Sample records for lactobacillus paracasei subsp

  1. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains.

    PubMed Central

    Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N

    1997-01-01

    Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109

  2. Fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 reduces bacterial translocation in rats treated with carbon tetrachloride

    PubMed Central

    Sánchez, Elisabet; Nieto, Juan C.; Vidal, Silvia; Santiago, Alba; Martinez, Xavier; Sancho, Francesc J.; Sancho-Bru, Pau; Mirelis, Beatriz; Corominola, Helena; Juárez, Candido; Manichanh, Chaysavanh; Guarner, Carlos; Soriano, German

    2017-01-01

    Probiotics can prevent pathological bacterial translocation by modulating intestinal microbiota and improving the gut barrier. The aim was to evaluate the effect of a fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 on bacterial translocation in rats with carbon tetrachloride (CCl4)-induced cirrhosis. Sprague-Dawley rats treated with CCl4 were randomized into a probiotic group that received fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 in drinking water or a water group that received water only. Laparotomy was performed one week after ascites development. We evaluated bacterial translocation, intestinal microbiota, the intestinal barrier and cytokines in mesenteric lymph nodes and serum. Bacterial translocation decreased and gut dysbiosis improved in the probiotic group compared to the water group. The ileal β-defensin-1 concentration was higher and ileal malondialdehyde levels were lower in the probiotic group than in water group. There were no differences between groups in serum cytokines but TNF-α levels in mesenteric lymph nodes were lower in the probiotic group than in the water group. Fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 decreases bacterial translocation, gut dysbiosis and ileal oxidative damage and increases ileal β-defensin-1 expression in rats treated with CCl4, suggesting an improvement in the intestinal barrier integrity. PMID:28368023

  3. Co-culturing of Lactobacillus paracasei subsp. paracasei with a Lactobacillus delbrueckii subsp. delbrueckii mutant to make high cell density for increased lactate productivity from cassava bagasse hydrolysate.

    PubMed

    John, Rojan Pappy; Nampoothiri, K Madhavan

    2011-03-01

    To increase the productivity of lactic acid, a co-culture of lactobacilli was made by mixing 1:1 ratio of Lactobacillus paracasei subsp. paracasei and a fast growing L. delbrueckii subsp. delbrueckii mutant. The culture was embedded on to polyurethane foam (PUF) cubes as a biofilm and used for fermentation. In order to prevent the cell leakage, the PUF cubes were further entrapped in calcium cross-linked alginate. The maximum lactic acid production using a high cell density free culture was >38 g l(-1) from ~40 g l(-1) of reducing sugar within 12 h of fermentation. Using PUF biofilms, the same yield of lactic acid attained after 24 h. When the cubes were further coated with alginate it took 36 h for the maximum yield. Even though, the productivity is slightly lesser with the alginate coating, cell leakage was decreased and cubes were reused without much decrease in production in repeated batches. Using a conventional control inoculum (3%, w/v), it took 120 h to yield same amount of lactic acid.

  4. Lactobacillus paracasei subsp. paracasei LC01 positively modulates intestinal microflora in healthy young adults.

    PubMed

    Zhang, Hao; Sun, Jing; Liu, Xianting; Hong, Chuan; Zhu, Yuanbo; Liu, Aiping; Li, Siqi; Guo, Huiyuan; Ren, Fazheng

    2013-12-01

    Lactobacillus paracasei subsp. paracasei LC01 (LC01) can tolerate intestinal stresses and has antioxidant activity. To evaluate the effect of the bacterium on human intestinal microflora, a randomized, double-blind, placebo-controlled human trial was carried out. Fifty-two healthy adult volunteers were randomized equally to two groups. One group consumed 12% (wt/vol) skimmed milk supplemented with 10(10) CFU of LC01 each day for the 4-week treatment period, and then consumed placebo in the next treatment period, separated by a 2-week washout. The other group followed the reverse order. Group-specific real-time PCR and biochemical analyses was used to determine the intestinal bacterial composition of fecal samples collected at the end of every period, and the concentration of short-chain fatty acids and ammonia. A significant inhibition in fecal Escherichia coli and increase in Lactobacillus, Bifidobacterium, and Roseburia intestinalis were observed after consumption of LC01. Acetic acid and butyric acid were significantly higher in the probiotic stage and fecal ammonia was significantly lower. The results indicated a modulation effect of LC01 on the intestinal microflora of young adults, suggesting a beneficial effect on bowel health. LC01 may have potential value as a probiotic.

  5. Characterization and purification of a bacteriocin from Lactobacillus paracasei subsp. paracasei BMK2005, an intestinal isolate active against multidrug-resistant pathogens.

    PubMed

    Bendjeddou, Kamel; Fons, Michel; Strocker, Pierre; Sadoun, Djamila

    2012-04-01

    A strain of Lactobacillus paracasei subsp. paracasei BMK2005 isolated from healthy infant faeces has shown a remarkable antibacterial activity against 32 bacterial pathogenic strains of human clinical isolates. Among them, 13 strains belonging to species of Escherichia coli, Citrobacter freundii, Citrobacter diversus, Klebsiella oxytoca, Enterobacter cloacae and Pseudomonas aeruginosa were resistant to Cefotaxime (CTX) and Ceftazidime (CAZ), and 4 strains of Staphylococcus aureus were resistant to Methicillin (MRSA). This antibacterial activity was attributed to a bacteriocin designated as Paracaseicin A. It was heat-stable up to 120°C for 5 min and active within the pH range of 2-5. Its activity was lost when treated with proteases, which reveals its proteinaceous nature. This bacteriocin was successfully purified only by two steps of reversed phase chromatography. Its molecular mass, determined by mass spectrometry analysis, was 2,462.5 Da. To our knowledge, the present study is the first report on characterization and purification of a bacteriocin, produced by a L. paracasei subsp. paracasei strain exhibiting an antibacterial activity against various multidrug-resistant species of Gram-positive and Gram-negative bacteria, which reveals its potential for use in prevention or treatment of infections caused by multidrug-resistant species especially in cases of antibiotics-associated diarrhea (AAD).

  6. Detection of antifungal properties in Lactobacillus paracasei subsp. paracasei SM20, SM29, and SM63 and molecular typing of the strains.

    PubMed

    Schwenninger, Susanne Miescher; von Ah, Ueli; Niederer, Brigitte; Teuber, Michael; Meile, Leo

    2005-01-01

    Lactobacilli isolated from different food and feed samples such as raw milk, cheese, yoghurt, olives, sour dough, as well as corn and grass silage, were screened for their antifungal activities. Out of 1,424 isolates tested, 82 were shown to be inhibitory to different yeasts (Candida spp. and Zygosaccharomyces bailii) and a Penicillium sp., which were previously isolated from spoiled yoghurt and fruits. Carbohydrate fermentation patterns suggested that a substantial portion, 25%, belonged to the Lactobacillus casei group, including L. casei, L. paracasei, and L. rhamnosus. The isolates SM20 (DSM14514), SM29 (DSM14515), and SM63 (DSM14516) were classified by PCR using species-specific primers to target the corresponding type strains (L. casei, L. paracasei, and L. rhamnosus) as controls. Further molecular typing methods such as randomly amplified polymorphic DNA, pulsed-field gel electrophoresis, and sequencing analysis of the 16S rRNA gene allowed classifying strains SM20, SM29, and SM63 as L. paracasei subsp. paracasei in accordance with the new reclassification of the L. casei group proposed by Collins et al.

  7. Shortening of the Lactobacillus paracasei subsp. paracasei BGNJ1-64 AggLb Protein Switches Its Activity from Auto-aggregation to Biofilm Formation.

    PubMed

    Miljkovic, Marija; Bertani, Iris; Fira, Djordje; Jovcic, Branko; Novovic, Katarina; Venturi, Vittorio; Kojic, Milan

    2016-01-01

    AggLb is the largest (318.6 kDa) aggregation-promoting protein of Lactobacillus paracasei subsp. paracasei BGNJ1-64 responsible for forming large cell aggregates, which causes auto-aggregation, collagen binding and pathogen exclusion in vitro. It contains an N-terminus leader peptide, followed by six successive collagen binding domains, 20 successive repeats (CnaB-like domains) and an LPXTG sorting signal at the C-terminus for cell wall anchoring. Experimental information about the roles of the domains of AggLb is currently unknown. To define the domain that confers cell aggregation and the key domains for interactions of specific affinity between AggLb and components of the extracellular matrix, we constructed a series of variants of the aggLb gene and expressed them in Lactococcus lactis subsp. lactis BGKP1-20 using a lactococcal promoter. All of the variants contained a leader peptide, an inter collagen binding-CnaB domain region (used to raise an anti-AggLb antibody), an anchor domain and a different number of collagen binding and CnaB-like domains. The role of the collagen binding repeats of the N-terminus in auto-aggregation and binding to collagen and fibronectin was confirmed. Deletion of the collagen binding repeats II, III, and IV resulted in a loss of the strong auto-aggregation, collagen and fibronectin binding abilities whereas the biofilm formation capability was increased. The strong auto-aggregation, collagen and fibronectin binding abilities of AggLb were negatively correlated to biofilm formation.

  8. Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix.

    PubMed

    Bosnea, L A; Moschakis, T; Biliaderis, C G

    2017-02-22

    L. paracasei subsp. paracasei E6 cells were encapsulated by complex coacervation using whey protein isolate (WPI) and gum arabic and introduced in stirred yogurts after fermentation. For comparison purposes, yogurts without addition of L. paracasei and yogurts with free cells of L. paracasei were produced. The survival of free and microencapsulated L. paracasei cells was evaluated during storage of the yogurts for 45 days at 4 °C. In addition, yogurts were exposed to simulated gastric juice and the reduction in viable numbers of L. paracasei cells was assessed. The effect of complex coacervates' addition on the rheological properties of yogurts was also evaluated. Yogurts containing encapsulated L. paracasei cells showed a slightly improved cell survival (≤0.22 log CFU g -1 reduction) during storage when compared to yogurts containing free cells (≤0.64 log CFU g -1 reduction). Moreover, the microencapsulated L. paracasei cells exhibited greater survival compared to free cells upon exposure of the yogurt samples to simulated gastric juice (pH 2.0) for 3 h. Finally, the incorporation of complex coacervates did not significantly affect the rheological properties of yogurts especially when added at concentrations less than 10% w/w. Consequently, the inclusion of microencapsulated bacteria by complex coacervation in yogurts, could become an effective vehicle for successful delivery of probiotics to the gut, and hence contributing to the improvement of the gastrointestinal tract health, without altering the texture of the product.

  9. Boosting the growth of the probiotic strain Lactobacillus paracasei ssp. paracasei F19.

    PubMed

    Brignone, Desideria; Radmann, Pia; Behr, Jürgen; Vogel, Rudi F

    2017-08-01

    Single so-called booster substances were added to the fermentation medium of the probiotic strain Lactobacillus (L.) paracasei ssp. paracasei F19 to enhance its growth. A wide screening was carried out in microtiter plates and a statistical analysis of the growth parameters was performed. CFU counts were used to correlate the increase in OD 590nm with the increase in viable cell number. Sodium ascorbate, sodium pyruvate, manganese sulfate and cysteine had a remarkable boosting effect on the growth of L. paracasei F19. Three of the boosters increased the growth rate of the strain and led to a higher cell density and biomass yield in laboratory conditions. Cysteine significantly shortened the lag phase, therefore reducing the fermentation times. The boosters were tested on four additional Lactobacillus species and their growth boosting activity was retained. To investigate whether the growth boosters could improve the tolerance of L. paracasei F19 to the adverse condition in the GI tract, additional tests were performed. Sodium ascorbate and sodium pyruvate exerted a certain antioxidant effect, as they improved the tolerance of L. paracasei F19 to H 2 O 2 . Sodium ascorbate enhanced the growth of the strain in low pH.

  10. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19

    PubMed Central

    Schott, Ann-Sophie; Behr, Jürgen; Quinn, Jennifer; Vogel, Rudi F.

    2016-01-01

    Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses. PMID:27783652

  11. Four weeks supplementation with Lactobacillus paracasei subsp. paracasei L. casei W8® shows modest effect on triacylglycerol in young healthy adults.

    PubMed

    Bjerg, A T; Kristensen, M; Ritz, C; Stark, K D; Holst, J J; Leser, T D; Wellejus, A; Astrup, A

    2015-03-01

    The microbiota has been shown to have the potential to affect appetite and blood lipids positively in animal studies. We investigated if four weeks supplementation with Lactobacillus paracasei subsp. paracasei L. casei W8® (L. casei W8) had an effect on subjective appetite sensation, ad libitum energy intake, glucagon-like peptide 1 (GLP-1), glucose and insulin response in humans. Secondarily, we explored potential effects on blood lipids, fatty acids and stearoyl-CoA desaturase-1 (SCD1) activity in humans as well as SCD1 expression in piglets given L. casei W8 for two weeks. 64 healthy participants completed the double-blinded, randomised, controlled, parallel four weeks study with supplementation of L. casei W8 (1010 cfu) or placebo capsules. A meal test was conducted before and after the intervention, where subjective appetite, ad libitum energy intake, GLP-1, glucose and insulin response were measured. Additionally fasting blood lipids and fatty acids concentrations were measured. Sixteen piglets were randomised into two groups: L. casei W8 (1010 cfu/day) as top dressing on morning fed or no treatment. After two weeks piglets were sacrificed and tissue from ileum, jejunum and skeletal muscle were sampled for mRNA analyses of SCD1 expression. Compared to placebo, L. casei W8 did not affect appetite, ad libitum energy intake, GLP-1, glucose and insulin response and total, high-density or low-density lipoprotein cholesterol levels after four weeks intervention. Triacylglycerol decreased in the L. casei W8 group compared to placebo at week 4 (P=0.03). The C16:1n-7/C16:0 ratio, reflecting SCD1 activity, tended to decrease when having L. casei W8 (P=0.06) compared to placebo. Muscle SCD1 expression decreased in piglets supplemented with L. casei W8 compared to control. In conclusion, supplementation with L. casei W8 did not affect appetite parameters, glucose or insulin responses; but appear to be able to lower triacylglycerol levels, possibly by reducing its

  12. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity.

    PubMed

    Lee, Ayoung; Lee, Young Ju; Yoo, Hye Jin; Kim, Minkyung; Chang, Yeeun; Lee, Dong Seog; Lee, Jong Ho

    2017-05-31

    The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei ( L. paracasei ), Bifidobacterium animalis ssp. lactis ( B. lactis ) and heat-treated Lactobacillus plantarum ( L. plantarum ) on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK) cell activity, interleukin (IL)-12 and immunoglobulin (Ig) G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN)-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei , B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425).

  13. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity

    PubMed Central

    Lee, Ayoung; Lee, Young Ju; Yoo, Hye Jin; Kim, Minkyung; Chang, Yeeun; Lee, Dong Seog; Lee, Jong Ho

    2017-01-01

    The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei (L. paracasei), Bifidobacterium animalis ssp. lactis (B. lactis) and heat-treated Lactobacillus plantarum (L. plantarum) on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK) cell activity, interleukin (IL)-12 and immunoglobulin (Ig) G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN)-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei, B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425). PMID:28561762

  14. Gut Balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals

    PubMed Central

    West, Nicholas P.; Pyne, David B.; Cripps, Allan; Christophersen, Claus T.; Conlon, Michael A.; Fricker, Peter A.

    2012-01-01

    Synbiotic supplements, which contain multiple functional ingredients, may enhance the immune system more than the use of individual ingredients alone. A double blind active controlled parallel trial over a 21 day exercise training period was conducted to evaluate the effect of Gut BalanceTM, which contains Lactobacillus paracasei subsp paracasei (L. casei 431®), Bifidobacterium animalis ssp lactis (BB-12®), Lactobacillus acidophilus (LA-5®), Lactobacillus rhamnosus (LGG®), two prebiotics (raftiline and raftilose) and bovine whey derived lactoferrin and immunoglobulins with acacia gum on fecal microbiota, short chain fatty acids (SCFA), gut permeability, salivary lactoferrin and serum cytokines. All subjects randomized were included in the analysis. There was a 9-fold (1.2-fold to 64-fold; 95% confidence intervals p = 0.03) greater increase in fecal L. paracasei numbers with Gut BalanceTM compared with acacia gum supplementation. Gut BalanceTM was associated with a 50% (-12% to 72%; p = 0.02) smaller increase in the concentration of serum IL-16 in comparison to acacia gum from pre- to post-study. No substantial effects of either supplement were evident in fecal SCFA concentrations, measures of mucosal immunity or GI permeability. Clinical studies are now required to determine whether Gut BalanceTM may exert beneficial GI health effects by increasing the recovery of fecal L. paracasei. Both supplements had little effect on immunity. Twenty-two healthy physically active male subjects (mean age = 33.9 ± 6.5 y) were randomly allocated to either daily prebiotic or synbiotic supplementation for 21 day. Saliva, blood, urine and fecal samples were collected pre-, mid- and post-intervention. Participants recorded patterns of physical activity on a self-reported questionnaire. PMID:22572834

  15. [Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species].

    PubMed

    Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei

    2009-02-01

    We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.

  16. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    USDA-ARS?s Scientific Manuscript database

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  17. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei.

    PubMed

    Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth.

  18. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  19. Utilisation of water-in-oil-water (W1/O/W2) double emulsion in a set-type yogurt model for the delivery of probiotic Lactobacillus paracasei.

    PubMed

    El Kadri, Hani; Lalou, Sofia; Mantzouridou, FaniTh; Gkatzionis, Konstantinos

    2018-05-01

    W 1 /O/W 2 emulsion in set-type yogurt has the potential to segregate probiotics in order to avoid interference with the starter culture as well as protection against harsh processing and digestion conditions. Lactobacillus paracasei subsp. paracasei DC 412 probiotic cells in milk-based W 1 /O/W 2 emulsions were incorporated in yogurt, in addition to starter cultures Lactobacillus bulgaricus and Streptococcus thermophilus, and the effect on the fermentation, bacterial growth kinetics, physicochemical properties, and structural characteristics was investigated. Stability of W 1 /O/W 2 was monitored with optical microscopy and cryo-SEM and localisation of encapsulated L. paracasei in yogurt was monitored using fluorescent microscopy. During fermentation, starter culture was not affected by introduction of L. paracasei and/or W 1 /O/W 2 emulsion. The viability of L. paracasei encapsulated in W 1 /O/W 2 emulsion was enhanced during storage and after exposure to simulated gastrointestinal conditions. L. paracasei remained within the inner W 1 phase till the end of the storage period (28 days at 4 °C). Moreover, W 1 /O/W 2 emulsion altered physicochemical and textural properties; however, these were within acceptable range. These results demonstrate the capability of W 1 /O/W 2 emulsion to be utilised for probiotic fortification of yogurt to increase functionality without interfering with starter culture and fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection

    PubMed Central

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis. PMID:28267809

  1. Extraction of chitin from red crab shell waste by cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074 and Serratia marcescens FS-3.

    PubMed

    Jung, W J; Jo, G H; Kuk, J H; Kim, K Y; Park, R D

    2006-06-01

    For one-step extraction of chitin from red crab shell waste, cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074, a lactic-acid-producing bacterium, and Serratia marcescens FS-3, a protease-producing bacterium, was conducted. Fermentation with single strain (L. 3074 or FS-3) was also conducted. At day 7, the pH in L. 3074, FS-3, and L. 3074+FS-3 (1:1) treatment decreased from 6.90 to 3.30, 5.88, and 3.48, respectively. Ash content in the residue after fermentation treatment of crab shells in L. 3074 and L. 3074+FS-3 (1:1) treatment drastically decreased from 41.2% to 3.19 and 1.15%, respectively. In L. 3074+FS-3 (1:1) cofermentation, the level of demineralization was the highest value of 97.2%, but the level of deproteinization in the cofermentation was 52.6% at day 7. Protein content in the treatment of FS-3 alone reduced from 22.4 to 3.62%. These results indicate that cofermentation of the shells using the two strains is efficient and applicable for the one-step extraction of crude chitin from red crab shell waste.

  2. The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion.

    PubMed

    Dellaglio, Franco; Felis, Giovanna E; Torriani, Sandra

    2002-01-01

    On the basis of considerable published evidence, it is concluded that the species Lactobacillus casei is not correctly represented by the strain actually designated as the type strain ATCC 393. It is proposed that the Judicial Commission consider: (1) that ATCC 393T is scientifically unsuitable as the type strain of Lactobacillus casei and should be reclassified as Lactobacillus zeae; (2) that Lactobacillus casei ATCC 334 and Lactobacillus paracasei strains are members of the same taxon and therefore can be united within the name Lactobacillus casei (Rules 42 and 23a), the name Lactobacillus paracasei being rejected; and (3) designating ATCC 334 as the neotype strain for the species

  3. Lactobacillus paracasei F19 versus placebo for the prevention of proton pump inhibitor-induced bowel symptoms: a randomized clinical trial.

    PubMed

    Compare, Debora; Rocco, Alba; Sgamato, Costantino; Coccoli, Pietro; Campo, Salvatore Maria Antonio; Nazionale, Immacolata; Larussa, Tiziana; Luzza, Francesco; Chiodini, Paolo; Nardone, Gerardo

    2015-04-01

    Proton pump inhibitors may foster intestinal dysbiosis and related bowel symptoms. To evaluate the effect of Lactobacillus paracasei F19 on bowel symptom onset in patients on long-term proton pump inhibitors. In this randomized, double-blind, placebo-controlled study, patients with typical gastroesophageal reflux disease symptoms receiving pantoprazole 40 mg/d for six months were randomly assigned to receive: (A) Lactobacillus paracasei F19 bid for three days/week for six months; (B) placebo bid for three days/week for six months; (C) Lactobacillus paracasei F19 bid for three days/week for three months and placebo bid for three days/week for the following three months; (D) placebo bid for three days/week for three months and Lactobacillus paracasei F19 bid for three days/week for the following three months. Bloating, flatulence, abdominal pain and bowel habit were assessed monthly. 100/312 patients were enrolled. In the parallel groups, the treatment-by-time interaction affected bloating (p = 0.015), while Lactobacillus paracasei F19 treatment alone affected flatulence (p = 0.011). Moreover, the treatment-by-time interaction significantly affected the mean score of bloating (p = 0.01) and flatulence (p < 0.0001), the mean stool form (p = 0.03) and mean stool frequency/week (p = 0.016). Analysis of the cross-over groups, limited to the first three months because of carry-over effect, confirmed these results. Lactobacillus paracasei F19 supplementation prevents bowel symptom onset in patients on long-term proton pump inhibitors. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. Effect of Lactobacillus paracasei subsp. paracasei, L. casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers: a randomized, double-blind, placebo-controlled, parallel-group study.

    PubMed

    Jespersen, Lillian; Tarnow, Inge; Eskesen, Dorte; Morberg, Cathrine Melsaether; Michelsen, Birgit; Bügel, Susanne; Dragsted, Lars Ove; Rijkers, Ger T; Calder, Philip C

    2015-06-01

    Probiotics can modulate the immune system in healthy individuals and may help reduce symptoms related to respiratory infections. The objective of the study was to investigate the effect of the probiotic strain Lactobacillus paracasei subsp. paracasei, L. casei 431 (Chr. Hansen A/S) (hereafter, L. casei 431) on immune response to influenza vaccination and respiratory symptoms in healthy adults. A randomized double-blind, placebo-controlled trial was conducted in 1104 healthy subjects aged 18-60 y at 2 centers in Germany and Denmark. Subjects were randomly assigned to receive an acidified milk drink containing ≥10(9) colony-forming units of L. casei 431 (n = 553) or placebo (n = 551) for 42 d. After 21 d, subjects received the seasonal influenza vaccination. The primary outcome was seroprotection rate (anti-influenza antibody titers by hemagglutination inhibition) 21 d after vaccination. Other outcomes were seroconversion rate and mean titers, influenza A-specific antibodies and incidence, and duration and severity of upper respiratory symptoms. Antibiotic use and use of health care resources were recorded. There was no effect of L. casei 431 on immune responses to influenza vaccination. Generalized linear mixed modeling showed a shorter duration of upper respiratory symptoms in the probiotic group than in the placebo group (mean ± SD: 6.4 ± 6.1 vs. 7.3 ± 9.7 d, P = 0.0059) in the last 3 wk of the intervention period. No statistically significant differences were found for incidence or severity. Daily consumption of L. casei 431 resulted in no observable effect on the components of the immune response to influenza vaccination but reduced the duration of upper respiratory symptoms. The trial was registered at www.isrctn.com as ISRCTN08280229. © 2015 American Society for Nutrition.

  5. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study.

    PubMed

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  6. Safety evaluation of HOWARU® Restore (Lactobacillus acidophilus NCFM, Lactobacillus paracasei Lpc-37, Bifidobacterium animalis subsp. lactis Bl-04 and B. lactis Bi-07) for antibiotic resistance, genomic risk factors, and acute toxicity.

    PubMed

    Morovic, Wesley; Roper, Jason M; Smith, Amy B; Mukerji, Pushkor; Stahl, Buffy; Rae, Jessica Caverly; Ouwehand, Arthur C

    2017-12-01

    Although probiotic lactobacilli and bifidobacteria are generally considered safe by various regulatory agencies, safety properties, such as absence of transferable antibiotic resistance, must still be determined for each strain prior to market introduction as a probiotic. Safety requirements for probiotics vary regionally and evaluation methods are not standardized, therefore methodologies are often adopted from food ingredients or chemicals to assess microbial safety. Four individual probiotic strains, Lactobacillus acidophilus NCFM ® , Lactobacillus paracasei Lpc-37 ® , Bifidobacterium animalis subsp. lactis strains Bl-04 ® , and Bi-07 ® , and their combination (HOWARU ® Restore) were examined for antibiotic resistance by broth microdilution culture, toxin genes by PCR and genome mining, and acute oral toxicity in rats. Only B. lactis Bl-04 exhibited antibiotic resistance above a regulated threshold due to a tetW gene previously demonstrated to be non-transferable. Genomic mining did not reveal any bacterial toxin genes known to harm mammalian hosts in any of the strains. The rodent studies did not indicate any evidence of acute toxicity following a dose of 1.7-4.1 × 10 12  CFU/kg body weight. Considering a 100-fold safety margin, this corresponds to 1.2-2.8 × 10 12  CFU for a 70 kg human. Our findings demonstrate a comprehensive approach of in vitro, in silico, and in vivo safety testing for probiotics. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Novel antibacterial polypeptide produced by Lactobacillus paracasei strain NRRL B-50314

    USDA-ARS?s Scientific Manuscript database

    This study reports the production and characterization of a novel antibacterial polypeptide, designated as laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. The crude laparaxin has antibacterial activity against a range of Gram-positive bacteria including the following: lactic a...

  8. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    PubMed

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Detoxification of Aflatoxin B1 by Antifungal Compounds from Lactobacillus brevis and Lactobacillus paracasei, Isolated from Dairy Products.

    PubMed

    Gomaa, Eman Zakaria; Abdelall, Manal Farouk; El-Mahdy, Omima Mohammed

    2018-06-01

    Aflatoxins are a large group of highly toxic, mutagenic, and carcinogenic mycotoxins produced by specific species of fungi. Potential contamination of food commodities by these compounds causes extensive damage that lead to great economic losses. This study explored the potential use of antifungal compounds, produced by Lactobacillus brevis and Lactobacillus paracasei, for growth inhibition and subsequent aflatoxin B1 production from select strains of Aspergillus flavus and Aspergillus parasiticus. Lactobacilli strains were isolated from traditional Egyptian dairy products, whereas fungal strains were isolated from infected cereal seeds. There were noticeable decreases in mycelium biomass and aflatoxin production as well. L. brevis exhibited the highest reduction of aflatoxin B1 production by A. flavus and A. parasiticus, 96.31 and 90.43%, respectively. The concentrations of amino acids of the antifungal compound produced by L. brevis were significantly higher than that produced by L. paracasei. Asparagine, glutamine, glycine, alanine, and leucine were the most concentrated amino acids for both strains. The antifungal compounds produced by L. brevis and L. paracasei were active in a wide range of pH, heat stable and inactivated by proteolytic enzymes (protease K and trypsin A). The expression of Omt-A gene that involved in the later step of aflatoxin production was evaluated by real-time PCR. There was a vigorous reduction at transcriptional level of Omt-A gene observed in A. flavus that is treated by L. brevis and L. paracasei (80 and 70%, respectively). However, the reduction of Omt-A gene observed in A. parasiticus that is treated by L. brevis and L. paracasei was 64.5 and 52%, respectively. Treating maize seeds with antifungal compounds exhibited great efficiency in controlling fungal infection and increasing seed germination. The results confirmed that lactic acid bacteria are a promising strategy to control food contamination of fermented food and dairy

  10. Novel antibacterial polypeptide laparaxin produced by Lactobacillus paracasei strain NRRL B-50314 via fermentation

    USDA-ARS?s Scientific Manuscript database

    This study reports the production and characterization of a novel antibacterial polypeptide, designated laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. Crude laparaxin has antibacterial activity against a wide variety of Gram-positive bacteria, including: lactic acid bacteria ...

  11. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.

    PubMed

    Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk

    2016-12-01

    This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.

  12. Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants.

    PubMed

    Marzotto, Marta; Maffeis, Claudio; Paternoster, Thomas; Ferrario, Rossano; Rizzotti, Lucia; Pellegrino, Maristella; Dellaglio, Franco; Torriani, Sandra

    2006-11-01

    This study focuses on the potentiality of a putative probiotic strain, Lactobacillus paracasei A, to survive gastrointestinal (GI) passage and modulate the resident microbiota of healthy infants. In a placebo-controlled study, 26 children aged 12-24 months received 100 g/day of either fermented milk containing strain A or pasteurized yogurt for four weeks. Fecal samples were analyzed before starting the administration, after 1, 3 and 4 weeks of consumption and after washout. The fate of strain A was followed by means of a newly developed PCR targeting a strain-specific genomic marker. The composition and dynamics of fecal microbial communities during the study were analyzed by culturing on selective media and by the PCR-denaturing gradient gel electrophoresis (DGGE) technique using universal and group-specific (Lactobacillus and Bifidobacterium) primers. The variation in enzymatic activities in infant feces during probiotic consumption was also analyzed. Strain A survived in fecal samples in most (92%) of the infants examined after 1 week of consumption, and temporarily dominated the intestinal Lactobacillus community. The administration of L. paracasei A led to a significant increment in the Lactobacillus population, while a moderate effect upon the main bacterial groups in the GI ecosystem was observed. Strain A also affected the diversity of the Lactobacillus and Bifidobacterium populations. The fecal bacterial structure of 1 - 2-year-old infants seems to combine neonate and adult-like features. The microbiota of these subjects promptly responded to probiotic consumption, later restoring the endogenous equilibrium.

  13. In Vitro Inhibition of Klebsiella pneumoniae by Lactobacillus delbrueckii Subsp. delbrueckii LDD01 (DSM 22106): An Innovative Strategy to Possibly Counteract Such Infections in Humans?

    PubMed

    Mogna, Luca; Deidda, Francesca; Nicola, Stefania; Amoruso, Angela; Del Piano, Mario; Mogna, Giovanni

    To determine the in vitro antimicrobial activity of selected Lactobacillus strains isolated from the feces of healthy humans against Klebsiella pneumoniae. Klebsiella is ubiquitous in nature and may colonize the skin, the pharynx, or the gastrointestinal tract of humans. Despite the widespread use of antibiotic molecules with a broad spectrum in hospitalized patients, an increased overall load of klebsiellae as well as the subsequent development of multidrug-resistant strains able to synthesize extended-spectrum beta-lactamase have been registered. These strains are particularly virulent, express capsular-type K55, and have a considerable ability to propagate. The 4 strains Lactobacillus paracasei LPC01 (CNCM I-1390), Lactobacillus rhamnosus LR04 (DSM 16605), Bifidobacterium longum B2274 (DSM 24707), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106) were tested. The analysis was performed using both a disc-diffusion assay and the broth-dilution procedure, also including an evaluation of the supernatants obtained from a fresh broth culture of each bacterium. L. delbrueckii subsp. delbrueckii LDD01 demonstrated the best inhibitory results among all the tested strains. The antibacterial activity of the supernatant was retained even after treatment with α-amylase and neutralization with NaOH 1N, thus suggesting the protein structure of the inhibitory molecule. In contrast, it was completely lost after treatment with proteinase K. Overall results suggest that the inhibitory effect of L. delbrueckii subsp. delbrueckii LDD01 should be attributed to the production of a bacteriocin. This strain may be prospectively useful for strengthening probiotic formulations and possibly counteract infections by K. pneumoniae in humans.

  14. In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases

    PubMed Central

    Surachat, Komwit; Sangket, Unitsa; Deachamag, Panchalika; Chotigeat, Wilaiwan

    2017-01-01

    Lactobacillus paracasei SD1 is a potential probiotic strain due to its ability to survive several conditions in human dental cavities. To ascertain its safety for human use, we therefore performed a comprehensive bioinformatics analysis and characterization of the bacterial protein toxins produced by this strain. We report the complete genome of Lactobacillus paracasei SD1 and its comparison to other Lactobacillus genomes. Additionally, we identify and analyze its protein toxins and antimicrobial proteins using reliable online database resources and establish its phylogenetic relationship with other bacterial genomes. Our investigation suggests that this strain is safe for human use and contains several bacteriocins that confer health benefits to the host. An in silico analysis of protein-protein interactions between the target bacteriocins and the microbial proteins gtfB and luxS of Streptococcus mutans was performed and is discussed here. PMID:28837656

  15. PCR method for detection and identification of Lactobacillus casei/paracasei bacteriophages in dairy products.

    PubMed

    Binetti, Ana G; Capra, M Luján; Alvarez, Miguel A; Reinheimer, Jorge A

    2008-05-31

    Bacteriophage infections of starter lactic acid bacteria (LAB) pose a serious risk to the dairy industry. Nowadays, the expanding use of valuable Lactobacillus strains as probiotic starters determines an increase in the frequency of specific bacteriophage infections in dairy plants. This work describes a simple and rapid Polymerase Chain Reaction (PCR) method that detects and identifies bacteriophages infecting Lactobacillus casei/paracasei, the main bacterial species used as probiotic. Based on a highly conserved region of the NTP-binding genes belonging to the replication module of L. casei phages phiA2 and phiAT3 (the only two whose genomes are completely sequenced), a pair of primers was designed to generate a specific fragment. Furthermore, this PCR detection method proved to be a useful tool for monitoring and identifying L. casei/paracasei phages in industrial samples since specific PCR signals were obtained from phage contaminated milk (detection limit: 10(4) PFU/mL milk) and other commercial samples (fermented milks and cheese whey) that include L. casei/paracasei as probiotic starter (detection limit: 10(6) PFU/mL fermented milk). Since this method can detect the above phages in industrial samples and can be easily incorporated into dairy industry routines, it might be readily used to earmark contaminated milk for use in processes that do not involve susceptible starter organisms, or processes which involve phage-deactivating conditions.

  16. [Identification and phylogenetic analysis of one strain of Lactobacillus delbrueckii subsp. bulgaricus separated from yoghourt].

    PubMed

    Wang, Chuan; Zhang, Chaowu; Pei, Xiaofang; Liu, Hengchuan

    2007-11-01

    For being further applied and studied, one strain of Lactobacillus delbrueckii subsp. bulgaricus (wch9901) separated from yoghourt which had been identified by phenotype characteristic analysis was identified by 16S rDNA and phylogenetic analyzed. The 16S rDNA of wch9901 was amplified with the genomic DNA of wch9901 as template, and the conservative sequences of the 16S rDNA as primers. Inserted 16S rDNA amplified into clonal vector pGEM-T under the function of T4 DNA ligase to construct recombined plasmid pGEM-wch9901 16S rDNA. The recombined plasmid was identified by restriction enzyme digestion, and the eligible plasmid was presented to sequencing company for DNA sequencing. Nucleic acid sequence was blast in GenBank and phylogenetic tree was constructed using neighbor-joining method of distance methods by Mega3.1 soft. Results of blastn showed that the homology of 16S rDNA of wch9901 with the 16S rDNA of Lactobacillus delbrueckii subsp. bulgaricus strains was higher than 96%. On the phylogenetic tree, wch9901 formed a separate branch and located between Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch and another evolution branch which was composed of Lactobacillus delbrueckii subsp. bulgaricus DL2 evolution cluster and Lactobacillus delbrueckii subsp. bulgaricus JSQ evolution cluster. The distance between wch9901 evolution branch and Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch was the closest. wch9901 belonged to Lactobacillus delbrueckii subsp. bulgaricus. wch9901 showed the closest evolution relationship to Lactobacillus delbrueckii subsp. bulgaricus LGM2.

  17. Effect of a novel potential probiotic Lactobacillus paracasei Jlus66 isolated from fermented milk on nonalcoholic fatty liver in rats.

    PubMed

    Ye, Haiqing; Li, Qian; Zhang, Zhengzhe; Sun, Maocheng; Zhao, Changhui; Zhang, Tiehua

    2017-12-13

    Nonalcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease worldwide. Previous evidence indicates that probiotics can be applied as a therapeutic agent for NAFLD. In this study, the potential probiotic strain Lactobacillus paracasei Jlus66 was isolated from natural fermented milk by a culture-dependent method, and its probiotic potentials were tested by established in vitro tests. In addition, the protective effect of Lactobacillus paracasei Jlus66 against NAFLD was evaluated in rat models. Compared with the high-fat-diet (HFD) group, the rats administered with 4 × 10 10 cfu Jlus66 had significantly lower body weight gain, serum triglyceride (TG), low-density lipoprotein (LDL) as well as aminotransferase (ALT). Histopathological analysis showed Jlus66 also reduced the level of hepatic triglycerides and steatosis. From the above we conclude that L. paracasei Jlus66 has great potential as a probiotic in protecting from NAFLD.

  18. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).

  19. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt.

    PubMed

    Aunsbjerg, S D; Honoré, A H; Marcussen, J; Ebrahimi, P; Vogensen, F K; Benfeldt, C; Skov, T; Knøchel, S

    2015-02-02

    Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously, most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with methods suboptimal for detecting possible contribution from volatiles to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate the contribution of diacetyl in the antifungal effect of L. paracasei DGCC 2132 and indicate that the importance of volatiles may have been previously underestimated. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

    PubMed

    Hammer, Austin J; Walters, Amber; Carroll, Courtney; Newell, Peter D; Chaston, John M

    2017-07-06

    The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429 bp, with 3,454 predicted genes. Copyright © 2017 Hammer et al.

  1. Functional analyses of the cell wall hydrolase from Lactobacillus paracasei NRRL B-50314 expressed in Bacillus megaterium

    USDA-ARS?s Scientific Manuscript database

    This study reports the production and characterization of a novel antibacterial polypeptide, designated laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. Crude laparaxin has antibacterial activity against a range of Gram-positive bacteria including the following: lactic acid bact...

  2. Bioprotection of ready-to-eat probiotic artichokes processed with Lactobacillus paracasei LMGP22043 against foodborne pathogens.

    PubMed

    Valerio, Francesca; Lonigro, Stella Lisa; Di Biase, Mariaelena; de Candia, Silvia; Callegari, Maria Luisa; Lavermicocca, Paola

    2013-11-01

    The survival of 3 pathogens Listeria monocytogenes ATCC19115, Salmonella enterica subsp. enterica ATCC13311, and Escherichia coli ATCC8739 was evaluated over time in ready-to-eat (RTE) artichoke products processed or not with the probiotic strain Lactobacillus paracasei LMGP22043. Both probiotic and standard products (final pH about 4.0; aw = 0.98) dressed with oil and packaged in modified atmosphere were inoculated with pathogens at a level of about 3 log CFU/g and stored at 4 ºC for 45 d. Pathogens decreased in the probiotic product in 2 descent phases, without shoulder and/or tailing as observed by fitting the models available in the GInaFit software to the experimental data. S. enterica subsp. enterica was completely inactivated after 14 and 28 d in probiotic and standard products, respectively; E. coli was inhibited in the probiotic food at day 4 (count

  3. Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle.

    PubMed

    Kudo, Yuko; Oki, Kaihei; Watanabe, Koichi

    2012-11-01

    Although four strains of bacteria isolated from sunki, a traditional Japanese, non-salted pickle, were initially identified as Lactobacillus delbrueckii, the molecular and phenotypic characteristics of the strains did not match those of any of the four recognized subspecies of L. delbrueckii. Together, the results of phenotypic characterization, DNA-DNA hybridizations (in which the relatedness values between the novel strains and type strains of the recognized subspecies of L. delbrueckii were all >88.7%) and 16S rRNA gene sequence, amplified fragment length polymorphism (AFLP) and whole-cell MALDI-TOF/MS spectral pattern analyses indicated that the four novel strains represented a single, novel subspecies, for which the name Lactobacillus delbrueckii subsp. sunkii subsp. nov. is proposed. The type strain is YIT 11221(T) (=JCM 17838(T) =DSM 24966(T)).

  4. Lactobacillus paracasei metabolism of rice bran reveals metabolome associated with Salmonella Typhimurium growth reduction.

    PubMed

    Nealon, N J; Worcester, C R; Ryan, E P

    2017-06-01

    This study aimed to determine the effect of a cell-free supernatant of Lactobacillus paracasei ATCC 27092 with and without rice bran extract (RBE) on Salmonella Typhimurium 14028s growth, and to identify a metabolite profile with antimicrobial functions. Supernatant was collected from overnight cultures of L. paracasei incubated in the presence (LP+RBE) or absence (LP) of RBE and applied to S. Typhimurium. LP+RBE reduced 13·1% more S. Typhimurium growth than LP after 16 h (P < 0·05). Metabolite profiles of LP and LP+RBE were examined using nontargeted global metabolomics consisting of ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. A comparison of LP and LP+RBE revealed 84 statistically significant metabolites (P < 0·05), where 20 were classified with antimicrobial functions. LP+RBE reduced S. Typhimurium growth to a greater extent than LP, and the metabolite profile distinctions suggested that RBE favourably modulates the metabolism of L. paracasei. These findings warrant continued investigation of probiotic and RBE antimicrobial activities across microenvironments and matrices where S. Typhimurium exposure is problematic. This study showed a novel metabolite profile of probiotic L. paracasei and prebiotic rice bran that increased antimicrobial activity against S. Typhimurium. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  5. Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso.

    PubMed

    Adimpong, David B; Nielsen, Dennis S; Sørensen, Kim I; Vogensen, Finn K; Sawadogo-Lingani, Hagrétou; Derkx, Patrick M F; Jespersen, Lene

    2013-10-01

    Lactobacillus delbrueckii is divided into five subspecies based on phenotypic and genotypic differences. A novel isolate, designated ZN7a-9(T), was isolated from malted sorghum wort used for making an alcoholic beverage (dolo) in Burkina Faso. The results of 16S rRNA gene sequencing, DNA-DNA hybridization and peptidoglycan cell-wall structure type analyses indicated that it belongs to the species L. delbrueckii. The genome sequence of isolate ZN7a-9(T) was determined by Illumina-based sequencing. Multilocus sequence typing (MLST) and split-decomposition analyses were performed on seven concatenated housekeeping genes obtained from the genome sequence of strain ZN7a-9(T) together with 41 additional L. delbrueckii strains. The results of the MLST and split-decomposition analyses could not establish the exact subspecies of L. delbrueckii represented by strain ZN7a-9(T) as it clustered with L. delbrueckii strains unassigned to any of the recognized subspecies of L. delbrueckii. Strain ZN7a-9(T) additionally differed from the recognized type strains of the subspecies of L. delbrueckii with respect to its carbohydrate fermentation profile. In conclusion, the cumulative results indicate that strain ZN7a-9(T) represents a novel subspecies of L. delbrueckii closely related to Lactobacillus delbrueckii subsp. lactis and Lactobacillus delbrueckii subsp. delbrueckii for which the name Lactobacillus delbrueckii subsp. jakobsenii subsp. nov. is proposed. The type strain is ZN7a-9(T) = DSM 26046(T) = LMG 27067(T).

  6. Complete genome sequence of Lactobacillus paracasei CAUH35, a new strain isolated from traditional fermented dairy product koumiss in China.

    PubMed

    Wang, Guohong; Xiong, Yao; Xu, Qi; Yin, Jia; Hao, Yanling

    2015-11-20

    Lactobacillus paracasei CAUH35 was isolated from homemade koumiss, a traditional fermented dairy product with beneficial effects on human health. The genome consists of a circular 2,770,411 bp chromosome and four plasmids. Genome analysis revealed the presence of gene clusters involved in the production of exopolysaccharides and bacteriocin. The complete genome sequence of L. paracasei CAUH35 will provide genetic basis for further comparative and functional genomic analyses. Copyright © 2015. Published by Elsevier B.V.

  7. Comparison of the Growth of Lactobacillus delbrueckii, L. paracasei and L. plantarum on Inulin in Co-culture Systems.

    PubMed

    Takagi, Risa; Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2014-01-01

    Lactobacillus delbrueckii TU-1, which apparently takes intact inulin into its cells and then degrades it intracellularly, was co-cultured in vitro with L. paracasei KTN-5, an extracellular inulin degrader; or L. plantarum 22A-3, a strain that is able to utilize fructose but not inulin; or both in order to prequalify inulin as a prebiotic agent in vivo. When L. delbrueckii TU-1 was co-cultured with L. paracasei KTN-5 on fructose or inulin, the growth of L. delbrueckii TU-1 on inulin was markedly higher than that of L. paracasei KTN-5, whereas the growth of L. delbrueckii TU-1 on fructose was much lower than that of L. paracasei KTN-5. These results suggest that L. delbrueckii TU-1 and L. paracasei KTN-5 were efficient at utilizing inulin and fructose, respectively. When L. plantarum 22A-3 was co-cultured with L. delbrueckii TU-1 on inulin, the growth of L. plantarum 22A-3 was enhanced by L. paracasei KTN-5 but not by L. delbrueckii TU-1, suggesting that the fructose moiety that L. paracasei KTN-5 released temporarily into the medium was "scavenged" by L. plantarum 22A-3. Thus, L. delbrueckii TU-1, L. paracasei KTN-5, and L. plantarum 22A-3 were then cultured altogether on inulin. The growth of L. delbrueckii TU-1 was unaffected but that of L. paracasei KTN-5 was markedly suppressed. This evidence suggests that prebiotic use of inulin supported the selective growth of intracellular inulin degraders such as L. delbrueckii rather than extracellular inulin degraders such as L. paracasei in the host microbiota.

  8. Comparison of the Growth of Lactobacillus delbrueckii, L. paracasei and L. plantarum on Inulin in Co-culture Systems

    PubMed Central

    TAKAGI, Risa; TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2014-01-01

    Lactobacillus delbrueckii TU-1, which apparently takes intact inulin into its cells and then degrades it intracellularly, was co-cultured in vitro with L. paracasei KTN-5, an extracellular inulin degrader; or L. plantarum 22A-3, a strain that is able to utilize fructose but not inulin; or both in order to prequalify inulin as a prebiotic agent in vivo. When L. delbrueckii TU-1 was co-cultured with L. paracasei KTN-5 on fructose or inulin, the growth of L. delbrueckii TU-1 on inulin was markedly higher than that of L. paracasei KTN-5, whereas the growth of L. delbrueckii TU-1 on fructose was much lower than that of L. paracasei KTN-5. These results suggest that L. delbrueckii TU-1 and L. paracasei KTN-5 were efficient at utilizing inulin and fructose, respectively. When L. plantarum 22A-3 was co-cultured with L. delbrueckii TU-1 on inulin, the growth of L. plantarum 22A-3 was enhanced by L. paracasei KTN-5 but not by L. delbrueckii TU-1, suggesting that the fructose moiety that L. paracasei KTN-5 released temporarily into the medium was “scavenged” by L. plantarum 22A-3. Thus, L. delbrueckii TU-1, L. paracasei KTN-5, and L. plantarum 22A-3 were then cultured altogether on inulin. The growth of L. delbrueckii TU-1 was unaffected but that of L. paracasei KTN-5 was markedly suppressed. This evidence suggests that prebiotic use of inulin supported the selective growth of intracellular inulin degraders such as L. delbrueckii rather than extracellular inulin degraders such as L. paracasei in the host microbiota. PMID:25379361

  9. Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Abadia-Molina, Francisco; Saez-Lara, Maria Jose; Campaña-Martin, Laura; Muñoz-Quezada, Sergio; Romero, Fernando; Gil, Angel; Fontana, Luis

    2014-01-01

    We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Lepr(fa/fa) rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Lepr(fa/fa) rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Lepr(fa/fa) rats that received probiotics than in rats fed the placebo. Zucker-Lepr(fa/fa) rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Lepr(fa/fa) rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Lepr(fa/fa) rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Lepr(fa/fa) rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.

  10. Characterization of an intracellular oligopeptidase from Lactobacillus paracasei.

    PubMed Central

    Tobiassen, R O; Sørhaug, T; Stepaniak, L

    1997-01-01

    An intracellular oligopeptidase from Lactobacillus paracasei Lc-01 has been purified to homogeneity by Fast Flow Q Sepharose, hydroxyapatite, and Mono Q chromatography. The molecular mass of the enzyme was determined to be 140 kDa by gel filtration and approximately 30 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and SDS-capillary electrophoresis. The pI of the enzyme was at pH 4.5. The enzyme expressed maximum activity at pH 8.0 and 40 degrees C. Oligopeptidase activity on bradykinin was inhibited strongly by 1,10-phenantroline and EDTA and partly by p-chloromercuribenzoic acid but not by phosphoramidon or phenylmethylsulfonyl fluoride. Marked inhibition by beta-casein fragment 58 to 72 was demonstrated. The enzyme showed neither general aminopeptidase nor caseinolytic activity, and it degraded only oligopeptides between 8 and 13 amino acids. The enzyme readily hydrolyzed the Phe-Ser and Pro-Phe bonds of bradykinin; the Phe-His bond of angiotensin I; the Pro-Gln, Gln-Phe, and Phe-Gly bonds of substance P; and the Pro-Tyr bond of neurotensin. Weak activity toward the Ala-Tyr and Pro-Ser bonds of alpha(s1)-casein fragment 157 to 164, was observed. The N-terminal amino acid sequence of the oligopeptidase showed a high degree of homology to the lactacin B inducer from Lactobacillus acidophilus. PMID:9097425

  11. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988.

    PubMed

    Vancanneyt, M; Mengaud, J; Cleenwerck, I; Vanhonacker, K; Hoste, B; Dawyndt, P; Degivry, M C; Ringuet, D; Janssens, D; Swings, J

    2004-03-01

    Fourteen homofermentative lactic acid bacteria that were isolated from kefir grains and kefir fermented milks were assigned to either Lactobacillus kefiranofaciens or Lactobacillus kefirgranum, based on their characteristic morphotypes, phenotypic features and SDS-PAGE profiles of whole-cell proteins. Further genotypic analyses on representative strains from both taxa demonstrated that L. kefiranofaciens and L. kefirgranum share 100 % 16S rDNA sequence similarity and belong phylogenetically to the Lactobacillus acidophilus species group. DNA-DNA binding values of >79 % and analogous DNA G+C contents of 37-38 mol% showed that the strains studied belonged to one species: L. kefirgranum is a later synonym of L. kefiranofaciens. An emended description is proposed for L. kefiranofaciens. Due to the specific morphological and biochemical characteristics of these taxa in kefir grain formation, it is proposed that L. kefirgranum should be reclassified as L. kefiranofaciens subsp. kefirgranum subsp. nov.

  12. Purification and characterization of bacteriocin produced by oral Lactobacillus paracasei SD1.

    PubMed

    Wannun, P; Piwat, S; Teanpaisan, R

    2014-06-01

    The present study aimed to purify and characterize the antimicrobial protein from Lactobacillus paracasei SD1, which is a strain from the human oral cavity. Antimicrobial activity was obtained from purifying the culture supernatant of L. paracasei SD1. Purification of the active compound was achieved with ammonium sulfate precipitation followed by chloroform and gel filtration chromatography. As revealed by SDS-PAGE, the active fraction was homogeneous, showing a protein with an approximate molecular weight of 25,000 Da. It was confirmed as having a molecular mass of 24,028.2 Da by mass spectrometry. The antimicrobial compound, named "paracasin SD1", exhibited a broad spectrum against oral pathogens. Paracasin SD1 was stable in a pH range between 3.0 and 8.0 at 100 °C for 5 min, and showed resistance to α-amylase, catalase, lysozyme and whole saliva. However, its activity was lost after proteinase K and trypsin treatment. The results obtained suggest the possibility of using paracasin SD1 for application in prevention/treatment of oral diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.

    PubMed

    Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline

    2008-03-01

    The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.

  14. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.

    PubMed

    Dewan, Sailendra; Tamang, Jyoti Prakash

    2007-10-01

    Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

  15. Use of PCR-Based Methods for Rapid Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis

    PubMed Central

    Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco

    1999-01-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains. PMID:10508059

  16. Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis.

    PubMed

    Torriani, S; Zapparoli, G; Dellaglio, F

    1999-10-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.

  17. Protective Effect of Vaginal Lactobacillus paracasei CRL 1289 against Urogenital Infection Produced by Staphylococcus aureus in a Mouse Animal Model

    PubMed Central

    Zárate, Gabriela; Santos, Viviana; Nader-Macias, María Elena

    2007-01-01

    Urogenital infections of bacterial origin have a high incidence among the world female population at reproductive age. Lactobacilli, the predominant microorganisms of the healthy vaginal microbiota, have shown a protective effect against the colonization and overgrowth of urogenital pathogens that increased the interest for including them into probiotics products assigned to restore the urogenital balance. In the present work, we determined in a mouse animal model the capability of Lactobacillus paracasei CRL 1289, a human vaginal strain with probiotic properties, to prevent the vaginal colonization of a uropathogenic strain of Staphylococcus aureus. Six-week-old female BALB/c mice, synchronized in their estral cycle, were intravaginally inoculated with two doses of 109 lactobacilli before challenging them with a single dose of 105 or 107 CFU of S. aureus. The vaginal colonization of both microorganisms and the effect on the vaginal structure were determined at 2, 5, and 7 days after pathogen inoculation. Control mice and those challenged only with the pathogen showed an insignificant lactobacilli population, whereas 105 lactobacilli/mL of vaginal homogenate were recovered at 2 days after challenge from the L. paracasei CRL 1289 and the probiotic + pathogen groups, decreasing this number on the following days. The treatment with L. paracasei CRL 1289 decreased significantly the number of staphylococci recovered at 2 and 5 days when mice were challenged only with 105 CFU of pathogen. The inoculation of S. aureus produced a remarkable inflammatory response and structural alterations in the vaginal mucosa that decreases in a significant manner when the mice were protected with L. paracasei CRL 1289. The results obtained suggest that this particular Lactobacillus strain could prevent the onset of urogenital infections by interfering with the epithelial colonization by uropathogenic S. aureus. PMID:17485818

  18. Selection of indigenous Lactobacillus paracasei CD4 and Lactobacillus gastricus BTM 7 as probiotic: assessment of traits combined with principal component analysis.

    PubMed

    Sharma, K; Mahajan, R; Attri, S; Goel, G

    2017-05-01

    The population of the Himalayan region is known to consume a variety of fermented and nonfermented foods and as a result they have been benefited in terms of overall health, because of the associated beneficial microbes. Therefore, the focus of the present study was to identify new strains of lactic acid bacteria (LAB) from dairy products such as milk (cow, goat, buffalo) and fermented products (curd and buttermilk) with properties suitable for use as probiotic cultures. A total of 75 isolates tentatively identified as LAB from 100 samples were initially screened for production of β-haemolysin as indicators of virulence which resulted in 38 isolates with no haemolytic activity. Further subtractive screening based on resistance to gastrointestinal tract barriers (acid and bile salts) resulted in the selection of the eight most promising strains. All these eight strains were resistant to pH 2·0, 1% bile concentration and pancreatin (1 mg l -1 ). Among the eight isolates, three isolates were identified as Brevibacillus thermoruber and the others as Brevibacillus aydinogluensis, Lactobacillus gastricus, L. paracasei, Enterococcus sp. Weisella confusa based on 16S rDNA region. Among these isolates, L. paracasei CD4 and L. gastricus BTM7 indicated maximum tolerance to simulated gastric environment. Both the isolates possessed highest score for cell surface hydrophobicity, cell autoaggregation, adherence to Caco-2 cell lines and antimicrobial activity against clinical isolates of Escherichia coli and Shigella sp. comparable to standard strain of Lactobacillus rhamnosus GG. Further principal component analysis and clustering analysis based on Euclidean Similarity index of probiotic characters revealed that L. paracasei strain CD4 and L. gastricus strain BTM7 were placed closest to reference strain L. rhamnosus GG and were therefore identified as most promising probiotic candidate cultures. These characteristics suggest that these strains could be excellent candidates

  19. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats.

    PubMed

    Thiennimitr, Parameth; Yasom, Sakawdaurn; Tunapong, Wannipa; Chunchai, Titikorn; Wanchai, Keerati; Pongchaidecha, Anchalee; Lungkaphin, Anusorn; Sirilun, Sasithorn; Chaiyasut, Chaiyavat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-03-20

    The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 10 8 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of β-lactoglobulin.

    PubMed

    Pescuma, Micaela; Hébert, Elvira M; Haertlé, Thomas; Chobert, Jean-Marc; Mozzi, Fernanda; Font de Valdez, Graciela

    2015-03-01

    Whey, a cheese by-product used as a food additive, is produced worldwide at 40.7 million tons per year. β-Lactoglobulin (BLG), the main whey protein, is poorly digested and is highly allergenic. We aimed to study the contribution of Lactobacillus delbrueckii subsp. bulgaricus CRL 454 to BLG digestion and to analyse its ability to degrade the main allergenic sequences of this protein. Pre-hydrolysis of BLG by L. delbrueckii subsp. bulgaricus CRL 454 increases digestion of BLG assayed by an in vitro simulated gastrointestinal system. Moreover, peptides from hydrolysis of the allergenic sequences V41-K60, Y102-R124, C121-L140 and L149-I162 were found when BLG was hydrolysed by this strain. Interestingly, peptides possessing antioxidant, ACE inhibitory, antimicrobial and immuno-modulating properties were found in BLG degraded by both the Lactobacillus strain and digestive enzymes. To conclude, pre-hydrolysis of BLG by L. delbrueckii subsp. bulgaricus CRL 454 has a positive effect on BLG digestion and could diminish allergenic reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk.

    PubMed

    Riaz Rajoka, Muhammad Shahid; Zhao, Haobin; Lu, Yao; Lian, Ziyang; Li, Na; Hussain, Nazim; Shao, Dongyan; Jin, Mingliang; Li, Qi; Shi, Junling

    2018-05-15

    Lactic acid bacteria have been categorized as probiotics and play a crucial role in human health by stimulating the supply of nutrients, shaping the immune system, and preventing the colonization of pathogenic microbes. This study investigated the mechanisms for the action of three potential probiotic Lactobacillus strains: Lactobacillus casei SR1, Lactobacillus casei SR2, and Lactobacillus paracasei SR4 isolated from human breast milk. These Lactobacillus strains were identified via 16S DNA sequencing and characterized via biochemical assays including acid resistance, bile resistance, antioxidant activity, and antibiotic susceptibility. The bioactivity of the cell-free culture supernatant (CFCS) secreted by these strains on the cervix cancer (HeLa) cell line was also evaluated via cytotoxicity assay and apoptosis analysis. The mechanism of anticancer activity was also investigated via RT-qPCR and western blotting. The results demonstrated that these newly isolated Lactobacillus strains from human milk displayed noticeable probiotic characteristics such as excellent antibiotic susceptibility, outstanding antioxidant activity, and promising resistance to low pH and high concentration of bile salts. The results of the conducted bioactivity assays verified that the CFCSs had acceptable anticancer effects on cervix cancer (HeLa) cells by upregulating the expression of apoptotic genes BAX, BAD, caspase3, caspase8, and caspase9 and by downregulating the expression of the BCl-2 gene. Overall, these results indicate that the Lactobacillus strains isolated from human breast milk could be considered as a topical medication with a potential therapeutic index due to their efficacy against cervix cancer cells.

  2. Phages of Lactobacillus casei/paracasei: response to environmental factors and interaction with collection and commercial strains.

    PubMed

    Capra, M L; Quiberoni, A; Reinheimer, J

    2006-02-01

    To investigate the influence of several environmental factors on the viability and cell-adsorption for two Lactobacillus casei/paracasei bacteriophages (PL-1 and J-1). Both phages showed a remarkably high specificity of species, sharing similar host spectra. Two phages and four sensitive strains were used to conform five phage/strain systems. Each showed a particular behaviour (burst size: ranging from 32 to 160 PFU/infective centre; burst time: 120-240 min and latent time: 5-90 min). For both phages, the viability was not significantly affected from pH 4 to 11 (room temperature) and from pH 5 to 10 (37 degrees C). Adsorption rates were not influenced by calcium ions, but decreased after the thermal inactivation of cells. Adsorption rates were high between 0 and 50 degrees C with maximum values at 30 degrees C and pH 6. System PL-1/Lact. paracasei A showed noticeable differences in comparison with the others, being times required to reach 90% of adsorption of 4 h and lower than 45 min, respectively. The data obtained in this work demonstrated that environmental parameters can influence the viability and cell adsorption rates of Lact. casei/paracasei phages. The extent of this influence was phage dependent. This work contributes to the enlargement of the currently scarce knowledge of phages of probiotic bacteria.

  3. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy.

    PubMed

    Schabussova, Irma; Hufnagl, Karin; Tang, Mimi L K; Hoflehner, Elisabeth; Wagner, Angelika; Loupal, Gerhard; Nutten, Sophie; Zuercher, Adrian; Mercenier, Annick; Wiedermann, Ursula

    2012-01-01

    The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved. BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract. Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum. Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway inflammation in offspring by activating regulatory pathways

  4. Perinatal Maternal Administration of Lactobacillus paracasei NCC 2461 Prevents Allergic Inflammation in a Mouse Model of Birch Pollen Allergy

    PubMed Central

    Schabussova, Irma; Hufnagl, Karin; Tang, Mimi L. K.; Hoflehner, Elisabeth; Wagner, Angelika; Loupal, Gerhard; Nutten, Sophie; Zuercher, Adrian; Mercenier, Annick; Wiedermann, Ursula

    2012-01-01

    Background The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved. Methods BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract. Results Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum. Conclusion Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway inflammation in offspring

  5. Complete Genome Sequence of the Yogurt Isolate Lactobacillus delbrueckii subsp. bulgaricus ACA-DC 87.

    PubMed

    Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-08-24

    Lactobacillus delbrueckii subsp. bulgaricus is widely used in the production of yogurt and cheese. In this study, we present the complete genome sequence of L. delbrueckii subsp. bulgaricus ACA-DC 87 isolated from traditional Greek yogurt. Whole-genome analysis may reveal desirable technological traits of the strain for dairy fermentations. Copyright © 2017 Alexandraki et al.

  6. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice.

    PubMed

    Ge, Jingping; Sun, Yanyang; Xin, Xing; Wang, Ying; Ping, Wenxiang

    2016-01-14

    Bacteriocins have antimicrobial activities against food-spoiling bacteria and food-borne pathogens. Paracin 1.7, a bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice, was studied. Following partial purification with ammonium sulfate precipitation, CM Sepharose Fast Flow, and Sephadex G-10 chromatography, the molecular weight of Paracin 1.7 was about 10 kDa based on Tricine-SDS-PAGE results. A 2.87 fold purified bacteriocin was produced, reaching a final yield of 39.93% and the specific activity of 1.56 × 10(3) AU/mg. The N-terminal amino acid sequence of Paracin 1.7 was VSNTFFA, and the LC/LTQ results revealed that the N-terminal amino acid sequence was similar to that of ABC-type oligopeptide transport system protein and N-acetylmuramoyl-L-alanine amidase. Paracin 1.7 was sensitive to protease K, had antimicrobial activities at a broad pH range (3.0-8.0), and was heat resistant (121 °C for 20 min). Paracin 1.7 from Lactobacillus paracasei HD1-7 is a novel bacteriocin that has potential applications in food preservation.

  7. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice

    PubMed Central

    Ge, Jingping; Sun, Yanyang; Xin, Xing; Wang, Ying; Ping, Wenxiang

    2016-01-01

    Bacteriocins have antimicrobial activities against food-spoiling bacteria and food-borne pathogens. Paracin 1.7, a bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice, was studied. Following partial purification with ammonium sulfate precipitation, CM Sepharose Fast Flow, and Sephadex G-10 chromatography, the molecular weight of Paracin 1.7 was about 10 kDa based on Tricine-SDS-PAGE results. A 2.87 fold purified bacteriocin was produced, reaching a final yield of 39.93% and the specific activity of 1.56 × 103 AU/mg. The N-terminal amino acid sequence of Paracin 1.7 was VSNTFFA, and the LC/LTQ results revealed that the N-terminal amino acid sequence was similar to that of ABC-type oligopeptide transport system protein and N-acetylmuramoyl-L-alanine amidase. Paracin 1.7 was sensitive to protease K, had antimicrobial activities at a broad pH range (3.0–8.0), and was heat resistant (121 °C for 20 min). Paracin 1.7 from Lactobacillus paracasei HD1-7 is a novel bacteriocin that has potential applications in food preservation. PMID:26763314

  8. Characterization of certain bacterial strains for potential use as starter or probiotic cultures in dairy products.

    PubMed

    Monteagudo-Mera, A; Caro, I; Rodríguez-Aparicio, L B; Rúa, J; Ferrero, M A; García-Armesto, M R

    2011-08-01

    The present work was aimed at characterizing 12 strains of lactic acid bacteria (LAB) to obtain improved potential starter or probiotic cultures that could be used for making dairy products from ewe's milk and cow's milk. Eight strains with antimicrobial properties, isolated from ewe's milk and from cheese made from ewe's and/or cow's milk, were studied. They were identified as Enterococcus faecalis (five strains), Lactococcus lactis subsp. cremoris, Leuconostoc mesenteroides, and Lactobacillus paracasei subsp. paracasei (one strain of each species). Additionally, four strains were obtained from the American Type Culture Collection: Lactobacillus casei 393 (isolated from cheese), L. lactis subsp. lactis 11454 (origin nonspecified and a producer of nisin), and two strains isolated from human feces (L. paracasei subsp. paracasei 27092 and Lactobacillus rhamnosus 53103, antibacterial agent producer). All E. faecalis strains showed at least one virulence factor (either hemolysin or gelatinase), which emphasizes the importance of these studies in this species. Both L. lactis strains and most Lactobacillus spp. were good acidifiers in ewe's milk and cow's milk at 30°C. High β-galactosidase activity, as well as aminopeptidase activities that favor the development of desirable flavors in cheese, were detected in all Lactobacillus spp. strains. Furthermore, L. rhamnosus ATCC 53103 showed α-fucosidase activity (thought to help colonization of the intestine) and lack of α-glucosidase activity (a trait considered positive for diabetic and obese humans). This last enzymatic activity was also lacking in L. lactis ATCC 11454. L. mesenteroides was the only strain D(2)-lactic acid producer. The selection of any particular strain for probiotic or dairy cultures should be performed according to the technological and/or functional abilities needed.

  9. A review on traditional Turkish fermented non-alcoholic beverages: microbiota, fermentation process and quality characteristics.

    PubMed

    Altay, Filiz; Karbancıoglu-Güler, Funda; Daskaya-Dikmen, Ceren; Heperkan, Dilek

    2013-10-01

    Shalgam juice, hardaliye, boza, ayran (yoghurt drink) and kefir are the most known traditional Turkish fermented non-alcoholic beverages. The first three are obtained from vegetables, fruits and cereals, and the last two ones are made of milk. Shalgam juice, hardaliye and ayran are produced by lactic acid fermentation. Their microbiota is mainly composed of lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus brevis and Lactobacillus paracasei subsp. paracasei in shalgam fermentation and L. paracasei subsp. paracasei and Lactobacillus casei subsp. pseudoplantarum in hardaliye fermentation are predominant. Ayran is traditionally prepared by mixing yoghurt with water and salt. Yoghurt starter cultures are used in industrial ayran production. On the other hand, both alcohol and lactic acid fermentation occur in boza and kefir. Boza is prepared by using a mixture of maize, wheat and rice or their flours and water. Generally previously produced boza or sourdough/yoghurt are used as starter culture which is rich in Lactobacillus spp. and yeasts. Kefir is prepared by inoculation of raw milk with kefir grains which consists of different species of yeasts, LAB, acetic acid bacteria in a protein and polysaccharide matrix. The microbiota of boza and kefir is affected from raw materials, the origin and the production methods. In this review, physicochemical properties, manufacturing technologies, microbiota and shelf life and spoilage of traditional fermented beverages were summarized along with how fermentation conditions could affect rheological properties of end product which are important during processing and storage. Copyright © 2013. Published by Elsevier B.V.

  10. A new methodology for rapid detection of Lactobacillus delbrueckii subsp. bulgaricus based on multiplex PCR.

    PubMed

    Nikolaou, Anastasios; Saxami, Georgia; Kourkoutas, Yiannis; Galanis, Alex

    2011-02-01

    In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains.

    PubMed

    Bengoa, Ana A; Llamas, M Goretti; Iraporda, Carolina; Dueñas, M Teresa; Abraham, Analía G; Garrote, Graciela L

    2018-02-01

    EPS-producing LAB are widely used in the dairy industry since these polymers improve the viscosity and texture of the products. Besides, EPS might be responsible for several health benefits attributed to probiotic strains. However, growth conditions (culture media, temperature, pH) could modify EPS production affecting both technological and probiotic properties. In this work, the influence of growth temperature on EPS production was evaluated, as well as the consequences of these changes in the probiotic properties of the strains. All Lactobacillus paracasei strains used in the study showed changes in EPS production caused by growth temperature, evidenced by the appearance of a high molecular weight fraction and an increment in the total amount of produced EPS at lower temperature. Nevertheless, these changes do not affect the probiotic properties of the strains; L. paracasei strains grown at 20 °C, 30 °C and 37 °C were able to survive in simulated gastrointestinal conditions, to adhere to Caco-2 cells after that treatment and to modulate the epithelial innate immune response. The results suggest that selected L. paracasei strains are new probiotic candidates that can be used in a wide range of functional foods in which temperature could be used as a tool to improve the technological properties of the product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei.

    PubMed

    Ferreira, A; Vecino, X; Ferreira, D; Cruz, J M; Moldes, A B; Rodrigues, L R

    2017-07-01

    Cosmetic and personal care products including toothpaste, shampoo, creams, makeup, among others, are usually formulated with petroleum-based surfactants, although in the last years the consume trend for "green" products is inducing the replacement of surface-active agents in these formulations by natural surfactants, so-called biosurfactants. In addition to their surfactant capacity, many biosurfactants can act as good emulsifiers, which is an extra advantage in the preparation of green cosmetic products. In this work, a biosurfactant obtained from Lactobacillus paracasei was used as a stabilizing agent in oil-in-water emulsions containing essential oils and natural antioxidant extract. In the presence of biosurfactant, maximum percentages of emulsion volumes (EV=100%) were observed, with droplets sizes about 199nm. These results were comparable with the ones obtained using sodium dodecyl sulfate (SDS), a synthetic well known surfactant with high emulsify capacity. Moreover, the biosurfactant and emulsions cytotoxicity was evaluated using a mouse fibroblast cell line. Solutions containing 5g/L of biosurfactant presented cell proliferation values of 97%, whereas 0.5g/L of SDS showed a strong inhibitory effect. Overall, the results herein gathered are very promising towards the development of new green cosmetic formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei

    PubMed Central

    Rousseau, Geneviève M.; Capra, María L.; Quiberoni, Andrea; Tremblay, Denise M.; Labrie, Simon J.

    2015-01-01

    Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts. PMID:26475105

  14. Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with Various Plasmids

    PubMed Central

    Serror, Pascale; Sasaki, Takashi; Ehrlich, S. Dusko; Maguin, Emmanuelle

    2002-01-01

    We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 104 transformants per μg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii. PMID:11772607

  15. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5.

    PubMed

    Urshev, Zoltan; Hajo, Karima; Lenoci, Leonardo; Bron, Peter A; Dijkstra, Annereinou; Alkema, Wynand; Wels, Michiel; Siezen, Roland J; Minkova, Svetlana; van Hijum, Sacha A F T

    2016-10-06

    Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 originates from homemade Bulgarian yogurt and was selected for its ability to form a strong association with Streptococcus thermophilus The genome sequence will facilitate elucidating the genetic background behind the contribution of LBB.B5 to the taste and aroma of yogurt and its exceptional protocooperation with S. thermophilus. Copyright © 2016 Urshev et al.

  16. Comparative Survival Rates of Human-Derived Probiotic Lactobacillus paracasei and L. salivarius Strains during Heat Treatment and Spray Drying

    PubMed Central

    Gardiner, G. E.; O'Sullivan, E.; Kelly, J.; Auty, M. A. E.; Fitzgerald, G. F.; Collins, J. K.; Ross, R. P.; Stanton, C.

    2000-01-01

    Spray drying of skim milk was evaluated as a means of preserving Lactobacillus paracasei NFBC 338 and Lactobacillus salivarius UCC 118, which are human-derived strains with probiotic potential. Our initial experiments revealed that NFBC 338 is considerably more heat resistant in 20% (wt/vol) skim milk than UCC 118 is; the comparable decimal reduction times were 11.1 and 1.1 min, respectively, at 59°C. An air outlet temperature of 80 to 85°C was optimal for spray drying; these conditions resulted in powders with moisture contents of 4.1 to 4.2% and viable counts of 3.2 × 109 CFU/g for NFBC 338 and 5.2 × 107 CFU/g for UCC 118. Thus, L. paracasei NFBC 338 survived better than L. salivarius UCC 118 during spray drying; similar results were obtained when we used confocal scanning laser microscopy and LIVE/DEAD BacLight viability staining. In addition, confocal scanning laser microscopy revealed that the probiotic lactobacilli were located primarily in the powder particles. Although both spray-dried cultures appeared to be stressed, as shown by increased sensitivity to NaCl, bacteriocin production by UCC 118 was not affected by the process, nor was the activity of the bacteriocin peptide. The level of survival of NFBC 338 remained constant at ∼1 × 109 CFU/g during 2 months of powder storage at 4°C, while a decline in the level of survival of approximately 1 log (from 7.2 × 107 to 9.5 × 106 CFU/g) was observed for UCC 118 stored under the same conditions. However, survival of both Lactobacillus strains during powder storage was inversely related to the storage temperature. Our data demonstrate that spray drying may be a cost-effective way to produce large quantities of some probiotic cultures. PMID:10831444

  17. Genome Sequence of the Cheese-Starter Strain Lactobacillus delbrueckii subsp. lactis CRL 581.

    PubMed

    Hebert, Elvira María; Raya, Raúl R; Brown, Lucía; Font de Valdez, Graciela; Savoy de Giori, Graciela; Taranto, María Pía

    2013-08-08

    We report the genome sequence of Lactobacillus delbrueckii subsp. lactis CRL 581 (1,911,137 bp, GC 49.7%), a proteolytic strain isolated from a homemade Argentinian hard cheese which has a key role in bacterial nutrition and releases bioactive health-beneficial peptides from milk proteins.

  18. Growth of Lactobacillus paracasei A13 in Argentinian probiotic cheese and its impact on the characteristics of the product.

    PubMed

    Vinderola, G; Prosello, W; Molinari, F; Ghiberto, D; Reinheimer, J

    2009-10-31

    The growth capacity of probiotic Lactobacillus paracasei A13, Bifidobacterium bifidum A1 and L. acidophilus A3 in a probiotic fresh cheese commercialized in Argentina since 1999 was studied during its manufacture and refrigerated storage at 5 degrees C and 12 degrees C for 60 days. Additionally, viable cell counts for probiotic bacteria in the commercial product are reported for batch productions over the last 9 years. L. paracasei A13 grew a half log order at 43 degrees C during the manufacturing process of probiotic cheese and another half log order during the first 15 days of storage at 5 degrees C, without negative effects on sensorial properties of the product. However, a negative impact on sensorial characteristics was observed when cheeses were stored at 12 degrees C for 60 days. Colony counts in the commercial product showed variations from batch to batch over the last 9 years. However, colony counts for each probiotic bacterium were always above the minimum suggested. Growth capacity of L. paracasei A13 in cheese during manufacturing and storage, mainly at temperatures commonly found in retail display cabinets in supermarkets (12 degrees C or more), would make it necessary to re-evaluate its role as possible probiotic starter and the consequences on food sensorial characteristics if storage temperature during commercial shelf life is not tightly controlled.

  19. Characterization of lactic acid bacteria isolated from a Thai low-salt fermented fish product and the role of garlic as substrate for fermentation.

    PubMed

    Paludan-Müller, C; Huss, H H; Gram, L

    1999-02-18

    Lactic acid bacteria (LAB) isolated from raw materials (fish, rice, garlic and banana leaves) and processed som-fak (a Thai low-salt fermented fish product) were characterized by API 50-CH and other phenotypic criteria. Lactococcus lactis subsp. lactis and Leuconostoc citreum were specifically associated with fish fillet and minced fish, Lactobacillus paracasei subsp. paracasei with boiled rice and Weisella confusa with garlic mix and banana leaves. In addition, Lactobacillus plantarum, Lactobacillus pentosus and Pediococcus pentosaceus were isolated from raw materials. A succession of aciduric, homofermentative lactobacillus species, dominated by Lb. plantarum/pentosus, was found during fermentation. In total, 9% of the strains fermented starch and 19% fermented garlic, the two main carbohydrate components in som-fak. The ability to ferment garlic was paralleled by a capacity to ferment inulin. An increased percentage of garlic fermenting strains was found during fermentation of som-fak, from 8% at day 1 to 40% at day 5. No starch fermenting strains were isolated during fermentation. Three mixed LAB cultures, composed of either starch fermenting Lc. lactis subsp. lactis and Lb. paracasei subsp. paracasei, or garlic fermenting Lb. plantarum and Pd. pentosaceus, or a combination of these strains were inoculated into laboratory prepared som-fak with or without garlic. In som-fak without garlic, pH was above 4.8 after three days, irrespective of addition of mixed LAB cultures. The starch fermenting LAB were unable to ferment som-fak and sensory spoilage occurred after three days. Fermentation with the combined mix of starch and garlic fermenting strains led to production of 2.5% acid and a decrease in pH to 4.5 in two days. The fermentation was slightly slower with the garlic fermenting strains alone. This is the first report describing the role of garlic as carbohydrate source for LAB in fermented fish products.

  20. Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates.

    PubMed

    Strahinic, I; Busarcevic, M; Pavlica, D; Milasin, J; Golic, N; Topisirovic, L

    2007-04-01

    The objective of this study was to characterize the lactobacilli from the human oral cavity as a potential source of probiotic strains. Samples were collected from four different locations within the oral cavity: surface of healthy tooth, oral mucous membrane, surface of tooth decay and deep tooth decay. On the basis of morphological and biochemical properties eight categories were formed and 26 isolates were selected for further characterization. The isolates were determined as Lactobacillus sp. using primers specific for 16S rDNA. Sequencing of 16S rDNA genes and repetitive sequence-based polymerase chain reactions were used for determination to species and subspecies levels. Predominant species were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius and Lactobacillus paracasei subsp. paracasei, while Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus gasseri were also present. The isolates Lactobacillus salivarius BGHO1, Lactobacillus fermentum BGHO36 and BGHO64, Lactobacillus gasseri BGHO89 and Lactobacillus delbrueckii subsp. lactis BGHO99 exhibited antagonistic action on the growth of Staphylococcus aureus, Enterococcus faecalis, Micrococcus flavus, Salmonella enteritidis, Streptococcus pneumoniae and Streptococcus mutans, but not on growth of Candida albicans. Moreover, the isolates L. salivarius BGHO1 and L. gasseri BGHO89 were tolerant to low pH and high concentration of bile salts. Taken together, these findings imply that L. salivarius BGHO1 and L. gasseri BGHO89 might be subjects for additional investigation as potential probiotic strains.

  1. Lactobacillus paracasei and Lactobacillus plantarum strains downregulate proinflammatory genes in an ex vivo system of cultured human colonic mucosa.

    PubMed

    Bäuerl, Christine; Llopis, Marta; Antolín, María; Monedero, Vicente; Mata, Manuel; Zúñiga, Manuel; Guarner, Francisco; Pérez Martínez, Gaspar

    2013-03-01

    Significant health benefits have been demonstrated for certain probiotic strains through intervention studies; however, there is a shortage of experimental evidence relative to the mechanisms of action. Here, noninvasive experimental procedure based on a colon organ culture system has been used that, in contrast to most experimental in vitro models reported, can preserve natural immunohistochemical features of the human mucosa. This system has been used to test whether commensal lactobacilli (Lactobacillus paracasei BL23, Lactobacillus plantarum 299v and L. plantarum 299v (A(-))) were able to hinder inflammation-like signals induced by phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO). Whole genome microarrays have been applied to analyze expression differences, from which mRNA markers could be inferred to monitor the effect of putative probiotic strains under such conditions. Regarding the gene expression, PMA/IO treatment induced not only interleukin (IL)-2 and interferon gamma (IFN-γ), as expected, but also other relevant genes related to immune response and inflammation, such as IL-17A, chemokine (C-X-C motif) ligand (CXCL) 9 and CXCL11. The ex vivo culturing did not modify the pattern of expression of those genes or others related to inflammation. Interestingly, this study demonstrated that lactobacilli downregulated those genes and triggered a global change of the transcriptional profile that indicated a clear homeostasis restoring effect and a decrease in signals produced by activated T cells.

  2. Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants.

    PubMed

    Muñoz-Quezada, Sergio; Chenoll, Empar; Vieites, José María; Genovés, Salvador; Maldonado, José; Bermúdez-Brito, Miriam; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, María José; Romero, Fernando; Suárez, Antonio; Ramón, Daniel; Gil, Angel

    2013-01-01

    The aim of the present study was to isolate, identify and characterise novel strains of lactic acid bacteria and bifidobacteria with probiotic properties from the faeces of exclusively breast-fed infants. Of the 4680 isolated colonies, 758 exhibited resistance to low pH and tolerance to high concentrations of bile salts; of these, only forty-two exhibited a strong ability to adhere to enterocytes in vitro. The identities of the isolates were confirmed by 16S ribosomal RNA (rRNA) sequencing, which permitted the grouping of the forty-two bacteria into three different strains that showed more than 99 % sequence identity with Lactobacillus paracasei, Lactobacillus rhamnosus and Bifidobacterium breve, respectively. The strain identification was confirmed by sequencing the 16S-23S rRNA intergenic spacer regions. Strains were assayed for enzymatic activity and carbohydrate utilisation, and they were deposited in the Collection Nationale de Cultures de Microorganismes (CNCM) of the Institute Pasteur and named L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036. The strains were susceptible to antibiotics and did not produce undesirable metabolites, and their safety was assessed by acute ingestion in immunocompetent and immunosuppressed BALB/c mouse models. The three novel strains inhibited in vitro the meningitis aetiological agent Listeria monocytogenes and human rotavirus infections. B. breve CNCM I-4035 led to a higher IgA concentration in faeces and plasma of mice. Overall, these results suggest that L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036 should be considered as probiotic strains, and their human health benefits should be further evaluated.

  3. Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Pang, Xiaoyang; Liu, Cuiping; Lyu, Pengcheng; Zhang, Shuwen; Liu, Lu; Lu, Jing; Ma, Changlu; Lv, Jiaping

    2016-12-14

    Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.

  4. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CRL871, a Folate-Producing Strain Isolated from a Northwestern Argentinian Yogurt.

    PubMed

    Laiño, Jonathan Emiliano; Hebert, Elvira María; Savoy de Giori, Graciela; LeBlanc, Jean Guy

    2015-06-25

    Lactobacillus delbrueckii subsp. bulgaricus CRL871 is the first strain of L. delbrueckii subsp. bulgaricus reported as a folate-producing strain. We report the draft genome sequence of L. delbrueckii subsp. bulgaricus CRL871 (2,063,981 bp, G+C content of 49.1%). This strain is of great biotechnological importance to the dairy industry because it constitutes an alternative to folic acid fortification. Copyright © 2015 Laiño et al.

  5. Safety evaluation of Lactobacillus delbrueckii subsp. lactis UO 004, a probiotic bacterium.

    PubMed

    Fernández, M Fernanda; Boris, Soledad; Barbés, Covadonga

    2005-03-01

    Lactobacillus delbrueckii subsp. lactis UO 004 was evaluated for its use as a potential probiotic from a safety point of view. The strain did not exhibit mucinolytic or other enzymatic activities that might be detrimental, such as those involving glycosidases (beta-D-glucosaminidase or alpha-D-galactosidase) or arylamidases (factor Xa and quimotrypsin-like activities), frequently present in Lactobacillus strains isolated from patients with endocarditis, although it was able to express protein Ca and kallikrein-like activities. On the other hand, the presence of the strain did not interfere with the growth of certain species of normal intestinal microbiota, such as Enterococcus fecalis, Escherichia coli, Bifidobacterium bifidum or Bacteroides fragilis. Moreover, the potential probiotic strain UO 004 is sensitive to antibiotics with transmissible resistance mechanisms in Lactobacillus such as chloramphenicol, erythromycin, tetracycline and vancomycin. In addition, strain L. delbrueckii UO 004 was not able to translocate towards the intestinal barrier of mice or produce changes in their activity or general health status.

  6. Genome Sequence of Lactobacillus sakei subsp. sakei LS25, a Commercial Starter Culture Strain for Fermented Sausage.

    PubMed

    McLeod, Anette; Brede, Dag Anders; Rud, Ida; Axelsson, Lars

    2013-07-11

    Lactobacillus sakei is a lactic acid bacterium associated primarily with fermented meat and fish. Here, we present the draft genome sequence of L. sakei subsp. sakei strain LS25, a commercial starter culture strain for fermented sausage.

  7. Effects of six substances on the growth and freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Chen, He; Huang, Jie; Shi, Xiaoyu; Li, Yichao; Liu, Yu

    2017-01-01

    The efficacy of Lactobacillus delbrueckii subsp. bulgaricus as starter cultures for the dairy industry depends largely on the number of viable and active cells. Freeze-drying is the most convenient and successful method to preserve the bacterial cells. However, not all strains survived during freeze-drying. The effects of six substances including NaCl, sorbitol, mannitol, mannose, sodium glutamate, betaine added to the MRS medium on the growth and freeze-drying survival rate and viable counts of Lb. delbrueckii subsp. bulgaricus were studied through a single-factor test and Plackett-Burman design. Subsequently, the optimum freeze-drying conditions of Lb. delbrueckii subsp. bulgaricus were determined. Lb. delbrueckii subsp. bulgaricus survival rates were up to the maximum of 42.7%, 45.4%, 23.6%, while the concentrations of NaCl, sorbitol, sodium glutamate were 0.6%, 0.15%, 0.09%, respectively. In the optimum concentration, the viable counts in broth is 6.1, 6.9, 5.13 (×108 CFU/mL), respectively; the viable counts in freeze-drying power are 3.09, 5.2, 2.7 (×1010 CFU/g), respectively. Three antifreeze factors including NaCl, sorbitol, sodium glutamate have a positive effect on the growth and freeze-drying of Lb. delbrueckii subsp. bulgaricus. The results are beneficial for developing Lb. delbrueckii subsp. bulgaricus.

  8. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese.

    PubMed

    Cremonesi, Paola; Vanoni, Laura; Morandi, Stefano; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena

    2011-03-30

    A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Lactobacillus paracasei CBA L74 interferes with gliadin peptides entrance in Caco-2 cells.

    PubMed

    Sarno, Marco; Lania, Giuliana; Cuomo, Marialaura; Nigro, Federica; Passannanti, Francesca; Budelli, Andrea; Fasano, Francesca; Troncone, Riccardo; Auricchio, Salvatore; Barone, Maria Vittoria; Nigro, Roberto; Nanayakkara, Merlin

    2014-12-01

    Several recent reports describe a role of probiotics as a therapeutic approach for celiac disease (CD). Two undigested A-gliadin peptides, P31-43 and P57-68, are central to CD pathogenesis, inducing an innate and an adaptive immune response, respectively. They enter enterocytes and localize to vesicular compartment to induce their toxic/immunogenics effects. In this article, we tested the effect of probiotic Lactobacillus paracasei (LP) CBA L74 (International Depository Accession Number LMG P-24778), its supernatant and LP-fermented cereals on gliadin peptides, P31-43 and P57-68, entrance in Caco-2 cells. Both LP CBA L74 and its supernatant inhibit P31-43 (intensity of fluorescence; FI: 75%) and P57-68 (FI: 50%) entrance in Caco2 cells, indicating that this biological effect is due to some product included in LP CBA L74 supernatant. This effect was present also after fermentation of cereals. This study describes a novel effect of probiotics in the prevention of undigested gliadin peptides toxic effects.

  10. Homodimeric β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: Expression in Lactobacillus plantarum and Biochemical Characterization

    PubMed Central

    2012-01-01

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ∼170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS. PMID:22283494

  11. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization.

    PubMed

    Nguyen, Tien-Thanh; Nguyen, Hoang Anh; Arreola, Sheryl Lozel; Mlynek, Georg; Djinović-Carugo, Kristina; Mathiesen, Geir; Nguyen, Thu-Ha; Haltrich, Dietmar

    2012-02-22

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ~170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS.

  12. Proteomes of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 Incubated in Milk at Optimal and Low Temperatures

    PubMed Central

    Yin, Xiaochen; Salemi, Michelle R.; Phinney, Brett S.; Gotcheva, Velitchka; Angelov, Angel

    2017-01-01

    ABSTRACT We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, among which 72 proteins were milk associated (unique or significantly more abundant in milk). LBB.B5 responded to milk by increasing the production of proteins required for purine biosynthesis, carbohydrate metabolism (LacZ and ManM), energy metabolism (TpiA, PgK, Eno, SdhA, and GapN), amino acid synthesis (MetE, CysK, LBU0412, and AspC) and transport (GlnM and GlnP), and stress response (Trx, MsrA, MecA, and SmpB). The requirement for purines was confirmed by the significantly improved cell yields of L. delbrueckii subsp. bulgaricus when incubated in milk supplemented with adenine and guanine. The L. delbrueckii subsp. bulgaricus-expressed proteome in milk changed upon incubation at 4°C for 5 days and included increased levels of 17 proteins, several of which confer functions in stress tolerance (AddB, UvrC, RecA, and DnaJ). However, even with the activation of stress responses in either milk or MRS, L. delbrueckii subsp. bulgaricus did not survive passage through the murine digestive tract. These findings inform efforts to understand how L. delbrueckii subsp. bulgaricus is adapted to the dairy environment and its implications for its health-benefiting properties in the human digestive tract. IMPORTANCE Lactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp

  13. Proteomes of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 Incubated in Milk at Optimal and Low Temperatures.

    PubMed

    Yin, Xiaochen; Salemi, Michelle R; Phinney, Brett S; Gotcheva, Velitchka; Angelov, Angel; Marco, Maria L

    2017-01-01

    We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, among which 72 proteins were milk associated (unique or significantly more abundant in milk). LBB.B5 responded to milk by increasing the production of proteins required for purine biosynthesis, carbohydrate metabolism (LacZ and ManM), energy metabolism (TpiA, PgK, Eno, SdhA, and GapN), amino acid synthesis (MetE, CysK, LBU0412, and AspC) and transport (GlnM and GlnP), and stress response (Trx, MsrA, MecA, and SmpB). The requirement for purines was confirmed by the significantly improved cell yields of L. delbrueckii subsp. bulgaricus when incubated in milk supplemented with adenine and guanine. The L. delbrueckii subsp. bulgaricus -expressed proteome in milk changed upon incubation at 4°C for 5 days and included increased levels of 17 proteins, several of which confer functions in stress tolerance (AddB, UvrC, RecA, and DnaJ). However, even with the activation of stress responses in either milk or MRS, L. delbrueckii subsp. bulgaricus did not survive passage through the murine digestive tract. These findings inform efforts to understand how L. delbrueckii subsp. bulgaricus is adapted to the dairy environment and its implications for its health-benefiting properties in the human digestive tract. IMPORTANCE Lactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp. bulgaricus as

  14. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    PubMed

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  15. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology

    PubMed Central

    Yoo, Mi-Young; Lim, Sang-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products. PMID:27433115

  16. Starch Flocculation by the Sweet Potato Sour Liquid Is Mediated by the Adhesion of Lactic Acid Bacteria to Starch

    PubMed Central

    Zhang, Lili; Yu, Yang; Li, Xinhua; Li, Xiaona; Zhang, Huajiang; Zhang, Zhen; Xu, Yunhe

    2017-01-01

    In the current study, we focused on the mechanism underlying starch flocculation by the sweet potato sour liquid. The traditional microbial techniques and 16S rDNA sequencing revealed that Lactobacillus was dominant flocculating microorganism in sour liquid. In total, 86 bacteria, 20 yeasts, and 10 molds were isolated from the sour liquid and only eight Lactobacillus species exhibited flocculating activity. Lactobacillus paracasei subsp. paracasei L1 strain with a high flocculating activity was isolated and identified, and the mechanism of starch flocculation was examined. L. paracasei subsp. paracasei L1 cells formed chain-like structures on starch granules. Consequently, these cells connected the starch granules to one another, leading to formation of large flocs. The results of various treatments of L1 cells indicated that bacterial surface proteins play a role in flocculation and L1 cells adhered to the surface of starch granules via specific surface proteins. These surface starch-binding proteins were extracted using the guanidine hydrochloride method; 10 proteins were identified by mass spectrometry: three of these proteins were glycolytic enzymes; two were identified as the translation elongation factor Tu; one was a cell wall hydrolase; one was a surface antigen; one was lyzozyme M1; one was a glycoside hydrolase; and one was an uncharacterized proteins. This study will paves the way for future industrial application of the L1 isolate in starch processing and food manufacturing. PMID:28791000

  17. Proteolysis in goat "coalho" cheese supplemented with probiotic lactic acid bacteria.

    PubMed

    Bezerra, Taliana Kênia Alves; de Araujo, Ana Rita Ribeiro; do Nascimento, Edilza Santos; de Matos Paz, José Eduardo; Gadelha, Carlos Alberto; Gadelha, Tatiane Santi; Pacheco, Maria Teresa Bertoldo; do Egypto Queiroga, Rita de Cássia Ramos; de Oliveira, Maria Elieidy Gomes; Madruga, Marta Suely

    2016-04-01

    This study aimed to analyse the proteolytic effects of adding isolated and combined probiotic strains to goat "coalho" cheese. The cheeses were: QS - with culture Start, composed by Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris (R704); QLA - with Lactobacillus acidophilus (LA-5); QLP - with Lactobacillus paracasei subsp. paracasei (L. casei 01); QB - with Bifidobacterium animalis subsp. lactis (BB 12); and QC, co-culture with the three probiotic microorganisms. The cheeses were analysed during 28 days of storage at 10°C. The probiotic cell count was higher than 6.5 and 7 log colony-forming units (CFU) g(-1) of cheese at the 1st and 28th days of storage, respectively. The addition of co-culture influenced (p<0.01) proteolysis in the cheese and resulted in a higher content of soluble protein and release of amino acids at the 1st day after processing. However, over all 28 days, the cheese supplemented with Bifidobacterium lactis in its isolated form showed the highest proteolytic activity, particularly in the hydrolysis of the alpha-s2 and kappa-casein fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus.

    PubMed

    Dan, Tong; Wang, Dan; Wu, Shimei; Jin, Rulin; Ren, Weiyi; Sun, Tiansong

    2017-09-29

    Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000) of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.

  19. Protective effect of sugars on storage stability of microwave freeze-dried and freeze-dried Lactobacillus paracasei F19.

    PubMed

    Ambros, S; Hofer, F; Kulozik, U

    2018-05-31

    Microwave freeze drying in comparison to conventional freeze drying allows for intensification of the preservation process of lactic acid bacteria without imposing additional processing stress. Viability as a function of storage time of microwave freeze-dried Lactobacillus paracasei ssp. paracasei F19 was investigated in comparison to conventionally lyophilized bacteria of the same strain. Further, the impact of the protectants, sorbitol, trehalose and maltodextrin, on shelf life was analyzed. The highest inactivation rates of 0.035 and 0.045 d -1 , respectively, were found for cultures without protectants. Thus, all additives were found to exhibit a protective effect during storage with inactivation rates between 0.015 and 0.040 d -1 . Although trehalose and maltodextrin samples were in the glassy state during storage, in contrast to samples containing sorbitol as protectant, the best protective effect could be found for sorbitol with the lowest inactivation rate of 0.015 d -1 . Due to its low molecular weight, it might protect cells owing to better adsorption to the cytoplasma membrane. Sorbitol additionally shows antioxidative properties. Storage behavior of microwave freeze-dried cultures follows the typical behavior of a product dried by conventional lyophilization. No significant influence of the drying technique on storage behavior was detected. General findings concerning storage behavior in freeze drying are likely to be applicable in microwave freeze drying with only slight adjustments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages

    PubMed Central

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. PMID:25002431

  1. Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41.

    PubMed

    Tashiro, Yukihiro; Kaneko, Wataru; Sun, Yanqi; Shibata, Keisuke; Inokuma, Kentaro; Zendo, Takeshi; Sonomoto, Kenji

    2011-03-01

    We isolated and characterized a D-lactic acid-producing lactic acid bacterium (D-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 (T) and L. delbrueckii subsp. lactis JCM 1248 (T), which are also known as D-LAB, the QU 41 strain exhibited a high thermotolerance and produced D-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on D-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l D-lactic acid was acquired with high optical purity (>99.9% of D-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve D-lactic acid productivity. At a dilution rate of 0.87 h(-1), the high cell density continuous culture exhibited the highest D-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.

  2. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties.

    PubMed

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-07-17

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.

  3. Lactobacillus Species Identification, H2O2 Production, and Antibiotic Resistance and Correlation with Human Clinical Status

    PubMed Central

    Felten, Annie; Barreau, Claude; Bizet, Chantal; Lagrange, Philippe Henri; Philippon, Alain

    1999-01-01

    Lactobacilli recovered from the blood, cerebrospinal fluid, respiratory tract, and gut of 20 hospitalized immunocompromised septic patients were analyzed. Biochemical carbohydrate fermentation and total soluble cell protein profiles were used to identify the species. Hydrogen peroxide production was measured. Susceptibility to 19 antibiotics was tested by a diffusion method, and the MICs of benzylpenicillin, amoxicillin, imipenem, erythromycin, vancomycin, gentamicin, and levofloxacin were determined. A small number of species produced H2O2, and antibiotic susceptibilities were species related. Eighteen (90%) of the isolates were L. rhamnosus, one was L. paracasei subsp. paracasei, and one was L. crispatus. L. rhamnosus, L. paracasei subsp. paracasei isolates, and the type strains were neither H2O2 producers nor vancomycin susceptible (MICs, ≥256 μg/ml). L. crispatus, as well as most of the type strains of lactobacilli which belong to the L. acidophilus group, was an H2O2 producer and vancomycin susceptible (MICs, <4 μg/ml). PMID:9986841

  4. Molecular characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages.

    PubMed

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2014-09-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium.

    PubMed

    Hugo, Ayelén A; Rolny, Ivanna S; Romanin, David; Pérez, Pablo F

    2017-03-01

    Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.

  6. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  7. H(+) -ATPase-defective variants of Lactobacillus delbrueckii subsp. bulgaricus contribute to inhibition of postacidification of yogurt during chilled storage.

    PubMed

    Wang, Xinhui; Ren, Hongyang; Liu, Dayu; Wang, Bing; Zhu, Wenyou; Wang, Wei

    2013-02-01

    Continued acid production by Lactobacillus delbrueckii subsp. bulgaricus during the chilled storage of yogurt is the major cause of postacidification, resulting in a short shelf life. Two H(+) -ATPase defective variants of L. delbrueckii subsp. bulgaricus were successfully isolated and their H(+) -ATPase activities were reduced by 51.3% and 34.3%, respectively. It was shown that growth and acid production of variants were remarkably inhibited. The variants were more sensitive to acidic condition and had a significant rate for inactivation of H(+) -ATPase by N, N-dicyclohexylcarbodiimide (DCCD), along with a low H(+) -extrusion, suggesting that H(+) -ATPase is direct response for H(+) -extrusion. In addition, the variants were also more sensitive to NaCl, while H(+) -ATPase activities of variants and parent strain were significantly enhanced by NaCl stress. Obviously, H(+) -ATPase might be involved in Na(+) transportation. Furthermore, variants were inoculated in fermented milk to ferment yogurt. There was no significant difference in flavor, whereas the postacidification of yogurt during chilled storage was remarkably inhibited. It is suggested that application of L. delbrueckii subsp. bulgaricus with reduced H(+) -ATPase activity in yogurt fermentation is one of effect, economic and simple avenues of inhibiting postacidification of yogurt during refrigerated storage, giving a longer shelf life. During yogurt fermentation, continued acid production by Lactobacillus delbrueckii subsp. bulgaricus during the chilled storage of yogurt leads to milk fermentation with high postacidification, resulting in a short shelf life. In this work, 2 acid-sensitive variant strains of L. delbrueckii subsp. bulgaricus were isolated. The characteristics related to H(+) -ATPase were compared and it was observed that milk fermented by the variants had lower postacidification, giving a longer shelf life. Application of L. delbrueckii subsp. bulgaricus with reduced H(+) -ATPase activity

  8. Effect of oligosaccharides on the growth of Lactobacillus delbrueckii subsp. bulgaricus strains isolated from dairy products.

    PubMed

    Ignatova, Tseteslava; Iliev, Ilia; Kirilov, Nikolai; Vassileva, Tonka; Dalgalarrondo, Michèle; Haertlé, Thomas; Chobert, Jean-Marc; Ivanova, Iskra

    2009-10-28

    Eighteen lactic acid bacteria (LAB) strains isolated from dairy products, all identified as Lactobacillus delbrueckii subsp. bulgaricus, were tested for their ability to grow on three different oligosaccharides: fructo-oligosaccharides (FOS), gluco-oligosaccharides (GOS) and galacto-oligosaccharides (GalOS). The growth of LAB on different oligosaccharides was very different. Study of the antimicrobial activities of these LAB indicated that the system of uptake of unusual sugars influenced in a specific way the production of antimicrobial substances (bacteriocins) specific against gram-negative bacteria. The added oligosaccharides induced LAB to form end-products of a typical mixed acid fermentation. The utilization of different types of oligosaccharides may help to explain the ability of Lactobacillus strains to compete with other bacteria in the ecosystem of the human gastro-intestinal tract.

  9. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium†

    PubMed Central

    Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel

    2000-01-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802

  10. Effect of buckwheat flour and oat bran on growth and cell viability of the probiotic strains Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and their combination SYNBIO®, in synbiotic fermented milk.

    PubMed

    Coman, Maria Magdalena; Verdenelli, Maria Cristina; Cecchini, Cinzia; Silvi, Stefania; Vasile, Aida; Bahrim, Gabriela Elena; Orpianesi, Carla; Cresci, Alberto

    2013-10-15

    Fermented foods have a great significance since they provide and preserve large quantities of nutritious foods in a wide diversity of flavors, aromas and texture, which enrich the human diet. Originally fermented milks were developed as a means of preserving nutrients and are the most representatives of the category. The first aim of this study was to screen the effect of buckwheat flour and oat bran as prebiotics on the production of probiotic fiber-enriched fermented milks, by investigating the kinetics of acidification of buckwheat flour- and oat bran-supplemented milk fermented by Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and their 1:1 combination named SYNBIO®. The probiotic strains viability, pH and sensory characteristics of the fermented fiber-enriched milk products, stored at 4 °C for 28 days were also monitored. The results showed that supplementation of whole milk with the tested probiotic strains and the two vegetable substrates results in a significant faster lowering of the pH. Also, the stability of L. rhamnosus IMC 501®, L. paracasei IMC 502® and SYNBIO® during storage at 4 °C for 28 days in buckwheat flour- and oat bran-supplemented samples was remarkably enhanced. The second aim of the study was to develop a new synbiotic product using the best combination of probiotics and prebiotics by promoting better growth and survival and be acceptable to the consumers with high concentration of probiotic strain. This new product was used to conduct a human feeding trial to validate the fermented milk as a carrier for transporting bacterial cells into the human gastrointestinal tract. The probiotic strains were recovered from fecal samples in 40 out of 40 volunteers fed for 4 weeks one portion per day of synbiotic fermented milk carrying about 10(9) viable cells. © 2013.

  11. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    PubMed

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-03-03

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. Copyright © 2016 Meneghel et al.

  12. Structure determination of the neutral exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1.

    PubMed

    Van Calsteren, Marie-Rose; Gagnon, Fleur; Nishimura, Junko; Makino, Seiya

    2015-09-02

    The neutral exopolysaccharide (NPS) of Lactobacillus delbrueckii subsp. bulgaricus strain OLL1073R-1 was purified and characterized. The molecular mass was 5.0×10(6) g/mol. Sugar and absolute configuration analyses gave the following composition: d-Glc, 1; d-Gal, 1.5. The NPS was also submitted to periodate oxidation followed by borohydride reduction and Smith degradation. Sugar and methylation analyses, (1)H and (13)C nuclear magnetic resonance, and mass spectrometry of the NPS or of its specifically modified products allowed determining the repeating unit sequence: {2)Glc(α1-3)Glc(β1-3)[Gal(β1-4)]Gal(β1-4)Gal(α1-}n. The structure is compared to that of exopolysaccharides produced by other Lactobacillus bulgaricus strains. Copyright © 2015. Published by Elsevier Ltd.

  13. Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula

    PubMed Central

    Haarman, Monique; Knol, Jan

    2006-01-01

    The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants. PMID:16597930

  14. Stimulation of indigenous lactobacilli by fermented milk prepared with probiotic bacterium, Lactobacillus delbrueckii subsp. bulgaricus strain 2038, in the pigs.

    PubMed

    Ohashi, Yuji; Tokunaga, Makoto; Taketomo, Naoki; Ushida, Kazunari

    2007-02-01

    The aim of this study was to evaluate the effect of feeding yoghurt, prepared with Lactobacillus delbrueckii subsp. bulgaricus strain 2038, on indigenous lactobacilli in the pig cecum. Three female pigs fistulated at the cecum were fed 250 g of this yoghurt that contained over 10(11) colony-forming units of L. delbrueckii subsp. bulgaricus strain 2038 with their daily meal for 2 wk. The relative abundance and the composition of cecal lactobacilli was monitored by analysis of bacterial 16S rDNA with real time PCR and amplified bacterial rDNA restriction analysis using Lactobacillus-group specific primers, respectively, for 2 wk prior to, at the end of 2 wk of and 2 wk after the administration of this yoghurt. The relative abundance of lactobacilli was significantly increased by feeding yoghurt (p<0.01), although the bacterial 16S rDNA matching L. delbrueckii subsp. bulgaricus strain 2038 was not detected by amplified bacterial rDNA restriction analysis during this study. The number of operational taxonomic units (OTUs) detected was increased with feeding of the yoghurt in all pigs. At the same time, the estimated cell number of each OTU was increased with feeding of the yoghurt. It is demonstrated that continuous consumption of the probiotic lactobacilli will stimulate the growth of some indigenous lactobacilli and alter the composition of the lactobacilli.

  15. Supplementation with fruit and okara soybean by-products and amaranth flour increases the folate production by starter and probiotic cultures.

    PubMed

    Albuquerque, Marcela Albuquerque Cavalcanti de; Bedani, Raquel; Vieira, Antônio Diogo Silva; LeBlanc, Jean Guy; Saad, Susana Marta Isay

    2016-11-07

    The ability of two starter cultures (Streptococcus (S.) thermophilus ST-M6 and St. thermophilus TA-40) and eleven probiotic cultures (St. thermophilus TH-4, Lactobacillus (Lb.) acidophilus LA-5, Lb. fermentum PCC, Lb. reuteri RC-14, Lb. paracasei subsp. paracasei, Lb. casei 431, Lb. paracasei subsp. paracasei F19, Lb. rhamnosus GR-1, and Lb. rhamnosus LGG, Bifidobacterium (B.) animalis subsp. lactis BB-12, B. longum subsp. longum BB-46, and B. longum subsp. infantis BB-02) to produce folate in a modified MRS broth (mMRS) supplemented with different fruit (passion fruit, acerola, orange, and mango) and okara soybean by-products and amaranth flour was investigated. Initially, the folate content of each vegetable substrate was determined: passion fruit by-product showed the lowest folate content (8±2ng/mL) and okara the highest (457±22ng/mL). When the orange by-product and amaranth flour were added to mMRS, all strains were able to increase folate production after 24h of fermentation. B. longum subsp infantis BB-02 produced the highest concentrations (1223±116ng/mL) in amaranth flour. Okara was the substrate that had the lowest impact on the folate production by all strains evaluated. Lb. acidophilus LA-5 (297±36ng/mL) and B. animalis subsp. lactis BB-12 (237±23ng/mL) were also able to produce folate after growth in mMRS containing acerola and orange by-products, respectively. The results of this study demonstrate that folate production is not only strain-dependent but also influenced by the addition of different substrates in the growth media. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet.

    PubMed

    Feng, Jing; Jiang, Yujun; Li, Mingyu; Zhao, Siyu; Zhang, Yanming; Li, Xuesong; Wang, Hui; Lin, Guangen; Wang, Hao; Li, Tiejing; Man, Chaoxin

    2018-05-25

    Bacteria in Lactobacillus casei group, including Lactobacillus casei (L. casei), Lactobacillus paracasei (L. paracasei), and Lactobacillus rhamnosus (L. rhamnosus) are important lactic acid bacteria in the production of fermented dairy products and are faced with the controversial nomenclatural status due to their close phylogenetic similarity. To probe the evolution and phylogeny of L. casei group, 100 isolates of lactic acid bacteria originated from naturally fermented dairy products in Tibet of China were subjected to multilocus sequence typing (MLST). The MLST scheme, based on analysis of the housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA and recG, revealed that all the isolates belonged to a group containing the L. paracasei reference strains and were clearly different from the strains of L. casei and L. rhamnosus. Although nucleotide diversity (π) was low for the seven genes (ranging from 0.00341 for fusA to 0.01307 for recG), high genetic diversity represented by 83 sequence types (STs) with a discriminatory index of 0.98 was detected. A network-like structure based on split decomposition analysis, and the high values of the relative effect of recombination and mutation in the diversification of the lineages (r/m = 4.76) and the relative frequency of occurrence of recombination and mutation (ρ/θ = 2.62) indicated that intra-species recombination occurred frequently and homologous recombination played a key role in generating genotypic diversity amongst L. paracasei strains in Tibet. The discovery of 51 new STs and the results of STRUCTURE analysis suggested that the L. casei group in Tibet had an individual and particular population structure in comparison to European isolates. Overall, this research might be the first report about genetic diversity and population structure of Lactobacillus populations isolated from naturally fermented dairy products in Tibet based on MLST scheme.

  17. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  18. Cell-Wall-Bound Proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: Characterization and Specificity for β-Casein

    PubMed Central

    Tsakalidou, E.; Anastasiou, R.; Vandenberghe, I.; van Beeumen, J.; Kalantzopoulos, G.

    1999-01-01

    Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40°C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes β-casein mainly and α- and κ-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from β-casein, which have been identified. PMID:10223997

  19. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-03

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. Copyright © 2011. Published by Elsevier B.V.

  20. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  1. [Effect of glucose and lactose on the utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469].

    PubMed

    Benito de Cárdenas, I L; Medina, R; Oliver, G

    1992-01-01

    The utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469 in a complex medium containing glucose, lactose or citrate was investigated, as an approach to the question of the transport of this acid and the possible relationship with the production of flavour compounds (diacetyl and acetoin). This lactobacillus uses citrate as an energy source in the absence of carbohydrates. External pH and growth increases when citrate is added to complex medium. The presence of citrate does not affect glucose uptake. L. casei ATCC 7469 possibly uses a transport system for citrate utilization, and citrate uptake seems to be under glucose or lactose control. Lactose only inhibits the entrance of citrate at high concentration while the utilization of this acid was negatively regulated by low glucose concentration.

  2. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    PubMed Central

    Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J. H.; Luttik, Marijke A. H.; Pronk, Jack T.; Smid, Eddy J.; Bron, Peter A.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations. PMID:23872557

  3. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.

    PubMed

    Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J H; Luttik, Marijke A H; Pronk, Jack T; Smid, Eddy J; Bron, Peter A; Daran-Lapujade, Pascale

    2013-10-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations.

  4. [Diversity of Lactobacillus in vagina of vulvovaginal candidiasis].

    PubMed

    2015-04-07

    To investigate the Lactobacillus species in the vaginas of vulvovaginal candidiasis and to assess the prevalence of each Lactobacillus species in vulvovaginal candidiasis. 154 vaginal samples were analyzed, 92 of which were from fertile healthy women, and 62 of which were from women with vulvovaginal candidiasis; and species-specific PCR showed the prevalence of each Lactobacillus species Species-specific PCR was used to investigate the prevalence of each Lactobacillus species in healthy Chinese women and the women with vulvovaginal candidiasis. In women with vulvovaginal candidiasis: L. iners (6.5%), L. cripatus (79.0%), L. gasseri (37.1%), L. jensenii (74.2%), L. acidophilus (16.1%), L. brevis (19.4%), L. plantarum (1.6%), L. johnsonii (51.6%), L. fermentum (8.1%), L. salivarius (9.7%), L. reuter (1.6%), L. paracasei (8.1%), L. delbrueckii (3. 2% ) ; More than two different Lactobacillus species coexisted in 98% of women with vulvovaginal candidiasis, and no anyone species existed in 2% of them; In fertile women: L. iners (82.6%), L. cripatus (70.7%), L. gasseri (67.4%), L. jensenii (40.2%), L. acidophilus (39.1%), L. brevis (23.9%), L. plantarum (5.4%), L. rhamnosus (1.1%), L. paracasei (1.1%), L. reuter (1.1%) i, L. johnsonii (3.3%), L. fermentum (2.2%), L. salivarius (2.2%); More than two different Lactobacillus species coexisted in 97% of fertile women, and only one species existed in 3% of fertile women. Species of lactobacillus in women with vulvovaginal candidiasis did not significantly reduced compared with healthy women. Lactobacillus inert may be a marker of the change of vaginal microenvironment; Lactobacillus crispatus is a dominant lactobacillus in the vaginal of fertile healthy women, pregnant women and women with vulvovaginal candidiasis.

  5. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus.

    PubMed

    Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M

    2016-11-30

    It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of

  6. Survival of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in the Terminal Ileum of Fistulated Göttingen Minipigs

    PubMed Central

    Lick, Sonja; Drescher, Karsten; Heller, Knut J.

    2001-01-01

    The ability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus administered in yogurt to survive the passage through the upper gastrointestinal tract was investigated with Göttingen minipigs that were fitted with ileum T-cannulas. After ingestion of yogurt containing viable microorganisms, ileostomy samples were collected nearly every hour beginning 3 h after food uptake. Living L. delbrueckii subsp. bulgaricus and S. thermophilus were detected in the magnitude of 106 to 107 per gram of intestinal contents (wet weight) in all animals under investigation. A calculation of the minimum amount of surviving bacteria that had been administered is presented. Total DNA extracted from ileostomy samples was subjected to PCR, which was species specific for L. delbrueckii and S. thermophilus and subspecies specific for L. delbrueckii subsp. bulgaricus. All three bacterial groups could be detected by PCR after yogurt uptake but not after uptake of a semisynthetic diet. One pig apparently had developed an endogenous L. delbrueckii flora. When heat-treated yogurt was administered, L. delbrueckii was detected in all animals. S. thermophilus or L. delbrueckii subsp. bulgaricus was not detected, indicating that heat-inactivated cells and their DNAs had already been digested and their own L. delbrueckii flora had been stimulated for growth. PMID:11526016

  7. Novel Phage Group Infecting Lactobacillus delbrueckii subsp. lactis, as Revealed by Genomic and Proteomic Analysis of Bacteriophage Ldl1

    PubMed Central

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 ± 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species. PMID:25501478

  8. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    PubMed

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.

  9. Direct effects of fermented cow's milk product with Lactobacillus paracasei CBA L74 on human enterocytes.

    PubMed

    Paparo, L; Aitoro, R; Nocerino, R; Fierro, C; Bruno, C; Canani, R Berni

    2018-01-29

    Cow's milk fermented with Lactobacillus paracasei CBA L74 (FM-CBAL74) exerts a preventive effect against infectious diseases in children. We evaluated if this effect is at least in part related to a direct modulation of non-immune and immune defence mechanisms in human enterocytes. Human enterocytes (Caco-2) were stimulated for 48 h with FM-CBAL74 at different concentrations. Cell growth was assessed by colorimetric assay; cell differentiation (assessed by lactase expression), tight junction proteins (zonula occludens1 and occludin), mucin 2, and toll-like receptor (TRL) pathways were analysed by real-time PCR; innate immunity peptide synthesis, beta-defensin-2 (HBD-2) and cathelicidin (LL-37) were evaluated by ELISA. Mucus layer thickness was analysed by histochemistry. FMCBA L74 stimulated cell growth and differentiation, tight junction proteins and mucin 2 expression, and mucus layer thickness in a dose-dependent fashion. A significant stimulation of HBD-2 and LL-37 synthesis, associated with a modulation of TLR pathway, was also observed. FM-CBAL74 regulates non-immune and immune defence mechanisms through a direct interaction with the enterocytes. These effects could be involved in the preventive action against infectious diseases demonstrated by this fermented product in children.

  10. An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity.

    PubMed

    Piwat, S; Sophatha, B; Teanpaisan, R

    2015-07-01

    There is limited information concerning the adhesion and aggregation of human oral lactobacilli. In this study, the adhesion of 10 Lactobacillus species was investigated using H357 oral keratinocyte cells as an in vitro model for oral mucosa. Coaggregation with the representative oral pathogen, Streptococcus mutans ATCC 25175, and the physicochemical cell properties was also evaluated. The results demonstrated significant variations in adhesion (42-96%) and aggregation (autoaggregation, 14-95%; coaggregation, 19-65%). All strains showed a high affinity for chloroform, and most strains had a moderate-to-high hydrophobicity. All strains, except Lactobacillus casei and Lactobacillus gasseri, showed a moderate affinity for ethyl acetate. There was a strong association of autoaggregation with coaggregation (rs = 0·883, P < 0·001). The highest mean for autoaggregation (74%) and coaggregation (47%) belonged to the Lact. gasseri strains. Correlations between the adhesion and surface characteristics and aggregation were observed among the Lactobacillus fermentum and Lactobacillus paracasei strains; however, there was a variation in the strains properties within and between species. This study indicated that the Lact. gasseri, Lact. fermentum, and Lact. paracasei strains might be potential probiotics for the human oral cavity given their desirable properties. It should also be emphasized that a selective process for probiotic strains is required. Adhesion to host tissues and bacterial aggregation (auto- and coaggregation) are the highly important criteria for selecting strains with probiotic potential. These abilities are commonly involved with surface-charged characteristics. This is the first study to investigate the oral Lactobacillus species using an oral keratinocyte cell line. Significant results were found for the correlations between the adhesion and surface charge characteristics and for aggregation among certain strains of Lactobacillus gasseri, Lactobacillus

  11. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Sørensen, Kim I; Curic-Bawden, Mirjana; Junge, Mette P; Janzen, Thomas; Johansen, Eric

    2016-06-15

    Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are used in the fermentation of milk to produce yoghurt. These species normally metabolize only the glucose moiety of lactose, secreting galactose and producing lactic acid as the main metabolic end product. We used multiple serial selection steps to isolate spontaneous mutants of industrial strains of S. thermophilus and L. delbrueckii subsp. bulgaricus that secreted glucose rather than galactose when utilizing lactose as a carbon source. Sequencing revealed that the S. thermophilus strains had mutations in the galKTEM promoter, the glucokinase gene, and genes encoding elements of the glucose/mannose phosphotransferase system (PTS). These strains metabolize galactose but are unable to phosphorylate glucose internally or via the PTS. The L. delbrueckii subsp. bulgaricus mutants had mutations in genes of the glucose/mannose PTS and in the pyruvate kinase gene. These strains cannot grow on exogenous glucose but are proficient at metabolizing internal glucose released from lactose by β-galactosidase. The resulting strains can be combined to ferment milk, producing yoghurt with no detectable lactose, moderate levels of galactose, and high levels of glucose. Since glucose tastes considerably sweeter than either lactose or galactose, the sweetness of the yoghurt is perceptibly enhanced. These strains were produced without the use of recombinant DNA technology and can be used for the industrial production of yoghurt with enhanced intrinsic sweetness and low residual levels of lactose. Based on a good understanding of the physiology of the lactic acid bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, we were able, by selecting spontaneously occurring mutants, to change dramatically the metabolic products secreted into the growth medium. These mutants consume substantially more of the lactose, metabolize some of the galactose, and secrete the remaining galactose

  12. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus

    PubMed Central

    Sørensen, Kim I.; Curic-Bawden, Mirjana; Junge, Mette P.; Janzen, Thomas

    2016-01-01

    ABSTRACT Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are used in the fermentation of milk to produce yoghurt. These species normally metabolize only the glucose moiety of lactose, secreting galactose and producing lactic acid as the main metabolic end product. We used multiple serial selection steps to isolate spontaneous mutants of industrial strains of S. thermophilus and L. delbrueckii subsp. bulgaricus that secreted glucose rather than galactose when utilizing lactose as a carbon source. Sequencing revealed that the S. thermophilus strains had mutations in the galKTEM promoter, the glucokinase gene, and genes encoding elements of the glucose/mannose phosphotransferase system (PTS). These strains metabolize galactose but are unable to phosphorylate glucose internally or via the PTS. The L. delbrueckii subsp. bulgaricus mutants had mutations in genes of the glucose/mannose PTS and in the pyruvate kinase gene. These strains cannot grow on exogenous glucose but are proficient at metabolizing internal glucose released from lactose by β-galactosidase. The resulting strains can be combined to ferment milk, producing yoghurt with no detectable lactose, moderate levels of galactose, and high levels of glucose. Since glucose tastes considerably sweeter than either lactose or galactose, the sweetness of the yoghurt is perceptibly enhanced. These strains were produced without the use of recombinant DNA technology and can be used for the industrial production of yoghurt with enhanced intrinsic sweetness and low residual levels of lactose. IMPORTANCE Based on a good understanding of the physiology of the lactic acid bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, we were able, by selecting spontaneously occurring mutants, to change dramatically the metabolic products secreted into the growth medium. These mutants consume substantially more of the lactose, metabolize some of the galactose, and secrete the

  13. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Guo, Tingting; Zhang, Chenchen; Xin, Yongping; Xin, Min; Kong, Jian

    2016-05-01

    Prophage vB_LdeS-phiJB (phiJB) was induced by mitomycin C and UV radiation from the Lactobacillus delbrueckii subsp. bulgaricus SDMCC050201 isolated from a Chinese yoghurt sample. It has an isometric head and a non-contractile tail with 36,969 bp linear double-stranded DNA genome, which is classified into the group a of Lb. delbrueckii phages. The genome of phiJB is highly modular with functionally related genes clustered together. Unexpectedly, there is no similarity of its DNA replication module to any phages that have been reported, while it consists of open-reading frames homologous to the proteins of Lactobacillus strains. Comparative genomic analysis indicated that its late gene clusters, integration/lysogeny modules and DNA replication module derived from different evolutionary ancestors and integrated into a chimera. Our results revealed a novel chimeric phage of commercial Lb. delbrueckii and will broaden the knowledge of phage diversity in the dairy industry.

  14. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults.

    PubMed

    Ferrario, Chiara; Taverniti, Valentina; Milani, Christian; Fiore, Walter; Laureati, Monica; De Noni, Ivano; Stuknyte, Milda; Chouaia, Bessem; Riso, Patrizia; Guglielmetti, Simone

    2014-11-01

    The modulation of gut microbiota is considered to be the first target to establish probiotic efficacy in a healthy population. This study was conducted to determine the impact of a probiotic on the intestinal microbial ecology of healthy volunteers. High-throughput 16S ribosomal RNA gene sequencing was used to characterize the fecal microbiota in healthy adults (23-55 y old) of both sexes, before and after 4 wk of daily consumption of a capsule containing at least 24 billion viable Lactobacillus paracasei DG cells, according to a randomized, double-blind, crossover placebo-controlled design. Probiotic intake induced an increase in Proteobacteria (P = 0.006) and in the Clostridiales genus Coprococcus (P = 0.009), whereas the Clostridiales genus Blautia (P = 0.036) was decreased; a trend of reduction was also observed for Anaerostipes (P = 0.05) and Clostridium (P = 0.06). We also found that the probiotic effect depended on the initial butyrate concentration. In fact, participants with butyrate >100 mmol/kg of wet feces had a mean butyrate reduction of 49 ± 21% and a concomitant decrease in the sum of 6 Clostridiales genera, namely Faecalibacterium, Blautia, Anaerostipes, Pseudobutyrivibrio, Clostridium, and Butyrivibrio (P = 0.021), after the probiotic intervention. In contrast, in participants with initial butyrate concentrations <25 mmol/kg of wet feces, the probiotic contributed to a 329 ± 255% (mean ± SD) increment in butyrate concomitantly with an ∼55% decrease in Ruminococcus (P = 0.016) and a 150% increase in an abundantly represented unclassified Bacteroidales genus (P = 0.05). The intake of L. paracasei DG increased the Blautia:Coprococcus ratio, which, according to the literature, can potentially confer a health benefit on the host. The probiotic impact on the microbiota and on short-chain fatty acids, however, seems to strictly depend on the initial characteristics of the intestinal microbial ecosystem. In particular, fecal butyrate concentrations

  15. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus.

    PubMed

    García-Hernández, J; Moreno, Y; Amorocho, C M; Hernández, M

    2012-03-01

    We have developed a direct viable count (DVC)-FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA-gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC-FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. This technique was successfully applied to detect viable cells in inoculated faeces. Results showed that this DVC-FISH procedure is a quick and culture-independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  16. Lactobacillus paracasei GMNL-32 exerts a therapeutic effect on cardiac abnormalities in NZB/W F1 mice

    PubMed Central

    Rajendran, Peramaiyan; Tzang, Bor-Show; Yeh, Yu-Lan; Shen, Chia-Yao; Chen, Ray-Jade; Ho, Tsung-Jung; Vijaya Padma, Viswanadha

    2017-01-01

    Systemic lupus erythematosus (SLE) is a disease that mostly affects women. Accelerated atherosclerosis is a high-risk factor associated with SLE patients. SLE associated with cardiovascular disease is one of the most important causes of death. In this study, we demonstrated that Lactobacillus paracasei GMNL-32 (GMNL-32), a probiotic species, exhibits anti-fibrosis and anti-apoptotic effects on the cardiac tissue of NZB/WF1 mice. Female NZB/W F1 mice, a well-known and commonly used lupus-prone mouse strain, were treated with or without GMNL-32 administration for 12 weeks. Oral administration of GMNL-32 to NZB/WF1 mice significantly increased the ventricular thickness when compared to that of NZB/WF1 mice. Administration of GMNL-32 significantly attenuated the cardiac cell apoptosis that was observed in exacerbate levels in the control NZB/WF1 mice. Further, the cellular morphology that was slightly distorted in the NZB/WF1 was effectively alleviated in the treatment group mice. In addition, GMNL-32 reduced the level of Fas death receptor-related pathway of apoptosis signaling and enhanced anti-apoptotic proteins. These results indicate that GMNL-32 exhibit an effective protective effect on cardiac cells of SLE mice. Thus, GMNL-32 may be a potential therapeutic strategy against SLE associated arthrosclerosis. PMID:28934296

  17. Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus GG.

    PubMed

    Aakko, J; Sánchez, B; Gueimonde, M; Salminen, S

    2014-07-01

    The purpose of this study was to investigate the heat-shock response at molecular level in Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB-12 and their heat-tolerant derivatives and to characterize the changes that make the derivatives more robust in terms of heat stress. The study strains were exposed for 2 h to a heat-shock treatment, Bif. animalis subsp. lactis BB-12 and its derivative at 50°C and the Lact. rhamnosus GG and its derivative at 60°C. Protein synthesis before and after heat shock was examined using proteomics and RT-qPCR. The analysis revealed that the regulation of seven proteins in both strain pairs was modified as a response to heat or between the original and the derivative strain. The comparison of wild-type strains and the heat-tolerant derivatives suggests that the acquisition of heat tolerance in the Bif. animalis subsp. lactis BB-12 derivative is due to a slightly increased constitutive level of chaperones, while in Lact. rhamnosus GG derivative, the main reason seems to be a higher ability to induce the production of chaperones. This study revealed possible markers of heat tolerance in B. lactis and Lact. rhamnosus strains. This study increases our knowledge on how Lactobacillus and Bifidobacterium strains may acquire heat tolerance. These findings may be useful for improving the heat tolerance of existing probiotic strains as well as screening new heat-tolerant strains. © 2014 The Society for Applied Microbiology.

  18. Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon Aeration: Involvement of an NADH Oxidase in Oxidative Stress

    PubMed Central

    Marty-Teysset, C.; de la Torre, F.; Garel, J.-R.

    2000-01-01

    The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen. PMID:10618234

  19. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Ye, Fei; Liu, Cunxia; Liu, Hongfeng; Wang, Maopeng; Li, Yi; Sun, Yang; Li, Xiao; Tian, Mingyao; Jin, Ningyi

    2014-12-01

    This study aims to evaluate the functional and probiotic characteristics of eight indigenous Lactobacillus strains in vitro. The selected lactobacilli include strains of Lactobacillus casei subsp. casei, Lactobacillus salivarius subsp. salicinius, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus rhamnosus. All strains tolerated both pH 2 for 3 h and 1% bile salt for 24 h. The strains CICC 23174 and CGMCC 1.557 were the most adhesive strains producing the highest quantity of EPS. Although a wide variation in the ability of the eight strains to deplete cholesterol and nitrite, antagonize pathogens, scavenge free radical, and stimulate innate immune response were observed, the strains CICC 23174 and CGMCC 1.557 showed the widest range of these useful traits. Taken together, the strains CICC 23174 and CGMCC 1.557 exhibited the best probiotic properties with the potential for use in the production of probiotic fermented foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin.

    PubMed

    Bengoa, Ana Agustina; Zavala, Lucía; Carasi, Paula; Trejo, Sebastián Alejandro; Bronsoms, Silvia; Serradell, María de Los Ángeles; Garrote, Graciela Liliana; Abraham, Analía Graciela

    2018-01-01

    Gastrointestinal conditions along the digestive tract are the main stress to which probiotics administrated orally are exposed because they must survive these adverse conditions and arrive alive to the intestine. Adhesion to epithelium has been considered one of the key criteria for the characterization of probiotics because it extends their residence time in the intestine and as a consequence, can influence the health of the host by modifying the local microbiota or modulating the immune response. Nevertheless, there are very few reports on the adhesion properties to epithelium and mucus of microorganisms after passing through the gastrointestinal tract. In the present work, we evaluate the adhesion ability in vitro of L. paracasei strains isolated from kefir grains after acid and bile stress and we observed that they survive simulated gastrointestinal passage in different levels depending on the strain. L. paracasei CIDCA 8339, 83120 and 83123 were more resistant than L. paracasei CIDCA 83121 and 83124, with a higher susceptibility to simulated gastric conditions. Proteomic analysis of L. paracasei subjected to acid and bile stress revealed that most of the proteins that were positively regulated correspond to the glycolytic pathway enzymes, with an overall effect of stress on the activation of the energy source. Moreover, it is worth to remark that after gastrointestinal passage, L. paracasei strains have increased their ability to adhere to mucin and epithelial cells in vitro being this factor of relevance for maintenance of the strain in the gut environment to exert its probiotic action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Oral supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 enhances systemic immunity in elderly subjects.

    PubMed

    Moro-García, Marco Antonio; Alonso-Arias, Rebeca; Baltadjieva, Maria; Fernández Benítez, Carlos; Fernández Barrial, Manuel Amadeo; Díaz Ruisánchez, Enrique; Alonso Santos, Ricardo; Alvarez Sánchez, Magdalena; Saavedra Miján, Juan; López-Larrea, Carlos

    2013-08-01

    Throughout life, there is an aging of the immune system that causes impairment of its defense capability. Prevention or delay of this deterioration is considered crucial to maintain general health and increase longevity. We evaluated whether dietary supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 could enhance the immune response in the elderly. This multi-center, double-blind, and placebo controlled study enrolled 61 elderly volunteers who were randomly assigned to receive either placebo or probiotics. Each capsule of probiotics contained at least 3 × 10(7)  L. delbrueckii subsp. bulgaricus 8481. Individuals in the study were administered three capsules per day for 6 months. Blood samples were obtained at baseline (time 0), end of month 3, and month 6. We characterized cell subpopulations, measured cytokines by flow cytometry, quantified T cell receptor excision circle (TREC) by real-time PCR (RT-PCR), and determined human β-defensin-2 (hBD-2) concentrations and human cytomegalovirus (CMV) titers by enzyme-linked immunosorbent assay (ELISA). Elderly responded to the intake of probiotic with an increase in the percentage of NK cells, an improvement in the parameters defining the immune risk profile (IRP), and an increase in the T cell subsets that are less differentiated. The probiotic group also showed decreased concentrations of the pro-inflammatory cytokine IL-8 but increased antimicrobial peptide hBD-2. These effects disappeared within 6 months of stopping the probiotic intake. Immunomodulation induced by L. delbrueckii subsp. bulgaricus 8481 could favor the maintenance of an adequate immune response, mainly by slowing the aging of the T cell subpopulations and increasing the number of immature T cells which are potential responders to new antigens.

  2. Characterization of nitrite degradation by Lactobacillus casei subsp. rhamnosus LCR 6013.

    PubMed

    Liu, Dong-mei; Wang, Pan; Zhang, Xin-yue; Xu, Xi-lin; Wu, Hui; Li, Li

    2014-01-01

    Nitrites are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. The nitrite degradation capacity of Lactobacillus casei subsp. rhamnosus LCR 6013 was investigated in pickle fermentation. After LCR 6013 fermentation for 120 h at 37°C, the nitrite concentration in the fermentation system was significantly lower than that in the control sample without the LCR 6013 strain. The effects of NaCl and Vc on nitrite degradation by LCR 6013 in the De Man, Rogosa and Sharpe (MRS) medium were also investigated. The highest nitrite degradations, 9.29 mg/L and 9.89 mg/L, were observed when NaCl and Vc concentrations were 0.75% and 0.02%, respectively in the MRS medium, which was significantly higher than the control group (p ≤ 0.01). Electron capture/gas chromatography and indophenol blue staining were used to study the nitrite degradation pathway of LCR 6013. The nitrite degradation products contained N2O, but no NH4(+). The LCR 6013 strain completely degraded all NaNO2 (50.00 mg/L) after 16 h of fermentation. The enzyme activity of NiR in the periplasmic space was 2.5 times of that in the cytoplasm. Our results demonstrated that L. casei subsp. rhamnosus LCR 6013 can effectively degrade nitrites in both the pickle fermentation system and in MRS medium by NiR. Nitrites are degraded by the LCR 6013 strain, likely via the nitrate respiration pathway (NO2(-)>NO->N2O->N2), rather than the aammonium formation pathway (dissimilatory nitrate reduction to ammonium, DNRA), because the degradation products contain N2O, but not NH4(+).

  3. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    PubMed

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture.

  4. Bacteriocin-like inhibitory activities of seven Lactobacillus delbrueckii subsp. bulgaricus strains against antibiotic susceptible and resistant Helicobacter pylori strains.

    PubMed

    Boyanova, L; Gergova, G; Markovska, R; Yordanov, D; Mitov, I

    2017-12-01

    The aim of the study was to detect anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains by four cell-free supernatant (CFS) types. Activity of non-neutralized and non-heat-treated (CFSs1), non-neutralized and heat-treated (CFSs2), pH neutralized, catalase-treated and non-heat-treated (CFSs3), or neutralized, catalase- and heat-treated (CFSs4) CFSs against 18 H. pylori strains (11 of which with antibiotic resistance) was evaluated. All GLB strains produced bacteriocin-like inhibitory substances (BLISs), the neutralized CFSs of two GLB strains inhibited >81% of test strains and those of four GLB strains were active against >71% of antibiotic resistant strains. Two H. pylori strains were BLIS resistant. The heating did not reduce the CFS activity. Briefly, all GLB strains evaluated produced heat-stable BLISs, although GLB and H. pylori strain susceptibility patterns exhibited differences. Bacteriocin-like inhibitory substance activity can be an advantage for the probiotic choice for H. pylori infection control. In this study, anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains was evaluated by four cell-free supernatant (CFS) types. The GLB strains produced heat-stable bacteriocin-like inhibitory substances (BLISs) with a strong anti-H. pylori activity and some neutralized, catalase- and heat-treated CFSs inhibited >83% of the test strains. Bacteriocin-like inhibitory substance production of GLB strains can render them valuable probiotics in the control of H. pylori infection. © 2017 The Society for Applied Microbiology.

  5. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4

    PubMed Central

    Gobbetti, M.; Ferranti, P.; Smacchi, E.; Goffredi, F.; Addeo, F.

    2000-01-01

    Two fermented milks containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus delbrueckii subsp. bulgaricus SS1 and L. lactis subsp. cremoris FT4. The pH 4.6-soluble nitrogen fraction of the two fermented milks was fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest ACE-inhibitory indexes were further purified, and the related peptides were sequenced by tandem fast atom bombardment-mass spectrometry. The most inhibitory fractions of the milk fermented by L. delbrueckii subsp. bulgaricus SS1 contained the sequences of β-casein (β-CN) fragment 6-14 (f6-14), f7-14, f73-82, f74-82, and f75-82. Those from the milk fermented by L. lactis subsp. cremoris FT4 contained the sequences of β-CN f7-14, f47-52, and f169-175 and κ-CN f155-160 and f152-160. Most of these sequences had features in common with other ACE-inhibitory peptides reported in the literature. In particular, the β-CN f47-52 sequence had high homology with that of angiotensin-II. Some of these peptides were chemically synthesized. The 50% inhibitory concentrations (IC50s) of the crude purified fractions containing the peptide mixture were very low (8.0 to 11.2 mg/liter). When the synthesized peptides were used individually, the ACE-inhibitory activity was confirmed but the IC50s increased considerably. A strengthened inhibitory effect of the peptide mixtures with respect to the activity of individual peptides was presumed. Once generated, the inhibitory peptides were resistant to further proteolysis either during dairy processing or by trypsin and chymotrypsin. PMID:10966406

  6. Optimization of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus RR Grown in a Semidefined Medium

    PubMed Central

    Kimmel, Stacy A.; Roberts, Robert F.; Ziegler, Gregory R.

    1998-01-01

    The optimal fermentation temperature, pH, and Bacto-casitone (Difco Laboratories, Detroit, Mich.) concentration for production of exopolysaccharide by Lactobacillus delbrueckii subsp. bulgaricus RR in a semidefined medium were determined by using response surface methods. The design consisted of 20 experiments, 15 unique combinations, and five replications. All fermentations were conducted in a fermentor with a 2.5-liter working volume and were terminated when 90% of the glucose in the medium had been consumed. The population of L. delbrueckii subsp. bulgaricus RR and exopolysaccharide content were measured at the end of each fermentation. The optimum temperature, pH, and Bacto-casitone concentration for exopolysaccharide production were 38°C, 5, and 30 g/liter, respectively, with a predicted yield of 295 mg of exopolysaccharide/liter. The actual yield under these conditions was 354 mg of exopolysaccharide/liter, which was within the 95% confidence interval (217 to 374 mg of exopolysaccharide/liter). An additional experiment conducted under optimum conditions showed that exopolysaccharide production was growth associated, with a specific production at the endpoint of 101.4 mg/g of dry cells. Finally, to obtain material for further characterization, a 100-liter fermentation was conducted under optimum conditions. Twenty-nine grams of exopolysaccharide was isolated from centrifuged, ultrafiltered fermentation broth by ethanol precipitation. PMID:9464404

  7. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt.

    PubMed

    Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N

    2014-08-01

    Search for bioactive peptides is intensifying because of the risks associated with the use of synthetic therapeutics, thus peptide liberation by lactic acid bacteria and probiotics has received a great focus. However, proteolytic capacity of these bacteria is strain specific. The study was conducted to establish proteolytic activity of Lactobacillus acidophilus (ATCC® 4356™), Lactobacillus casei (ATCC® 393™) and Lactobacillus paracasei subsp. paracasei (ATCC® BAA52™) in yogurt. Crude peptides were separated by high-speed centrifugation and tested for antioxidant and antimutagenic activities. The degree of proteolysis highly correlated with these bioactivities, and its value (11.91%) for samples containing all the cultures was double that of the control. Liberated peptides showed high radical scavenging activities with 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), IC50 1.51 and 1.63mg/ml, respectively and strong antimutagenicity (26.35%). These probiotics enhanced the generation of bioactive peptides and could possibly be commercially applied in new products, or production of novel anticancer peptides. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Characterization of the mature cell surface proteinase of Lactobacillus delbrueckii subsp. lactis CRL 581.

    PubMed

    Villegas, Josefina M; Brown, Lucía; Savoy de Giori, Graciela; Hebert, Elvira M

    2015-05-01

    The cell envelope-associated proteinase (CEP) of Lactobacillus delbrueckii subsp. lactis CRL 581 (PrtL) has an essential role in bacterial growth, contributes to the flavor and texture development of fermented products, and can release bioactive health-beneficial peptides during milk fermentation. The genome of L. delbrueckii subsp. lactis CRL 581 possesses only one gene that encodes PrtL, which consists of 1924 amino acids and is a multidomain protein anchored to the cell via its W domain. PrtL was extracted from the cell under high ionic strength conditions using NaCl, suggesting an electrostatic interaction between the proteinase and the cell envelope. The released PrtL was purified and biochemically characterized; its activity was maximal at temperatures between 37 and 40 °C and at pH between 7 and 8. Under optimal conditions, PrtL exhibited higher affinity for succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide than for succinyl-alanyl-glutamyl-prolyl-phenylalanine-p-nitroanilide, while methoxy-succinyl-arginyl-prolyl-tyrosyl-p-nitroanilide was not degraded. A similar α- and β-casein degradation pattern was observed with the purified and the cell envelope-bound proteinase. Finally, on the basis of its specificity towards caseins and the unique combination of amino acids at residues thought to be involved in substrate specificity, PrtL can be classified as a representative of a new group of CEP.

  9. Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics.

    PubMed

    Speranza, Barbara; Campaniello, Daniela; Monacis, Noemi; Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2018-06-01

    The aim of this study was to develop a functional fresh cream cheese with Bifidobacterium animalis subsp. lactis DSM 10140 or Lactobacillus reuteri DSM 20016 and prebiotics (inulin, FOS and lactulose). The research was divided into two steps: in vitro evaluation of the effects of prebiotic compounds; validation at laboratory level with production of functional cream mini-cheeses. Prebiotics showed a protective effect: B. animalis subsp. lactis DSM 10140 cultivability on Petri dishes was positively influenced by lactulose, whereas fructooligosaccharides (FOS) were the prebiotic compounds able to prolong Lb. reuteri DSM 20016 cultivability. At 30 °C, a prolongation of the death time (more than 300 days) was observed, while the controls showed death time values about 100 days. At 45 °C, death time values increased from 32.2 (control) to 33, 35, and 38 days in the samples added with FOS, inulin and lactulose, respectively. Lactulose and FOS were chosen to be added to cream mini-cheeses inoculated with B. animalis subsp. lactis DSM 10140 and Lb. reuteri DSM 20016, respectively; the proposed functional cream cheese resulted in a product with favourable conditions for the viability of both probiotics which maintained cultivable cells above the recommended level during 28 days of storage at 4 °C with good sensory characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Daily ingestion of the probiotic Lactobacillus paracasei ST11 decreases Vaccinia virus dissemination and lethality in a mouse model.

    PubMed

    Dos Santos Pereira Andrade, A C; Lima, M Teixeira; Oliveira, G Pereira; Calixto, R Silva; de Sales E Souza, É Lorenna; da Glória de Souza, D; de Almeida Leite, C M; Ferreira, J M Siqueira; Kroon, E G; de Oliveira, D Bretas; Dos Santos Martins, F; Abrahão, J S

    2017-02-07

    Vaccinia virus (VACV) is an important pathogen. Although studies have shown relationships between probiotics and viruses, the effect of probiotics on VACV infection is unknown. Therefore, this work aims to investigate the probiotics effects on VACV infection. Mice were divided into four groups, two non-infected groups, one receiving the probiotic, the other one not receiving it, and two groups infected intranasally with VACV Western Reserve (VACV-WR) receiving or not receiving the probiotic. Viral titres in organs and cytokine production in the lungs were analysed. Lung samples were also subjected to histological analysis. The intake of probiotic results in reduction in viral spread with a significant decrease of VACV titer on lung, liver and brain of treated group. In addition,treatment with the probiotic results in attenuated mice lung inflammation showing fewer lesions on histological findings and decreased lethality in mice infected with VACV. The ingestion of Lactobacillus paracasei ST11 (LPST11) after VACV infection resulted in 2/9 animal lethality compared with 4/9 in the VACV group. This is the first study on probiotics and VACV interactions, providing not only information about this interaction, but also proposing a model for future studies involving probiotics and other poxvirus.

  11. Investigating the effect of aqueous extracts of basil and savory on antioxidant activity, microbial and sensory properties of probiotic yogurt.

    PubMed

    Mosiyani, Zohreh Ghaleh; Pourahmad, Rezvan; Eshaghi, Mohammad Reza

    2017-01-01

    The low viability of probiotics causes the short shelf life of fermented products. Therefore compounds which prolong the viability of probiotic bacteria can increase or at least maintain the health- benefiting properties of these products. On the other hand, the addition of antioxidants is one of the methods to increase the shelf life of food products which has recently become more prevalent. In this respect, herbal extracts which are a good source of antioxidants can be appropriate alternative. The aim of this study was  to evaluate the effect of adding basil and savory extracts on antioxidant activity, and on the microbial and organoleptic characteristics of probiotic yogurt. The effect of adding basil extract (8% and 10%) and savory extract (6% and 8%) separately to low fat yogurt (1.5% fat) containing Lactobacillus paracasei subsp. paracasei was investigated. The samples were stored at 4°C. The viability of Lactobacillus paracasei subsp. paracasei, antioxidant activ- ity and sensory properties of probiotic yogurt were evaluated on the 1st, 7th, 14th and 21st days. Basil and savory extracts significantly increased the viability of probiotic bacteria (p < 0.05). Dur- ing storage, probiotic counts markedly decreased (p < 0.05) in comparison to the control sample. The addi- tion of herbal extracts significantly increased antioxidant activity, but this activity decreased during storage (p < 0.05). The scores for taste, odor, color and overall acceptance decreased as herbal extracts increased, but there was no significant difference between the test samples and control sample in terms of the texture score (p > 0.05). During storage, there was no significant difference between the organoleptic scores of the samples (p > 0.05), but the taste score did increase significantly (p < 0.05). It can be concluded that adding herbal extracts had a positive effect on the viability of probiotics and antioxidant activity of probiotic yogurt.

  12. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    PubMed

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106.

  13. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation.

    PubMed

    Arioli, Stefania; Della Scala, Giulia; Remagni, Maria Chiara; Stuknyte, Milda; Colombo, Stefano; Guglielmetti, Simone; De Noni, Ivano; Ragg, Enzio; Mora, Diego

    2017-04-17

    The proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in the yogurt consortium enhances the growth rate and size of each population. In contrast, the independent growth of the two species in milk leads to a slower growth rate and a smaller population size. In this study, we report the first evidence that the urease activity of S. thermophilus increases the intracellular pH of L. delbrueckii in the absence of carbon source. However, in milk, in the presence of lactose the alkalizing effect of urea-derived ammonia was not detectable. Nevertheless, based on glucose consumption and lactic acid production at different pH in , L. delbrueckii showed an optimum of glycolysis and homolactic fermentation at alkaline pH values. In milk, we observed that ammonia provided by urea hydrolysis boosted lactic acid production in S. thermophilus and in L. delbrueckii when the species were grown alone or in combination. Therefore, we propose that urease activity acts as an altruistic cooperative trait, which is costly for urease-positive individuals but provides a local benefit because other individuals can take advantage of urease-dependent ammonia release. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance.

    PubMed

    Streit, F; Delettre, J; Corrieu, G; Béal, C

    2008-10-01

    This work aimed at clarifying the physiological responses of Lactobacillus delbrueckii subsp. bulgaricus CFL1 cells after exposure to acidification at the end of fermentation, in relation to their cryotolerance. Cells acidified at the end of the fermentation (pH 5.25 for 30 min) had their cryotolerance improved as compared to the reference condition (pH 6.0). By analyzing the cytosolic proteome, it was established that changes occurred in the synthesis of 21 proteins, involved in energy metabolism, nucleotide and protein synthesis and stress response. Acidification also induced a slight decrease in unsaturated to saturated and cyclic to saturated membrane fatty acid ratios. Lactobacillus bulgaricus CFL1 was able to develop a combined physiological response at both membrane and cytosolic levels. This acid adaptation was referred as a cross-protection phenomenon as it allowed the cells to become more tolerant to cold stress. This study increased knowledge concerning the physiological mechanisms that explained the cross-protection by acid adaptation. It may be useful for improving cryotolerance of lactic acid bacteria, either in cells banks or in an industrial context.

  16. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  17. Production of lactate and acetate by Lactobacillus coryniformis subsp. torquens DSM 20004(T) in comparison with Lactobacillus amylovorus DSM 20531(T).

    PubMed

    Slavica, Anita; Trontel, Antonija; Jelovac, Nuša; Kosovec, Željka; Šantek, Božidar; Novak, Srđan

    2015-05-20

    Lactobacillus coryniformis subsp. torquens DSM20004(T) is a d-lactate producer, with a portion of the d-lactate higher than 99.9% of total lactic acid produced. Acetate was identified as the second end-product that appeared at the end of the exponential growth phase in MRS medium when glucose concentration dropped to 38.41mM (6.92g/L). The acetate production was prolonged to the stationary phase, while the concentration of d-lactate remained constant. Other end-products were not identified by HPLC method. The known metabolic pathways of glucose fermentation in lactic acid bacteria do not produce the particular combination of these two end-products, but besides lactate and acetate also formate, ethanol and CO2 are produced. For comparison, the production of lactate and acetate by a d-/l-lactate producer Lactobacillus amylovorus DSM 20531(T) was also investigated. This strain produced equimolar quantities of d- and l-lactate in the MRS medium. Acetate was produced only when initial concentration of glucose was 55.51mM (10g/L) and production started in the exponential phase when concentration of glucose dropped to 35.52mM (6.40g/L). Similar behavior was observed with the initial concentration of maltose of 29.21mM (10g/L). An unstructured mathematical model was established for the bioprocess simulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Resistance of two temperate Lactobacillus paracasei bacteriophages to high pressure homogenization, thermal treatments and chemical biocides of industrial application.

    PubMed

    Mercanti, D J; Guglielmotti, D M; Patrignani, F; Reinheimer, J A; Quiberoni, A

    2012-02-01

    Temperate bacteriophages ф iLp84 and ф iLp1308, previously isolated from mitomycin C-induction of Lactobacillus paracasei strains 84 and CNRZ1308, respectively, were tested for their resistance to several physical and chemical treatments applied in dairy industry. Long-term survival at 4 °C, -20 °C and -80 °C, resistance to either thermal treatments of 63 °C, 72 °C and 90 °C, high pressure homogenization (HPH, 100 MPa) or classic (ethanol, sodium hypochlorite and peracetic acid) and new commercial sanitizers, namely A (quaternary ammonium chloride), B (hydrogen peroxide, peracetic acid and peroctanoic acid), C (alkaline chloride foam), D (p-toluensulfonchloroamide, sodium salt) and E (ethoxylated nonylphenol and phosphoric acid), were determined. Phages were almost completely inactivated after eight months of storage at 25 °C, but viability was not affected at 4 °C, -20 °C or -80 °C. Both phages tolerated well HPH treatments. Phage iLp1308 showed higher thermal resistance than ф iLp84, but neither resisted 90 °C for 2 min. Best chemical inactivation was accomplished using peracetic acid or biocides A, C and E, whereas biocides B and D were completely ineffective. These results help to improve selection of chemical agents and physical treatments to effectively fight against phage infections in dairy plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Sugar fermentation in probiotic bacteria--an in vitro study.

    PubMed

    Hedberg, M; Hasslöf, P; Sjöström, I; Twetman, S; Stecksén-Blicks, C

    2008-12-01

    Food supplemented with probiotic bacteria is a rapidly growing sector of the market. The aim of the present study was to evaluate and compare the acid production of selected probiotic strains available in commercial products. Six Lactobacillus strains (Lactobacillus plantarum 299v and 931; Lactobacillus rhamnosus GG and LB21; Lactobacillus paracasei subsp. paracasei F19, and Lactobacillus reuteri PTA 5289) were cultivated at 37 degrees C in an anaerobic atmosphere on Man, Rogosa, Shape (MRS) agar for 48 h or MRS broth for 16 h. After centrifugation, the cells were washed and resuspended in sterile phosphate-buffered saline and immediately subjected to a fermentation assay with 12 different carbohydrates (nine sugars and three sugar alcohols) in microtiter plates with a pH indicator. The plates were examined for color changes after 24, 48, and 72 h of incubation under aerobic and anaerobic conditions. Three scores were used: negative (pH > 6.8); weak (pH 5.2-6.8), and positive (pH < 5.2). The strains were characterized with the API 50 CH system to confirm their identity. L. plantarum fermented all the sugars except for melibiose, raffinose, and xylitol. Both L. rhamnosus strains were generally less active although L. rhamnosus GG was slightly more active than strain LB21 in the 5% CO(2) setting. The latter strain exhibited negative reactions for sucrose, maltose, arabinose, and sorbitol under anaerobic conditions. The assays with L. paracasei and L. reuteri had negative or weak reactions for all tested sugars under both aerobic and anaerobic conditions. The metabolic capacity to form acid from dietary sugars differed significantly between the various probiotic strains.

  20. Lactobacillus delivery of bioactive interleukin-22.

    PubMed

    Lin, Yin; Krogh-Andersen, Kasper; Hammarström, Lennart; Marcotte, Harold

    2017-08-23

    Interleukin-22 (IL-22) plays a prominent role in epithelial regeneration and dampening of chronic inflammatory responses by protecting intestinal stem cells from immune-mediated tissue damage. IL-22 has a considerable therapeutic potential in graft-versus-host disease (GVHD), which is a frequent and challenging complication following allogeneic stem cell transplantation. The aim of our study was to engineer Lactobacillus for delivery of IL-22 directly to the intestinal mucosa as a new therapeutic strategy for GVHD. The secretion and surface anchoring of mouse IL-22 by Lactobacillus paracasei BL23 was demonstrated by Western blot and flow cytometry. Both secreted and anchored mouse IL-22 produced by Lactobacillus was biologically active, as determined by its ability to induce IL-10 secretion in the Colo 205 human colon cancer cell line. We have demonstrated the secretion and surface anchoring of bioactive IL-22 by Lactobacillus. Our results suggest that IL-22 expressing lactobacilli may potentially be a useful mucosal therapeutic agent for the treatment of GVHD, provided that chromosomal integration of the IL-22 expression cassettes can be achieved.

  1. The performance of five fruit-derived and freeze-dried potentially probiotic Lactobacillus strains in apple, orange and grape juices.

    PubMed

    Garcia, Estefânia Fernandes; de Oliveira Araújo, Amanda; Luciano, Winnie Alencar; de Albuquerque, Thatyane Mariano Rodrigues; de Oliveira Arcanjo, Narciza Maria; Madruga, Marta Suely; Dos Santos Lima, Marcos; Magnani, Marciane; Saarela, Maria; de Souza, Evandro Leite

    2018-03-30

    This study assessed the survival of the fruit-derived and freeze-dried L. plantarum 49, L. brevis 59, L. paracasei 108, L. fermentum 111 and L. pentosus 129 strains during frozen storage and when incorporated into apple, orange and grape juice stored under refrigeration. Physicochemical parameters of juices containing the freeze-dried Lactobacillus strains and the survival of the test strains in the fruit juices during in vitro digestion were also evaluated. No decreases in survival rates (log N/log N0) of the freeze-dried cells were observed up to 1 month of storage. The survival rates of the freeze-dried strains L. plantarum 49 and L. paracasei 108 were >0.75 up to 4 months of storage. All freeze-dried strains exhibited survival rates of >0.75 up to 2 weeks of storage in apple juice; only L. plantarum 49 and L. paracasei 108 showed similar survival rates in orange and grape juices up to 2 weeks of storage. The contents of the monitored organic acids or sugars during storage varied depending on the added strain and the type of fruit juice. At the end of the in vitro digestion, L. brevis 59, L. paracasei 108 and L. fermentum 111 showed survival rates of >0.80 in apple juice. Apple juice was as the best substrate to the survival of the tested freeze-dried Lactobacillus strains over time. L. paracasei 108 and L. plantarum 49 as the strains presenting the best performance for incorporation in potentially probiotic fruit juices. This article is protected by copyright. All rights reserved.

  2. High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei.

    PubMed

    Petrov, Kaloyan; Popova, Luiza; Petrova, Penka

    2017-06-01

    Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.

  3. Highly Enantioselective Production of Chiral Secondary Alcohols Using Lactobacillus paracasei BD101 as a New Whole Cell Biocatalyst and Evaluation of Their Antimicrobial Effects.

    PubMed

    Yılmaz, Durmuşhan; Şahin, Engin; Dertli, Enes

    2017-11-01

    Chiral secondary alcohols are valuable intermediates for many important enantiopure pharmaceuticals and biologically active molecules. In this work, we studied asymmetric reduction of aromatic ketones to produce the corresponding chiral secondary alcohols using lactic acid bacteria (LAB) as new biocatalysts. Seven LAB strains were screened for their ability to reduce acetophenones to their corresponding alcohols. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful at reducing the ketones to the corresponding alcohols. The reaction conditions were further systematically optimized for this strain and high enantioselectivity (99%) and very good yields were obtained. These secondary alcohols were further tested for their antimicrobial activities against important pathogens and significant levels of antimicrobial activities were observed although these activities were altered depending on the secondary alcohols as well as their enantiomeric properties. The current methodology demonstrates a promising and alternative green approach for the synthesis of chiral secondary alcohols of biological importance in a cheap, mild, and environmentally useful process. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  4. Selected Lactobacillus strains isolated from sugary and milk kefir reduce Salmonella infection of epithelial cells in vitro.

    PubMed

    Zavala, L; Golowczyc, M A; van Hoorde, K; Medrano, M; Huys, G; Vandamme, P; Abraham, A G

    2016-09-01

    The isolation of potentially probiotic strains and the subsequent study of their properties are very important steps to gain insight in the health benefits ascribed to sugary and milk kefir. The aim of the present study was to characterise fifteen Lactobacillus strains isolated from these beverages by determining some surface properties and their ability to antagonise enterocyte cell damage after Salmonella infection in vitro. Lactobacillus surface properties were determined by hydrophobicity, autoaggregation, and coaggregation assays with Salmonella. In addition, lactobacilli adhesion to Caco-2/TC-7 cells and the effect on Salmonella invasion were evaluated. Finally, the disassembly of F-actin cytoskeleton on intestinal epithelial cells was assayed in vitro when Salmonella infection was performed in the presence of selected Lactobacillus strains. Ten out of the 15 strains showed a high adhesion capacity to Caco-2/TC-7 cells. Most of the strains were hydrophilic and non-autoaggregating. Strains isolated from sugary kefir were non-coaggregating with Salmonella, while strains Lactobacillus paracasei CIDCA 83120, 83121, 83123, 83124, 8339, 83102 isolated from milk kefir were able to coaggregate after 1 h. L. paracasei CIDCA 8339 and Lactobacillus kefiri CIDCA 83102 were able to diminish Salmonella invasion to the enterocytes. An antagonistic effect on cytoskeleton disruption elicited by the pathogen was also demonstrated. Our results suggest that both strains isolated from milk kefir could be considered as appropriate probiotic candidates.

  5. Molecular discrimination of lactobacilli used as starter and probiotic cultures by amplified ribosomal DNA restriction analysis.

    PubMed

    Roy, D; Sirois, S; Vincent, D

    2001-04-01

    Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus.

  6. A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey.

    PubMed

    Liu, Enuo; Zheng, Huajun; Hao, Pei; Konno, Tomonobu; Yu, Yao; Kume, Hisae; Oda, Munehiro; Ji, Zai-Si

    2012-12-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.

  7. Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12® and Lactobacillus paracasei ssp. paracasei, L. casei 431® in an influenza vaccination model: a randomised, double-blind, placebo-controlled study.

    PubMed

    Rizzardini, Giuliano; Eskesen, Dorte; Calder, Philip C; Capetti, Amedeo; Jespersen, Lillian; Clerici, Mario

    2012-03-01

    The present study investigated the ability of Bifidobacterium animalis ssp. lactis (BB-12®) and Lactobacillus paracasei ssp. paracasei (L. casei 431®) to modulate the immune system using a vaccination model in healthy subjects. A randomised, double-blind, placebo-controlled, parallel-group study was conducted in 211 subjects (56 % females, mean age 33·2 (sd 13·1) years). Subjects consumed a minimum of 10⁹ colony-forming units of BB-12® (capsule) or L. casei 431® (dairy drink) or a matching placebo once daily for 6 weeks. After 2 weeks, a seasonal influenza vaccination was given. Plasma and saliva samples were collected at baseline and after 6 weeks for the analysis of antibodies, cytokines and innate immune parameters. Changes from baseline in vaccine-specific plasma IgG, IgG1 and IgG3 were significantly greater in both probiotic groups v. the corresponding placebo group (L. casei 431®, P = 0·01 for IgG; P < 0·001 for remaining comparisons). The number of subjects obtaining a substantial increase in specific IgG (defined as ≥ 2-fold above baseline) was significantly greater in both probiotic groups v. placebo (BB-12®, P < 0·001 for IgG, IgG1 and IgG3; L. casei 431®, P < 0·001 for IgG1 and IgG3). Significantly greater mean fold increases for vaccine-specific secretory IgA in saliva were observed in both probiotic groups v. placebo (BB-12®, P = 0·017; L. casei 431®, P = 0·035). Similar results were observed for total antibody concentrations. No differences were found for plasma cytokines or innate immune parameters. Data herein show that supplementation with BB-12® or L. casei 431® may be an effective means to improve immune function by augmenting systemic and mucosal immune responses to challenge.

  8. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface.

    PubMed

    Ciandrini, E; Campana, R; Baffone, W

    2017-06-01

    This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Antimicrobial activity of lactobacillus strains against uropathogens.

    PubMed

    Shim, Yoon Hee; Lee, Seung Joo; Lee, Jung Won

    2016-10-01

    The use of lactobacillus probiotics has been proposed as an alternative to prophylactic antibiotics for preventing urinary tract infection (UTI) in the era of antibiotic resistance. In this study, the antimicrobial activity of lactobacillus strains against uropathogens, was evaluated and compared with that of antibiotics. To evaluate inhibitory activities of lactobacilli against uropathogens, six lactobacillus strains (L. gasseri, L. rhamnosus, L. acidophilus, L. plantarum, L. paracasei, L. acidophilus) and four representative uropathogens of infantile UTI (extended-spectrum beta-lactamase [ESBL](-) Escherichia coli, ESBL(+) E. coli, Proteus vulgaris, Enterococcus fecalis) were selected. Lactobacillus strain in vitro inhibition of each uropathogen was evaluated on MRS agar well diffusion assay and compared with that of commercial antibiotic discs. Average inhibitory zone for each of the six lactobacillus strains against the four uropathogens showed slightly different but consistent inhibition (inhibitory zone diameter, 10.5-20.0 mm). This was different to that of the antibiotic discs, which had a wider range of inhibition (inhibitory zone diameter, <6.0-27.5 mm) depending on the uropathogen resistance pattern. The inhibitory zone of the six lactobacillus strains was between that of sensitive and resistant antibiotics (P < 0.05). Lactobacillus strains had similar moderate antimicrobial activities against uropathogens. Further research is needed to ascertain the strains with the best probiotic potential. © 2016 Japan Pediatric Society.

  10. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats.

    PubMed

    Lv, Long-Xian; Hu, Xin-Jun; Qian, Gui-Rong; Zhang, Hua; Lu, Hai-Feng; Zheng, Bei-Wen; Jiang, Li; Li, Lan-Juan

    2014-06-01

    This work investigated the effect of the intragastric administration of five lactic acid bacteria from healthy people on acute liver failure in rats. Sprague-Dawley rats were given intragastric supplements of Lactobacillus salivarius LI01, Lactobacillus salivarius LI02, Lactobacillus paracasei LI03, Lactobacillus plantarum LI04, or Pediococcus pentosaceus LI05 for 8 days. Acute liver injury was induced on the eighth day by intraperitoneal injection of 1.1 g/kg body weight D-galactosamine (D-GalN). After 24 h, samples were collected to determine the level of liver enzymes, liver function, histology of the terminal ileum and liver, serum levels of inflammatory cytokines, bacterial translocation, and composition of the gut microbiome. The results indicated that pretreatment with L. salivarius LI01 or P. pentosaceus LI05 significantly reduced elevated alanine aminotransferase and aspartate aminotransferase levels, prevented the increase in total bilirubin, reduced the histological abnormalities of both the liver and the terminal ileum, decreased bacterial translocation, increased the serum level of interleukin 10 and/or interferon-γ, and resulted in a cecal microbiome that differed from that of the liver injury control. Pretreatment with L. plantarum LI04 or L. salivarius LI02 demonstrated no significant effects during this process, and pretreatment with L. paracasei LI03 aggravated liver injury. To the best of our knowledge, the effects of the three species-L. paracasei, L. salivarius, and P. pentosaceus-on D-GalN-induced liver injury have not been previously studied. The excellent characteristics of L. salivarius LI01 and P. pentosaceus LI05 enable them to serve as potential probiotics in the prevention or treatment of acute liver failure.

  11. Structural investigation of cell wall polysaccharides of Lactobacillus delbrueckii subsp. bulgaricus 17.

    PubMed

    Vinogradov, E; Sadovskaya, I; Cornelissen, A; van Sinderen, D

    2015-09-02

    Lactobacilli are valuable strains for commercial (functional) food fermentations. Their cell surface-associated polysaccharides (sPSs) possess important functional properties, such as acting as receptors for bacteriophages (bacterial viruses), influencing autolytic characteristics and providing protection against antimicrobial peptides. The current report provides an elaborate molecular description of several surface carbohydrates of Lactobacillus delbrueckii subsp. bulgaricus strain 17. The cell surface of this strain was shown to contain short chain poly(glycerophosphate) teichoic acids and at least two different sPSs, designated here as sPS1 and sPS2, whose chemical structures were examined by 2D nuclear magnetic resonance spectroscopy and methylation analysis. Neutral branched sPS1, extracted with n-butanol, was shown to be composed of hexasaccharide repeating units (-[α-d-Glcp-(1-3)-]-4-β-l-Rhap2OAc-4-β-d-Glcp-[α-d-Galp-(1-3)]-4-α-Rhap-3-α-d-Galp-), while the major component of the TCA-extracted sPS2 was demonstrated to be a linear d-galactan with the repeating unit structure being (-[Gro-3P-(1-6)-]-3-β-Galf-3-α-Galp-2-β-Galf-6-β-Galf-3-β-Galp-). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  13. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    PubMed

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  14. Selection, application and monitoring of Lactobacillus paracasei strains as adjunct cultures in the production of Gouda-type cheeses.

    PubMed

    Van Hoorde, Koenraad; Van Leuven, Isabelle; Dirinck, Patrick; Heyndrickx, Marc; Coudijzer, Kathleen; Vandamme, Peter; Huys, Geert

    2010-12-15

    Raw milk cheeses have more intense flavours than cheeses made from pasteurized milk and harbour strains with potential adjunct properties. Two Lactobacillus paracasei strains, R-40926 and R-40937, were selected as potential adjunct cultures from a total of 734 isolates from good quality artisan raw milk Gouda-type cheeses on the basis of their prevalence in different cheese types and/or over several production batches, safety and technological parameters. Conventional culturing, isolation and identification and a combined PCR-DGGE approach using total cheese DNA extracts and DNA extracts obtained from culturable fractions were employed to monitor viability of the introduced adjuncts and their effect on the cheese microbiota. The control cheese made without adjuncts was dominated by members of the starter, i.e. Lactococcus lactis and Leuconostoc pseudomesenteroides. In the cheeses containing either R-40926 or R-40937, the respective adjuncts increased in number as ripening progressed indicating that both strains are well adapted to the cheese environment and can survive in a competitive environment in the presence of a commercial starter culture. Principal component analysis of cheese volatiles determined by steam distillation-extraction and gas chromatography-mass spectrometry could differentiate cheeses made with different concentrations of adjunct R-40926 from the control cheese, and these differences could be correlated to the proteolytic and lipolytic properties of this strain. Collectively, results from microbiological and metabolic analyses indicate that the screening procedure followed throughout this study was successful in delivering potential adjunct candidates to enrich or extend the flavour palette of artisan Gouda-type cheeses under more controlled conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v.

    PubMed

    Molin, G

    2001-02-01

    Lactic acid fermentation is the simplest and safest way of preserving food and has probably always been used by humans. Species such as Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus acidophilus, and Lactobacillus salivarius are common in the human mucosa, from the mouth to the rectum. In food, L. paracasei and L. rhamnosus are usually associated with dairy products whereas L. plantarum is found in fermented foods of plant origin. A probiotic food product containing no milk constituent was launched in Sweden in 1994. The product is a lactic acid fermented oatmeal gruel that is mixed in a fruit drink. It contains approximately 5 x 10(10) colony-forming units of L. plantarum 299v/L. The strain L. plantarum 299v originates from the human intestinal mucosa and has been shown in rats to decrease translocation, improve mucosal status, improve liver status, improve the immunologic status of the mucosa, and reduce mucosal inflammation. In humans, L. plantarum 299v can increase the concentration of carboxylic acids in feces and decrease abdominal bloating in patients with irritable bowel disease. It can also decrease fibrinogen concentrations in blood. Should probiotics be administrated through foods, the probiotic organism must remain vigorous in the food until consumption and the food must remain palatable, ie, the food carrier and the organism must suit each other. L. plantarum 299v not only affects the bacterial flora of the intestinal mucosa but may also regulate the host's immunologic defense. The mechanisms involved need to be clarified.

  16. Characterization of multiple antilisterial peptides produced by sakacin P-producing Lactobacillus sakei subsp. sakei 2a.

    PubMed

    Carvalho, Kátia G; Bambirra, Felipe H S; Nicoli, Jacques R; Oliveira, Jamil S; Santos, Alexandre M C; Bemquerer, Marcelo P; Miranda, Antonio; Franco, Bernadette D G M

    2018-05-01

    Antimicrobial compounds produced by lactic acid bacteria can be explored as natural food biopreservatives. In a previous report, the main antimicrobial compounds produced by the Brazilian meat isolate Lactobacillus sakei subsp. sakei 2a, i.e., bacteriocin sakacin P and two ribosomal peptides (P2 and P3) active against Listeria monocytogenes, were described. In this study, we report the spectrum of activity, molecular mass, structural identity and mechanism of action of additional six antilisterial peptides produced by Lb. sakei 2a, detected in a 24 h-culture in MRS broth submitted to acid treatment (pH 1.5) and proper fractionation and purification steps for obtention of free and cell-bound proteins. The six peptides presented similarity to different ribosomal proteins of Lb. sakei subsp sakei 23K and the molecular masses varied from 4.6 to 11.0 kDa. All peptides were capable to increase the efflux of ATP and decrease the membrane potential in Listeria monocytogenes. The activity of a pool of the obtained antilisterial compounds [enriched active fraction (EAF)] against Listeria monocytogenes in a food model (meat gravy) during refrigerated storage (4 °C) for 10 days was also tested and results indicated that the populations of L. monocytogenes in the food model containing the acid extract remained lower than those at time 0-day, evidencing that the acid extract of a culture of Lb. sakei 2a is a good technological alternative for the control of growth of L. monocytogenes in foods.

  17. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt.

    PubMed

    Settachaimongkon, Sarn; Nout, M J Robert; Antunes Fernandes, Elsa C; Hettinga, Kasper A; Vervoort, Jacques M; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J; van Valenberg, Hein J F

    2014-05-02

    Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L. delbrueckii subsp. bulgaricus was investigated in terms of microbial growth, acidification and changes in the biochemical composition of milk during set-yoghurt fermentation. A complementary metabolomics approach was applied for global characterization of volatile and non-volatile polar metabolite profiles of yoghurt associated with proteolytic activity of the individual strains in the starter cultures. The results demonstrated that only non-proteolytic S. thermophilus (Prt-) strain performed proto-cooperation with L. delbrueckii subsp. bulgaricus. The proto-cooperation resulted in significant higher populations of the two species, faster milk acidification, significant abundance of aroma volatiles and non-volatile metabolites desirable for a good organoleptic quality of yoghurt. Headspace SPME-GC/MS and (1)H NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Furthermore, multivariate statistical analysis allows discriminating set-yoghurts fermented by different types of starter cultures according to their metabolite profiles. Our finding underlines that selection of suitable strain combinations in yoghurt starters is important for achieving the best technological performance regarding the quality of product. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease

    PubMed Central

    Martinez, Raquel M.; Hulten, Kristina G.; Bui, Uyen

    2014-01-01

    Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry. PMID:24131686

  19. Discrimination and divergence among Lactobacillus plantarum-group (LPG) isolates with reference to their probiotic functionalities from vegetable origin.

    PubMed

    Devi, Sundru Manjulata; Aishwarya, Subramanian; Halami, Prakash M

    2016-12-01

    The present study was aimed to evaluate the diversity and probiotic properties of Lactobacillus plantarum-group cultures from vegetable origin. First, genotypic diversity of L. plantarum (n=34) was achieved by PCR of Random Amplified Polymorphic DNA and recA gene-specific multiplex PCR. The isolates were segregated into five groups namely, Lactobacillus pentosus, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus plantarum subsp. plantarum and argentoratensis. Further discrimination was achieved by restriction fragment length polymorphism of probiotic adhesion genes viz.fbp, mub and msa gene. As determined by nucleotide sequence analysis and bioinformatics Pfam database, the putative Fbp protein had only one FBP domain, whereas Mub protein had 8-10 MUB domain repeats. However, L. pentosus (except CFR MFT9), L. plantarum subsp. argentoratensis (except CFR MFT5) and L. arizonensis (except CFR MFT2) isolates gave no amplicon for the tested marker genes. Selected cultures (n=15) showed tolerance to simulated digestive fluids (20-85%), exhibited auto-aggregation (10-77%), cellular hydrophobicity (12-78%), and broad spectrum of anti-microbial activity. Concurrently, high adherence capacity to mucin was achieved for L. plantarum subsp. plantarum (MCC 2974 and CFR MFT1) and L. paraplantarum (MTCC 9483, MCC 2977, MCC 2978), which had an additional MUB domain repeat. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Effectiveness of an association of a cranberry dry extract, D-mannose, and the two microorganisms Lactobacillus plantarum LP01 and Lactobacillus paracasei LPC09 in women affected by cystitis: a pilot study.

    PubMed

    Vicariotto, Franco

    2014-01-01

    Urinary tract infections (UTIs) are the most common bacterial infection in women. Most UTIs are acute uncomplicated cystitis caused by Escherichia coli (86%). This study was undertaken to assess the effectiveness of an association of a cranberry dry extract, D-mannose, a gelling complex composed of the exopolysaccharides produced by Streptococcus thermophilus ST10 (DSM 25246) and tara gum, as well as the 2 microorganisms Lactobacillus plantarum LP01 (LMG P-21021) and Lactobacillus paracasei LPC09 (DSM 24243) in women affected by acute uncomplicated cystitis. Thirty-three premenopausal, nonpregnant women diagnosed with acute uncomplicated cystitis were enrolled in a pilot prospective study and completed the treatment protocol. Subjects were instructed to take 2 doses per day during the first month, and then to continue with 1 sachet per day until the sixtieth day. Nitrites and leukocyte esterase on urine dipstick testing were used as indicators of cystitis, with analysis performed at enrollment, after 30 and 60 days, and after 1 month of follow-up. Typical UTI symptoms, namely dysuria, frequent voiding of small volumes, urinary urgency, suprapubic pain, and gross hematuria were scored 0 to 3 and evaluated at each visit. Positive results for the presence of nitrites and leukocyte esterase were found in 14 and 20 subjects after 30 days and in 9 and 14 women after 60 days, respectively (P<0.001). At the end of the follow-up period, positive results for nitrites and leukocyte esterase were recorded in only 4 and 3 of 24 and 19 subjects (16.7%, P=0.103; 15.8%, P=0.325, respectively), with negative results after 60 days. Typical symptoms of cystitis, specifically dysuria, frequent voiding, urgency, and suprapubic pain were significantly improved as well. No significant differences were recorded in the incidence and severity of hematuria at any visit. The long-term ability of an association of cranberry, D-mannose, an innovative gelling complex, and the 2 microorganisms

  1. Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation.

    PubMed

    Rodríguez de Olmos, A; Bru, E; Garro, M S

    2015-03-02

    The use of solid fermentation substrate (SSF) has been appreciated by the demand for natural and healthy products. Lactic acid bacteria and bifidobacteria play a leading role in the production of novel functional foods and their behavior is practically unknown in these systems. Soy is an excellent substrate for the production of functional foods for their low cost and nutritional value. The aim of this work was to optimize different parameters involved in solid state fermentation (SSF) using selected lactic cultures to improve soybean substrate as a possible strategy for the elaboration of new soy food with enhanced functional and nutritional properties. Soy flour and selected lactic cultures were used under different conditions to optimize the soy SSF. The measured responses were bacterial growth, free amino acids and β-glucosidase activity, which were analyzed by applying response surface methodology. Based on the proposed statistical model, different fermentation conditions were raised by varying the moisture content (50-80%) of the soy substrate and temperature of incubation (31-43°C). The effect of inoculum amount was also investigated. These studies demonstrated the ability of selected strains (Lactobacillus paracasei subsp. paracasei and Bifidobacterium longum) to grow with strain-dependent behavior on the SSF system. β-Glucosidase activity was evident in both strains and L. paracasei subsp. paracasei was able to increase the free amino acids at the end of fermentation under assayed conditions. The used statistical model has allowed the optimization of fermentation parameters on soy SSF by selected lactic strains. Besides, the possibility to work with lower initial bacterial amounts to obtain results with significant technological impact was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Evaluation of a select strain of Lactobacillus delbrueckii subsp. lactis as a biological control agent for pathogens on fresh-cut vegetables stored at 7 degrees C.

    PubMed

    Harp, E; Gilliland, S E

    2003-06-01

    Raw vegetables inoculated with selected pathogenic bacteria were treated with a strain of Lactobacillus delbrueckii subsp. lactis, which was selected for its ability to produce hydrogen peroxide at refrigerated temperatures. The vegetables inoculated included broccoli, cabbage, carrots, and lettuce. Each vegetable was rinsed, chopped, and stored under conditions similar to those used for ready-to-eat vegetables sold at retail. Portions of each vegetable were separately inoculated with one of two pathogenic bacteria, Escherichia coli O157:H7 or Listeria monocytogenes. Prior to packaging, one portion of each inoculated vegetable was treated with a cell suspension of the selected strain of L. delbrueckii subsp. lactis. The vegetables were stored at 7 degrees C for 6 days. The populations of pathogens and lactobacilli on each sample were enumerated on storage days 0, 3, and 6. Although populations of L. delbrueckii subsp. lactis remained at high levels during storage, there was no noticeable antagonistic action against the pathogens under conditions similar to those used for these products at the retail level. Each pathogen survived on all vegetables throughout storage. Further testing revealed that there was apparently sufficient catalase activity in the cut vegetables to destroy enough of the hydrogen peroxide to prevent antagonistic action against the pathogens.

  3. Growth and viability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in traditional yoghurt enriched by honey and whey protein concentrate.

    PubMed

    Glušac, J; Stijepić, M; Đurđević-Milošević, D; Milanović, S; Kanurić, K; Vukić, V

    2015-01-01

    The ability of whey protein concentrate (WPC) (1% w/v) and/or honey (2% and 4% w⁄v) to improve lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) growth and viability in yoghurt during a 21 day period of storage was investigated. Another focus of this study was to examine fermentation kinetics and post-acidification rates through pH and lactic acid content measurements over the 21 day period. The addition of WPC and acacia honey accelerated fermentation and improved lactic acid bacteria (LAB) growth over the 21 days, but honey proportion did not significantly affect the viability of LAB. Moreover, adding honey and WPC did not support the overproduction of lactic acid, which positively influenced yoghurt stability during the 21 day storage period.

  4. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Generation and Characterization of Environmentally Sensitive Variants of the β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus

    PubMed Central

    Yoast, Sienna; Adams, Robin M.; Mainzer, Stanley E.; Moon, Keith; Palombella, Anthony L.; Schmidt, Brian F.

    1994-01-01

    A method is described for generating and screening variants of the β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus sensitive to several environmental stresses, with potential application in the food industry. Chemical mutagenesis with hydroxylamine or methoxylamine was performed on the β-galactosidase gene carried on an Escherichia coli expression vector. Mutants sensitive to cold, heat, low pH, low magnesium concentration, and the presence of urea were isolated by screening for reduced color development on β-galactosidase indicator plates. The mutations responsible for three variant β-galactosidases were localized, and the base substitutions were determined by DNA sequencing. The amino acid alterations associated with one low-pH-sensitive (pHs) and two urea-sensitive (Us) variants correspond to P584L (pHs1), G400S/R479Q (Us26), and G167E/E168K/E363K/V492M (Us17), respectively. Mutant pHs1 is also heat, cold, low magnesium, and urea sensitive; Us26 is also cold sensitive; and Us17 is also low-pH sensitive. PMID:16349230

  6. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and

  7. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed Central

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and

  8. 16S rRNA PCR-Denaturing Gradient Gel Electrophoresis of Oral Lactobacillus casei Group and Their Phenotypic Appearances.

    PubMed

    Piwat, S; Teanpaisan, R

    2013-01-01

    This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances.

  9. 16S rRNA PCR-Denaturing Gradient Gel Electrophoresis of Oral Lactobacillus casei Group and Their Phenotypic Appearances

    PubMed Central

    Piwat, S.; Teanpaisan, R.

    2013-01-01

    This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances. PMID:24191230

  10. Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii.

    PubMed

    Suárez, Viviana; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge; Quiberoni, Andrea

    2009-11-01

    The bacteriophages Cb1/204 and Cb1/342 were obtained by induction from the commercial strain Lactobacillus delbrueckii subsp. lactis Cb1, and propagated on Lactobacillus delbrueckii subsp. lactis 204 (Lb.l 204) and Lactobacillus delbrueckii subsp. bulgaricus 342 (Lb.b 342), respectively. By cross sensitivity, it was possible to detect a delay in the lysis of Lb.l 204 with Cb1/342 phage, while the adsorption rate was high (99.5%). Modified and unmodified phages were isolated using phage Cb1/342 and strain Lb.l 204. The EOP (Efficiency of Plaquing) values for the four phages (Cb1/204, Cb1/342, Cb1/342modified and Cb1/342unmodified) suggested that an R/M system modified the original temperate phage, and the BglII-DNA restriction patterns of these phages might point out the presence of a Type II R/M system. Also, the existence of a Type I R/M system was demonstrated by PCR and nucleotide sequence, being the percentages of alignment homology with Type I R/M systems reported previously higher than 95%. In this study it was possible to demonstrate that the native phage resistant mechanisms and the occurrence of prophages in commercial host strains, contribute strongly to diversify the phage population in a factory environment.

  11. Screening in a Lactobacillus delbrueckii subsp. bulgaricus collection to select a strain able to survive to the human intestinal tract.

    PubMed

    Vázquez, Clotilde; Botella-Carretero, José I; García-Albiach, Raimundo; Pozuelo, María J; Rodríguez-Baños, Mercedes; Baquero, Fernando; Baltadjieva, María A; del Campo, Rosa

    2013-01-01

    Genetic diversity and resistance of Lactobacillus bulgaricus sbsp. delbrueckii collection with 100 isolates from different home-made yogurt in rural Bulgarian areas were determined. The strain K98 was the most resistant to bile salts and low pH. Survival and effects on short chain fatty acids production were tested in 20 healthy volunteers. High genetic diversity was observed in the L. bulgaricus collection by RAPD, whereas the ability of tolerate high deoxycholic acid concentrations, and different acid pHs was variable. The strain K98 was selected and used to prepare a homemade yogurt which was administered to 20 healthy volunteers (500 ml/day during 15d). A basal faecal sample and another after yogurt intake were recovered. DGGE experiments, using both universal and Lactic Acid Bacteria (LAB) primers, demonstrated no significant changes in the qualitative composition of gut microbiota. A band corresponding to L. bulgaricus was observed in all 20 samples. Viable L. bulgaricus K98 strain was only recovered in one volunteer. After yogurt intake we found an increase of LAB and Clostridium perfringens, and a decrease of Bacteroides- Prevotella-Porphyromonas. In addition, increases of acetic, butyric and 2-hydroxy-butyric acids in faeces were detected. Genetic diversity of L. delbrueckii subsp. bulgaricus especie is high We have isolated a probiotic resistant strain to bile and high acidity, L. delbrueckii subsp. bulgaricus-K98. Qualitative and quantitative changes in the intestinal microbiota are found after ingestion of a homemade yogurt containing this strain, with a concomitant increase in faecal SCFA. Our findings support the interest in developing further studies providing different amounts of L. delbrueckii subsp. bulgaricus-K98, and should evaluate its clinical effects in human disease. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  12. Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov.

    PubMed

    Meroth, Christiane B; Hammes, Walter P; Hertel, Christian

    2004-03-01

    The microbiota of two industrially processed rice sourdoughs was characterised by bacteriological culture in combination with PCR-denaturing gradient gel electrophoresis (DGGE) and 16S/28S rDNA sequence analysis. Rice sourdough I was continuously propagated for several years by back-slopping every week, whereas sourdough II was processed by using a commercial starter culture and back-slopping daily for three days. In rice sourdough II Candida krusei and Saccharomyces cerevisiae as well as Lactobacillus fermentum, Lactobacillus gallinarum, Lactobacillus kimchii, Lactobacillus plantarum, and Lactobacillus pontis dominated at the first day of fermentation. RAPD analysis of lactobacilli revealed identical profiles for each of the species except for L. fermentum and L. pontis indicating the presence of different strains. Fluctuations within the LAB community during fermentation were monitored by PCR-DGGE. L. pontis decreased in numbers over time and L. curvatus became dominant after 3 days of fermentation. Rice sourdough I contained S. cerevisiae, Lactobacillus paracasei (present with three different RAPD types), Lactobacillus paralimentarius, and a Lactobacillus strain which could not be allotted to any valid species. Phylogenetic analysis based on 16S rDNA sequences revealed Lactobacillus brevis as the closest relative (97.3% sequence similarity). Differences in some phenotypic characteristics and DNA-DNA relatedness indicated that the strain represents a new Lactobacillus species, for which the name Lactobacillus spicheri is proposed.

  13. Subcellular membrane fluidity of Lactobacillus delbrueckii subsp. bulgaricus under cold and osmotic stress.

    PubMed

    Meneghel, Julie; Passot, Stéphanie; Cenard, Stéphanie; Réfrégiers, Matthieu; Jamme, Frédéric; Fonseca, Fernanda

    2017-09-01

    Cryopreservation of lactic acid bacteria may lead to undesirable cell death and functionality losses. The membrane is the first target for cell injury and plays a key role in bacterial cryotolerance. This work aimed at investigating at a subcellular resolution the membrane fluidity of two populations of Lactobacillus delbrueckii subsp. bulgaricus when subjected to cold and osmotic stresses associated to freezing. Cells were cultivated at 42 °C in mild whey medium, and they were exposed to sucrose solutions of different osmolarities (300 and 1800 mOsm L -1 ) after harvest. Synchrotron fluorescence microscopy was used to measure membrane fluidity of cells labeled with the cytoplasmic membrane probe 1-[4 (trimethylamino) phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Images were acquired at 25 and 0 °C, and more than a thousand cells were individually analyzed. Results revealed that a bacterial population characterized by high membrane fluidity and a homogeneous distribution of fluidity values appeared to be positively related to freeze-thaw resistance. Furthermore, rigid domains with different anisotropy values were observed and the occurrence of these domains was more important in the freeze-sensitive bacterial population. The freeze-sensitive cells exhibited a broadening of existing highly rigid lipid domains with osmotic stress. The enlargement of domains might be ascribed to the interaction of sucrose with membrane phospholipids, leading to membrane disorganization and cell degradation.

  14. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius.

    PubMed

    Johnston, Christopher D; Bannantine, John P; Govender, Rodney; Endersen, Lorraine; Pletzer, Daniel; Weingart, Helge; Coffey, Aidan; O'Mahony, Jim; Sleator, Roy D

    2014-01-01

    It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease.

  15. Physiological Changes of Surface Membrane in Lactobacillus with Prebiotics.

    PubMed

    Pan, Mingfang; Kumaree, Kishore K; Shah, Nagendra P

    2017-03-01

    Synbiotics are always considered to be beneficial in healthy manipulation of gut environment; however, the purpose of this research was to investigate the dominance of synbiotic over the individual potential of probiotics and prebiotics. Four different types of prebiotics, fructo-oligosaccharides, raffinose, inulin, and cellobiose, were evaluated based on their varying degree of polymerization, combined each with 2 different Lactobacilli strains, including Lactobacillus paracasei 276 and Lactobacillus plantarum WCFS1. The effects of synbiotics combination on the surface structure were evaluated by analyzing auto-aggregation, membrane hydrophobicity, and adhesion to Caco-2 cells. Our results showed that both Lactobacilli exhibited significantly greater degree of attachment to Caco-2 cells (23.31% and 16.85%, respectively) when using cellobiose as a substrate than with other prebiotics (P < 0.05). Intestinal adhesion ability was in correlation with the percent of auto-aggregation, both Lactobacillus exhibited higher percent of auto-aggregation in cellobiose compared to other prebiotics. These behavioral changes in terms of attachment and auto-aggregation were further supported with the changes noticed from infrared spectra (FT-IR). © 2017 Institute of Food Technologists®.

  16. D-lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens.

    PubMed

    Nguyen, Cuong Mai; Kim, Jin-Seog; Song, Jae Kwang; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Kim, Jin-Cheol

    2012-12-01

    D-lactic acid production from dry biomass of the microalga, Hydrodictyon reticulatum, was carried out in a 5-l jar fermentor (initial pH 6, 34 °C using CaCO(3) as a neutralizing agent) through simultaneous saccharification and co-fermentation using the Lactobacillus coryniformis subsp. torquens. After 36 h, 36.6 g lactic acid/l was produced from 80 g H. reticulatum/l in the medium containing 3 g yeast extract/l and 3 g peptone/l in the absence of mineral salts. The maximum productivity, average productivity and yield were 2.38 g/l h, 1.02 g/l h and 45.8 %, respectively. The optical purity of D-Lactic acid ranged from 95.8-99.6 %. H. reticulatum is thus a promising biomass material for the production of D-Lactic acid.

  17. Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes.

    PubMed

    Silva, Marluci P; Tulini, Fabricio L; Ribas, Marcela M; Penning, Manfred; Fávaro-Trindade, Carmen S; Poncelet, Denis

    2016-11-01

    Microcapsules containing Lactobacillus paracasei BGP-1 were produced by co-extrusion technology using alginate and alginate-shellac blend as wall materials. Sunflower oil and coconut fat were used as vehicles to incorporate BGP-1 into the microcapsules. The microcapsules were evaluated with regard the particle size, morphology, water activity and survival of probiotics after 60days of storage at room temperature. Fluidized bed and lyophilization were used to dry the microcapsules and the effect of these processes on probiotic viability was also evaluated. Next, dried microcapsules were exposed to simulated gastrointestinal fluids to verify the survival of BGP-1. Microcapsules dried by fluidized bed had spherical shape and robust structures, whereas lyophilized microcapsules had porous and fragile structures. Dried microcapsules presented a medium size of 0.71-0.86mm and a w ranging from 0.14 to 0.36, depending on the drying process. When comparing the effects of drying processes on BGP-1 viability, the fluidized bed was less aggressive than lyophilization. The alginate-shellac blend combined with coconut fat as core effectively protected the encapsulated probiotic under simulated gastrointestinal conditions. Thus, the production of microcapsules by co-extrusion followed by drying using the fluidized bed is a promising strategy for protection of probiotic cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Assessment and comparison of probiotic potential of four Lactobacillus species isolated from feces samples of Iranian infants.

    PubMed

    Halimi, Shahnaz; Mirsalehian, Akbar

    2016-02-01

    The probiotic potential of Lactobacillus species isolated from infant feces was investigated. For this study, the antibiotic susceptibility, tolerance in gut-related conditions, antimicrobial activity, and ability to adhere to a human colorectal adenocarcinoma cell line (Caco-2 cells) of four common Lactobacillus species (Lactobacillus paracasei [n = 15], Lactobacillus rhamnosus [n = 45], Lactobacillus gasseri [n = 20] and Lactobacillus fermentum [n = 18]) were assessed. Most isolates that which were sensitive to imipenem, ampicillin, gentamycin, erythromycin and tetracycline were selected for other tests. L. gasseri isolates had the greatest sensitivity to gastric and intestinal fluids (<10% viability). L. fermentum (FH5, FH13 and FH18) had the highest adhesion to Caco-2 cells. The lowest antibacterial activity against pathogenic bacteria was shown by L. gasseri strains in spot tests. Furthermore, non-adjusted cell-free culture supernatants with low pH had greater antimicrobial activity, which was related to organic acid. The results showed that some isolates of L. rhamnosus and L. fermentum are suitable for use as a probiotic. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  19. Strand-specific RNA-seq analysis of the Lactobacillus delbrueckii subsp. bulgaricus transcriptome.

    PubMed

    Zheng, Huajun; Liu, Enuo; Shi, Tao; Ye, Luyi; Konno, Tomonobu; Oda, Munehiro; Ji, Zai-Si

    2016-02-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (Lb. bulgaricus 2038) is an industrial bacterium that is used as a starter for dairy products. We proposed several hypotheses concerning its industrial features previously. Here, we utilized RNA-seq to explore the transcriptome of Lb. bulgaricus 2038 from four different growth phases under whey conditions. The most abundantly expressed genes in the four stages were mainly involved in translation (for the logarithmic stage), glycolysis (for control/lag stages), lactic acid production (all the four stages), and 10-formyl tetrahydrofolate production (for the stationary stage). The high expression of genes like d-lactate dehydrogenase was thought as a result of energy production, and consistent expression of EPS synthesis genes, the restriction-modification (RM) system and the CRISPR/Cas system were validated for explaining the advantage of this strain in yoghurt production. Several postulations, like NADPH production through GapN bypass, converting aspartate into carbon-skeleton intermediates, and formate production through degrading GTP, were proved not working under these culture conditions. The high expression of helicase genes and co-expressed amino acids/oligopeptides transporting proteins indicated that the helicase might mediate the strain obtaining nitrogen source from the environment. The transport system of Lb. bulgaricus 2038 was found to be regulated by antisense RNA, hinting the potential application of non-coding RNA in regulating lactic acid bacteria (LAB) gene expression. Our study has primarily uncovered Lb. bulgaricus 2038 transcriptome, which could gain a better understanding of the regulation system in Lb. bulgaricus and promote its industrial application.

  20. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-06-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents.

  1. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  2. Postgenomic Analysis of Streptococcus thermophilus Cocultivated in Milk with Lactobacillus delbrueckii subsp. bulgaricus: Involvement of Nitrogen, Purine, and Iron Metabolism▿ †

    PubMed Central

    Herve-Jimenez, Luciana; Guillouard, Isabelle; Guedon, Eric; Boudebbouze, Samira; Hols, Pascal; Monnet, Véronique; Maguin, Emmanuelle; Rul, Françoise

    2009-01-01

    Streptococcus thermophilus is one of the most widely used lactic acid bacteria in the dairy industry, in particular in yoghurt manufacture, where it is associated with Lactobacillus delbrueckii subsp. bulgaricus. This bacterial association, known as a proto-cooperation, is poorly documented at the molecular and regulatory levels. We thus investigate the kinetics of the transcriptomic and proteomic modifications of S. thermophilus LMG 18311 in response to the presence of L. delbrueckii subsp. bulgaricus ATCC 11842 during growth in milk at two growth stages. Seventy-seven different genes or proteins (4.1% of total coding sequences), implicated mainly in the metabolism of nitrogen (24%), nucleotide base (21%), and iron (20%), varied specifically in coculture. One of the most unpredicted results was a significant decrease of most of the transcripts and enzymes involved in purine biosynthesis. Interestingly, the expression of nearly all genes potentially encoding iron transporters of S. thermophilus decreased, whereas that of iron-chelating dpr as well as that of the fur (perR) regulator genes increased, suggesting a reduction in the intracellular iron concentration, probably in response to H2O2 production by L. bulgaricus. The present study reveals undocumented nutritional exchanges and regulatory relationships between the two yoghurt bacteria, which provide new molecular clues for the understanding of their associative behavior. PMID:19114510

  3. Phage-resistance linked to cell heterogeneity in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1.

    PubMed

    Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge

    2008-12-10

    The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates <15%. For the C variant derivative it was possible to demonstrate the presence of a restriction/modification system and, moreover, to determinate that this system could be Type I R/M.

  4. Three new insertion sequence elements ISLdl2, ISLdl3, and ISLdl4 in Lactobacillus delbrueckii: isolation, molecular characterization, and potential use for strain identification.

    PubMed

    Ravin, Victor; Alatossava, Tapani

    2003-05-01

    A group of new insertion sequence (IS) elements, ISLdl2, ISLdl3, and ISLdl4, from Lactobacillus delbrueckii subsp. lactis ATCC 15808 was isolated, characterized, and used for strain identification together with ISLdl1, recently characterized as an L. delbrueckii IS element belonging to the ISL3 family. ISLdl2 was 1367 bp in size and had a 24 bp IR and an 8 bp DR. The single ORF of ISLdl2 encoded a protein of 392 aa similar to transposases of the IS256 family. ISLdl3 had a single ORF encoding a protein of 343 aa similar to transposases of the IS30 family. Finally, ISLdl4 had a single ORF encoding a protein of 406 aa and displayed homology to the transposases of the IS110 family. ISLdl4 was only slight different from ISL4 (Accession No. AY040213). ISLdl1, ISLdl2, and ISLdl4 were present in all of the 10 L. delbrueckii subsp. lactis and subsp. delbrueckii strains tested, as well as in three of the 11 L. delbrueckii subsp. bulgaricus strains tested. ISLdl3 was present only in four closely related strains of L. delbrueckii subsp. lactis. These IS elements were not observed in Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus helveticus, or Lactobacillus plantarum. A cluster of IS elements, ISLdl1, ISLdl2, ISLdl3, ISLdl4, and ISL6, was observed in L. delbrueckii subsp. lactis strain ATCC 15808. Within this cluster, ISLdl4 was inserted into ISLdl1 between the left IR and the start codon of ORF455, encoding a putative transposase. Most of the integration sites of the IS elements were strain-specific. We have observed that IS elements can migrate from one strain to another as integral parts of bacterial DNA by using phage LL-H as a vehicle. We demonstrate for the first time that inverse PCR and vectorette PCR methods with primers based on sequences of the IS elements could be used for identification of L. delbrueckii strains.

  5. Characterization of a Novel Maltose-Forming α-Amylase from Lactobacillus plantarum subsp. plantarum ST-III.

    PubMed

    Jeon, Hye-Yeon; Kim, Na-Ri; Lee, Hye-Won; Choi, Hye-Jeong; Choung, Woo-Jae; Koo, Ye-Seul; Ko, Dam-Seul; Shim, Jae-Hoon

    2016-03-23

    A novel maltose (G2)-forming α-amylase from Lactobacillus plantarum subsp. plantarum ST-III was expressed in Escherichia coli and characterized. Analysis of conserved amino acid sequence alignments showed that L. plantarum maltose-producing α-amylase (LpMA) belongs to glycoside hydrolase family 13. The recombinant enzyme (LpMA) was a novel G2-producing α-amylase. The properties of purified LpMA were investigated following enzyme purification. LpMA exhibited optimal activity at 30 °C and pH 3.0. It produced only G2 from the hydrolysis of various substrates, including maltotriose (G3), maltopentaose (G5), maltosyl β-cyclodextrin (G2-β-CD), amylose, amylopectin, and starch. However, LpMA was unable to hydrolyze cyclodextrins. Reaction pattern analysis using 4-nitrophenyl-α-d-maltopentaoside (pNPG5) demonstrated that LpMA hydrolyzed pNPG5 from the nonreducing end, indicating that LpMA is an exotype α-amylase. Kinetic analysis revealed that LpMA had the highest catalytic efficiency (kcat/Km ratio) toward G2-β-CD. Compared with β-amylase, a well-known G2-producing enzyme, LpMA produced G2 more efficiently from liquefied corn starch due to its ability to hydrolyze G3.

  6. A two component system is involved in acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Cui, Yanhua; Liu, Wei; Qu, Xiaojun; Chen, Zhangting; Zhang, Xu; Liu, Tong; Zhang, Lanwei

    2012-05-20

    The Gram-positive bacterium Lactobacillus delbrueckii subsp. bulgaricus is of vital importance to the food industry, especially to the dairy industry. Two component systems (TCSs) are one of the most important mechanisms for environmental sensing and signal transduction in the majority of Gram-positive and Gram-negative bacteria. A typical TCS consists of a histidine protein kinase (HPK) and a cytoplasmic response regulator (RR). To investigate the functions of TCSs during acid adaptation in L. bulgaricus, we used quantitative PCR to reveal how TCSs expression changes during acid adaptation. Two TCSs (JN675228/JN675229 and JN675230/JN675231) and two HPKs (JN675236 and JN675240) were induced during acid adaptation. These TCSs were speculated to be related with the acid adaptation ability of L. bulgaricus. The mutants of JN675228/JN675229 were constructed in order to investigate the functions of JN675228/JN675229. The mutants showed reduced acid adaptation compared to that of wild type, and the complemented strains were similar to the wild-type strain. These observations suggested that JN675228 and JN675229 were involved in acid adaptation in L. bulgaricus. The interaction between JN675228 and JN675229 was identified by means of yeast two-hybrid system. The results indicated there is interaction between JN675228 and JN675229. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  7. Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Chen, Yujie; Kong, Qing; Chi, Chen; Shan, Shihua; Guan, Bin

    2015-10-15

    The purpose of this study was to explore the ability of anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus to biotransform aflatoxins in peanut meal. The pH of the peanut meal was adjusted above 10, and then heated for 10 min at 100 °C, 115 °C and 121 °C. The S. thermophilus and L. delbrueckii subsp. bulgaricus were precultured together in MRS broth for 48 h at 37 °C. The heated peanut meal was mixed with precultured MRS broth containing 7.0×10(8) CFU/mL of S. thermophilus and 3.0×10(3) CFU/mL of L. delbrueckii subsp. bulgaricus with the ratio of 1 to 1 (weight to volume) and incubated in anaerobic jars at 37 °C for 3 days. The aflatoxin content in the peanut meal samples was determined by HPLC. The results showed that the peanut meal contained mainly aflatoxin B1 (AFB1) (10.5±0.64 μg/kg) and aflatoxin G1 (AFG1) (18.7±0.55 μg/kg). When heat treatment was combined with anaerobic solid fermentation, the biotransformation rate of aflatoxins in peanut meal could attain 100%. The cytotoxicity of fermented peanut meal to L929 mouse connective tissue fibroblast cells was determined by MTT assay and no significant toxicity was observed in the fermented peanut meal. Furthermore, heat treatment and anaerobic solid fermentation did not change the amino acid concentrations and profile in peanut meal. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The Impact of Storage Conditions on the Stability of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis Bb12 in Human Milk.

    PubMed

    Mantziari, Anastasia; Aakko, Juhani; Kumar, Himanshu; Tölkkö, Satu; du Toit, Elloise; Salminen, Seppo; Isolauri, Erika; Rautava, Samuli

    2017-11-01

    Human milk is the optimal source of complete nutrition for neonates and it also guides the development of infant gut microbiota. Importantly, human milk can be supplemented with probiotics to complement the health benefits of breastfeeding. Storage of human milk for limited periods of time is often unavoidable, but little is known about the effect of different storage conditions (temperature) on the viability of the added probiotics. Therefore, in this study, we evaluated how different storage conditions affect the viability of two specific widely used probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis (Bb12), in human milk by culturing and quantitative polymerase chain reaction. Our results indicate that LGG and Bb12 remained stable throughout the storage period. Thus, we conclude that human milk offers an appropriate matrix for probiotic supplementation.

  9. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species.

    PubMed

    Duarte, Francisca Nayara Dantas; Rodrigues, Jéssica Bezerra; da Costa Lima, Maiara; Lima, Marcos Dos Santos; Pacheco, Maria Teresa Bertoldo; Pintado, Maria Manuela Estevez; de Souza Aquino, Jailane; de Souza, Evandro Leite

    2017-08-01

    The prebiotic effects of a cashew apple (Anacardium occidentale L.) agro-industrial byproduct powder (CAP) on different potentially probiotic Lactobacillus strains, namely Lactobacillus acidophilus LA-05, Lactobacillus casei L-26 and Lactobacillus paracasei L-10, were assessed using in vitro experimental models. Accordingly, the growth of the Lactobacillus strains when cultivated in a broth containing CAP (20 or 30 g L -1 ), glucose (20 g L -1 ) or fructooligosaccharides (FOS) (20 g L -1 ) was monitored over 48 h; the prebiotic activity scores of CAP were determined; and the changes in pH values, production of organic acids and consumption of sugars in growth media were verified. During the 48-h cultivation, similar viable cell counts were observed for the Lactobacillus strains grown in the different media tested. The CAP presented positive prebiotic activity scores toward all the tested Lactobacillus strains, indicating a desirable selective fermentable activity relative to enteric organisms. The cultivation of the Lactobacillus strains in broth containing glucose, FOS or CAP resulted in high viable cell counts, a decreased pH, the production of organic acids and the consumption of sugars over time, revealing intense bacterial metabolic activity. The CAP exerts potential prebiotic effects on different potentially probiotic Lactobacillus strains and should be an added-value ingredient for the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains.

    PubMed

    Almståhl, Annica; Lingström, Peter; Eliasson, Lars; Carlén, Anette

    2013-07-01

    The objective was to analyse the ability of Lactobacillus strains isolated from supragingival plaque of subjects with hyposalivation and from healthy controls to ferment sugars and sugar alcohols. Fifty strains isolated from interproximal plaque from subjects with radiation-induced hyposalivation (25 strains), subjects with primary Sjögren's syndrome (16 strains) and from subjects with normal salivary secretion rate (9 strains) were tested. Growth and pH were determined after 24 and 48 h of anaerobic incubation in vials containing basal media with 1 % of glucose, fructose, sucrose, mannitol, sorbitol or xylitol. No differences between strains isolated from hyposalivated subjects and controls were detected. All strains lowered the pH to <5.0 from fructose and the majority of the strains from glucose and sucrose. A pH of <5.5 was seen for 52 % of the strains using mannitol, 50 % using sorbitol and 36 % using xylitol. The ability to produce acids from sugars and sugar alcohols was highest among strains of Lactobacillus rhamnosus, Lactobacillus casei and Lactobacillus paracasei and lowest among Lactobacillus fermentum strains. A large number of Lactobacillus strains are able to ferment not only sugars but also the sugar substitutes mannitol, sorbitol and xylitol to pH levels critical for enamel demineralisation. Our findings suggest that products containing mannitol, sorbitol and/or xylitol may contribute to the acidogenic potential of the dental plaque and especially in hyposalivated subjects with high numbers of lactobacilli.

  11. Characterization of a Bacteriocin-Like Substance Produced by a Vaginal Lactobacillus salivarius Strain

    PubMed Central

    Ocaña, Virginia S.; Pesce de Ruiz Holgado, Aída A.; Nader-Macías, María Elena

    1999-01-01

    A novel bacteriocin-like substance produced by vaginal Lactobacillus salivarius subsp. salivarius CRL 1328 with activity against Enterococcus faecalis, Enterococcus faecium, and Neisseria gonorrhoeae was characterized. The highest level of production of this heat-resistant peptide or protein occurred during the late exponential phase. Its mode of action was shown to be bactericidal. L. salivarius subsp. salivarius CRL 1328 could be used for the design of a probiotic to prevent urogenital infections. PMID:10584033

  12. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    PubMed

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  14. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  15. High-fibre diet and Lactobacillus paracasei B21060 in symptomatic uncomplicated diverticular disease.

    PubMed

    Lahner, Edith; Esposito, Gianluca; Zullo, Angelo; Hassan, Cesare; Cannaviello, Claudio; Paolo, Maria Carla Di; Pallotta, Lorella; Garbagna, Nicoletta; Grossi, Enzo; Annibale, Bruno

    2012-11-07

    To investigate in symptomatic uncomplicated diverticular disease the efficacy of symbiotics associated with a high-fibre diet on abdominal symptoms. This study was a multicentre, 6-mo randomized, controlled, parallel-group intervention with a preceding 4-wk washout period. Consecutive outpatients with symptomatic uncomplicated diverticular disease, aged 40-80 years, evaluated in 4 Gastroenterology Units, were enrolled. Symptomatic uncomplicated diverticular disease patients were randomized to two treatment arms A or B. Treatment A (n = 24 patients) received 1 symbiotic sachet Flortec(©) (Lactobacillus paracasei B21060) once daily plus high-fibre diet for 6 mo. Treatment B (n = 21 patients) received high-fibre diet alone for 6 mo. The primary endpoint was regression of abdominal symptoms and change of symptom severity after 3 and 6 mo of treatment. In group A, the proportion of patients with abdominal pain < 24 h decreased from 100% at baseline to 35% and 25% after 3 and 6 mo, respectively (P < 0.001). In group B the proportion of patients with this symptom decreased from 90.5% at baseline to 61.9% and 38.1% after 3 and 6 mo, respectively (P = 0.001). Symptom improvement became statistically significant at 3 and 6 mo in group A and B, respectively.The proportion of patients with abdominal pain >24 h decreased from 60% to 20% then 5% after 3 and 6 mo, respectively in group A (P < 0.001) and from 33.3% to 9.5% at both 3 and 6 mo in group B (P = 0.03). In group A the proportion of patients with abdominal bloating significantly decreased from 95% to 60% after 3 mo, and remained stable (65%) at 6-mo follow-up (P = 0.005) while in group B, no significant changes in abdominal bloating was observed (P = 0.11). After 6 mo of treatment, the mean visual analogic scale (VAS) values of both short-lasting abdominal pain (VAS, mean ± SD, group A: 4.6 ± 2.1 vs 2.2 ± 0.8, P = 0.02; group B: 4.6 ± 2.9 vs 2.0 ± 1.9, P = 0.03) and abdominal bloating (VAS, mean ± SD, group A: 5

  16. Au nanoparticles films used in biological sensing

    NASA Astrophysics Data System (ADS)

    Rosales Pérez, M.; Delgado Macuil, R.; Rojas López, M.; Gayou, V. L.; Sánchez Ramírez, J. F.

    2009-05-01

    Lactobacillus para paracasei are used commonly as functional food and probiotic substances. In this work Au nanoparticles self-assembled films were used for Lactobacillus para paracasei determination at five different concentrations. Functionalized substrates were immersed in a colloidal solution for one and a half hour at room temperature and dried at room temperature during four hours. After that, drops of Lactobacillus para paracasei in aqueous solution were put into the Au nanoparticles film and let dry at room temperature for another two hours. Infrared spectroscopy in attenuated total reflectance sampling mode was used to observe generation peaks due to substrate silanization, enhancement of Si-O band intensity due to the Au colloids added to silanized substrate and also to observe the enhancement of Lactobacillus para paracasei infrared intensity of the characteristic frequencies at 1650, 1534 and 1450 cm-1 due to surface enhancement infrared absorption.

  17. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay.

    PubMed

    Le Roy, Caroline I; Štšepetova, Jelena; Sepp, Epp; Songisepp, Epp; Claus, Sandrine P; Mikelsaar, Marika

    2015-10-13

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.

  18. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay

    PubMed Central

    Sepp, Epp; Songisepp, Epp; Claus, Sandrine P.; Mikelsaar, Marika

    2015-01-01

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population. PMID:26437083

  19. Genetic Variation of Lactobacillus delbrueckii subsp. lactis Bacteriophages Isolated from Cheese Processing Plants in Finland

    PubMed Central

    Forsman, Päivi; Alatossava, Tapani

    1991-01-01

    The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages. Images PMID:16348513

  20. Functional Analysis of the p40 and p75 Proteins from Lactobacillus casei BL23

    PubMed Central

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D. Brent; Monedero, Vicente

    2011-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria PMID:21178363

  1. Exploiting antagonistic activity of fruit-derived Lactobacillus to control pathogenic bacteria in fresh cheese and chicken meat.

    PubMed

    da Costa, Whyara Karoline Almeida; de Souza, Geany Targino; Brandão, Larissa Ramalho; de Lima, Rafael Cardoso; Garcia, Estefânia Fernandes; Dos Santos Lima, Marcos; de Souza, Evandro Leite; Saarela, Maria; Magnani, Marciane

    2018-06-01

    This study assessed the antagonistic activity of fruit-derived lactic acid bacteria (LAB) strains against food-related bacteria and the effects of the highest organic acids LAB producers on the survival of Listeria monocytogenes and Salmonella Enteritidis PT4 in cheese and chicken meat, respectively. The production of organic acids by the Lactobacillus strains in the tested food matrices was also monitored. All tested LAB strains showed antagonistic activity in vitro on the growth of pathogenic or spoiling food-related bacteria, particularly on L. monocytogenes and/or S. Enteritidis PT4, through the action of non-proteinaceous substances. The highest amounts of acetic and lactic acid were detected in cell free culture supernatants of L. paracasei 108 and L. plantarum 201. In "Minas Frescal" cheese, L. plantarum 49 and L. paracasei 108 decreased the counts of L. monocytogenes, and L. plantarum 201 showed bacteriostatic effects on this pathogen over time. L. paracasei 108 decreased the counts of S. Enteritidis PT4 in ground chicken breast; L. plantarum 49 and L. plantarum 201 failed to decrease the counts of this pathogen. Decreases in counts of L. monocytogenes or S. Enteritidis in "Minas Frescal" cheese and ground chicken breast, respectively, were related with increases in lactic and acetic acid contents and decreases in pH values. L. plantarum 49 and L. paracasei 108 could be used as biopreservation tools in cheese and chicken breast meat, respectively. Copyright © 2018. Published by Elsevier Ltd.

  2. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    PubMed

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2017-04-01

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  3. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  4. Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a.

    PubMed

    Malheiros, Patrícia S; Sant'Anna, Voltaire; Todorov, Svetoslav D; Franco, Bernadette D G M

    2015-01-01

    Lactobacillus sakei subsp. sakei 2a is a bacteriocinogenic lactic acid bacterium isolated from Brazilian pork sausage, capable of inhibiting the growth of microbial pathogens, mainly Listeria monocytogenes. In order to optimize bacteriocin production for industrial applications, this study evaluated the effect of supplementation of MRS broth with glucose, Tween 20, Tween 80, sodium citrate, potassium chloride and cysteine, and effect of the initial pH and temperature of incubation of the medium on production of bacteriocins by L. sakei 2a. Adding glucose and Tween 20 to the medium, an initial pH of 5.0 or 5.5, and incubation temperatures of 25 °C or 30 °C resulted to the highest bacteriocin yields. Thus, a 2(4) factorial design with the four variables was performed, and statistical analysis showed that it was an adequate model (R (2) = 0.8296). In the studied range, the four parameters significantly influenced bacteriocin production, with the maximum yield produced at an initial pH between 5.5 and 7.0, a temperature between 25 and 30 °C and supplementation of the MRS broth with glucose from 3.25 to 6.0 g L(-1) and Tween 20 from 0.575 to 1.15% (v/v). Response Surface Methodology analysis indicated that the highest bacteriocin production (12800 AU mL(-1)) occurred in the MRS broth supplemented with 5.5 g L(-1) glucose and 1.05% Tween 20 at an initial pH of 6.28 and an incubation temperature of 25 °C. The amount of bacteriocin produced in commercial MRS broths under the same conditions was only 5600AU mL(-1).

  5. Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a

    PubMed Central

    Malheiros, Patrícia S.; Sant’Anna, Voltaire; Todorov, Svetoslav D.; Franco, Bernadette D.G.M.

    2015-01-01

    Lactobacillus sakei subsp. sakei 2a is a bacteriocinogenic lactic acid bacterium isolated from Brazilian pork sausage, capable of inhibiting the growth of microbial pathogens, mainly Listeria monocytogenes. In order to optimize bacteriocin production for industrial applications, this study evaluated the effect of supplementation of MRS broth with glucose, Tween 20, Tween 80, sodium citrate, potassium chloride and cysteine, and effect of the initial pH and temperature of incubation of the medium on production of bacteriocins by L. sakei 2a. Adding glucose and Tween 20 to the medium, an initial pH of 5.0 or 5.5, and incubation temperatures of 25 °C or 30 °C resulted to the highest bacteriocin yields. Thus, a 24 factorial design with the four variables was performed, and statistical analysis showed that it was an adequate model (R 2 = 0.8296). In the studied range, the four parameters significantly influenced bacteriocin production, with the maximum yield produced at an initial pH between 5.5 and 7.0, a temperature between 25 and 30 °C and supplementation of the MRS broth with glucose from 3.25 to 6.0 g L−1 and Tween 20 from 0.575 to 1.15% (v/v). Response Surface Methodology analysis indicated that the highest bacteriocin production (12800 AU mL−1) occurred in the MRS broth supplemented with 5.5 g L−1 glucose and 1.05% Tween 20 at an initial pH of 6.28 and an incubation temperature of 25 °C. The amount of bacteriocin produced in commercial MRS broths under the same conditions was only 5600AU mL−1. PMID:26413066

  6. Galacto-oligosaccharides and lactulose as protectants against desiccation of Lactobacillus delbrueckii subsp. bulcaricus.

    PubMed

    Santos, Mauricio I; Araujo-Andrade, Cuauhtémoc; Esparza-Ibarra, Edgar; Tymczyszyn, Elizabeth; Gómez-Zavaglia, Andrea

    2014-01-01

    Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 was dehydrated on desiccators containing silica gel in the presence of 20% w/w of two types of galacto-oligosaccharides (GOS Biotempo and GOS Cup Oligo H-70®) and lactulose, until no changes in water desorption were detected. After rehydration, bacterial growth was monitored at 37°C by determining: (a) the absorbance at 600 nm and (b) the near infrared spectra (NIR). Principal component analysis (PCA) was then performed on the NIR spectra of samples dehydrated in all conditions. A multiparametric flow cytometry assay was carried out using carboxyfluorescein diacetate and propidium iodide probes to determine the relative composition of damaged, viable, and dead bacteria throughout the growth kinetics. The absorbance at 600 nm and the position of the second derivative band at ∼1370 nm were plotted against the time of incubation. The efficiency of the protectants was GOS Biotempo > GOS Cup Oligo H-70®  > lactulose. The better protectant capacity of GOS Biotempo was explained on the basis of the lower contribution of damaged cells immediately after rehydration (t = 0). PCA showed three groups along PC1, corresponding to the lag, exponential and stationary phases of growth, which explained 99% of the total variance. Along PC2, two groups were observed, corresponding to damaged or viable cells. The results obtained support the use of NIR to monitor the recovery of desiccated microorganisms in real time and without the need of chemical reagents. The use of GOS and lactulose as protectants in dehydration/rehydration processes was also supported. © 2014 American Institute of Chemical Engineers.

  7. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines.

    PubMed

    von Schillde, Marie-Anne; Hörmannsperger, Gabriele; Weiher, Monika; Alpert, Carl-Alfred; Hahne, Hannes; Bäuerl, Christine; van Huynegem, Karolien; Steidler, Lothar; Hrncir, Tomas; Pérez-Martínez, Gaspar; Kuster, Bernhard; Haller, Dirk

    2012-04-19

    The intestinal microbiota has been linked to inflammatory bowel diseases (IBD), and oral treatment with specific bacteria can ameliorate IBD. One bacterial mixture, VSL#3, containing Lactobacillus, Bifidobacterium, and Streptococcus, was clinically shown to reduce inflammation in IBD patients and normalize intestinal levels of IP-10, a lymphocyte-recruiting chemokine, in a murine colitis model. We identified Lactobacillus paracasei prtP-encoded lactocepin as a protease that selectively degrades secreted, cell-associated, and tissue-distributed IP-10, resulting in significantly reduced lymphocyte recruitment after intraperitoneal injection in an ileitis model. A human Lactobacillus casei isolate was also found to encode lactocepin and degrade IP-10. L. casei feeding studies in a murine colitis model (T cell transferred Rag2(-/-) mice) revealed that a prtP-disruption mutant was significantly less potent in reducing IP-10 levels, T cell infiltration and inflammation in cecal tissue compared to the isogenic wild-type strain. Thus, lactocepin-based therapies may be effective treatments for chemokine-mediated diseases like IBD. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Technological characterization and survival of the exopolysaccharide-producing strain Lactobacillus delbrueckii subsp. lactis 193 and its bile-resistant derivative 193+ in simulated gastric and intestinal juices.

    PubMed

    Burns, Patricia; Vinderola, Gabriel; Reinheimer, Jorge; Cuesta, Isabel; de Los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia

    2011-08-01

    The capacity of lactic acid bacteria to produce exopolysaccharides (EPS) conferring microorganisms a ropy phenotype could be an interesting feature from a technological point of view. Progressive adaptation to bile salts might render some lactobacilli able to overcome physiological gut barriers but could also modify functional properties of the strain, including the production of EPS. In this work some technological properties and the survival ability in simulated gastrointestinal conditions of Lactobacillus delbrueckii subsp. lactis 193, and Lb. delbrueckii subsp. lactis 193+, a strain with stable bile-resistant phenotype derived thereof, were characterized in milk in order to know whether the acquisition of resistance to bile could modify some characteristics of the microorganism. Both strains were able to grow and acidify milk similarly; however the production of ethanol increased at the expense of the aroma compound acetaldehyde in milk fermented by the strain 193+, with respect to milk fermented by the strain 193. Both microorganisms produced a heteropolysaccharide composed of glucose and galactose, and were able to increase the viscosity of fermented milks. In spite of the higher production yield of EPS by the bile-resistant strain 193+, it displayed a lower ability to increase viscosity than Lb. delbrueckii subsp. lactis 193. Milk increased survival in simulated gastric juice; the presence of bile improved adhesion to the intestinal cell line HT29-MTX in both strains. However, the acquisition of a stable resistance phenotype did not improve survival in simulated gastric and intestinal conditions or the adhesion to the intestinal cell line HT29-MTX. Thus, Lb. delbrueckii subsp. lactis 193 presents suitable technological properties for the manufacture of fermented dairy products; the acquisition of a stable bile-resistant phenotype modified some properties of the microorganism. This suggests that the possible use of bile-resistant derivative strains should be

  9. Introduction of Peptidase Genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and Controlled Expression

    PubMed Central

    Wegmann, U.; Klein, J. R.; Drumm, I.; Kuipers, O. P.; Henrich, B.

    1999-01-01

    Peptidases PepI, PepL, PepW, and PepG from Lactobacillus delbrueckii subsp. lactis, which have no counterparts in Lactococcus lactis, and peptidase PepQ were examined to determine their potential to confer new peptidolytic properties to lactococci. Controllable expression of the corresponding genes (pep genes) was achieved by constructing translational fusions with the promoter of the nisA gene (PnisA). A suitable host strain, UKLc10, was constructed by chromosomal integration of the genes encoding the NisRK two-component system into the fivefold peptidase-deficient mutant IM16 of L. lactis. Recombinants of this strain were used to analyze growth, peptidase activities, peptide utilization, and intracellular protein cleavage products. After nisin induction of PnisA::pep fusions, all of the peptidases were visible as distinct bands in protein gels. Despite the fact that identical transcription and translation signals were used to express the pep genes, the relative amounts of individual peptidases varied considerably. All of the peptidases exhibited activities in extracts of recombinant UKLc10 clones, but only PepL and PepG allowed the clones to utilize specific peptide substrates as sources of essential amino acids. In milk medium, induction of pepG and induction of pepW resulted in growth acceleration. The activities of all five peptidases during growth in milk medium were revealed by high-performance liquid chromatography analyses of intracellular amino acid and peptide pools. PMID:10543778

  10. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Reduction of the off-flavor volatile generated by the yogurt starter culture including Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in soymilk.

    PubMed

    Kaneko, Daisuke; Igarashi, Toshinori; Aoyama, Kenji

    2014-02-19

    Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus establish a symbiotic relationship in milk; however, S. thermophilus predominantly grows in soymilk. This study determined that excess diacetyl was notably generated mainly by S. thermophilus in soymilk, and this flavor compound created an unpleasant odor in fermented soymilk. The addition of l-valine to soymilk reduced the amount of diacetyl and increased the levels of acetoin during fermentation by S. thermophilus . In addition, it was found that the expression of the ilvC gene was repressed and that of the als and aldB genes was stimulated in S. thermophilus by l-valine. Sensory evaluations with the triangle difference test and a preference test showed that the soymilk fermented with l-valine was significantly preferred compared with that without l-valine. In this study, we successfully controlled the metabolic flux of S. thermophilus in soymilk and produced more favorable fermented soymilk without the use of genetically modified lactic acid bacteria strains.

  12. Regulation and Adaptive Evolution of Lactose Operon Expression in Lactobacillus delbrueckii

    PubMed Central

    Lapierre, Luciane; Mollet, Beat; Germond, Jacques-Edouard

    2002-01-01

    Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the β-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (β-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus. PMID:11807052

  13. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii.

    PubMed

    Tanigawa, Kana; Watanabe, Koichi

    2011-03-01

    Currently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080(T), was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.

  14. NADH Oxidase of Streptococcus thermophilus 1131 is Required for the Effective Yogurt Fermentation with Lactobacillus delbrueckii subsp. bulgaricus 2038.

    PubMed

    Sasaki, Yasuko; Horiuchi, Hiroshi; Kawashima, Hiroko; Mukai, Takao; Yamamoto, Yuji

    2014-01-01

    We previously reported that dissolved oxygen (DO) suppresses yogurt fermentation with an industrial starter culture composed of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) 2038 and Streptococcus thermophilus 1131, and also found that reducing the DO in the medium prior to fermentation (deoxygenated fermentation) shortens the fermentation time. In this study, we found that deoxygenated fermentation primarily increased the cell number of S. thermophilus 1131 rather than that of L. bulgaricus 2038, resulting in earlier l-lactate and formate accumulation. Measurement of the DO concentration and hydrogen peroxide generation in the milk medium suggested that DO is mainly removed by S. thermophilus 1131. The results using an H2O-forming NADH oxidase (Nox)-defective mutant of S. thermophilus 1131 revealed that Nox is the major oxygen-consuming enzyme of the bacterium. Yogurt fermentation with the S. thermophilus Δnox mutant and L. bulgaricus 2038 was significantly slower than with S. thermophilus 1131 and L. bulgaricus 2038, and the DO concentrations of the mixed culture did not decrease to less than 2 mg/kg within 3 hr. These observations suggest that Nox of S. thermophilus 1131 contributes greatly to yogurt fermentation, presumably by removing the DO in milk.

  15. Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production.

    PubMed

    Hao, Pei; Zheng, Huajun; Yu, Yao; Ding, Guohui; Gu, Wenyi; Chen, Shuting; Yu, Zhonghao; Ren, Shuangxi; Oda, Munehiro; Konno, Tomonobu; Wang, Shengyue; Li, Xuan; Ji, Zai-Si; Zhao, Guoping

    2011-01-17

    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production.

  16. Complete Sequencing and Pan-Genomic Analysis of Lactobacillus delbrueckii subsp. bulgaricus Reveal Its Genetic Basis for Industrial Yogurt Production

    PubMed Central

    Ding, Guohui; Gu, Wenyi; Chen, Shuting; Yu, Zhonghao; Ren, Shuangxi; Oda, Munehiro; Konno, Tomonobu; Wang, Shengyue; Li, Xuan; Ji, Zai-Si; Zhao, Guoping

    2011-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production. PMID:21264216

  17. Characterization of Lactobacillus fermentum PL9988 Isolated from Healthy Elderly Korean in a Longevity Village.

    PubMed

    Park, Jong-Su; Shin, Eunju; Hong, Hyunjin; Shin, Hyun-Jung; Cho, Young-Hoon; Ahn, Ki-Hyun; Paek, Kyungsoo; Lee, Yeonhee

    2015-09-01

    In this work, we wanted to develop a probiotic from famous longevity villages in Korea. We visited eight longevity villages in Korea to collect fecal samples from healthy adults who were aged above 80 years and had regular bowel movements, and isolated lactic-acid-producing bacteria from the samples. Isolated colonies that appeared on MRS agar containing bromophenol blue were identified by means of 16S rRNA sequencing, and 102 of the isolates were identified as lactic-acid-producing bacteria (18 species). Lactobacillus fermentum was the most frequently found species. Eight isolates were selected on the basis of their ability to inhibit the growth of six intestinal pathogens (Escherichia coli O157:H7, Salmonella enterica subsp. enterica Typhimurium, Salmonella enterica subsp. enterica Enteritidis, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes) and their susceptibility to 15 antimicrobial agents. Among these eight isolates, four Lactobacillus fermentum isolates were found not to produce any harmful enzymes or metabolites. Among them, Lactobacillus fermentum isolate no. 24 showed the strongest binding to intestinal epithelial cells, the highest immune-enhancing activity, anti-inflammation activity, and anti-oxidation activity as well as the highest survival rates in the presence of artificial gastric juice and bile solution. This isolate, designated Lactobacillus fermentum PL9988, has all the characteristics for a good probiotic.

  18. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118.

    PubMed

    Flynn, Sarah; van Sinderen, Douwe; Thornton, Gerardine M; Holo, Helge; Nes, Ingolf F; Collins, J Kevin

    2002-04-01

    ABP-118, a small heat-stable bacteriocin produced by Lactobacillus salivarius subsp. salivarius UCC118, a strain isolated from the ileal-caecal region of the human gastrointestinal tract, was purified to homogeneity. Using reverse genetics, a DNA fragment specifying part of ABP-118 was identified on a 10769 bp chromosomal region. Analysis of this region revealed that ABP-118 was a Class IIb two-peptide bacteriocin composed of Abp118alpha, which exhibited the antimicrobial activity, and Abp118beta, which enhanced the antimicrobial activity. The gene conferring strain UCC118 immunity to the action of ABP-118, abpIM, was identified downstream of the abp118beta gene. Located further downstream of abp118beta, several ORFs were identified whose deduced proteins resembled those of proteins involved in bacteriocin regulation and secretion. Heterologous expression of ABP-118 was achieved in Lactobacillus plantarum, Lactococcus lactis and Bacillus cereus. In addition, the abp118 locus encoded an inducing peptide, AbpIP, which was shown to play a role in the regulation of ABP-118 production. This novel bacteriocin is, to the authors' knowledge, the first to be isolated from a known human probiotic bacterium and to be characterized at the genetic level.

  19. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    PubMed Central

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  20. Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei†

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Altermann, Eric; Barrangou, Rodolphe; McGrath, Stephen; Claesson, Marcus J.; Li, Yin; Leahy, Sinead; Walker, Carey D.; Zink, Ralf; Neviani, Erasmo; Steele, Jim; Broadbent, Jeff; Klaenhammer, Todd R.; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe

    2006-01-01

    Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli. PMID:16672450

  1. Impact of bile salt adaptation of Lactobacillus delbrueckii subsp. lactis 200 on its interaction capacity with the gut.

    PubMed

    Burns, Patricia; Reinheimer, Jorge; Vinderola, Gabriel

    2011-10-01

    In a previous work, bile-salt-resistant derivatives were obtained from non-intestinal lactobacilli. The aim of this work was to investigate the impact of bile adaptation of Lactobacillus delbrueckii subsp. lactis 200 on morphology, surface properties, in vivo interaction capacity with the gut and ability to activate the gut immune response. Electron microscopy studies, growth kinetics in the presence of bovine and porcine bile, the capacity to deconjugate bile acids, hydrophobicity, autoaggregation and co-aggregation capacities were studied for the parental strain and its bile-resistant derivative in vitro. Additionally, survival in intestinal fluid, the interaction with the gut and the immunomodulating capacities were studied in mice. Bile salt adaptation conferred upon the adapted strain a higher capacity to withstand physiological concentrations of bile salts and greater survival capacity in intestinal fluid. However, bile salt exposure reduced cell hydrophobicity, autoaggregation and adhesion capacities, resulting in reduced persistence in the intestinal lumen and delayed capacity to activate the gut immune response. Insight into the effects of bile salts upon the interaction and immunomodulating capacity of lactobacilli with the gut is provided, relating in vitro and in vivo results. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. A Zn-Dependent Metallopeptidase Is Responsible for Sensitivity to LsbB, a Class II Leaderless Bacteriocin of Lactococcus lactis subsp. lactis BGMN1-5

    PubMed Central

    Uzelac, Gordana; Lozo, Jelena; Aleksandrzak-Piekarczyk, Tamara; Gabrielsen, Christina; Kristensen, Tom; Nes, Ingolf F.; Diep, Dzung B.; Topisirovic, Ljubisa

    2013-01-01

    Lactococcus lactis subsp. lactis BGMN1-5 produces a leaderless class II bacteriocin called LsbB. To identify the receptor for LsbB, a cosmid library of the LsbB-sensitive strain BGMN1-596 was constructed. About 150 cosmid clones were individually isolated and transferred to LsbB-resistant mutants of BGMN1-596. Cosmid pAZILcos/MN2, carrying a 40-kb insert, was found to restore LsbB sensitivity in LsbB-resistant mutants. Further subcloning revealed that a 1.9-kb fragment, containing only one open reading frame, was sufficient to restore sensitivity. The fragment contains the gene yvjB coding for a Zn-dependent membrane-bound metallopeptidase, suggesting that this gene may serve as the receptor for LsbB. Further support for this notion derives from several independent experiments: (i) whole-genome sequencing confirmed that all LsbB-resistant mutants contain mutations in yvjB; (ii) disruption of yvjB by direct gene knockout rendered sensitive strains BGMN1-596 and IL1403 resistant to LsbB; and (iii) most compellingly, heterologous expression of yvjB in naturally resistant strains of other species, such as Lactobacillus paracasei and Enterococcus faecalis, also rendered them sensitive to the bacteriocin. To our knowledge, this is the first time a membrane-bound peptidase gene has been shown to be involved in bacteriocin sensitivity in target cells. We also demonstrated a novel successful approach for identifying bacteriocin receptors. PMID:24123824

  3. Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp.

    PubMed Central

    do Carmo, Monique S.; Noronha, Francisca M. F.; Arruda, Mariana O.; Costa, Ênnio P. da Silva; Bomfim, Maria R. Q.; Monteiro, Andrea S.; Ferro, Thiago A. F.; Fernandes, Elizabeth S.; Girón, Jorge A.; Monteiro-Neto, Valério

    2016-01-01

    Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains. PMID:27833605

  4. Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages.

    PubMed

    Rubio, Raquel; Jofré, Anna; Martín, Belén; Aymerich, Teresa; Garriga, Margarita

    2014-04-01

    A total of 109 lactic acid bacteria isolated from infant faeces were identified by partial 16S rRNA, cpn60 and/or pheS sequencing. Lactobacillus was the most prevalent genus, representing 48% of the isolates followed by Enterococcus (38%). Lactobacillus gasseri (21%) and Enterococcus faecalis (38%) were the main species detected. A further selection of potential probiotic starter cultures for fermented sausages focused on Lactobacillus as the most technologically relevant genus in this type of product. Lactobacilli strains were evaluated for their ability to grow in vitro in the processing conditions of fermented sausages and for their functional and safety properties, including antagonistic activity against foodborne pathogens, survival from gastrointestinal tract conditions (acidity, bile and pancreatin), tyramine production, antibiotic susceptibility and aggregation capacity. The best strains according to the results obtained were Lactobacillus casei/paracasei CTC1677, L. casei/paracasei CTC1678, Lactobacillus rhamnosus CTC1679, L. gasseri CTC1700, L. gasseri CTC1704, Lactobacillus fermentum CTC1693. Those strains were further assayed as starter cultures in model sausages. L. casei/paracasei CTC1677, L. casei/paracasei CTC1678 and L. rhamnosus CTC1679 were able to lead the fermentation and dominate (levels ca. 10(8) CFU/g) the endogenous lactic acid bacteria, confirming their suitability as probiotic starter cultures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  6. Dynamic surface tension measurement for the screening of biosurfactants produced by Lactobacillus plantarum subsp. plantarum PTCC 1896.

    PubMed

    Bakhshi, Nafiseh; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud

    2017-06-01

    Currently, screening of microbial biosurfactants (BSs) is based on their equilibrium surface tension values obtained using static surface tension measurement. However, a good surfactant should not only have a low equilibrium surface tension, but its dynamic surface tension (DST) should also decrease rapidly with time. In this study, screening of BSs produced by Lactobacillus plantarum subsp. plantarum PTCC 1896 (probiotic) was performed based on their DST values measured by Wilhelmy plate tensiometry. The relationship between DST and structural and functional properties (anti-adhesive activity) of the BSs was investigated. The results showed that the changes in the yield, productivity and structure of the BSs were growth medium and incubation time dependent (p<0.05). Structurally different BSs produced exhibited identical equilibrium surface tension values. However, differences among the structure/yield of the BSs were observed through the measurement of their DST. The considerable dependence of DST on the concentration and composition of the BS proteins was observed (p<0.05). Moreover, the anti-adhesive activity of the BS was found to be positively correlated with its DST. The results suggest that the DST measurement could serve as an efficient method for the clever screening of BSs producer/production condition, and consequently, for the investigation of probiotic features of bacteria, since the anti-adhesive activity is an important criterion of probiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Enzymatic fractionation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus

    USDA-ARS?s Scientific Manuscript database

    The cumulative effect of peptidase and protease activities associated with cells of Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB) was evaluated on the milk-protein based antimicrobial peptides casocidin and isracidin. Reaction mixtures of casocidin or isracidin...

  8. Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus.

    PubMed

    Ricciardi, Annamaria; Parente, Eugenio; Guidone, Angela; Ianniello, Rocco Gerardo; Zotta, Teresa; Abu Sayem, S M; Varcamonti, Mario

    2012-07-02

    Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum are three closely related species which are widespread in food and non-food environments, and are important as starter bacteria or probiotics. In order to evaluate the phenotypic diversity of stress tolerance in the L. plantarum group and the ability to mount an adaptive heat shock response, the survival of exponential and stationary phase and of heat adapted exponential phase cells of six L. plantarum subsp. plantarum, one L. plantarum subsp. argentoratensis, one L. pentosus and two L. paraplantarum strains selected in a previous work upon exposure to oxidative, heat, detergent, starvation and acid stresses was compared to that of the L. plantarum WCFS1 strain. Furthermore, to evaluate the genotypic diversity in stress response genes, ten genes (encoding for chaperones DnaK, GroES and GroEL, regulators CtsR, HrcA and CcpA, ATPases/proteases ClpL, ClpP, ClpX and protease FtsH) were amplified using primers derived from the WCFS1 genome sequence and submitted to restriction with one or two endonucleases. The results were compared by univariate and multivariate statistical methods. In addition, the amplicons for hrcA and ctsR were sequenced and compared by multiple sequence alignment and polymorphism analysis. Although there was evidence of a generalized stress response in the stationary phase, with increase of oxidative, heat, and, to a lesser extent, starvation stress tolerance, and for adaptive heat stress response, with increased tolerance to heat, acid and detergent, different growth phases and adaptation patterns were found. Principal component analysis showed that while heat, acid and detergent stresses respond similarly to growth phase and adaptation, tolerance to oxidative and starvation stresses implies completely unrelated mechanisms. A dendrogram obtained using the data from multilocus restriction typing (MLRT) of stress response genes clearly separated two groups of L

  9. Characterization of Lipoteichoic Acids as Lactobacillus delbrueckii Phage Receptor Components

    PubMed Central

    Räisänen, Liisa; Schubert, Karin; Jaakonsaari, Tiina; Alatossava, Tapani

    2004-01-01

    Lipoteichoic acids (LTAs) were purified from Lactobacillus delbrueckii subsp. lactis ATCC 15808 and its LL-H adsorption-resistant mutant, Ads-5, by hydrophobic interaction chromatography. L. delbrueckii phages (LL-H, the LL-H host range mutant, and JCL1032) were inactivated by these poly(glycerophosphate) type of LTAs in vitro in accordance to their adsorption to intact ATCC 15808 and Ads-5 cells. PMID:15292157

  10. A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use.

    PubMed

    Gregoret, V; Perezlindo, M J; Vinderola, G; Reinheimer, J; Binetti, A

    2013-05-01

    Specific strains should only be regarded as probiotics if they fulfill certain safety, technological and functional criteria. The aim of this work was to study, from a comprehensive point of view (in vitro and in vivo tests), three Lactobacillus strains (Lactobacillus paracasei JP1, Lactobacillus rhamnosus 64 and Lactobacillus gasseri 37) isolated from feces of local newborns, determining some parameters of technological, biological and functional relevance. All strains were able to adequately grow in different economic culture media (cheese whey, buttermilk and milk), which were also suitable as cryoprotectants. As selective media, LP-MRS was more effective than B-MRS for the enumeration of all strains. The strains were resistant to different technological (frozen storage, high salt content) and biological (simulated gastrointestinal digestion after refrigerated storage in acidified milk, bile exposure) challenges. L. rhamnosus 64 and L. gasseri 37, in particular, were sensible to chloramphenicol, erythromycin, streptomycin, tetracycline and vancomycin, increased the phagocytic activity of peritoneal macrophage and induced the proliferation of IgA producing cells in small intestine when administered to mice. Even when clinical trails are still needed, both strains fulfilled the main criteria proposed by FAO/WHO to consider them as potential probiotics for the formulation of new foods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Oral administration of Lactobacillus paracasei NCC 2461 for the modulation of grass pollen allergic rhinitis: a randomized, placebo-controlled study during the pollen season.

    PubMed

    Nembrini, Chiara; Singh, Anurag; De Castro, Carlos Antonio; Mercenier, Annick; Nutten, Sophie

    2015-01-01

    The efficacy of Lactobacillus paracasei NCC 2461 in modulating allergic rhinitis was previously evaluated in two exploratory clinical studies. Oral administration with NCC 2461 reduced specific subjective symptoms following nasal provocation tests with controlled grass pollen allergen concentrations. Our aim was to confirm the anti-allergic effect of NCC 2461 in grass pollen allergic subjects exposed to natural doses of allergens during the pollen season. A double-blind, randomized, placebo-controlled, parallel study was conducted with 131 grass pollen allergic subjects from May to July 2012 in concomitance with the pollen season in Berlin. NCC 2461 or placebo was administered daily for an 8-week period to adult subjects with clinical history of allergic rhinitis to grass pollen, positive skin prick test and IgE to grass pollen. During the 8 weeks, symptoms and quality of life questionnaires were filled out, and plasma was collected for IgE analysis at screening and at the end of the intervention. All subjects were included within a 5-day interval, ensuring exposure to similar air pollen counts for each individual during the trial period. The results obtained show that symptoms increased with pollen loads, confirming a natural exposure to the allergen and presence of pollen-induced allergic rhinitis in the subjects. However, no significant differences were observed in allergic rhinitis symptoms scores, quality of life, or specific IgE levels between subjects receiving NCC 2461 as compared to placebo administration. In contrast to previous findings, oral administration of NCC 2461 did not show a beneficial effect on allergic rhinitis in a field trial. The influence of study design, allergen exposure and intervention window on the efficacy of NCC 2461 in modulating respiratory allergy should be further evaluated.

  12. Identification by 16S rRNA Gene Sequencing of Lactobacillus salivarius Bacteremic Cholecystitis

    PubMed Central

    Woo, Patrick C. Y.; Fung, Ami M. Y.; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2002-01-01

    An anaerobic, nonsporulating, gram-positive bacterium was isolated from blood and bile pus cultures of a 70-year-old man with bacteremic acute cholecystitis. The API 20A system showed that it was 70% Actinomyces naeslundii and 30% Bifidobacterium species, whereas the Vitek ANI system and the ATB ID32A Expression system showed that it was “unidentified.” The 16S rRNA gene of the strain was amplified and sequenced. There were 3 base differences between the nucleotide sequence of the isolate and that of Lactobacillus salivarius subsp. salivarius or L. salivarius subsp. salicinius, indicating that the isolate was a strain of L. salivarius. The patient responded to cholecystectomy and a 2-week course of antibiotic treatment. Identification of the organism in the present study was important because the duration of antibiotic therapy would have been entirely different depending on the organism. If the bacterium had been identified as Actinomyces, penicillin for 6 months would have been the regimen of choice. However, it was Lactobacillus, and a 2-week course of antibiotic was sufficient. PMID:11773128

  13. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  14. Production of succinic Acid from citric Acid and related acids by lactobacillus strains.

    PubMed

    Kaneuchi, C; Seki, M; Komagata, K

    1988-12-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.

  15. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production.

    PubMed

    Huang, Yanna; You, Chunping; Liu, Zhenmin

    2017-07-01

    Lactobacillus delbrueckii subsp. bulgaricus is a heterogenous lactic acid bacterium that converts pyruvate mainly to D-lactic acid using D-lactate dehydrogenases (D-LDHs), whose functional properties remain poorly characterized. Here, the D-LDHs genes (ldb0101, ldb0813, ldb1010, ldb1147 and ldb2021) were cloned and overexpressed in Escherichia coli JM109 from an inducible pUC18 vector, respectively, and the resulting strains were compared in terms of D-lactic acid production. The strain expressing ldb0101 and ldb1010 gene individually produced more D-lactate than other three strains. Further study revealed that Ldb0101 activity was down-regulated by the oxygen and, therefore, achieved a highest titer of D-lactate (1.94 g/L) under anaerobic condition, and introduction of ldb1010 gene enhanced D-lactate formation (0.94 and 0.85 g/L, respectively) both in aerobic and anaerobic conditions due to a relatively stable q d-lactate . Our results suggested that the enzyme Ldb0101 and Ldb1010 played a role of more importance in D-lactate formation. To the best of our knowledge, we demonstrate for the first time the roles of different D-LDH homologs from L. bulgaricus in D-lactic acid production.

  16. NADH Oxidase of Streptococcus thermophilus 1131 is Required for the Effective Yogurt Fermentation with Lactobacillus delbrueckii subsp. bulgaricus 2038

    PubMed Central

    SASAKI, Yasuko; HORIUCHI, Hiroshi; KAWASHIMA, Hiroko; MUKAI, Takao; YAMAMOTO, Yuji

    2014-01-01

    We previously reported that dissolved oxygen (DO) suppresses yogurt fermentation with an industrial starter culture composed of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) 2038 and Streptococcus thermophilus 1131, and also found that reducing the DO in the medium prior to fermentation (deoxygenated fermentation) shortens the fermentation time. In this study, we found that deoxygenated fermentation primarily increased the cell number of S. thermophilus 1131 rather than that of L. bulgaricus 2038, resulting in earlier l-lactate and formate accumulation. Measurement of the DO concentration and hydrogen peroxide generation in the milk medium suggested that DO is mainly removed by S. thermophilus 1131. The results using an H2O-forming NADH oxidase (Nox)-defective mutant of S. thermophilus 1131 revealed that Nox is the major oxygen-consuming enzyme of the bacterium. Yogurt fermentation with the S. thermophilus Δnox mutant and L. bulgaricus 2038 was significantly slower than with S. thermophilus 1131 and L. bulgaricus 2038, and the DO concentrations of the mixed culture did not decrease to less than 2 mg/kg within 3 hr. These observations suggest that Nox of S. thermophilus 1131 contributes greatly to yogurt fermentation, presumably by removing the DO in milk. PMID:24936380

  17. Influence of the addition of Lactobacillus acidophilus La-05, Bifidobacterium animalis subsp. lactis Bb-12 and inulin on the technological, physicochemical, microbiological and sensory features of creamy goat cheese.

    PubMed

    Barbosa, Ilsa C; Oliveira, Maria E G; Madruga, Marta S; Gullón, Beatriz; Pacheco, Maria T B; Gomes, Ana M P; Batista, Ana S M; Pintado, Maria M E; Souza, Evandro L; Queiroga, Rita C R E

    2016-10-12

    The effects of the addition of Lactobacillus acidophilus LA-05, Bifidobacterium animalis subsp. lactis BB-12 and inulin on the quality characteristics of creamy goat cheese during refrigerated storage were evaluated. The manufactured cheeses included the addition of starter culture (Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris - R-704) (CC); starter culture, L. acidophilus LA-05 and inulin (CLA); starter culture, B. lactis BB-12 and inulin (CBB); or starter culture, L. acidophilus LA-05, B. lactis BB-12 and inulin (CLB). In the synbiotic cheeses (CLA, CBB and CLB), the counts of L. acidophilus LA-05 and B. lactis BB-12 were greater than 6log CFU g -1 , the amount of inulin was greater than 6 g per 100 g, and the firmness was reduced. The cheeses evaluated had high brightness values (L*), with a predominance of yellow (b*). CC had higher contents of proteins, lipids and minerals compared to the other cheeses. There was a decrease in the amount of short-chain fatty acids (SCFAs) and an increase of medium-chain (MCFAs) and long-chain fatty acids (LCFAs) in the synbiotic cheeses compared to CC. The amount of conjugated linoleic acid increased in CLA, CBB and CLB. The highest depth of proteolysis and the greatest changes in the release of free amino acids were found in CLB. The addition of inulin and probiotics, alone or in co-culture, did not affect the cheese acceptance. Inulin and probiotics can be used together for the production of creamy goat cheese without negatively affecting the general quality characteristics of the product, and to add value because of its synbiotic potential.

  18. Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum.

    PubMed Central

    Dupont, L; Boizet-Bonhoure, B; Coddeville, M; Auvray, F; Ritzenthaler, P

    1995-01-01

    Temperate phage mv4 integrates its DNA into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus strains via site-specific recombination. Nucleotide sequencing of a 2.2-kb attP-containing phage fragment revealed the presence of four open reading frames. The larger open reading frame, close to the attP site, encoded a 427-amino-acid polypeptide with similarity in its C-terminal domain to site-specific recombinases of the integrase family. Comparison of the sequences of attP, bacterial attachment site attB, and host-phage junctions attL and attR identified a 17-bp common core sequence, where strand exchange occurs during recombination. Analysis of the attB sequence indicated that the core region overlaps the 3' end of a tRNA(Ser) gene. Phage mv4 DNA integration into the tRNA(Ser) gene preserved an intact tRNA(Ser) gene at the attL site. An integration vector based on the mv4 attP site and int gene was constructed. This vector transforms a heterologous host, L. plantarum, through site-specific integration into the tRNA(Ser) gene of the genome and will be useful for development of an efficient integration system for a number of additional bacterial species in which an identical tRNA gene is present. PMID:7836291

  19. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli

    PubMed Central

    Abedi, D.; Feizizadeh, S.; Akbari, V.; Jafarian-Dehkordi, A.

    2013-01-01

    Considering the emergence of antibiotic resistance, scientists are interested in using new antimicrobial agents in the treatment of infectious diseases including infections of the enteric systems. Lactic acid bacteria have the great potential to produce antimicrobial compounds that inhibit and control pathogenic bacteria. The aim of this study was to determine the anti-bacterial and anti-adherence properties of Lactobacillus delbrueckii subsp bulgaricus against Escherichia coli. The antibacterial activity of L. delbrueckii was investigated using disc diffusion and spot on lawn methods. In vitro anti-adhesion effect of L. delbrueckii against E. coli was examined using Caco-2 cells. In anti-adhesion assay, three competition conditions including competitive inhibition, adhesion inhibition, and displacement were examined. In spot on lawn method the zone of growth inhibition of E. coli by L. delbrueckii was 21.1 mm. The cell free supernatant of L. delbrueckii showed a good antibacterial activity against E. coli which was mainly related to lactic acid produced by L. delbrueckii. When two bacteria added simultaneously (competitive inhibition) degree of inhibition of E. coli binding by L. delbrueckii was 77%. In adhesion inhibition assay, L. delbrueckii was able to exclude E. coli adherence by around 43.5%. Displacement assay showed that L. delbrueckii had strong displacement ability toward E. coli and reduction of E. coli attachment by bound L. delbrueckii was 81.3%. The results suggest that L. delbrueckii may be able to inhibit E. coli infection in the gut; however more studies including in vivo studies need to be performed. PMID:24082895

  20. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli.

    PubMed

    Abedi, D; Feizizadeh, S; Akbari, V; Jafarian-Dehkordi, A

    2013-10-01

    Considering the emergence of antibiotic resistance, scientists are interested in using new antimicrobial agents in the treatment of infectious diseases including infections of the enteric systems. Lactic acid bacteria have the great potential to produce antimicrobial compounds that inhibit and control pathogenic bacteria. The aim of this study was to determine the anti-bacterial and anti-adherence properties of Lactobacillus delbrueckii subsp bulgaricus against Escherichia coli. The antibacterial activity of L. delbrueckii was investigated using disc diffusion and spot on lawn methods. In vitro anti-adhesion effect of L. delbrueckii against E. coli was examined using Caco-2 cells. In anti-adhesion assay, three competition conditions including competitive inhibition, adhesion inhibition, and displacement were examined. In spot on lawn method the zone of growth inhibition of E. coli by L. delbrueckii was 21.1 mm. The cell free supernatant of L. delbrueckii showed a good antibacterial activity against E. coli which was mainly related to lactic acid produced by L. delbrueckii. When two bacteria added simultaneously (competitive inhibition) degree of inhibition of E. coli binding by L. delbrueckii was 77%. In adhesion inhibition assay, L. delbrueckii was able to exclude E. coli adherence by around 43.5%. Displacement assay showed that L. delbrueckii had strong displacement ability toward E. coli and reduction of E. coli attachment by bound L. delbrueckii was 81.3%. The results suggest that L. delbrueckii may be able to inhibit E. coli infection in the gut; however more studies including in vivo studies need to be performed.

  1. Eradication of Helicobacter pylori infection by the probiotic strains Lactobacillus johnsonii MH-68 and L. salivarius ssp. salicinius AP-32.

    PubMed

    Hsieh, Pei-Shan; Tsai, Yi-Chun; Chen, Yi-Chun; Teh, Su-Fen; Ou, Chung-Mou; King, V An-Erl

    2012-12-01

    The current therapy for Helicobacter pylori infection includes antimicrobial agents and proton pump inhibitors. We have examined the ability of Lactobacillus spp. to inhibit H. pylori infection. Probiotic strains isolated from samples of adult feces, infant feces, breast milk, and vaginal swab collected from healthy volunteers in Taiwan and commercially available strains were screened for antagonism toward H. pylori. Inhibition liquid culture assay was used to screen potential anti-H. pylori activity. Then, we performed agar plate inhibition assay, and assays to determine the capacity of probiotics for adhesion, and inhibition and killing of H. pylori, and measured the levels of IL-8 and IL-10. Using animal models, we studied regulation of gastric acid and histopathological changes accompanying anti-H. pylori activity. We found that six of the tested strains suppressed urease activity of H. pylori: Lactobacillus acidophilus TYCA08, L. acidophilus TYCA15, L. johnsonii MH-68, and L. salivarius subsp. salicinius AP-32 were more effective than the others. In vivo, L. johnsonii MH-68 and L. salivarius subsp. salicinius AP-32 alone or in combination, reduced the H. pylori load in the gastric mucosa, and also reduced inflammatory chemokine expression and lymphocyte infiltration. Lactobacillus johnsonii MH-68 and L. salivarius subsp. salicinius AP-32 effectively suppress H. pylori viability, and when used as probiotics, they may help decrease the occurrence of gastritis, and even reduce the risk of H. pylori infection. © 2012 Blackwell Publishing Ltd.

  2. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice.

    PubMed

    Kwaw, Emmanuel; Ma, Yongkun; Tchabo, William; Apaliya, Maurice Tibiru; Wu, Meng; Sackey, Augustina Sackle; Xiao, Lulu; Tahir, Haroon Elrasheid

    2018-06-01

    This study was conducted to investigate the effect of lactic acid bacteria (LAB) strains on color properties, phenolic profile and antioxidant activities of mulberry juice. Mulberry juice was separately fermented at 37 °C for 36 h using Lactobacillus plantarum, Lactobacillus acidophilus and Lactobacillus paracasei. The results showed that lactic acid fermentation impacted on the color of the juice. Moreover, the study demonstrated that LABs impacted on the phenolic profile of the juice. Syringic acid, cyanidin-3-O-rutinoside and quercetin were the predominant phenolic acid, anthocyanin and flavonol respectively in the lactic-acid-fermented mulberry juice. The degree of radical scavenging activity was species-specific with the L. plantarum fermented juice having the highest radical scavenging activities. The correlation analysis demonstrated that flavonols and anthocyanins were mostly responsible for the increased in 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity while phenolic acids and flavonols were responsible for 2,2-diphenyl-1-picrylhydrazyl scavenging activity and reducing power capacity of the fermented juice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. In vitro probiotic characterization of Lactobacillus strains from fermented radish and their anti-adherence activity against enteric pathogens.

    PubMed

    Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2015-11-01

    In this study, we evaluated the probiotic properties of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus fermentum strains isolated from fermented radish. All the strains survived the simulated oro-gastrointestinal transit condition and showed significantly higher adherence to Caco-2 cells compared with the probiotic strain Lactobacillus rhamnosus GG. The strains showed broad-spectrum antimicrobial activity, autoaggregation, and coaggregation capacity with pathogens. Furthermore, the Lactobacillus strains inhibited the adherence of Yersinia enterocolitica subsp. enterocolitica, Shigella boydii, and Salmonella choleraesuis to the Caco-2 cell line. The strains possessed bile salt hydrolase activity and their cholesterol-lowering activity in vitro was above 50% in the presence of bile. Strains of L. plantarum and L. pentosus possessed the plantaricin-encoding plnEF gene. In addition, the Lactobacillus strains maintained about 80% cell viability after freeze-drying in the presence of a combination of 5% skim milk and 5% maltodextrin as cryoprotectant, and 70% recovery of cell viability was observed in the absence of any cryoprotectant.

  4. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt.

    PubMed

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage.

  5. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    PubMed Central

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  6. Dissecting the taxonomic heterogeneity within Propionibacterium acnes: proposal for Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov.

    PubMed

    Dekio, Itaru; Culak, Renata; Misra, Raju; Gaulton, Tom; Fang, Min; Sakamoto, Mitsuo; Ohkuma, Moriya; Oshima, Kenshiro; Hattori, Masahira; Klenk, Hans-Peter; Rajendram, Dunstan; Gharbia, Saheer E; Shah, Haroun N

    2015-12-01

    Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov. are described. These emanate from the three known phylotypes of P. acnes, designated types I, II and III. Electron microscopy confirmed the filamentous cell shape of type III, showing a striking difference from types I/II, which were short rods. Biochemical tests indicated that, in types I/II, either the pyruvate, l-pyrrolidonyl arylamidase or d-ribose 2 test was positive, whereas all of these were negative among type III strains. Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectra, which profile mainly their ribosomal proteins, were different between these two groups. Surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) spectra of all phylotypes revealed a specific protein biomarker that was overexpressed in type III strains compared with types I/II only when grown aerobically. Reference strains had high whole-genome similarity between types I (>91 %) and II (>75 %), but a considerably lower level of 72 % similarity with type III. recA and gyrB sequence dendrograms confirmed the distant relatedness of type III, indicating the presence of two distinct centres of variation within the species P. acnes. On the other hand, cellular fatty acid profiles and 16S rRNA gene sequence relatedness (>99.3 %) circumscribed the species. Thus, we propose two subspecies, Propionibacterium acnes subsp. acnes subsp. nov. for types I/II and Propionibacterium acnes subsp. elongatum subsp. nov. for type III. The type strain of Propionibacterium acnes subsp. acnes is NCTC 737T ( = ATCC 6919T = JCM 6425T = DSM 1897T = CCUG 1794T), while the type strain of Propionibacterium acnes subsp. elongatum is K124T ( = NCTC 13655T = JCM 18919T).

  7. Application of culture-dependent and culture-independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains.

    PubMed

    Hamet, Maria Fernanda; Londero, Alejandra; Medrano, Micaela; Vercammen, Elisabeth; Van Hoorde, Koenraad; Garrote, Graciela L; Huys, Geert; Vandamme, Peter; Abraham, Analía G

    2013-12-01

    The biological and technological characteristics of kefiran as well as its importance in grain integrity led us to analyze the microbial kefir grain consortium with focus on Lactobacillus kefiranofaciens. The presence of L. kefiranofaciens in the nine kefir grains studied was demonstrated by denaturing gradient gel electrophoresis. By culture dependent methods applying a methodology focused on the search of this species, 22 isolates with typical morphology were obtained and identified applying a combination of SDS-PAGE of whole cell proteins, (GTG)5-PCR and sequence analysis of the housekeeping gene encoding the α-subunit of bacterial phenylalanyl-tRNA synthase (pheS). This polyphasic approach allowed the reliable identification of 11 L. kefiranofaciens, 5 Lactobacillus paracasei, 4 Lactobacillus kefiri and 2 Lactobacillus parakefiri isolates. Isolated L. kefiranofaciens strains produced polysaccharide in strain-dependent concentrations and EPS produced by them also differed in the degree of polymerization. The isolation and accurate identification of L. kefiranofaciens is relevant taking into account the important role of this microorganism in the grain ecosystem as well as its potential application as starter in food fermentations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the "gastric barrier effect" in patients chronically treated with PPI: a pilot study.

    PubMed

    Del Piano, Mario; Anderloni, Andrea; Balzarini, Marco; Ballarè, Marco; Carmagnola, Stefania; Montino, Franco; Orsello, Marco; Pagliarulo, Michela; Tari, Roberto; Soattini, Liliana; Sforza, Filomena; Mogna, Luca; Mogna, Giovanni

    2012-10-01

    LPS01 (DSM 21980), Lactobacillus plantarum LP01 (LMG P-21021), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106) were administered for 10 days to 10 subjects treated with PPIs for >12 months (group B). In the 60 mg formulation, N-acetylcysteine was included as well in light of its well-known mechanical effects on bacterial biofilms. Gastroscopies were performed at the beginning of the study (d0) in all the groups (A, B, C, and D) and after 10 days (d10) in group B only; that is, at the end of probiotics intake. The total viable cells and total Lactobacillus were quantified in gastric juice and duodenal brushing material from all subjects. The results were compared among all the groups and with the control subjects (group D) to confirm the bacterial overgrowth. A comparison was made also between d0 and d10 in group B to quantify the efficacy of the 4 probiotics administered for 10 days. Fecal samples were collected from all groups at d0, including subjects not treated with PPIs, and in group B only at d10. Specific bacterial classes, namely enterococci, total coliforms, E. coli, molds, and yeasts were quantified in all fecal specimens. The results collected confirmed the strong bacterial overgrowth in the stomach and duodenum of people treated with PPIs compared with subjects with a normal intragastric acidity. It is also worth noting that the bacterial cell counts in subjects who underwent a long-term treatment with a PPI were greater than the results from subjects taking these drugs for 3 to 12 months. The intake of 4 specific probiotic strains with a marked antagonistic activity towards 5 E. coli bacteria, including the enterohaemorrhagic O157:H7 strain, and an effective amount of N-acetylcysteine (NAC) was able to significantly reduce bacterial overgrowth in long-term PPI-treated subjects. Total lactobacilli represented the major percentage of bacterial counts, thus demonstrating the ability of such bacteria to colonize the stomach and the duodenum

  9. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    PubMed Central

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  10. In Vitro Characterization of Lactobacillus Strains Isolated from Fruit Processing By-Products as Potential Probiotics.

    PubMed

    de Albuquerque, Thatyane Mariano Rodrigues; Garcia, Estefânia Fernandes; de Oliveira Araújo, Amanda; Magnani, Marciane; Saarela, Maria; de Souza, Evandro Leite

    2017-08-23

    Nine wild Lactobacillus strains, namely Lactobacillus plantarum 53, Lactobacillus fermentum 56, L. fermentum 60, Lactobacillus paracasei 106, L. fermentum 250, L. fermentum 263, L. fermentum 139, L. fermentum 141, and L. fermentum 296, isolated from fruit processing by-products were evaluated in vitro for a series of safety, physiological functionality, and technological properties that could enable their use as probiotics. Considering the safety aspects, the resistance to antibiotics varied among the examined strains, and none of the strains presented hemolytic and mucinolytic activity. Regarding the physiological functionality properties, none of the strains were able to deconjugate bile salts; all of them presented low to moderate cell hydrophobicity and were able to autoaggregate, coaggregate with Listeria monocytogenes and Escherichia coli, and antagonize pathogenic bacteria. Exposure to pH 2 sharply decreased the survival of the examined strains after 1- or 2-h exposure; variable decreases were noted after 3-h exposure to pH 3. Overall, exposure to pH 5 and to bile salts (0.15, 0.3, and 1%) did not decrease the strains' survival. Examined strains presented better ability to survive from the exposure to simulated gastrointestinal conditions in laboratorial media and milk than in grape juice. Considering the technological properties, all the strains were positive for proteolytic activity and EPS and diacetyl production, and most of them had good tolerance to 1-4% NaCl. These results indicate that wild Lactobacillus strains isolated from fruit processing by-products could present performance compatible with probiotic properties and technological features that enable the development of probiotic foods with distinct characteristics.

  11. Clinical characteristics of bacteraemia caused by Lactobacillus spp. and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2000-2014.

    PubMed

    Lee, Meng-Rui; Tsai, Chia-Jung; Liang, Sheng-Kai; Lin, Ching-Kai; Huang, Yu-Tsung; Hsueh, Po-Ren

    2015-10-01

    The clinical characteristics of 89 patients with Lactobacillus bacteraemia treated at a university-affiliated hospital in northern Taiwan during 2000-2014 were retrospectively evaluated. Lactobacillus spp. were identified by 16S rRNA sequencing analysis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antimicrobial susceptibilities of the isolates were determined by broth microdilution. The most commonly isolated species was Lactobacillus salivarius (n = 21), followed by Lactobacillus paracasei (n = 16) and Lactobacillus fermentum (n = 13). Excluding three isolates with lower 16S rRNA sequence similarity, MALDI-TOF/MS provided correct identification for 84.9% (73/86) of Lactobacillus isolates. Concordant identification was lowest for Lactobacillus casei (11%). The main infection foci were intra-abdominal infection (49%) and catheter-related bloodstream infection (17%). Only one-half of the patients received adequate antibiotic treatment during the bacteraemic episode. The majority of patients with Lactobacillus bacteraemia were immunocompromised. The 7-day and in-hospital mortality rates were 21% and 62%, respectively, and underlying malignancy was associated with a higher in-hospital mortality rate (odds ratio = 2.666). There were no significant differences in mortality (7-day, 14-day, 30-day and in-hospital) among patients with bacteraemia due to different Lactobacillus spp. Minimum inhibitory concentrations were highest for glycopeptides, cephalosporins and fluoroquinolones and were lowest for carbapenems and aminopenicillins. Lactobacillus bacteraemia was associated with a high mortality rate, and patient outcome was associated with underlying malignancy. MALDI-TOF/MS was able to accurately identify 84.9% of the Lactobacillus isolates, and L. salivarius was the predominant pathogen. The accuracy rate for identification of Lactobacillus spp. by MALDI-TOF/MS was lowest for L. casei. Copyright © 2015 Elsevier B

  12. Absolute Enumeration of Probiotic Strains Lactobacillus acidophilus NCFM® and Bifidobacterium animalis subsp. lactis Bl-04 ® via Chip-Based Digital PCR.

    PubMed

    Hansen, Sarah J Z; Morovic, Wesley; DeMeules, Martha; Stahl, Buffy; Sindelar, Connie W

    2018-01-01

    The current standard for enumeration of probiotics to obtain colony forming units by plate counts has several drawbacks: long time to results, high variability and the inability to discern between bacterial strains. Accurate probiotic cell counts are important to confirm the delivery of a clinically documented dose for its associated health benefits. A method is described using chip-based digital PCR (cdPCR) to enumerate Bifidobacterium animalis subsp. lactis Bl-04 and Lactobacillus acidophilus NCFM both as single strains and in combination. Primers and probes were designed to differentiate the target strains against other strains of the same species using known single copy, genetic differences. The assay was optimized to include propidium monoazide pre-treatment to prevent amplification of DNA associated with dead probiotic cells as well as liberation of DNA from cells with intact membranes using bead beating. The resulting assay was able to successfully enumerate each strain whether alone or in multiplex. The cdPCR method had a 4 and 5% relative standard deviation (RSD) for Bl-04 and NCFM, respectively, making it more precise than plate counts with an industry accepted RSD of 15%. cdPCR has the potential to replace traditional plate counts because of its precision, strain specificity and the ability to obtain results in a matter of hours.

  13. Manufacture of Fior di Latte cheese by incorporation of probiotic lactobacilli.

    PubMed

    Minervini, F; Siragusa, S; Faccia, M; Dal Bello, F; Gobbetti, M; De Angelis, M

    2012-02-01

    This work aimed to select heat-resistant probiotic lactobacilli to be added to Fior di Latte (high-moisture cow milk Mozzarella) cheese. First, 18 probiotic strains belonging to Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus reuteri were screened. Resistance to heating (65 or 55°C for 10 min) varied markedly between strains. Adaptation at 42°C for 10 min increased the heat resistance at 55°C for 10 min of all probiotic lactobacilli. Heat-adapted L. delbrueckii ssp. bulgaricus SP5 (decimal reduction time at 55°C of 227.4 min) and L. paracasei BGP1 (decimal reduction time at 55°C of 40.8 min) showed the highest survival under heat conditions that mimicked the stretching of the curd and were used for the manufacture of Fior di Latte cheese. Two technology options were chosen: chemical (addition of lactic acid to milk) or biological (Streptococcus thermophilus as starter culture) acidification with or without addition of probiotics. As determined by random amplified polymorphic DNA-PCR and 16S rRNA gene analyses, the cell density of L. delbrueckii ssp. bulgaricus SP5 and L. paracasei BGP1 in chemically or biologically acidified Fior di Latte cheese was approximately 8.0 log(10)cfu/g. Microbiological, compositional, biochemical, and sensory analyses (panel test by 30 untrained judges) showed that the use of L. delbrueckii ssp. bulgaricus SP5 and L. paracasei BGP1 enhanced flavor formation and shelf-life of Fior di Latte cheeses. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effect of milk fermentation by kefir grains and selected single strains of lactic acid bacteria on the survival of Mycobacterium bovis BCG.

    PubMed

    Macuamule, C L S; Wiid, I J; van Helden, P D; Tanner, M; Witthuhn, R C

    2016-01-18

    Mycobacterium bovis that causes Bovine tuberculosis (BTB) can be transmitted to humans thought consumption of raw and raw fermented milk products from diseased animals. Lactic acid bacteria (LAB) used in popular traditional milk products in Africa produce anti-microbial compounds that inhibit some pathogenic and spoilage bacteria. M. bovis BCG is an attenuated non-pathogenic vaccine strain of M. bovis and the aim of the study was to determine the effect of the fermentation process on the survival of M. bovis BCG in milk. M. bovis BCG at concentrations of 6 log CFU/ml was added to products of kefir fermentation. The survival of M. bovis BCG was monitored at 12-h intervals for 72 h by enumerating viable cells on Middlebrook 7H10 agar plates enriched with 2% BD BACTEC PANTA™. M. bovis BCG was increasingly reduced in sterile kefir that was fermented for a period of 24h and longer. In the milk fermented with kefir grains, Lactobacillus paracasei subsp. paracasei or Lactobacillus casei, the viability of M. bovis BCG was reduced by 0.4 logs after 24h and by 2 logs after 48 h of fermentation. No viable M. bovis BCG was detected after 60 h of fermentation. Results from this study show that long term fermentation under certain conditions may have the potential to inactivate M. bovis BCG present in the milk. However, to ensure safety of fermented milk in Africa, fermentation should be combined with other hurdle technologies such as boiling and milk pasteurisation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Characterization of a lactose-responsive promoter of ATP-binding cassette (ABC) transporter gene from Lactobacillus acidophilus 05-172.

    PubMed

    Zeng, Zhu; Zuo, Fanglei; Yu, Rui; Zhang, Bo; Ma, Huiqin; Chen, Shangwu

    2017-09-01

    A novel lactose-responsive promoter of the ATP-binding cassette (ABC) transporter gene Lba1680 of Lactobacillus acidophilus strain 05-172 isolated from a traditionally fermented dairy product koumiss was characterized. In L. acidophilus 05-172, expression of Lba1680 was induced by lactose, with lactose-induced transcription of Lba1680 being 6.1-fold higher than that induced by glucose. This is in contrast to L. acidophilus NCFM, a strain isolated from human feces, in which expression of Lba1680 and Lba1679 is induced by glucose. Both gene expression and enzyme activity assays in L. paracasei transformed with a vector containing the inducible Lba1680 promoter (PLba1680) of strain 05-172 and a heme-dependent catalase gene as reporter confirmed that PLba1680 is specifically induced by lactose. Its regulatory expression could not be repressed by glucose, and was independent of cAMP receptor protein. This lactose-responsive promoter might be used in the expression of functional genes in L. paracasei incorporated into a lactose-rich environment, such as dairy products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains

    PubMed Central

    Garcia, Estefânia F.; Luciano, Winnie A.; Xavier, Danilo E.; da Costa, Whyara C. A.; de Sousa Oliveira, Kleber; Franco, Octávio L.; de Morais Júnior, Marcos A.; Lucena, Brígida T. L.; Picão, Renata C.; Magnani, Marciane; Saarela, Maria; de Souza, Evandro L.

    2016-01-01

    This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains. PMID:27625647

  17. Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce D(-)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens.

    PubMed

    de Oliveira Moraes, Anelize; Ramirez, Ninoska Isabel Bojorge; Pereira, Nei

    2016-12-01

    Lactic acid is widely used in chemical, pharmaceutical, cosmetic, and food industries, besides it is the building block to produce polylactic acid, which is a sustainable alternative biopolymer to synthetic plastic due to its biodegradability. Aiming at producing an optically pure isomer, the present work evaluated the potential of pulp mill residue as feedstock to produce D(-)-lactic acid by a strain of the bacterium Lactobacillus coryniformis subsp. torquens using separate hydrolysis and fermentation process. Enzymatic hydrolysis, optimized through response surface methodology for 1 g:4 mL solid/liquid ratio and 24.8 FPU/g cellulose enzyme loading, resulted in 140 g L -1 total reducing sugar and 110 g L -1 glucose after 48 h, leading to 61 % of efficiency. In instrumented bioreactor, 57 g L -1 of D(-)-lactic acid was achieved in 20 h of fermentation, while only 0.5 g L -1 of L(+)-lactic acid was generated. Furthermore, product yield of 0.97 g/g and volumetric productivity of 2.8 g L -1  h -1 were obtained.

  18. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity

    PubMed Central

    Li, Bailiang; Jin, Da; Yu, Shangfu; Etareri Evivie, Smith; Muhammad, Zafarullah; Huo, Guicheng; Liu, Fei

    2017-01-01

    Lead (Pb) is a toxic contaminating heavy metal that can cause a variety of hazardous effects to both humans and animals. In the present study, Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 (L. bulgaricus KLDS1.0207), which has a remarkable Pb binding capacity and Pb tolerance, was selected for further study. It was observed that the thermodynamic and kinetic model of L. bulgaricus KLDS1.0207 Pb binding respectively fit with the Langmuir–Freundlich model and the pseudo second-order kinetic model. Scanning electron microscopy and energy dispersive spectroscopy analysis disclosed that the cell surfaces were covered with Pb and that carbon and oxygen elements were chiefly involved in Pb binding. Combined with Fourier transform infrared spectroscopy analysis, it was revealed that the carboxyl, phosphoryl, hydroxyl, amino and amide groups were the main functional groups involved in the Pb adsorption. The protective effects of L. bulgaricus KLDS1.0207 against acute Pb toxicity in mice was evaluated by prevention and therapy groups, the results in vivo showed that L. bulgaricus KLDS1.0207 treatment could reduce mortality rates, effectively increase Pb levels in the feces, alleviate tissue Pb enrichment, improve the antioxidant index in the liver and kidney, and relieve renal pathological damage. Our findings show that L. bulgaricus KLDS1.0207 can be used as a potential probiotic against acute Pb toxicity. PMID:28786945

  19. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity.

    PubMed

    Li, Bailiang; Jin, Da; Yu, Shangfu; Etareri Evivie, Smith; Muhammad, Zafarullah; Huo, Guicheng; Liu, Fei

    2017-08-08

    Lead (Pb) is a toxic contaminating heavy metal that can cause a variety of hazardous effects to both humans and animals. In the present study, Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 ( L. bulgaricus KLDS1.0207), which has a remarkable Pb binding capacity and Pb tolerance, was selected for further study. It was observed that the thermodynamic and kinetic model of L. bulgaricus KLDS1.0207 Pb binding respectively fit with the Langmuir-Freundlich model and the pseudo second-order kinetic model. Scanning electron microscopy and energy dispersive spectroscopy analysis disclosed that the cell surfaces were covered with Pb and that carbon and oxygen elements were chiefly involved in Pb binding. Combined with Fourier transform infrared spectroscopy analysis, it was revealed that the carboxyl, phosphoryl, hydroxyl, amino and amide groups were the main functional groups involved in the Pb adsorption. The protective effects of L. bulgaricus KLDS1.0207 against acute Pb toxicity in mice was evaluated by prevention and therapy groups, the results in vivo showed that L. bulgaricus KLDS1.0207 treatment could reduce mortality rates, effectively increase Pb levels in the feces, alleviate tissue Pb enrichment, improve the antioxidant index in the liver and kidney, and relieve renal pathological damage. Our findings show that L. bulgaricus KLDS1.0207 can be used as a potential probiotic against acute Pb toxicity.

  20. Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice.

    PubMed

    Tzang, Bor-Show; Liu, Chung-Hsien; Hsu, Kuo-Ching; Chen, Yi-Hsing; Huang, Chih-Yang; Hsu, Tsai-Ching

    2017-09-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterised by a dysregulation of the immune system, which causes inflammation responses, excessive oxidative stress and a reduction in the number of cluster of differentiation (CD)4+CD25+forkhead box P3 (FoxP3)+ T cells. Supplementation with certain Lactobacillus strains has been suggested to be beneficial in the comprehensive treatment of SLE. However, little is known about the effect and mechanism of certain Lactobacillus strains on SLE. To investigate the effects of Lactobacillus on SLE, NZB/W F1 mice were orally gavaged with Lactobacillus paracasei GMNL-32 (GMNL-32), Lactobacillus reuteri GMNL-89 (GMNL-89) and L. reuteri GMNL-263 (GMNL-263). Supplementation with GMNL-32, GMNL-89 and GMNL-263 significantly increased antioxidant activity, reduced IL-6 and TNF-α levels and significantly decreased the toll-like receptors/myeloid differentiation primary response gene 88 signalling in NZB/W F1 mice. Notably, supplementation with GMNL-263, but not GMNL-32 and GMNL-89, in NZB/W F1 mice significantly increased the differentiation of CD4+CD25+FoxP3+ T cells. These findings reveal beneficial effects of GMNL-32, GMNL-89 and GMNL-263 on NZB/W F1 mice and suggest that these specific Lactobacillus strains can be used as part of a comprehensive treatment of SLE patients.

  1. Biophysical characterization of the Lactobacillus delbrueckii subsp. bulgaricus membrane during cold and osmotic stress and its relevance for cryopreservation.

    PubMed

    Meneghel, Julie; Passot, Stéphanie; Dupont, Sébastien; Fonseca, Fernanda

    2017-02-01

    Freezing lactic acid bacteria often leads to cell death and loss of technological properties. Our objective was to provide an in-depth characterization of the biophysical properties of the Lactobacillus delbrueckii subsp. bulgaricus membrane in relation to its freeze resistance. Freezing was represented as a combination of cold and osmotic stress. This work investigated the relative incidence of increasing sucrose concentrations coupled or not with subzero temperatures without ice nucleation on the biological and biophysical responses of two strains with different membrane fatty acid compositions and freeze resistances. Following exposure of bacterial cells to the highest sucrose concentration, the sensitive strain exhibited a survival rate of less than 10 % and 5 h of acidifying activity loss. Similar biological activity losses were observed upon freeze-thawing and after osmotic treatment for each strain thus highlighting osmotic stress as the main source of cryoinjury. The direct measurement of membrane fluidity by fluorescence anisotropy was linked to membrane lipid organization characterized by FTIR spectroscopy. Both approaches made it possible to investigate the specific contributions of the membrane core and the bilayer external surface to cell degradation caused by cold and osmotic stress. Cold-induced membrane rigidification had no significant implication on bacterial freeze-thaw resistance. Interactions between extracellular sucrose and membrane phospholipid headgroups under osmotic stress were also observed. Such interactions were more evident in the sensitive strain and when increasing sucrose concentration, thus suggesting membrane permeabilization. The relevance of biophysical properties for elucidating mechanisms of cryoinjury and cryoprotection is discussed.

  2. Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay.

    PubMed

    Bottari, Benedetta; Felis, Giovanna E; Salvetti, Elisa; Castioni, Anna; Campedelli, Ilenia; Torriani, Sandra; Bernini, Valentina; Gatti, Monica

    2017-07-01

    Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.

  3. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4.

    PubMed Central

    Auvray, F; Coddeville, M; Ritzenthaler, P; Dupont, L

    1997-01-01

    Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction. PMID:9068626

  4. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria.

    PubMed

    Yang, En; Fan, Lihua; Yan, Jinping; Jiang, Yueming; Doucette, Craig; Fillmore, Sherry; Walker, Bradley

    2018-01-24

    There has been continued interest in bacteriocins research from an applied perspective as bacteriocins have potential to be used as natural preservative. Four bacteriocinogenic lactic acid bacteria (LAB) strains of Lactobacillus curvatus (Arla-10), Enterococcus faecium (JFR-1), Lactobacillus paracasei subsp. paracasei (JFR-5) and Streptococcus thermophilus (TSB-8) were previously isolated and identified in our lab. The objective of this study was to determine the optimal growth conditions for both LAB growth and bacteriocins production. In this study, various growth conditions including culture media (MRS and BHI), initial pH of culture media (4.5, 5.5, 6.2, 7.4 and 8.5), and incubation temperatures (20, 37 and 44 °C) were investigated for LAB growth measured as optical density (OD), bacteriocin activity determined as arbitrary unit and viability of LAB expressed as log CFU ml -1 . Growth curves of the bacteriocinogenic LAB were generated using a Bioscreen C. Our results indicated that Arla-10, JFR-1, and JFR-5 strains grew well on both MRS and BHI media at growth temperature tested whereas TSB-8 strain, unable to grow at 20 °C. LAB growth was significantly affected by the initial pH of culture media (p < 0.001) and the optimal pH was found ranging from 6.2 to 8.5. Bacteriocin activity was significantly different in MRS versus BHI (p < 0.001), and the optimal condition for LAB to produce bacteriocins was determined in MRS broth, pH 6.2 at 37 °C. This study provides useful information on potential application of bacteriocinogenic LAB in food fermentation processes.

  5. Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats.

    PubMed

    Han, Xufeng; Wang, Lei; Li, Wei; Li, Bibo; Yang, Yuxin; Yan, Hailong; Qu, Lei; Chen, Yulin

    2015-01-01

    The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.

  6. Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles.

    PubMed

    Fitzgerald, Collette; Tu, Zheng Chao; Patrick, Mary; Stiles, Tracy; Lawson, Andy J; Santovenia, Monica; Gilbert, Maarten J; van Bergen, Marcel; Joyce, Kevin; Pruckler, Janet; Stroika, Steven; Duim, Birgitta; Miller, William G; Loparev, Vladimir; Sinnige, Jan C; Fields, Patricia I; Tauxe, Robert V; Blaser, Martin J; Wagenaar, Jaap A

    2014-09-01

    A polyphasic study was undertaken to determine the taxonomic position of 13 Campylobacter fetus-like strains from humans (n = 8) and reptiles (n = 5). The results of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS and genomic data from sap analysis, 16S rRNA gene and hsp60 sequence comparison, pulsed-field gel electrophoresis, amplified fragment length polymorphism analysis, DNA-DNA hybridization and whole genome sequencing demonstrated that these strains are closely related to C. fetus but clearly differentiated from recognized subspecies of C. fetus. Therefore, this unique cluster of 13 strains represents a novel subspecies within the species C. fetus, for which the name Campylobacter fetus subsp. testudinum subsp. nov. is proposed, with strain 03-427(T) ( = ATCC BAA-2539(T) = LMG 27499(T)) as the type strain. Although this novel taxon could not be differentiated from C. fetus subsp. fetus and C. fetus subsp. venerealis using conventional phenotypic tests, MALDI-TOF MS revealed the presence of multiple phenotypic biomarkers which distinguish Campylobacter fetus subsp. testudinum subsp. nov. from recognized subspecies of C. fetus.

  7. Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.

    PubMed

    Usui, Yuki; Kimura, Yasumasa; Satoh, Takeshi; Takemura, Naoki; Ouchi, Yasuo; Ohmiya, Hiroko; Kobayashi, Kyosuke; Suzuki, Hiromi; Koyama, Satomi; Hagiwara, Satoko; Tanaka, Hirotoshi; Imoto, Seiya; Eberl, Gérard; Asami, Yukio; Fujimoto, Kosuke; Uematsu, Satoshi

    2018-05-15

    The gut is an extremely complicated ecosystem where microorganisms, nutrients and host cells interact vigorously. Although the function of the intestine and its barrier system weakens with age, some probiotics can potentially prevent age-related intestinal dysfunction. Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, which are the constituents of LB81 yogurt, are representative probiotics. However, it is unclear whether their long-term intake has a beneficial influence on systemic function. Here, we examined the gut microbiome, fecal metabolites and gene expression profiles of various organs in mice. Although age-related alterations were apparent in them, long-term LB81 yogurt intake led to an increased Bacteroidetes to Firmicutes ratio and elevated abundance of the bacterial family S24-7 (Bacteroidetes), which is known to be associated with butyrate and propanoate production. According to our fecal metabolite analysis to detect enrichment, long-term LB81 yogurt intake altered the intestinal metabolic pathways associated with propanoate and butanoate in the mice. Gene ontology analysis also revealed that long-term LB81 yogurt intake influenced many physiological functions related to the defense response. The profiles of various genes associated with antimicrobial peptides-, tight junctions-, adherens junctions- and mucus-associated intestinal barrier functions were also drastically altered in the LB81 yogurt-fed mice. Thus, long-term intake of LB81 yogurt has the potential to maintain systemic homeostasis, such as the gut barrier function, by controlling the intestinal microbiome and its metabolites.

  8. Genetic Variation of pln Loci Among Probiotic Lactobacillus plantarum Group Strains with Antioxidant and Cholesterol-Lowering Ability.

    PubMed

    Devi, Sundru Manjulata; Halami, Prakash M

    2017-10-13

    In the present study, 14 different plantaricin-encoding genes of pln loci were studied and compared to available sequences from public domain database of probiotic Lactobacillus plantarum strains. Based upon the presence and absence of selected genes, pln locus was grouped into eight clusters. Further, quantitative real-time PCR (qRT-PCR) analysis for seven genes has discriminated the complex pln locus into five types which includes WCFS1 (in Lactobacillus plantarum subsp. plantarum MCC 2976 and MCC 2974 and Lactobacillus paraplantarum MCC 2978), closely related to J51 (in Lb. paraplantarum MCC 2973 and MCC 2977), J23 (in Lb. plantarum MTCC 5422), NC8 (in Lb. paraplantarum MTCC 9483), and a new E1 type (in Lb. plantarum subsp. plantarum E1). It was observed that the plnA, EF, NC8βα, NC81F, NC8HK, and G were expressed in E1 strain. Further, southern hybridization confirmed the chromosome-encoded plantaricin in Lb. plantarum group (LPG) strains. Several PCR assays and DNA sequence analysis of the regions amplified in pln loci of E1 isolate suggested a hybrid variant of NC8 and J51 plantaritypes. This indicates the wide distribution of plantaricin with remarkable variation, diversity, and plasticity among the LPG strains of vegetable origin. Further, the selected strains were able to reduce the growth of Kocuria rhizophila ATCC 9341 by 40-54% within 6 h of co-incubation under in vitro pathogen exclusion assay. These isolates also possessed cholesterol-lowering and antioxidant activity suggesting their application in the development of functional foods.

  9. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods.

    PubMed

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-03-04

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2-CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1-L6, with various homologous recombination rates. Although L2-L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.

  10. Assessment of Characteristics and Functional Properties of Lactobacillus Species Isolated from Kimchi for Dairy Use

    PubMed Central

    Baick, Seung-Chun

    2015-01-01

    The objective of this study was to identify lactic acid bacteria (LAB) isolated from kimchi and to evaluate its characteristics and functional properties for application in fermented dairy products as a probiotic or commercial starter culture. Eight stains isolated from kimchi were selected through an investigation of phenotypic characteristics. Two strains (DK211 and DK303) were identified as Lactobacillus plantarum, another two (DK207 and DK215) as Lactobacillus paracasei, and one (DK301) as Lactobacillus sakei. The remaining three strains were identified as species of Weissella. All selected Lactobacillus strains had acid and bile tolerance, even though there was wide variation in the ability of each strain. DK303 showed a remarkably higher proteolytic activity. There were no significant differences in β-galactosidase activity among the tested strains, except that DK301 showed no activity. Auto-aggregation varied between 82.1 and 90.0%, and hydrophobicity values ranged from 0.5 to 51.6%.The strongest auto-aggregation and hydrophobicity were observed in DK211. All selected strains showed better 1,1-diphenyl-2-picrylhydrzyl (DPPH) scavenging activity than commercial strains. DK211, DK215, DK301, and DK303 had effective inhibitory activity against all pathogens tested except E. coli. When selected strains were used for yogurt preparation as a single starter culture, the time required to reach target titratable acidity (0.9) was 11-12 h. The yogurt fermented with DK211 had favorable panelists ratings for most sensory attributes, which were comparable with yogurt fermented with a commercial strain. The results suggest that strains isolated from kimchi could be potential probiotic and starter cultures for use in yogurt manufacturing. PMID:26761848

  11. Staphylococcus petrasii subsp. pragensis subsp. nov., occurring in human clinical material.

    PubMed

    Švec, Pavel; De Bel, Annelies; Sedláček, Ivo; Petráš, Petr; Gelbíčová, Tereza; Černohlávková, Jitka; Mašlanˇová, Ivana; Cnockaert, Margo; Varbanovová, Ivana; Echahidi, Fedoua; Vandamme, Peter; Pantuček, Roman

    2015-07-01

    Seven coagulase-negative, oxidase-negative and novobiocin-susceptible staphylococci assigned tentatively as Staphylococcus petrasii were investigated in this study in order to elucidate their taxonomic position. All strains were initially shown to form a genetically homogeneous group separated from remaining species of the genus Staphylococcus by using a repetitive sequence-based PCR fingerprinting with the (GTG)5 primer. Phylogenetic analysis based on 16S rRNA gene, hsp60, rpoB, dnaJ, gap and tuf sequences showed that the group is closely related to Staphylococcus petrasii but separated from the three hitherto known subspecies, S. petrasii subsp. petrasii, S. petrasii subsp. croceilyticus and S. petrasii subsp. jettensis. Further investigation using automated ribotyping, MALDI-TOF mass spectrometry, fatty acid methyl ester analysis, DNA-DNA hybridization and extensive biotyping confirmed that the analysed group represents a novel subspecies within S. petrasii, for which the name Staphylococcus petrasii subsp. pragensis subsp. nov. is proposed. The type strain is NRL/St 12/356(T) ( = CCM 8529(T) = LMG 28327(T)).

  12. Molecular Characterization of Copper Resistance Genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis▿

    PubMed Central

    Behlau, Franklin; Canteros, Blanca I.; Minsavage, Gerald V.; Jones, Jeffrey B.; Graham, James H.

    2011-01-01

    Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cur) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cur bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥92%) among different Cur bacteria. PMID:21515725

  13. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.

    PubMed

    Do Carmo, A P; De Oliveira, M N V; Da Silva, D F; Castro, S B; Borges, A C; De Carvalho, A F; De Moraes, C A

    2012-03-01

    There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh - lactate dehydrogenase, adhE - Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 - catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property

  14. An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase.

    PubMed

    Branny, P; de la Torre, F; Garel, J R

    1998-04-01

    The structural genes gap, pgk and tpi encoding three glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI), respectively, have been cloned and sequenced from Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). The genes were isolated after screening genomic sublibraries with specific gap and pgk probes obtained by PCR amplification of chromosomal DNA with degenerate primers corresponding to amino acid sequences highly conserved in GAPDHs and PGKs. Nucleotide sequencing revealed that the three genes were organized in the order gap-pgk-tpi. The translation start codons of the three genes were identified by alignment of the N-terminal sequences. These genes predicted polypeptide chains of 338, 403 and 252 amino acids for GAPDH, PGK and TPI, respectively, and they were separated by 96 bp between gap and pgk, and by only 18 bp between pgk and tpi. The codon usage in gap, pgk, tpi and three other glycolytic genes from L. bulgaricus differed, noticeably from that in other chromosomal genes. The site of transcriptional initiation was located by primer extension, and a probable promoter was identified for the gap-pgk-tpi operon. Northern hybridization of total RNA with specific probes showed two transcripts, an mRNA of 1.4 kb corresponding to the gap gene, and a less abundant mRNA of 3.4 kb corresponding to the gap-pgk-tpi cluster. The absence of a visible terminator in the 3'-end of the shorter transcript and the location of this 3'-end inside the pgk gene indicated that this shorter transcript was produced by degradation of the longer one, rather than by an early termination of transcription after the gap gene.

  15. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods

    PubMed Central

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2–CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1–L6, with various homologous recombination rates. Although L2–L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation. PMID:26940047

  16. Biodiversity of lactic acid bacteria in Moroccan soft white cheese (Jben).

    PubMed

    Ouadghiri, Mouna; Amar, Mohamed; Vancanneyt, Marc; Swings, Jean

    2005-10-15

    The bacterial diversity occurring in traditional Moroccan soft white cheese, produced in eight different regions in Morocco, was studied. A total of 164 lactic acid bacteria were isolated, purified and identified by whole-cell protein fingerprinting and rep-PCR genomic fingerprinting. The majority of the strains belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Enterococcus. Sixteen species were identified: Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus brevis, Lactobacillus buchneri, Lactococcus lactis, Lactococcus garvieae, Lactococcus raffinolactis, Leuconostoc pseudomesenteroides, Leuconostoc mesenteroides, Leuconostoc citreum, Eterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus saccharominimus and Streptococcus sp.

  17. Antioxidant Activities of Lactic Acid Bacteria for Quality Improvement of Fermented Sausage.

    PubMed

    Zhang, Yulong; Hu, Ping; Lou, Lijiao; Zhan, Jianlong; Fan, Min; Li, Dan; Liao, Qianwei

    2017-12-01

    Lactobacillus curvatus (SR6) and Lactobacillus paracasei (SR10-1) were assessed for their antioxidant activities and inoculated into sausages to investigate their effects on quality during fermentation. The results showed that L. curvatus SR6 had better DPPH• scavenging activity (59.67% ± 6.68%) and reducing power (47.31% ± 4.62%) and L. paracasei SR10-1 had better OH• scavenging activity (285.67% ± 2.00%) and anti-lipid peroxidation capacity (63.89% ± 0.93%). The superoxide dismutase activity of the cell culture fluid was greater than 47.00 U/mL, and the catalase activity of the cell-free extracts was greater than 1.00 U/mL. In the sausage model, lactic acid bacteria rapidly became the dominant microflora and reduced the moisture content, water activity, nitrite, and pH. The bacteria significantly enhanced the antioxidant activity of the sausage extracts, which improved the sensory characteristics and safety of the sausages. These results illustrate that both strains have excellent antioxidant activities and can be used as antioxidant starters in fermented meat products. The study illustrated the antioxidant and antioxidase activities of Lactobacillus curvatus SR6 and Lactobacillus paracasei SR10-1 and demonstrated the changes in the quality characteristics and antioxidant activities of fermented sausages. The findings provide valuable information for the meat industry on the application of functional starters in fermented meat products. © 2017 Institute of Food Technologists®.

  18. Antimicrobial susceptibility of microflora from ovine cheese.

    PubMed

    Kmeť, V; Drugdová, Z

    2012-07-01

    Strains identified in ovine cheese and bryndza by matrix-assisted laser desorption/ionization time-of-flight analysis belonged to ten species of non-enterococcal lactic acid bacteria and included Lactobacillus casei/Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Lactococcus lactis, Pediococcus pentosaceus and Pediococcus acidilactici. The susceptibility toward antibiotics was determined in lactobacilli, lactococci and pediococci and also in Escherichia coli for comparison. Analysis of L. fermentum and pediococci revealed the presence of non-wild-type epidemiological cut-offs in streptomycin, clindamycin or gentamicin. E. coli were resistant to ampicillin, tetracycline, enrofloxacin and florfenicol. No extended spectrum β-lactamases were detected.

  19. [Viability and efects of the probiotic lactobacillus aracaseissp aracasei in Chilean low-fat Gauda cheese].

    PubMed

    Brito, Carmen; Navarrete, Carolina; Schöbitz, Renate; Horzella, Mariela

    2011-12-01

    The objective of this study is to infer the survival of the probiotic Lactobacillus paracasei ssp paracasei added during the processing of low-fat Gouda cheese, during the maturation (21 days) and the commercialization (14 days), in order to see the influence that this organism has on the quality of the product. The treatments were: TI (control): Gouda with normal fat content; T2: Low fat Gouda cheese (QGS) T3: QGS, with additional probiotic added with the initial culture; T4: QGS, with the probiotic added in the cooking of the curd. For the count of the probiotic, the methodology was used set forth by the American Public Health Association, (APHA), proteolysis by the method of soluble tyrosine in trichloroacetic acid (TCA), and the physical and chemical analysis using the methods standardized by the International Dairy Federation, and Chilean normative. The counts obtained were from 10(8) ufc/g y 10(7) ufc/g in the cheeses that had the probiotic additive (T3 and T4, respectively) close to the level of innocuous (10(8) ufc/g) during the study period of 35 days. The proteolysis incremented normally, and was the same in all of the treatments during the 35 days studied. The treatments with fat-reduction presented approximately, 31% less fat than the control treatment, and also higher moistness. Within the treatments, there was no evidence of taste and general feel; in turn the cheeses with the reduction of fat resulted firmer, less cohesive, than the control, and with similar elasticity.

  20. Immune Regulatory Effect of Newly Isolated Lactobacillus delbrueckii from Indian Traditional Yogurt.

    PubMed

    Hong, Yi-Fan; Lee, Yoon-Doo; Park, Jae-Yeon; Jeon, Boram; Jagdish, Deepa; Jang, Soojin; Chung, Dae Kyun; Kim, Hangeun

    2015-08-01

    Lactic acid bacteria (LAB) are microorganisms that are believed to provide health benefits. Here, we isolated LAB from Indian fermented foods, such as traditional Yogurt and Dosa. LAB from Yogurt most significantly induced TNF-α and IL-1β production, whereas LAB from Dosa induced mild cytokine production. After 16S rRNA gene sequencing and phylogenetic analysis, a Yogurt-borne lactic acid bacterium was identified and classified as Lactobacillus delbrueckii subsp. bulgaricus, and it was renamed L. delbrueckii K552 for the further studies. Our data suggest that the newly isolated L. delbrueckii can be used for the treatment of immune deficiency disorders.

  1. β-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30.

    PubMed

    Sakurama, Haruko; Kishino, Shigenobu; Uchibori, Yoshie; Yonejima, Yasunori; Ashida, Hisashi; Kita, Keiko; Takahashi, Satomi; Ogawa, Jun

    2014-05-01

    Baicalin (baicalein 7-O-β-D-glucuronide) is one of the major flavonoid glucuronides found in traditional herbal medicines. Because its aglycone, baicalein, is absorbed more quickly and shows more effective properties than baicalin, the conversion of baicalin into baicalein by β-glucuronidase (GUS) has drawn the attention of researchers. Recently, we have found that Lactobacillus brevis subsp. coagulans can convert baicalin to baicalein. Therefore, we aimed to identify and characterize the converting enzyme from L. brevis subsp. coagulans. First, we purified this enzyme from the cell-free extracts of L. brevis subsp. coagulans and cloned its gene. Surprisingly, this enzyme was found to be a GUS belonging to glycoside hydrolase (GH) family 30 (designated as LcGUS30), and its amino acid sequence has little similarity with any GUS belonging to GH families 1, 2, and 79 that have been reported so far. We then established a high-level expression and simple purification system of the recombinant LcGUS30 in Escherichia coli. The detailed analysis of the substrate specificity revealed that LcGUS30 has strict specificity toward glycon but not toward aglycones. Interestingly, LcGUS30 prefers baicalin rather than estrone 3-(β-D-glucuronide), one of the human endogenous steroid hormones. These results indicated that L. brevis subsp. coagulans and LcGUS30 should serve as powerful tools for the construction of a safe bioconversion system for baicalin. In addition, we propose that this novel type of GUS forms a new group in subfamily 3 of GH family 30.

  2. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3.

    PubMed

    Douillard, François P; Mora, Diego; Eijlander, Robyn T; Wels, Michiel; de Vos, Willem M

    2018-01-01

    Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3

  3. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3

    PubMed Central

    Mora, Diego; Eijlander, Robyn T.; Wels, Michiel; de Vos, Willem M.

    2018-01-01

    Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3

  4. Comparative Sequence Analysis of Plasmids from Lactobacillus delbrueckii and Construction of a Shuttle Cloning Vector▿

    PubMed Central

    Lee, Ju-Hoon; Halgerson, Jamie S.; Kim, Jeong-Hwan; O'Sullivan, Daniel J.

    2007-01-01

    While plasmids are very commonly associated with the majority of the lactic acid bacteria, they are only very rarely associated with Lactobacillus delbrueckii, with only four characterized to date. In this study, the complete sequence of a native plasmid, pDOJ1, from a strain of Lactobacillus delbrueckii subsp. bulgaricus was determined. It consisted of a circular DNA molecule of 6,220 bp with a G+C content of 44.6% and a characteristic ori and encoded six open reading frames (ORFs), of which functions could be predicted for three—a mobilization (Mob) protein, a transposase, and a fused primase-helicase replication protein. Comparative analysis of pDOJ1 and the other available L. delbrueckii plasmids (pLBB1, pJBL2, pN42, and pLL1212) revealed a very similar organization and amino acid identities between 85 and 98% for the putative proteins of all six predicted ORFs from pDOJ1, reflecting a common origin for L. delbrueckii plasmids. Analysis of the fused primase-helicase replication gene found a similar fused organization only in the theta replicating group B plasmids from Streptococcus thermophilus. This observation and the ability of the replicon to function in S. thermophilus support the idea that the origin of plasmids in L. delbrueckii was likely from S. thermophilus. This may reflect the close association of these two species in dairy fermentations, particularly yogurt production. As no vector based on plasmid replicons from L. delbrueckii has previously been constructed, an Escherichia coli-L. delbrueckii shuttle cloning vector, pDOJ4, was constructed from pDOJ1, the p15A ori, the chloramphenicol resistance gene of pCI372, and the lacZ polylinker from pUC18. This cloning vector was successfully introduced into E. coli, L. delbrueckii subsp. bulgaricus, S. thermophilus, and Lactococcus lactis. This shuttle cloning vector provides a new tool for molecular analysis of Lactobacillus delbrueckii and other lactic acid bacteria. PMID:17526779

  5. Effects of Enteric-coated Lactoferrin Tablets Containing Lactobacillus brevis subsp. coagulans on Fecal Properties, Defecation Frequency and Intestinal Microbiota of Japanese Women with a Tendency for Constipation: a Randomized Placebo-controlled Crossover Study

    PubMed Central

    SUZUKI, Noriyuki; MURAKOSHI, Michiaki; ONO, Tomoji; MORISHITA, Satoru; KOIDE, Misao; BAE, Min Jung; TOTSUKA, Mamoru; SHIMIZU, Makoto; SUGIYAMA, Keikichi; NISHINO, Hoyoku; IIDA, Norio

    2013-01-01

    The effects of oral administration of enteric-coated tablets containing lactoferrin (LF; 100 mg/tablet) and heat-killed Lactobacillus brevis subsp. coagulans FREM BP-4693 (LB; 6×109 bacteria/tablet) on fecal properties were examined in 32 Japanese women (20–60 years of age) with a tendency for constipation (defecation frequency at equal to or less than 10 times/2 weeks) by a double-blind placebo-controlled crossover design. A significant increase in defecation days per week was obserbed in the subjects who ingested the tablets containing LF and LB compared with the placebo group. The number of bifidobacteria in feces also significantly increased compared with the placebo group. In an in vitro study, LF and tryptic hydrolysate of LF, but not peptic hydrolysate of LF, upregulated the growth of Bifidobacterium longum ATCC15707 when added to the culture. These results demonstrate the capability of the enteric-coated tablets containing LF and LB in improving intestinal function and suggest that they have a growth promoting function for bifidobacteria. PMID:24936358

  6. Expression, purification, crystallization and preliminary X-ray crystallographic data from TktA, a transketolase from the lactic acid bacterium Lactobacillus salivarius

    PubMed Central

    Horsham, Matt; Saxby, Harriet; Blake, James; Isaacs, Neil W.; Mitchell, Tim J.; Riboldi-Tunnicliffe, Alan

    2010-01-01

    The enzyme transketolase from the lactic acid bacterium Lactobacillus salivarius (subsp. salivarius UCC118) has been recombinantly expressed and purified using an Escherichia coli expression system. Purified transketolase from L. salivarius has been crystallized using the vapour-diffusion technique. The crystals belonged to the trigonal space group P3221, with unit-cell parameters a = b = 75.43, c = 184.11 Å, and showed diffraction to 2.3 Å resolution. PMID:20693662

  7. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Pérez, Tania; Balcázar, José Luis; Peix, Alvaro; Valverde, Angel; Velázquez, Encarna; de Blas, Ignacio; Ruiz-Zarzuela, Imanol

    2011-08-01

    The species Lactococcus lactis currently includes three subspecies; L. lactis subsp. lactis and L. lactis subsp. cremoris, isolated from milk sources, and L. lactis subsp. hordniae, isolated from the leafhopper Hordnia circellata. In this study, three strains, designated L105(T), I3 and L101, were isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). These strains were closely related to members of the species Lactococcus lactis. Strain L105(T) showed 99.4 % 16S rRNA gene sequence similarity to that of the type strains L. lactis subsp. lactis NCDO 604(T) and L. lactis subsp. hordniae NCDO 2181(T) and showed 99.9 % similarity to the type strain Lactococcus lactis subsp. cremoris NCDO 607(T). Analysis of two housekeeping genes, rpoB and recA, confirmed the close relationship between the novel strains and L. lactis subsp. cremoris with similarities of 99.3 and 99.7 %, respectively. The three strains could, however, be differentiated from their closest relatives on the basis of several phenotypic characteristics, as was the case for L. lactis subsp. lactis and L. lactis subsp. hordniae, which were also closely related on the basis of 16S rRNA, rpoB and recA gene sequence similarities. The strains isolated in this study represent a new subspecies, for which the name Lactococcus lactis subsp. tructae subsp. nov. is proposed. The type strain is L105(T) ( = LMG 24662(T)  = DSM 21502(T)).

  8. High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR.

    PubMed

    Iacumin, Lucilla; Ginaldi, Federica; Manzano, Marisa; Anastasi, Veronica; Reale, Anna; Zotta, Teresa; Rossi, Franca; Coppola, Raffaele; Comi, Giuseppe

    2015-04-01

    The correct identification and characterisation of bacteria is essential for several reasons: the classification of lactic acid bacteria (LAB) has changed significantly over the years, and it is important to distinguish and define them correctly, according to the current nomenclature, avoiding problems in the interpretation of literature, as well as mislabelling when probiotic are used in food products. In this study, species-specific PCR and HRM (high-resolution melting) analysis were developed to identify strains belonging to the Lactobacillus casei group and to classify them into L. casei, Lactobacillus paracasei and Lactobacillus rhamnosus. HRM analysis confirmed to be a potent, simple, fast and economic tool for microbial identification. In particular, 201 strains, collected from International collections and attributed to the L. casei group, were examined using these techniques and the results were compared with consolidated molecular methods, already published. Seven of the tested strains don't belong to the L. casei group. Among the remaining 194 strains, 6 showed inconsistent results, leaving identification undetermined. All the applied techniques were congruent for the identification of the vast majority of the tested strains (188). Notably, for 46 of the strains, the identification differed from the previous attribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Novel approach for the use of dairy industry wastes for bacterial growth media production.

    PubMed

    Kasmi, Mariam; Elleuch, Lobna; Dahmeni, Ameni; Hamdi, Moktar; Trabelsi, Ismail; Snoussi, Mejdi

    2018-04-15

    This work proposes a novel approach for the reuse and the recovery of dairy wastes valuable components. Thermal coagulation was performed for dairy effluents and the main responsible fraction for the organic matter content (protein and fat) was separated. Dairy curds were prepared for the formulation of bacterial growth media. Protein, sugar, fat and fatty acids contents have been assessed. Samples treated at 100 °C exhibited marked improvement in terms of protein (25-50%) recovery compared to those treated at 80 °C. Fatty acid analysis revealed the presence of unsaturated fatty acids (mainly oleic acid) that are essential to promote Lactobacillus growth. Previously isolated and identified bacterial strains from dairy wastes (Lactobacillus paracasei, Lactobacillus plantarum, Lactococcus lactis and Lactobacillus brevis) were investigated for their ability to grow on the formulated media. All the tested lactic acid bacteria exhibited greater bacterial growth on the formulated media supplemented with glucose only or with both glucose and yeast extract compared to the control media. By reference to the commercial growth medium, the productivity ratio of the supplemented bactofugate (B) and decreaming (D) formulated media exceeded 0.6 for L. paracasei culture. Whereas, the productivity ratio of the supplemented B medium was greater than 1 compared to the control medium for all the tested strains. As for the supplemented D medium, its productivity ratio was greater than 1 compared to the control medium for both L. paracasei and L. plantarum strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A Mesocosm of Lactobacillus johnsonii, Bifidobacterium longum, and Escherichia coli in the mouse gut.

    PubMed

    Denou, Emmanuel; Rezzonico, Enea; Panoff, Jean-Michel; Arigoni, Fabrizio; Brüssow, Harald

    2009-08-01

    The relative contribution of competition and cooperation at the microbe-microbe level is not well understood for the bacteria constituting the gut microbiota. The high number and variability of human gut commensals have hampered the analysis. To get some insight into the question how so many different bacterial species can coexist in the mammalian gut, we studied the interaction between three human gut commensals (Escherichia coli K-12, Lactobacillus johnsonii NCC533, and Bifidobacterium longum NCC2705) in the intestine of gnotobiotic mice. The bacterial titers and their anatomical distribution were studied in the colonized mice. L. johnsonii achieved the highest cell counts in the stomach, while B. longum dominated the colon. The colon was also the intestinal location in which B. longum displayed the highest number of expressed genes, followed by the cecum and the small intestine. Addition of further bacterial strains led to strikingly different results. A Lactobacillus paracasei strain coexisted, while a second B. longum strain was excluded from the system. Notably, this strain lacked an operon involved in the degradation, import, and metabolism of mannosylated glycans. Subsequent introduction of the E. coli Nissle strain resulted in the elimination of L. johnsonii NCC533 and E. coli K-12, while B. longum NCC2705 showed a transient decrease in population size, demonstrating the dynamic nature of microbe-microbe interactions. The study of such simple interacting bacterial systems might help to derive some basic rules governing microbial ecology within the mammalian gut.

  11. Impact of thistle rennet from Carlina acanthifolia All. subsp. acanthifolia on bacterial diversity and dynamics of a specialty Italian raw ewes' milk cheese.

    PubMed

    Cardinali, Federica; Osimani, Andrea; Taccari, Manuela; Milanović, Vesna; Garofalo, Cristiana; Clementi, Francesca; Polverigiani, Serena; Zitti, Silvia; Raffaelli, Nadia; Mozzon, Massimo; Foligni, Roberta; Franciosi, Elena; Tuohy, Kieran; Aquilanti, Lucia

    2017-08-16

    Caciofiore della Sibilla is an Italian specialty soft cheese manufactured with Sopravissana raw ewes' milk and thistle rennet prepared with young fresh leaves and stems of Carlina acanthifolia All. subsp. acanthifolia, according to an ancient tradition deeply rooted in the territory of origin (mountainous hinterland of the Marche region, Central Italy). In this study, the impact of thistle rennet on the bacterial dynamics and diversity of Caciofiore della Sibilla cheese was investigated by applying a polyphasic approach based on culture and DNA-based techniques (Illumina sequencing and PCR-DGGE). A control cheese manufactured with the same batch of ewes' raw milk and commercial animal rennet was analyzed in parallel. Overall, a large number of bacterial taxa were identified, including spoilage, environmental and pro-technological bacteria, primarily ascribed to Lactobacillales. Thistle rennet was observed clearly to affect the early bacterial dynamics of Caciofiore della Sibilla cheese with Lactobacillus alimentarius/paralimentarius and Lactobacillus plantarum/paraplantarum/pentosus being detected in the phyllosphere of C. acanthifolia All., thistle rennet and curd obtained with thistle rennet. Other bacterial taxa, hypothetically originating from the vegetable coagulant (Enterococcus faecium, Lactobacillus brevis, Lactobacillus delbrueckii, Leuconostoc mesenteroides/pseudomesenteroides), were exclusively found in Caciofiore della Sibilla cheese by PCR-DGGE. At the end of the maturation period, Illumina sequencing demonstrated that both cheeses were dominated by Lactobacillales; however curd and cheese produced with thistle rennet were co-dominated by Lactobacillus and Leuconostoc, whereas Lactoccous prevailed in curd and cheese produced with commercial animal rennet followed by Lactobacillus. Differences in the bacterial composition between the two cheeses at the end of their maturation period were confirmed by PCR-DGGE analysis. Copyright © 2017 Elsevier B

  12. Emendation of Propionibacterium acnes subsp. acnes (Deiko et al. 2015) and proposal of Propionibacterium acnes type II as Propionibacterium acnes subsp. defendens subsp. nov.

    PubMed

    McDowell, Andrew; Barnard, Emma; Liu, Jared; Li, Huiying; Patrick, Sheila

    2016-12-01

    Recently, it has been proposed that strains of Propionibacterium acnes from the type III genetic division should be classified as P. acnessubsp. elongatum subsp. nov., with strains from the type I and II divisions collectively classified as P. acnessubsp. acnes subsp. nov. Under such a taxonomic re-appraisal, we believe that types I and II should also have their own separate rank of subspecies. In support of this, we describe a polyphasic taxonomic study based on the analysis of publicly available multilocus and whole-genome sequence datasets, alongside a systematic review of previously published phylogenetic, genomic, phenotypic and clinical data. Strains of types I and II form highly distinct clades on the basis of multilocus sequence analysis (MLSA) and whole-genome phylogenetic reconstructions. In silico or digital DNA-DNA similarity values also fall within the 70-80 % boundary recommended for bacterial subspecies. Furthermore, we see important differences in genome content, including the presence of an active CRISPR/Cas system in type II strains, but not type I, and evidence for increasing linkage equilibrium within the separate divisions. Key biochemical differences include positive test results for β-haemolytic, neuraminidase and sorbitol fermentation activities with type I strains, but not type II. We now propose that type I strains should be classified as P. acnessubsp. acnes subsp. nov., and type II as P. acnessubsp. defendens subsp. nov. The type strain of P. acnessubsp. acnes subsp. nov. is NCTC 737T (=ATCC 6919T=JCM 6425T=DSM 1897T=CCUG 1794T), while the type strain of P. acnessubsp. defendens subsp. nov. is ATCC 11828 (=JCM 6473=CCUG 6369).

  13. Antibacterial metabolites secreted under glucose-limited environment of the mimicked proximal colon model by lactobacilli abundant in infant feces.

    PubMed

    Kanjan, Pochanart; Hongpattarakere, Tipparat

    2016-09-01

    The most abundance of anti-Salmonella lactic acid bacteria (LAB) was found in feces of naturally born, exclusively breastfed Thai infants. Six strains of Lactobacillus plantarum and one strain of Lactobacillus paracasei were selected and identified. In the co-cultivation assay, L. plantarum subsp. plantarum I62 showed the strongest and broadest antibacterial activity against Escherichia coli, Shigella sonnei, Salmonella Paratyphi A, and Salmonella Typhimurium SA 2093 under the mimicked proximal colon condition, in which glucose and other nutrients were limited. According to GC-MS analysis, the major antibacterial contribution of organic acids secreted by L. plantarum I62 grown in the presence of glucose was dramatically reduced from 95.8 to 41.9 % under glucose-limited niche. The production of low-pK a acids, such as lactic, 1,2-benzenedicarboxylic, and 3-phenyllactic acids, was remarkably dropped. Surprisingly, higher-pK a acids such as 5-chlorobenzimidazole-2-carboxylic, pyroglutamic, palmitic, and oleic acids were enhanced. Moreover, cyclic dipeptides, ketones, alkanes, alcohols, and miscellaneous compounds, which were pH-independent antibacterial metabolites, became dominant. The electron microscopy strongly supported the synergistic attacks of the multiple antibacterial components targeting outer and cytoplasmic membranes leading to severe leakage and cell disruption of Salmonella Typhimurium. This strain poses to be a potential probiotic candidate for effectively controlling and treating human foodborne bacterial infection.

  14. Role of mono- and oligosaccharides from FOS as stabilizing agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Romano, Nelson; Schebor, Carolina; Mobili, Pablo; Gómez-Zavaglia, Andrea

    2016-12-01

    The aim of this work was to assess the role of mono- and oligosaccharides present in fructo-oligosaccharides (FOS) mixtures as protective agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333. Different FOS mixtures were enzymatically obtained from sucrose and further purified by removing the monosaccharides produced as secondary products. Their glass transition temperatures (T g ) were determined at 11, 22 and 33% relative humidity (RH). Bacterial cultures were freeze-dried in the presence of 20% w/v solutions of the studied FOS. Their protective effect during freeze-drying was assessed by bacterial plate counting, and by determining the lag time from growth kinetics and the uptake of propidium iodide (PI). Plate counting during bacterial storage at 4°C, and 11, 22 and 33% RH for 80days completed this rational analysis of the protective effect of FOS. Purification of FOS led to an increase of T g in all the conditions assayed. Microorganisms freeze-dried in the presence of non-purified FOS were those with the shortest lag times. Bacteria freeze-dried with pure or commercial FOS (92% of total FOS) showed larger lag times (8.9-12.6h). The cultivability of microorganisms freeze-dried with non-purified FOS and with sucrose was not significantly different from that of bacteria before freeze-drying (8.74±0.14logCFU/mL). Pure or commercial FOS were less efficient in protecting bacteria during freeze-drying. All the protectants prevented membrane damage. The cultivability of bacteria freeze-dried with FOS decayed <1logarithmicunit after 80days of storage at 11% RH. When storing at 22 and 33% RH, pure and commercial FOS were those that best protected bacteria, and FOS containing monosaccharides were less efficient. The effect of FOS on bacterial protection is the result of a balance between monosaccharides, sucrose and larger FOS in the mixtures: the smallest sugars are more efficient in protecting lipid membranes, and the

  15. A study of the effects of therapeutic doses of ionizing radiation in vitro on Lactobacillus isolates originating from the vagina - a pilot study.

    PubMed

    Gosiewski, Tomasz; Mróz, Tomasz; Ochońska, Dorota; Pabian, Wojciech; Bulanda, Malgorzata; Brzychczy-Wloch, Monika

    2016-05-31

    Ionizing radiation is used as a therapeutic option in the treatment of certain neoplastic lesions located, among others, in the pelvic region. The therapeutic doses of radiation employed often result in adverse effects manifesting themselves primarily in the form of genital tract infections in patients or diarrhea. The data available in the literature indicate disorders in the microbial ecosystem caused by ionizing radiation, which leads to the problems mentioned above. In the present study, we examined the influence of ionizing radiation on 52 selected strains of bacteria: Lactobacillus crispatus, L. fermentum, L. plantarum, L. reuteri, L. acidophilus L. amylovorus, L. casei, L. helveticus, L. paracasei, L. rhamnosus, L. salivarius and L. gasseri. This collection of Lactobacillus bacteria isolates of various species, obtained from the genital tract and gastrointestinal tract of healthy women, was tested for resistance to therapeutic doses of ionizing radiation. The species studied, were isolated from the genital tract (n = 30) and from the anus (n = 22) of healthy pregnant women. Three doses of 3 Gy (fractionated dose) and 50 Gy (total dose of the whole radiotherapy cycle) were applied. The greatest differences in survival of the tested strains in comparison to the control group (not subjected to radiation) were observed at the dose of 50 Gy. However, the results were not statistically significant. Survival decrease to zero was not demonstrated for any of the tested strains. Therapeutic doses of radiation do not affect the Lactobacillus bacteria significantly.

  16. Exposing the Secrets of Two Well-Known Lactobacillus casei Phages, J-1 and PL-1, by Genomic and Structural Analysis

    PubMed Central

    Dieterle, Maria Eugenia; Bowman, Charles; Batthyany, Carlos; Lanzarotti, Esteban; Turjanski, Adrián; Hatfull, Graham

    2014-01-01

    Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection. PMID:25217012

  17. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp. bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677.

    PubMed

    Zhai, Zhengyuan; Douillard, François P; An, Haoran; Wang, Guohong; Guo, Xinghua; Luo, Yunbo; Hao, Yanling

    2014-06-01

    To overcome the deleterious effects of acid stress, Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) elicits an adaptive response to acid stress. In this study, proteomics approach complemented by transcriptional analysis revealed some cellular changes in L. bulgaricus CAUH1 during acid adaptation. We observed an increase of glycolysis-associated proteins, promoting an optimal utilization of carbohydrates. Also, rerouting of the pyruvate metabolism to fatty acid biosynthesis was observed, indicating a possible modification of the cell membrane rigidity and impermeability. In addition, expression of ribosomal protein S1 (RpsA) was repressed; however, the expression of EF-Tu, EF-G and TypA was up-regulated at both protein and transcript levels. This suggests a reduction of protein synthesis in response to acid stress along with possible enhancement of the translational accuracy and protein folding. It is noteworthy that the putative transcriptional regulator Ldb0677 was 1.84-fold up-regulated. Heterologous expression of Ldb0677 was shown to significantly enhance acid resistance in host strain Lactococcus lactis. To clarify its role in transcriptional regulation network, the DNA-binding specificity of Ldb0677 was determined using bacterial one-hybrid and electrophoretic mobility shift assay. The identification of a binding motif (SSTAGACR) present in the promoter regions of 22 genes indicates that it might function as a major regulator in acid stress response in L. bulgaricus. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water

    EPA Science Inventory

    Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...

  19. Genome sequencing identifies Listeria fleischmannii subsp. coloradonensis subsp. nov., isolated from a ranch.

    PubMed

    den Bakker, Henk C; Manuel, Clyde S; Fortes, Esther D; Wiedmann, Martin; Nightingale, Kendra K

    2013-09-01

    Twenty Listeria-like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sigB sequence, suggesting close relatedness. The isolates were similar to members of the genus Listeria in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to Listeria fleischmannii because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of Listeria fleischmannii (strain LU2006-1(T)) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91% of the genomes was 95.16%. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these Listeria-like isolates to Listeria fleischmannii LU2006-1(T). Sufficient genetic divergence of the Listeria-like isolates from the type strain of Listeria fleischmannii and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name Listeria fleischmannii subsp. coloradonensis subsp. nov. is proposed. The type strain is TTU M1-001(T) ( =BAA-2414(T) =DSM 25391(T)). The isolates of Listeria fleischmannii subsp. coloradonensis subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of Listeria fleischmannii contained putative enhancin genes; the Listeria fleischmannii subsp

  20. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants

    PubMed Central

    2011-01-01

    Background Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Results Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp.delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. Conclusions This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky

  1. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants.

    PubMed

    Savino, Francesco; Cordisco, Lisa; Tarasco, Valentina; Locatelli, Emanuela; Di Gioia, Diana; Oggero, Roberto; Matteuzzi, Diego

    2011-06-30

    Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp. delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky infants. Our findings may stimulate

  2. Effects of Lactic Acid Bacteria on Residual Nitrite in a Summer Style Sausage.

    DTIC Science & Technology

    1984-01-01

    faecalis and an atypical lactobacillus isolated from beef) showed abilities to reduce pH and residual nitrite to levels similar to L. plantarum and P...Leuconostoc mesenteroides reduced nitrite at a faster rate than either Lactobacillus plantarum or Lactobacillus viridescens, while Lactobacillus ... Lactobacillus plantarum 4008 Lactobacillus bulgaricus 11842 Lactobacillus fermentum 9338 Lactobacillus casei subsp. rhamnosus 7469 Pediococcus acidilactici

  3. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  4. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee.

    PubMed

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".

  5. Lactobacillus

    MedlinePlus

    ... eye symptoms. Preventing diarrhea caused by antibiotics. Taking probiotics products containing lactobacillus strains helps prevent diarrhea caused ... the first 1-2 years of life, lactobacillus probiotics can reduce the chance of the child developing ...

  6. Discrimination of the Lactobacillus acidophilus group using sequencing, species-specific PCR and SNaPshot mini-sequencing technology based on the recA gene.

    PubMed

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Mu-Chiou; Wang, Li-Tin; Huang, Lina; Lee, Fwu-Ling

    2012-10-01

    To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing. Copyright © 2012 Society of Chemical Industry.

  7. Prevention of Mycobacterium avium subsp. paratuberculosis Infection in BALB/c Mice by Feeding Lactobacillus acidophilus Strain NP-51

    USDA-ARS?s Scientific Manuscript database

    The immune responses of 390 BALB/c mice fed the probiotic Lactobacillus acidophilus strain NP51® and infected with Mycobacterium avium subspecies paratuberculosis (MAP) were evaluated in a 6-month trial. Mice were randomized to nine treatment groups fed either viable- or heat-killed NP51 and inocula...

  8. Molecular Characterization of tet(M) Genes in Lactobacillus Isolates from Different Types of Fermented Dry Sausage

    PubMed Central

    Gevers, Dirk; Danielsen, Morten; Huys, Geert; Swings, Jean

    2003-01-01

    The likelihood that products prepared from raw meat and milk may act as vehicles for antibiotic-resistant bacteria is currently of great concern in food safety issues. In this study, a collection of 94 tetracycline-resistant (Tcr) lactic acid bacteria recovered from nine different fermented dry sausage types were subjected to a polyphasic molecular study with the aim of characterizing the host organisms and the tet genes, conferring tetracycline resistance, that they carry. With the (GTG)5-PCR DNA fingerprinting technique, the Tcr lactic acid bacterial isolates were identified as Lactobacillus plantarum, L. sakei subsp. carnosus, L. sakei subsp. sakei, L. curvatus, and L. alimentarius and typed to the intraspecies level. For a selection of 24 Tcr lactic acid bacterial isolates displaying unique (GTG)5-PCR fingerprints, tet genes were determined by means of PCR, and only tet(M) was detected. Restriction enzyme analysis with AccI and ScaI revealed two different tet(M) allele types. This grouping was confirmed by partial sequencing of the tet(M) open reading frame, which indicated that the two allele types displayed high sequence similarities (>99.6%) with tet(M) genes previously reported in Staphylococcus aureus MRSA 101 and in Neisseria meningitidis, respectively. Southern hybridization with plasmid profiles revealed that the isolates contained tet(M)-carrying plasmids. In addition to the tet(M) gene, one isolate also contained an erm(B) gene on a different plasmid from the one encoding the tetracycline resistance. Furthermore, it was also shown by PCR that the tet(M) genes were not located on transposons of the Tn916/Tn1545 family. To our knowledge, this is the first detailed molecular study demonstrating that taxonomically and genotypically diverse Lactobacillus strains from different types of fermented meat products can be a host for plasmid-borne tet genes. PMID:12571056

  9. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk.

    PubMed

    Wu, Qinglong; Law, Yee-Song; Shah, Nagendra P

    2015-08-06

    Most high γ-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence of genes encoding extracellular proteinases in its genome. In the present study, two glutamic acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis NPS-QW-145. Co-culturing of this organism with conventional dairy starters was carried out to manufacture GABA-rich fermented milk. It was observed that all the selected strains of Streptococcus thermophilus, but not Lactobacillus delbrueckii subsp. bulgaricus, improved the viability of L. brevis NPS-QW-145 in milk. Only certain strains of S. thermophilus improved the gadA mRNA level in L. brevis NPS-QW-145, thus enhanced GABA biosynthesis by the latter. These results suggest that certain S. thermophilus strains are highly recommended to co-culture with high GABA producer for manufacturing GABA-rich fermented milk.

  10. Description of Mycobacterium chelonae subsp. bovis subsp. nov., isolated from cattle (Bos taurus coreanae), emended description of Mycobacterium chelonae and creation of Mycobacterium chelonae subsp. chelonae subsp. nov.

    PubMed

    Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Jeon, Che Ok; Jeong, Joseph; Lee, Seon Ho; Lim, Ji-Hun; Lee, Seung-Heon; Kim, Chang Ki; Kook, Yoon-Hoh; Kim, Bum-Joon

    2017-10-01

    Three rapidly growing mycobacterial strains, QIA-37 T , QIA-40 and QIA-41, were isolated from the lymph nodes of three separate Korean native cattle, Hanwoo (Bos taurus coreanae). These strains were previously shown to be phylogenetically distinct but closely related to Mycobacterium chelonae ATCC 35752 T by taxonomic approaches targeting three genes (16S rRNA, hsp6 and rpoB) and were further characterized using a polyphasic approach in this study. The 16S rRNA gene sequences of all three strains showed 99.7 % sequence similarity with that of the M. chelonae type strain. A multilocus sequence typing analysis targeting 10 housekeeping genes, including hsp65 and rpoB, revealed a phylogenetic cluster of these strains with M. chelonae. DNA-DNA hybridization values of 78.2 % between QIA-37 T and M. chelonae indicated that it belongs to M. chelonae but is a novel subspecies distinct from M. chelonae. Phylogenetic analysis based on whole-genome sequences revealed a 95.44±0.06 % average nucleotide identity (ANI) value with M. chelonae, slightly higher than the 95.0 % ANI criterion for determining a novel species. In addition, distinct phenotypic characteristics such as positive growth at 37 °C, at which temperature M. chelonae does not grow, further support the taxonomic status of these strains as representatives of a novel subspecies of M. chelonae. Therefore, we propose an emended description of Mycobacterium chelonae, and descriptions of M. chelonae subsp. chelonae subsp. nov. and M. chelonae subsp. bovis subsp. nov. are presented; strains ATCC 35752 T (=CCUG 47445 T =CIP 104535 T =DSM 43804 T =JCM 6388 T =NCTC 946 T ) and QIA-37 T (=KCTC 39630 T =JCM 30986 T ) are the type strains of the two novel subspecies.

  11. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) Infection in BALB/c Mice by Feeding Probiotic Lactobacillus acidophilus NP-51

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP). Mice were randomized to ten treatment groups; sentinels, control, heat-killed MAP, viable MAP, heat-killed NP51, viable ...

  13. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) infection in BALB/c mice by feeding probiotic Lactobacillus acidophilus NP-51

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP). Mice were randomized to ten treatment groups; sentinels, control, heat-killed MAP, viable MAP, heat-killed NP51, viable ...

  14. Clavibacter michiganensis subsp. phaseoli subsp. nov., pathogenic in bean.

    PubMed

    González, Ana J; Trapiello, Estefanía

    2014-05-01

    A yellow Gram-reaction-positive bacterium isolated from bean seeds (Phaseolus vulgaris L.) was identified as Clavibacter michiganensis by 16S rRNA gene sequencing. Molecular methods were employed in order to identify the subspecies. Such methods included the amplification of specific sequences by PCR, 16S amplified rDNA restriction analysis (ARDRA), RFLP and multilocus sequence analysis as well as the analysis of biochemical and phenotypic traits including API 50CH and API ZYM results. The results showed that strain LPPA 982T did not represent any known subspecies of C. michiganensis. Pathogenicity tests revealed that the strain is a bean pathogen causing a newly identified bacterial disease that we name bacterial bean leaf yellowing. On the basis of these results, strain LPPA 982T is regarded as representing a novel subspecies for which the name Clavibacter michiganensis subsp. phaseoli subsp. nov. is proposed. The type strain is LPPA 982T (=CECT 8144T=LMG 27667T).

  15. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase.

    PubMed

    Cornelissen, Anneleen; Sadovskaya, Irina; Vinogradov, Evgeny; Blangy, Stéphanie; Spinelli, Silvia; Casey, Eoghan; Mahony, Jennifer; Noben, Jean-Paul; Dal Bello, Fabio; Cambillau, Christian; van Sinderen, Douwe

    2016-08-05

    Glycerophosphodiester phosphodiesterases (GDPDs; EC 3.1.4.46) typically hydrolyze glycerophosphodiesters to sn-glycerol 3-phosphate (Gro3P) and their corresponding alcohol during patho/physiological processes in bacteria and eukaryotes. GDPD(-like) domains were identified in the structural particle of bacterial viruses (bacteriophages) specifically infecting Gram-positive bacteria. The GDPD of phage 17 (Ld17; GDPDLd17), representative of the group b Lactobacillus delbrueckii subsp. bulgaricus (Ldb)-infecting bacteriophages, was shown to hydrolyze, besides the simple glycerophosphodiester, two complex surface-associated carbohydrates of the Ldb17 cell envelope: the Gro3P decoration of the major surface polysaccharide d-galactan and the oligo(glycerol phosphate) backbone of the partially glycosylated cell wall teichoic acid, a minor Ldb17 cell envelope component. Degradation of cell wall teichoic acid occurs according to an exolytic mechanism, and Gro3P substitution is presumed to be inhibitory for GDPDLd17 activity. The presence of the GDPDLd17 homotrimer in the viral baseplate structure involved in phage-host interaction together with the dependence of native GDPD activity, adsorption, and efficiency of plating of Ca(2+) ions supports a role for GDPDLd17 activity during phage adsorption and/or phage genome injection. In contrast to GDPDLd17, we could not identify any enzymatic activity for the GDPD-like domain in the neck passage structure of phage 340, a 936-type Lactococcus lactis subsp. lactis bacteriophage. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase*

    PubMed Central

    Cornelissen, Anneleen; Sadovskaya, Irina; Vinogradov, Evgeny; Blangy, Stéphanie; Spinelli, Silvia; Casey, Eoghan; Mahony, Jennifer; Noben, Jean-Paul; Dal Bello, Fabio; Cambillau, Christian; van Sinderen, Douwe

    2016-01-01

    Glycerophosphodiester phosphodiesterases (GDPDs; EC 3.1.4.46) typically hydrolyze glycerophosphodiesters to sn-glycerol 3-phosphate (Gro3P) and their corresponding alcohol during patho/physiological processes in bacteria and eukaryotes. GDPD(-like) domains were identified in the structural particle of bacterial viruses (bacteriophages) specifically infecting Gram-positive bacteria. The GDPD of phage 17 (Ld17; GDPDLd17), representative of the group b Lactobacillus delbrueckii subsp. bulgaricus (Ldb)-infecting bacteriophages, was shown to hydrolyze, besides the simple glycerophosphodiester, two complex surface-associated carbohydrates of the Ldb17 cell envelope: the Gro3P decoration of the major surface polysaccharide d-galactan and the oligo(glycerol phosphate) backbone of the partially glycosylated cell wall teichoic acid, a minor Ldb17 cell envelope component. Degradation of cell wall teichoic acid occurs according to an exolytic mechanism, and Gro3P substitution is presumed to be inhibitory for GDPDLd17 activity. The presence of the GDPDLd17 homotrimer in the viral baseplate structure involved in phage-host interaction together with the dependence of native GDPD activity, adsorption, and efficiency of plating of Ca2+ ions supports a role for GDPDLd17 activity during phage adsorption and/or phage genome injection. In contrast to GDPDLd17, we could not identify any enzymatic activity for the GDPD-like domain in the neck passage structure of phage 340, a 936-type Lactococcus lactis subsp. lactis bacteriophage. PMID:27268053

  17. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) infection in Balb/c mice by feeding probiotic Lactobacillus acidophilus NP-51

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease. We hypothesized that feeding NP51 would increase Th-1 responses and decrease prog...

  18. Prevention of Mycobacterium avium subsp. paratuberculosis (MAP) Infection in Balb/c Mice by Feeding Probiotic Lactobacillus acidophilus NP-51

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine effects of feeding Lactobacillus acidophilus strain NP51 to mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease. We hypothesized that feeding NP51 would increase Th-1 responses and decrease prog...

  19. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    PubMed

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  20. Structural similarity and distribution of small cryptic plasmids of Lactobacillus curvatus and L. sake.

    PubMed

    Vogel, R F; Lohmann, M; Weller, A N; Hugas, M; Hammes, W P

    1991-11-15

    Plasmid profiles of strains of Lactobacillus curvatus and L. sake isolated from meat or sauerkraut were analysed to investigate plasmid homology and distribution in relation to the ecology of these organisms in fermenting foods. A hybridisation probe was constructed by cloning of pLc2, a cryptic, 2.6-kbp plasmid from L. curvatus LTH683, into the Escherichia coli plasmid pRV50. In Southern hybridisations with the digoxygenine labeled pLc2 probe, pLc2-related small plasmids were frequently detected in meat-borne strains of L. casei subsp. pseudoplantarum, L. curvatus, L. sake, L. alimentarius, L. farciminis and L. halotolerans and in L. curvatus and L. sake isolated from sauerkraut. Among 27 Lactobacillus type strains originally isolated from habitats other than meat this type of homology was detected only with plasmids of L. buchneri and L. mali. Restriction-enzyme mapping of six small cryptic plasmids from L. curvatus and L. sake revealed strong structural homology but no similarity to previously characterized plasmids of lactobacilli. The presence of a variable region in addition to a conserved one and the occurrence of deletions during cloning of pLc2 suggest that vectors derived from these plasmids are likely to be structurally unstable.

  1. Biodiversity and γ-Aminobutyric Acid Production by Lactic Acid Bacteria Isolated from Traditional Alpine Raw Cow's Milk Cheeses

    PubMed Central

    Nardin, Tiziana; Schiavon, Silvia; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M.

    2015-01-01

    “Nostrano-cheeses” are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus. PMID:25802859

  2. Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration

    PubMed Central

    Li, Y.; Wang, F.; Nishino, N.

    2016-01-01

    We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56-day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents. PMID:26949952

  3. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    PubMed

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  4. Lactoferrin Adsorbed onto Biomimetic Hydroxyapatite Nanocrystals Controlling - In Vivo - the Helicobacter pylori Infection

    PubMed Central

    Fulgione, Andrea; Nocerino, Nunzia; Iannaccone, Marco; Roperto, Sante; Capuano, Federico; Roveri, Norberto; Lelli, Marco; Crasto, Antonio; Calogero, Armando; Pilloni, Argenia Paola; Capparelli, Rosanna

    2016-01-01

    Background The resistance of Helicobacter pylori to the antibiotic therapy poses the problem to discover new therapeutic approaches. Recently it has been stated that antibacterial, immunomodulatory, and antioxidant properties of lactoferrin are increased when this protein is surface-linked to biomimetic hydroxyapatite nanocrystals. Objective Based on these knowledge, the aim of the study was to investigate the efficacy of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles with cell free supernatant from probiotic Lactobacillus paracasei as an alternative therapy against Helicobacter pylori infection. Methods Antibacterial and antinflammatory properties, humoral antibody induction, histopathological analysis and absence of side effects were evaluated in both in vitro and in vivo studies. Results The tests carried out have been demonstrated better performance of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles combined with cell free supernatant from probiotic Lactobacillus paracasei compared to both lactoferrin and probiotic alone or pooled. Conclusion These findings indicate the effectiveness and safety of our proposed therapy as alternative treatment for Helicobacter pylori infection. PMID:27384186

  5. Taxonomic Structure and Monitoring of the Dominant Population of Lactic Acid Bacteria during Wheat Flour Sourdough Type I Propagation Using Lactobacillus sanfranciscensis Starters▿

    PubMed Central

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-01-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g−1. Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation. PMID

  6. Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters.

    PubMed

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-02-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g(-1). Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation.

  7. USSR Report. Space Biology and Aerospace Medicine. Volume 15, Number 4, July-August 1981.

    DTIC Science & Technology

    1981-09-28

    of 411 strains: 112 from saliva and 299 from feces. They con- sisted of 6 species: Lactobacillus acidophilus (58), L. salivarius (94), L. casei 48 (137...supspecies casei 70, subsp. rhamnosus 54, subsp. alactosus 13), L. plantarum (19), L. fermentum (62) and L. brevis (41).* Table 1. Characteristics...Oleandomycin " 15 Furadantin Lachema Co. 100 Table 2. We tested lactobacillus sensitivity to Evaluation of results 19 products (Table 1). We used the

  8. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain.

  9. Determination of the Use of Lactobacillus plantarum and Propionibacterium freudenreichii Application on Fermentation Profile and Chemical Composition of Corn Silage.

    PubMed

    Abdul Rahman, Norafizah; Abd Halim, Mohd Ridzwan; Mahawi, Noraniza; Hasnudin, Hazira; Al-Obaidi, Jameel R; Abdullah, Norhani

    2017-01-01

    Corn was inoculated with Lactobacillus plantarum and Propionibacterium freudenreichii subsp. shermanii either independently or as a mixture at ensiling, in order to determine the effect of bacterial additives on corn silage quality. Grain corn was harvested at 32-37% of dry matter and ensiled in a 4 L laboratory silo. Forage was treated as follows: bacterial types: B0 (without bacteria-control), B1 (L. plantarum) , B2 ( P. freudenreichii subsp. shermanii ), and B3 (combination of L. plantarum and P. freudenreichii subsp. shermanii ). Each 2 kg of chopped forage was treated with 10 mL of bacterial culture and allowed to ferment for 27 days. The first experiment determined the most suitable wavelength for detection of bacteria (490 nm and 419 nm for B1 and B2, resp.) and the preferable inoculation size (1 × 10 5  cfu/g). The second experiment analysed the effect of B1 and B2 applied singly or as a mixture on the fermentation characteristics and quality of corn silage. L. plantarum alone increased crude protein (CP) and reduced pH rapidly. In a mixture with P. freudenreichii , the final pH was the lowest compared to other treatments. As a mixture, inclusion of bacteria resulted in silage with lower digestibility than control. Corn silage treated with L. plantarum or P. freudenreichii either alone or mixed together produced desirable silage properties; however, this was not significantly better than untreated silage.

  10. Determination of the Use of Lactobacillus plantarum and Propionibacterium freudenreichii Application on Fermentation Profile and Chemical Composition of Corn Silage

    PubMed Central

    Abdul Rahman, Norafizah; Abd Halim, Mohd Ridzwan; Mahawi, Noraniza; Hasnudin, Hazira

    2017-01-01

    Corn was inoculated with Lactobacillus plantarum and Propionibacterium freudenreichii subsp. shermanii either independently or as a mixture at ensiling, in order to determine the effect of bacterial additives on corn silage quality. Grain corn was harvested at 32–37% of dry matter and ensiled in a 4 L laboratory silo. Forage was treated as follows: bacterial types: B0 (without bacteria-control), B1 (L. plantarum), B2 (P. freudenreichii subsp. shermanii), and B3 (combination of L. plantarum and P. freudenreichii subsp. shermanii). Each 2 kg of chopped forage was treated with 10 mL of bacterial culture and allowed to ferment for 27 days. The first experiment determined the most suitable wavelength for detection of bacteria (490 nm and 419 nm for B1 and B2, resp.) and the preferable inoculation size (1 × 105 cfu/g). The second experiment analysed the effect of B1 and B2 applied singly or as a mixture on the fermentation characteristics and quality of corn silage. L. plantarum alone increased crude protein (CP) and reduced pH rapidly. In a mixture with P. freudenreichii, the final pH was the lowest compared to other treatments. As a mixture, inclusion of bacteria resulted in silage with lower digestibility than control. Corn silage treated with L. plantarum or P. freudenreichii either alone or mixed together produced desirable silage properties; however, this was not significantly better than untreated silage. PMID:28503566

  11. Tulipa cinnabarina subsp. toprakii (Liliaceae), a new subspecies from southwestern Anatolia.

    PubMed

    Eker, İsmail; Yıldırım, Hasan; Altıoğlu, Yusuf

    2016-01-01

    A new subpecies, Tulipa cinnabarina subsp. toprakii subsp. nov. (Liliaceae) from Turkey is described. Diagnostic characters, descriptions, detailed illustrations, geographical distribution, conservation status and ecological observations on the new taxon are provided. It is also compared with the closely related Tulipa cinnabarina subsp. cinnabarina.

  12. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    PubMed Central

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity. PMID:29584690

  13. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  14. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus.

    PubMed

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-04-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.

  15. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats

    PubMed Central

    Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  16. Tulipa cinnabarina subsp. toprakii (Liliaceae), a new subspecies from southwestern Anatolia

    PubMed Central

    Eker, İsmail; Yıldırım, Hasan; Altıoğlu, Yusuf

    2016-01-01

    Abstract A new subpecies, Tulipa cinnabarina subsp. toprakii subsp. nov. (Liliaceae) from Turkey is described. Diagnostic characters, descriptions, detailed illustrations, geographical distribution, conservation status and ecological observations on the new taxon are provided. It is also compared with the closely related Tulipa cinnabarina subsp. cinnabarina. PMID:27698585

  17. Lactobacillus paracasei CNCM I-4034 and its culture supernatant modulate Salmonella-induced inflammation in a novel transwell co-culture of human intestinal-like dendritic and Caco-2 cells.

    PubMed

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gómez-Llorente, Carolina; Matencio, Esther; Romero, Fernando; Gil, Angel

    2015-04-01

    The action of probiotics has been studied in vitro in cells isolated from both mice and humans, particularly enterocytes (IECs), dendritic cells (DCs) and co-cultures of peripheral DCs and IECs. Peripheral DCs and murine DCs differ from human gut DCs, and to date there are no data on the action of any probiotic on co-cultured human IECs and human intestinal DCs. To address this issue, a novel transwell model was used. Human IECs (Caco-2 cells) grown in the upper chamber of transwell filters were co-cultured with intestinal-like human DCs grown in the basolateral compartment of the transwells. The system was apically exposed for 4 h to live probiotic L. paracasei CNCM I-4034 obtained from the faeces of breastfed infants or to its cell-free culture supernatant (CFS) and challenged with Salmonella typhi. The secretion of pro- and anti-inflammatory cytokines in the basolateral compartment was determined by immunoassay, and the DC expression pattern of 20 TLR signaling pathway genes was analysed by PCR array. The presence of the live probiotic alone significantly increased IL-1β, IL-6, IL-8, TGF-β2, RANTES and IP-10 levels and decreased IL-12p40, IL-10, TGF- β1 and MIP-1α levels. This release was correlated with a significant increase in the expression of almost all TLR signaling genes. By contrast, incubation of the co-culture with CFS increased IL-1β, IL-6, TGF-β2 and IP-10 production only when Salmonella was present. This induction was correlated with an overall decrease in the expression of all TLR genes except TLR9, which was strongly up-regulated. The data presented here clearly indicate that L. paracasei CNCM I-4034 significantly increases the release of pro-inflammatory cytokines, enhances TLR signaling pathway activation and stimulates rather than suppresses the innate immune system. Furthermore, our findings provide evidence that the effects of probiotics in the presence of IECs and DCs differ from the effects of probiotics on cultures of each cell type

  18. Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect.

    PubMed

    Presti, I; D'Orazio, G; Labra, M; La Ferla, B; Mezzasalma, V; Bizzaro, G; Giardina, S; Michelotti, A; Tursi, F; Vassallo, M; Di Gennaro, P

    2015-07-01

    Probiotic ingestion is recommended as a preventive approach to maintain the balance of the intestinal microbiota and to enhance the human well-being. During the whole life of each individual, the gut microbiota composition could be altered by lifestyle, diet, antibiotic therapies and other stress conditions, which may lead to acute and chronic disorders. Hence, probiotics can be administered for the prevention or treatment of some disorders, including lactose malabsorption, acute diarrhoea, irritable bowel syndrome, necrotizing enterocolitis and mild forms of inflammatory bowel disease. The probiotic-mediated effect is an important issue that needs to be addressed in relation to strain-specific probiotic properties. In this work, the probiotic properties of new Lactobacillus and Bifidobacterium strains were screened, and their effects in vitro were evaluated. They were screened for probiotic properties by determining their tolerance to low pH and to bile salts, antibiotic sensitivity, antimicrobial activity and vitamin B8, B9 and B12 production, and by considering their ability to increase the antioxidant potential and to modulate the inflammatory status of systemic-miming cell lines in vitro. Three out of the examined strains presenting the most performant probiotic properties, as Lactobacillus plantarum PBS067, Lactobacillus rhamnosus PBS070 and Bifidobacterium animalis subsp. lactis PBSO75, were evaluated for their effects also on human intestinal HT-29 cell line. The obtained results support the possibility to move to another level of study, that is, the oral administration of these probiotical strains to patients with acute and chronic gut disorders, by in vivo experiments.

  19. Effect of refrigerated storage on probiotic viability and the production and stability of antimutagenic and antioxidant peptides in yogurt supplemented with pineapple peel.

    PubMed

    Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N

    2015-09-01

    Fruit by-products are good resources of carbohydrates, proteins, vitamins, and minerals, which may function as growth nutrients for probiotic bacteria. This research aimed at evaluating effects of pineapple peel powder addition on the viability and activity of Lactobacillus acidophilus (ATCC 4356), Lactobacillus casei (ATCC393), and Lactobacillus paracasei ssp. paracasei (ATCC BAA52) in yogurts throughout storage at 4°C for 28d. Plain and probiotic yogurts supplemented with or without pineapple peel powder or inulin were prepared. The probiotic counts in supplemented yogurts at 28d of storage ranged from 7.68 and 8.03 log cfu/g, one log cycle higher compared with nonsupplemented control yogurt. Degree of proteolysis in synbiotic yogurts was significantly higher than plain yogurts and increased substantially during storage. Crude water-soluble peptide extract of the probiotic yogurt with peel possessed stronger antimutagenic and antioxidant activities [evaluated measuring reducing power and scavenging capacity of 1,1-diphenyl-2-picrylhydrazyl; 2,2'-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid), and hydroxyl radicals] than control and maintained during storage. Pineapple peel, a by-product of juice production, could be proposed as a prebiotic ingredient in the manufacture of yogurts with enhanced nutrition, and functionality. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Potential of functional strains, isolated from traditional Maasai milk, as starters for the production of fermented milks.

    PubMed

    Patrignani, Francesca; Lanciotti, Rosalba; Mathara, Julius Maina; Guerzoni, Maria Elisabetta; Holzapfel, Wilhelm H

    2006-03-01

    The purpose of this research was the evaluation of technological features and of the ability of functional LAB strains with desirable sensory characteristics, to produce fermented milk. Eight strains of Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus paracasei and Lactococcus lactis, isolated from Maasai traditional fermented milk in Kenya and previously tested for their probiotic properties, were selected for this investigation. Technological features such as growth kinetics in fresh heat-treated whole milk medium and survival in the final product during storage at 4 degrees C, were studied. The strains Lb. acidophilus BFE 6,059, Lb. paracasei BFE 5,264 and Lc. lactis BFE 6,049 showed the best potential and were thus selected for use as starter cultures in further trials with the objective to improve their technological performance and to optimise the sensory features of fermented milk obtained. The effects of fat (F), non-fat milk solids (S) and fermentation temperature (T), modulated according to a Central Composite Design, on fermentation rates and viability losses during refrigerated storage of the chosen starters, and on product texture parameters, were studied. From the data analysis, it was possible to select optimum conditions for enhancing positive sensory traits of final products and for improving the survival of these potentially probiotic cultures.

  1. Proposal to rename Carnobacterium inhibens as Carnobacterium inhibens subsp. inhibens subsp. nov. and description of Carnobacterium inhibens subsp. gilichinskyi subsp. nov., a psychrotolerant bacterium isolated from Siberian permafrost.

    PubMed

    Nicholson, Wayne L; Zhalnina, Kateryna; de Oliveira, Rafael R; Triplett, Eric W

    2015-02-01

    A novel, psychrotolerant facultative anaerobe, strain WN1359(T), was isolated from a permafrost borehole sample collected at the right bank of the Kolyma River in Siberia, Russia. Gram-positive-staining, non-motile, rod-shaped cells were observed with sizes of 1-2 µm long and 0.4-0.5 µm wide. Growth occurred in the range of pH 5.8-9.0 with optimal growth at pH 7.8-8.6 (pH optimum 8.2). The novel isolate grew at temperatures from 0-37 °C and optimal growth occurred at 25 °C. The novel isolate does not require NaCl; growth was observed between 0 and 8.8 % (1.5 M) NaCl with optimal growth at 0.5 % (w/v) NaCl. The isolate was a catalase-negative, facultatively anaerobic chemo-organoheterotroph that used sugars but not several single amino acids or dipeptides as substrates. The major metabolic end-product was lactic acid in the ratio of 86 % l-lactate : 14 % d-lactate. Strain WN1359(T) was sensitive to ampicillin, chloramphenicol, fusidic acid, lincomycin, monocycline, rifampicin, rifamycin SV, spectinomycin, streptomycin, troleandomycin and vancomycin, and resistant to nalidixic acid and aztreonam. The fatty acid content was predominantly unsaturated (70.2 %), branched-chain unsaturated (11.7 %) and saturated (12.5 %). The DNA G+C content was 35.3 mol% by whole genome sequence analysis. 16S rRNA gene sequence analysis showed 98.7 % sequence identity between strain WN1359(T) and Carnobacterium inhibens. Genome relatedness was computed using both Genome-to-Genome Distance Analysis (GGDA) and Average Nucleotide Identity (ANI), which both strongly supported strain WN1359(T) belonging to the species C. inhibens. On the basis of these results, the permafrost isolate WN1359(T) represents a novel subspecies of C. inhibens, for which the name Carnobacterium inhibens subsp. gilichinskyi subsp. nov. is proposed. The type strain is WN1359(T) ( = ATCC BAA-2557(T) = DSM 27470(T)). The subspecies Carnobacterium inhibens subsp. inhibens subsp. nov. is created automatically. An

  2. The first closed genome sequence of Campylobacter fetus subsp. venerealis biovar intermedius

    USDA-ARS?s Scientific Manuscript database

    Campylobacter fetus venerealis biovar intermedius is a variant of Campylobacter fetus subsp. venerealis, the causative agent of Bovine Genital Campylobacteriosis. In contrast to Campylobacter fetus subsp. venerealis which is restricted to the genital tract of cattle, Campylobacter fetus subsp. vener...

  3. Rejection of reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius using comparative genomics.

    PubMed

    Yang, Seung-Jo; Kim, Byung-Yong; Chun, Jongsik

    2017-11-01

    Lactobacillus bobalius, Lactobacillus kimchii and Lactobacillus paralimentarius belong to the genus Lactobacillus and show close phylogenetic relationships. In a previous study, L. bobalius and L. kimchii were proposed to be reclassified as later heterotypic synonyms of L. paralimentarius using high 16S rRNA gene sequence similarities (≥99.5 %) and DNA-DNA hybridization values (≥82 %). We determined high quality whole genome assemblies of the type strains of L. bobalius and L. kimchii, which were then compared with that of L. paralimentarius. Average nucleotide identity values among three genomes ranged from 91.4 to 92.3 % which are clearly below 95~96 %, the generally recognized cutoff value for bacterial species boundaries. On the basis of comparative genomic evidence, L. bobalius, L. kimchii, and L. paralimentarius should stand as separate species in the genus Lactobacillus. We therefore suggest rejecting the previous proposal to combine these three species into a single species.

  4. A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences.

    PubMed

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-06-01

    Species-specific primers targeting the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough. The 16S-23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388-1406 of the 16S rRNA gene and to positions 207-189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331). Clone libraries of the resulting amplicons were constructed using a pCR2.1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S-23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNA(Ile) and tRNA(Ala) genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested. Designed species-specific primers enable a rapid and accurate identification of L. mindensis, L. paralimentarius, L. panis, L. pontis and L. frumenti species among other lactobacilli. The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.

  5. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    PubMed

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  6. Regulation of the production of extracellular pectinase, cellulase, and protease in the soft rot bacterium Erwinia carotovora subsp. carotovora: evidence that aepH of E. carotovora subsp. carotovora 71 activates gene expression in E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Escherichia coli.

    PubMed Central

    Murata, H; Chatterjee, A; Liu, Y; Chatterjee, A K

    1994-01-01

    The production of pectolytic enzymes (pectate lyase [Pel] and polygalacturonase [Peh]), cellulase (Cel), and protease (Prt) is activated in the soft rot bacterium Erwinia carotovora subsp. carotovora by aepA (activator of extracellular protein production) and celery extract (Y. Liu, H. Murata, A. Chatterjee, and A. K. Chatterjee, Mol. Plant-Microbe Interact. 6:299-308, 1993). We recently isolated a new class of mutants of strain E. carotovora subsp. carotovora 71 which overproduces Pel, Peh, Cel, and Prt. From the overproducing strain AC5034, we identified an activator locus, designated aepH*, which stimulated Pel, Peh, Cel, and Prt production in E. carotovora subsp. carotovora 71 or its derivatives. The nucleotide sequence of the aepH* DNA segment revealed an open reading frame of 141 bp that could encode a small (5.45-kDa) highly basic (pI 11.7) protein of 47 amino acid residues. Analyses of deletions and MudI insertions indicated that the activator function required the 508-bp DNA segment which contains this open reading frame. The wild-type locus, aepH+, is localized within a DNA segment upstream of aepA. An AepH- strain constructed by exchanging aepH+ with aepH*::MudI was deficient in Pel, Peh, Cel, and Prt production; exoenzyme production was restored upon the introduction of a plasmid carrying aepH+ or aepH*. Plasmids carrying either aepH+ or aepH* activated the production of Pel-1, Peh-1, and Cel in Escherichia coli HB101 carrying the cognate genes. The aepH effect in E. coli was due to the activation of transcription, as indicated by assays of pel-1 and peh-1 mRNAs. The aepH+ and aepH* plasmids also stimulated Pel, Peh, Cel, and Prt production in other wild-type E. carotovora subsp. carotovora strains as well as in E. carotovora subsp. atroseptica. Although the stimulatory effect was generally more pronounced with aepH* than with aepH+, the extent of activation in the wild-type strains depended upon the bacterial strain and the growth medium. Southern blot

  7. Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655.

    PubMed

    Meng, Xiangfeng; Gangoiti, Joana; de Kok, Niels; van Leeuwen, Sander S; Pijning, Tjaard; Dijkhuizen, Lubbert

    2018-07-01

    Nine GtfB-like 4,6-α-glucanotransferases (4,6-α-GTs) (represented by GtfX of L. aviarius subsp. aviarius DSM 20655) were identified to show distinct characteristics in conserved motifs I-IV. In particular, the "fingerprint" Tyr in motif III of these nine GtfB-type 4,6-α-GTs was found to be replaced by a Trp. In L. aviarius subsp. aviarius DSM20655, a second GtfB-like protein (GtfY), containing the canonical GtfB Tyr residue in motif III, was located directly upstream of GtfX. Biochemical characterization revealed that both GtfX and GtfY showed GtfB-like 4,6-α-GT activity, cleaving (α1→4) linkages and catalyzing the synthesis of (α1→6) linkages. Nonetheless, they differ in product specificity; GtfY only synthesizes consecutive (α1→6) linkages, yielding linear α-glucan products, but GtfX catalyzes the synthesis of (α1→6) linkages predominantly at branch points (22%) rather than in linear segments (10%). The highly branched α-glucan produced by GtfX from amylose V is resistant to digestion by α-amylase, offering great potential as dietary fibers. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides.

    PubMed

    Knockaert, Dries; Raes, Katleen; Wille, Christophe; Struijs, Karin; Van Camp, John

    2012-08-30

    Food-isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L⁻¹), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4-vinylguaiacol (4-VG) and hydroferulic acid (HFA). Conversion to 4-VG started simultaneously with the degradation of FA, while formation of HFA started in the mid-exponential phase. Lactobacillus collinoides only formed 4-VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria. Copyright © 2012 Society of Chemical Industry.

  9. Comparative genomics of Lactobacillus

    PubMed Central

    Kant, Ravi; Blom, Jochen; Palva, Airi; Siezen, Roland J.; de Vos, Willem M.

    2011-01-01

    Summary The genus Lactobacillus includes a diverse group of bacteria consisting of many species that are associated with fermentations of plants, meat or milk. In addition, various lactobacilli are natural inhabitants of the intestinal tract of humans and other animals. Finally, several Lactobacillus strains are marketed as probiotics as their consumption can confer a health benefit to host. Presently, 154 Lactobacillus species are known and a growing fraction of these are subject to draft genome sequencing. However, complete genome sequences are needed to provide a platform for detailed genomic comparisons. Therefore, we selected a total of 20 genomes of various Lactobacillus strains for which complete genomic sequences have been reported. These genomes had sizes varying from 1.8 to 3.3 Mb and other characteristic features, such as G+C content that ranged from 33% to 51%. The Lactobacillus pan genome was found to consist of approximately 14 000 protein‐encoding genes while all 20 genomes shared a total of 383 sets of orthologous genes that defined the Lactobacillus core genome (LCG). Based on advanced phylogeny of the proteins encoded by this LCG, we grouped the 20 strains into three main groups and defined core group genes present in all genomes of a single group, signature group genes shared in all genomes of one group but absent in all other Lactobacillus genomes, and Group‐specific ORFans present in core group genes of one group and absent in all other complete genomes. The latter are of specific value in defining the different groups of genomes. The study provides a platform for present individual comparisons as well as future analysis of new Lactobacillus genomes. PMID:21375712

  10. Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.

    PubMed

    Do Carmo, A P; da Silva, D F; De Oliveira, M N V; Borges, A C; De Carvalho, A F; De Moraes, C A

    2011-09-01

    A basic requirement for the prediction of the potential use of lactic acid bacteria (LAB) in the dairy industry is the identification of specific genes involved in flavour-forming pathways. The probiotic Lactobacillus delbrueckii UFV H2b20 was submitted to a genetic characterisation and phylogenetic analysis of genes involved in protein catabolism. Eight genes belonging to this system were identified, which possess a closely phylogenetic relationship to NCFM strains representative, as it was demonstrated for oppC and oppBII, encoding oligopeptide transport system components. PepC, PepN, and PepX might be essential for growth of LAB, probiotic or not, since the correspondent genes are always present, including in L. delbrueckii UFV H2b20 genome. For pepX gene, a probable link between carbohydrate catabolism and PepX expression may exists, where it is regulated by PepR1/CcpA-like, a common feature between Lactobacillus strains and also in L. delbrueckii UFV H2b20. The well conserved evolutionary history of the ilvE gene is evidence that the pathways leading to branched-chain amino acid degradation, such as isoleucine and valine, are similar among L. delbrueckii subsp. bulgaricus strains and L. delbrueckii UFV H2b20. Thus, the involvement of succinate in flavour formation can be attributed to IlvE activity. The presence of aminopeptidase G in L. delbrueckii UFV H2b20 genome, which is absent in several strains, might improve the proteolytic activity and effectiveness. The nucleotide sequence encoding PepG revealed that it is a cysteine endopeptidase, belonging to Peptidase C1 superfamily; sequence analysis showed 99% identity with L. delbrueckii subsp. bulgaricus ATCC 11842 pepG, whereas protein sequence analysis revealed 100% similarity with PepG from the same organism. The present study proposes a schematic model to explain how the proteolytic system of the probiotic L. delbrueckii UFV H2b20 works, based on the components identified so far.

  11. Assessing the inactivation of Mycobacterium avium subsp. paratuberculosis during composting of livestock carcasses.

    PubMed

    Tkachuk, Victoria L; Krause, Denis O; McAllister, Tim A; Buckley, Katherine E; Reuter, Tim; Hendrick, Steve; Ominski, Kim H

    2013-05-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants, with substantial economic impacts on the cattle industry. Johne's disease is known for its long latency period, and difficulties in diagnosis are due to insensitivities of current detection methods. Eradication is challenging as M. avium subsp. paratuberculosis can survive for extended periods within the environment, resulting in new infections in naïve animals (W. Xu et al., J. Environ. Qual. 38:437-450, 2009). This study explored the use of a biosecure, static composting structure to inactivate M. avium subsp. paratuberculosis. Mycobacterium smegmatis was also assessed as a surrogate for M. avium subsp. paratuberculosis. Two structures were constructed to hold three cattle carcasses each. Naturally infected tissues and ground beef inoculated with laboratory-cultured M. avium subsp. paratuberculosis and M. smegmatis were placed in nylon and plastic bags to determine effects of temperature and compost environment on viability over 250 days. After removal, samples were cultured and growth of both organisms was assessed after 12 weeks. After 250 days, M. avium subsp. paratuberculosis was still detectable by PCR, while M. smegmatis was not detected after 67 days of composting. Furthermore, M. avium subsp. paratuberculosis remained viable in both implanted nylon and plastic bags over the composting period. As the compost never reached a homogenous thermophilic (55 to 65°C) state throughout each structure, an in vitro experiment was conducted to examine viability of M. avium subsp. paratuberculosis after exposure to 80°C for 90 days. Naturally infected lymph tissues were mixed with and without compost. After 90 days, M. avium subsp. paratuberculosis remained viable despite exposure to temperatures typically higher than that achieved in compost. In conclusion, it is unlikely composting can be used as a means of inactivating M. avium subsp. paratuberculosis associated with cattle

  12. Assessing the Inactivation of Mycobacterium avium subsp. paratuberculosis during Composting of Livestock Carcasses

    PubMed Central

    Tkachuk, Victoria L.; Krause, Denis O.; McAllister, Tim A.; Buckley, Katherine E.; Reuter, Tim; Hendrick, Steve

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants, with substantial economic impacts on the cattle industry. Johne's disease is known for its long latency period, and difficulties in diagnosis are due to insensitivities of current detection methods. Eradication is challenging as M. avium subsp. paratuberculosis can survive for extended periods within the environment, resulting in new infections in naïve animals (W. Xu et al., J. Environ. Qual. 38:437-450, 2009). This study explored the use of a biosecure, static composting structure to inactivate M. avium subsp. paratuberculosis. Mycobacterium smegmatis was also assessed as a surrogate for M. avium subsp. paratuberculosis. Two structures were constructed to hold three cattle carcasses each. Naturally infected tissues and ground beef inoculated with laboratory-cultured M. avium subsp. paratuberculosis and M. smegmatis were placed in nylon and plastic bags to determine effects of temperature and compost environment on viability over 250 days. After removal, samples were cultured and growth of both organisms was assessed after 12 weeks. After 250 days, M. avium subsp. paratuberculosis was still detectable by PCR, while M. smegmatis was not detected after 67 days of composting. Furthermore, M. avium subsp. paratuberculosis remained viable in both implanted nylon and plastic bags over the composting period. As the compost never reached a homogenous thermophilic (55 to 65°C) state throughout each structure, an in vitro experiment was conducted to examine viability of M. avium subsp. paratuberculosis after exposure to 80°C for 90 days. Naturally infected lymph tissues were mixed with and without compost. After 90 days, M. avium subsp. paratuberculosis remained viable despite exposure to temperatures typically higher than that achieved in compost. In conclusion, it is unlikely composting can be used as a means of inactivating M. avium subsp. paratuberculosis associated with cattle

  13. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T).

  14. Environmental Mycobacterium avium subsp. paratuberculosis hosted by free-living amoebae

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium avium subsp. paratuberculosis is responsible for paratuberculosis in animals. This disease, leading to an inflammation of the gastrointestinal tract, has a high impact on animal health and an important economic burden. The environmental life cycle of Mycobacterium avium subsp. paratube...

  15. Relationship between presence of cows with milk positive for Mycobacterium avium subsp. paratuberculosis-specific antibody by enzyme-linked immunosorbent assay and viable M. avium subsp. paratuberculosis in dust in cattle barns.

    PubMed

    Eisenberg, Susanne W F; Chuchaisangrat, Ruj; Nielen, Mirjam; Koets, Ad P

    2013-09-01

    Paratuberculosis, or Johne's disease, in cattle is caused by Mycobacterium avium subsp. paratuberculosis, which has recently been suspected to be transmitted through dust. This longitudinal study on eight commercial M. avium subsp. paratuberculosis-positive dairy farms studied the relationship between the number of cows with M. avium subsp. paratuberculosis antibody-positive milk and the presence of viable M. avium subsp. paratuberculosis in settled-dust samples, including their temporal relationship. Milk and dust samples were collected in parallel monthly for 2 years. M. avium subsp. paratuberculosis antibodies in milk were measured by enzyme-linked immunosorbent assay (ELISA) and used as a proxy for M. avium subsp. paratuberculosis shedding. Settled-dust samples were collected by using electrostatic dust collectors (EDCs) at six locations in housing for dairy cattle and young stock. The presence of viable M. avium subsp. paratuberculosis was identified by liquid culture and PCR. The results showed a positive relationship (odds ratio [OR], 1.2) between the number of cows with ELISA-positive milk and the odds of having positive EDCs in the same airspace as the adult dairy cattle. Moreover, the total number of lactating cows also showed an OR slightly above 1. This relationship remained the same for settled-dust samples collected up to 2 months before or after the time of milk sampling. The results suggest that removal of adult cows with milk positive for M. avium subsp. paratuberculosis-specific antibody by ELISA might result in a decrease in the presence of viable M. avium subsp. paratuberculosis in dust and therefore in the environment. However, this decrease is likely delayed by several weeks at least. In addition, the data support the notion that M. avium subsp. paratuberculosis exposure of young stock is reduced by separate housing.

  16. Relationship between Presence of Cows with Milk Positive for Mycobacterium avium subsp. paratuberculosis-Specific Antibody by Enzyme-Linked Immunosorbent Assay and Viable M. avium subsp. paratuberculosis in Dust in Cattle Barns

    PubMed Central

    Chuchaisangrat, Ruj; Nielen, Mirjam; Koets, Ad P.

    2013-01-01

    Paratuberculosis, or Johne's disease, in cattle is caused by Mycobacterium avium subsp. paratuberculosis, which has recently been suspected to be transmitted through dust. This longitudinal study on eight commercial M. avium subsp. paratuberculosis-positive dairy farms studied the relationship between the number of cows with M. avium subsp. paratuberculosis antibody-positive milk and the presence of viable M. avium subsp. paratuberculosis in settled-dust samples, including their temporal relationship. Milk and dust samples were collected in parallel monthly for 2 years. M. avium subsp. paratuberculosis antibodies in milk were measured by enzyme-linked immunosorbent assay (ELISA) and used as a proxy for M. avium subsp. paratuberculosis shedding. Settled-dust samples were collected by using electrostatic dust collectors (EDCs) at six locations in housing for dairy cattle and young stock. The presence of viable M. avium subsp. paratuberculosis was identified by liquid culture and PCR. The results showed a positive relationship (odds ratio [OR], 1.2) between the number of cows with ELISA-positive milk and the odds of having positive EDCs in the same airspace as the adult dairy cattle. Moreover, the total number of lactating cows also showed an OR slightly above 1. This relationship remained the same for settled-dust samples collected up to 2 months before or after the time of milk sampling. The results suggest that removal of adult cows with milk positive for M. avium subsp. paratuberculosis-specific antibody by ELISA might result in a decrease in the presence of viable M. avium subsp. paratuberculosis in dust and therefore in the environment. However, this decrease is likely delayed by several weeks at least. In addition, the data support the notion that M. avium subsp. paratuberculosis exposure of young stock is reduced by separate housing. PMID:23793639

  17. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus *

    PubMed Central

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-01-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage. PMID:24711354

  18. Thermal Inactivation of Mycobacterium avium subsp. paratuberculosis in Artificially Contaminated Milk by Direct Steam Injection

    PubMed Central

    Butot, Sophie; Jagadeesan, Balamurugan; Bakker, Douwe; Donaghy, John

    2016-01-01

    ABSTRACT The efficiency of direct steam injection (DSI) at 105°C for 3 s to inactivate Mycobacterium avium subsp. paratuberculosis in milk at a pilot-plant scale was investigated. Milk samples were artificially contaminated with M. avium subsp. paratuberculosis and also with cow fecal material naturally infected with M. avium subsp. paratuberculosis. We also tested milk artificially contaminated with Mycobacterium smegmatis as a candidate surrogate to compare thermal inactivation between M. smegmatis and M. avium subsp. paratuberculosis. Following the DSI process, no viable M. avium subsp. paratuberculosis or M. smegmatis was recovered using culture methods for both strains. For pure M. avium subsp. paratuberculosis cultures, a minimum reduction of 5.6 log10 was achieved with DSI, and a minimum reduction of 5.7 log10 was found with M. smegmatis. The minimum log10 reduction for wild-type M. avium subsp. paratuberculosis naturally present in feces was 3.3. In addition, 44 dairy and nondairy powdered infant formula (PIF) ingredients used during the manufacturing process of PIF were tested for an alternate source for M. avium subsp. paratuberculosis and were found to be negative by quantitative PCR (qPCR). In conclusion, the results obtained from this study indicate that a >7-fold-log10 reduction of M. avium subsp. paratuberculosis in milk can be achieved with the applied DSI process. IMPORTANCE M. avium subsp. paratuberculosis is widespread in dairy herds in many countries. M. avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle, and infected animals can directly or indirectly (i.e., fecal contamination) contaminate milk. Despite much research and debate, there is no conclusive evidence that M. avium subsp. paratuberculosis is a zoonotic bacterium, i.e., one that causes disease in humans. The presence of M. avium subsp. paratuberculosis or its DNA has been reported in dairy products, including pasteurized milk, cheese, and infant formula

  19. Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture.

    PubMed

    Falentin, Hélène; Postollec, Florence; Parayre, Sandrine; Henaff, Nadine; Le Bivic, Pierre; Richoux, Romain; Thierry, Anne; Sohier, Danièle

    2010-11-15

    Bacterial communities of fermented foods are usually investigated by culture-dependent methods. Real-time quantitative PCR (qPCR) and reverse transcription (RT)-qPCR offer new possibilities to quantify the populations present and their metabolic activity. The aim of this work was to develop qPCR and RT-qPCR methods to assess the metabolic activity and the stress level of the two species used as ripening cultures in Emmental cheese manufacture, Propionibacterium freudenreichii and Lactobacillus paracasei. Three small scale (1/100) microbiologically controlled Emmental cheeses batches were manufactured and inoculated with Lactobacillus helveticus, Streptococcus thermophilus, P. freudenreichii and L. paracasei. At 12 steps of cheese manufacture and ripening, the populations of P. freudenreichii and L. paracasei were quantified by numerations on agar media and by qPCR. 16S, tuf and groL transcript levels were quantified by RT-qPCR. Sampling was carried out in triplicate. qPCR and RT-qPCR assessments were specific, efficient and linear. The quantification limit was 10(3) copies of cells or cDNA/g of cheese. Cell quantifications obtained by qPCR gave similar results than plate count for P. freudenreichii growth and 0.5 to 1 log lower in the stationary phase. Bacterial counts and qPCR quantifications showed that L. paracasei began to grow during the pressing step while P. freudenreichii began to grow from the beginning of ripening (in the cold room). Tuf cDNA quantification results suggested that metabolic activity of L. paracasei reached a maximum during the first part of the ripening (in cold room) and decreased progressively during ripening (in the warm room). Metabolic activity of P. freudenreichii was maximum at the end of cold ripening room and was stable during the first two weeks in warm room. After lactate exhaustion (after two weeks of warm room), the number of tuf cDNA decreased reflecting reduced metabolic activity. For L. paracasei, groL cDNA were stable

  20. [Chalcones from Bauhinia glauca subsp. pernervosa].

    PubMed

    Wu, Zengbao; Wang, Bin; Zhao, Yuying; Yang, Xiuwei; Liang, Hong

    2009-07-01

    To study the chemical constituents of Bauhinia glauca subsp. pernervosa. The coulis of B. glauca subsp. pernervosa were extracted with 95% EtOH at room temperature. The compounds were isolated and separated by chromatographic techniques, and structures were identified by spectroscopic methods. Seven chalcones were isolated and identified: butein-4-methyl ether (1), isoliquiritigenin (2), butein (3), isoliquiritigenin-2'-methyl ether (4), 2',4'-dihydroxychalcone (5), isoliquiritigenin-4-methyl ether (6), 4-hydroxy-2',4'-dimethoxychalcone (7). Compounds 1, 3, and 7 were isolated from the genus Bauhinia for the first time, the other compounds were obtained from this plant for the first time.

  1. Dynamic analysis of Lactobacillus delbrueckii subsp. bulgaricus CFL1 physiological characteristics during fermentation.

    PubMed

    Rault, Aline; Bouix, Marielle; Béal, Catherine

    2008-12-01

    This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.

  2. Antioxidant activity profiling by spectrophotometric methods of aqueous methanolic extracts of Helichrysum stoechas subsp. rupestre and Phagnalon saxatile subsp. saxatile.

    PubMed

    Haddouchi, Farah; Chaouche, Tarik Mohammed; Ksouri, Riadh; Medini, Faten; Sekkal, Fatima Zohra; Benmansour, Abdelhafid

    2014-06-01

    The aqueous methanolic extracts of two plants from Algeria, Helichrysum stoechas subsp. rupestre and Phagnalon saxatile subsp. saxatile, were investigated for their antioxidant activity. Total phenolics, flavonoids, and tannins were determined by spectrophotometric techniques. In vitro antioxidant and radical scavenging profiling was determined by spectrophotometric methods, through: Total antioxidant capacity, and radical scavenging effects by the DPPH and ABTS methods, reducing and chelating power, and blanching inhibition of the β-carotene. All of the extracts showed interesting antioxidant and radical scavenging activity. The highest contents in phenolics, tannins, and the highest total antioxidant capacity as gallic acid equivalents of 97.5 ± 0.33 mg GAE/g DW was obtained for the flowers of H. stoechas subsp. rupestre extract in the phosphomolybdenum assay. An extract of the leafy stems of P. saxatile subsp. saxatile revealed the highest content of flavonoids, and the highest antioxidant activity by the radical scavenging and β-carotene assays when compared with standards. The best activity was by the scavenging radical DPPH with an IC50 value of 5.65 ± 0.10 μg·mL(-1). The studied medicinal plants could provide scientific evidence for some traditional uses in the treatment of diseases related to the production of reactive oxygen species (ROS) and oxidative stress. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  3. Bioluminescence imaging of Clavibacter michiganensis subsp. michiganensis infection of tomato seeds and plants.

    PubMed

    Xu, Xiulan; Miller, Sally A; Baysal-Gurel, Fulya; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Rajashekara, Gireesh

    2010-06-01

    Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the

  4. Specific 16S ribosomal RNA targeted oligonucleotide probe against Clavibacter michiganensis subsp. sepedonicus.

    PubMed

    Mirza, M S; Rademaker, J L; Janse, J D; Akkermans, A D

    1993-11-01

    In this article we report on the polymerase chain reaction amplification of a partial 16S rRNA gene from the plant pathogenic bacterium Clavibacter michiganensis subsp. sepedonicus. A partial sequence (about 400 base pairs) of the gene was determined that covered two variable regions important for oligonucleotide probe development. A specific 24mer oligonucleotide probe targeted against the V6 region of 16S rRNA was designed. Specificity of the probe was determined using dot blot hybridization. Under stringent conditions (60 degrees C), the probe hybridized with all 16 Cl. michiganensis subsp. sepedonicus strains tested. Hybridization did not occur with 32 plant pathogenic and saprophytic bacteria used as controls under the same conditions. Under less stringent conditions (55 degrees C) the related Clavibacter michiganensis subsp. insidiosus, Clavibacter michiganensis subsp. nebraskensis, and Clavibacter michiganensis subsp. tesselarius also showed hybridization. At even lower stringency (40 degrees C), all Cl. michiganensis subspecies tested including Clavibacter michiganensis subsp. michiganensis showed hybridization signal, suggesting that under these conditions the probe may be used as a species-specific probe for Cl. michiganensis.

  5. The in vitro effect of six antimicrobials against Mycoplasma putrefaciens, Mycoplasma mycoides subsp. mycoides LC and Mycoplasma capricolum subsp. capricolum isolated from sheep and goats in Jordan.

    PubMed

    Al-Momani, W; Nicholas, R A J; Janakat, S; Abu-Basha, E; Ayling, R D

    2006-01-01

    Respiratory disease in sheep and goats is a major problem in Jordan and is often associated with Mycoplasma species. Without effective vaccines, control is mainly by chemotherapy, but the uncontrolled use of antimicrobials has led to concerns about the potential development of antimicrobial resistance. The in vitro effect of chloramphenicol, florfenicol, enrofloxacin, tylosin, erythromycin and oxytetracycline was determined against 32 isolates of Mycoplasma species-M. mycoides subsp. mycoides LC (6), M. capricolum subsp. capricolum (8) and M. putrefaciens (18), all isolated from either nasal swabs or milk, from sheep and goats in different regions of Jordan. The antimicrobial susceptibility showed some Mycoplasma species-specific differences, with M. capricolum subsp. capricolum being more susceptible to tylosin and erythromycin. Chloramphenicol and florfenicol were the least effective for all three Mycoplasma species. No trends or significant differences in antimicrobial susceptibilities were observed between sheep and goat isolates, between milk or nasal swab isolates, or between isolates from different regions of Jordan. Some isolates of M. capricolum subsp. capricolum and M. putrefaciens showed higher MIC levels with oxytetracycline, as did two isolates of M. mycoides subsp. mycoides LC with tylosin, possibly indicating signs of development of antimicrobial resistance.

  6. β-Glucuronidase and β-glucosidase activity and human fecal water genotoxicity in the presence of probiotic lactobacilli and the heterocyclic aromatic amine IQ in vitro.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna

    2014-01-01

    The aim of the study was to assess the genotoxicity of fecal water (FW) and the activity of fecal enzymes (β-glucuronidase and β-glucosidase) after incubation with 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) and probiotic lactobacilli: Lb. casei 0900, Lb. casei 0908, and Lb. paracasei 0919. Our results show that the carcinogen IQ greatly increased FW genotoxicity (up to 16.92 ± 3.03 U/mg) and the activity of fecal enzymes (up to even 1.4 ± 0.16 U/mg) in 15 individuals (children, adults and elderly). After incubation with IQ, the activity of β-glucuronidase was reduced by Lactobacillus bacteria by 76.0% (Lb. paracasei 0908) in the FW of children, and by 82.0% (Lb. paracasei 0919) in the elderly; while that of β-glucosidase was reduced by 55.0% in children (Lb. casei 0908) and 90.0% (Lb. paracasei 0919) in elderly subjects. Lactobacilli decreased the genotoxicity of FW after incubation with IQ to the greatest extent in adults (by 64.5%). Probiotic lactobacilli, in the presence of IQ, efficiently inhibits activity of fecal enzymes to the level of control. Genotoxicity inhibition depends on the person's age, its individual microbiota and diet. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice

    PubMed Central

    Wang, Jingjing; Tang, Huang; Zhang, Chenhong; Zhao, Yufeng; Derrien, Muriel; Rocher, Emilie; van-Hylckama Vlieg, Johan ET; Strissel, Katherine; Zhao, Liping; Obin, Martin; Shen, Jian

    2015-01-01

    Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice. PMID:24936764

  8. Lactobacillus hammesii sp. nov., isolated from French sourdough.

    PubMed

    Valcheva, Rosica; Korakli, Maher; Onno, Bernard; Prévost, Hervé; Ivanova, Iskra; Ehrmann, Matthias A; Dousset, Xavier; Gänzle, Michael G; Vogel, Rudi F

    2005-03-01

    Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38(T) and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA-DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38(T) (=DSM 16381(T)=CIP 108387(T)=TMW 1.1236(T)).

  9. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana.

    PubMed

    Escalante-Minakata, P; Blaschek, H P; Barba de la Rosa, A P; Santos, L; De León-Rodríguez, A

    2008-06-01

    To identify the yeast and bacteria present in the mezcal fermentation from Agave salmiana. The restriction and sequence analysis of the amplified region, between 18S and 28S rDNA and 16S rDNA genes, were used for the identification of yeast and bacteria, respectively. Eleven different micro-organisms were identified in the mezcal fermentation. Three of them were the following yeast: Clavispora lusitaniae, Pichia fermentans and Kluyveromyces marxianus. The bacteria found were Zymomonas mobilis subsp. mobilis and Zymomonas mobilis subsp. pomaceae, Weissella cibaria, Weissella paramesenteroides, Lactobacillus pontis, Lactobacillus kefiri, Lactobacillus plantarum and Lactobacillus farraginis. The phylogenetic analysis of 16S rDNA and ITS sequences showed that microbial diversity present in mezcal is dominated by bacteria, mainly lactic acid bacteria species and Zymomonas mobilis. Pichia fermentans and K. marxianus could be micro-organisms with high potential for the production of some volatile compounds in mezcal. We identified the community of bacteria and yeast present in mezcal fermentation from Agave salmiana.

  10. Isolation and identification of a novel bacterium, Lactobacillus sakei subsp. dgh strain 5, and optimization of growth condition for highest antagonistic activity.

    PubMed

    Tashakor, Amin; Hosseinzadehdehkordi, Mahshid; Emruzi, Zeynab; Gholami, Dariush

    2017-05-01

    In the present study, we isolated Lactobacillus sakei strain DGH5 from raw beef meat. This bacterium plays an inhibitory effect against food-spoiling bacteria and food-borne pathogens, including Listeria monocytogenes, a gram-positive and pathogenic bacterium. Lactobacillus sakei strain DGH5 was identified through both phenotypical and biochemical tests accompanied with 16S rRNA sequence analysis. Among all the sources of carbon, nitrogen and phosphorous forms, we selected the most potent compounds to optimize the condition for the highest antagonistic activity. Among the sugars, polygalacturonic acid demonstrated to improve the antagonistic activity. Ammonium nitrate demonstrated to be suitable nitrogen sources. Amongst phosphorous sources, disodium hydrogen phosphate had the greatest antagonistic effect. According to Taguchi's orthogonal array, temperature, disodium hydrogen phosphate and soy Peptone had significant effect on antagonistic activity. Furthermore, mean comparisons showed that the optimum conditions achieved at pH 6.0, 25 °C temperature, 1.5% (w/v) Na 2 HPO 4 and 0.5% (w/v) peptone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties.

    PubMed

    Klopper, Kyle B; Deane, Shelly M; Dicks, Leon M T

    2018-03-01

    Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).

  12. Host Responses to the Pathogen Mycobacterium avium subsp. paratuberculosis and Beneficial Microbes Exhibit Host Sex Specificity

    PubMed Central

    McMahon, K. Wyatt; Chang, David; Brashears, Mindy M.

    2014-01-01

    Differences between microbial pathogenesis in male and female hosts are well characterized in disease conditions connected to sexual transmission. However, limited biological insight is available on variances attributed to sex specificity in host-microbe interactions, and it is most often a minimized variable outside these transmission events. In this work, we studied two gut microbes—a pathogen, Mycobacterium avium subsp. paratuberculosis, and a probiotic, Lactobacillus animalis NP-51—and the interaction between each agent and the male and female gastrointestinal systems. This trial was conducted in BALB/c mice (n = 5 per experimental group and per sex at a given time point), with analysis at four time points over 180 days. Host responses to M. avium subsp. paratuberculosis and L. animalis were sensitive to sex. Cytokines that were significantly different (P ≤ 0.05) between the sexes included interleukin-1α/β (IL-1α/β), IL-17, IL-6, IL-10, IL-12, and gamma interferon (IFN-γ) and were dependent on experimental conditions. However, granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and IL-13/23 showed no sex specificity. A metabolomics study indicated a 0.5- to 2.0-fold (log2 scale) increase in short-chain fatty acids (butyrate and acetate) in males and greater increases in o-phosphocholine or histidine from female colon tissues; variances distinct to each sex were observed with age or long-term probiotic consumption. Two genera, Staphylococcus and Roseburia, were consistently overrepresented in females compared to males; other species were specific to one sex but fluctuated depending on experimental conditions. The differences observed suggest that male and female gut tissues and microbiota respond to newly introduced microorganisms differently and that gut-associated microorganisms with host immune system responses and metabolic activity are supported by biology distinct to the host sex. PMID:24814797

  13. Bioluminescence Imaging of Clavibacter michiganensis subsp. michiganensis Infection of Tomato Seeds and Plants ▿

    PubMed Central

    Xu, Xiulan; Miller, Sally A.; Baysal-Gurel, Fulya; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Rajashekara, Gireesh

    2010-01-01

    Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the

  14. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2013-11-01

    A Gram-stain-positive bacterial strain, S4-3(T), was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain S4-3(T) showed 97.9-98.7 % 16S rRNA gene sequence similarities, 84.4-94.1 % pheS gene sequence similarities and 94.4-96.9 % rpoA gene sequence similarities to the type strains of Lactobacillus nantensis, Lactobacillus mindensis, Lactobacillus crustorum, Lactobacillus futsaii, Lactobacillus farciminis and Lactobacillus kimchiensis. dnaK gene sequence similarities between S4-3(T) and Lactobacillus nantensis LMG 23510(T), Lactobacillus mindensis LMG 21932(T), Lactobacillus crustorum LMG 23699(T), Lactobacillus futsaii JCM 17355(T) and Lactobacillus farciminis LMG 9200(T) were 95.4, 91.5, 90.4, 91.7 and 93.1 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus heilongjiangensis sp. nov., is proposed and the type strain is S4-3(T) ( = LMG 26166(T) = NCIMB 14701(T)).

  15. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses.

    PubMed

    Mucchetti, G; Locci, F; Massara, P; Vitale, R; Neviani, E

    2002-10-01

    Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.

  16. Eruca sativa might influence the growth, survival under simulated gastrointestinal conditions and some biological features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus strains.

    PubMed

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-10-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power.

  17. Eruca sativa Might Influence the Growth, Survival under Simulated Gastrointestinal Conditions and Some Biological Features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus Strains

    PubMed Central

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-01-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power. PMID:25275269

  18. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    PubMed

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  19. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens

    PubMed Central

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-01-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis (Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis (Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment. PMID:28580872

  20. In vitro antagonistic growth effects of Lactobacillus fermentum and lactobacillus salivarius and their fermentative broth on periodontal pathogens.

    PubMed

    Chen, Ling-Ju; Tsai, Hsiu-Ting; Chen, Wei-Jen; Hsieh, Chu-Yang; Wang, Pi-Chieh; Chen, Chung-Shih; Wang, Lina; Yang, Chi-Chiang

    2012-10-01

    As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis in vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, although different inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health.

  1. A Proteomic Study of Clavibacter Michiganensis Subsp. Michiganensis Culture Supernatants

    PubMed Central

    Hiery, Eva; Poetsch, Ansgar; Moosbauer, Tanja; Amin, Bushra; Hofmann, Jörg; Burkovski, Andreas

    2015-01-01

    Clavibacter michiganensis, subsp. michiganensis is a Gram-positive plant pathogen infecting tomato (Solanum lycopersicum). Despite a considerable economic importance due to significant losses of infected plants and fruits, knowledge about virulence factors of C. michiganensis subsp. michiganensis and host-pathogen interactions on a molecular level are rather limited. In the study presented here, the proteome of culture supernatants from C. michiganensis subsp. michiganensis NCPPB382 was analyzed. In total, 1872 proteins were identified in M9 and 1766 proteins in xylem mimicking medium. Filtration of supernatants before protein precipitation reduced these to 1276 proteins in M9 and 976 proteins in the xylem mimicking medium culture filtrate. The results obtained indicate that C. michiganensis subsp. michiganensis reacts to a sucrose- and glucose-depleted medium similar to the xylem sap by utilizing amino acids and host cell polymers as well as their degradation products, mainly peptides, amino acids and various C5 and C6 sugars. Interestingly, the bacterium expresses the previously described virulence factors Pat-1 and CelA not exclusively after host cell contact in planta but already in M9 minimal and xylem mimicking medium. PMID:28248277

  2. Phenotypic and Genotypic Characterization of Non-Starter Lactic Acid Bacteria in Mature Cheddar Cheese

    PubMed Central

    Fitzsimons, N. A.; Cogan, T. M.; Condon, S.; Beresford, T.

    1999-01-01

    Non-starter lactic acid bacteria were isolated from 14 premium-quality and 3 sensorially defective mature Irish Cheddar cheeses, obtained from six manufacturers. From countable plates of Lactobacillus-selective agar, 20 single isolated colonies were randomly picked per cheese. All 331 viable isolates were biochemically characterized as mesophilic (i.e., group II) Lactobacillus spp. Phenotypically, the isolates comprised 96.4% L. paracasei, 2.1% L. plantarum, 0.3% L. curvatus, 0.3% L. brevis, and 0.9% unidentified species. Randomly amplified polymorphic DNA (RAPD) analysis was used to rapidly identify the dominant strain groups in nine cheeses from three of the factories, and through clustering by the unweighted pair group method with arithmetic averages, an average of seven strains were found per cheese. In general, strains isolated from cheese produced at the same factory clustered together. The majority of isolates associated with premium-quality cheese grouped together and apart from clusters of strains from defective-quality cheese. No correlation was found between the isomer of lactate produced and RAPD profiles, although isolates which did not ferment ribose clustered together. The phenotypic and genotypic methods employed were validated with a selection of 31 type and reference strains of mesophilic Lactobacillus spp. commonly found in Cheddar cheese. RAPD analysis was found to be a useful and rapid method for identifying isolates to the species level. The low homology exhibited between RAPD banding profiles for cheese isolates and collection strains demonstrated the heterogeneity of the L. paracasei complex. PMID:10427029

  3. Quantification of the Sensitivity of Mycobacterium avium subsp paratuberculosis and Salmonella enterica subsp enterica to Low pH and High Organic Acids using Propidium Monoazide and Quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium avium subsp paratuberculosis (Map) and Salmonella enterica subsp enterica (S. enterica) are two pathogens that are a concern to food and animal safety due to their ability to withstand harsh conditions encountered in the natural environment and within the host during pathogenesis. Acid...

  4. Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., isolated from silage.

    PubMed

    Tohno, Masanori; Tanizawa, Yasuhiro; Irisawa, Tomohiro; Masuda, Takaharu; Sakamoto, Mitsuo; Arita, Masanori; Ohkuma, Moriya; Kobayashi, Hisami

    2017-09-01

    Three Gram-stain positive, non-motile, non-spore-forming, catalase-negative and rod-shaped bacterial strains (IWT5T, IWT25T and IWT140), isolated from silage, were investigated by using a polyphasic taxonomic approach. Strains IWT5T and IWT25T grew at 10-37 °C and 30-37 °C, and at pH 4.0-7.5 and 4.0-7.0, respectively. The G+C contents of genomic DNA of strains IWT5T and IWT25T were 43.2 and 44.4 mol%, respectively. Strains IWT5T and IWT25T contained C16 : 0, C18 : 1 ω9c and summed feature 7 (unknown 18.846/C19 : 1 ω6c/C19 : 0cyclo ω10c) as the major fatty acids. Strain IWT5T was most closely related to the type strains of Lactobacillus mixtipabuli (99.9 % 16S rRNA gene sequence similarity) and Lactobacillus silagei (99.5 %). For IWT25T, the 16S rRNA gene sequence similarities with the closely related neighbour type strains L. mixtipabuli and L. silagei were 99.5 and 99.5 %, respectively. The 16S rRNA gene sequence similarities among the three novel isolates were 99.5-99.9 %. The average nucleotide identities of strains IWT5T and IWT25T to other neighbours of the genus Lactobacillus were less than 82 % and the genomes of IWT25T and IWT140 shared 97.3 % average nucleotide identity, demonstrating that the three strains were allocated to two different novel species of the genus Lactobacillus. Together with multilocus sequence analysis, phenotypic and chemotaxonomic characteristics, strains IWT5T (=JCM 31144T=DSM 102973T) and IWT25T (=JCM 31145T=DSM 102974T) are proposed as the type strains of novel species of the genus Lactobacillus, with the names Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., respectively.

  5. Disparate host immunity to Mycobacterium avium subsp. paratuberculosis antigens in calves inoculated with M. avium subsp. paratuberculosis, M. avium subsp. avium, M. kansasii and M. bovis

    USDA-ARS?s Scientific Manuscript database

    Cross-reactivity of mycobacterial antigens in immune-based diagnostic assays has been a major concern and criticism of current tests for the detection of paratuberculosis. In the present study, host immune responses to antigen preparations of Mycobacterium avium subsp. paratuberculosis (MAP), consis...

  6. Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt.

    PubMed

    Settachaimongkon, Sarn; van Valenberg, Hein J F; Gazi, Inge; Nout, M J Robert; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J

    2016-10-01

    The objectives of this study were to evaluate the growth and survival of the model probiotic strain Lactobacillus plantarum WCFS1 in co-culture with traditional yoghurt starters and to investigate the impact of preculturing on their survival and metabolite formation in set-yoghurt. L. plantarum WCFS1 was precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor before inoculation in milk. Adaptive responses of L. plantarum WCFS1 were evaluated by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated that sublethal preculturing did not significantly affect survival of L. plantarum WCFS1. On the other hand, incorporation of sublethally precultured L. plantarum WCFS1 significantly impaired the survival of Lactobacillus delbrueckii subsp. bulgaricus which consequently reduced the post-acidification of yoghurt during refrigerated storage. A complementary metabolomics approach using headspace SPME-GC/MS and (1)H NMR combined with multivariate statistical analysis revealed substantial impact of sublethally precultured L. plantarum WCFS1 on the metabolite profiles of set-yoghurt. This study provides insight in the technological implications of non-dairy model probiotic strain L. plantarum WCFS1, such as its good stability in fermented milk and the inhibitory effect on post-acidification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases.

    PubMed

    Rossetti, Lia; Giraffa, Giorgio

    2005-11-01

    About a thousand lactic acid bacteria (LAB) isolated from dairy products, especially cheeses, were identified and typed by species-specific PCR and RAPD-PCR, respectively. RAPD-PCR profiles, which were obtained by using the M13 sequence as a primer, allowed us to implement a large database of different fingerprints, which were analysed by BioNumerics software. Cluster analysis of the combined RAPD-PCR fingerprinting profiles enabled us to implement a library, which is a collection of library units, which in turn is a selection of representative database entries. A library unit, in this case, can be considered to be a definable taxon. The strains belonged to 11 main RAPD-PCR fingerprinting library units identified as Lactobacillus casei/paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Enterococcus faecium, Enterococcus faecalis, Streptococcus thermophilus and Lactococcus lactis. The possibility to routinely identify newly typed, bacterial isolates by consulting the library of the software was valued. The proposed method could be suggested to refine previous strain identifications, eliminate redundancy and dispose of a technologically useful LAB strain collection. The same approach could also be applied to identify LAB strains isolated from other food ecosystems.

  8. Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp. sepedonicus.

    PubMed

    Lee, I M; Bartoszyk, I M; Gundersen, D E; Mogen, B; Davis, R E

    1997-07-01

    Oligonucleotide primers derived from sequences of the 16S rRNA gene (CMR16F1, CMR16R1, CMR16F2, and CMR16R2) and insertion element IS1121 of Clavibacter michiganensis subsp. sepedonicus (CMSIF1, CMSIR1, CMSIF2, and CMISR2) were used in nested PCR to detect the potato ring rot bacterium C. michiganensis subsp. sepedonicus. Nested PCR with primer pair CMSIF1-CMSIR1 followed by primer pair CMSIF2-CMSIR2 specifically detected C. michiganensis subsp. sepedonicus, while nested PCR with CMR16F1-CMR16R1 followed by CMR16F2-CMR16R2 detected C. michiganensis subsp. sepedonicus and the other C. michiganensis subspecies. In the latter case, C. michiganensis subsp. sepedonicus can be differentiated from the other subspecies by restriction fragment length polymorphism (RFLP) analyses of the nested PCR products (16S rDNA sequences). The nested PCR assays developed in this work allow ultrasensitive detection of very low titers of C. michiganensis subsp. sepedonicus which may be present in symptomiess potato plants or tubers and which cannot be readily detected by direct PCR (single PCR amplification). RFLP analysis of PCR products provides for an unambiguous confirmation of the identify of C. michiganensis subsp. sepedonicus.

  9. In Vitro Antiproliferative Activity of Extracts of Carlina acaulis subsp. caulescens and Carlina acanthifolia subsp. utzka

    PubMed Central

    Strzemski, Maciej; Wojnicki, Kamil; Sowa, Ireneusz; Wojas-Krawczyk, Kamila; Krawczyk, Paweł; Kocjan, Ryszard; Such, Justyna; Latalski, Michał; Wnorowski, Artur; Wójciak-Kosior, Magdalena

    2017-01-01

    Various species of the Carlina genus have been used in traditional medicine in many countries to treat numerous skin disorders, including cancer. The objective of this work was to assess the anticancer properties of root and leaf extracts from Carlina acaulis subsp. caulescens and C. acanthifolia subsp. utzka. Anti-tumor properties of the extracts were explored using a tetrazolium-based cell viability assay and flow cytometric apoptosis analysis, followed by immunodetection of phosphoactive ERK1/2 in UACC-903, C32, and UACC-647 human melanoma cell lines. Normal human fibroblasts were used as a control. Leaf extracts inhibited the viability of all tested melanoma cell lines in a dose-dependent fashion while the fibroblasts were less sensitive to such extract. The root extracts inhibited the proliferation of UACC-903 and UACC-647 cells only at the highest doses (300 μg/mL). However, the C32 and fibroblast cells exhibited an increase in the cellular proliferation rate and no caspase activity was observed in response to the root extracts (100 μg/mL). An increase in caspase activity was observed in melanoma cells treated with the leaf extracts of both Carlina species. Leaf extracts from C. acaulis subsp. caulescens (100 μg/mL) inhibited proliferatory ERK1/2 in UACC-903 and C32 cells, as demonstrated by the decrease in ERK1/2 phosphorylation. No reduction in phospho-ERK1/2 was observed in the tested cell lines treated with the root extracts, apart from UACC-647 after incubation with the C. acanthifolia subsp. utzka root extract (100 μg/mL). There was no change in ERK1/2 phosphorylation in the fibroblasts. The extracts from the leaves and roots were analyzed by HPLC and the analysis showed the presence of triterpenes and phenolic acids as the main extract components. The research demonstrated that the extracts from the leaves of the plants were cytotoxic against the human melanoma line and induced apoptosis of the cells. The triterpene fraction present in the tested

  10. Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper.

    PubMed

    Oh, Eom-Ji; Bae, Chungyun; Lee, Han-Beoyl; Hwang, In Sun; Lee, Hyok-In; Yea, Mi Chi; Yim, Kyu-Ock; Lee, Seungdon; Heu, Sunggi; Cha, Jae-Soon; Oh, Chang-Sik

    2016-10-01

    Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).

  11. Lactobacillus allii sp. nov. isolated from scallion kimchi.

    PubMed

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-12-01

    A novel strain of lactic acid bacteria, WiKim39 T , was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39 T belonged to the genus Lactobacillus, and shared 97.1-98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39 T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39 T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39 T (=KCTC 21077 T =JCM 31938 T ).

  12. Lactobacillus allii sp. nov. isolated from scallion kimchi

    PubMed Central

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-01-01

    A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1–98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T). PMID:29043955

  13. Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl.

    PubMed Central

    Luechtefeld, N A; Blaser, M J; Reller, L B; Wang, W L

    1980-01-01

    Since the sources from which humans acquire Campylobacter enteritis are only partially known, we studied the frequency of carriage of Campylobacter fetus subsp. jejuni in migratory waterfowl. Cecal contents of various species of wild ducks were cultured on selective media that contained antibiotics to inhibit normal flora. Thirty-five percent of the 445 ducks cultured harbored C. fetus subsp. jejuni. Migratory waterfowl are yet another reservoir for this enteric pathogen and may be of public health importance for humans in the contamination of water or when used as food. PMID:7217334

  14. Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes.

    PubMed

    Tancos, Matthew A; Chalupowicz, Laura; Barash, Isaac; Manulis-Sasson, Shulamit; Smart, Christine D

    2013-11-01

    The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes.

  15. Loop-mediated amplification of the Clavibacter michiganensis subsp. michiganensis micA gene is highly specific.

    PubMed

    Yasuhara-Bell, Jarred; Kubota, Ryo; Jenkins, Daniel M; Alvarez, Anne M

    2013-12-01

    Loop-mediated amplification (LAMP) was used to specifically identify Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial canker of tomato. LAMP primers were developed to detect micA, a chromosomally stable gene that encodes a type II lantibiotic, michiganin A, which inhibits growth of other C. michiganensis subspecies. In all, 409 bacterial strains (351 C. michiganensis subsp. michiganensis and 58 non-C. michiganensis subsp. michiganensis) from a worldwide collection were tested with LAMP to determine its specificity. LAMP results were compared with genetic profiles established using polymerase chain reaction (PCR) amplification of seven genes (dnaA, ppaJ, pat-1, chpC, tomA, ppaA, and ppaC). C. michiganensis subsp. michiganensis strains produced eight distinct profiles. The LAMP reaction identified all C. michiganensis subsp. michiganensis strains and discriminated them from other C. michiganensis subspecies and non-Clavibacter bacteria. LAMP has advantages over immunodiagnostic and other molecular detection methods because of its specificity and isothermal nature, which allows for easy field application. The LAMP reaction is also not affected by as many inhibitors as PCR. This diagnostic tool has potential to provide an easy, one-step test for rapid identification of C. michiganensis subsp. michiganensis.

  16. Lactobacillus plantarum isolated from kefir protects vero cells from cytotoxicity by type-II shiga toxin from Escherichia coli O157:H7.

    PubMed

    Kakisu, Emiliano; Abraham, Analía G; Farinati, Carla Tironi; Ibarra, Cristina; De Antoni, Graciela L

    2013-02-01

    Kefir is a fermented-milk beverage originating and widely consumed in the Caucasus as well as in Eastern Europe and is a source of bacteria with potential probiotic properties. Enterohaemorrhagic Escherichia coli producing Shiga toxin is commonly associated with food-transmitted diseases; the most prevalent serotype causing epidemics is Esch. coli O157:H7. The aim of this study was to evaluate the antagonism of Lactobacillus plantarum isolated from kefir against the action on Vero cells of supernatants of the Esch. coli O157:H7 strain 69160 expressing the type-II Shiga toxin (Stx2) and to study the role of the Lactobacillus cell wall in that inhibition. Spent culture supernatants of Esch. coli O157:H7 strain 69160 led to cytotoxic effects on cultured eukaryotic cells as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide-cleavage assay or by lactate-dehyrogenase release. Lb. plantarum CIDCA 83114 reduced the cytotoxic activity of Stx present in strain-69160 supernatants, and this protection was markedly higher than those of Lactobacillus kefir CIDCA 83113 and 8348 and Lb. delbrueckii subsp. bulgaricus CIDCA 333. This antagonism of cytotoxicity was mimicked by Lb. plantarum cell walls but was reduced after heating or protease treatments, thus indicating a protein or peptide as being involved in the protection mechanism. The cell surface of the lactobacilli bound the subunit B of Stx thereby decreasing the cytotoxicity. These interactions could constitute the first step in preventing the damage induced by Esch. coli O157:H7 supernatants, thus representing a valuable means of potentially mitigating the noxious effects of this food pathogen.

  17. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Genetic variation in Mediterranean Helichrysum italicum (Asteraceae; Gnaphalieae): do disjunct populations of subsp. microphyllum have a common origin?

    PubMed

    Galbany-Casals, M; Blanco-Moreno, J M; Garcia-Jacas, N; Breitwieser, I; Smissen, R D

    2011-07-01

    The yellow-flowered everlasting daisy Helichrysum italicum (Asteraceae, Gnaphalieae) is widely distributed in the Mediterranean basin, where it grows in continuous and widespread populations in diverse open habitats. Helichrysum italicum subsp. microphyllum has a disjunct distribution in the Balearic Islands (Majorca and Dragonera), Corsica, Sardinia, Crete and Cyprus. Numerous morphological intermediates between subsp. italicum and subsp. microphyllum are known from Corsica, where the two subspecies co-occur. The aims of the study were to investigate if subsp. microphyllum has a common origin, constituting an independent gene pool from subsp. italicum, or if the morphological differences between subsp. microphyllum and subsp. italicum have arisen independently in different locations from a common wider gene pool. Our analyses of AFLP, cpDNA sequences and morphological characters show that there is geographic structure to the genetic variation within H. italicum, with eastern and western Mediterranean groups, which do not correspond with the division into subsp. microphyllum and subsp. italicum as currently circumscribed. Local selection on quantitative trait loci provides sufficient explanation for the morphological divergence observed and is consistent with genetic data. Within the western Mediterranean group of the species we found considerable polymorphism in chloroplast DNA sequences among and within some populations. Comparison with chloroplast DNA sequences from other Helichrysum species showed that some chloroplast haplotypes are shared across species. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Pork Meat as a Potential Source of Salmonella enterica subsp. arizonae Infection in Humans

    PubMed Central

    Kritas, Spyridon; Govaris, Alexander; Burriel, Angeliki R.

    2014-01-01

    Salmonella enterica subsp. arizonae was isolated from 13 of 123 slaughtered pigs in central Greece. The samples cultured were feces, ileum tissue, mesenteric lymph nodes, and gallbladder swabs. A total of 74 isolates from 492 samples were identified as Salmonella spp. by use of standard laboratory culture media and two commercial micromethods and by use of a polyvalent slide agglutination test for the detection of O and H antigens. Among them were 19 (25.68%) suspected to be S. enterica subsp. arizonae according to analysis with standard laboratory culture media. Of those, 14 were identified as S. enterica subsp. arizonae by the API 20E (bioMérieux, France) and the Microgen GnA+B-ID (Microgen Bioproducts, Ltd., United Kingdom) identification systems. All the isolates were tested for resistance to 23 antimicrobials. Strains identified as S. enterica subsp. arizonae were resistant to 17 (70.8%) antibiotics. The highest proportions of resistance were observed for sulfamethoxazole-trimethoprim (71.4%), tetracycline (71.4%), ampicillin (64.3%), and amoxicillin (57.1%). Two isolates were resistant to aztreonam (7.1%) and tigecycline (7.1%), used only for the treatment of humans. Thus, pork meat may play a role in the transmission of antibiotic-resistant S. enterica subsp. arizonae to human consumers. This is the first report of S. enterica subsp. arizonae isolation from pigs. PMID:24335956

  20. Pork meat as a potential source of Salmonella enterica subsp. arizonae infection in humans.

    PubMed

    Evangelopoulou, Grammato; Kritas, Spyridon; Govaris, Alexander; Burriel, Angeliki R

    2014-03-01

    Salmonella enterica subsp. arizonae was isolated from 13 of 123 slaughtered pigs in central Greece. The samples cultured were feces, ileum tissue, mesenteric lymph nodes, and gallbladder swabs. A total of 74 isolates from 492 samples were identified as Salmonella spp. by use of standard laboratory culture media and two commercial micromethods and by use of a polyvalent slide agglutination test for the detection of O and H antigens. Among them were 19 (25.68%) suspected to be S. enterica subsp. arizonae according to analysis with standard laboratory culture media. Of those, 14 were identified as S. enterica subsp. arizonae by the API 20E (bioMérieux, France) and the Microgen GnA+B-ID (Microgen Bioproducts, Ltd., United Kingdom) identification systems. All the isolates were tested for resistance to 23 antimicrobials. Strains identified as S. enterica subsp. arizonae were resistant to 17 (70.8%) antibiotics. The highest proportions of resistance were observed for sulfamethoxazole-trimethoprim (71.4%), tetracycline (71.4%), ampicillin (64.3%), and amoxicillin (57.1%). Two isolates were resistant to aztreonam (7.1%) and tigecycline (7.1%), used only for the treatment of humans. Thus, pork meat may play a role in the transmission of antibiotic-resistant S. enterica subsp. arizonae to human consumers. This is the first report of S. enterica subsp. arizonae isolation from pigs.

  1. Complete genome sequence of Mycobacterium avium subsp. paratuberculosis, isolated from human breast milk

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium avium subsp paratuberculosis is the etiologic agent of Johne’s disease. We report the draft genome sequences of six M. avium subsp paratuberculosis isolates obtained from diverse hosts including bison, cattle and sheep. These sequences will deepen our understanding of host association ...

  2. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    PubMed Central

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled transposon mutagenesis of a wild-type antibiotic-producing strain of E. carotovora subsp. betavasculorum. Twelve antibiotic-negative mutants were isolated, and one of these showed a reduction in antibiotic production in vitro. Many of these mutants also showed a reduction in their ability to macerate potato tissue. The mutants were classified into four genetic groups on the basis of their genetic and phenotypic characteristics, indicating that several genes are involved in antibiotic biosynthesis by E. carotovora subsp. betavasculorum. PMID:2543291

  3. Role of probiotics and functional foods in health: gut immune stimulation by two probiotic strains and a potential probiotic yoghurt.

    PubMed

    Maldonado Galdeano, Carolina; Novotny Nuñez, Ivanna; Carmuega, Esteban; de Moreno de LeBlanc, Alejandra; Perdigón, Gabriela

    2015-01-01

    There are numerous reports that show the benefits on the health attributed to the probiotic consumptions. Most of the studies were performed using animal models and only some of them were validated in controlled human trials. The present review is divided in two sections. In the first section we describe how the probiotic microorganisms can interact with the intestinal epithelial cells that are the first line of cell in the mucosal site, focusing in the studies of two probiotic strains: Lactobacillus casei DN-114001 (actually Lactobacillus paracasei CNCMI-1518) and Lactobacillus casei CRL 431. Then we describe same beneficial effects attributed to probiotic administration and the administration of fermented milks containing these microorganisms or potential probiotic yoghurt, principally on the immune system and on the intestinal barrier in different experimental mouse models like enteropathogenic infection, malnutrition, cancer and intestinal inflammation.

  4. Evaluation of bean and soy tempeh influence on intestinal bacteria and estimation of antibacterial properties of bean tempeh.

    PubMed

    Kuligowski, Maciej; Jasińska-Kuligowska, Iwona; Nowak, Jacek

    2013-01-01

    In this study the effect of bean tempeh on the growth of Bacillus subtilis, Escherichia coli, Lactobacillus acidophilus and Lactobacillus paracasei bacteria was investigated. Antibacterial activity was observed only in relation to the bacteria Bacillus subtilis. The effect of tempeh products on human intestinal microflora was also assessed. Bean and soy tempeh were culinarily processed and next digested in conditions simulating the human digestive tract (one of the digestive tracts was equipped with a mechanism simulating absorption). Soy tempeh stimulated most the growth of bacteria of the genus Bifidobacterium, while bean tempeh that of Escherichia coli. Using simulation of absorption for the digestion of fried soy tempeh resulted in a higher rise in the bacteria count of the genus Lactobacillus, while after digestion of fried bean tempeh the highest increase was recorded for Bifidobacterium and E. coli.

  5. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products.

    PubMed

    D'Aimmo, Maria Rosaria; Modesto, Monica; Biavati, Bruno

    2007-04-01

    The outlines of antibiotic resistance of some probiotic microorganisms were studied. This study was conducted with the double purpose of verifying their ability to survive if they are taken simultaneously with an antibiotic therapy and to increase the selective properties of suitable media for the isolation of samples containing mixed bacterial populations. We isolated from commercial dairy and pharmaceutical products, 34 strains declared as probiotics, belonging to the genera Bifidobacterium and Lactobacillus, and 21 strains of starter culture bacteria. All the microorganisms have been compared by electrophoresis of the soluble proteins for the purpose of identifying them. A Multiplex-PCR with genus- and species-specific primers was used to detect for Bifidobacterium animalis subsp. lactis presence. All bifidobacteria were B. animalis subsp. lactis except one Bifidobacterium longum. Sometimes the identification showed that the used strain was not the one indicated on the label. The lactobacilli were Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus. The streptococci were all Streptococcus thermophilus. The minimal inhibitory concentration (MIC) of 24 common antibiotic substances has been valued by the broth microdilution method. All tested strains were susceptible to ampicillin, bacitracin, clindamycin, dicloxacillin, erytromycin, novobiocin, penicillin G, rifampicin (MIC(90) ranging from 0.01 to 4 microg/ml); resistant to aztreonam, cycloserin, kanamycin, nalidixic acid, polymyxin B and spectinomycin (MIC(90) ranging from 64 to >1000 microg/ml). The susceptibility to cephalothin, chloramphenicol, gentamicin, lincomycin, metronidazole, neomycin, paromomycin, streptomycin, tetracycline and vancomycin was variable and depending on the species.

  6. Seed-associated subspecies of the genus Clavibacter are clearly distinguishable from Clavibacter michiganensis subsp. michiganensis.

    PubMed

    Yasuhara-Bell, Jarred; Alvarez, Anne M

    2015-03-01

    The genus Clavibacter contains one recognized species, Clavibacter michiganensis. Clavibacter michiganensis is subdivided into subspecies based on host specificity and bacteriological characteristics, with Clavibacter michiganensis subsp. michiganensis causing bacterial canker of tomato. Clavibacter michiganensis subsp. michiganensis is often spread through contaminated seed leading to outbreaks of bacterial canker in tomato production areas worldwide. The frequent occurrence of non-pathogenic Clavibacter michiganensis subsp. michiganensis-like bacteria (CMB) is a concern for seed producers because Clavibacter michiganensis subsp. michiganensis is a quarantine organism and detection of a non-pathogenic variant may result in destruction of an otherwise healthy seed lot. A thorough biological and genetic characterization of these seed-associated CMB strains was performed using standard biochemical tests, cell wall analyses, metabolic profiling using Biolog, and single-gene and multilocus sequence analyses. Combined, these tests revealed two distinct populations of seed-associated members of the genus Clavibacter that differed from each other, as well as from all other described subspecies of Clavibacter michiganensis. DNA-DNA hybridization values are 70 % or higher, justifying placement into the single recognized species, C. michiganensis, but other analyses justify separate subspecies designations. Additionally, strains belonging to the genus Clavibacter isolated from pepper also represent a distinct population and warrant separate subspecies designation. On the basis of these data we propose subspecies designations for separate non-pathogenic subpopulations of Clavibacter michiganensis: Clavibacter michiganensis subsp. californiensis subsp. nov. and Clavibacter michiganensis subsp. chilensis subsp. nov. for seed-associated strains represented by C55(T) ( = ATCC BAA-2691(T) = CFBP 8216(T)) and ZUM3936(T) ( = ATCC BAA-2690(T) = CFBP 8217(T

  7. Principal Component Analysis of Stimulatory Effect of Synbiotic Combination of Indigenous Probiotic and Inulin on Antioxidant Activity of Soymilk.

    PubMed

    Choudhary, Shagun; Singh, Manisha; Sharma, Deepak; Attri, Sampan; Sharma, Kavita; Goel, Gunjan

    2018-06-02

    The present study aimed to screen the indigenous probiotic cultures for their effect on total phenolic contents (TPC) and associated antioxidant activities in synbiotic fermented soymilk during storage. Among 16 cultures, subtractive screening was conducted based on different tests such as acidification rate and proliferation of lactic acid bacteria (LAB) on supplementation of inulin (0-20 mM) and fructooligosaccharide (0-0.45 mM). Lactobacillus paracasei CD4 was selected as potential strain after principal component analysis (PCA) of different strains with prebiotic substrates at different concentrations. The strain was used for production of synbiotic soymilk product containing 10 mM inulin. The storage study was conducted at 4 °C for 21 days. During storage, the pH, titratable acidity, TPC, antioxidant activities, and viable cell counts (VCC) were determined. The fermentation of soymilk supplemented with 10 mM inulin did not alter the VCC; however, a decrease in pH and TPC and an increase in acidity and antioxidant activity were observed (p < 0.05). In conclusion, the synbiotic supplementation of inulin in soymilk enhanced the viability of Lactobacillus paracasei CD4 and antioxidant activity during storage under refrigeration conditions.

  8. Tomato Fruit and Seed Colonization by Clavibacter michiganensis subsp. michiganensis through External and Internal Routes

    PubMed Central

    Tancos, Matthew A.; Chalupowicz, Laura; Barash, Isaac; Manulis-Sasson, Shulamit

    2013-01-01

    The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes. PMID:24014525

  9. Nutrition economic evaluation of a probiotic in the prevention of antibiotic-associated diarrhea.

    PubMed

    Lenoir-Wijnkoop, Irene; Nuijten, Mark J C; Craig, Joyce; Butler, Christopher C

    2014-01-01

    Antibiotic-associated diarrhea (AAD) is common and frequently more severe in hospitalized elderly adults. It can lead to increased use of healthcare resources. We estimated the cost-effectiveness of a fermented milk (FM) with probiotic in preventing AAD and in particular Clostridium difficile-associated diarrhea (CDAD). Clinical effectiveness data and cost information were incorporated in a model to estimate the cost impact of administering a FM containing the probiotic Lactobacillus paracasei ssp paracasei CNCM I-1518 in a hospital setting. Preventing AAD by the consumption of the probiotic was compared to no preventive strategy. The probiotic intervention to prevent AAD generated estimated mean cost savings of £339 per hospitalized patient over the age of 65 years and treated with antibiotics, compared to no preventive probiotic. Estimated cost savings were sensitive to variation in the incidence of AAD, and to the proportion of patients who develop non-severe/severe AAD. However, probiotics remained cost saving in all sensitivity analyses. Use of the fermented dairy drink containing the probiotic L. paracasei CNCM I-1518 to prevent AAD in older hospitalized patients treated with antibiotics could lead to substantial cost savings.

  10. Effects of Pistacia atlantica subsp. kurdica on Growth and Aflatoxin Production by Aspergillus parasiticus

    PubMed Central

    Khodavaisy, Sadegh; Rezaie, Sassan; Noorbakhsh, Fatemeh; Baghdadi, Elham; Sharifynia, Somayeh; Aala, Farzad

    2016-01-01

    Background Aflatoxins are highly toxic secondary metabolites mainly produced by Aspergillus parasiticus. This species can contaminate a wide range of agricultural commodities, including cereals, peanuts, and crops in the field. In recent years, research on medicinal herbs, such as Pistacia atlantica subsp. kurdica, have led to reduced microbial growth, and these herbs also have a particular effect on the production of aflatoxins as carcinogenic compounds. Objectives In this study, we to examine P. atlantica subsp. kurdica as a natural compound used to inhibit the growth of A. parasiticus and to act as an anti-mycotoxin. Materials and Methods In vitro antifungal susceptibility testing of P. atlantica subsp. kurdica for A. parasiticus was performed according to CLSI document M38-A2. The rate of aflatoxin production was determined using the HPLC technique after exposure to different concentrations (62.5 - 125 mg/mL) of the gum. The changes in expression levels of the aflR gene were analyzed with a quantitative real-time PCR assay. Results The results showed that P. atlantica subsp. kurdica can inhibit A. parasiticus growth at a concentration of 125 mg/mL. HPLC results revealed a significant decrease in aflatoxin production with 125 mg/mL of P. atlantica subsp. kurdica, and AFL-B1 production was entirely inhibited. Based on quantitative real-time PCR results, the rate of aflR gene expression was significantly decreased after treatment with P. atlantica subsp. kurdica. Conclusions Pistacia atlantica subsp. kurdica has anti-toxic properties in addition to an inhibitory effect on A. parasiticus growth, and is able to decrease aflatoxin production effectively in a dose-dependent manner. Therefore, this herbal extract maybe considered a potential anti-mycotoxin agent in medicine or industrial agriculture. PMID:27800127

  11. Bioaccessible Antioxidants in Milk Fermented by Bifidobacterium longum subsp. longum Strains

    PubMed Central

    Gagnon, Mérilie; Savard, Patricia; Rivière, Audrey; LaPointe, Gisèle

    2015-01-01

    Bifidobacterium longum subsp. longum is among the dominant species of the human gastrointestinal microbiota and could thus have potential as probiotics. New targets such as antioxidant properties have interest for beneficial effects on health. The objective of this study was to evaluate the bioaccessibility of antioxidants in milk fermented by selected B. longum subsp. longum strains during in vitro dynamic digestion. The antioxidant capacity of cell extracts from 38 strains, of which 32 belong to B. longum subsp. longum, was evaluated with the ORAC (oxygen radical absorbance capacity) method. On the basis of screening and gene sequence typing by multilocus locus sequence analysis (MLSA), five strains were chosen for fermenting reconstituted skim milk. Antioxidant capacity varied among the strains tested (P = 0.0009). Two strains of B. longum subsp. longum (CUETM 172 and 171) showed significantly higher ORAC values than the other bifidobacteria strains. However, there does not appear to be a relationship between gene sequence types and antioxidant capacity. The milk fermented by each of the five strains selected (CUETM 268, 172, 245, 247, or PRO 16-10) did not have higher initial ORAC values compared to the nonfermented milk samples. However, higher bioaccessibility of antioxidants in fermented milk (175–358%) was observed during digestion. PMID:25802836

  12. Isolation of Vibrio tapetis from two native fish species (Genypterus chilensis and Paralichthys adspersus) reared in Chile and description of Vibrio tapetis subsp. quintayensis subsp. nov.

    PubMed

    Levican, Arturo; Lasa, Aide; Irgang, Rute; Romalde, Jesús L; Poblete-Morales, Matías; Avendaño-Herrera, Ruben

    2017-04-01

    A group of seven Chilean isolates presumptively belonging to Vibrio tapetis was isolated from diseased fine flounders (Paralichthys adspersus) and red conger eel (Genypterus chilensis) experimentally reared in Quintay (Chile). All isolates were confirmed as members of V. tapetis on the basis of matrix-assisted laser desorption ionization time-of-flight MS, 16S rRNA gene sequencing, DNA-DNA hybridization values and G+C content. The ERIC-PCR and REP-PCR patterns were homogeneous among those isolates recovered from the same host (red conger or fine flounders), but distinct from the type strains V. tapetis subsp. tapetis CECT 4600T and V. tapetis subsp. britannicus CECT 8161T. On the basis of atpA, rpoA, rpoD, recA and pyrH gene sequence similarities (99.7-100 %) and clustering in the phylogenetic trees, the red conger isolates (Q20, Q047, Q48 and Q50) were confirmed as representing V. tapetis subsp. tapetis. However, they differed from V. tapetis subsp. tapetis CECT 4600T in their lipase, alpha quimiotripsin and non-acid phosphatase production. On the other hand, the fine flounder isolates (QL-9T, QL-35 and QL-41) showed rpoD, recA and pyrH gene sequence similarities ranging from 91.6 to 97.7 % with the type strains of the two V. tapetis subspecies (CECT 4600T and CECT 8161T) and consistently clustered together as an independent phylogenetic line within V. tapetis. Moreover, they could be differentiated phenotypically from strains CECT 4600T and CECT 8161T by nine and three different biochemical tests, respectively. In conclusion, the presence of V. tapetis in diseased red conger eel and fine flounder was demonstrated, extending the known host range and geographical location for this pathogen. Furthermore, this study demonstrates that the three isolates from fine flounder represent a novel subdivision within V. tapetis, for which the name V. tapetis subsp. quintayensis subsp. nov. is proposed and with QL-9T (=CECT 8851T=LMG 28759T) as the type strain. Although QL

  13. Aeromonas hydrophila subsp. dhakensis Isolated from Feces, Water and Fish in Mediterranean Spain

    PubMed Central

    Esteve, Consuelo; Alcaide, Elena; Blasco, María Dolores

    2012-01-01

    Eight Aeromonas hydrophila-like arabinose-negative isolates from diverse sources (i.e., river freshwater, cooling-system water pond, diseased wild European eels, and human stools) sampled in Valencia (Spain) during 2004–2005, were characterized by 16S rRNA gene sequencing and extensive biochemical testing along with reference strains of most Aeromonas species. These isolates and all reference strains of A. hydrophila subsp. dhakensis and A. aquariorum showed a 16S rRNA sequence similarity of 99.8–100%, and they all shared an identical phenotype. This matched exactly with that of A. hydrophila subsp. dhakensis since all strains displayed positive responses to the Voges-Prokauer test and to the use of dl-lactate. This is the first report of A. hydrophila subsp. dhakensis recovered from environmental samples, and further, from its original isolation in India during 1993–1994. This was accurately identified and segregated from other clinical aeromonads (A. hydrophila subsp. hydrophila, A. caviae, A. veronii biovars veronii and sobria, A. trota, A. schubertii and A. jandaei) by using biochemical key tests. The API 20 E profile for all strains included in A. hydrophila subsp. dhakensis was 7047125. The prevalence of this species in Spanish sources was higher for water (9.4%) than for feces (6%) or eels (1.3%). Isolates recovered as pure cultures from diseased eels were moderately virulent (LD50 of 3.3×106 CFU fish−1) to challenged eels in experimental trials. They were all resistant to ticarcillin, amoxicillin-clavuranic acid, cefoxitin, and imipenem, regardless of its source. Our data point to A. hydrophila subsp. dhakensis as an emerging pathogen for humans and fish in temperate countries. PMID:22472298

  14. PCR-Mediated Detection and Quantification of the Goss's Wilt Pathogen Clavibacter michiganensis subsp. nebraskensis Via a Novel Gene Target.

    PubMed

    McNally, R Ryan; Ishimaru, Carol A; Malvick, Dean K

    2016-12-01

    Goss's leaf blight and wilt of maize (corn) is a significant and reemerging disease caused by the bacterium Clavibacter michiganensis subsp. nebraskensis. Despite its importance, molecular tools for diagnosing and studying this disease remain limited. We report the identification of CMN_01184 as a novel gene target and its use in conventional PCR (cPCR) and SYBR green-based quantitative PCR (qPCR) assays for specific detection and quantification of C. michiganensis subsp. nebraskensis. The cPCR and qPCR assays based on primers targeting CMN_01184 specifically amplified only C. michiganensis subsp. nebraskensis among a diverse collection of 129 bacterial and fungal isolates, including multiple maize bacterial and fungal pathogens, environmental organisms from agricultural fields, and all known subspecies of C. michiganensis. Specificity of the assays for detection of only C. michiganensis subsp. nebraskensis was also validated with field samples of C. michiganensis subsp. nebraskensis-infected and uninfected maize leaves and C. michiganensis subsp. nebraskensis-infested and uninfested soil. Detection limits were determined at 30 and 3 ng of pure C. michiganensis subsp. nebraskensis DNA, and 100 and 10 CFU of C. michiganensis subsp. nebraskensis for the cPCR and qPCR assays, respectively. Infection of maize leaves by C. michiganensis subsp. nebraskensis was quantified from infected field samples and was standardized using an internal maize DNA control. These novel, specific, and sensitive PCR assays based on CMN_01184 are effective for diagnosis of Goss's wilt and for studies of the epidemiology and host-pathogen interactions of C. michiganensis subsp. nebraskensis.

  15. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1.

    PubMed

    Leonard, Michael T; Valladares, Ricardo B; Ardissone, Alexandria; Gonzalez, Claudio F; Lorca, Graciela L; Triplett, Eric W

    2014-05-08

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model.

  16. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough.

    PubMed

    Valcheva, Rosica; Ferchichi, Mounir F; Korakli, Maher; Ivanova, Iskra; Gänzle, Michael G; Vogel, Rudi F; Prévost, Hervé; Onno, Bernard; Dousset, Xavier

    2006-03-01

    A polyphasic taxonomic study of the bacterial flora isolated from traditional French wheat sourdough, using phenotypic characterization and phylogenetic as well as genetic methods, revealed a consistent group of isolates that could not be assigned to any recognized species. These results were confirmed by randomly amplified polymorphic DNA and amplified fragment length polymorphism fingerprinting analyses. Cells were Gram-positive, homofermentative rods. Comparative 16S rRNA gene sequence analysis of the representative strain LP33T indicated that these strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives Lactobacillus farciminis, Lactobacillus alimentarius, Lactobacillus paralimentarius and Lactobacillus mindensis. DNA-DNA reassociation experiments with the three phylogenetically closest Lactobacillus species confirmed that LP33T (= DSM 16982T = CIP 108546T = TMW 1.1265T) represents the type strain of a novel species, for which the name Lactobacillus nantensis sp. nov. is proposed.

  17. A Novel Enzyme-Linked Immunosorbent Assay for Diagnosis of Mycobacterium avium subsp. paratuberculosis Infections (Johne's Disease) in Cattle

    PubMed Central

    Speer, C. A.; Scott, M. Cathy; Bannantine, John P.; Waters, W. Ray; Mori, Yasuyuki; Whitlock, Robert H.; Eda, Shigetoshi

    2006-01-01

    Enzyme-linked immunosorbent assays (ELISAs) for the diagnosis of Johne's disease (JD), caused by Mycobacterium avium subsp. paratuberculosis, were developed using whole bacilli treated with formaldehyde (called WELISA) or surface antigens obtained by treatment of M. avium subsp. paratuberculosis bacilli with formaldehyde and then brief sonication (called SELISA). ELISA plates were coated with either whole bacilli or sonicated antigens and tested for reactivity against serum obtained from JD-positive and JD-negative cattle or from calves experimentally inoculated with M. avium subsp. paratuberculosis, Mycobacterium avium subsp. avium, or Mycobacterium bovis. Because the initial results obtained from the WELISA and SELISA were similar, most of the subsequent experiments reported herein were performed using the SELISA method. To optimize the SELISA test, various concentrations (3.7 to 37%) of formaldehyde and intervals of sonication (2 to 300 s) were tested. With an increase in formaldehyde concentration and a decreased interval of sonication, there was a concomitant decrease in nonspecific binding by the SELISA. SELISAs prepared by treating M. avium subsp. paratuberculosis with 37% formaldehyde and then a 2-s burst of sonication produced the greatest difference (7×) between M. avium subsp. paratuberculosis-negative and M. avium subsp. paratuberculosis-positive serum samples. The diagnostic sensitivity and specificity for JD by the SELISA were greater than 95%. The SELISA showed subspecies-specific detection of M. avium subsp. paratuberculosis infections in calves experimentally inoculated with M. avium subsp. paratuberculosis or other mycobacteria. Based on diagnostic sensitivity and specificity, the SELISA appears superior to the commercial ELISAs routinely used for the diagnosis of JD. PMID:16682472

  18. Laminaria japonica Extract, an Inhibitor of Clavibater michiganense Subsp. Sepedonicum

    PubMed Central

    Cai, Jin; Feng, Jia; Xie, Shulian; Wang, Feipeng; Xu, Qiufeng

    2014-01-01

    Bacterial ring rot of potato is one of the most serious potato plant and tuber diseases. Laminaria japonica extract was investigated for its antimicrobial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causative agent of bacterial ring rot of potato. The results showed that the optimum extraction conditions of antimicrobial substances from L. japonica were an extraction temperature of 80°C, an extraction time of 12 h, and a solid to liquid ratio of 1∶25. Active compounds of L. japonica were isolated by solvent partition, thin layer chromatography (TLC) and column chromatography. All nineteen fractionations had antimicrobial activities against C. michiganense subsp. sepedonicum, while Fractionation three (Fr.3) had the highest (P<0.05) antimicrobial activity. Chemical composition analysis identified a total of 26 components in Fr.3. The main constituents of Fr.3 were alkanes (80.97%), esters (5.24%), acids (4.87%) and alcohols (2.21%). Antimicrobial activity of Fr.3 against C. michiganense subsp. sepedonicum could be attributed to its ability to damage the cell wall and cell membrane, induce the production of reactive oxygen species (ROS), increase cytosolic Ca2+ concentration, inhibit the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle, inhibit protein and nucleic acid synthesis, and disrupt the normal cycle of DNA replication. These findings indicate that L. japonica extracts have potential for inhibiting C. michiganense subsp. sepedonicum. PMID:24714388

  19. Antagonistic Activity of Lactobacillus Isolates against Salmonella typhi In Vitro

    PubMed Central

    Abdel-Daim, Amira; Hassouna, Nadia; Hafez, Mohamed; Ashor, Mohamed Seif Aldeen; Aboulwafa, Mohammad M.

    2013-01-01

    Background. Enteric fever is a global health problem, and rapidly developing resistance to various drugs makes the situation more alarming. The potential use of Lactobacillus to control typhoid fever represents a promising approach, as it may exert protective actions through various mechanisms. Methods. In this study, the probiotic potential and antagonistic activities of 32 Lactobacillus isolates against Salmonella typhi were evaluated. The antimicrobial activity of cell free supernatants of Lactobacillus isolates, interference of Lactobacillus isolates with the Salmonella adherence and invasion, cytoprotective effect of Lactobacillus isolates, and possibility of concurrent use of tested Lactobacillus isolates and antibiotics were evaluated by testing their susceptibilities to antimicrobial agents, and their oxygen tolerance was also examined. Results. The results revealed that twelve Lactobacillus isolates could protect against Salmonella typhi infection through interference with both its growth and its virulence properties, such as adherence, invasion, and cytotoxicity. These Lactobacillus isolates exhibited MIC values for ciprofloxacin higher than those of Salmonella typhi and oxygen tolerance and were identified as Lactobacillus plantarum. Conclusion. The tested Lactobacillus plantarum isolates can be introduced as potential novel candidates that have to be subjected for in vivo and application studies for treatment and control of typhoid fever. PMID:24191248

  20. Establishment of a sensitive system for analysis of human vaginal microbiota on the basis of rRNA-targeted reverse transcription-quantitative PCR.

    PubMed

    Kurakawa, Takashi; Ogata, Kiyohito; Tsuji, Hirokazu; Kado, Yukiko; Takahashi, Takuya; Kida, Yumi; Ito, Masahiro; Okada, Nobuhiko; Nomoto, Koji

    2015-04-01

    Ten specific primer sets, for Lactobacillus gasseri, Lactobacillus crispatus, Atopobium vaginae, Gardnerella vaginalis, Mobiluncus curtisii, Chlamydia trachomatis/muridarum, Bifidobacterium longum subsp. longum, Bifidobacterium longum subsp. infantis, Bifidobacterium adolescentis, and Bifidobacterium angulatum, were developed for quantitative analysis of vaginal microbiota. rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) analysis of the vaginal samples from 12 healthy Japanese volunteers using the new primer sets together with 25 existing primer sets revealed the diversity of their vaginal microbiota: Lactobacilli such as L. crispatus, L. gasseri, Lactobacillus jensenii, Lactobacillus iners, and Lactobacillus vaginalis, as the major populations at 10(7) cells/ml vaginal fluid, were followed by facultative anaerobes such as Streptococcus and strict anaerobes at lower population levels of 10(4) cells/ml or less. Certain bacterial vaginosis (BV)-related bacteria, such as G. vaginalis, A. vaginae, M. curtisii, and Prevotella, were also detected in some subjects. Especially in one subject, both G. vaginalis and A. vaginae were detected at high population levels of 10(8.8) and 10(8.9) cells/ml vaginal fluid, suggesting that she is an asymptomatic BV patient. These results suggest that the RT-qPCR system is effective for accurate analysis of major vaginal commensals and diagnosis of several vaginal infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri.

    PubMed

    Ianniello, R G; Zheng, J; Zotta, T; Ricciardi, A; Gänzle, M G

    2015-09-01

    This study evaluated the aerobic and respiratory metabolism in Lactobacillus reuteri and Lactobacillus spicheri, two heterofermentative species used in sourdough fermentation. In silico genome analysis, production of metabolites and gene expression of pyruvate oxidase, pyruvate dehydrogenase and cytochrome oxidase were assessed in anaerobic and aerobic cultures of Lact. reuteri and Lact. spicheri. Respiring homofermentative Lactobacillus casei N87 and Lact. rhamnosus N132 were used for comparison. Aerobiosis and respiration increased the biomass production of heterofermentative strains compared to anaerobic cultivation. Respiration led to acetoin production by Lact. rhamnosus and Lact. casei, but not in heterofermentative strains, in which lactate and acetate were the major end-products. Lactobacillus spicheri LP38 showed the highest oxygen uptake. Pyruvate oxidase, respiratory cytochromes, NADH oxidase and NADH peroxidase were present in the genome of Lact. spicheri LP38. Both Lact. spicheri LP38 and Lact. rhamnosus N132 overexpressed pox in aerobic cultures, while cydA was up-regulated only when haeme was supplied; pdh was repressed during aerobic growth. Aerobic and respiratory growth provided physiological and metabolic advantages also in heterofermentative lactobacilli. The exploitation of oxygen-tolerant phenotypes of Lact. spicheri may be useful for the development of improved starter cultures. © 2015 The Society for Applied Microbiology.

  2. Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on D-alanyl and alpha-glucose substitution of poly(glycerophosphate) backbones.

    PubMed

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-06-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of alpha-glucosyl and D-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of D-alanine residues in the LTA backbones. Prior incubation of the LTAs with alpha-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of alpha-glucosyl-substituted, D-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption.

  3. Molecular Interaction between Lipoteichoic Acids and Lactobacillus delbrueckii Phages Depends on d-Alanyl and α-Glucose Substitution of Poly(Glycerophosphate) Backbones▿

    PubMed Central

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-01-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of α-glucosyl and d-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of d-alanine residues in the LTA backbones. Prior incubation of the LTAs with α-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of α-glucosyl-substituted, d-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption. PMID:17416656

  4. Isolated Lactobacillus chronic prosthetic knee infection.

    PubMed

    Bennett, David M; Shekhel, Tatyana; Radelet, Matt; Miller, Michael D

    2014-01-01

    Lactobacillus is a gram-positive rod bacteria found primarily in the gastrointestinal and female genital tracts. Prosthetic infections in implants are being increasingly reported. The authors present a case of a 58-year-old patient with Lactobacillus septic prosthetic knee joint infection. To the authors’ knowledge, this is the first reported case of chronic prosthetic knee infection with isolated Lactobacillus species. Lactobacillus has been most commonly implicated with bacteremia and endocarditis and rarely with pneumonia, meningitis, and endovascular infection, and a vast majority of the cases are reported in immunocompromised patients. In the current case, diabetes mellitus, hepatitis, malnutrition, anemia, and liver failure were comorbid conditions, placing the patient at increased risk of infection. The findings suggest that further case series are necessary to establish the significance of Lactobacillus as an etiologic agent in chronic low-virulence, and potentially vancomycin-resistant, prosthetic joint infection. The need also exists for further research aimed at the risk of prosthetic joint infection with oral intake of certain probiotic foods and supplements. The goal of this case report is to bring to light the potential of this organism to be a cause of subtle chronic prosthetic joint infection.

  5. Production of fermented cheese whey-based beverage using kefir grains as starter culture: evaluation of morphological and microbial variations.

    PubMed

    Magalhães, Karina Teixeira; Pereira, Maria Alcina; Nicolau, Ana; Dragone, Giuliano; Domingues, Lucília; Teixeira, José António; de Almeida Silva, João Batista; Schwan, Rosane Freitas

    2010-11-01

    Whey valorization concerns have led to recent interest on the production of whey beverage simulating kefir. In this study, the structure and microbiota of Brazilian kefir grains and beverages obtained from milk and whole/deproteinised whey was characterized using microscopy and molecular techniques. The aim was to evaluate its stability and possible shift of probiotic bacteria to the beverages. Fluorescence staining in combination with Confocal Laser Scanning Microscopy showed distribution of yeasts in macro-clusters among the grain's matrix essentially composed of polysaccharides (kefiran) and bacteria. Denaturing gradient gel electrophoresis displayed communities included yeast affiliated to Kluyveromyces marxianus, Saccharomyces cerevisiae, Kazachatania unispora, bacteria affiliated to Lactobacillus kefiranofaciens subsp. Kefirgranum, Lactobacillus kefiranofaciens subsp. Kefiranofaciens and an uncultured bacterium also related to the genus Lactobacillus. A steady structure and dominant microbiota, including probiotic bacteria, was detected in the analyzed kefir beverages and grains. This robustness is determinant for future implementation of whey-based kefir beverages.

  6. Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies

    PubMed Central

    Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun

    2013-01-01

    Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933

  7. Rapid and sensitive method to identify Mycobacterium avium subsp. paratuberculosis in cow's milk by DNA methylase genotyping.

    PubMed

    Mundo, Silvia Leonor; Gilardoni, Liliana Rosa; Hoffman, Federico José; Lopez, Osvaldo Jorge

    2013-03-01

    Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn's disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time.

  8. Rapid and Sensitive Method To Identify Mycobacterium avium subsp. paratuberculosis in Cow's Milk by DNA Methylase Genotyping

    PubMed Central

    Mundo, Silvia Leonor; Gilardoni, Liliana Rosa; Hoffman, Federico José

    2013-01-01

    Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn's disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time. PMID:23275511

  9. Septic pneumonic tularaemia caused by Francisella tularensis subsp. holarctica biovar II.

    PubMed

    Fritzsch, Joerg; Splettstoesser, Wolf D

    2010-09-01

    This case of pneumonic tularaemia elucidates two aspects: it is believed to be the first documented case of bacteraemia caused by Francisella tularensis subsp. holarctica biovar II; furthermore, it illustrates the remission of septic pneumonic tularaemia without appropriate anti-infective therapy. A blood culture from a patient with community-acquired pneumonia was found to be positive for F. tularensis subsp. holarctica biovar II after 10 days of cultivation. Meanwhile, the patient had been treated with ceftriaxone, followed by sultamicillin and clindamycin. The patient continued suffering from fever of up to 40.7 degrees C and rising C-reactive protein (CRP) for 4 days before the fever and CRP declined. The isolated strain was later tested and found to be resistant to the antibiotics used. The present case underlines that F. tularensis subsp. holarctica infections may cause severe symptoms but mostly have a favourable outcome.

  10. Lactobacillus cypricasei Lawson et al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et al. 2000.

    PubMed

    Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean

    2006-07-01

    The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.

  11. Extending viability of Lactobacillus plantarum and Lactobacillus johnsonii by microencapsulation in alginate microgels.

    PubMed

    Tiani, Kendra A; Yeung, Timothy W; McClements, D Julian; Sela, David A

    2018-03-01

    To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.

  12. The suitability of different probiotic strains for the production of fruit-whey beverages.

    PubMed

    Sady, Marek; Najgebauer-Lejko, Dorota; Domagała, Jacek

    2017-01-01

    When designing new probiotic products, one of the most important aspects is the selection of bacterial strains with high survival rates in the matrix of the product concerned. The aim of the present research was to evaluate the potential of selected strains of probiotic bacteria for the production of fruit-whey beverages. Orange, apple and blackcurrant whey beverages were produced, and each was inoculated with one of the following probiotic strains: Bifidobacterium lactis HN019TM; Lactobacillus aci- dophilus NCFM®; Lactobacillus paracasei Lpc-37TM; Lactobacillus rhamnosus HN001TM. The count of probiotic bacteria as well as pH and total acidity were evaluated at the 1st, 7th, 14th, 21st and 28th day of storage. Beverages containing L. paracasei Lpc-37TM or L. rhamnosus HN001TM were characterized by a sig- nificantly higher average number of viable cells (7.02 or 7.05 log cfu/g, respectively) than products with lactis HN019TM or L. acidophilus NCFM® (6.43 or 6.37 log cfu/g, respectively). The use of L. paracasei Lpc-37 and L. rhamnosus HN001 strains in orange and apple drinks allows the recommended count for probiotic products, 106 cfu/g for 28 days of storage, to be exceeded. Survival of the B. lactis HN019 strain fulfills the above requirements only in the orange drink. The L. acidophilus NCFM® strain was found to be the least suitable for the production of beverages, as it did not reach 6 log cfu/g in any products after 28 days of stor- age. The highest average number of bacteria was found in the orange beverages (7.14 log cfu/g). In terms of bacteria viability, blackcurrant juice was the least suitable for the production of whey probiotic drinks, due to its high acidity. The results of the present study indicate that careful selection of the fruit juice component, especially in terms of its acidity, is key to designing successful probiotic fruit-whey beverages. Other factors which should be taken into account to ensure a sufficient number of live

  13. Urea Hydrogen Peroxide Reduces the Numbers of Lactobacilli, Nourishes Yeast, and Leaves No Residues in the Ethanol Fermentation

    PubMed Central

    Narendranath, N. V.; Thomas, K. C.; Ingledew, W. M.

    2000-01-01

    Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from ∼107 to ∼102 CFU/ml in a 2-h preincubation at 30°C of normal-gravity wheat mash at ∼21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at ∼107 CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at ∼107 CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30°C whether the bactericidal agent was added as H2O2 or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H2O2) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H2O2. H2O2-resistant mutants were not expected or found when lethal levels of H2O2 or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast. PMID:11010858

  14. Draft Genome Sequences of Three Pectobacterium Strains Causing Blackleg of Potato: P. carotovorum subsp. brasiliensis ICMP 19477, P. atrosepticum ICMP 1526, and P. carotovorum subsp. carotovorum UGC32

    PubMed Central

    Fiers, Mark W. E. J.; Lu, Ashley; Armstrong, Karen F.

    2015-01-01

    Blackleg is a disease caused by several species of Pectobacterium that results in losses to potato crops worldwide. Here, we report the draft genomes of three taxonomically and geographically distinct blackleg-causing strains of Pectobacterium: P. carotovorum subsp. brasiliensis ICMP 19477, P. atrosepticum ICMP 1526, and P. carotovorum subsp. carotovorum UGC32. Comparison of these genomes will support the identification of common traits associated with their capacity to cause blackleg. PMID:26251497

  15. Characterization of a novel bacteriophage, Phda1, infecting the histamine-producing Photobacterium damselae subsp. damselae.

    PubMed

    Yamaki, S; Kawai, Y; Yamazaki, K

    2015-06-01

    Photobacterium damselae subsp. damselae is a potent histamine-producing micro-organism. The aim of this study was to isolate and characterize a bacteriophage Phda1 that infected P. damselae subsp. damselae to inhibit its growth and histamine accumulation. Phda1 was isolated from a raw oyster, and the host range, morphology and the bacteriophage genome size were analysed. Phda1 formed a clear plaque only against P. damselae subsp. damselae JCM8969 among five Gram-positive and 32 Gram-negative bacterial strains tested. Phda1 belongs to the family Myoviridae, and its genome size was estimated as 35·2-39·5 kb. According to the one-step growth curve analysis, the latent period, rise period and burst size of Phda1 were 60 min, 50 min and 19 plaque-forming units per infected cell, respectively. Divalent cations, especially Ca(2+) and Mg(2+) , strongly improved Phda1 adsorption to the host cells and its propagation. Phda1 treatment delayed the growth and histamine production of P. damselae subsp. damselae in an in vitro challenge test. The bacteriophage Phda1 might serve as a potential antimicrobial agent to inhibit the histamine poisoning caused by P. damselae subsp. damselae. This is the first description of a bacteriophage specifically infecting P. damselae subsp. damselae and its potential applications. Bacteriophage therapy could prove useful in the prevention of histamine poisoning. © 2015 The Society for Applied Microbiology.

  16. Detection of Goss's Wilt Pathogen Clavibacter michiganensis subsp. nebraskensis in Maize by Loop-Mediated Amplification.

    PubMed

    Yasuhara-Bell, Jarred; de Silva, Asoka; Heuchelin, Scott A; Chaky, Jennifer L; Alvarez, Anne M

    2016-03-01

    The Goss's wilt pathogen, Clavibacter michiganensis subsp. nebraskensis, can cause considerable losses in maize (Zea mays) production. Diagnosis of Goss's wilt currently is based on symptomology and identification of C. michiganensis subsp. nebraskensis, following isolation on a semiselective medium and/or serological testing. In an effort to provide a more efficient identification method, a loop-mediated amplification (LAMP) assay was developed to detect the tripartite ATP-independent periplasmic (TRAP)-type C4-dicarboxylate transport system large permease component and tested using strains of C. michiganensis subsp. nebraskensis, all other C. michiganensis subspecies and several genera of nontarget bacteria. Only strains of C. michiganensis subsp. nebraskensis reacted positively with the LAMP assay. The LAMP assay was then used to identify bacterial isolates from diseased maize. 16S rDNA and dnaA sequence analyses were used to confirm the identity of the maize isolates and validate assay specificity. The Cmm ImmunoStrip assay was included as a presumptive identification test of C. michiganensis subsp. nebraskensis at the species level. The Cmn-LAMP assay was further tested using symptomatic leaf tissue. The Cmn-LAMP assay was run in a hand-held real-time monitoring device (SMART-DART) and performed equally to in-lab quantitative polymerase chain reaction equipment. The Cmn-LAMP assay accurately identified C. michiganensis subsp. nebraskensis and has potential as a field test. The targeted sequence also has potential application in other molecular detection platforms.

  17. Bioprocessing of some agro-industrial residues for endoglucanase production by the new subsp.; Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J

    PubMed Central

    El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A.M.; Saber, Wesam I.A.; Mohamed, Asem A.

    2014-01-01

    The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 °C after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application. PMID:25242966

  18. Lactobacillus versmoldensis sp. nov., isolated from raw fermented sausage.

    PubMed

    Kröckel, L; Schillinger, U; Franz, C M A P; Bantleon, A; Ludwig, W

    2003-03-01

    Lactobacillus versmoldensis sp. nov. (KU-3T) was isolated from raw fermented sausages. The new species was present in high numbers, and frequently dominated the lactic acid bacteria (LAB) populations of the products. 16S rDNA sequence data revealed that the isolates are closely related to the species Lactobacillus kimchii DSM 13961T, Lactobacillus paralimentarius DSM 13238T, Lactobacillus alimentarius DSM 20249T and Lactobacillus farciminis DSM 20184T. DNA-DNA reassociation data, however, clearly distinguished the new isolates from these species; they showed a low degree of DNA relatedness with the type strains of this group of phylogenetically closely related lactobacilli. These results warrant separate species status for strain KU-3T, for which the name Lactobacillus versmoldensis sp. nov. is proposed. The type strain is KU-3T (=DSM 14857T =NCCB 100034T =ATCC BAA-478T).

  19. Effect of Three Factors in Cheese Production (pH, Salt, and Heat) on Mycobacterium avium subsp. paratuberculosis Viability

    PubMed Central

    Sung, Nackmoon; Collins, Michael T.

    2000-01-01

    Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20°C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log10 concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 103 cells of M. avium subsp. paratuberculosis per ml. PMID:10742208

  20. Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman.

    PubMed

    Gul-Guven, Reyhan; Guven, Kemal; Poli, Annarita; Nicolaus, Barbara

    2008-12-01

    A new thermophilic spore-forming strain KG8(T) was isolated from the mud of Taslidere hot spring in Batman. Strain KG8(T) was aerobe, Gram-positive, rod-shaped, motile, occurring in pairs or filamentous. Growth was observed from 35-65 degrees C (optimum 55 degrees C) and at pH 5.5-9.5 (optimum pH 7.5). It was capable of utilizing starch, growth was observed until 3% NaCl (w/v) and it was positive for nitrate reduction. On the basis of 16S rRNA gene sequence similarity, strain KG8(T) was shown to be related most closely to Anoxybacillus species. Chemotaxonomic data (major isoprenoid quinone-menaquinone-7; major fatty acid-iso-C15:0 and iso-C17:0) supported the affiliation of strain KG8(T) to the genus Anoxybacillus. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain KG8(T). Based on these results we propose assigning a novel subspecies of Anoxybacillus kamchatkensis, to be named Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov. with the type strain KG8(T) (DSM 18475(T)=CIP 109280(T)).

  1. Lactobacillus paralimentarius sp. nov., isolated from sourdough.

    PubMed

    Cai, Y; Okada, H; Mori, H; Benno, Y; Nakase, T

    1999-10-01

    Six strains of lactic acid bacteria isolated from sourdough were characterized taxonomically. They were Gram-positive, catalase-negative, facultatively anaerobic rods that did not produce gas from glucose. Morphological and physiological data indicated that the strains belong to the genus Lactobacillus and they were similar to Lactobacillus alimentarius in phenotypic characteristics. These strains shared the same phenotypic characteristics and exhibited intragroup DNA homology values of over 89.8%, indicating that they comprised a single species. The G + C content of the DNA for the strains was 37.2-38.0 mol%. The 16S rRNA sequence of representative strain TB 1T was determined and aligned with that of other Lactobacillus species. This strain was placed in the genus Lactobacillus on the basis of phylogenetic analysis. L. alimentarius was the most closely related species in the phylogenetic tree and this species also showed the highest sequence homology value (96%) with strain TB 1T. DNA-DNA hybridization indicated that strain TB 1T did not belong to L. alimentarius. It is proposed that these strains are placed in the genus Lactobacillus as a new species, Lactobacillus paralimentarius sp. nov. The type strain of L. paralimentarius is TB 1T, which has been deposited in the Japan Collection of Microorganisms (JCM) as strain JCM 10415T.

  2. Effects of selected bacterial cultures on safety and sensory traits of Nocellara Etnea olives produced at large factory scale.

    PubMed

    Randazzo, Cinzia L; Russo, Nunziatina; Pino, Alessandra; Mazzaglia, Agata; Ferrante, Margherita; Conti, Gea Oliveri; Caggia, Cinzia

    2018-05-01

    This work investigates the effects of different combinations of selected lactic acid bacteria strains on Lactobacillus species occurrence, on safety and on sensory traits of natural green table olives, produced at large factory scale. Olives belonging to Nocellara Etnea cv were processed in a 6% NaCl brine and inoculated with six different bacterial cultures, using selected strains belonging to Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus pentosus species. The fermentation process was strongly influenced by the added starters and the identification of lactic acid bacteria isolated throughout the process confirms that L. pentosus dominated all fermentations, followed by L. plantarum, whereas L. casei was never detected. Pathogens were never found, while histamine and tyrosine were detected in control and in two experimental samples. The samples with the lowest final pH values showed a safer profile and the most appreciated sensory traits. The present study highlights that selected starters promote prevalence of L. pentosus over the autochthonous microbiota throughout the whole process of Nocellara Etnea olives. Copyright © 2018. Published by Elsevier Ltd.

  3. Distribution of Bacillus thuringiensis subsp. israelensis in Soil of a Swiss Wetland reserve after 22 years of mosquito control.

    PubMed

    Guidi, Valeria; Patocchi, Nicola; Lüthy, Peter; Tonolla, Mauro

    2011-06-01

    Recurrent treatments with Bacillus thuringiensis subsp. israelensis are required to control the floodwater mosquito Aedes vexans that breeds in large numbers in the wetlands of the Bolle di Magadino Reserve in Canton Ticino, Switzerland. Interventions have been carried out since 1988. In the present study, the spatial distribution of resting B. thuringiensis subsp. israelensis spores in the soil was measured. The B. thuringiensis subsp. israelensis concentration was determined in soil samples collected along six transects covering different elevations within the periodically flooded zones. A total of 258 samples were processed and analyzed by quantitative PCR that targeted an identical fragment of 159 bp for the B. thuringiensis subsp. israelensis cry4Aa and cry4Ba genes. B. thuringiensis subsp. israelensis spores were found to persist in soils of the wetland reserve at concentrations of up to 6.8 log per gram of soil. Continuous accumulation due to regular treatments could be excluded, as the decrease in spores amounted to 95.8% (95% confidence interval, 93.9 to 97.7%). The distribution of spores was correlated to the number of B. thuringiensis subsp. israelensis treatments, the elevation of the sampling point, and the duration of the flooding periods. The number of B. thuringiensis subsp. israelensis treatments was the major factor influencing the distribution of spores in the different topographic zones (P < 0.0001). These findings indicated that B. thuringiensis subsp. israelensis spores are rather immobile after their introduction into the environment.

  4. Spray-dried adjunct cultures of autochthonous non-starter lactic acid bacteria.

    PubMed

    Peralta, Guillermo H; Bergamini, Carina V; Audero, Gabriela; Páez, Roxana; Wolf, I Verónica; Perotti, M Cristina; Hynes, Erica R

    2017-08-16

    Spray-drying of lactic cultures provides direct-to-vat starters, which facilitate their commercialization and use. However, this process may alter the metabolic activity and deteriorate technological features. In this work, we assessed the influence of spray-drying on the survival and aroma production of two strains of mesophilic lactobacilli: Lactobacillus paracasei 90 and Lactobacillus plantarum 91, which have already been characterized as good adjunct cultures. The spray-drying was carried out using a laboratory scale spray and the dried cultures were monitored during the storage for the survival rate. The dried cultures were applied to two cheese models: sterile cheese extract and miniature soft cheese. The influence on the carbohydrate metabolism and the production of organic acids and volatile compounds was determined. Both strains retained high levels of viable counts in the powder after drying and during the storage at 5°C for twelve months. In addition, they also remained at high level in both cheese models during incubation or ripening. Similar profiles of carbohydrate fermentation and bioformation of volatile compounds were observed in the cheese extracts for each of the strains when tested as both fresh and dried cultures. In addition, the ability of Lb. paracasei 90 to increase the production of acetoin and diacetyl remarkably in cheese models was also confirmed for the spray-dried culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The yogurt amino acid profile's variation during the shelf-life.

    PubMed

    Germani, A; Luneia, R; Nigro, F; Vitiello, V; Donini, L M; del Balzo, V

    2014-01-01

    To analyze the yogurt amino acid profile starting from marketing through the whole shelf-life. The evaluation of the proteolytic activity of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus, allows to deduce their vitality during the shelf-life period and within 45 days. Three types of full fats yogurts have been analyzed (a) natural white (b) sweet white and (c) whole fruit - in two stages: t0 (first day of shelf-life) and t1 (end of shelf-life). The proteins have been analyzed by the Kjeldahl method and the amino acid profile by HPLC. In natural yogurt a significant increase of the amount of free amino acids has been observed during the period of shelf-life (97%). In the sweetened full fats and fruit yogurt, instead, there is a lower increase of respectively 33% and 39% In whole milk natural yogurt, based on our data, the proteolytic activity seems to persist during the entire period of the shelf-life and this can be considered an index of bacterial survival, especially of Lactobacillus delbrueckii subsp. bulgaricus during the marketing process.

  6. Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats.

    PubMed

    Amdekar, Sarika; Singh, Vinod; Kumar, Avnish; Sharma, Poonam; Singh, Rambir

    2013-01-01

    In view of well-established immunomodulatory properties of Lactobacillus, present investigation was carried out to evaluate antioxidant and anti-inflammatory potential of Lactobacillus casei and Lactobacillus acidophilus, against inflammatory pathway and oxidative stress developed in an experimental model of arthritis. Collagen-induced arthritis (CIA) model was used. Oral administration of L. casei, L. acidophilus, standard antiarthritic drug indomethacin, and vehicle were started after induced arthritis and continued up to day 28. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, IL-17, IL-4, and IL-10 levels were estimated in serum. In parallel, oxidative stress parameters were also measured from synovial effsuate. All rats were graded for arthritis score at the end of each week. L. casei, L. acidophilus, and indomethacin treatment significantly downregulated proinflammatory and upregulated anti-inflammatory cytokines at P<0.0001. They have significantly decreased oxidative stress in synovial effsuate (P<0.0001) and also arthritis score (P<0.05). Protection provided by L. casei and L. acidophilus was more pronounced than that of indomethacin. These lines of evidence suggest that L. casei and L. acidophilus exert potent protective effect against CIA. It further establishes effective anti-inflammatory and antioxidant properties of Lactobacillus. However, additional clinical investigations are needed to prove the efficacy of Lactobacillus in treatment/management of rheumatoid arthritis.

  7. Xylella fastidiosa Isolates from Both subsp. multiplex and fastidiosa Cause Disease on Southern Highbush Blueberry (Vaccinium sp.) Under Greenhouse Conditions.

    PubMed

    Oliver, J E; Cobine, P A; De La Fuente, L

    2015-07-01

    Xylella fastidiosa is a xylem-limited gram-negative plant pathogen that affects numerous crop species, including grape, citrus, peach, pecan, and almond. Recently, X. fastidiosa has also been found to be the cause of bacterial leaf scorch on blueberry in the southeastern United States. Thus far, all X. fastidiosa isolates obtained from infected blueberry have been classified as X. fastidiosa subsp. multiplex; however, X. fastidiosa subsp. fastidiosa isolates are also present in the southeastern United States and commonly cause Pierce's disease of grapevines. In this study, seven southeastern U.S. isolates of X. fastidiosa, including three X. fastidiosa subsp. fastidiosa isolates from grape, one X. fastidiosa subsp. fastidiosa isolate from elderberry, and three X. fastidiosa subsp. multiplex isolates from blueberry, were used to infect the southern highbush blueberry 'Rebel'. Following inoculation, all isolates colonized blueberry, and isolates from both X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa caused symptoms, including characteristic stem yellowing and leaf scorch symptoms as well as dieback of the stem tips. Two X. fastidiosa subsp. multiplex isolates from blueberry caused more severe symptoms than the other isolates examined, and infection with these two isolates also had a significant impact on host mineral nutrient content in sap and leaves. These findings have potential implications for understanding X. fastidiosa host adaptation and expansion and the development of emerging diseases caused by this bacterium.

  8. Isolation of Bartonella henselae and Two New Bartonella Subspecies, Bartonella koehlerae Subspecies boulouisii subsp. nov. and Bartonella koehlerae Subspecies bothieri subsp. nov. from Free-Ranging Californian Mountain Lions and Bobcats

    PubMed Central

    Chomel, Bruno B.; Molia, Sophie; Kasten, Rickie W.; Borgo, Gina M.; Stuckey, Matthew J.; Maruyama, Soichi; Chang, Chao-chin; Haddad, Nadia; Koehler, Jane E.

    2016-01-01

    Domestic cats are the natural reservoir of Bartonella henselae, B. clarridgeiae and B. koehlerae. To determine the role of wild felids in the epidemiology of Bartonella infections, blood was collected from 14 free-ranging California mountain lions (Puma concolor) and 19 bobcats (Lynx rufus). Bartonella spp. were isolated from four (29%) mountain lions and seven (37%) bobcats. These isolates were characterized using growth characteristics, biochemical reactions, molecular techniques, including PCR-RFLP of selected genes or interspacer region, pulsed-field gel electrophoresis (PFGE), partial sequencing of several genes, and DNA-DNA hybridization. Two isolates were identical to B. henselae genotype II. All other isolates were distinguished from B. henselae and B. koehlerae by PCR-RFLP of the gltA gene using endonucleases HhaI, TaqI and AciI, with the latter two discriminating between the mountain lion and the bobcat isolates. These two novel isolates displayed specific PFGE profiles distinct from B. henselae, B. koehlerae and B. clarridgeiae. Sequences of amplified gene fragments from the three mountain lion and six bobcat isolates were closely related to, but distinct from, B. henselae and B. koehlerae. Finally, DNA-DNA hybridization studies demonstrated that the mountain lion and bobcat strains are most closely related to B. koehlerae. We propose naming the mountain lion isolates B. koehlerae subsp. boulouisii subsp. nov. (type strain: L-42-94), and the bobcat isolates B. koehlerae subsp. bothieri subsp. nov. (type strain: L-17-96), and to emend B. koehlerae as B. koehlerae subsp. koehlerae. The mode of transmission and the zoonotic potential of these new Bartonella subspecies remain to be determined. PMID:26981874

  9. A Rapid Method for Quantifying Viable Mycobacterium avium subsp. paratuberculosis in Cellular Infection Assays

    PubMed Central

    Pooley, Hannah B.; de Silva, Kumudika; Purdie, Auriol C.; Begg, Douglas J.; Whittington, Richard J.

    2016-01-01

    ABSTRACT Determining the viability of bacteria is a key outcome of in vitro cellular infection assays. Currently, this is done by culture, which is problematic for fastidious slow-growing bacteria such as Mycobacterium avium subsp. paratuberculosis, where it can take up to 4 months to confirm growth. This study aimed to identify an assay that can rapidly quantify the number of viable M. avium subsp. paratuberculosis cells in a cellular sample. Three commercially available bacterial viability assays along with a modified liquid culture method coupled with high-throughput quantitative PCR growth detection were assessed. Criteria for assessment included the ability of each assay to differentiate live and dead M. avium subsp. paratuberculosis organisms and their accuracy at low bacterial concentrations. Using the culture-based method, M. avium subsp. paratuberculosis growth was reliably detected and quantified within 2 weeks. There was a strong linear association between the 2-week growth rate and the initial inoculum concentration. The number of viable M. avium subsp. paratuberculosis cells in an unknown sample was quantified based on the growth rate, by using growth standards. In contrast, none of the commercially available viability assays were suitable for use with samples from in vitro cellular infection assays. IMPORTANCE Rapid quantification of the viability of Mycobacterium avium subsp. paratuberculosis in samples from in vitro cellular infection assays is important, as it allows these assays to be carried out on a large scale. In vitro cellular infection assays can function as a preliminary screening tool, for vaccine development or antimicrobial screening, and also to extend findings derived from experimental animal trials. Currently, by using culture, it takes up to 4 months to obtain quantifiable results regarding M. avium subsp. paratuberculosis viability after an in vitro infection assay; however, with the quantitative PCR and liquid culture method

  10. Antimicrobial properties of lactic acid bacteria isolated from traditional yogurt and milk against Shigella strains.

    PubMed

    Zare Mirzaei, Elnaze; Lashani, Elahe; Davoodabadi, Abolfazl

    2018-01-01

    Background: Lactic acid bacteria (LAB) are normal flora of the mouth, intestines and the female genital tract. They are also frequently found in meat, vegetables, and dairy products. Most of probiotic bacteria belong to the LAB group. Some probiotic LAB are useful in prevention and treatment of diarrheal diseases. The aim of this study was to investigate the antimicrobial properties of LAB isolated from traditional yogurt and milk against Shigella strains. Materials and methods: Forty LAB strains were isolated from traditional yogurt and milk. The antimicrobial activity of LAB against Shigella strains (eight S. flexneri , four S. sonnei ) was examined using the agar-well diffusion assay. LAB strains with antimicrobial effect against all Shigella strains were identified by 16S rRNA gene sequencing. Results: Six LAB strains inhibited the growth of all 12 Shigella strains. Lb. paracasei Y1-3, Lb. paracasei Y8-1 and Lb. fermentum Y2-2 were isolated from yogurt. Lb. paracasei M18-1, Lb. parelimentarius M4-3 and Lb. plantarum M19-1 were isolated from milk. Conclusion: This study showed that Lactobacillus strains with good inhibitory activity against S. flexneri and S. sonnei could be isolated from traditional yogurt and milk.

  11. Experimental infection of dogs with Bartonella henselae and Bartonella vinsonii subsp. berkhoffii.

    PubMed

    Balakrishnan, Nandhakumar; Cherry, Natalie A; Linder, Keith E; Pierce, Eric; Sontakke, Neal; Hegarty, Barbara C; Bradley, Julie M; Maggi, Ricardo G; Breitschwerdt, Edward B

    2013-11-15

    The lack of a suitable infection model remains an important obstacle for the pathophysiological understanding of Bartonella spp. The following pilot study was designed to determine whether cell culture-grown Bartonella henselae SA2 and Bartonella vinsonii subsp. berkhoffii genotype III would cause persistent bacteremia in dogs. Pre-inoculation screening established that two laboratory-raised Golden retrievers were naturally-infected with Bartonella koehlerae. Despite prior infection, one dog each was inoculated subcutaneously with 5 × 10(4)B. henselae (SA2 strain) or 3 × 10(4)B. vinsonii subsp. berkhoffii genotype III. Dogs were bled weekly for serological testing and culture using Bartonella alpha proteobacteria growth medium (BAPGM) diagnostic platform. Dog 1 seroconverted to B. henselae and Dog 2 seroconverted to B. vinsonii subsp. berkhoffii genotype III. Throughout the study period, Bartonella spp. DNA was neither amplified nor isolated in ante-mortem BAPGM enrichment blood cultures. B. henselae SA2 was isolated from a postmortem bone marrow from Dog 1 and B. koehlerae DNA was amplified from postmortem lung from Dog 2 following BAPGM enrichment culture. Limitations include lack of uninfected controls, a potentially suboptimal B. vinsonii subsp. berkhoffii inoculum and a relatively short duration of study. We conclude that following intradermal infection, sequestration of Bartonella spp. in tissues may limit diagnostic detection of these bacteria in dog blood samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Distribution Dynamics of Recombinant Lactobacillus in the Gastrointestinal Tract of Neonatal Rats

    PubMed Central

    Bao, Sujin; Zhu, Libin; Zhuang, Qiang; Wang, Lucia; Xu, Pin-Xian; Itoh, Keiji; Holzman, Ian R.; Lin, Jing

    2013-01-01

    One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates. PMID:23544119

  13. Specific Detection of Clavibacter michiganensis subsp. sepedonicus by Amplification of Three Unique DNA Sequences Isolated by Subtraction Hybridization.

    PubMed

    Mills, D; Russell, B W; Hanus, J W

    1997-08-01

    ABSTRACT Three single-copy, unique DNA fragments, designated Cms50, Cms72, and Cms85, were isolated from strain CS3 of Clavibacter michiganensis subsp. sepedonicus by subtraction hybridization using driver DNA from C. michiganensis subsp. insidiosus, C. michiganensis subsp. michiganensis, and Rhodococcus facians. Radio-labeled probes made of these fragments and used in Southern blot analysis revealed each to be absolutely specific to all North American C. michiganensis subsp. sepedonicus strains tested, including plasmidless and nonmucoid strains. The probes have no homology with genomic DNA from related C. michiganensis subspecies insidiosus, michiganensis, and tessellarius, nor with DNA from 11 additional bacterial species and three unidentified strains, some of which have been previously reported to display cross-reactivity with C. michiganensis subsp. sepedonicus-specific antisera. The three fragments shared no homology, and they appeared to be separated from each other by at least 20 kbp in the CS3 genome. Internal primer sets permitted amplification of each fragment by the polymerase chain reaction (PCR) only from C. michiganensis subsp. sepedonicus DNA. In a PCR-based sensitivity assay using a primer set that amplifies Cms85, the lowest level of detection of C. michiganensis subsp. sepedonicus was 100 CFU per milliliter when cells were added to potato core fluid. Erroneous results that may arise from PCR artifacts and mutational events are, therefore, minimized by the redundancy of the primer sets, and the products should be verifiable with unique capture probes in sequence-based detection systems.

  14. In vitro activity of farnesol against vaginal Lactobacillus spp.

    PubMed

    Wang, Fengjuan; Liu, Zhaohui; Zhang, Dai; Niu, Xiaoxi

    2017-05-01

    Farnesol, a quorum-sensing molecule in Candida albicans, can affect the growth of certain microorganisms. The objective of this study was to evaluate the in vitro activity of farnesol against vaginal Lactobacillus spp., which play a crucial role in the maintenance of vaginal health. Growth and metabolic viability of vaginal Lactobacillus spp. incubated with different concentrations of farnesol were determined by measuring the optical density of the cultures and with the MTT assay. Morphology of the farnesol-treated cells was evaluated using a scanning electron microscope. In vitro adherence of vaginal Lactobacillus cells treated with farnesol was determined by co-incubating with vaginal epithelial cells (VECs). The minimum inhibitory concentration (MIC) of farnesol for vaginal Lactobacillus spp. was 1500μM. No morphological changes were observed when the farnesol-treated Lactobacillus cells were compared with farnesol-free cells, and 100μM farnesol would reduce the adherence of vaginal Lactobacillus to VECs. Farnesol acted as a potential antimicrobial agent, had little impact on the growth, metabolism, and cytomorphology of the vaginal Lactobacillus spp.; however, it affected their adhering capacity to VECs. The safety of farnesol as an adjuvant for antimicrobial agents during the treatment of vaginitis needs to be studied further. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lactobacillus kimchii sp. nov., a new species from kimchi.

    PubMed

    Yoon, J H; Kang, S S; Mheen, T I; Ahn, J S; Lee, H J; Kim, T K; Park, C S; Kho, Y H; Kang, K H; Park, Y H

    2000-09-01

    A bacteriocin-producing lactic acid bacterium, which was isolated from the Korean fermented-vegetable food kimchi, was subjected to a polyphasic taxonomic study using phenotypic characterization and phylogenetic and genetic methods. This organism (MT-1077T) has phenotypic properties that are consistent with the description characterizing the genus Lactobacillus. Phylogenetic analysis based on 16S rDNA sequences showed clearly that strain MT-1077T is a member of the genus Lactobacillus. The closest phylogenetic relatives are Lactobacillus alimentarius KCTC 3593T and Lactobacillus farciminis LMG 9200T, with levels of 16S rDNA similarity of 98.4 and 98.2%, respectively. Levels of 16S rDNA similarity between strain MT-1077T and other Lactobacillus species were less than 93.0%. Differences in some phenotypic characteristics and DNA-DNA relatedness data indicated that strain MT-1077T should be distinguished from L. alimentarius KCTC 3593T and L. farciminis LMG 9200T. On the basis of the data presented, it is proposed that strain MT-1077T should be placed in the genus Lactobacillus as a new species, Lactobacillus kimchii sp. nov. The type strain of the new species is strain MT-1077T (= KCTC 8903PT = JCM 10707T).

  16. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  17. Salmonella enterica suppresses Pectobacterium carotovorum subsp. carotovorum population and soft rot progression by acidifying the microaerophilic environment.

    PubMed

    Kwan, Grace; Charkowski, Amy O; Barak, Jeri D

    2013-02-12

    Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. Salmonella enterica and Escherichia coli O157:H7 may use plants to move between animal

  18. Testing of viscous anti-HIV microbicides using Lactobacillus

    PubMed Central

    Moncla, B.J.; Pryke, K.; Rohan, L. C.; Yang, H.

    2012-01-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30 min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive brief, about 2 sec, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. PMID:22226641

  19. Testing of viscous anti-HIV microbicides using Lactobacillus.

    PubMed

    Moncla, B J; Pryke, K; Rohan, L C; Yang, H

    2012-02-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Draft Genome Sequence of Lactobacillus pobuzihii E100301T.

    PubMed

    Chiu, Chi-Ming; Chang, Chi-Huan; Pan, Shwu-Fen; Wu, Hui-Chung; Li, Shiao-Wen; Chang, Chuan-Hsiung; Lee, Yun-Shien; Chiang, Chih-Ming; Chen, Yi-Sheng

    2013-05-09

    Lactobacillus pobuzihii E100301(T) is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301(T).

  1. Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Wong, Stella Y Y; Grant, Irene R; Friedman, Mendel; Elliott, Christopher T; Situ, Chen

    2008-10-01

    The antibacterial activities of 18 naturally occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols, and other plant extracts) against three strains of Mycobacterium avium subsp. paratuberculosis (a bovine isolate [NCTC 8578], a raw-milk isolate [806R], and a human isolate [ATCC 43015]) were evaluated using a macrobroth susceptibility testing method. M. avium subsp. paratuberculosis was grown in 4 ml Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase, 0.05% Tween 80 (or 0.2% glycerol), and 2 microg/ml mycobactin J supplemented with five concentrations of each test compound. The changes in the optical densities of the cultures at 600 nm as a measure of CFU were recorded at intervals over an incubation period of 42 days at 37 degrees C. Six of the compounds were found to inhibit the growth of M. avium subsp. paratuberculosis. The most effective compound was trans-cinnamaldehyde, with a MIC of 25.9 microg/ml, followed by cinnamon oil (26.2 microg/ml), oregano oil (68.2 microg/ml), carvacrol (72.2 microg/ml), 2,5-dihydroxybenzaldehyde (74 microg/ml), and 2-hydroxy-5-methoxybenzaldehyde (90.4 microg/ml). With the exception of carvacrol, a phenolic compound, three of the four most active compounds are aldehydes, suggesting that the structure of the phenolic group or the aldehyde group may be important to the antibacterial activity. No difference in compound activity was observed between the three M. avium subsp. paratuberculosis strains studied. Possible mechanisms of the antimicrobial effects are discussed.

  2. Biofilms of vaginal Lactobacillus in vitro test.

    PubMed

    Wei, Xiao-Yu; Zhang, Rui; Xiao, Bing-Bing; Liao, Qin-Ping

    2017-01-01

    This paper focuses on biofilms of Lactobacillus spp. - a type of normal flora isolated from healthy human vaginas of women of childbearing age; thereupon, it broadens the research scope of investigation of vaginal normal flora. The static slide culture method was adopted to foster biofilms, marked by specific fluorescence staining. Laser scanning confocal and scanning electron microscopy were used to observe the microstructure of the biofilms. Photographs taken from the microstructure were analysed to calculate the density of the biofilms. The body of Lactobacillus spp., though red, turned yellow when interacting with the green extracellular polysaccharides. The structure of the biofilm and aquaporin within the biofilm were imaged. Lactobacillus density increases over time. This study provides convincing evidence that Lactobacillus can form biofilms and grow over time in vitro. This finding establishes an important and necessary condition for selecting proper strains for the pharmaceutics of vaginal ecology.

  3. Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni

    PubMed Central

    Parker, Craig T; Miller, William G; Horn, Sharon T; Lastovica, Albert J

    2007-01-01

    Background Campylobacter jejuni has been divided into two subspecies: C. jejuni subsp. jejuni (Cjj) and C. jejuni subsp. doylei (Cjd). Nearly all of the C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily from human clinical samples and are associated often with bacteremia, in addition to gastroenteritis. In this study, we utilized multilocus sequence typing (MLST) and a DNA microarray-based comparative genomic indexing (CGI) approach to examine the genomic diversity and gene content of Cjd strains. Results A geographically diverse collection of eight Cjd strains was examined by MLST and determined to be phylogenetically distinct from Cjj strains. Microarray-based CGI approach also supported this. We were able to demonstrate that Cjd strains exhibited divergence from Cjj strains NCTC 11168 and RM1221 in many of the intraspecies hypervariable regions. Moreover, multiple metabolic, transport and virulence functions (e.g. cytolethal distending toxin) were shown to be absent in the Cjd strains examined. Conclusion Our data demonstrate that Cjd are phylogenetically distinct from Cjj strains. Using the CGI approach, we identified subsets of absent genes from amongst the C. jejuni genes that provide clues as to the potential evolutionary origin and unusual pathogenicity of Cjd. PMID:17535437

  4. Draft Genome Sequence of Lactobacillus pobuzihii E100301T

    PubMed Central

    Chiu, Chi-ming; Chang, Chi-huan; Pan, Shwu-fen; Wu, Hui-chung; Li, Shiao-wen; Chang, Chuan-hsiung; Lee, Yun-shien; Chiang, Chih-ming

    2013-01-01

    Lactobacillus pobuzihii E100301T is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301T. PMID:23661478

  5. Lactobacillus insicii sp. nov., isolated from fermented raw meat.

    PubMed

    Ehrmann, Matthias A; Kröckel, Lothar; Lick, Sonja; Radmann, Pia; Bantleon, Annegret; Vogel, Rudi F

    2016-01-01

    The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8 % 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4 %), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3 %), Lactobacillus versmoldensis DSM 14857T (96.9 %) and Lactobacillus furfuricola JCM 18764T (97.2 %). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70 % and the DNA G+C content was 36.3 mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T ( = CECT 8802T = DSM 29801T).

  6. Distribution of Bacillus thuringiensis subsp. israelensis in Soil of a Swiss Wetland Reserve after 22 Years of Mosquito Control▿†

    PubMed Central

    Guidi, Valeria; Patocchi, Nicola; Lüthy, Peter; Tonolla, Mauro

    2011-01-01

    Recurrent treatments with Bacillus thuringiensis subsp. israelensis are required to control the floodwater mosquito Aedes vexans that breeds in large numbers in the wetlands of the Bolle di Magadino Reserve in Canton Ticino, Switzerland. Interventions have been carried out since 1988. In the present study, the spatial distribution of resting B. thuringiensis subsp. israelensis spores in the soil was measured. The B. thuringiensis subsp. israelensis concentration was determined in soil samples collected along six transects covering different elevations within the periodically flooded zones. A total of 258 samples were processed and analyzed by quantitative PCR that targeted an identical fragment of 159 bp for the B. thuringiensis subsp. israelensis cry4Aa and cry4Ba genes. B. thuringiensis subsp. israelensis spores were found to persist in soils of the wetland reserve at concentrations of up to 6.8 log per gram of soil. Continuous accumulation due to regular treatments could be excluded, as the decrease in spores amounted to 95.8% (95% confidence interval, 93.9 to 97.7%). The distribution of spores was correlated to the number of B. thuringiensis subsp. israelensis treatments, the elevation of the sampling point, and the duration of the flooding periods. The number of B. thuringiensis subsp. israelensis treatments was the major factor influencing the distribution of spores in the different topographic zones (P < 0.0001). These findings indicated that B. thuringiensis subsp. israelensis spores are rather immobile after their introduction into the environment. PMID:21498758

  7. Detection and Verification of Mycobacterium avium subsp. paratuberculosis in Fresh Ileocolonic Mucosal Biopsy Specimens from Individuals with and without Crohn's Disease

    PubMed Central

    Bull, Tim J.; McMinn, Elizabeth J.; Sidi-Boumedine, Karim; Skull, Angela; Durkin, Damien; Neild, Penny; Rhodes, Glenn; Pickup, Roger; Hermon-Taylor, John

    2003-01-01

    Mycobacterium avium subsp. paratuberculosis is a robust and phenotypically versatile pathogen which causes chronic inflammation of the intestine in many species, including primates. M. avium subsp. paratuberculosis infection is widespread in domestic livestock and is present in retail pasteurized cows' milk in the United Kingdom and, potentially, elsewhere. Water supplies are also at risk. The involvement of M. avium subsp. paratuberculosis in Crohn's disease (CD) in humans has been uncertain because of the substantial difficulties in detecting this pathogen. In its Ziehl-Neelsen staining-negative form, M. avium subsp. paratuberculosis is highly resistant to chemical and enzymatic lysis. The present study describes the development of optimized sample processing and DNA extraction procedures with fresh human intestinal mucosal biopsy specimens which ensure access to M. avium subsp. paratuberculosis DNA and maximize detection of these low-abundance pathogens. Also described are two nested PCR methodologies targeted at IS900, designated IS900[L/AV] and IS900[TJ1-4], which are uniquely specific for IS900. Detection of M. avium subsp. paratuberculosis in mucosal biopsy specimens was also evaluated by using mycobacterial growth indicator tube (MGIT) cultures (Becton Dickinson). IS900[L/AV] PCR detected M. avium subsp. paratuberculosis in 34 of 37 (92%) patients with CD and in 9 of 34 (26%) controls without CD (noninflammatory bowel disease [nIBD] controls) (P = 0.0002; odds ratio = 3.47). M. avium subsp. paratuberculosis was detected by IS900[L/AV] PCR in MGIT cultures after 14 to 88 weeks of incubation in 14 of 33 (42%) CD patients and 3 of 33 (9%) nIBD controls (P = 0.0019; odds ratio = 4.66). Nine of 15 (60%) MGIT cultures of specimens from CD patients incubated for more than 38 weeks were positive for M. avium subsp. paratuberculosis. In each case the identity of IS900 from M. avium subsp. paratuberculosis was verified by amplicon sequencing. The rate of detection of

  8. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Urease enzyme preparation from Lactobacillus... Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic bacterium Lactobacillus...

  9. Fate of Mycobacterium avium subsp. paratuberculosis in Swiss hard and semihard cheese manufactured from raw milk.

    PubMed

    Spahr, U; Schafroth, K

    2001-09-01

    Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 10(4) to 10(5) CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 10(3) to 10(4) cells of M. avium subsp. paratuberculosis per g will be inactivated.

  10. Fate of Mycobacterium avium subsp. paratuberculosis in Swiss Hard and Semihard Cheese Manufactured from Raw Milk

    PubMed Central

    Spahr, U.; Schafroth, K.

    2001-01-01

    Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 104 to 105 CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 103 to 104 cells of M. avium subsp. paratuberculosis per g will be inactivated. PMID:11526024

  11. Unusual Structure of the attB Site of the Site-Specific Recombination System of Lactobacillus delbrueckii Bacteriophage mv4

    PubMed Central

    Auvray, Frédéric; Coddeville, Michèle; Ordonez, Romy Catoira; Ritzenthaler, Paul

    1999-01-01

    The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3′ end of a tRNASer gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNASer gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model. PMID:10572145

  12. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Culture Phenotypes of Genomically and Geographically Diverse Mycobacterium avium subsp. paratuberculosis Isolates from Different Hosts▿

    PubMed Central

    Whittington, Richard J.; Marsh, Ian B.; Saunders, Vanessa; Grant, Irene R.; Juste, Ramon; Sevilla, Iker A.; Manning, Elizabeth J. B.; Whitlock, Robert H.

    2011-01-01

    Mycobacterium avium subsp. paratuberculosis causes paratuberculosis (Johne's disease) in ruminants in most countries. Historical data suggest substantial differences in culturability of M. avium subsp. paratuberculosis isolates from small ruminants and cattle; however, a systematic comparison of culture media and isolates from different countries and hosts has not been undertaken. Here, 35 field isolates from the United States, Spain, Northern Ireland, and Australia were propagated in Bactec 12B medium and Middlebrook 7H10 agar, genomically characterized, and subcultured to Lowenstein-Jensen (LJ), Herrold's egg yolk (HEY), modified Middlebrook 7H10, Middlebrook 7H11, and Watson-Reid (WR) agars, all with and without mycobactin J and some with sodium pyruvate. Fourteen genotypes of M. avium subsp. paratuberculosis were represented as determined by BstEII IS900 and IS1311 restriction fragment length polymorphism analysis. There was no correlation between genotype and overall culturability, although most S strains tended to grow poorly on HEY agar. Pyruvate was inhibitory to some isolates. All strains grew on modified Middlebrook 7H10 agar but more slowly and less prolifically on LJ agar. Mycobactin J was required for growth on all media except 7H11 agar, but growth was improved by the addition of mycobactin J to 7H11 agar. WR agar supported the growth of few isolates. The differences in growth of M. avium subsp. paratuberculosis that have historically been reported in diverse settings have been strongly influenced by the type of culture medium used. When an optimal culture medium, such as modified Middlebrook 7H10 agar, is used, very little difference between the growth phenotypes of diverse strains of M. avium subsp. paratuberculosis was observed. This optimal medium is recommended to remove bias in the isolation and cultivation of M. avium subsp. paratuberculosis. PMID:21430104

  14. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice.

    PubMed

    London, Lis E E; Kumar, Arun H S; Wall, Rebecca; Casey, Pat G; O'Sullivan, Orla; Shanahan, Fergus; Hill, Colin; Cotter, Paul D; Fitzgerald, Gerald F; Ross, R Paul; Caplice, Noel M; Stanton, Catherine

    2014-12-01

    Probiotic bacteria have been associated with a reduction in cardiovascular disease risk, a leading cause of death and disability. The aim of this study was to assess the impact of dietary administration of exopolysaccharide-producing probiotic Lactobacillus cultures on lipid metabolism and gut microbiota in apolipoprotein E (apoE)-deficient mice. First, we examined lipid metabolism in response to dietary supplementation with recombinant β-glucan-producing Lactobacillus paracasei National Food Biotechnology Centre (NFBC) 338 expressing the glycosyltransferase (Gtf) gene from Pediococcus parvulus 2.6 (GTF), and naturally exopolysaccharide-producing Lactobacillus mucosae Dairy Product Culture Collection (DPC) 6426 (DPC 6426) compared with the non-β-glucan-producing isogenic control strain Lactobacillus paracasei NFBC 338 (PNZ) and placebo (15% wt:vol trehalose). Second, we examined the effects on the gut microbiota of dietary administration of DPC 6426 compared with placebo. Probiotic Lactobacillus strains at 1 × 10(9) colony-forming units/d per animal were administered to apoE(-/-) mice fed a high-fat (60% fat)/high-cholesterol (2% wt:wt) diet for 12 wk. At the end of the study, aortic plaque development and serum, liver, and fecal variables involved in lipid metabolism were analyzed, and culture-independent microbial analyses of cecal content were performed. Total cholesterol was reduced in serum (P < 0.001; ∼33-50%) and liver (P < 0.05; ∼30%) and serum triglyceride concentrations were reduced (P < 0.05; ∼15-25%) in mice supplemented with GTF or DPC 6426 compared with the PNZ or placebo group, respectively. In addition, dietary intervention with GTF led to increased amounts of fecal cholesterol excretion (P < 0.05) compared with all other groups. Compositional sequencing of the gut microbiota revealed a greater prevalence of Porphyromonadaceae (P = 0.001) and Prevotellaceae (P = 0.001) in the DPC 6426 group and lower proportions of Clostridiaceae (P < 0

  15. Faecal bacterial composition in dairy cows shedding Mycobacterium avium subsp. paratuberculosis in faeces in comparison with nonshedding cows.

    PubMed

    Kaevska, Marija; Videnska, Petra; Sedlar, Karel; Bartejsova, Iva; Kralova, Alena; Slana, Iva

    2016-06-01

    The aim of this study was to determine possible differences in the faecal microbiota of dairy cows infected with Mycobacterium avium subsp. paratuberculosis (Johne's disease) in comparison with noninfected cows from the same herds. Faecal samples from cows in 4 herds were tested for M. avium subsp. paratuberculosis by real-time PCR, and faecal bacterial populations were analysed by 454 pyrosequencing of the 16S rRNA gene. The most notable differences between shedding and nonshedding cows were an increase in the genus Psychrobacter and a decrease in the genera Oscillospira, Ruminococcus, and Bifidobacterium in cows infected with M. avium subsp. paratuberculosis. The present study is the first to report the faecal microbial composition in dairy cows infected with M. avium subsp. paratuberculosis.

  16. Effects of probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary Streptococcus mutans and Lactobacillus levels

    PubMed Central

    Tehrani, Maryam Hajnorouzali; Akhlaghi, Najmeh; Talebian, Leila; Emami, Jaber; Keyhani, Siamak Etzad

    2016-01-01

    Aims: The aim of the present study was to evaluate the effect of a probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary counts of Streptococcus mutans (SM) and Lactobacillus (LB) in children 3–6 years of age. Settings and Design: Sixty-one healthy children were randomly allocated into two parallel blocks in this double-blind, randomized controlled trial (IRCT2014120320202N1) from May to June 2015. Subjects and Methods: Finally 53 participants consumed five drops of placebo (n = 23) or probiotic (n = 30) every night for 2 weeks. Before intervention and 1 day after completion of the intervention, unstimulated salivary samples were collected, and microbiologic evaluations were carried out. Statistical Analysis: Data were analyzed with descriptive statistical methods Wilcoxon signed ranks, Mann–Whitney, and logistic regression. Results: SM level decreased significantly in probiotic group after intervention (P = 0.045), and there were significant differences in salivary SM counts after intervention between two groups (P = 0.04). In probiotic group, LB counts decreased significantly after intervention (P = 0.048); however, there were no significant differences between two groups (P = 0.216). Conclusions: Use of this probiotic drop decreased salivary counts of SM; however, LB counts did not change. In addition, use of the drop in children with higher salivary counts appeared to be more effective. PMID:27994413

  17. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    PubMed

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; Carvalho, Antônio Fernandes de; Cocolin, Luca; Nero, Luís Augusto

    2015-12-02

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Antibacterial Activities of Naturally Occurring Compounds against Mycobacterium avium subsp. paratuberculosis▿

    PubMed Central

    Wong, Stella Y. Y.; Grant, Irene R.; Friedman, Mendel; Elliott, Christopher T.; Situ, Chen

    2008-01-01

    The antibacterial activities of 18 naturally occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols, and other plant extracts) against three strains of Mycobacterium avium subsp. paratuberculosis (a bovine isolate [NCTC 8578], a raw-milk isolate [806R], and a human isolate [ATCC 43015]) were evaluated using a macrobroth susceptibility testing method. M. avium subsp. paratuberculosis was grown in 4 ml Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase, 0.05% Tween 80 (or 0.2% glycerol), and 2 μg/ml mycobactin J supplemented with five concentrations of each test compound. The changes in the optical densities of the cultures at 600 nm as a measure of CFU were recorded at intervals over an incubation period of 42 days at 37°C. Six of the compounds were found to inhibit the growth of M. avium subsp. paratuberculosis. The most effective compound was trans-cinnamaldehyde, with a MIC of 25.9 μg/ml, followed by cinnamon oil (26.2 μg/ml), oregano oil (68.2 μg/ml), carvacrol (72.2 μg/ml), 2,5-dihydroxybenzaldehyde (74 μg/ml), and 2-hydroxy-5-methoxybenzaldehyde (90.4 μg/ml). With the exception of carvacrol, a phenolic compound, three of the four most active compounds are aldehydes, suggesting that the structure of the phenolic group or the aldehyde group may be important to the antibacterial activity. No difference in compound activity was observed between the three M. avium subsp. paratuberculosis strains studied. Possible mechanisms of the antimicrobial effects are discussed. PMID:18676709

  19. Effect of Soil Slope on the Appearance of Mycobacterium avium subsp. paratuberculosis in Water Running off Grassland Soil after Application of Contaminated Slurry

    PubMed Central

    Alfaro, M.; Salazar, F.; Troncoso, E.; Mitchell, R. M.; Ramirez, L.; Naguil, A.; Zamorano, P.; Collins, M. T.

    2013-01-01

    The study assessed the effect of soil slope on Mycobacterium avium subsp. paratuberculosis transport into rainwater runoff from agricultural soil after application of M. avium subsp. paratuberculosis-contaminated slurry. Under field conditions, 24 plots of undisturbed loamy soil 1 by 2 m2 were placed on platforms. Twelve plots were used for water runoff: 6 plots at a 3% slope and 6 plots at a 15% slope. Half of the plots of each slope were treated with M. avium subsp. paratuberculosis-contaminated slurry, and half were not treated. Using the same experimental design, 12 plots were established for soil sampling on a monthly basis using the same spiked slurry application and soil slopes. Runoff following natural rainfall was collected and analyzed for M. avium subsp. paratuberculosis, coliforms, and turbidity. M. avium subsp. paratuberculosis was detected in runoff from all plots treated with contaminated slurry and one control plot. A higher slope (15%) increased the likelihood of M. avium subsp. paratuberculosis detection but did not affect the likelihood of finding coliforms. Daily rainfall increased the likelihood that runoff would have coliforms and the coliform concentration, but it decreased the M. avium subsp. paratuberculosis concentration in the runoff. When there was no runoff, rain was associated with increased M. avium subsp. paratuberculosis concentrations. Coliform counts in runoff were related to runoff turbidity. M. avium subsp. paratuberculosis presence/absence, however, was related to turbidity. Study duration decreased bacterial detection and concentration. These findings demonstrate the high likelihood that M. avium subsp. paratuberculosis in slurry spread on pastures will contaminate water runoff, particularly during seasons with high rainfall. M. avium subsp. paratuberculosis contamination of water has potential consequences for both animal and human health. PMID:23542616

  20. Complete genome sequence of Clavibacter michiganensis subsp. insidiosus

    USDA-ARS?s Scientific Manuscript database

    Clavibacter michiganensis subsp. insidiosus (Cmi) causes bacterial wilt disease of alfalfa (Medicago sativa L.) and can also infect the model legume plant M. truncatula. The virulence mechanisms of Cmi are yet to be identified, hampered by the lack of efficient mutagenesis tools as well as by the la...