ratio of broilers from 21 to 42 days of age and over the whole feeding period. However, there was no effect on body weight gain and feed intake of chicks. Transformed L. reuteri supplementation improved levels of ash, calcium and phosphorus in tibiae at day 21 and of phosphorus at day 42. In addition, populations of Escherichia coli, Veillonella spp. and Bacteroides vulgatus were decreased, while populations of Bifidobacterium genus and Lactobacillus spp. were increased in the cecum at day 21. PMID:25050780

  15. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum.

    PubMed

    Rud, Ida; Jensen, Peter Ruhdal; Naterstad, Kristine; Axelsson, Lars

    2006-04-01

    A synthetic promoter library (SPL) for Lactobacillus plantarum has been developed, which generalizes the approach for obtaining synthetic promoters. The consensus sequence, derived from rRNA promoters extracted from the L. plantarum WCFS1 genome, was kept constant, and the non-consensus sequences were randomized. Construction of the SPL was performed in a vector (pSIP409) previously developed for high-level, inducible gene expression in L. plantarum and Lactobacillus sakei. A wide range of promoter strengths was obtained with the approach, covering 3-4 logs of expression levels in small increments of activity. The SPL was evaluated for the ability to drive beta-glucuronidase (GusA) and aminopeptidase N (PepN) expression. Protein production from the synthetic promoters was constitutive, and the most potent promoters gave high protein production with levels comparable to those of native rRNA promoters, and production of PepN protein corresponding to approximately 10-15 % of the total cellular protein. High correlation was obtained between the activities of promoters when tested in L. sakei and L. plantarum, which indicates the potential of the SPL for other Lactobacillus species. The SPL enables fine-tuning of stable gene expression for various applications in L. plantarum.

  16. Identification of salivary Lactobacillus rhamnosus species by DNA profiling and a specific probe.

    PubMed

    Richard, B; Groisillier, A; Badet, C; Dorignac, G; Lonvaud-Funel, A

    2001-03-01

    The Lactobacillus genus has been shown to be associated with the dental carious process, but little is known about the species related to the decay, although Lactobacillus rhamnosus is suspected to be the most implicated species. Conventional identification methods based on biochemical criteria lead to ambiguous results, since the Lactobacillus species found in saliva are phenotypically close. To clarify the role of this genus in the evolution of carious disease, this work aimed to find a rapid and reliable method for identifying the L. rhamnosus species. Methods based on hybridization with DNA probes and DNA amplification by PCR were used. The dominant salivary Lactobacillus species (reference strains from the ATCC) were selected for this purpose as well as some wild strains isolated from children's saliva. DNA profiling using semirandom polymorphic DNA amplification (semi-RAPD) generated specific patterns for L. rhamnosus ATCC 7469. The profiles of all L. rhamnosus strains tested were similar and could be grouped; these strains shared four common fragments. Wild strains first identified with classic methods shared common patterns with the L. rhamnosus species and could be reclassified. One fragment of the profile was purified, cloned, used as a probe and found to be specific to the L. rhamnosus species. These results may help to localize this species within its ecological niche and to elucidate the progression of the carious process.

  17. Discrimination of probiotic Lactobacillus strains for poultry by repetitive sequenced-based PCR fingerprinting.

    PubMed

    Lee, Chin Mei; Sieo, Chin Chin; Cheah, Yoke-Kqueen; Abdullah, Norhani; Ho, Yin Wan

    2012-02-01

    Four repetitive element sequence-based polymerase chain reaction (rep-PCR) methods, namely repetitive extragenic palindromic PCR (REP-PCR), enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), polytrinucleotide (GTG)₅ -PCR and BOX-PCR, were evaluated for the molecular differentiation of 12 probiotic Lactobacillus strains previously isolated from the gastrointestinal tract of chickens and used as a multistrain probiotic. This study represents the first analysis of the comparative efficacy of these four rep-PCR methods and their combination (composite rep-PCR) in the molecular typing of Lactobacillus strains based on a discriminatory index (D). Species-specific and strain-specific profiles were observed from rep-PCR. From the numerical analysis of composite rep-PCR, BOX-PCR, (GTG)₅ -PCR, REP-PCR and ERIC-PCR, D values of 0.9118, 0.9044, 0.8897, 0.8750 and 0.8529 respectively were obtained. Composite rep-PCR analysis was the most discriminative method, with eight Lactobacillus strains, namely L. brevis ATCC 14869(T) , L. reuteri C 10, L. reuteri ATCC 23272(T) , L. gallinarum ATCC 33199(T) , L. salivarius ATCC 11741(T) , L. salivarius I 24, L. panis JCM 11053(T) and L. panis C 17, being differentiated at the strain level. Composite rep-PCR analysis is potentially a useful fingerprinting method to discriminate probiotic Lactobacillus strains isolated from the gastrointestinal tract of chickens. Copyright © 2011 Society of Chemical Industry.

  18. Characterization of amygdalin-degrading Lactobacillus species.

    PubMed

    Menon, R; Munjal, N; Sturino, J M

    2015-02-01

    Cyanogenic glycosides are phytotoxic secondary metabolites produced by some crop plants. The aim of this study was to identify lactic acid bacteria (LAB) capable of catabolizing amygdalin, a model cyanogenic glycoside, for use in the biodetoxification of amygdalin-containing foods and feeds. Amygdalin-catabolizing lactobacilli were characterized using a combination of cultivation-dependent and molecular assays. Lactobacillus paraplantarum and Lactobacillus plantarum grew robustly on amygdalin (Amg(+)), while other LAB species typically failed to catabolize amygdalin (Amg(-)). Interestingly, high concentrations of amygdalin and two of its metabolic derivatives (mandelonitrile and benzaldehyde) inhibited the growth of Lact. plantarum RENO 0093. The differential regulation of genes tentatively involved in cyanohydrin metabolism illustrated that the metabolism of amygdalin- and glucose-grown cultures also differed significantly. Amygdalin fermentation was a relatively uncommon phenotype among the LAB and generally limited to strains from the Lact. plantarum group. Phenotype microarrays (PM) enabled strain-level discrimination between closely related strains within a species and suggested that phenotypic differences might affect niche specialization. Amygdalin-degrading lactobacilli with practical application in the biodetoxification of amygdalin were characterized. These strains show potential for use as starter cultures to improve the safety of foods and feeds. © 2014 The Society for Applied Microbiology.

  19. The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the "gastric barrier effect" in patients chronically treated with PPI: a pilot study.

    PubMed

    Del Piano, Mario; Anderloni, Andrea; Balzarini, Marco; Ballarè, Marco; Carmagnola, Stefania; Montino, Franco; Orsello, Marco; Pagliarulo, Michela; Tari, Roberto; Soattini, Liliana; Sforza, Filomena; Mogna, Luca; Mogna, Giovanni

    2012-10-01

    Gastroesophageal reflux disease is a very widespread condition. In Europe, it is estimated that about 175 million people suffer from this disease and have to chronically take drugs to increase gastric pH. The proton pump inhibitors (PPIs) such as omeprazole, lansoprazole, and esomeprazole are the most widely used drug typology in this regard. However, the inhibition of normal gastric acid secretion has important side effects, the most important being bacterial overgrowth in the stomach and duodenum with a concentration of >10⁵ viable cells/mL. As a major consequence of this, many harmful or even pathogenic bacteria contained in some foods could survive the gastric transit and colonize either the stomach itself, the duodenum, or the gut, where they could establish acute and even chronic infections with unavoidable consequences for the host's health. In other words, the "gastric barrier effect" is strongly reduced or even disrupted. To date, there are no real strategies to deal with this widespread, although still relatively little known, problem. The aim of this study was to confirm the gastric bacterial overgrowth in long-term PPI consumers and to assess the efficacy of some probiotic bacteria, belonging to both genera Lactobacillus and Bifidobacterium, in the reduction of gastric and duodenal bacterial overgrowth, therefore partially restoring the gastric barrier effect against foodborne pathogenic bacteria. For this purpose, probiotics with a strong demonstrated inhibitory activity on gram-negative bacteria, such as Escherichia coli, were tested in a human intervention trial involving a total of 30 subjects treated with PPIs for either 3 to 12 consecutive months (short-term) or >12 consecutive months (long-term). An additional 10 subjects not taking PPIs were enrolled and used as a control group representing the general population. Four selected probiotics Probiotical SpA (Novara, Italy), namely Lactobacillus rhamnosus LR06 (DSM 21981), Lactobacillus pentosus

  20. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. [Lactobacillus sake; Lactobacillus curvatus; Lactobacillus farciminis; Staphylococcus aureus; Salmonella typimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showingmore » a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.« less

  1. Lactobacillus GG for treatment of acute childhood diarrhoea: An open labelled, randomized controlled trial

    PubMed Central

    Aggarwal, Sunny; Upadhyay, Amit; Shah, Dheeraj; Teotia, Neeraj; Agarwal, Astha; Jaiswal, Vijay

    2014-01-01

    Background & objectives: Randomized controlled trials in developed countries have reported benefits of Lactobacillus GG (LGG) in the treatment of acute watery diarrhoea, but there is paucity of such data from India. The study was aimed to evaluate the efficacy and safety of Lactobacillus GG in the treatment of acute diarrhoea in children from a semi-urban city in north India. Methods: In this open labelled, randomized controlled trial 200 children with acute watery diarrhoea, aged between 6 months to 5 years visiting outpatient department and emergency room of a teaching hospital in north India were enrolled. The children were randomized into receiving either Lactobacillus GG in dose of 10 billion cfu/day for five days or no probiotic medication in addition to standard WHO management of diarrhoea. Primary outcomes were duration of diarrhoea and time to change in consistency of stools. Results: Median (inter quartile range) duration of diarrhoea was significantly shorter in children in LGG group [60 (54-72) h vs. 78 (72-90) h; P<0.001]. Also, there was faster improvement in stool consistency in children receiving Lactobacillus GG than control group [36 (30-36) h vs. 42 (36-48) h; P<0.001]. There was significant reduction in average number of stools per day in LGG group (P<0.001) compared to the control group. These benefits were seen irrespective of rotavirus positivity in stool tests. Interpretation & conclusions: Our results showed that the use of Lactobacillus GG in children with acute diarrhoea resulted in shorter duration and faster improvement in stool consistency as compared to the control group. PMID:24820831

  2. Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia.

    PubMed

    Leisner, J J; Vancanneyt, M; Lefebvre, K; Vandemeulebroecke, K; Hoste, B; Vilalta, N Euras; Rusul, G; Swings, J

    2002-05-01

    Lactic acid bacteria (LAB) are the predominant micro-organisms in tempoyak, a Malaysian acid-fermented condiment. In a study on the diversity of LAB in this product, three isolates could not be identified using SDS-PAGE of whole-cell proteins or API 50 CH. The taxonomic position of the three isolates was clarified in the present study. 16S rDNA sequencing classified a representative strain in the genus Lactobacillus, clearly separated from all known species, and most closely related to the Lactobacillus reuteri phylogenetic group. DNA-DNA hybridization experiments and an extensive phenotypic description confirm that the strains represent a single and separate novel species among the obligately heterofermentative lactobacilli. The three isolates are distinguished at the intra-species level by plasmid profiling, pulsed-field gel electrophoresis of macro-restriction fragments and biochemical features. The name Lactobacillus durianis sp. nov. is proposed for the novel taxon and the type strain is LMG 19193T (= CCUG 45405T).

  3. Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics.

    PubMed

    Arena, Mattia P; Russo, Pasquale; Capozzi, Vittorio; López, Paloma; Fiocco, Daniela; Spano, Giuseppe

    2014-09-01

    The probiotic potential of Lactobacillus plantarum and Lactobacillus fermentum strains, capable of overproducing riboflavin, was investigated. The riboflavin production was quantified in co-cultures of lactobacilli and human intestinal epithelial cells, and the riboflavin overproduction ability was confirmed. When milk and yogurt were used as carrier matrices, L. plantarum and L. fermentum strains displayed a significant ability to survive through simulated gastrointestinal transit. Adhesion was studied on both biotic and abiotic surfaces. Both strains adhered strongly on Caco-2 cells, negatively influenced the adhesion of Escherichia coli O157:H7, and strongly inhibited the growth of three reference pathogenic microbial strains. Resistance to major antibiotics and potential hemolytic activity were assayed. Overall, this study reveals that these Lactobacillus stains are endowed with promising probiotic properties and thus are candidates for the development of novel functional food which would be both enriched in riboflavin and induce additional health benefits, including a potential in situ riboflavin production, once the microorganisms colonize the host intestine.

  4. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface.

    PubMed

    Song, Young-Gyun; Lee, Sung-Hoon

    2017-04-01

    Candida albicans biofilm is associated with denture-related stomatitis and oral candidiasis of elderly. Probiotics are beneficial bacteria and have antibacterial activity against pathogenic bacteria. The purpose of this study was to investigate the antifungal activity of various probiotics against C. albicans and the inhibitory effects of probiotics on Candida biofilm on the denture surface. The spent culture media of various probiotics were investigated the antifungal efficacy against C. albicans. Candida biofilm was formed on a denture base resin and was then treated with Lactobacillus rhamnosus and Lactobacillus casei. Also, the biofilms of L. rhamnosus and L. casei were formed and were sequentially treated with C. albicans. Colony-forming units of C. albicans on the denture surface were counted after spreading on agar plate. The denture base resin was treated with the spent culture media for 30days, after which the denture surface roughness was analyzed with an atomic force microscope. L. rhamnosus and L. casei exhibited stronger antifungal activity than other probiotics. The spent culture medium of L. rhamnosus and L. casei exhibited the antifungal activity against blastoconidia and biofilm of C. albicans. L. rhamnosus and L. casei showed the antifungal activity against Candida biofilm, and the biofilm of L. rhamnosus and L. casei inhibited formation of Candida biofilm on denture surface. Neither of the probiotics affected the surface roughness of the denture base resin. L. rhamnosus and L. casei may be the ideal probiotics for the prevention and treatment of denture-related stomatitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Use of Lactobacillus spp. to prevent recurrent urinary tract infections in females.

    PubMed

    Ng, Qin Xiang; Peters, Christina; Venkatanarayanan, Nandini; Goh, Yan Yih; Ho, Collin Yih Xian; Yeo, Wee-Song

    2018-05-01

    Urinary tract infections (UTIs) are the most common bacterial infections seen in the community, especially amongst females. The widespread use of antibiotics has led to the increased occurrence of E. coli resistant isolates worldwide. A promising non-antibiotic approach is the use of probiotic lactobacilli strains. This paper hypothesizes that Lactobacillus spp. containing products are able to prevent recurrent urinary tract infections in females. Using the keywords [lactobacillus OR lactobacilli OR probiotic] and [urinary tract infection OR UTI OR cystitis], a preliminary search on the PubMed, Ovid, Google Scholar and ClinicalTrials.gov database yielded 1,647 papers published in English between 1-Jan-1960 and 1-May-2017. 9 clinical trials with a total of 726 patients were reviewed. Different lactobacilli strains (in either oral or suppository formulation) were utilized and they demonstrated varying efficacy in the prevention of recurrent UTIs. Using a random-effects model, pooled risk ratio of at least one recurrent UTI episode during the entire study duration was 0.684 (95% CI 0.438 to 0.929, p < 0.001), per-protocol analysis. However, key limitations include significant inter-study variability and the limited duration of follow-up of most studies. Our hypothesis on the chemoprophylactic effects of probiotics for UTIs is plausible and supported by current data. Lactobacillus rhamnosus GR1 and Lactobacillus reuteri RC14 were the most commonly studied lactobacilli strains. Further and more robust randomized controlled trials with standardized lactobacilli strains and formulation are required for confirmation of effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  7. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains

    PubMed Central

    Garcia, Estefânia F.; Luciano, Winnie A.; Xavier, Danilo E.; da Costa, Whyara C. A.; de Sousa Oliveira, Kleber; Franco, Octávio L.; de Morais Júnior, Marcos A.; Lucena, Brígida T. L.; Picão, Renata C.; Magnani, Marciane; Saarela, Maria; de Souza, Evandro L.

    2016-01-01

    This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains. PMID:27625647

  8. Mixed Lactobacillus plantarum Strains Inhibit Staphylococcus aureus Induced Inflammation and Ameliorate Intestinal Microflora in Mice.

    PubMed

    Ren, Dayong; Gong, Shengjie; Shu, Jingyan; Zhu, Jianwei; Rong, Fengjun; Zhang, Zhenye; Wang, Di; Gao, Liangfeng; Qu, Tianming; Liu, Hongyan; Chen, Ping

    2017-01-01

    Objective . Staphylococcus aureus is an important pathogen that causes intestinal infection. We examined the immunomodulatory function of single and mixed Lactobacillus plantarum strains, as well as their impacts on the structure of the microbiome in mice infected with Staphylococcus aureus . The experiment was divided into three groups: protection, treatment, and control. Serum IFN- γ and IL-4 levels, as well as intestinal sIgA levels, were measured during and 1 week after infection with Staphylococcus aureus with and without Lactobacillus plantarum treatment. We used 16s rRNA tagged sequencing to analyze microbiome composition. IFN- γ /IL-4 ratio decreased significantly from infection to convalescence, especially in the mixed Lactobacillus plantarum group. In the mixed Lactobacillus plantarum group the secretion of sIgA in the intestine of mice (9.4-9.7 ug/mL) was significantly higher than in the single lactic acid bacteria group. The dominant phyla in mice are Firmicutes , Bacteroidetes , and Proteobacteria . Treatment with mixed lactic acid bacteria increased the anti-inflammatory factor and the secretion of sIgA in the intestine of mice infected with Staphylococcus aureus and inhibited inflammation.

  9. The effects of inulin and fructo-oligosaccharide on the probiotic properties of Lactobacillus spp. isolated from human milk.

    PubMed

    Tulumoğlu, Şener; Erdem, Belgin; Şimşek, Ömer

    2018-05-22

    This study aims to determine the effects of inulin and fructo-oligosaccharide (FOS) on the probiotic properties of five Lactobacillus spp. isolated from human milk. Lactobacillus spp. were isolated and identified, and the growth characteristics, acid and bile salt tolerance, antagonistic effects, and cholesterol assimilation of Lactobacillus strains were investigated in the presence of inulin and FOS. Lactobacillus casei L1 was able to utilize inulin and FOS as carbon source as well as glucose even other strains were able to use, including Lactobacillus rhamnosus GG. This strain also showed high tolerance to acid and bile salt, even at pH 2.5 and 0.5% bile salt levels, respectively. Inulin and FOS promoted the antimicrobial activity of L. casei L1 against pathogenic bacteria. Cholesterol assimilation was higher than in the other and control probiotic strains in the presence inulin and FOS, which were measured as 14 and 25 mg/dL, respectively. In conclusion, L. casei L1 can use both inulin and FOS to maintain its viability both at digestive conditions and also the relevant prebiotics, and show broad antagonistic activity and cholesterol assimilation.

  10. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus.

    PubMed

    Spear, Gregory T; French, Audrey L; Gilbert, Douglas; Zariffard, M Reza; Mirmonsef, Paria; Sullivan, Thomas H; Spear, William W; Landay, Alan; Micci, Sandra; Lee, Byung-Hoo; Hamaker, Bruce R

    2014-10-01

    Lactobacillus colonization of the lower female genital tract provides protection from the acquisition of sexually transmitted diseases, including human immunodeficiency virus, and from adverse pregnancy outcomes. While glycogen in vaginal epithelium is thought to support Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize glycogen in vitro. This study investigated how glycogen could be utilized by vaginal lactobacilli in the genital tract. Several Lactobacillus isolates were confirmed to not grow in glycogen, but did grow in glycogen-breakdown products, including maltose, maltotriose, maltopentaose, maltodextrins, and glycogen treated with salivary α-amylase. A temperature-dependent glycogen-degrading activity was detected in genital fluids that correlated with levels of α-amylase. Treatment of glycogen with genital fluids resulted in production of maltose, maltotriose, and maltotetraose, the major products of α-amylase digestion. These studies show that human α-amylase is present in the female lower genital tract and elucidates how epithelial glycogen can support Lactobacillus colonization in the genital tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Restoration of cefixime-induced gut microbiota changes by Lactobacillus cocktails and fructooligosaccharides in a mouse model.

    PubMed

    Shi, Ying; Zhai, Qixiao; Li, Dongyao; Mao, Bingyong; Liu, Xiaoming; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2017-07-01

    Probiotics have been used to rebuild the antibiotic-induced dysfunction in gut microbiota, but whether the different strains of probiotics result in similar or reverse effects remains unclear. In this study, the different recovery effects of two cocktails (each contains four strains) of Lactobacillus and fructooligosaccharide against cefixime-induced change of gut microbiota were evaluated in C57BL/6J mice. The results show that the use of cefixime caused a reduction in the diversities of the microbial community and led to significantly decreasing to one preponderant Firmicutes phylum, which was difficult to restore naturally in the short term. The gut microbiota compositions of the groups treated with the probiotic cocktails were much more diverse than those of the natural recovery group. The effects of Lactobacillus cocktails against the cefixime-induced gut microbiota change may mainly be due to the beneficial SCFAs production in vivo and also be related to the good cell adhesion properties performed in vitro. Meanwhile, the restoration of the cefixime-induced gut microbiota was significantly different between two Lactobacillus groups since the Lactobacillus strains with high levels of fructooligosaccharide use and better cell adhesion properties performed considerably better than the Lactobacillus strains with high survival rates in the gastrointestinal tract. The contents of short-chain fatty acids in ceca were increased to 26.483±1.925 and 25.609±2.782μmol/g in the two probiotic cocktail groups respectively compared to 15.791±0.833μmol/g (P<0.05) in control group. Moreover, intestinal inflammation was alleviated by administration of the Lactobacillus cocktails. However, fructooligasaccharide administration showed certain effects on gut microbiota restoration (such as an increase of Akkermansia), although its effect on the entire microbiome structure is not so obvious. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Optimization of the medium for Lactobacillus acidophilus by Plackett-Burman and steepest ascent experiment.

    PubMed

    Chen, He; Niu, Jinfeng; Qin, Tao; Ma, Qi; Wang, Lei; Shu, Guowei

    2015-01-01

    Lactobacillus acidophilus not only improves the intestinal flora balance but also inhabits the growth of undesirable microorganisms in intestine, which is benefit to the health of humans and animals. Plackett-Burman and steepest ascent experiment are the rapid and concise ways of screening the main effective factors. This study is aimed to select the main influence factors and optimize the medium for Lactobacillus acidophilus by Plackett-Burman experiment and steepest ascent experiment. The ideal carbon source was screened among glucose, maltose, lactose and whey powder, and the ideal nitrogen source was screened among casein hydrolysate, peptone, yeast extract powder, fish meal, carbamide, ammonium sulfate and sodium nitrate by single factor experiment. Plackett-Burman and steepest ascent experiment were applied to screen the main effective factors of Lactobacillus acidophilus among peptone, beef extract, yeast extract powder, glucose, K2HPO4, C6H14O7N2, CH3COONa, MgSO4 and Tween-80. Result. The results indicated that glucose (p = 0.01510) as negative factor and K2HPO4 (p = 0.02017) as positive effect were the significant growth factors of Lactobacillus acidophilus, CH3COONa (p = 0.09273) as positive effect was an important factor, and the optimized medium was as follows: glucose - 21 g/L, K2HPO4 - 3.5 g/L, CH3COONa - 6.5 g/L, peptone - 10 g/L, beef extract - 8 g/L, yeast extract pow. nd. Lactobacillus acidophilus not only improves the intestinal flora balance but also inhabits the growth of undesirable microorganisms in intestine, which is benefit to the health of humans and animals. Plackett-Burman and steepest ascent experiment are the rapid and concise ways of screening the main effective factors. This study is aimed to select the main influence factors and optimize the medium for Lactobacillus acidophilus by Plackett-Burman experiment and steepest ascent experiment. Material and methods. The ideal carbon source was screened among glucose, maltose, lactose and

  13. In Vitro Characterization of Lactobacillus Strains Isolated from Fruit Processing By-Products as Potential Probiotics.

    PubMed

    de Albuquerque, Thatyane Mariano Rodrigues; Garcia, Estefânia Fernandes; de Oliveira Araújo, Amanda; Magnani, Marciane; Saarela, Maria; de Souza, Evandro Leite

    2017-08-23

    Nine wild Lactobacillus strains, namely Lactobacillus plantarum 53, Lactobacillus fermentum 56, L. fermentum 60, Lactobacillus paracasei 106, L. fermentum 250, L. fermentum 263, L. fermentum 139, L. fermentum 141, and L. fermentum 296, isolated from fruit processing by-products were evaluated in vitro for a series of safety, physiological functionality, and technological properties that could enable their use as probiotics. Considering the safety aspects, the resistance to antibiotics varied among the examined strains, and none of the strains presented hemolytic and mucinolytic activity. Regarding the physiological functionality properties, none of the strains were able to deconjugate bile salts; all of them presented low to moderate cell hydrophobicity and were able to autoaggregate, coaggregate with Listeria monocytogenes and Escherichia coli, and antagonize pathogenic bacteria. Exposure to pH 2 sharply decreased the survival of the examined strains after 1- or 2-h exposure; variable decreases were noted after 3-h exposure to pH 3. Overall, exposure to pH 5 and to bile salts (0.15, 0.3, and 1%) did not decrease the strains' survival. Examined strains presented better ability to survive from the exposure to simulated gastrointestinal conditions in laboratorial media and milk than in grape juice. Considering the technological properties, all the strains were positive for proteolytic activity and EPS and diacetyl production, and most of them had good tolerance to 1-4% NaCl. These results indicate that wild Lactobacillus strains isolated from fruit processing by-products could present performance compatible with probiotic properties and technological features that enable the development of probiotic foods with distinct characteristics.

  14. Lactobacillus species: taxonomic complexity and controversial susceptibilities.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M

    2015-05-15

    The genus Lactobacillus is a taxonomically complex and is composed of over 170 species that cannot be easily differentiated phenotypically and often require molecular identification. Although they are part of the normal human gastrointestinal and vaginal flora, they can also be occasional human pathogens. They are extensively used in a variety of commercial products including probiotics. Their antimicrobial susceptibilities are poorly defined in part because of their taxonomic complexity and are compounded by the different methods recommended by Clinical Laboratory Standards Institute and International Dairy Foundation. Their use as probiotics for prevention of Clostridium difficile infection is prevalent among consumers worldwide but raises the question of will the use of any concurrent antibiotic effect their ability to survive. Lactobacillus species are generally acid resistant and are able to survive ingestion. They are generally resistant to metronidazole, aminoglycosides and ciprofloxacin with L. acidophilus being susceptible to penicillin and vancomycin, whereas L. rhamnosus and L. casei are resistant to metronidazole and vancomycin. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617

  16. Molecular identification and cluster analysis of homofermentative thermophilic lactobacilli isolated from dairy products.

    PubMed

    Andrighetto, C; De Dea, P; Lombardi, A; Neviani, E; Rossetti, L; Giraffa, G

    1998-10-01

    Twenty-five strains of thermophilic lactobacilli isolated from yoghurt and from semi-hard and hard cheeses (in parallel with nine type or reference strains) were identified and grouped according to their genetic relatedness. Strains were identified by sugar fermentation patterns using the "API 50 CHL" galleries, by species-specific DNA probes in dot-blot hybridization experiments, by amplification and restriction analysis of the 16S rRNA gene (ARDRA) and by polymerase chain reaction (PCR) using species-specific oligonucleotide primers. Strains were classified as Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus, L. helveticus, and L. acidophilus. Strains which were atypical by sugar fermentation patterns were also identified. Most of the strains could not be grouped using carbohydrate fermentation profiles. PCR fingerprinting was used to identify DNA profiles for the 25 lactobacilli. Experimentally obtained PCR profiles enabled discrimination of all strains, which were grouped according to the similarities in their combined patterns. In general, the clustering of the strains corresponded well with species delineation obtained by molecular identification. The dendrogram of genetic relatedness enabled the unambiguous identification of most of the strains which were shown to be atypical by the sugar fermentation profile, except for a discrepancy in one L. delbrueckii subsp. lactis strain and one atypical Lactobacillus sp. strain.

  17. Probiotic Properties of Lactobacillus Strains Isolated from Tibetan Kefir Grains

    PubMed Central

    Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying

    2013-01-01

    The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing

  18. Lactobacillus perolens sp. nov., a soft drink spoilage bacterium.

    PubMed

    Back, W; Bohak, I; Ehrmann, M; Ludwig, W; Pot, B; Kersters, K; Schleifer, K H

    1999-09-01

    Lactic acid bacteria that are able to spoil soft drinks with low pH comprise a limited number of acidotolerant or acidophilic species of the genera Lactobacillus, Leuconostoc and Weissella. Various Gram-positive rods causing turbidity and off-flavour were isolated from orange lemonades. Physiological and biochemical studies including SDS-PAGE whole-cell protein analysis showed a homogeneous group of organisms. The 16S rRNA gene sequence analysis of two representatives revealed that they formed a phylogenetically distinct line within the genus Lactobacillus. All strains were facultatively heterofermentative, producing L-lactic acid. Based on the data presented a new species L. perolens is proposed. The name refers to the off-flavour caused by high amounts of diacetyl. The type strain of L. perolens is DSM 12744 (LMG 18936). A rRNA targeted oligonucleotide probe was designed that allows a fast and reliable identification of L. perolens.

  19. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    PubMed

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.

  20. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice.

    PubMed

    Asahara, T; Shimizu, K; Takada, T; Kado, S; Yuki, N; Morotomi, M; Tanaka, R; Nomoto, K

    2011-01-01

    The anti-infectious activity of lactobacilli against multi-drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic-induced infection. Explosive intestinal growth and subsequent lethal extra-intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 10(8) colony-forming units per mouse daily to mice. Comparison of the anti-Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869(T) , Lactobacillus plantarum ATCC 14917(T) , Lactobacillus reuteri JCM 1112(T) , Lactobacillus rhamnosus ATCC 7469(T) and Lactobacillus salivarius ATCC 11741(T) conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334(T) and Lactobacillus zeae ATCC 15820(T) . The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti-infectious activity. Moreover, heat-killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti-infectious activity. These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi-drug resistant pathogens, such as DT104. Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics. © 2010 The Authors. Journal of Applied Microbiology

  1. Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet.

    PubMed

    Feng, Jing; Jiang, Yujun; Li, Mingyu; Zhao, Siyu; Zhang, Yanming; Li, Xuesong; Wang, Hui; Lin, Guangen; Wang, Hao; Li, Tiejing; Man, Chaoxin

    2018-05-25

    Bacteria in Lactobacillus casei group, including Lactobacillus casei (L. casei), Lactobacillus paracasei (L. paracasei), and Lactobacillus rhamnosus (L. rhamnosus) are important lactic acid bacteria in the production of fermented dairy products and are faced with the controversial nomenclatural status due to their close phylogenetic similarity. To probe the evolution and phylogeny of L. casei group, 100 isolates of lactic acid bacteria originated from naturally fermented dairy products in Tibet of China were subjected to multilocus sequence typing (MLST). The MLST scheme, based on analysis of the housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA and recG, revealed that all the isolates belonged to a group containing the L. paracasei reference strains and were clearly different from the strains of L. casei and L. rhamnosus. Although nucleotide diversity (π) was low for the seven genes (ranging from 0.00341 for fusA to 0.01307 for recG), high genetic diversity represented by 83 sequence types (STs) with a discriminatory index of 0.98 was detected. A network-like structure based on split decomposition analysis, and the high values of the relative effect of recombination and mutation in the diversification of the lineages (r/m = 4.76) and the relative frequency of occurrence of recombination and mutation (ρ/θ = 2.62) indicated that intra-species recombination occurred frequently and homologous recombination played a key role in generating genotypic diversity amongst L. paracasei strains in Tibet. The discovery of 51 new STs and the results of STRUCTURE analysis suggested that the L. casei group in Tibet had an individual and particular population structure in comparison to European isolates. Overall, this research might be the first report about genetic diversity and population structure of Lactobacillus populations isolated from naturally fermented dairy products in Tibet based on MLST scheme.

  2. Use of Lactobacillus casei rhamnosus to Prevent Cholangitis in Biliary Atresia After Kasai Operation.

    PubMed

    Lien, Tien-Hau; Bu, Ling-Nan; Wu, Jia-Feng; Chen, Huey-Ling; Chen, An-Chyi; Lai, Ming-Wei; Shih, Hsiang-Hung; Lee, I-Hsien; Hsu, Hong-Yuan; Ni, Yen-Hsuan; Chang, Mei-Hwei

    2015-05-01

    Recurrent cholangitis may aggravate cholestatic liver cirrhosis in biliary atresia (BA) after the Kasai operation. This pilot study aimed to investigate whether Lactobacillus casei rhamnosus has the prophylactic efficacy for recurrent cholangitis in comparison with the conventional neomycin prophylaxis. Twenty jaundice-free patients with BA ages 0 to 3 years who underwent a Kasai operation were enrolled and randomized into 2 groups with 10 patients each: neomycin (25 mg · kg · day for 4 days/wk) and L casei rhamnosus (8 × 10 colony-forming unit per day) groups. The treatment duration was 6 months. Bacterial stool cultures were performed before treatment and 1, 3, and 6 months after starting treatment. In addition, 10 patients with BA with similar status but without prophylaxis served as the historical control group. In the Lactobacillus group, 2 patients (20%, mean 0.03 ± 0.07 episodes per month) developed cholangitis during the study period, with the same frequency as in the neomycin group and significantly lower than that in the control group (80%, P = 0.005, mean 0.22 ± 0.16 episodes per month). The mean change in body weight z score during the 6 months in the Lactobacillus group was 0.97 ± 0.59, which was significantly better than that in the control group (-0.01 ± 0.79, P = 0.006). In bacterial stool cultures, the Lactobacillus and Escherichia coli populations significantly increased and decreased, respectively, in the Lactobacillus group. The use of L casei rhamnosus was as effective as neomycin in preventing cholangitis in patients with BA who underwent Kasai operation, and therefore could be considered as a potential alternative prophylactic regimen.

  3. Microbiological, chemical, and sensory characteristics of Swiss cheese manufactured with adjunct Lactobacillus strains using a low cooking temperature.

    PubMed

    Kocaoglu-Vurma, N A; Harper, W J; Drake, M A; Courtney, P D

    2008-08-01

    The effect of nonstarter Lactobacillus adjunct cultures on the microbial, chemical, and sensory characteristics of Swiss cheese manufactured using the "kosher make procedure" was investigated. The kosher make procedure, which uses a lower cooking temperature than traditional Swiss cheese making, is used by many American cheese manufacturers to allow for kosher-certified whey. Cheeses were manufactured using a commercial starter culture combination and 1 of 3 non-starter Lactobacillus strains previously isolated from Swiss cheeses, Lactobacillus casei A26, L. casei B21, and Lactobacillus rhamnosus H2, as an adjunct. Control cheeses lacked the adjunct culture. Cheeses were analyzed during ripening for microbial and chemical composition. Adjunct strain L. casei A26, which utilized citrate most readily in laboratory medium, dominated the Lactobacillus population within 30 d, faster than the other adjunct cultures. There were no significant differences in Propionibacterium counts, Streptococcus thermophilus counts, protein, fat, moisture, salt, and pH among the cheeses. Free amino acid concentration ranged from 5 to 7 mmol/100 g of cheese at 90 d of ripening and was adjunct strain dependent. Lactic, acetic, and propionic acid concentrations were not significantly different among the cheeses after a 90-d ripening period; however differences in propionic acid concentrations were apparent at 60 d, with the cheeses made with L. casei adjuncts containing less propionic acid. Citric acid was depleted by the end of warm room ripening in cheeses manufactured with adjunct L. casei strains, but not with adjunct L. rhamnosus. Cheeses made with L. casei A26 were most similar to the control cheeses in diacetyl and butyric/isobutyric acid abundance as evaluated by electronic nose during the first 3 mo of ripening. The 4 cheese types differed in their descriptive sensory profiles at 8 mo of age, indicating an adjunct strain-dependent effect on particular flavor attributes. Adjunct

  4. Carbapenem-resistant Lactobacillus intra-abdominal infection in a renal transplant recipient with a history of probiotic consumption.

    PubMed

    Vanichanan, Jakapat; Chávez, Violeta; Wanger, Audrey; De Golovine, Aleksandra M; Vigil, Karen J

    2016-12-01

    Lactobacillus sp. is a low virulence bacterium, which rarely causes infection in immunocompetent individuals and usually is considered a contaminant. Normally this organism is susceptible to β-lactam antibiotics, yet resistant strains have been reported. Here, we report a case of a 60-year-old renal transplant recipient who developed an intra-abdominal abscess which grew a carbapenem-resistant Lactobacillus casei. This is significant since it is the first report of a clinical isolate of Lactobacillus sp. that demonstrated both microbiological and clinical resistance to carbapenem use. Moreover, the probiotic supplement that the patient had taken also grew a similar organism raising the concern of probiotic associated infection in immunocompromised individual.

  5. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kôso, a Japanese Sugar-Vegetable Fermented Beverage

    PubMed Central

    Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-01

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. PMID:26769925

  6. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9.

    PubMed

    Goh, Yong Jun; Goin, Caitlin; O'Flaherty, Sarah; Altermann, Eric; Hutkins, Robert

    2011-08-30

    Streptococcus thermophilus represents the only species among the streptococci that has "Generally Regarded As Safe" status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9 overexpressed genes

  7. Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia.

    PubMed

    Choi, Il-Dong; Kim, Sung-Hwan; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Hong, Seong Soo; Sim, Jae-Hun; Ahn, Young-Tae

    2016-03-01

    The triglyceride-lowering effect of probiotics Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 were investigated. Male SD Wistar rats were randomly divided into three groups and fed high-fat diet (HFD), HFD and probiotics (5 X 10(9) CFU/day of L. plantarum KY1032 and 5 X 10(9) CFU/day of L. curvatus HY7601), or normal diet for 6 weeks. Probiotic treatment significantly lowered the elevated plasma triglyceride and increased plasma free fatty acid, glycerol, and plasma apolipoprotein A-V (ApoA-V) levels. The probiotic-treated group showed elevated hepatic mRNA expression of PPARα, bile acid receptor (FXR), and ApoA-V. These results demonstrate that L. plantarum KY1032 and L. curvatus HY7601 lower triglycerides in hypertriglyceridemic rats by upregulating ApoA-V, PPARα, and FXR.

  8. Vaginal Lactobacillus Inhibits HIV-1 Replication in Human Tissues Ex Vivo

    PubMed Central

    Ñahui Palomino, Rogers A.; Zicari, Sonia; Vanpouille, Christophe; Vitali, Beatrice; Margolis, Leonid

    2017-01-01

    Lactobacillus species, which dominate vaginal microbiota of healthy reproductive-age women, lower the risks of sexually transmitted infections, including the risk of human immunodeficiency virus (HIV) acquisition. The exact mechanisms of this protection remain to be understood. Here, we investigated these mechanisms in the context of human cervico-vaginal and lymphoid tissues ex vivo. We found that all six Lactobacillus strains tested in these systems significantly suppressed HIV type-1 (HIV-1) infection. We identified at least three factors that mediated this suppression: (i) Acidification of the medium. The pH of the undiluted medium conditioned by lactobacilli was between 3.8 and 4.6. Acidification of the culture medium with hydrochloric acid (HCl) to this pH in control experiments was sufficient to abrogate HIV-1 replication. However, the pH of the Lactobacillus-conditioned medium (CM) diluted fivefold, which reached ∼6.9, was also suppressive for HIV-1 infection, while in control experiments HIV-1 infection was not abrogated when the pH of the medium was brought to 6.9 through the use of HCl. This suggested the existence of other factors responsible for HIV-1 inhibition by lactobacilli. (ii) Lactic acid. There was a correlation between the concentration of lactic acid in the Lactobacillus-CM and its ability to suppress HIV-1 infection in human tissues ex vivo. Addition of lactic acid isomers D and L to tissue culture medium at the concentration that corresponded to their amount released by lactobacilli resulted in HIV-1 inhibition. Isomer L was produced in higher quantities than isomer D and was mostly responsible for HIV-1 inhibition. These results indicate that lactic acid, in particular its L-isomer, inhibits HIV-1 independently of lowering of the pH. (iii) Virucidal effect. Incubation of HIV-1 in Lactobacillus-CM significantly suppressed viral infectivity for human tissues ex vivo. Finally, lactobacilli adsorb HIV-1, serving as a sink decreasing the

  9. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants

    PubMed Central

    2011-01-01

    Background Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Results Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp.delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. Conclusions This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky

  10. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants.

    PubMed

    Savino, Francesco; Cordisco, Lisa; Tarasco, Valentina; Locatelli, Emanuela; Di Gioia, Diana; Oggero, Roberto; Matteuzzi, Diego

    2011-06-30

    Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp. delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky infants. Our findings may stimulate

  11. Selected Lactobacillus strains isolated from sugary and milk kefir reduce Salmonella infection of epithelial cells in vitro.

    PubMed

    Zavala, L; Golowczyc, M A; van Hoorde, K; Medrano, M; Huys, G; Vandamme, P; Abraham, A G

    2016-09-01

    The isolation of potentially probiotic strains and the subsequent study of their properties are very important steps to gain insight in the health benefits ascribed to sugary and milk kefir. The aim of the present study was to characterise fifteen Lactobacillus strains isolated from these beverages by determining some surface properties and their ability to antagonise enterocyte cell damage after Salmonella infection in vitro. Lactobacillus surface properties were determined by hydrophobicity, autoaggregation, and coaggregation assays with Salmonella. In addition, lactobacilli adhesion to Caco-2/TC-7 cells and the effect on Salmonella invasion were evaluated. Finally, the disassembly of F-actin cytoskeleton on intestinal epithelial cells was assayed in vitro when Salmonella infection was performed in the presence of selected Lactobacillus strains. Ten out of the 15 strains showed a high adhesion capacity to Caco-2/TC-7 cells. Most of the strains were hydrophilic and non-autoaggregating. Strains isolated from sugary kefir were non-coaggregating with Salmonella, while strains Lactobacillus paracasei CIDCA 83120, 83121, 83123, 83124, 8339, 83102 isolated from milk kefir were able to coaggregate after 1 h. L. paracasei CIDCA 8339 and Lactobacillus kefiri CIDCA 83102 were able to diminish Salmonella invasion to the enterocytes. An antagonistic effect on cytoskeleton disruption elicited by the pathogen was also demonstrated. Our results suggest that both strains isolated from milk kefir could be considered as appropriate probiotic candidates.

  12. Fluorescence in situ Hybridization method using Peptide Nucleic Acid probes for rapid detection of Lactobacillus and Gardnerella spp.

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331

  13. Potentially probiotic Lactobacillus strains from traditional Kurdish cheese.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Shahidi, Fakhri; Mortazavi, Seyed Ali; Milani, Elnaz; Eshaghi, Zarrin

    2014-03-01

    In this study, the probiotic potential of Lactobacillus strains isolated from traditional Kurdish cheese was investigated. The Lactobacillus strains were examined for resistance to gastric acidity and bile toxicity, antimicrobial activities, autoaggregation, coaggregation, hydrophobicity, adhesion to Caco-2 cells, and antibiotic susceptibility. The results showed that all strains tested tolerate acid gastric conditions (pH 2.0 and 3.0), and all of them were bile resistant (at 0.3 and 1% concentration). Although no antibacterial activity was detected in vitro assay for the treated (neutralized to pH 6.5 and treated with catalase) cell-free culture supernatant (CFCS) of strains, untreated CFCS showed strong antagonistic activity against two known pathogens bacteria. All strains exhibited a strong autoaggregating phenotype and manifested a high degree of coaggregation with pathogens. On the other hand, majority of studied strains were found sensitive to different antibiotics, such as ampicillin, penicillin, ciprofloxacin, chloramphenicol, erythromycin, rifampicin, and tetracycline, and were resistant to vancomycin and streptomycin. Finally, isolated strains showed good hydrophobicity and adherence to Caco-2 cell line, so they could be exploited for food manufacture.

  14. Complete genome sequence of Lactobacillus johnsonii FI9785, a competitive exclusion agent against pathogens in poultry.

    PubMed

    Wegmann, Udo; Overweg, Karin; Horn, Nikki; Goesmann, Alexander; Narbad, Arjan; Gasson, Michael J; Shearman, Claire

    2009-11-01

    Lactobacillus johnsonii is a member of the acidophilus group of lactobacilli. Because of their probiotic properties, including attachment to epithelial cells, immunomodulation, and competitive exclusion of pathogens, representatives of this group are being intensively studied. Here we report the complete annotated genome sequence of Lactobacillus johnsonii FI9785, a strain which prevents the colonization of specific-pathogen-free chicks by Clostridium perfringens.

  15. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius.

    PubMed

    Quan, Lin-Hu; Kim, Yeon-Ju; Li, Guan Hao; Choi, Kwang-Tea; Yang, Deok-Chun

    2013-06-01

    In this study, the major ginsenoside Rb1 was transformed into the more pharmacologically active minor compound K by food grade Lactobacillus paralimentarius LH4, which was isolated from kimchi, a traditional Korean fermented food. The enzymatic reaction was analyzed by TLC, HPLC, and NMR. Using the cell-free enzyme of Lactobacillus paralimentarius LH4 at optimal conditions for 30 °C at pH 6.0, 1.0 mg ml(-1) ginsenoside Rb1 was transformed into 0.52 mg ml(-1) compound K within 72 h, with a corresponding molar conversion yield of 88 %. The cell-free enzyme hydrolyzed the two glucose moieties attached to the C-3 position and the outer glucose moiety attached to the C-20 position of the ginsenoside Rb1. The cell-free enzyme hydrolyzed the ginsenoside Rb1 along the following pathway: ginsenoside Rb1 → gypenoside XVII and ginsenoside Rd → ginsenoside F2 → compound K. Our results indicate that Lactobacillus paralimentarius LH4 has the potential to be applied for the preparation of compound K in the food industry.

  16. Effect of Probiotics on the Incidence of Healthcare-Associated Infections in Mechanically Ventilated Neurocritical Care Patients.

    PubMed

    Kenna, John; Mahmoud, Leana; Zullo, Andrew R; Potter, N Stevenson; Fehnel, Corey R; Thompson, Bradford B; Wendell, Linda C

    2016-02-01

    Healthcare-associated infections (HAIs) are seen in 17% of critically ill patients. Probiotics, live nonpathogenic microorganisms, may aid in reducing the incidence of infection in critically ill patients. We hypothesized that administration of probiotics would be safe and reduce the incidence of HAIs among mechanically ventilated neurocritical care patients. We assembled 2 retrospective cohorts of mechanically ventilated neurocritical care patients. In the preintervention cohort from July 1, 2011, to December 31, 2011, probiotics were not used. In the postintervention group from July 1, 2012, to December 31, 2012, 1 g of a combination of Lactobacillus acidophilus and Lactobacillus helveticus was administered twice daily to all patients who were mechanically ventilated for more than 24 hours. There were a total of 167 patients included, 80 patients in the preintervention group and 87 patients in the postintervention group. No patients in the preintervention group received probiotics. Eighty-five (98%) patients in the postintervention group received probiotics for a median of 10 days (interquartile range, 4-20 days). There were 14 (18%) HAIs in the preintervention group and 8 (9%) HAIs in the postintervention group (P = .17). Ventilator days, lengths of stay, in-hospital mortality, and discharge disposition were similar between the pre- and postintervention groups. There were no cases of Lactobacillus bacteremia or other adverse events associated with probiotics use. Probiotics are safe to administer in neurocritical care patients; however, this study failed to demonstrate a significant decrease in HAIs or secondary outcomes associated with probiotics. © 2015 American Society for Parenteral and Enteral Nutrition.

  17. Discrimination and divergence among Lactobacillus plantarum-group (LPG) isolates with reference to their probiotic functionalities from vegetable origin.

    PubMed

    Devi, Sundru Manjulata; Aishwarya, Subramanian; Halami, Prakash M

    2016-12-01

    The present study was aimed to evaluate the diversity and probiotic properties of Lactobacillus plantarum-group cultures from vegetable origin. First, genotypic diversity of L. plantarum (n=34) was achieved by PCR of Random Amplified Polymorphic DNA and recA gene-specific multiplex PCR. The isolates were segregated into five groups namely, Lactobacillus pentosus, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus plantarum subsp. plantarum and argentoratensis. Further discrimination was achieved by restriction fragment length polymorphism of probiotic adhesion genes viz.fbp, mub and msa gene. As determined by nucleotide sequence analysis and bioinformatics Pfam database, the putative Fbp protein had only one FBP domain, whereas Mub protein had 8-10 MUB domain repeats. However, L. pentosus (except CFR MFT9), L. plantarum subsp. argentoratensis (except CFR MFT5) and L. arizonensis (except CFR MFT2) isolates gave no amplicon for the tested marker genes. Selected cultures (n=15) showed tolerance to simulated digestive fluids (20-85%), exhibited auto-aggregation (10-77%), cellular hydrophobicity (12-78%), and broad spectrum of anti-microbial activity. Concurrently, high adherence capacity to mucin was achieved for L. plantarum subsp. plantarum (MCC 2974 and CFR MFT1) and L. paraplantarum (MTCC 9483, MCC 2977, MCC 2978), which had an additional MUB domain repeat. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Importance of Molecular Methods to Determine Whether a Probiotic is the Source of Lactobacillus Bacteremia.

    PubMed

    Aroutcheva, Alla; Auclair, Julie; Frappier, Martin; Millette, Mathieu; Lolans, Karen; de Montigny, Danielle; Carrière, Serge; Sokalski, Stephen; Trick, William E; Weinstein, Robert A

    2016-03-01

    There has been an increasing interest in the use of probiotic products for the prevention of Clostridium difficile infection (CDI). Bio-K+(®) is a commercial probiotic product comprising three strains of lactobacilli--Lactobacillus acidophilus CL1285(®), Lact. casei LBC80R(®) and Lact. rhamnosus CLR2(®)--that have been applied to prevent CDI. Generally considered as safe, lactobacilli have potential to cause bacteremia, endocarditis and other infections. The source of Lactobacillus bacteremia can be normal human flora or lactobacilli-containing probiotic. The aim of this study was to assess whether probiotic lactobacilli caused bacteremia and to show the value of molecular identification and typing techniques to determine probiotic and patient strain relatedness. We report an episode of Lactobacillus bacteremia in a 69-year-old man admitted to a hospital with severe congestive heart failure. During his hospitalization, he required long-term antibiotic therapy. Additionally, the patient received Bio-K+(®) probiotic as part of a quality improvement project to prevent CDI. Subsequently, Lactobacillus bacteremia occurred. Two independent blinded laboratory evaluations, using pulse field gel electrophoresis, 16S rRNA gene sequencing and DNA fingerprint analysis (rep-PCR), were performed to determine whether the recovered Lact. acidophilus originated from the probiotic product. Ultimately, the patient strain was identified as Lact. casei and both laboratories found no genetic relation between the patient's strain and any of the probiotic lactobacilli. This clinical case of lactobacillus bacteremia in the setting of probiotic exposure demonstrates the value of using discriminatory molecular methods to clearly determine whether there were a link between the patient's isolate and the probiotic strains.

  19. A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use.

    PubMed

    Gregoret, V; Perezlindo, M J; Vinderola, G; Reinheimer, J; Binetti, A

    2013-05-01

    Specific strains should only be regarded as probiotics if they fulfill certain safety, technological and functional criteria. The aim of this work was to study, from a comprehensive point of view (in vitro and in vivo tests), three Lactobacillus strains (Lactobacillus paracasei JP1, Lactobacillus rhamnosus 64 and Lactobacillus gasseri 37) isolated from feces of local newborns, determining some parameters of technological, biological and functional relevance. All strains were able to adequately grow in different economic culture media (cheese whey, buttermilk and milk), which were also suitable as cryoprotectants. As selective media, LP-MRS was more effective than B-MRS for the enumeration of all strains. The strains were resistant to different technological (frozen storage, high salt content) and biological (simulated gastrointestinal digestion after refrigerated storage in acidified milk, bile exposure) challenges. L. rhamnosus 64 and L. gasseri 37, in particular, were sensible to chloramphenicol, erythromycin, streptomycin, tetracycline and vancomycin, increased the phagocytic activity of peritoneal macrophage and induced the proliferation of IgA producing cells in small intestine when administered to mice. Even when clinical trails are still needed, both strains fulfilled the main criteria proposed by FAO/WHO to consider them as potential probiotics for the formulation of new foods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Carrageenan :the difference between PNG and KCL gel precipitation method as Lactobacillus acidophilus encapsulation material

    NASA Astrophysics Data System (ADS)

    Setijawati, D.; Nursyam, H.; Salis, H.

    2018-04-01

    The study on the effects of using of materials and methods in the preparation of the microcapsules Lactobacillus acidophilus towards the viability has been done. The research method used is experimental laboratory design. Variable research was kind of material (A) as the first factor with sub factor (A1 = Eucheuma cottonii) (A2 = Eucheuma spinosum) (A3 = mixture of Eucheuma cottonii and Eucheuma spinosum 1:1 ratio), while the second factor is a method of extraction to produce caragenan (B) with sub factor (B1 = Philipine Natural Grade modification) (B2 = KCl gel Press Precipitation). Analysis of different influences uses Analysis Of Varians followed by Fisher’s test. Analysis of data uses Mini tab 16. The results shows that the kind of extraction factors and methods gave significantly different effects on the viability of Lactobacillus acidophilus. The highest mean of Viablity obtained in the treatment of materials with a mixture of Eucheuma cottonii and Eucheuma spinosum and used KCl Gel Press method is equal to 7.14 log (CFU / mL). It is ssuggested using of kappa-iota carrageenanmixture asencapsulation material with KCl Gel Press method on Lactobacillus acidophilus microencapsulation process because it treatment gavethe highest average of Lactobacillus acidophilus viability.

  1. In vitro antimicrobial activities of metabolites from vaginal Lactobacillus strains against Clostridium perfringens isolated from a woman's vagina.

    PubMed

    Amin, Mansour; Moradi Choghakabodi, Parastoo; Alhassan Hamidi, Mohammad; Najafian, Mahin; Farajzadeh Sheikh, Ahmad

    2017-01-01

    More than 50 different species of bacteria may live in a woman's vagina, with lactobacilli being the predominant microorganism found in healthy adult females. Lactobacilli are relevant as a barrier to infection and are important in the impairment of colonization by pathogens, owing to competitive adherence to adhesion sites in the vaginal epithelium and their capacity to produce antimicrobial compounds. The aim of the present study was to demonstrate the inhibitory capability of Lactobacillus metabolites against Clostridium perfringens, an anaerobic Gram-positive bacterium. These bacteria were isolated from vaginal swabs by using culture-dependent approaches, and the bacteriostatic effect of Lactobacillus metabolites, extracted from different isolates, was assessed using a modified E test. Among the 100 vaginal swabs, 59 (59%) samples showed the presence of Lactobacillus strains and only one sample contained C. perfringens. Lactobacillus metabolites demonstrated the significant potency of in vitro activity against C. perfringens, with minimal inhibitory concentration values ranging from 15.6 μg/mL to 31.2 μg/mL. This study suggests that women without vaginal Lactobacillus strains may be susceptible to nonindigenous and potentially harmful microorganisms. Copyright © 2016. Published by Elsevier Taiwan LLC.

  2. Complete genome sequence of Lactobacillus kefiranofaciens ZW3.

    PubMed

    Wang, Yanping; Wang, Jingrui; Ahmed, Zaheer; Bai, Xiaojia; Wang, Jinju

    2011-08-01

    Lactobacillus kefiranofaciens ZW3 was isolated in Tibet, China, from kefir grain, a traditional dairy product that is known to provide many health benefits to humans. Here, we present the genome features of L. kefiranofaciens ZW3 and the identification of a gene cluster related to the synthesis of exopolysaccharide, an important constituent of the Tibetan kefir.

  3. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines.

    PubMed

    von Schillde, Marie-Anne; Hörmannsperger, Gabriele; Weiher, Monika; Alpert, Carl-Alfred; Hahne, Hannes; Bäuerl, Christine; van Huynegem, Karolien; Steidler, Lothar; Hrncir, Tomas; Pérez-Martínez, Gaspar; Kuster, Bernhard; Haller, Dirk

    2012-04-19

    The intestinal microbiota has been linked to inflammatory bowel diseases (IBD), and oral treatment with specific bacteria can ameliorate IBD. One bacterial mixture, VSL#3, containing Lactobacillus, Bifidobacterium, and Streptococcus, was clinically shown to reduce inflammation in IBD patients and normalize intestinal levels of IP-10, a lymphocyte-recruiting chemokine, in a murine colitis model. We identified Lactobacillus paracasei prtP-encoded lactocepin as a protease that selectively degrades secreted, cell-associated, and tissue-distributed IP-10, resulting in significantly reduced lymphocyte recruitment after intraperitoneal injection in an ileitis model. A human Lactobacillus casei isolate was also found to encode lactocepin and degrade IP-10. L. casei feeding studies in a murine colitis model (T cell transferred Rag2(-/-) mice) revealed that a prtP-disruption mutant was significantly less potent in reducing IP-10 levels, T cell infiltration and inflammation in cecal tissue compared to the isogenic wild-type strain. Thus, lactocepin-based therapies may be effective treatments for chemokine-mediated diseases like IBD. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Isolation, characterization, and evaluation of wild isolates of Lactobacillus reuteri from pig feces.

    PubMed

    Lee, Deog Yong; Seo, Yeon-Soo; Rayamajhi, Nabin; Kang, Mi Lan; Lee, Su In; Yoo, Han Sang

    2009-12-01

    Lactic acid bacteria (LAB) are a well-used probiotics for health improvements in both humans and animals. Despite of several benefits, non-host-specific LAB showed poor probiotics effects due to difficulty in colonization and competition with normal flora. Therefore, the feasibility of porcine LAB isolates was evaluated as a probiotics. Ten of 49 Lactobacillus spp. isolates harbored 2 approximately 10 kb plasmid DNA. Seven strains were selected based on the safety test, such as hemolytic activity, ammonia, indole, and phenylalanine production. After safety test, five strains were selected again by several tests, such as epithelial adherence, antimicrobial activity, tolerance against acid, bile, heat, and cold-drying, and production of acid and hydrogen peroxide. Then, enzyme profiles (ZYM test) and antibiotics resistance were analyzed for further characterization. Five Lactobacillus reuteri isolates from pig feces were selected by safety and functional tests. The plasmid DNA which was able to develop vector system was detected in the isolates. Together with these approaches, pig-specific Lactobacillus spp. originated from pigs were selected. These strains may be useful tools to develop oral delivery system.

  5. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kôso, a Japanese Sugar-Vegetable Fermented Beverage.

    PubMed

    Chiou, Tai-Ying; Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-14

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. Copyright © 2016 Chiou et al.

  6. Reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius.

    PubMed

    Pang, Huili; Kitahara, Maki; Tan, Zhongfang; Wang, Yanping; Qin, Guangyong; Ohkuma, Moriya; Cai, Yimin

    2012-10-01

    Characterization and identification of strain CW 1 ( = JCM 17161) isolated from corn silage were performed. Strain CW 1 was a Gram-positive, catalase-negative and homofermentative rod that produced the DL-form of lactic acid. This strain exhibited more than 99.6% 16S rRNA gene sequence similarity and greater than 82% DNA-DNA reassociation with type strains of Lactobacillus kimchii, L. bobalius and L. paralimentarius. To clarify the taxonomic positions of these type strains, phenotypic characterization, 16S rRNA gene sequencing, ribotyping and DNA-DNA relatedness were examined. The three type strains displayed different L-arabinose, lactose, melibiose, melezitose, raffinose and N-acetyl-β-glucosaminidase fermentation patterns. Phylogenetic analysis showed that L. paralimentarius is a closer neighbour of L. kimchii and L. bobalius, sharing 99.5-99.9% 16S rRNA gene sequence similarity, which was confirmed by the high DNA-DNA relatedness (≥82%) between L. paralimentarius JCM 10415(T), L. bobalius JCM 16180(T) and L. kimchii JCM 10707(T). Therefore, it is proposed that L. kimchii and L. bobalius should be reclassified as later synonyms of L. paralimentarius.

  7. A selective medium for the enumeration and differentiation of Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Nwamaioha, Nwadiuto O; Ibrahim, Salam A

    2018-06-01

    Modified reinforced clostridial medium (mRCM) was developed and evaluated for the differential enumeration of Lactobacillus delbrueckii ssp. bulgaricus. Lactobacillus bulgaricus, an important species of lactic acid bacteria with health benefits, is used in the production of yogurt and other fermented foods. Our results showed that supplementing reinforced clostridial medium with 0.025% CaCl 2 , 0.01% uracil, and 0.2% Tween 80 (mRCM) significantly enhanced the growth rate of L. bulgaricus RR and ATCC 11842 strains as measured by the optical densities of these strains after 12 h of incubation at 42°C. The bacterial populations (plate count) of the RR and ATCC 11842 strains were 0.76 and 0.77 log cfu/g higher in mRCM than in de Man, Rogosa, and Sharpe and reinforced clostridial medium media, respectively. Conversely, the population counts for other bacterial species (Bifidobacterium, Lactobacillus rhamnosus, and Lactobacillus reuteri) were significantly inhibited in the mRCM medium. The addition of aniline blue dye to mRCM (mRCM-blue) improved the selectivity of L. bulgaricus in mixed lactic bacterial cultures compared with de Man, Rogosa, and Sharpe medium and lactic agar with regard to colony appearance and morphology. The mRCM-blue performed better than the conventional medium in culturing, enumerating, and differentiating L. bulgaricus. Therefore, mRCM-blue could be used as a selective medium to enhance the growth and differentiation of L. bulgaricus in order to meet the increasing demand for this beneficial species of bacteria. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Use of Lactobacillus acidophilus and Lactobacillus casei for a potential probiotic legume-based fermented product using pigeon pea (Cajanus cajan).

    PubMed

    Parra, K; Ferrer, M; Piñero, M; Barboza, Y; Medina, L M

    2013-02-01

    The aim of the present study was to evaluate the use of pigeon pea (Cajanus cajan) as an appropriate substrate in the production of a legume-based fermented product with Lactobacillus acidophilus ATCC 314 or Lactobacillus casei ATCC 393 and then to ascertain the effects of the addition of ingredients such as powdered milk and banana or strawberry sauce. The products were analyzed for viable cell counts, pH, and sensory attributes during product manufacture and throughout the refrigerated storage period at 3, 7, 14, 21, and 28 days. Nine types of products were produced. At the end of the storage period, the viability of L. acidophilus was above 7 log CFU/g in the presence of milk and 20% sucrose fruit sauce. For products with L. casei, the lack of ingredients such as milk caused no significant loss in viability; however, a high concentration of sucrose in the fruit sauce was an important factor in maintaining a high L. casei population. L. casei had high viability and good sensory attributes. Both strains could be considered suitable for a pigeon pea-based fermented potential probiotic product and a low-cost protein source.

  9. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  10. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  11. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  12. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  13. 32 CFR 32.32 - Real property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Real property. 32.32 Section 32.32 National... NON-PROFIT ORGANIZATIONS Post-Award Requirements Property Standards § 32.32 Real property. Each DoD Component that makes awards under which real property is acquired in whole or in part with Federal funds...

  14. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    USDA-ARS?s Scientific Manuscript database

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  15. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  16. Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii.

    PubMed

    Suárez, Viviana; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge; Quiberoni, Andrea

    2009-11-01

    The bacteriophages Cb1/204 and Cb1/342 were obtained by induction from the commercial strain Lactobacillus delbrueckii subsp. lactis Cb1, and propagated on Lactobacillus delbrueckii subsp. lactis 204 (Lb.l 204) and Lactobacillus delbrueckii subsp. bulgaricus 342 (Lb.b 342), respectively. By cross sensitivity, it was possible to detect a delay in the lysis of Lb.l 204 with Cb1/342 phage, while the adsorption rate was high (99.5%). Modified and unmodified phages were isolated using phage Cb1/342 and strain Lb.l 204. The EOP (Efficiency of Plaquing) values for the four phages (Cb1/204, Cb1/342, Cb1/342modified and Cb1/342unmodified) suggested that an R/M system modified the original temperate phage, and the BglII-DNA restriction patterns of these phages might point out the presence of a Type II R/M system. Also, the existence of a Type I R/M system was demonstrated by PCR and nucleotide sequence, being the percentages of alignment homology with Type I R/M systems reported previously higher than 95%. In this study it was possible to demonstrate that the native phage resistant mechanisms and the occurrence of prophages in commercial host strains, contribute strongly to diversify the phage population in a factory environment.

  17. Culture Supernatants of Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and Adhesion to HeLa Cells.

    PubMed

    Matsuda, Yuko; Cho, Otomi; Sugita, Takashi; Ogishima, Daiki; Takeda, Satoru

    2018-03-30

    Vulvovaginal candidiasis (VVC) is a common superficial infection of the vaginal mucous membranes caused by the fungus Candida albicans. The aim of this study was to assess the mechanisms underlying the inhibitory effects of the culture supernatants of Lactobacillus gasseri and L. crispatus, the predominant microbiota in Asian healthy women, on C. albicans biofilm formation. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was also investigated. Candida albicans biofilm was formed on polystyrene flat-bottomed 96-well plates, and the inhibitory effects on the initial colonization and maturation phases were determined using the XTT reduction assay. The expression levels of biofilm formation-associated genes (HWP1, ECE1, ALS3, BCR1, EFG1, TEC1, and CPH1) were determined by reverse transcription quantitative polymerase chain reaction. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was evaluated by enumerating viable C. albicans cells. The culture supernatants of both Lactobacillus species inhibited the initial colonization and maturation of C. albicans biofilm. The expression levels of all biofilm formation-related genes were downregulated in the presence of Lactobacillus culture supernatant. The culture supernatant also inhibited C. albicans adhesion to HeLa cells. The culture supernatants of L. gasseri and L. crispatus inhibited C. albicans biofilm formation by downregulating biofilm formation-related genes and C. albicans adhesion to HeLa cells. These findings support the notion that Lactobacillus metabolites may be useful alternatives to antifungal drugs for the management of VVC.

  18. Novel feruloyl esterase from Lactobacillus fermentum NRRL B-1932 and analysis of the recombinant enzyme produced in Escherichia coli.

    USDA-ARS?s Scientific Manuscript database

    Using agar plates containing ethyl ferulate as the sole carbon source, 33 Lactobacillus strains were screened for feruloyl esterase (FE) activity. Among a dozen species showing a clearing zone on the opaque plate containing ethyl ferulate, Lactobacillus fermentum NRRL B-1932 demonstrated the stronge...

  19. Effect of orally administered Lactobacillus brevis HY7401 in a food allergy mouse model.

    PubMed

    Lee, Jeongmin; Bang, Jieun; Woo, Hee-Jong

    2013-11-28

    We had found that orally administered Lactobacillus species were effective immune modulators in ovalbumin (OVA)-sensitized mice. To validate these findings, we investigated the effects of orally administered Lactobacillus brevis HY7401 in OVA-T cell receptor transgenic mice. This strain showed a tendency to induce Th1 cytokines and inhibit Th2 cytokines. All assayed isotypes of OVA-specific antibody were effectively reduced. Systemic anaphylaxis was also relatively reduced with the probiotic administration. These results reveal that L. brevis HY7401 might be useful to promote anti-allergic processes through oral administration.

  20. The potential risks of probiotics among HIV-infected persons: Bacteraemia due to Lactobacillus acidophilus and review of the literature.

    PubMed

    Haghighat, Leila; Crum-Cianflone, Nancy F

    2016-11-01

    Lactobacillus sp. are commensal organisms that are increasingly reported to cause invasive infections among immunosuppressed persons. However, few data exist regarding the occurrence and risk factors of these infections among HIV-infected persons. Further, the safety of products that contain lactobacilli (e.g. probiotics) in certain populations, including those with HIV/AIDS, is unclear. We report a case of Lactobacillus acidophilus bacteraemia in a patient with AIDS temporally related to excessive consumption of probiotic-enriched yogurt, and provide a comprehensive review of the literature of Lactobacillus sp. infections among HIV-infected persons. © The Author(s) 2015.