Sample records for lactobacillus s-layer proteins

  1. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    PubMed

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Interaction of S-layer proteins of Lactobacillus kefir with model membranes and cells.

    PubMed

    Hollmann, Axel; Delfederico, Lucrecia; Santos, Nuno C; Disalvo, E Anibal; Semorile, Liliana

    2018-06-01

    In previous works, it was shown that S-layer proteins from Lactobacillus kefir were able to recrystallize and stabilize liposomes, this feature reveling a great potential for developing liposomal-based carriers. Despite previous studies on this subject are important milestones, a number of questions remain unanswered. In this context, the feasibility of S-layer proteins as a biomaterial for drug delivery was evaluated in this work. First, S-layer proteins were fully characterized by electron microscopy, 2D-electrophoresis, and anionic exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Afterward, interactions of S-layer proteins with model lipid membranes were evaluated, showing that proteins adsorb to the lipid surface following a non-fickean or anomalous diffusion, when positively charged lipid were employed, suggesting that electrostatic interaction is a key factor in the recrystallization process on these proteins. Finally, the interaction of S-layer coated liposomes with Caco-2 cell line was assessed: First, cytotoxicity of formulations was tested showing no cytotoxic effects in S-layer coated vesicles. Second, by flow cytometry, it was observed an increased ability to transfer cargo molecules into Caco-2 cells from S-layer coated liposomes in comparison to control ones. All data put together, supports the idea that a combination of adhesive properties of S-layer proteins concomitant with higher stability of S-layer coated liposomes represents an exciting starting point in the development of new drug carriers.

  3. A study of the thermal denaturation of the S-layer protein from Lactobacillus salivarius

    NASA Astrophysics Data System (ADS)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2012-09-01

    Surface layer (S-layer) proteins display an intrinsic self-assembly property, forming monomolecular crystalline arrays, identified in outermost structures of the cell envelope in many organisms, such as bacteria and archaea. Isolated S-layer proteins also possess the ability to recrystallize into regular lattices, being used in biotechnological applications, such as controlling the architecture of biomimetic surfaces. To this end, the stability of the S-layer proteins under high-temperature conditions is very important. In this study, the S-layer protein has been isolated from Lactobacillus salivarius 16 strain of human origin, and purified by cation-exchange chromatography. Using circular dichroism (CD) spectroscopy, we have investigated the thermal denaturation of the S-layer protein. The far- and near-UV CD spectra have been collected, and the temperature dependence of the CD signal in these spectral domains has been analyzed. The variable temperature results show that the secondary and tertiary structures of the S-layer protein change irreversibly due to the heating of the sample. After the cooling of the heated protein, the secondary and tertiary structures are partially recovered. The denaturation curves show that the protein unfolding depends on the sample concentration and on the heating rate. The secondary and tertiary structures of the protein suffer changes in the same temperature range. We have also detected an intermediate state in the protein denaturation pathway. Our results on the thermal behavior of the S-layer protein may be important for the use of S-layer proteins in biotechnological applications, as well as for a better understanding of the structure and function of S-layer proteins.

  4. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM

    PubMed Central

    Hymes, Jeffrey P.; Johnson, Brant R.; Barrangou, Rodolphe

    2016-01-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion of fbpB lost the ability to adhere to mucin and fibronectin in vitro. Homologues of fbpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside the L. acidophilus homology group. PMID:26921419

  5. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals.

    PubMed

    Savijoki, K; Kahala, M; Palva, A

    1997-02-28

    A secretion cassette, based on the expression and secretion signals of a S-layer protein (SlpA) from Lactobacillus brevis, was constructed. E. coli beta-lactamase (Bla) was used as the reporter protein to determine the functionality of the S-layer signals for heterologous expression and secretion in Lactococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus gasseri and Lactobacillus casei using a low-copy-number plasmid derived from pGK12. In all hosts tested, the bla gene was expressed under the slpA signals and all Bla activity was secreted to the culture medium. The Lb. brevis S-layer promoters were very efficiently recognized in L. lactis, Lb. brevis and Lb. plantarum, whereas in Lb. gasseri the slpA promoter region appeared to be recognized at a lower level and in Lb. casei the level of transcripts was below the detection limit. The production of Bla was mainly restricted to the exponential phase of growth. The highest yield of Bla was obtained with L. lactis and Lb. brevis. Without pH control, substantial degradation of Bla occurred during prolonged cultivations with all lactic acid bacteria (LAB) tested. When growing L. lactis and Lb. brevis under pH control, the Bla activity could be stabilized also at the stationary phase. L. lactis produced up to 80 mg/l of Bla which to our knowledge represents the highest amount of a heterologous protein secreted by LAB so far. The short production phase implied a very high rate of secretion with a calculated value of 5 x 10(5) Bla molecules/cell per h. Such a high rate was also observed with Lb. plantarum, whereas in Lb. brevis the competition between the wild type slpA gene and the secretion construct probably lowered the rate of Bla production. The results obtained indicate wide applicability of the Lb. brevis slpA signals for efficient protein production and secretion in LAB.

  6. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM.

    PubMed

    Hymes, Jeffrey P; Johnson, Brant R; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-05-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion off bpB lost the ability to adhere to mucin and fibronectin in vitro Homologues off bpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilus homology group. Copyright © 2016 Hymes et al.

  7. Characterization of Three Different Unusual S-Layer Proteins from Viridibacillus arvi JG-B58 That Exhibits Two Super-Imposed S-Layer Proteins

    PubMed Central

    Günther, Tobias J.; Raff, Johannes; Pollmann, Katrin

    2016-01-01

    Genomic analyses of Viridibacillus arvi JG-B58 that was previously isolated from heavy metal contaminated environment identified three different putative surface layer (S-layer) protein genes namely slp1, slp2, and slp3. All three genes are expressed during cultivation. At least two of the V. arvi JG-B58 S-layer proteins were visualized on the surface of living cells via atomic force microscopy (AFM). These S-layer proteins form a double layer with p4 symmetry. The S-layer proteins were isolated from the cells using two different methods. Purified S-layer proteins were recrystallized on SiO2 substrates in order to study the structure of the arrays and self-assembling properties. The primary structure of all examined S-layer proteins lack some features that are typical for Bacillus or Lysinibacillus S-layers. For example, they possess no SLH domains that are usually responsible for the anchoring of the proteins to the cell wall. Further, the pI values are relatively high ranging from 7.84 to 9.25 for the matured proteins. Such features are typical for S-layer proteins of Lactobacillus species although sequence comparisons indicate a close relationship to S-layer proteins of Lysinibacillus and Bacillus strains. In comparison to the numerous descriptions of S-layers, there are only a few studies reporting the concomitant existence of two different S-layer proteins on cell surfaces. Together with the genomic data, this is the first description of a novel type of S-layer proteins showing features of Lactobacillus as well as of Bacillus-type S-layer proteins and the first study of the cell envelope of Viridibacillus arvi. PMID:27285458

  8. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    PubMed Central

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  9. Lactobacillus helveticus MIMLh5-Specific Antibodies for Detection of S-Layer Protein in Grana Padano Protected-Designation-of-Origin Cheese

    PubMed Central

    Brockmann, Eeva-Christine; Huovinen, Tuomas; Guglielmetti, Simone; Mora, Diego; Taverniti, Valentina; Arioli, Stefania; De Noni, Ivano; Lamminmäki, Urpo

    2014-01-01

    Single-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was also capable of binding to the S-layer protein of L. helveticus ATCC 15009. All five anti-S-layer scFvs were expressed in Escherichia coli XL1-Blue, and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein of L. helveticus MIMLh5, was used to detect the S-layer protein in Grana Padano protected-designation-of-origin (PDO) cheese extracts by Western blotting. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (and dairy-based) foods. PMID:24242242

  10. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    PubMed

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  11. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun

    2013-01-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  12. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis.

    PubMed

    Golowczyc, M A; Mobili, P; Garrote, G L; Abraham, A G; De Antoni, G L

    2007-09-30

    Eight Lactobacillus kefir strains isolated from different kefir grains were tested for their ability to antagonize Salmonella enterica serovar Enteritidis (Salmonella enteritidis) interaction with epithelial cells. L. kefir surface properties such as autoaggregation and coaggregation with Salmonella and adhesion to Caco-2/TC-7 cells were evaluated. L. kefir strains showed significantly different adhesion capacities, six strains were able to autoaggregate and four strains coaggregated with Salmonella. Coincubation of Salmonella with coaggregating L. kefir strains significantly decreased its capacity to adhere to and to invade Caco-2/TC-7 cells. This was not observed with non coaggregating L. kefir strains. Spent culture supernatants of L. kefir contain significant amounts of S-layer proteins. Salmonella pretreated with spent culture supernatants (pH 4.5-4.7) from all tested L. kefir strains showed a significant decrease in association and invasion to Caco-2/TC-7 cells. Artificially acidified MRS containing lactic acid to a final concentration and pH equivalent to lactobacilli spent culture supernatants did not show any protective action. Pretreatment of this pathogen with spent culture supernatants reduced microvilli disorganization produced by Salmonella. In addition, Salmonella pretreated with S-layer proteins extracted from coaggregating and non coaggregating L. kefir strains were unable to invade Caco-2/TC-7 cells. After treatment, L. kefir S-layer protein was detected associated with Salmonella, suggesting a protective role of this protein on association and invasion.

  13. AcmB Is an S-Layer-Associated β-N-Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.

    2016-01-01

    ABSTRACT Autolysins, also known as peptidoglycan hydrolases, are enzymes that hydrolyze specific bonds within bacterial cell wall peptidoglycan during cell division and daughter cell separation. Within the genome of Lactobacillus acidophilus NCFM, there are 11 genes encoding proteins with peptidoglycan hydrolase catalytic domains, 9 of which are predicted to be functional. Notably, 5 of the 9 putative autolysins in L. acidophilus NCFM are S-layer-associated proteins (SLAPs) noncovalently colocalized along with the surface (S)-layer at the cell surface. One of these SLAPs, AcmB, a β-N-acetylglucosaminidase encoded by the gene lba0176 (acmB), was selected for functional analysis. In silico analysis revealed that acmB orthologs are found exclusively in S-layer- forming species of Lactobacillus. Chromosomal deletion of acmB resulted in aberrant cell division, autolysis, and autoaggregation. Complementation of acmB in the ΔacmB mutant restored the wild-type phenotype, confirming the role of this SLAP in cell division. The absence of AcmB within the exoproteome had a pleiotropic effect on the extracellular proteins covalently and noncovalently bound to the peptidoglycan, which likely led to the observed decrease in the binding capacity of the ΔacmB strain for mucin and extracellular matrices fibronectin, laminin, and collagen in vitro. These data suggest a functional association between the S-layer and the multiple autolysins noncovalently colocalized at the cell surface of L. acidophilus NCFM and other S-layer-producing Lactobacillus species. IMPORTANCE Lactobacillus acidophilus is one of the most widely used probiotic microbes incorporated in many dairy foods and dietary supplements. This organism produces a surface (S)-layer, which is a self-assembling crystalline array found as the outermost layer of the cell wall. The S-layer, along with colocalized associated proteins, is an important mediator of probiotic activity through intestinal adhesion and modulation of

  14. AcmB Is an S-Layer-Associated β-N-Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM.

    PubMed

    Johnson, Brant R; Klaenhammer, Todd R

    2016-09-15

    Autolysins, also known as peptidoglycan hydrolases, are enzymes that hydrolyze specific bonds within bacterial cell wall peptidoglycan during cell division and daughter cell separation. Within the genome of Lactobacillus acidophilus NCFM, there are 11 genes encoding proteins with peptidoglycan hydrolase catalytic domains, 9 of which are predicted to be functional. Notably, 5 of the 9 putative autolysins in L. acidophilus NCFM are S-layer-associated proteins (SLAPs) noncovalently colocalized along with the surface (S)-layer at the cell surface. One of these SLAPs, AcmB, a β-N-acetylglucosaminidase encoded by the gene lba0176 (acmB), was selected for functional analysis. In silico analysis revealed that acmB orthologs are found exclusively in S-layer- forming species of Lactobacillus Chromosomal deletion of acmB resulted in aberrant cell division, autolysis, and autoaggregation. Complementation of acmB in the ΔacmB mutant restored the wild-type phenotype, confirming the role of this SLAP in cell division. The absence of AcmB within the exoproteome had a pleiotropic effect on the extracellular proteins covalently and noncovalently bound to the peptidoglycan, which likely led to the observed decrease in the binding capacity of the ΔacmB strain for mucin and extracellular matrices fibronectin, laminin, and collagen in vitro These data suggest a functional association between the S-layer and the multiple autolysins noncovalently colocalized at the cell surface of L. acidophilus NCFM and other S-layer-producing Lactobacillus species. Lactobacillus acidophilus is one of the most widely used probiotic microbes incorporated in many dairy foods and dietary supplements. This organism produces a surface (S)-layer, which is a self-assembling crystalline array found as the outermost layer of the cell wall. The S-layer, along with colocalized associated proteins, is an important mediator of probiotic activity through intestinal adhesion and modulation of the mucosal immune

  15. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, María Mercedes; Waehner, Pablo M; Fina Martin, Joaquina; Ojeda, Paula; Malone, Lucía; Sánchez Rivas, Carmen; Prado Acosta, Mariano; Allievi, Mariana C; Ruzal, Sandra M

    2016-10-01

    In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.

  16. Identification and Characterization of Novel Surface Proteins in Lactobacillus johnsonii and Lactobacillus gasseri

    PubMed Central

    Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf

    2002-01-01

    We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842

  17. A glycoproteomic approach reveals that the S-layer glycoprotein of Lactobacillus kefiri CIDCA 83111 is O- and N-glycosylated.

    PubMed

    Cavallero, Gustavo J; Malamud, Mariano; Casabuono, Adriana C; Serradell, M de Los Ángeles; Couto, Alicia S

    2017-06-06

    In Gram-positive bacteria, such as lactic acid bacteria, general glycosylation systems have not been documented so far. The aim of this work was to characterize in detail the glycosylation of the S-layer protein of Lactobacillus kefiri CIDCA 83111. A reductive β-elimination treatment followed by anion exchange high performance liquid chromatography analysis was useful to characterize the O-glycosidic structures. MALDI-TOF mass spectrometry analysis confirmed the presence of oligosaccharides bearing from 5 to 8 glucose units carrying galacturonic acid. Further nanoHPLC-ESI analysis of the glycopeptides showed two O-glycosylated peptides: the peptide sequence SSASSASSA already identified as a signature glycosylation motif in L. buchneri, substituted on average with eight glucose residues and decorated with galacturonic acid and another O-glycosylated site on peptide 471-476, with a Glc 5-8 GalA 2 structure. As ten characteristic sequons (Asn-X-Ser/Thr) are present in the S-layer amino acid sequence, we performed a PNGase F digestion to release N-linked oligosaccharides. Anion exchange chromatography analysis showed mainly short N-linked chains. NanoHPLC-ESI in the positive and negative ion modes were useful to determine two different peptides substituted with short N-glycan structures. To our knowledge, this is the first description of the structure of N-glycans in S-layer glycoproteins from Lactobacillus species. A detailed characterization of protein glycosylation is essential to establish the basis for understanding and investigating its biological role. It is known that S-layer proteins from kefir-isolated L. kefiri strains are involved in the interaction of bacterial cells with yeasts present in kefir grains and are also capable to antagonize the adverse effects of different enteric pathogens. Therefore, characterization of type and site of glycosidic chains in this protein may help to understand these important properties. Furthermore, this is the first

  18. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins.

    PubMed

    Malamud, Mariano; Carasi, Paula; Bronsoms, Sílvia; Trejo, Sebastián A; Serradell, María de Los Angeles

    2017-04-01

    The S-layer is a proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea, and it could be involved in cell recognition of microbes among other several distinct functions. In this work, both proteomic and genomic approaches were used to gain knowledge about the sequences of the S-layer protein (SLPs) encoding genes expressed by six aggregative and sixteen non-aggregative strains of potentially probiotic Lactobacillus kefiri. Peptide mass fingerprint (PMF) analysis confirmed the identity of SLPs extracted from L. kefiri, and based on the homology with phylogenetically related species, primers located outside and inside the SLP-genes were employed to amplify genomic DNA. The O-glycosylation site SASSAS was found in all L. kefiri SLPs. Ten strains were selected for sequencing of the complete genes. The total length of the mature proteins varies from 492 to 576 amino acids, and all SLPs have a calculated pI between 9.37 and 9.60. The N-terminal region is relatively conserved and shows a high percentage of positively charged amino acids. Major differences among strains are found in the C-terminal region. Different groups could be distinguished regarding the mature SLPs and the similarities observed in the PMF spectra. Interestingly, SLPs of the aggregative strains are 100% homologous, although these strains were isolated from different kefir grains. This knowledge provides relevant data for better understanding of the mechanisms involved in SLPs functionality and could contribute to the development of products of biotechnological interest from potentially probiotic bacteria.

  20. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    NASA Astrophysics Data System (ADS)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  1. The Adhesion of Lactobacillus salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins

    PubMed Central

    Wang, Ran; Jiang, Lun; Zhang, Ming; Zhao, Liang; Hao, Yanling; Guo, Huiyuan; Sang, Yue; Zhang, Hao; Ren, Fazheng

    2017-01-01

    Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of L. salivarius REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a cbpA deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of L. salivarius REN to colonize the human gut. PMID:28281568

  2. The Adhesion of Lactobacillus salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins.

    PubMed

    Wang, Ran; Jiang, Lun; Zhang, Ming; Zhao, Liang; Hao, Yanling; Guo, Huiyuan; Sang, Yue; Zhang, Hao; Ren, Fazheng

    2017-03-10

    Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of L. salivarius REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a cbpA deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of L. salivarius REN to colonize the human gut.

  3. S-Layer Protein Self-Assembly

    PubMed Central

    Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B.

    2013-01-01

    Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports. PMID:23354479

  4. Reassembly of S-layer proteins

    NASA Astrophysics Data System (ADS)

    Pum, Dietmar; Sleytr, Uwe B.

    2014-08-01

    Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.

  5. Strain-specific detection of orally administered canine jejunum-dominated Lactobacillus acidophilus LAB20 in dog faeces by real-time PCR targeted to the novel surface layer protein.

    PubMed

    Tang, Y; Saris, P E J

    2013-10-01

    Lactobacillus acidophilus LAB20 has potential to be a probiotic strain because it can be present at high numbers in the jejunum of dog. To specifically detect LAB20 from dog faecal samples, a real-time PCR protocol was developed targeting the novel surface (S) layer protein gene of LAB20. The presence of S-layer protein was verified by N-terminal sequencing of the approximately 50-kDa major band from SDS-PAGE gel. The corresponding S-layer gene was amplified by inverse PCR using homology to known S-layers and sequenced. This novel S-layer protein has low sequence similarity to other S-layer proteins in the N-terminal region (32-211 aa, 7-39%). This enabled designing strain-specific PCR primers. The primer set was utilized to study intestinal persistence of LAB20 in dog that was fed with LAB20 fermented milk for 5 days. The results showed that LAB20 can be detected from dog faecal sample after 6 weeks with 10(4·53)  DNA copies g(-1) postadministration. It suggested that LAB20 could be a good candidate to study the mechanism behind its persistence and dominance in dog intestine and maybe utilize it as a probiotic for canine. A real-time PCR method was developed to detect Lactobacillus acidophilus LAB20, a strain that was previously found dominant in canine gastrointestinal (GI) tract. The quantitative detection was based on targeting to variation region of a novel S-layer protein found in LAB20, allowing to specifically enumerate LAB20 from dog faeces. The results showed that the real-time PCR method was sensitive enough to be used in later intervention studies. Interestingly, LAB20 was found to persist in dog GI tract for 6 weeks. Therefore, LAB20 could be a good candidate to study its colonization and potentially utilize as a canine probiotic. © 2013 The Society for Applied Microbiology.

  6. The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.; O’Flaherty, Sarah; Goh, Yong Jun; Carroll, Ian; Barrangou, Rodolphe; Klaenhammer, Todd R.

    2017-01-01

    Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S-) layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs). Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs). In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578), was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX) demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms’ immunomodulatory properties and interactions with some intestinal epithelial cell components. PMID:28713337

  7. S-Layer Protein-Based Biosensors.

    PubMed

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  8. S-Layer Protein Mediates the Stimulatory Effect of Lactobacillus helveticus MIMLh5 on Innate Immunity

    PubMed Central

    Taverniti, Valentina; Stuknyte, Milda; Minuzzo, Mario; Arioli, Stefania; De Noni, Ivano; Scabiosi, Christian; Cordova, Zuzet Martinez; Junttila, Ilkka; Hämäläinen, Sanna; Turpeinen, Hannu; Mora, Diego; Karp, Matti; Pesu, Marko

    2013-01-01

    The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention. PMID:23220964

  9. Purification of Lactobacillus acidophilus surface-layer protein and its immunomodulatory effects on RAW264.7 cells.

    PubMed

    Zhang, Dandan; Wu, Mengting; Guo, Yuxing; Xun, Mingyue; Wang, Wenwen; Wu, Zhen; Pan, Daodong

    2017-09-01

    Surface-layer proteins (SLP) have been found in the outermost layer of the cell wall in many types of lactobacillus are considered to be an important factor with respect to intestinal immunity. The present study compared the effects of SLP extracted by different concentrations of LiCl and carbamide, and subsequently identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism and differential scanning calorimetry. Furthermore, RAW 264.7 cells were used to evaluate the immunomodulatory effects of SLP. SLP were derived from Lactobacillus acidophilus CICC6074 with a molecular weight of 46 kDa, and consisted of 16.9% α-helix, 42.3% β-sheet, 20.8% β-turns and 22.5% random coils. SLP promoted NO secretion and higher quantities of NO were produced as the SLP concentrations increased. SLP concentrations over 50 µg mL -1 significantly decreased the amount of tumor necrosis factor-α secreted by RAW264.7 cells. SLP can trigger immunomodulatory effects in RAW 264.7 cells. This provides crucial information that will enable the further use of L. acidophilus in food, medicine and other products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Inhibition of H9N2 Virus Invasion into Dendritic Cells by the S-Layer Protein from L. acidophilus ATCC 4356

    PubMed Central

    Gao, Xue; Huang, Lulu; Zhu, Liqi; Mou, Chunxiao; Hou, Qihang; Yu, Qinghua

    2016-01-01

    Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer) protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs) and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV) in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA) and neuraminidase (NA) mRNA expression, and nucleoprotein (NP) protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signaling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention. PMID:27826541

  11. Surface-Layer (S-Layer) Proteins Sap and EA1 Govern the Binding of the S-Layer-Associated Protein BslO at the Cell Septa of Bacillus anthracis

    PubMed Central

    Kern, Valerie J.; Kern, Justin W.; Theriot, Julie A.; Schneewind, Olaf

    2012-01-01

    The Gram-positive pathogen Bacillus anthracis contains 24 genes whose products harbor the structurally conserved surface-layer (S-layer) homology (SLH) domain. Proteins endowed with the SLH domain associate with the secondary cell wall polysaccharide (SCWP) following secretion. Two such proteins, Sap and EA1, have the unique ability to self-assemble into a paracrystalline layer on the surface of bacilli and form S layers. Other SLH domain proteins can also be found within the S layer and have been designated Bacillus S-layer-associated protein (BSLs). While both S-layer proteins and BSLs bind the same SCWP, their deposition on the cell surface is not random. For example, BslO is targeted to septal peptidoglycan zones, where it catalyzes the separation of daughter cells. Here we show that an insertional lesion in the sap structural gene results in elongated chains of bacilli, as observed with a bslO mutant. The chain length of the sap mutant can be reduced by the addition of purified BslO in the culture medium. This complementation in trans can be explained by an increased deposition of BslO onto the surface of sap mutant bacilli that extends beyond chain septa. Using fluorescence microscopy, we observed that the Sap S layer does not overlap the EA1 S layer and slowly yields to the EA1 S layer in a growth-phase-dependent manner. Although present all over bacilli, Sap S-layer patches are not observed at septa. Thus, we propose that the dynamic Sap/EA1 S-layer coverage of the envelope restricts the deposition of BslO to the SCWP at septal rings. PMID:22609927

  12. S-layer proteins as a source of carotenoids: Isolation of the carotenoid cofactor deinoxanthin from its S-layer protein DR_2577.

    PubMed

    Farci, Domenica; Esposito, Francesca; El Alaoui, Sabah; Piano, Dario

    2017-09-01

    S-layers are regular paracrystalline arrays of proteins or glycoproteins that characterize the outer envelope of several bacteria and archaea. The auto-assembling properties of these proteins make them suitable for application in nanotechnologies. However, the bacterial cell wall and its S-layer are also an important binding sites for carotenoids and they may represent a potential source of these precious molecules for industrial purposes. The S-layer structure and its components were extensively studied in the radio-resistant bacterium Deinococcus radiodurans, which for long time represented one of the model organisms in this respect. The protein DR_2577 has been shown to be one of the naturally over-expressed S-layer components in this bacterium. The present report describes a high scale purification procedure of this protein in solution. The purity of the samples, assayed by native and denaturing electrophoresis, showed how this method leads to a selective and high efficient recovery of the pure DR_2577. Recently, we have found that the deinoxanthin, a carotenoid typical of D. radiodurans, is a cofactor non covalently bound to the protein DR_2577. The pure DR_2577 samples may be precipitated or lyophilized and used as a source of the carotenoid cofactor deinoxanthin by an efficient extraction using organic solvents. The procedure described in this work may represent a general approach for the isolation of S-layer proteins and their carotenoids with potentials for industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis.

    PubMed

    Lightfoot, Yaíma L; Selle, Kurt; Yang, Tao; Goh, Yong Jun; Sahay, Bikash; Zadeh, Mojgan; Owen, Jennifer L; Colliou, Natacha; Li, Eric; Johannssen, Timo; Lepenies, Bernd; Klaenhammer, Todd R; Mohamadzadeh, Mansour

    2015-04-01

    Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3(-/-) mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD. © 2015 The Authors.

  14. Nanobiotechnology with S-layer proteins as building blocks.

    PubMed

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva M; Pum, Dietmar; Horejs, Christine M; Tscheliessnig, Rupert; Ilk, Nicola

    2011-01-01

    One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis

    PubMed Central

    Lightfoot, Yaíma L; Selle, Kurt; Yang, Tao; Goh, Yong Jun; Sahay, Bikash; Zadeh, Mojgan; Owen, Jennifer L; Colliou, Natacha; Li, Eric; Johannssen, Timo; Lepenies, Bernd; Klaenhammer, Todd R; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3−/− mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD. PMID:25666591

  16. Crystalline Bacterial Surface Layer (S-Layer) Opens Golden Opportunities for Nanobiotechnology in Textiles.

    PubMed

    Asadi, Narges; Chand, Nima; Rassa, Mehdi

    2015-12-01

    This study focuses on the successful recrystallization of bacterial S-layer arrays of the Lactobacillus acidophilus ATCC 4356 at textile surfaces to create a novel method and material. Optimum bacterial growth was obtained at approximately 45 °C, pH 5.0, and 14 h pi. The cells were resuspended in guanidine hydrochloride and the 43 kDa S-protein was dialyzed and purified. The optimum reassembly on the polypropylene fabric surface in terms of scanning electron microscopy (SEM), reflectance, and uniformity (spectrophotometry) was obtained at 30 °C, pH 5.0 for 30 minutes in the presence of 2 gr/l (liquor ratio; 1:40) of the S-protein. Overall, our data showed that the functional aspects and specialty applications of the fabric would be very attractive for the textile and related sciences, and result in advanced technical textiles.

  17. Surface Display of the Receptor-Binding Region of the Lactobacillus brevis S-Layer Protein in Lactococcus lactis Provides Nonadhesive Lactococci with the Ability To Adhere to Intestinal Epithelial Cells

    PubMed Central

    Åvall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-01-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium. PMID:12676705

  18. Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells.

    PubMed

    Avall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-04-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.

  19. Lactobacillus buchneri S-layer as carrier for an Ara h 2-derived peptide for peanut allergen-specific immunotherapy.

    PubMed

    Anzengruber, Julia; Bublin, Merima; Bönisch, Eva; Janesch, Bettina; Tscheppe, Angelika; Braun, Matthias L; Varga, Eva-Maria; Hafner, Christine; Breiteneder, Heimo; Schäffer, Christina

    2017-05-01

    Peanut allergy is an IgE-mediated severe hypersensitivity disorder. The lack of a treatment of this potentially fatal allergy has led to intensive research on vaccine development. Here, we describe the design and initial characterization of a carrier-bound peptide derived from the most potent peanut allergen, Ara h 2, as a candidate vaccine. Based on the adjuvant capability of bacterial surface (S-) layers, a fusion protein of the S-layer protein SlpB from Lactobacillus buchneri CD034 and the Ara h 2-derived peptide AH3a42 was produced. This peptide comprised immunodominant B-cell epitopes as well as one T cell epitope. The fusion protein SlpB-AH3a42 was expressed in E. coli, purified, and tested for its IgE binding capacity as well as for its ability to activate sensitized rat basophil leukemia (RBL) cells. The capacity of Ara h 2-specific IgG rabbit-antibodies raised against SlpB-AH3a42 or Ara h 2 to inhibit IgE-binding was determined by ELISA inhibition assays using sera of peanut allergic patients sensitized to Ara h 2. IgE specific to the SlpB-AH3a42 fusion protein was detected in 69% (25 of 36) of the sera. Despite the recognition by IgE, the SlpB-AH3a42 fusion protein was unable to induce β-hexosaminidase release from sensitized RBL cells at concentrations up to 100ng per ml. The inhibition of IgE-binding to the natural allergen observed after pre-incubation of the 20 sera with rabbit anti-SlpB-AH3a42 IgG was more than 30% for four sera, more than 20% for eight sera, and below 10% for eight sera. In comparison, anti-Ara h 2 rabbit IgG antibodies inhibited binding to Ara h 2 by 48% ±13.5%. Our data provide evidence for the feasibility of this novel approach towards the development of a peanut allergen peptide-based carrier-bound vaccine. Our experiments further indicate that more than one allergen-peptide will be needed to induce a broader protection of patients allergic to Ara h 2. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights

  20. A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences.

    PubMed

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-06-01

    Species-specific primers targeting the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough. The 16S-23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388-1406 of the 16S rRNA gene and to positions 207-189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331). Clone libraries of the resulting amplicons were constructed using a pCR2.1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S-23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNA(Ile) and tRNA(Ala) genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested. Designed species-specific primers enable a rapid and accurate identification of L. mindensis, L. paralimentarius, L. panis, L. pontis and L. frumenti species among other lactobacilli. The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.

  1. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen.

    PubMed

    Yadav, Ashok Kumar; Tyagi, Ashish; Kaushik, Jai Kumar; Saklani, Asha Chandola; Grover, Sunita; Batish, Virender Kumar

    2013-12-14

    Human feacal isolates were ascertain as genus Lactobacillus using specific primer LbLMA1/R16-1 and further identified as Lactobacillus plantarum with species specific primers Lpl-3/Lpl-2. 25 L. plantarum strains were further assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to immobilized human collagen type-1. Surface proteins were isolated from selected L. plantarum 91(Lp91) strain. The purified collagen binding protein (Cbp) protein was assessed for its anti-adhesion activity against enteric Escherichia coli 0157:H7 pathogen on immobilized collagen. Four L. plantarum strains displayed high degree of hydrophobicity and significant adhesion to collagen. A 72 kDa protein was purified which reduced 59.71% adhesion of E. coli 0157:H7 on immobilized collagen as compared to control well during adhesion assay. Cbp protein is the major influencing factor in inhibition of E. coli 0157:H7 adhesion with extracellular matrix (ECM) components. Hydrophobicity and adhesion potential are closely linked attributes precipitating in better colonization potential of the lactobacillus strains. Cbp is substantiated as a crucial surface protein contributing in adhesion of lactobacillus strains. The study can very well be the platform for commercialization of indigenous probiotic strain once their functional attributes are clinically explored. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. S-layer fusion proteins — construction principles and applications

    PubMed Central

    Ilk, Nicola; Egelseer, Eva M; Sleytr, Uwe B

    2011-01-01

    Crystalline bacterial cell surface layers (S-layers) are the outermost cell envelope component of many bacteria and archaea. S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. The wealth of information available on the structure, chemistry, genetics and assembly of S-layers revealed a broad spectrum of applications in nanobiotechnology and biomimetics. By genetic engineering techniques, specific functional domains can be incorporated in S-layer proteins while maintaining the self-assembly capability. These techniques have led to new types of affinity structures, microcarriers, enzyme membranes, diagnostic devices, biosensors, vaccines, as well as targeting, delivery and encapsulation systems. PMID:21696943

  3. Two-dimensional protein crystals (S-layers): fundamentals and applications.

    PubMed

    Sleytr, U B; Sára, M; Messner, P; Pum, D

    1994-10-01

    Two-dimensional crystalline surface layers (S-layers) composed of protein or glycoprotein subunits are one of the most commonly observed prokaryotic cell envelope structures. Isolated S-layer subunits are endowed with the ability to assemble into monomolecular arrays in suspension, on surfaces or interfaces by an entropy-driven process. S-layer lattices are isoporous structures with functional groups located on the surface in an identical position and orientation. These characteristic features have already led to applications of S-layers as (1) ultrafiltration membranes with well-defined molecular weight cut-offs and excellent antifouling characteristics, (2) immobilization matrices for functional molecules as required for affinity and enzyme membranes, affinity microcarriers and biosensors, (3) conjugate vaccines, (4) carriers for Langmuir-Blodgett films and reconstituted biological membranes, and (5) patterning elements in molecular nanotechnology.

  4. Lactobacillus acidophilus CP23 with weak immunomodulatory activity lacks anchoring structure for surface layer protein.

    PubMed

    Yanagihara, Sae; Kato, Shinji; Ashida, Nobuhisa; Yamamoto, Naoyuki

    2015-05-01

    To determine the reason for the low levels of Surface layer protein A (SlpA) on CP23 cells, which might play a crucial role in the immunomodulatory effect of Lactobacillus acidophilus, the DNA sequence of the slpA gene of CP23 and L-92 strains, including the upstream region, were analyzed. Unexpectedly, there was no significant difference in the predicted amino acid sequence of the C-terminus needed for cell anchoring, and only an additional Ala-Val-Ala sequence inserted in the N-terminal region of the mature CP23 protein. Therefore, anchoring of SlpA on the cell wall of CP23 and L-92 was evaluated by a reconstitution assay, which showed that SlpA released by LiCl treatment from both CP23 and L-92 was successfully anchored on LiCl-treated L-92 cells, but not on LiCl-treated CP23 cells. Moreover, quantitative analysis of SlpA protein in the culture medium of CP23 and L-92 by ELISA revealed higher levels of SlpA secretion in CP23 cells than in L-92 cells. Collectively, these results suggest that the lower levels of SlpA on the surface of CP23 cells might be caused by less cell wall capacity for SlpA anchoring, leading to an accumulation of SlpA in the culture medium of CP23 cells. The present study supports the importance of cell surface structure of L. acidophilus L-92 for SlpA anchoring on the cell surface needed for immunomodulatory effect. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE PAGES

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; ...

    2016-09-23

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This

  6. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    ABSTRACT Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrugmore » efflux pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment

  7. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This

  8. Analysis of self-assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus.

    PubMed

    Liu, Jun; Falke, Sven; Drobot, Bjoern; Oberthuer, Dominik; Kikhney, Alexey; Guenther, Tobias; Fahmy, Karim; Svergun, Dmitri; Betzel, Christian; Raff, Johannes

    2017-01-01

    The formation of stable and functional surface layers (S-layers) via self-assembly of surface-layer proteins on the cell surface is a dynamic and complex process. S-layers facilitate a number of important biological functions, e.g., providing protection and mediating selective exchange of molecules and thereby functioning as molecular sieves. Furthermore, S-layers selectively bind several metal ions including uranium, palladium, gold, and europium, some of them with high affinity. Most current research on surface layers focuses on investigating crystalline arrays of protein subunits in Archaea and bacteria. In this work, several complementary analytical techniques and methods have been applied to examine structure-function relationships and dynamics for assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus: (1) The secondary structure of the S-layer protein was analyzed by circular dichroism spectroscopy; (2) Small-angle X-ray scattering was applied to gain insights into the three-dimensional structure in solution; (3) The interaction with bivalent cations was followed by differential scanning calorimetry; (4) The dynamics and time-dependent assembly of S-layers were followed by applying dynamic light scattering; (5) The two-dimensional structure of the paracrystalline S-layer lattice was examined by atomic force microscopy. The data obtained provide essential structural insights into the mechanism of S-layer self-assembly, particularly with respect to binding of bivalent cations, i.e., Mg 2+ and Ca 2+ . Furthermore, the results obtained highlight potential applications of S-layers in the fields of micromaterials and nanobiotechnology by providing engineered or individual symmetric thin protein layers, e.g., for protective, antimicrobial, or otherwise functionalized surfaces.

  9. In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases

    PubMed Central

    Surachat, Komwit; Sangket, Unitsa; Deachamag, Panchalika; Chotigeat, Wilaiwan

    2017-01-01

    Lactobacillus paracasei SD1 is a potential probiotic strain due to its ability to survive several conditions in human dental cavities. To ascertain its safety for human use, we therefore performed a comprehensive bioinformatics analysis and characterization of the bacterial protein toxins produced by this strain. We report the complete genome of Lactobacillus paracasei SD1 and its comparison to other Lactobacillus genomes. Additionally, we identify and analyze its protein toxins and antimicrobial proteins using reliable online database resources and establish its phylogenetic relationship with other bacterial genomes. Our investigation suggests that this strain is safe for human use and contains several bacteriocins that confer health benefits to the host. An in silico analysis of protein-protein interactions between the target bacteriocins and the microbial proteins gtfB and luxS of Streptococcus mutans was performed and is discussed here. PMID:28837656

  10. S-layer glycoprotein from Lactobacillus kefiri CIDCA 8348 enhances macrophages response to LPS in a Ca+2-dependent manner.

    PubMed

    Malamud, Mariano; Carasi, Paula; Freire, Teresa; Serradell, María de Los Angeles

    2018-01-01

    The S-layer is a (glyco)-proteinaceous envelope constituted by self-assembled subunits that form a two-dimensional lattice covering the surface of different species of Bacteria and Archaea. It could be considered as one of the most abundant biopolymers in our planet. Because of their unique self-assembly features, exhibiting repetitive identical physicochemical properties down to the subnanometer scale, as well as their involvement in specific interactions with host cells, the S-layer proteins (SLPs) show a high potential application in different areas of biotechnology, including the development of antigen carriers or new adjuvants. The presence of a glycosylated SLP on potentially probiotic Lactobacillus kefiri strains was previously described by our research group. In this study, we aim to investigate the role of carbohydrates present in the SLP from L. kefiri CIDCA 8348 (SLP-8348) in their internalization by murine macrophages, as well as to analyze their immunomodulatory capacity and their effect on LPS-stimulated macrophages. RAW 264.7 cells internalized the SLP-8348 in a process that was mediated by carbohydrate-receptor interactions since it was inhibited by glucose, mannose or EGTA, a Ca +2 chelating agent. These results correlated with the recognition of SLP-8348 by ConA lectin. We further show that while SLP-8348 was not able to induce the activation of macrophages by itself, it favored the LPS-induced response, since there was a significant increase in the expression of surface cell markers MHC-II, CD86 and CD40, as well as in IL-6 and IL-10 expression at both transcript and protein levels, in comparison with LPS-stimulated cells. The presence of EGTA completely abrogated this synergistic effect. Taken together, these results strongly suggest the involvement of both glycosidic residues and Ca +2 ions in the recognition of SLP-8348 by cellular receptors on murine macrophages. Moreover, these results suggest the potentiality of the SLP-8348 for the

  11. Surface layer protein from Lactobacillus acidophilus NCFM inhibit intestinal pathogen-induced apoptosis in HT-29 cells.

    PubMed

    Meng, Jun; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2017-03-01

    Intestinal pathogens have been proposed to adhere to epithelial cells and cause apoptosis. This study was to investigate the inhibitory effects of surface layer protein (SLP, 46kDa) from Lactobacillus acidophilus NCFM on Escherichia coli and Salmonella-induced apoptosis in HT-29 cells and the mechanism of the inhibition was also studied. The SLP could alleviate the chromatin condensation caused by intestinal pathogens as observed under fluorescent microscope. Flow cytometry analysis showed that the SLP decreased E. coli and Salmonella-induced apoptosis by 46% and 48%, respectively. The SLP could also inhibit the mitochondrial membrane potential reduction and Ca 2+ level increase in HT-29 cells. Furthermore, the activation of caspase-9 and caspase-3 induced by E. coli and Salmonella was significantly decreased by the addition of SLP. These results suggested that L. acidophilus NCFM SLP could protect HT-29 cells against intestinal pathogen-induced apoptosis through a mitochondria-mediated pathway. These findings may reveal a new method for the treatment of intestinal infection and provide a theoretical basis for the practical application of SLP in food, biological and pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine.

    PubMed

    Dias, Rita; Vilas-Boas, Eduardo; Campos, Francisco M; Hogg, Tim; Couto, José António

    2015-08-01

    This work evaluated the effect of lysozyme on lactobacilli isolated from Port wine. Bacterial growth experiments were conducted in MRS/TJ medium and inactivation studies were performed in phosphate buffer (KH2PO4), distilled water and wine supplemented with different concentrations of lysozyme. The response of bacteria to lysozyme was found to be highly strain dependent. Some strains of Lactobacillus hilgardii together with Lactobacillus collinoides and Lactobacillus fructivorans were found to be resistant to concentrations of lysozyme as high as 2000 mg/L. It was observed that among the L. hilgardii taxon the resistant strains possess an S-layer coat. Apparently, the strains of L. collinoides and L. fructivorans studied are also S-layer producers as suggested by the total protein profile obtained by SDS-PAGE. Thus, the hypothetical protective role of the S-layer against the action of lysozyme was investigated. From the various treatments used to remove the protein from the surface of the cells, the one employing LiCl (5 M) was the most effective. LiCl pre-treated cells exposed to lysozyme (2000 mg/L) in KH2PO4 buffer maintained its resistance. However, when cells were suspended in distilled water an increased sensitivity to lysozyme was observed. Moreover, it was found that the addition of ethanol (20% v/v) to the suspension medium (distilled water) triggered a strong inactivation effect especially on cells previously treated with LiCl (reduction of >6 CFU log cycles). The results suggest that the S-layer exerts a protective effect against lysozyme and that the cell suspension medium influences the bacteriolysis efficiency. It was also noted that ethanol enhances the inactivation effect of lysozyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Genome Sequence of Lactobacillus brevis Strain D6, Isolated from Smoked Fresh Cheese

    PubMed Central

    Uroić, Ksenija; Hynönen, Ulla; Kos, Blaženka; Šušković, Jagoda

    2016-01-01

    The autochthonous Lactobacillus brevis strain D6, isolated from smoked fresh cheese, carries a 45-kDa S-layer protein. Strain D6 has shown adhesion to extracellular matrix proteins and to Caco-2 intestinal epithelial cells, as well as immunomodulatory potential and beneficial milk technological properties. Hence, it could be used as a potential probiotic starter culture for cheese production. PMID:27056237

  14. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2014-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems. PMID:24812051

  15. Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System

    PubMed Central

    Ucisik, Mehmet H.; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action. PMID:25697368

  16. Two groups of S-layer proteins, SLP1s and SLP2s, in Bacillus thuringiensis co-exist in the S-layer and in parasporal inclusions.

    PubMed

    Zhou, Zhou; Peng, Donghai; Zheng, Jinshui; Guo, Gang; Tian, Longjun; Yu, Ziniu; Sun, Ming

    2011-05-01

    We screened four B. thuringiensis strains whose parasporal inclusions contained the S-layer protein (SLP), and cloned two slp genes from each strain. Phylogenetic analysis indicated these SLPs could be divided into two groups, SLP1s and SLP2s. To confirm whether SLPs were present in the S-layer or as a parasporal inclusion, strains CTC and BMB1152 were chosen for further study. Western blots with whole-cell associated proteins from strains CTC and BMB1152 in the vegetative phase showed that SLP1s and SLP2s were constituents of the S-layer. Immunofluorescence utilizing spore-inclusion mixtures of strains CTC and BMB1152 in the sporulation phase showed that SLP1s and SLP2s were also constituents of parasporal inclusions. When heterogeneously expressed in the crystal negative strain BMB171, four SLPs from strains CTC and BMB1152 could also form parasporal inclusions. This temporal and spatial expression is not an occasional phenomenon but ubiquitous in B. thuringiensis strains.

  17. Genome Sequence of Lactobacillus brevis Strain D6, Isolated from Smoked Fresh Cheese.

    PubMed

    Kant, Ravi; Uroić, Ksenija; Hynönen, Ulla; Kos, Blaženka; Šušković, Jagoda; Palva, Airi

    2016-04-07

    The autochthonousLactobacillus brevisstrain D6, isolated from smoked fresh cheese, carries a 45-kDa S-layer protein. Strain D6 has shown adhesion to extracellular matrix proteins and to Caco-2 intestinal epithelial cells, as well as immunomodulatory potential and beneficial milk technological properties. Hence, it could be used as a potential probiotic starter culture for cheese production. Copyright © 2016 Kant et al.

  18. S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence

    PubMed Central

    Perras, Alexandra K.; Daum, Bertram; Ziegler, Christine; Takahashi, Lynelle K.; Ahmed, Musahid; Wanner, Gerhard; Klingl, Andreas; Leitinger, Gerd; Kolb-Lenz, Dagmar; Gribaldo, Simonetta; Auerbach, Anna; Mora, Maximilian; Probst, Alexander J.; Bellack, Annett; Moissl-Eichinger, Christine

    2015-01-01

    The uncultivated “Candidatus Altiarchaeum hamiconexum” (formerly known as SM1 Euryarchaeon) carries highly specialized nano-grappling hooks (“hami”) on its cell surface. Until now little is known about the major protein forming these structured fibrous cell surface appendages, the genes involved or membrane anchoring of these filaments. These aspects were analyzed in depth in this study using environmental transcriptomics combined with imaging methods. Since a laboratory culture of this archaeon is not yet available, natural biofilm samples with high Ca. A. hamiconexum abundance were used for the entire analyses. The filamentous surface appendages spanned both membranes of the cell, which are composed of glycosyl-archaeol. The hami consisted of multiple copies of the same protein, the corresponding gene of which was identified via metagenome-mapped transcriptome analysis. The hamus subunit proteins, which are likely to self-assemble due to their predicted beta sheet topology, revealed no similiarity to known microbial flagella-, archaella-, fimbriae- or pili-proteins, but a high similarity to known S-layer proteins of the archaeal domain at their N-terminal region (44–47% identity). Our results provide new insights into the structure of the unique hami and their major protein and indicate their divergent evolution with S-layer proteins. PMID:26106369

  19. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  20. A S-Layer Protein of Bacillus anthracis as a Building Block for Functional Protein Arrays by In Vitro Self-Assembly.

    PubMed

    Wang, Xu-Ying; Wang, Dian-Bing; Zhang, Zhi-Ping; Bi, Li-Jun; Zhang, Ji-Bin; Ding, Wei; Zhang, Xian-En

    2015-11-18

    S-layer proteins create a cell-surface layer architecture in both bacteria and archaea. Because S-layer proteins self-assemble into a native-like S-layer crystalline structure in vitro, they are attractive building blocks in nanotechnology. Here, the potential use of the S-layer protein EA1 from Bacillus anthracis in constructing a functional nanostructure is investigated, and apply this nanostructure in a proof-of-principle study for serological diagnosis of anthrax. EA1 is genetically fused with methyl parathion hydrolase (MPH), to degrade methyl parathion and provide a label for signal amplification. EA1 not only serves as a nanocarrier, but also as a specific antigen to capture anthrax-specific antibodies. As results, purified EA1-MPH forms a single layer of crystalline nanostructure through self-assembly. Our chimeric nanocatalyst greatly improves enzymatic stability of MPH. When applied to the detection of anthrax-specific antibodies in serum samples, the detection of our EA1-MPH nanostructure is nearly 300 times more sensitive than that of the unassembled complex. Together, it is shown that it is possible to build a functional and highly sensitive nanosensor based on S-layer protein. In conclusion, our present study should serve as a model for the development of other multifunctional nanomaterials using S-layer proteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T).

  2. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii.

    PubMed Central

    Sumper, M; Berg, E; Mengele, R; Strobel, I

    1990-01-01

    The outer surface of the archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer protein was cloned and sequenced. The mature polypeptide is composed of 794 amino acids and is preceded by a typical signal sequence of 34 amino acid residues. A highly hydrophobic stretch of 20 amino acids at the C-terminal end probably serves as a transmembrane domain. Clusters of threonine residues are located adjacent to this membrane anchor. The S-layer protein is a glycoprotein containing both N- and O-glycosidic bonds. Glucosyl-(1----2)-galactose disaccharides are linked to threonine residues. The primary structure and the glycosylation pattern of the S-layer glycoproteins from Haloferax volcanii and from Halobacterium halobium were compared and found to exhibit distinct differences, despite the fact that three-dimensional reconstructions from electron micrographs revealed no structural differences at least to the 2.5-nm level attained so far (M. Kessel, I. Wildhaber, S. Cohe, and W. Baumeister, EMBO J. 7:1549-1554, 1988). Images PMID:2123862

  3. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii.

    PubMed

    Sumper, M; Berg, E; Mengele, R; Strobel, I

    1990-12-01

    The outer surface of the archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer protein was cloned and sequenced. The mature polypeptide is composed of 794 amino acids and is preceded by a typical signal sequence of 34 amino acid residues. A highly hydrophobic stretch of 20 amino acids at the C-terminal end probably serves as a transmembrane domain. Clusters of threonine residues are located adjacent to this membrane anchor. The S-layer protein is a glycoprotein containing both N- and O-glycosidic bonds. Glucosyl-(1----2)-galactose disaccharides are linked to threonine residues. The primary structure and the glycosylation pattern of the S-layer glycoproteins from Haloferax volcanii and from Halobacterium halobium were compared and found to exhibit distinct differences, despite the fact that three-dimensional reconstructions from electron micrographs revealed no structural differences at least to the 2.5-nm level attained so far (M. Kessel, I. Wildhaber, S. Cohe, and W. Baumeister, EMBO J. 7:1549-1554, 1988).

  4. Protective effect of surface layer proteins isolated from four Lactobacillus strains on hydrogen-peroxide-induced HT-29 cells oxidative stress.

    PubMed

    Zhao, Bin-Bin; Meng, Jun; Zhang, Qiu-Xiang; Kang, Ting-Ting; Lu, Rong-Rong

    2017-09-01

    The objective of this study was to explore the antioxidant effect of the surface layer proteins (SLPs) and their mechanism. We investigated four SLPs which were extracted from L. casei zhang, L. rhamnosus, L. gasseri and L. acidophilus NCFM respectively using LiCl. The protective effect of SLPs on H 2 O 2 -induced HT-29 cells oxidative injury was investigated. As results, SLPs (100μg/mL) could significantly mitigate HT-29 cells cytotoxicity, improve the activities of total antioxidant capacity (T-AOC), catalase (CAT) and superoxide dismutase (SOD), decrease the contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), compared with H 2 O 2 -induced group (P<0.05). Furthermore, SLPs were also shown to attenuate the apoptosis rate (10.94-24.03%, P<0.01), suppress the elevation of intracellular reactive oxygen species (ROS) and calcium levels, restore mitochondrial membrane potential (MMP) and block the activation of apoptosis-related proteins of caspase-3 and caspase-9 (P<0.05). Considering all the parameters analyzed, we concluded that Lactobacillus SLPs play an essential role in the antioxidant capacity of HT-29 cells induced by H 2 O 2 , and the mechanism could be attributed to SLPs' ability to enhance the activity of the intracellular antioxidant enzyme system, reduce ROS accumulation and to inhibit apoptosis by regulating mitochondrial pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification and Characterization of the Novel LysM Domain-Containing Surface Protein Sep from Lactobacillus fermentum BR11 and Its Use as a Peptide Fusion Partner in Lactobacillus and Lactococcus

    PubMed Central

    Turner, Mark S.; Hafner, Louise M.; Walsh, Terry; Giffard, Philip M.

    2004-01-01

    Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria. PMID:15184172

  6. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  8. Adhesion properties of potentially probiotic Lactobacillus kefiri to gastrointestinal mucus.

    PubMed

    Carasi, Paula; Ambrosis, Nicolás M; De Antoni, Graciela L; Bressollier, Philippe; Urdaci, María C; Serradell, María de los Angeles

    2014-02-01

    We investigated the mucus-binding properties of aggregating and non-aggregating potentially probiotic strains of kefir-isolated Lactobacillus kefiri, using different substrates. All the strains were able to adhere to commercial gastric mucin (MUCIN) and extracted mucus from small intestine (SIM) and colon (CM). The extraction of surface proteins from bacteria using LiCl or NaOH significantly reduced the adhesion of three selected strains (CIDCA 8348, CIDCA 83115 and JCM 5818); although a significant proportion (up to 50%) of S-layer proteins were not completely eliminated after treatments. The surface (S-layer) protein extracts from all the strains of Lb. kefiri were capable of binding to MUCIN, SIM or CM, and no differences were observed among them. The addition of their own surface protein extract increased adhesion of CIDCA 8348 and 83115 to MUCIN and SIM, meanwhile no changes in adhesion were observed for JCM 5818. None of the seven sugars tested had the ability to inhibit the adhesion of whole bacteria to the three mucus extracts. Noteworthy, the degree of bacterial adhesion reached in the presence of their own surface protein (S-layer) extract decreased to basal levels in the presence of some sugars, suggesting an interaction between the added sugar and the surface proteins. In conclusion, the ability of these food-isolated bacteria to adhere to gastrointestinal mucus becomes an essential issue regarding the biotechnological potentiality of Lb. kefiri for the food industry.

  9. S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting

    PubMed Central

    Ucisik, Mehmet H.; Küpcü, Seta; Breitwieser, Andreas; Gelbmann, Nicola; Schuster, Bernhard; Sleytr, Uwe B.

    2015-01-01

    Selective targeting of tumor cells by nanoparticle-based drug delivery systems is highly desirable because it maximizes the drug concentration at the desired target while simultaneously protecting the surrounding healthy tissues. Here, we show a design for smart nanocarriers based on a biomimetic approach that utilizes the building principle of virus envelope structures. Emulsomes and CurcuEmulsomes comprising a tripalmitin solid core surrounded by phospholipid layers are modified by S-layer proteins that self-assemble into a two-dimensional array to form a surface layer. One significant advantage of this nanoformulation is that it increases the solubility of the lipophilic anti-cancer agent curcumin in the CurcuEmulsomes by a factor of 2700. In order to make the emulsomes specific for IgG, the S-layer protein is fused with two protein G domains. This S-layer fusion protein preserves its recrystallization characteristics, forming an ordered surface layer (square lattice with 13 nm unit-by-unit distance). The GG domains are presented in a predicted orientation and exhibit a selective binding affinity for IgG. PMID:25734967

  10. Purification and characterization of Campylobacter rectus surface layer proteins.

    PubMed Central

    Nitta, H; Holt, S C; Ebersole, J L

    1997-01-01

    Campylobacter rectus is a putative periodontopathogen which expresses a proteinaceous surface layer (S-layer) external to the outer membrane. S-layers are considered to play a protective role for the microorganism in hostile environments. The S-layer proteins from six different C. rectus strains (five human isolates and a nonhuman primate [NHP] isolate) were isolated, purified, and characterized. The S-layer proteins of these strains varied in molecular mass (ca. 150 to 166 kDa) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. They all reacted with monospecific rabbit antiserum to the purified S-layer of C. rectus 314, but a quantitative enzyme-linked immunosorbent assay demonstrated a strong antigenic relationship among the five human strains, while the NHP strain, 6250, showed weaker reactivity. Amino acid composition analysis showed that the S-layers of four C. rectus strains contained large proportions of acidic amino acids (13 to 27%) and that >34% of the amino acid residues were hydrophobic. Amino acid sequence analysis of six S-layer proteins revealed that the first 15 amino-terminal amino acids were identical and showed seven residues of identity with the amino-terminal sequence of the Campylobacter fetus S-layer protein SapA1. CNBr peptide profiles of the S-layer proteins from C. rectus 314, ATCC 33238, and 6250 confirmed that the S-layer proteins from the human strains were similar to each other and somewhat different from that of the NHP isolate (strain 6250). However, the S-layer proteins from the two human isolates do show some structural heterogeneity. For example, there was a 17-kDa fragment unique to the C. rectus 314 S-layer. The amino-terminal sequence of this peptide had homology with the C. rectus 51-kDa porin and was composed of nearly 50% hydrophobic residues. Thus, the S-layer protein from C. rectus has structural heterogeneity among different human strains and immunoheterogeneity with the NHP strain. PMID:9009300

  11. Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus.

    PubMed

    Kang, Mi-Sun; Lim, Hae-Soon; Oh, Jong-Suk; Lim, You-Jin; Wuertz-Kozak, Karin; Harro, Janette M; Shirtliff, Mark E; Achermann, Yvonne

    2017-03-01

    The increasing prevalence of methicillin-resistant Staphylococcus aureus has become a major public health threat. While lactobacilli were recently found useful in combating various pathogens, limited data exist on their therapeutic potential for S. aureus infections. The aim of this study was to determine whether Lactobacillus salivarius was able to produce bactericidal activities against S. aureus and to determine whether the inhibition was due to a generalized reduction in pH or due to secreted Lactobacillus product(s). We found an 8.6-log10 reduction of planktonic and a 6.3-log10 reduction of biofilm S. aureus. In contrast, the previously described anti-staphylococcal effects of L. fermentum only caused a 4.0-log10 reduction in planktonic S. aureus cells, with no effect on biofilm S. aureus cells. Killing of S. aureus was partially pH dependent, but independent of nutrient depletion. Cell-free supernatant that was pH neutralized and heat inactivated or proteinase K treated had significantly reduced killing of L. salivarius than with pH-neutralized supernatant alone. Proteomic analysis of the L. salivarius secretome identified a total of five secreted proteins including a LysM-containing peptidoglycan binding protein and a protein peptidase M23B. These proteins may represent potential novel anti-staphylococcal agents that could be effective against S. aureus biofilms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 toward L. monocytogenes, S. thypimurium and E. coli

    NASA Astrophysics Data System (ADS)

    Marwati, T.; Cahyaningrum, N.; Widodo, S.; Januarsyah, T.; Purwoko

    2018-01-01

    Bacteriocin is a protein compound which has bactericidal ability against pathogen bacteria. This research aims to study the inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 against Listeria monocytogenes, Salmonella thypimuruim and Escherchia coli. The bacteriocin produce from Lactobacillus SCG 1223 in the MRS broth media The experimental design used was Completely Randomized Design. The variations used in this design were percentage of inoculum (5%, 10%), medium pH (4, 6), incubation temperature (27°C, 40°C), and incubation time (4, 10, 14 hours). Result showed that bacteriocin from Lactobacillus SCG 1223 had wide spectrum toward L. monocytogenes, S. thypimuruim and E. coli. The highest bacteriocin activity toward L. monocytogenes produced by Lactobacillus SCG 1223 with 10% inoculum in media with initial pH 6, incubation temperature 27°C for 14 hour, toward S. thypimurium produced by Lactobacillus SCG 1223 with in media with initial pH 6, incubation temperature 40°C for 14 hour, and toward E. coli was 1085.81 AU/ml, produced by Lactobacillus SCG 1223 in MRS broth with initial pH 4, incubation temperature 40°C for 14 hour. This study is expected to find a new food preservative that can inhibit the growth of pathogenic bacteria and extend the shelf life of food. From the economic prospective of view, bacteriocin is very promising natural alternative biopreservatives.

  13. S-layers: principles and applications

    PubMed Central

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva-Maria; Pum, Dietmar

    2014-01-01

    Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology. PMID:24483139

  14. FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein

    DOE PAGES

    Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; ...

    2015-05-01

    Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is amore » paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.« less

  15. Functional Analysis of the p40 and p75 Proteins from Lactobacillus casei BL23

    PubMed Central

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D. Brent; Monedero, Vicente

    2011-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria PMID:21178363

  16. Molecular cloning, expression and adhesion analysis of silent slpB of Lactobacillus acidophilus NCFM.

    PubMed

    Guo, Yuxing; Li, Xiangyue; Yang, Yao; Wu, Zhen; Zeng, Xiaoqun; Nadari, Fawze; Pan, Daodong

    2018-06-23

    The slpB gene of Lactobacillus acidophilus NCFM, which differs from the slpA gene and is silent under normal conditions, was successfully amplified and ligated to the corresponding available sites on a recombinant pET-28a vector. Then the pET-28a-slpB vector was transformed into Escherichia coli DH (DE3) and the fusion His-slpB protein was expressed by induction with 1 mM IPTG for 14 h at 37 °C. The resulting His-slpB protein (S B ) had a relative molecular weight of 48 kDa. It was purified using a Ni-NTA column and was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot contrastive analysis. The slpA protein (S A ) from L. acidophilus NCFM was extracted and purified. It had a relative molecular weight of 46 kDa. Circular dichroism measurements suggested that the two S-layer proteins had a high β-sheet content and a low α-helix structure content. In an adhesion experiment, S A displayed higher adhesive capability towards Caco-2 cells than did S B . The results suggest that these two S-layer proteins could have biotechnological applications.

  17. Lactobacillus sakei CRL1862 improves safety and protein hydrolysis in meat systems.

    PubMed

    Castellano, P; Aristoy, M C; Sentandreu, M A; Vignolo, G; Toldrá, F

    2012-12-01

    The capacity of Lactobacillus sakei CRL1862 to prevent the growth of pathogens and its ability to degrade sarcoplasmic and myofibrillar proteins in pork meat systems was evaluated. In addition, basic safety aspects of Lact. sakei CRL1862 such as production of biogenic amines and antibiotic susceptibility were addressed. The bacteriocin-producing Lact. sakei CRL1862 showed respectively bactericide and bacteriostatic effect against Listeria monocytogenes and Staphylococcus aureus in beaker sausage assay during 9 days of storage at 22 °C. The hydrolytic effect of Lact. sakei CRL1862 on protein extracts was evaluated by SDS-PAGE and reverse phase HPLC. A more pronounced proteolysis was evidenced in inoculated sarcoplasmic proteins compared with myofibrillar extracts with the generation of predominantly hydrophilic peptides and increase of total free amino acids concentration. Lactobacillus sakei CRL1862 produced neither histamine nor tyrosine and exhibited no resistance to the antibiotics assayed. Lactobacillus sakei CRL1862 effectively controlled the growth of L. monocytogenes and Staph. aureus; moreover, it was able to hydrolyse pork meat extracts generating peptides and amino acids, which may improve hygienic and sensorial attributes of fermented meat products. The use of an integrated approach to evaluate the major traits of Lact. sakei CRL1862 showed it can be applied as an autochthonous functional starter in meat fermentation. © 2012 The Society for Applied Microbiology.

  18. [Expression, purification and activity analysis of GGDEF and EAL domain-containing proteins from Lactobacillus acidophilus].

    PubMed

    He, Jia-Hui; Sun, Jie-Li; Yan, Wen-Juan; Wang, Fang

    2017-05-20

    To identify the functions of the proteins containing the GGDEF or EAL domain in Lactobacillus acidophilus for investigation of the regulatory mechanism of c-di-GMP in this strain. The DNA fragments of NH13_07045-GGDEF, NH13_07050 and NH13_07055 from Lactobacillus acidophilus ATCC4356 were amplified by PCR and cloned into the expression vector pMAL-His-c2. After sequencing, the recombinant plasmids were transformed into competent Escherichia coli cells, which were induced by IPTG to express the recombinant proteins fused with maltose binding protein (MBP). The fusion proteins were purified using amylose resin column for diguanylate cyclase (DGC) or phosphodiesterase (PDE) activity assays in vitro followed by analysis with high-performance liquid chromatography (HPLC). The target DNA fragments were obtained by PCR, and their sequences were all identical to that in GenBank. The purified and concentrated fusion proteins, which were identified by SDS-PAGE and Western blotting, had relative molecular masses of 59 kD, 67 kD and 72 kD. HPLC analysis showed no DGC activity in NH13_07045-GGDEF, while PDE activity was found in NH13_07050 but not in NH13_07055. We obtained the protein encoded by NH13_07050 that possesses PDE activity in vitro. This protein may facilitate the evaluation of the regulatory function of c-di-GMP in Lactobacillus acidophilus.

  19. Composite S-layer lipid structures

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2010-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions. PMID:19303933

  20. Molecular Characterization of the S-Layer Gene, sbpA, of Bacillus sphaericus CCM 2177 and Production of a Functional S-Layer Fusion Protein with the Ability To Recrystallize in a Defined Orientation while Presenting the Fused Allergen

    PubMed Central

    Ilk, Nicola; Völlenkle, Christine; Egelseer, Eva M.; Breitwieser, Andreas; Sleytr, Uwe B.; Sára, Margit

    2002-01-01

    The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices. PMID:12089001

  1. Genetic transformation of novel isolates of chicken Lactobacillus bearing probiotic features for expression of heterologous proteins: a tool to develop live oral vaccines

    PubMed Central

    Mota, Rodrigo M; Moreira, João Luiz S; Souza, Marcelo R; Fátima Horta, M; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2006-01-01

    Background The use of lactic acid bacteria as vehicles to delivery antigens to immunize animals is a promising issue. When genetically modified, these bacteria can induce a specific local and systemic immune response against selected pathogens. Gastric acid and bile salts tolerance, production of antagonistic substances against pathogenic microorganisms, and adhesive ability to gut epithelium are other important characteristics that make these bacteria useful for oral immunization. Results Bacteria isolated on de Man, Rogosa and Sharpe medium (MRS) from different gastrointestinal portions of broiler chicks were evaluated for their resistance to artificial gastric acid and bile salts, production of hydrogen peroxide, and cell surface hydrophobicity. Thirty-eight isolates were first typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR amplicons (PCR-ARDRA). An expression cassette was assembled onto the pCR2.1-Topo vector by cloning the promoter, leader peptide, cell wall anchor and terminator sequences derived from the laminin binding S-layer protein gene of L. crispatus strain F5.7 (lbs gene). A sequence encoding the green fluorescent protein (GFP) was inserted as reporter gene, and an erythromycin resistance gene was added as selective marker. All constructs were able to express GFP in the cloning host E. coli XL1-Blue and different Lactobacillus strains as verified by FACS and laser scanning confocal microscopy. Conclusion Lactobacillus isolated from gastrointestinal tract of broiler chickens and selected for probiotic characteristics can be genetically modified by introducing an expression cassette into the lbs locus. The transformed bacteria expressed on its cell wall surface different fluorescent proteins used as reporters of promoter function. It is possible then that similar bacterial model expressing pathogen antigens can

  2. Improving protein mass and cumulative body weight gain of local chicken fed ration fortified with a combination of Lactobacillus sp. and dahlia inulin

    NASA Astrophysics Data System (ADS)

    Wahyuni, H. I.; Suthama, N.; Mangisah, I.; Krismiyanto, L.

    2018-01-01

    The research aimed to evaluate meat calcium and protein content of local chicken fed diet fortified with a combination of Lactobacillus sp and Dahlia Inulin. One hundred and twenty birds of 4 months old local chicken with average body weight of 1001 g were assigned in a completely randomized design with 4 treatments and 5 replications. The treatments were the farmer formulated ration (FF) and the improved ration (IR), fortified with 1.2% inulin and 1.2 ml Lactobacillus sp. (FFIL and IRIL). Parameters were calcium retention, protein coefficient digestibility, meat calcium and protein mass, and cumulative body weight gain. The results showed that all parameters were significantly affected by dietary treatments. The improved ration resulted in higher calcium retention and protein coefficient digestibility than the farmer formulated ration when fed by both with and without fortification of dahlia inulin and Lactobacillus sp. Meat protein mass of chicken fed by both FR and IR fortified with dahlia inulin and Lactobacillus sp. showed higher value than chicken fed by unfortified FR and IR. Cumulative body weight gain of chicken fed by both FR and IR fortified with dahlia inulin and Lactobacillus sp. also showed higher value than chicken fed by without fortification. In conclusion, both FR and IR fortified with dahlia inulin and Lactobacillus sp. improved meat protein mass and cumulative body weight gain, especially the farmer formulated ration was pronouncedly improved by fortification of Lactobacillus sp. and dahlia inulin.

  3. Influence of the Secondary Cell Wall Polymer on the Reassembly, Recrystallization, and Stability Properties of the S-Layer Protein from Bacillus stearothermophilus PV72/p2

    PubMed Central

    Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.

    1998-01-01

    The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762

  4. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  5. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee.

    PubMed

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".

  6. Construction of a Functional S-Layer Fusion Protein Comprising an Immunoglobulin G-Binding Domain for Development of Specific Adsorbents for Extracorporeal Blood Purification

    PubMed Central

    Völlenkle, Christine; Weigert, Stefan; Ilk, Nicola; Egelseer, Eva; Weber, Viktoria; Loth, Fritz; Falkenhagen, Dieter; Sleytr, Uwe B.; Sára, Margit

    2004-01-01

    The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA31-1068/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-μm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm2, whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm2 was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system. PMID:15006773

  7. Archaeal S-Layers: Overview and Current State of the Art.

    PubMed

    Rodrigues-Oliveira, Thiago; Belmok, Aline; Vasconcellos, Deborah; Schuster, Bernhard; Kyaw, Cynthia M

    2017-01-01

    In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.

  8. Archaeal S-Layers: Overview and Current State of the Art

    PubMed Central

    Rodrigues-Oliveira, Thiago; Belmok, Aline; Vasconcellos, Deborah; Schuster, Bernhard; Kyaw, Cynthia M.

    2017-01-01

    In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research. PMID:29312266

  9. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM.

    PubMed

    Celebioglu, Hasan Ufuk; Olesen, Sita Vaag; Prehn, Kennie; Lahtinen, Sampo J; Brix, Susanne; Abou Hachem, Maher; Svensson, Birte

    2017-06-23

    Adhesion to intestinal mucosa is a crucial property for probiotic bacteria. Adhesion is thought to increase host-bacterial interactions, thus potentially enabling health benefits to the host. Molecular events connected with adhesion and surface proteome changes were investigated for the probiotic Lactobacillus acidophilus NCFM cultured with established or emerging prebiotic carbohydrates as carbon source and in the presence of mucin, the glycoprotein of the epithelial mucus layer. Variation in adhesion to HT29-cells and mucin was associated with carbon source and mucin-induced subproteome abundancy differences. Specifically, while growth on fructooligosaccharides (FOS) only stimulated adhesion to intestinal HT-29 cells, cellobiose and polydextrose in addition increased adhesion to mucin. Adhesion to HT-29 cells increased by about 2-fold for bacteria grown on mucin-supplemented glucose. Comparative 2DE-MS surface proteome analysis showed different proteins in energy metabolism appearing on the surface, suggesting they exert moonlighting functions. Mucin-supplemented bacteria had relative abundance of pyruvate kinase and fructose-bisphosphate aldolase increased by about 2-fold while six spots with 3.2-2.1 fold reduced relative abundance comprised elongation factor G, phosphoglycerate kinase, BipAEFTU family GTP-binding protein, ribonucleoside triphosphate reductase, adenylosuccinate synthetase, 30S ribosomal protein S1, and manganese-dependent inorganic pyrophosphatase. Surface proteome of cellobiose- compared to glucose-grown L. acidophilus NCFM had phosphate starvation inducible protein stress-related, thermostable pullulanase, and elongation factor G increasing 4.4-2.4 fold, while GAPDH, elongation factor Ts, and pyruvate kinase were reduced by 2.0-1.5 fold in relative abundance. Addition of recombinant L. acidophilus NCFM elongation factor G and pyruvate kinase to a coated mucin layer significantly suppressed subsequent adhesion of the bacterium. Human diet is

  10. The structure of the S-layer of Clostridium difficile.

    PubMed

    Bradshaw, William J; Roberts, April K; Shone, Clifford C; Acharya, K Ravi

    2018-03-01

    The nosocomially acquired pathogen Clostridium difficile is the primary causative agent of antibiotic associated diarrhoea and causes tens of thousands of deaths globally each year. C. difficile presents a paracrystalline protein array on the surface of the cell known as an S-layer. S-layers have been demonstrated to possess a wide range of important functions, which, combined with their inherent accessibility, makes them a promising drug target. The unusually complex S-layer of C. difficile is primarily comprised of the high- and low- molecular weight S-layer proteins, HMW SLP and LMW SLP, formed from the cleavage of the S-layer precursor protein, SlpA, but may also contain up to 28 SlpA paralogues. A model of how the S-layer functions as a whole is required if it is to be exploited in fighting the bacterium. Here, we provide a summary of what is known about the S-layer of C. difficile and each of the paralogues and, considering some of the domains present, suggest potential roles for them.

  11. A novel carbohydrate-binding surface layer protein from the hyperthermophilic archaeon Pyrococcus horikoshii.

    PubMed

    Goda, Shuichiro; Koga, Tomoyuki; Yamashita, Kenichiro; Kuriura, Ryo; Ueda, Toshifumi

    2018-04-08

    In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope and are involved in cell protection. In the present study, a putative S-layer protein was purified from the crude extract of Pyrococcus horikoshii using affinity chromatography. The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as determined using small-angle X-ray scattering. This protein showed high thermal stability, with a midpoint of thermal denaturation of 79 °C in dynamic light scattering experiments. This is the first description of the carbohydrate-binding archaeal S-layer protein and its characteristics.

  12. Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats.

    PubMed

    Han, Xufeng; Wang, Lei; Li, Wei; Li, Bibo; Yang, Yuxin; Yan, Hailong; Qu, Lei; Chen, Yulin

    2015-01-01

    The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.

  13. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Huys, Geert; Vandamme, Peter; De Vuyst, Luc; Vancanneyt, Marc

    2007-07-01

    A polyphasic taxonomic study of the lactic acid bacteria (LAB) population in three traditional Belgian sourdoughs, sampled between 2002 and 2004, revealed a group of isolates that could not be assigned to any recognized LAB species. Initially, sourdough isolates were screened by means of (GTG)(5)-PCR fingerprinting. Four isolates displaying unique (GTG)(5)-PCR patterns were further investigated by means of phenylalanyl-tRNA synthase (pheS) gene sequence analysis and represented a bifurcated branch that could not be allocated to any LAB species present in the in-house pheS database. Their phylogenetic affiliation was determined using 16S rRNA gene sequence analysis and showed that the four sourdough isolates belong to the Lactobacillus plantarum group with Lactobacillus mindensis, Lactobacillus farciminis and Lactobacillus nantensis as closest relatives. Further genotypic and phenotypic studies, including whole-cell protein analysis (SDS-PAGE), amplified fragment length polymorphism (AFLP) fingerprinting, DNA-DNA hybridization, DNA G+C content analysis, growth characteristics and biochemical features, demonstrated that the new sourdough isolates represent a novel Lactobacillus species for which the name Lactobacillus crustorum sp. nov. is proposed. The type strain of the new species is LMG 23699(T) (=CCUG 53174(T)).

  14. Protein shift and antigenic variation in the S-layer of Campylobacter fetus subsp. venerealis during bovine infection accompanied by genomic rearrangement of sapA homologs.

    PubMed Central

    Garcia, M M; Lutze-Wallace, C L; Denes, A S; Eaglesome, M D; Holst, E; Blaser, M J

    1995-01-01

    Campylobacter fetus subsp. venerealis isolated from a case of human vaginosis was inoculated into the uterus of a C. fetus-negative heifer. Isolates obtained weekly from the vaginal mucus exhibited variations in high-molecular-mass-protein profiles from that of the original inoculum, which had a dominant 110-kDa S-layer protein. Immunoblots of the weekly isolates with monoclonal antibody probes against the 110-kDa S-layer protein and other C. fetus S-layer proteins demonstrated antigenic shifts. Genomic digests of the isolates probed with a 75-mer oligonucleotide of the conserved sapA region also indicated that antigenic variation of the S-layer is accompanied by DNA rearrangement. PMID:7721688

  15. The S-layer Protein DR_2577 Binds Deinoxanthin and under Desiccation Conditions Protects against UV-Radiation in Deinococcus radiodurans

    PubMed Central

    Farci, Domenica; Slavov, Chavdar; Tramontano, Enzo; Piano, Dario

    2016-01-01

    Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer) built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in desiccated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under desiccation, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defense against UV radiation. PMID:26909071

  16. The S-layer Protein DR_2577 Binds Deinoxanthin and under Desiccation Conditions Protects against UV-Radiation in Deinococcus radiodurans.

    PubMed

    Farci, Domenica; Slavov, Chavdar; Tramontano, Enzo; Piano, Dario

    2016-01-01

    Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer) built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in desiccated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under desiccation, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defense against UV radiation.

  17. Distribution Dynamics of Recombinant Lactobacillus in the Gastrointestinal Tract of Neonatal Rats

    PubMed Central

    Bao, Sujin; Zhu, Libin; Zhuang, Qiang; Wang, Lucia; Xu, Pin-Xian; Itoh, Keiji; Holzman, Ian R.; Lin, Jing

    2013-01-01

    One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates. PMID:23544119

  18. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  19. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard

    2011-03-01

    Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca2 + ) ions, with an optimal concentration of 10 mM. Further increase of the Ca2 + concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.

  20. S-Layer Nanosheet Binding of Zn and Gd

    DOE Data Explorer

    Ajo-Franklin, Caroline (ORCID:0000000189096712); Charrier, Marimikel; Yang, Li

    2016-04-15

    This data characterizes binding of Zn2+ and Gd3+ to engineered nanosheets at 40C and in a brine solution. The engineered nanosheets are composed of surface-layer (S-layer) proteins which form 2 D crystalline sheets and display Zn2+- or Gd3+-binding domains on these sheets. Their ability to bind Zn2+ is compared to S-layer nanosheets that do not contain Zn2+-binding domains. We found that the purification method of these nanosheets was a critical determinant of their function and thus have provided data on the binding from two different purification methods. A key distinction of this dataset from other datasets is that the engineered nanosheets were expressed and purified from E. coli grown at 37C as described in (Kinns, 2010; Howorka, 2000), Kinns, H., et al. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus. Journal of Molecular Biology, 2010. 395(4): p. 742-753. Howorka, S., et al. Surface-accessible residues in the monomeric and assembled forms of a bacterial surface layer protein. Journal of Biological Chemistry, 2000. 275(48): p. 37876-37886.

  1. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  2. Assembly and Function of the Bacillus anthracis S-Layer.

    PubMed

    Missiakas, Dominique; Schneewind, Olaf

    2017-09-08

    Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.

  3. Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S-23S rRNA restriction profiling

    PubMed Central

    Moreira, João Luiz S; Mota, Rodrigo M; Horta, Maria F; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2005-01-01

    Background The accurate identification of Lactobacillus and other co-isolated bacteria during microbial ecological studies of ecosystems such as the human or animal intestinal tracts and food products is a hard task by phenotypic methods requiring additional tests such as protein and/or lipids profiling. Results Bacteria isolated in different probiotic prospecting studies, using de Man, Rogosa and Sharpe medium (MRS), were typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR products. The set of enzymes chosen differentiates most species of Lactobacillus genus and also co-isolated bacteria such as Enterococcus, Streptococcus, Weissella, Staphylococcus, and Escherichia species. The in silico predictions of restriction patterns generated by the Lactobacillus shorter spacers digested with 11 restriction enzymes with 6 bp specificities allowed us to distinguish almost all isolates at the species level but not at the subspecies one. Simultaneous theoretical digestions of the three spacers (long, medium and short) with the same set of enzymes provided more complex patterns and allowed us to distinguish the species without purifying and cloning of PCR products. Conclusion Lactobacillus isolates and several other strains of bacteria co-isolated on MRS medium from gastrointestinal ecosystem and fermented food products could be identified using DNA fingerprints generated by restriction endonucleases. The methodology based on amplified ribosomal DNA restriction analysis (ARDRA) is easier, faster and more accurate than the current methodologies based on fermentation profiles, used in most laboratories for the purpose of identification of these bacteria in different prospecting studies. PMID:15788104

  4. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2013-11-01

    A Gram-stain-positive bacterial strain, S4-3(T), was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain S4-3(T) showed 97.9-98.7 % 16S rRNA gene sequence similarities, 84.4-94.1 % pheS gene sequence similarities and 94.4-96.9 % rpoA gene sequence similarities to the type strains of Lactobacillus nantensis, Lactobacillus mindensis, Lactobacillus crustorum, Lactobacillus futsaii, Lactobacillus farciminis and Lactobacillus kimchiensis. dnaK gene sequence similarities between S4-3(T) and Lactobacillus nantensis LMG 23510(T), Lactobacillus mindensis LMG 21932(T), Lactobacillus crustorum LMG 23699(T), Lactobacillus futsaii JCM 17355(T) and Lactobacillus farciminis LMG 9200(T) were 95.4, 91.5, 90.4, 91.7 and 93.1 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus heilongjiangensis sp. nov., is proposed and the type strain is S4-3(T) ( = LMG 26166(T) = NCIMB 14701(T)).

  5. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Lactobacillus reuteri Maintains a Functional Mucosal Barrier during DSS Treatment Despite Mucus Layer Dysfunction

    PubMed Central

    Willing, Ben; Petersson, Joel; Rang, Sara; Phillipson, Mia; Holm, Lena; Roos, Stefan

    2012-01-01

    Treatment with the probiotic bacterium Lactobacillus reuteri has been shown to prevent dextran sodium sulfate (DSS)-induced colitis in rats. This is partly due to reduced P-selectin-dependent leukocyte- and platelet-endothelial cell interactions, however, the mechanism behind this protective effect is still unknown. In the present study a combination of culture dependent and molecular based T-RFLP profiling was used to investigate the influence of L. reuteri on the colonic mucosal barrier of DSS treated rats. It was first demonstrated that the two colonic mucus layers of control animals had different bacterial community composition and that fewer bacteria resided in the firmly adherent layer. During DSS induced colitis, the number of bacteria in the inner firmly adherent mucus layer increased and bacterial composition of the two layers no longer differed. In addition, induction of colitis dramatically altered the microbial composition in both firmly and loosely adherent mucus layers. Despite protecting against colitis, treatment with L. reuteri did not improve the integrity of the mucus layer or prevent distortion of the mucus microbiota caused by DSS. However, L. reuteri decreased the bacterial translocation from the intestine to mesenteric lymph nodes during DSS treatment, which might be an important part of the mechanisms by which L. reuteri ameliorates DSS induced colitis. PMID:23029509

  7. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Guo, Tingting; Zhang, Chenchen; Xin, Yongping; Xin, Min; Kong, Jian

    2016-05-01

    Prophage vB_LdeS-phiJB (phiJB) was induced by mitomycin C and UV radiation from the Lactobacillus delbrueckii subsp. bulgaricus SDMCC050201 isolated from a Chinese yoghurt sample. It has an isometric head and a non-contractile tail with 36,969 bp linear double-stranded DNA genome, which is classified into the group a of Lb. delbrueckii phages. The genome of phiJB is highly modular with functionally related genes clustered together. Unexpectedly, there is no similarity of its DNA replication module to any phages that have been reported, while it consists of open-reading frames homologous to the proteins of Lactobacillus strains. Comparative genomic analysis indicated that its late gene clusters, integration/lysogeny modules and DNA replication module derived from different evolutionary ancestors and integrated into a chimera. Our results revealed a novel chimeric phage of commercial Lb. delbrueckii and will broaden the knowledge of phage diversity in the dairy industry.

  8. Viability and Stress Response of Putative Probiotic Lactobacillus plantarum Strains in Honey Environment.

    PubMed

    Landry, Bemmo Kamdem Ulrich; François, Zambou Ngoufack; Wang, Rui-Yan; Taicheng, Zhu; Li, Yin

    2017-12-01

    Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04 × 10 6  CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86 × 10 4  CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~ 50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.

  9. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  10. Isolation of lactobacillus reuteri from Peyer's patches and their effects on sIgA production and gut microbiota diversity.

    PubMed

    Wang, Panpan; Li, Ya; Xiao, Hang; Shi, Yonghui; Le, Guo-Wei; Sun, Jin

    2016-09-01

    We previously reported that specific Lactobacillus reuteri colonized within mouse Peyer's patches (PP) effectively prevented high fat diet induced obesity and low-grade chronic inflammation. We further investigated the role of PP Lactobacillus reuteri on sIgA production in rats in this study. Lactobacilli were isolated from rat PP. All isolates were L. reuteri and belonged to three phenotypes according to amplified fragment length polymorphism analysis. Typical strains of two main clusters, PP1 and PP2, were used to treat control and vitamin A deficient (VAD) rats, respectively. The feeding of PP1 and PP2 affected sIgA and Lactobacillus diversity by strain-specific manner. Free sIgA was significantly increased by PP1 (p = 0.069) and PP2 (p < 0.05) in the control rats but not in the VAD rats. Only PP1 significantly changed PP Lactobacillus diversity in the control rats (p < 0.05). However, PP2 specifically changed ileal Lactobacillus diversity in both control and VAD rats. Fecal sIgA was correlated with PP Lactobacillus diversity (R(2) = 0.7958, p = 0.011). Modulation of sIgA production by PP L. reuteri of rat is dependent on vitamin A and change of Lactobacillus diversity in PP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces

    PubMed Central

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota. PMID:27042829

  12. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    PubMed

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.

  13. Identification of Lactobacillus proteins with different recognition patterns between immune rabbit sera and nonimmune mice or human sera.

    PubMed

    Górska, Sabina; Buda, Barbara; Brzozowska, Ewa; Schwarzer, Martin; Srutkova, Dagmar; Kozakova, Hana; Gamian, Andrzej

    2016-02-09

    The genus Lactobacillus belongs to a large heterogeneous group of low G + C Gram-positive anaerobic bacteria, which are frequently used as probiotics. The health-beneficial effects, in particular the immunomodulation effect, of probiotics depend on the strain and dose used. Strain variations may be related to diversity of the cell surface architecture of bacteria and the ability to express specific antigens or secrete compounds. The use of Lactobacillus as probiotic requires a comprehensive understanding of its effect on host immune system. To evaluate the potential immunoreactive properties of proteins isolated from four Lactobacillus strains: L. johnsonii 142 and L. johnsonii 151, L. rhamnosus LOCK 0900 and L. casei LOCK 0919, the polyclonal sera obtained from mouse and human have been tested as well as with sera from rabbits immunized with whole lactobacilli cells. The reactivity of isolated proteins detected by SDS-PAGE and Western blotting was heterogeneous and varied between different serum samples. The proteins with the highest immunoreactivity were isolated, purified and sequenced, in particular the fractions were identified as phosphoglycerate kinase (L. johnsonii 142), glyceraldehyde 3-phosphate dehydrogenase (L. johnosnii 142, L. rhamnosus LOCK 0900), hypothetic protein JDM1_1307 (L. johnsonii 151) and fructose/tagatose-bisphosphate-aldolase (L. casei LOCK 0919). The different prevalence of reactions against tested antigens in rabbit, mouse and human sera may indicate significant differences in immune system and commensal cross-talk in these groups. The identification of immunoreactive lactobacilli proteins opens the possibility to use them as an antigens for development of vaccines.

  14. Unique Insights in the Cervicovaginal Lactobacillus iners and L. crispatus Proteomes and Their Associations with Microbiota Dysbiosis

    PubMed Central

    Borgdorff, Hanneke; Armstrong, Stuart D.; Tytgat, Hanne L. P.; Xia, Dong; Ndayisaba, Gilles F.; Wastling, Jonathan M.; van de Wijgert, Janneke H. H. M.

    2016-01-01

    Background A Lactobacillus-dominated cervicovaginal microbiota (VMB) protects women from adverse reproductive health outcomes, but the role of L. iners in the VMB is poorly understood. Our aim was to explore the association between the cervicovaginal L. iners and L. crispatus proteomes and VMB composition. Methods The vaginal proteomes of 50 Rwandan women at high HIV risk, grouped into four VMB groups (based on 16S rDNA microarray results), were investigated by mass spectrometry using cervicovaginal lavage (CVL) samples. Only samples with positive 16S results for L. iners and/or L. crispatus within each group were included in subsequent comparative protein analyses: Lactobacillus crispatus-dominated VMB cluster (with 16S-proven L. iners (ni) = 0, and with 16S-proven L. crispatus (nc) = 5), L. iners-dominated VMB cluster (ni = 11, nc = 4), moderate dysbiosis (ni = 12, nc = 2); and severe dysbiosis (ni = 8, nc = 2). The relative abundances of proteins that were considered specific for L. iners and L. crispatus were compared among VMB groups. Results Forty Lactobacillus proteins were identified of which 7 were specific for L. iners and 11 for L. crispatus. The relative abundances of L. iners DNA starvation/stationary phase protection protein (DPS), and the glycolysis enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate isomerase (GPI), were significantly decreased in women with L. iners-containing dysbiosis compared to women with a L. iners-dominated VMB, independent of vaginal pH and L. iners abundance. Furthermore, L. iners DPS, GAPDH, GPI, and fructose-bisphosphate aldolase (ALDO) were significantly negatively associated with vaginal pH. Glycolysis enzymes of L. crispatus showed a similar negative, but nonsignificant, trend related to dysbiosis. Conclusions Most identified Lactobacillus proteins had conserved intracellular functions, but their high abundance in CVL supernatant might imply an additional extracellular (moonlighting) role

  15. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-06-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents.

  16. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  17. Purification and characterization of DR_2577 (SlpA) a major S-layer protein from Deinococcus radiodurans

    PubMed Central

    Farci, Domenica; Bowler, Matthew W.; Esposito, Francesca; McSweeney, Sean; Tramontano, Enzo; Piano, Dario

    2015-01-01

    The protein DR_2577 is a major Surface layer component of the radio-resistant bacterium Deinococcus radiodurans. In the present study DR_2577 has been purified and its oligomeric profile characterized by means of size exclusion chromatography and gel electrophoresis. DR_2577 was found to be organized into three hierarchical orders characterized by monomers, stable dimers formed by the occurrence of disulfide bonds, and hexamers resulting from a combination of dimers. The structural implications of these findings are discussed providing new elements for a more integrated model of this S-layer. PMID:26074883

  18. Purification and characterization of DR_2577 (SlpA) a major S-layer protein from Deinococcus radiodurans

    DOE PAGES

    Farci, Domenica; Bowler, Matthew W.; Esposito, Francesca; ...

    2015-06-03

    The protein DR_2577 is a major Surface layer component of the radio-resistant bacterium Deinococcus radiodurans. In the present study DR_2577 has been purified and its oligomeric profile characterized by means of size exclusion chromatography and gel electrophoresis. DR_2577 was found to be organized into three hierarchical orders characterized by monomers, stable dimers formed by the occurrence of disulfide bonds, and hexamers resulting from a combination of dimers. Finally, the structural implications of these findings are discussed providing new elements for a more integrated model of this S-layer.

  19. Comparative genomics of Lactobacillus

    PubMed Central

    Kant, Ravi; Blom, Jochen; Palva, Airi; Siezen, Roland J.; de Vos, Willem M.

    2011-01-01

    Summary The genus Lactobacillus includes a diverse group of bacteria consisting of many species that are associated with fermentations of plants, meat or milk. In addition, various lactobacilli are natural inhabitants of the intestinal tract of humans and other animals. Finally, several Lactobacillus strains are marketed as probiotics as their consumption can confer a health benefit to host. Presently, 154 Lactobacillus species are known and a growing fraction of these are subject to draft genome sequencing. However, complete genome sequences are needed to provide a platform for detailed genomic comparisons. Therefore, we selected a total of 20 genomes of various Lactobacillus strains for which complete genomic sequences have been reported. These genomes had sizes varying from 1.8 to 3.3 Mb and other characteristic features, such as G+C content that ranged from 33% to 51%. The Lactobacillus pan genome was found to consist of approximately 14 000 protein‐encoding genes while all 20 genomes shared a total of 383 sets of orthologous genes that defined the Lactobacillus core genome (LCG). Based on advanced phylogeny of the proteins encoded by this LCG, we grouped the 20 strains into three main groups and defined core group genes present in all genomes of a single group, signature group genes shared in all genomes of one group but absent in all other Lactobacillus genomes, and Group‐specific ORFans present in core group genes of one group and absent in all other complete genomes. The latter are of specific value in defining the different groups of genomes. The study provides a platform for present individual comparisons as well as future analysis of new Lactobacillus genomes. PMID:21375712

  20. Expression of an endotoxin-free S-layer/allergen fusion protein in gram-positive Bacillus subtilis 1012 for the potential application as vaccines for immunotherapy of atopic allergy

    PubMed Central

    2011-01-01

    Background Genetic fusion of the major birch pollen allergen (Bet v1) to bacterial surface-(S)-layer proteins resulted in recombinant proteins exhibiting reduced allergenicity as well as immunomodulatory capacity. Thus, S-layer/allergen fusion proteins were considered as suitable carriers for new immunotherapeutical vaccines for treatment of Type I hypersensitivity. Up to now, endotoxin contamination of the fusion protein which occurred after isolation from the gram-negative expression host E. coli had to be removed by an expensive and time consuming procedure. In the present study, in order to achieve expression of pyrogen-free, recombinant S-layer/allergen fusion protein and to study the secretion of a protein capable to self-assemble, the S-layer/allergen fusion protein rSbpA/Bet v1 was produced in the gram-positive organism Bacillus subtilis 1012. Results The chimaeric gene encoding the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 as well as Bet v1 was cloned and expressed in B. subtilis 1012. For that purpose, the E. coli-B. subtilis shuttle vectors pHT01 for expression in the B. subtilis cytoplasm and pHT43 for secretion of the recombinant fusion protein into the culture medium were used. As shown by western blot analysis, immediately after induction of expression, B. subtilis 1012 was able to secret rSbpA/Bet v1 mediated by the signal peptide amyQ of Bacillus amyloliquefaciens. Electron microscopical investigation of the culture medium revealed that the secreted fusion protein was able to form self-assembly products in suspension but did not recrystallize on the surface of the B. subtilis cells. The specific binding mechanism between the N-terminus of the S-layer protein and a secondary cell wall polymer (SCWP), located in the peptidoglycan-containing sacculi of Ly. sphaericus CCM 2177, could be used for isolation and purification of the secreted fusion protein from the culture medium. Immune reactivity of rSbpA/Bet v1 could be demonstrated in

  1. Lactobacillus hammesii sp. nov., isolated from French sourdough.

    PubMed

    Valcheva, Rosica; Korakli, Maher; Onno, Bernard; Prévost, Hervé; Ivanova, Iskra; Ehrmann, Matthias A; Dousset, Xavier; Gänzle, Michael G; Vogel, Rudi F

    2005-03-01

    Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38(T) and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA-DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38(T) (=DSM 16381(T)=CIP 108387(T)=TMW 1.1236(T)).

  2. Rejection of reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius using comparative genomics.

    PubMed

    Yang, Seung-Jo; Kim, Byung-Yong; Chun, Jongsik

    2017-11-01

    Lactobacillus bobalius, Lactobacillus kimchii and Lactobacillus paralimentarius belong to the genus Lactobacillus and show close phylogenetic relationships. In a previous study, L. bobalius and L. kimchii were proposed to be reclassified as later heterotypic synonyms of L. paralimentarius using high 16S rRNA gene sequence similarities (≥99.5 %) and DNA-DNA hybridization values (≥82 %). We determined high quality whole genome assemblies of the type strains of L. bobalius and L. kimchii, which were then compared with that of L. paralimentarius. Average nucleotide identity values among three genomes ranged from 91.4 to 92.3 % which are clearly below 95~96 %, the generally recognized cutoff value for bacterial species boundaries. On the basis of comparative genomic evidence, L. bobalius, L. kimchii, and L. paralimentarius should stand as separate species in the genus Lactobacillus. We therefore suggest rejecting the previous proposal to combine these three species into a single species.

  3. Impact of Lactobacillus plantarum Sortase on Target Protein Sorting, Gastrointestinal Persistence, and Host Immune Response Modulation

    PubMed Central

    Remus, Daniela M.; Bongers, Roger S.; Meijerink, Marjolein; Fusetti, Fabrizia; Poolman, Bert; de Vos, Paul; Wells, Jerry M.; Bron, Peter A.

    2013-01-01

    Sortases are transpeptidases that couple surface proteins to the peptidoglycan of Gram-positive bacteria, and several sortase-dependent proteins (SDPs) have been demonstrated to be crucial for the interactions of pathogenic and nonpathogenic bacteria with their hosts. Here, we studied the role of sortase A (SrtA) in Lactobacillus plantarum WCFS1, a model Lactobacillus for probiotic organisms. An isogenic srtA deletion derivative was constructed which did not show residual SrtA activity. DNA microarray-based transcriptome analysis revealed that the srtA deletion had only minor impact on the full-genome transcriptome of L. plantarum, while the expression of SDP-encoding genes remained completely unaffected. Mass spectrometry analysis of the bacterial cell surface proteome, which was assessed by trypsinization of intact bacterial cells and by LiCl protein extraction, revealed that SrtA is required for the appropriate subcellular location of specific SDPs and for their covalent coupling to the cell envelope, respectively. We further found that SrtA deficiency did not affect the persistence and/or survival of L. plantarum in the gastrointestinal tract of mice. In addition, an in vitro immature dendritic cell (iDC) assay revealed that the removal of surface proteins by LiCl strongly affected the proinflammatory signaling properties of the SrtA-deficient strain but not of the wild type, which suggests a role of SDPs in host immune response modulation. PMID:23175652

  4. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.

    PubMed

    Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

    2015-01-01

    We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.

  5. Encapsulation performance of layer-by-layer microcapsules for proteins.

    PubMed

    De Temmerman, Marie-Luce; Demeester, Jo; De Vos, Filip; De Smedt, Stefaan C

    2011-04-11

    This study reports on the encapsulation efficiency of proteins in dextran sulfate/poly-L-arginine-based microcapsules, fabricated via layer-by-layer assembly (LbL). For this purpose, radiolabeled proteins are entrapped in CaCO(3) microparticles, followed by LbL coating of the CaCO(3) cores and subsequent dissolving of the CaCO(3) using EDTA. To allow to improve protein encapsulation in LbL microcapsules, we studied all steps in the preparation of the microcapsules where loss of protein load might occur. The encapsulation efficiency of proteins in LbL microcapsules turns out to be strongly dependent on both the charge and molecular weight of the protein as well as on the number of polyelectrolyte bilayers the microcapsules consist of.

  6. Purification and characterization of ribosomal proteins L27 and L30 having antimicrobial activity produced by the Lactobacillus salivarius SGL 03.

    PubMed

    Pidutti, P; Federici, F; Brandi, J; Manna, L; Rizzi, E; Marini, U; Cecconi, D

    2018-02-01

    The aim of this study was to investigate the antimicrobial potential of proteins secreted by a new strain of Lactobacillus salivarius. The secretome of L. salivarius SGL 03 strain was analysed by gel-assisted fractionation and MS/MS to identify low-molecular-mass proteins. This strategy allowed us to identify 10 secreted proteins. Then, a combination of heterologous expression and agar well diffusion was used to characterize them as to their antimicrobial activity, mechanisms of action and stability. Our findings indicate that L27 and L30 proteins of the 50S ribosomal subunit have antimicrobial activity against Streptococcus pyogenes, Streptococcus uberis and Enterococcus faecium. In addition, both proteins are bactericidal against S. pyogenes and maintain their antimicrobial activity after different protease treatments, at acidic pH, after heat treatment, and if stored in a refrigerated ambient at least at 4°C. The overall results demonstrated that the L27 and L30 ribosomal proteins are of interest as new antimicrobial molecules to prevent the growth of S. pyogenes, S. uberis and E. faecium. Our results provide the first insight into the extra-ribosomal activity of L27 and L30 secreted proteins of L. salivarius. This study demonstrated the capacity of L. salivarius SGL 03 to produce antimicrobial molecules and suggested this strain as a promising probiotic candidate. © 2017 The Society for Applied Microbiology.

  7. In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers

    PubMed Central

    Breitwieser, Andreas; Iturri, Jagoba; Toca-Herrera, Jose-Luis; Sleytr, Uwe B.; Pum, Dietmar

    2017-01-01

    The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers. PMID:28216572

  8. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  9. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages.

    PubMed Central

    Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T

    1993-01-01

    Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043

  10. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: from protein structure to nanodisk assemblies.

    PubMed

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B; Peterlik, Herwig; Jungbauer, Alois; Tscheliessnig, Rupert

    2010-11-07

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.

  11. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: From protein structure to nanodisk assemblies

    NASA Astrophysics Data System (ADS)

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B.; Peterlik, Herwig; Jungbauer, Alois; Tscheliessnig, Rupert

    2010-11-01

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.

  12. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: From protein structure to nanodisk assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B.

    2010-11-07

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on themore » basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.« less

  13. Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation.

    PubMed Central

    Konrad, Zvia; Eichler, Jerry

    2002-01-01

    Once the newly synthesized surface (S)-layer glycoprotein of the halophilic archaeaon Haloferax volcanii has traversed the plasma membrane, the protein undergoes a membrane-related, Mg(2+)-dependent maturation event, revealed as an increase in the apparent molecular mass and hydrophobicity of the protein. To test whether lipid modification of the S-layer glycoprotein could explain these observations, H. volcanii cells were incubated with a radiolabelled precursor of isoprene, [(3)H]mevalonic acid. In Archaea, isoprenoids serve as the major hydrophobic component of archaeal membrane lipids and have been shown to modify other haloarchaeal S-layer glycoproteins, although little is known of the mechanism, site or purpose of such modification. In the present study we report that the H. volcanii S-layer glycoprotein is modified by a derivative of mevalonic acid and that maturation of the protein was prevented upon treatment with mevinolin (lovastatin), an inhibitor of mevalonic acid biosynthesis. These findings suggest that lipid modification of S-layer glycoproteins is a general property of halophilic archaea and, like S-layer glycoprotein glycosylation, lipid-modification of the S-layer glycoproteins takes place on the external cell surface, i.e. following protein translocation across the membrane. PMID:12069685

  14. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988.

    PubMed

    Vancanneyt, M; Mengaud, J; Cleenwerck, I; Vanhonacker, K; Hoste, B; Dawyndt, P; Degivry, M C; Ringuet, D; Janssens, D; Swings, J

    2004-03-01

    Fourteen homofermentative lactic acid bacteria that were isolated from kefir grains and kefir fermented milks were assigned to either Lactobacillus kefiranofaciens or Lactobacillus kefirgranum, based on their characteristic morphotypes, phenotypic features and SDS-PAGE profiles of whole-cell proteins. Further genotypic analyses on representative strains from both taxa demonstrated that L. kefiranofaciens and L. kefirgranum share 100 % 16S rDNA sequence similarity and belong phylogenetically to the Lactobacillus acidophilus species group. DNA-DNA binding values of >79 % and analogous DNA G+C contents of 37-38 mol% showed that the strains studied belonged to one species: L. kefirgranum is a later synonym of L. kefiranofaciens. An emended description is proposed for L. kefiranofaciens. Due to the specific morphological and biochemical characteristics of these taxa in kefir grain formation, it is proposed that L. kefirgranum should be reclassified as L. kefiranofaciens subsp. kefirgranum subsp. nov.

  15. N-Glycosylation Is Important for Proper Haloferax volcanii S-Layer Stability and Function.

    PubMed

    Tamir, Adi; Eichler, Jerry

    2017-03-15

    N-Glycosylation, the covalent linkage of glycans to select Asn residues of target proteins, is an almost universal posttranslational modification in archaea. However, whereas roles for N-glycosylation have been defined in eukarya and bacteria, the function of archaeal N-glycosylation remains unclear. Here, the impact of perturbed N-glycosylation on the structure and physiology of the haloarchaeon Haloferax volcanii was considered. Cryo-electron microscopy was used to examine right-side-out membrane vesicles prepared from cells of a parent strain and from strains lacking genes encoding glycosyltransferases involved in assembling the N-linked pentasaccharide decorating the surface layer (S-layer) glycoprotein, the sole component of the S-layer surrounding H. volcanii cells. Whereas a regularly repeating S-layer covered the entire surface of vesicles prepared from parent strain cells, vesicles from the mutant cells were only partially covered. To determine whether such N-glycosylation-related effects on S-layer assembly also affected cell function, the secretion of a reporter protein was addressed in the parent and N-glycosylation mutant strains. Compromised S-layer glycoprotein N-glycosylation resulted in impaired transfer of the reporter past the S-layer and into the growth medium. Finally, an assessment of S-layer glycoprotein susceptibility to added proteases in the mutants revealed that in cells lacking AglD, which is involved in adding the final pentasaccharide sugar, a distinct S-layer glycoprotein conformation was assumed in which the N-terminal region was readily degraded. Perturbed N-glycosylation thus affects S-layer glycoprotein folding. These findings suggest that H. volcanii could adapt to changes in its surroundings by modulating N-glycosylation so as to affect S-layer architecture and function. IMPORTANCE Long held to be a process unique to eukaryotes, it is now accepted that bacteria and archaea also perform N-glycosylation, namely, the covalent

  16. A lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor

    USDA-ARS?s Scientific Manuscript database

    Protein p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis and preserves barrier function by activation of EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study was to determine the mechanisms by which p40...

  17. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    PubMed Central

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  18. Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus

    PubMed Central

    Selle, Kurt; Goh, Yong J.; Johnson, Brant R.; O’Flaherty, Sarah; Andersen, Joakim M.; Barrangou, Rodolphe; Klaenhammer, Todd R.

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-characterized probiotic microorganism, supported by a decade of genomic and functional phenotypic investigations. L. acidophilus deficient in lipoteichoic acid (LTA), a major immunostimulant in Gram-positive bacteria, has been shown to shift immune system responses in animal disease models. However, the pleiotropic effects of removing LTA from the cell surface in lactobacilli are unknown. In this study, we surveyed the global transcriptional and extracellular protein profiles of two strains of L. acidophilus deficient in LTA. Twenty-four differentially expressed genes specific to the LTA-deficient strains were identified, including a predicted heavy metal resistance operon and several putative peptidoglycan hydrolases. Cell morphology and manganese sensitivity phenotypes were assessed in relation to the putative functions of differentially expressed genes. LTA-deficient L. acidophilus exhibited elongated cellular morphology and their growth was severely inhibited by elevated manganese concentrations. Exoproteomic surveys revealed distinct changes in the composition and relative abundances of several extracellular proteins and showed a bias of intracellular proteins in LTA-deficient strains of L. acidophilus. Taken together, these results elucidate the impact of ltaS deletion on the transcriptome and extracellular proteins of L. acidophilus, suggesting roles of LTA in cell morphology and ion homeostasis as a structural component of the Gram positive cell wall. PMID:28443071

  19. Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus.

    PubMed

    Selle, Kurt; Goh, Yong J; Johnson, Brant R; O'Flaherty, Sarah; Andersen, Joakim M; Barrangou, Rodolphe; Klaenhammer, Todd R

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-characterized probiotic microorganism, supported by a decade of genomic and functional phenotypic investigations. L. acidophilus deficient in lipoteichoic acid (LTA), a major immunostimulant in Gram-positive bacteria, has been shown to shift immune system responses in animal disease models. However, the pleiotropic effects of removing LTA from the cell surface in lactobacilli are unknown. In this study, we surveyed the global transcriptional and extracellular protein profiles of two strains of L. acidophilus deficient in LTA. Twenty-four differentially expressed genes specific to the LTA-deficient strains were identified, including a predicted heavy metal resistance operon and several putative peptidoglycan hydrolases. Cell morphology and manganese sensitivity phenotypes were assessed in relation to the putative functions of differentially expressed genes. LTA-deficient L. acidophilus exhibited elongated cellular morphology and their growth was severely inhibited by elevated manganese concentrations. Exoproteomic surveys revealed distinct changes in the composition and relative abundances of several extracellular proteins and showed a bias of intracellular proteins in LTA-deficient strains of L. acidophilus . Taken together, these results elucidate the impact of ltaS deletion on the transcriptome and extracellular proteins of L. acidophilus , suggesting roles of LTA in cell morphology and ion homeostasis as a structural component of the Gram positive cell wall.

  20. Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., isolated from silage.

    PubMed

    Tohno, Masanori; Tanizawa, Yasuhiro; Irisawa, Tomohiro; Masuda, Takaharu; Sakamoto, Mitsuo; Arita, Masanori; Ohkuma, Moriya; Kobayashi, Hisami

    2017-09-01

    Three Gram-stain positive, non-motile, non-spore-forming, catalase-negative and rod-shaped bacterial strains (IWT5T, IWT25T and IWT140), isolated from silage, were investigated by using a polyphasic taxonomic approach. Strains IWT5T and IWT25T grew at 10-37 °C and 30-37 °C, and at pH 4.0-7.5 and 4.0-7.0, respectively. The G+C contents of genomic DNA of strains IWT5T and IWT25T were 43.2 and 44.4 mol%, respectively. Strains IWT5T and IWT25T contained C16 : 0, C18 : 1 ω9c and summed feature 7 (unknown 18.846/C19 : 1 ω6c/C19 : 0cyclo ω10c) as the major fatty acids. Strain IWT5T was most closely related to the type strains of Lactobacillus mixtipabuli (99.9 % 16S rRNA gene sequence similarity) and Lactobacillus silagei (99.5 %). For IWT25T, the 16S rRNA gene sequence similarities with the closely related neighbour type strains L. mixtipabuli and L. silagei were 99.5 and 99.5 %, respectively. The 16S rRNA gene sequence similarities among the three novel isolates were 99.5-99.9 %. The average nucleotide identities of strains IWT5T and IWT25T to other neighbours of the genus Lactobacillus were less than 82 % and the genomes of IWT25T and IWT140 shared 97.3 % average nucleotide identity, demonstrating that the three strains were allocated to two different novel species of the genus Lactobacillus. Together with multilocus sequence analysis, phenotypic and chemotaxonomic characteristics, strains IWT5T (=JCM 31144T=DSM 102973T) and IWT25T (=JCM 31145T=DSM 102974T) are proposed as the type strains of novel species of the genus Lactobacillus, with the names Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., respectively.

  1. The effect of S-layer protein adsorption and crystallization on the collective motion of a planar lipid bilayer studied by dynamic light scattering.

    PubMed Central

    Hirn, R; Schuster, B; Sleytr, U B; Bayerl, T M

    1999-01-01

    A dedicated dynamic light scattering (DLS) setup was employed to study the undulations of freely suspended planar lipid bilayers, the so-called black lipid membranes (BLM), over a previously inaccessible spread of frequencies (relaxation times ranging from 10(-2) to 10(-6) s) and wavevectors (250 cm(-1) < q < 38,000 cm(-1)). For a BLM consisting of 1,2-dielaidoyl-sn-3-glycero-phosphocholine (DEPC) doped with two different proportions of the cationic lipid analog dioctadecyl-dimethylammonium bromide (DODAB) we observed an increase of the lateral tension of the membrane with the DODAB concentration. The experimentally determined dispersion behavior of the transverse shear mode was in excellent agreement with the theoretical predictions of a first-order hydrodynamic theory. The symmetric adsorption of the crystalline bacterial cell surface layer (S-layer) proteins from Bacillus coagulans E38-66 to a weakly cationic BLM (1.5 mol % DODAB) causes a drastic reduction of the membrane tension well beyond the previous DODAB-induced tension increase. The likely reason for this behavior is an increase of molecular order along the lipid chains by the protein and/or partial protein penetration into the lipid headgroup region. S-layer protein adsorption to a highly cationic BLM (14 mol % DODAB) shows after 7 h incubation time an even stronger decrease of the membrane tension by a factor of five, but additionally a significant increase of the (previously negligible) surface viscosity, again in excellent agreement with the hydrodynamic theory. Further incubation (24 h) shows a drastic increase of the membrane bending energy by three orders of magnitude as a result of a large-scale, two-dimensional recrystallization of the S-layer proteins at both sides of the BLM. The results demonstrate the potential of the method for the assessment of the different stages of protein adsorption and recrystallization at a membrane surface by measurements of the collective membrane modes and their

  2. Identification of Collagen-Binding Proteins in Lactobacillus spp. with Surface-Enhanced Laser Desorption/Ionization–Time of Flight ProteinChip Technology

    PubMed Central

    Howard, Jeffrey C.; Heinemann, Christine; Thatcher, Bradley J.; Martin, Brian; Gan, Bing Siang; Reid, Gregor

    2000-01-01

    Biosurfactants produced by Lactobacillus fermentum RC-14, L. rhamnosus GR-1 and 36, and L. casei Shirota were found to contain proteins that bind to both collagen types III and VI, as determined by surface-enhanced laser desorption/ionization (SELDI)–time of flight mass spectrometry. Both collagen types III and VI immobilized on SELDI preactivated ProteinChip arrays detected several different sizes (2 to 48 kDa) of collagen-binding proteins. Overall, the RC-14-produced biosurfactant contained the greatest number of collagen-binding proteins (RC-14 > GR-1 > 36 > Shirota), including the mature form of a previously cloned 29-kDa collagen-binding protein (referred to in its mature 26-kDa form). Although biosurfactants isolated from L. casei Shirota and L. rhamnosus 36 and GR-1 also contain several collagen-binding proteins, they do not contain the 26-kDa collagen-binding protein. Together, these results demonstrate the utility of the SELDI system as a means of rapidly characterizing clinically important but complex biosurfactant solutions. PMID:11010889

  3. Lactobacillus cypricasei Lawson et al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et al. 2000.

    PubMed

    Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean

    2006-07-01

    The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.

  4. Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH.

    PubMed

    Overbeck, Tom J; Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2017-10-15

    This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the Δ mutS lesion was repaired in representative L. casei 12A and ATCC 334 Δ mutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted Δ mutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted Δ mutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A Δ mutS mutant derivative showed that NADH dehydrogenase ( ndh ), phosphate transport ATP-binding protein PstB ( pstB ), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase ( hpk ) genes act in combination to increase lactic acid resistance in L. casei 12A. IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA

  5. Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH

    PubMed Central

    Overbeck, Tom J.; Welker, Dennis L.; Hughes, Joanne E.; Steele, James L.

    2017-01-01

    ABSTRACT This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei. MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the ΔmutS lesion was repaired in representative L. casei 12A and ATCC 334 ΔmutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted ΔmutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted ΔmutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A ΔmutS mutant derivative showed that NADH dehydrogenase (ndh), phosphate transport ATP-binding protein PstB (pstB), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase (hpk) genes act in combination to increase lactic acid resistance in L. casei 12A. IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA

  6. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus.

    PubMed

    Ansari, Fereshteh; Pourjafar, Hadi; Jodat, Vahid; Sahebi, Javad; Ataei, Amir

    2017-12-01

    In this study, we examined a novel method of microencapsulation with calcium alginate-chitosan and Eudragit S100 nanoparticles for the improving viability of probiotic bacteria, Lactobacillus acidophilus and Lactobacillus rhamnosus. Extrusion technique was carried out in microencapsulation process. The viability of two probiotics in single coated beads (with only chitosan), double coated beads (with chitosan and Eudragit nanoparticles), and as free cells (unencapsulated) were conducted in simulated gastric juice (pH 1.55, without pepsin) followed by incubation in simulated intestinal juice (pH 7.5, with 1% bile salt). In case of single coated beads, presumably, lack of sufficient strength of chitosan under simulated gastric condition was the main reason of 4-log and 5-log reduction of the counts of the L. acidophilus and L. rhamnosus respectively. The results showed that with the second coat forming (Eudragit nanoparticles) over the first coat (chitosan), the strength of the beads and then viability rate of the bacteria were increased in comparison with the single coated beads.

  7. Anxiogenic effects of a Lactobacillus, inulin and the synbiotic on healthy juvenile rats.

    PubMed

    Barrera-Bugueño, Camila; Realini, Ornella; Escobar-Luna, Jorge; Sotomayor-Zárate, Ramón; Gotteland, Martin; Julio-Pieper, Marcela; Bravo, Javier A

    2017-09-17

    Gut microbiota interventions, including probiotic and prebiotic use can alter behavior in adult animals and healthy volunteers. However, little is known about their effects in younger individuals. To investigate this, male Sprague-Dawley rats (post-natal day 21, PND21) received Lactobacillus casei 54-2-33 (10 4 cfu/ml), inulin as prebiotic (16mg/ml), or both together (synbiotic) via drinking water for 14days. Control rats received water alone. Open field (OF) and elevated plus maze (EPM) behaviors were evaluated at PND34 and 35, respectively. 30min after EPM, brains and trunk blood were collected to evaluate hippocampal 5-HT 1A (mRNA and protein) and plasma corticosterone (CORT). Lactobacillus, inulin and synbiotic-treated rats had fewer entries to the OF's center and spent more time in its periphery than controls. Synbiotic-fed rats explored the EPM's open arms longer than probiotic and inulin-fed rats. Synbiotic, but not Lactobacillus nor inulin-fed rats had lower levels of EPM-evoked CORT than controls. Basal CORT levels, evaluated in a naïve cohort, were higher in Lactobacillus- and inulin-fed rats than controls. In naïve synbiotic-fed rats, 5-HT 1A mRNA levels were higher in dentate gyrus and cornus ammonis 1 layer (CA1), than in all other naïve groups, while hippocampal 5-HT 1A protein levels were lower in bacteria-fed rats than controls. 5-HT 1A mRNA changes suggest complex effects of gut microbes on hippocampal gene expression machinery, probably involving endogenous/exogenous bacteria and prebiotics interactions. Importantly, age might also influence their behavioral outcomes. Together, these data suggest that interventions in young rat microbiota evoke early behavioral changes upon stress, apparently in a hypothalamus-pituitary-adrenal axis independent fashion. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. GtfA and GtfB Are Both Required for Protein O-Glycosylation in Lactobacillus plantarum

    PubMed Central

    Lee, I-Chiao; van Swam, Iris I.; Tomita, Satoru; Morsomme, Pierre; Rolain, Thomas; Hols, Pascal; Bron, Peter A.

    2014-01-01

    Acm2, the major autolysin of Lactobacillus plantarum WCFS1, was recently found to be O-glycosylated with N-acetylhexosamine, likely N-acetylglucosamine (GlcNAc). In this study, we set out to identify the glycosylation machinery by employing a comparative genomics approach to identify Gtf1 homologues, which are involved in fimbria-associated protein 1 (Fap1) glycosylation in Streptococcus parasanguinis. This in silico approach resulted in the identification of 6 candidate L. plantarum WCFS1 genes with significant homology to Gtf1, namely, tagE1 to tagE6. These candidate genes were targeted by systematic gene deletion, followed by assessment of the consequences on glycosylation of Acm2. We observed a changed mobility of Acm2 on SDS-PAGE in the tagE5E6 deletion strain, while deletion of other tagE genes resulted in Acm2 mobility comparable to that of the wild type. Subsequent mass spectrometry analysis of excised and in-gel-digested Acm2 confirmed the loss of glycosylation on Acm2 in the tagE5E6 deletion mutant, whereas a lectin blot using GlcNAc-specific succinylated wheat germ agglutinin (sWGA) revealed that besides Acm2, tagE5E6 deletion also abolished all but one other sWGA-reactive, protease-sensitive signal. Only complementation of both tagE5 and tagE6 restored those sWGA lectin signals, establishing that TagE5 and TagE6 are both required for the glycosylation of Acm2 as well as the vast majority of other sWGA-reactive proteins. Finally, sWGA lectin blotting experiments using a panel of 8 other L. plantarum strains revealed that protein glycosylation is a common feature in L. plantarum strains. With the establishment of these enzymes as protein glycosyltransferases, we propose to rename TagE5 and TagE6 as GtfA and GtfB, respectively. PMID:24532775

  9. Proteomic analysis of proteins increased or reduced by ethanol of Lactobacillus plantarum ST4 isolated from Makgeolli, traditional Korean rice wine.

    PubMed

    Lee, Seung Gyu; Lee, Kang Wook; Park, Tae Heung; Park, Ji Yeong; Han, Nam Soo; Kim, Jeong Hwan

    2012-04-01

    LAB were isolated from makgeolli locally produced around Jinju, Gyeongnam, S. Korea during spring of 2011. Randomly selected 11 isolates from MRS agar plates were identified first by API CHL 50 kits and then 16S rRNA gene sequencing. All 11 isolates were identified as Lactobacillus plantarum. Among them, ST4 grew in MRS broth with ethanol up to 10%, showing the highest alcohol resistance. L. plantarum ST4 was moderately resistant against acid and bile salts. When cellular proteins of L. plantarum ST4 under ethanol stress were analyzed by two-dimensional gel electrophoresis (2DE), the intensities of 6 spots increased, whereas 22 spots decreased at least 2-fold. Those 28 spots were identified by peptide mass fingerprinting (PMF). FusA2 (elongation factor G) increased 18.8-fold (6% ethanol) compared with control. Other proteins were AtpD (ATP synthase subunit beta), DnaK, GroEL, Tuf (elongation factor Tu), and Npr2 (NADH peroxidase), respectively. Among the 22 proteins decreased in intensities, lactate dehydrogenases (LdhD and LdhL1) were included.

  10. Modeling the surface of Campylobacter fetus: protein surface layer stability and resistance to cationic antimicrobial peptides.

    PubMed

    Roberts, James M D; Graham, Lori L; Quinn, Bonnie; Pink, David A

    2013-03-01

    Campylobacter fetus is a Gram negative bacterium recognized for its virulence in animals and humans. This bacterium possesses a paracrystalline array of high molecular weight proteins known as surface-layer proteins covering its cell surface. A mathematical model has been made of the outer membrane of this bacterium, both with its surface-layer proteins (S+) and without (S-). Monte Carlo computer simulation was used to understand the stability of the surface-layer protein structure as a function of ionic concentration. The interactions of an electrically-charged antimicrobial agent, the cationic antimicrobial peptide protamine, with surface-layer proteins and with the lipopolysaccharides of the outer membrane were modeled and analyzed. We found that (1) divalent ions stabilize the surface-layer protein array by reducing the fluctuations perpendicular and parallel to the membrane plane thereby promoting adhesion to the LPS region. This was achieved via (2) divalent ions bridging the negatively-charged LPS Core. The effect of this bridging is to bring individual Core regions closer together so that the O-antigens can (3) increase their attractive van der Waals interactions and "collapse" to form a surface with reduced perpendicular fluctuations. These findings provide support for the proposal of Yang et al. [1]. (4) No evidence for a significant increase in Ca(2+) concentration in the region of the surface-layer protein subunits was observed in S+ simulations compared to S- simulations. (5) We predicted the trends of protamine MIC tests performed on C. fetus and these were in good agreement with our experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    PubMed

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2017-04-01

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  12. Secretory IgA in complex with Lactobacillus rhamnosus potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-β

    PubMed Central

    Mikulic, Josip; Longet, Stéphanie; Favre, Laurent; Benyacoub, Jalil; Corthesy, Blaise

    2017-01-01

    The importance of secretory IgA in controlling the microbiota is well known, yet how the antibody affects the perception of the commensals by the local immune system is still poorly defined. We have previously shown that the transport of secretory IgA in complex with bacteria across intestinal microfold cells results in an association with dendritic cells in Peyer’s patches. However, the consequences of such an interaction on dendritic cell conditioning have not been elucidated. In this study, we analyzed the impact of the commensal Lactobacillus rhamnosus, alone or associated with secretory IgA, on the responsiveness of dendritic cells freshly recovered from mouse Peyer’s patches, mesenteric lymph nodes, and spleen. Lactobacillus rhamnosus-conditioned mucosal dendritic cells are characterized by increased expression of Toll-like receptor regulatory proteins [including single immunoglobulin interleukin-1 receptor-related molecule, suppressor of cytokine signaling 1, and Toll-interacting molecule] and retinaldehyde dehydrogenase 2, low surface expression of co-stimulatory markers, high anti- versus pro-inflammatory cytokine production ratios, and induction of T regulatory cells with suppressive function. Association with secretory IgA enhanced the anti-inflammatory/regulatory Lactobacillus rhamnosus-induced conditioning of mucosal dendritic cells, particularly in Peyer’s patches. At the systemic level, activation of splenic dendritic cells exposed to Lactobacillus rhamnosus was partially dampened upon association with secretory IgA. These data suggest that secretory IgA, through coating of commensal bacteria, contributes to the conditioning of mucosal dendritic cells toward tolerogenic profiles essential for the maintenance of intestinal homeostasis. PMID:26972771

  13. Molecular Diversity of Lactobacillus spp. and Other Lactic Acid Bacteria in the Human Intestine as Determined by Specific Amplification of 16S Ribosomal DNA

    PubMed Central

    Heilig, Hans G.H.J.; Zoetendal, Erwin G.; Vaughan, Elaine E.; Marteau, Philippe; Akkermans, Antoon D.L.; de Vos, Willem M.

    2002-01-01

    A Lactobacillus group-specific PCR primer, S-G-Lab-0677-a-A-17, was developed to selectively amplify 16S ribosomal DNA (rDNA) from lactobacilli and related lactic acid bacteria, including members of the genera Leuconostoc, Pediococcus, and Weissella. Amplicons generated by PCR from a variety of gastrointestinal (GI) tract samples, including those originating from feces and cecum, resulted predominantly in Lactobacillus-like sequences, of which ca. 28% were most similar to the 16S rDNA of Lactobacillus ruminis. Moreover, four sequences of Leuconostoc species were retrieved that, so far, have only been detected in environments other than the GI tract, such as fermented food products. The validity of the primer was further demonstrated by using Lactobacillus-specific PCR and denaturing gradient gel electrophoresis (DGGE) of the 16S rDNA amplicons of fecal and cecal origin from different age groups. The stability of the GI-tract bacterial community in different age groups over various time periods was studied. The Lactobacillus community in three adults over a 2-year period showed variation in composition and stability depending on the individual, while successional change of the Lactobacillus community was observed during the first 5 months of an infant’s life. Furthermore, the specific PCR and DGGE approach was tested to study the retention in fecal samples of a Lactobacillus strain administered during a clinical trial. In conclusion, the combination of specific PCR and DGGE analysis of 16S rDNA amplicons allows the diversity of important groups of bacteria that are present in low numbers in specific ecosystems to be characterized, such as the lactobacilli in the human GI tract. PMID:11772617

  14. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties.

    PubMed

    Klopper, Kyle B; Deane, Shelly M; Dicks, Leon M T

    2018-03-01

    Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).

  15. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    PubMed

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  16. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens

    PubMed Central

    2018-01-01

    ABSTRACT Background: Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective: We investigated the applicability of three Lactobacillus strains (L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains (L. plantarum ATCC 10,012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus. Results: Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus. In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions: These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus. PMID:29868163

  17. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens.

    PubMed

    Jeong, Dana; Kim, Dong-Hyeon; Song, Kwang-Young; Seo, Kun-Ho

    2018-01-01

    Background : Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective : We investigated the applicability of three Lactobacillus strains ( L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains ( L. plantarum ATCC 10,012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus . Results : Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus . In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions : These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus .

  18. Lactobacillus kimchii sp. nov., a new species from kimchi.

    PubMed

    Yoon, J H; Kang, S S; Mheen, T I; Ahn, J S; Lee, H J; Kim, T K; Park, C S; Kho, Y H; Kang, K H; Park, Y H

    2000-09-01

    A bacteriocin-producing lactic acid bacterium, which was isolated from the Korean fermented-vegetable food kimchi, was subjected to a polyphasic taxonomic study using phenotypic characterization and phylogenetic and genetic methods. This organism (MT-1077T) has phenotypic properties that are consistent with the description characterizing the genus Lactobacillus. Phylogenetic analysis based on 16S rDNA sequences showed clearly that strain MT-1077T is a member of the genus Lactobacillus. The closest phylogenetic relatives are Lactobacillus alimentarius KCTC 3593T and Lactobacillus farciminis LMG 9200T, with levels of 16S rDNA similarity of 98.4 and 98.2%, respectively. Levels of 16S rDNA similarity between strain MT-1077T and other Lactobacillus species were less than 93.0%. Differences in some phenotypic characteristics and DNA-DNA relatedness data indicated that strain MT-1077T should be distinguished from L. alimentarius KCTC 3593T and L. farciminis LMG 9200T. On the basis of the data presented, it is proposed that strain MT-1077T should be placed in the genus Lactobacillus as a new species, Lactobacillus kimchii sp. nov. The type strain of the new species is strain MT-1077T (= KCTC 8903PT = JCM 10707T).

  19. The Density and Refractive Index of Adsorbing Protein Layers

    PubMed Central

    Vörös, Janos

    2004-01-01

    The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO2 surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces. PMID:15240488

  20. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).

  1. Mg2+ improves the thermotolerance of probiotic Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8.

    PubMed

    Yang, Y; Huang, S; Wang, J; Jan, G; Jeantet, R; Chen, X D

    2017-04-01

    Food-related carbohydrates and proteins are often used as thermoprotectants for probiotic lactobacilli during industrial production and processing. However, the effect of inorganic salts is rarely reported. Magnesium is the second-most abundant cation in bacteria, and commonly found in various foods. Mg 2+ homeostasis is important in Salmonella and has been reported to play a critical role in their thermotolerance. However, the role of Mg 2+ in thermotolerance of other bacteria, in particular probiotic bacteria, still remains a hypothesis. In this study, the effect of Mg 2+ on thermotolerance of probiotic lactobacilli was investigated in three well-documented probiotic strains, Lactobacillus rhamnosus GG, Lactobacillus casei Zhang and Lactobacillus plantarum P-8, in comparison with Zn 2+ and Na + . Concentrations of Mg 2+ between 10 and 50 mmol l -1 were found to increase the bacterial survival upon heat challenge. Remarkably, Mg 2+ addition at 20 mmol l -1 led to a 100-fold higher survival of L. rhamnosus GG upon heat challenge. This preliminary study also showed that Mg 2+ shortened the heat-induced extended lag time of bacteria, which indicated the improvement in bacterial recovery from thermal injury. In order to improve the productivity and stability of live probiotics, extensive investigations have been carried out to improve thermotolerance of probiotics. However, most of these studies focused on the effects of carbohydrates, proteins or amino acids. The roles of inorganic salts in various food materials, which have rarely been reported, should be considered when incorporating probiotics into these foods. In this study, Mg 2+ was found to play a significant role in the thermotolerance of probiotic lactobacilli. A novel strategy may be available in the near future by employing magnesium salts as protective agents of probiotics during manufacturing process. © 2017 The Society for Applied Microbiology.

  2. Biosensing for the Environment and Defence: Aqueous Uranyl Detection Using Bacterial Surface Layer Proteins

    PubMed Central

    Conroy, David J.R.; Millner, Paul A.; Stewart, Douglas I.; Pollmann, Katrin

    2010-01-01

    The fabrication of novel uranyl (UO22+) binding protein based sensors is reported. The new biosensor responds to picomolar levels of aqueous uranyl ions within minutes using Lysinibacillus sphaericus JG-A12 S-layer protein tethered to gold electrodes. In comparison to traditional self assembled monolayer based biosensors the porous bioconjugated layer gave greater stability, longer electrode life span and a denser protein layer. Biosensors responded specifically to UO22+ ions and showed minor interference from Ni2+, Cs+, Cd2+ and Co2+. Chemical modification of JG-A12 protein phosphate and carboxyl groups prevented UO22+ binding, showing that both moieties are involved in the recognition to UO22+. PMID:22399904

  3. Lactobacillus farciminis treatment attenuates stress-induced overexpression of Fos protein in spinal and supraspinal sites after colorectal distension in rats.

    PubMed

    Ait-Belgnaoui, A; Eutamene, H; Houdeau, E; Bueno, L; Fioramonti, J; Theodorou, V

    2009-05-01

    Abstract Irritable bowel syndrome (IBS), frequently associated with psychological distress, is characterized by hypersensitivity to gut wall distension. Some probiotics are able to alleviate IBS symptoms and reduce visceromotor response to mechanical stimuli in animals. Moreover, we have previously shown that Lactobacillus farciminis treatment abolished the hyperalgesia to colorectal distension (CRD) induced by acute stress. The aims of the present study were to determine whether (i) stress-induced visceral hyperalgesia modifies the expression of Fos, a marker of general neuronal activation, induced by CRD, (ii) this activation can be modulated by L. farciminis treatment. Female rats were treated by L. farciminis and CRD was performed after partial restraint stress (PRS) or sham-PRS. The expression of Fos protein was measured by immunohistochemistry. After CRD or PRS, Fos expression was increased in spinal cord section (S1), nucleus tractus solitarius (NTS), paraventricular nucleus (PVN) of the hypothalamus, and in the medial nucleus of the amygdala (MeA). The combination of both stimuli, PRS and CRD, markedly increased this Fos overexpression in the sacral spinal cord section, PVN and MeA, but not in NTS. By contrast, a pretreatment with L. farciminis significantly reduced the number of Fos positive cells in these area. This study shows that PRS enhances Fos protein expression induced by CRD at the spinal and supraspinal levels in rats. Lactobacillus farciminis treatment inhibited this enhancing effect, suggesting that the antinociceptive effect of this probiotic strain results from a decrease of the stress-induced activation/sensitization of sensory neurons at the spinal and supraspinal level.

  4. Toward selective elicitation of TH1-controlled vaccination responses: vaccine applications of bacterial surface layer proteins.

    PubMed

    Jahn-Schmid, B; Messner, P; Unger, F M; Sleytr, U B; Scheiner, O; Kraft, D

    1996-01-26

    Bacterial surface layer proteins have been utilized as combined vaccine carrier/adjuvants and offer a number of advantages in these applications. The crystalline protein arrays contain functional groups in precisely defined orientations for coupling of haptens. Conventional applications of S-layer vaccines do not cause observable trauma or side effects. Depending on the nature of the S-layer preparations, antigenic conjugates will induce immune responses of a predominantly cellular or predominantly humoral nature. Immune responses to S-layer-hapten conjugates are also observed following oral/nasal application. In the present contribution, the status of investigations with S-layer conjugates in three main immunological projects is reviewed. In a project aimed at immunotherapy of cancer, conjugates of S-layer with small, tumor-associated oligosaccharides have been found to elicit hapten-specific DTH responses. An enlarged program of chemical synthesis has now been initiated to prepare a complete set of mucin-derived, tumor-associated oligosaccharides and their chemically modified analogues for elicitation of cell-mediated immune responses to certain tumors in humans. In another application, oligosaccharides derived from capsules of Streptococcus pneumoniae type 8 have been linked to S-layer proteins and have been found to elicit protective antibody responses in animals. Most recently, allergen S-layer conjugates have been prepared with the intention to suppress the TH2-directed, IgE-mediated allergic responses to Bet nu 1, the major allergen of birch pollen. In the former two applications, the S-layer vaccine technology appears to offer the versatility needed to direct vaccination responses toward predominant control by TH1 or TH2 lymphocytes to meet the different therapeutic or prophylactic requirements in each case. In the third application, work has progressed to a preliminary stage only.

  5. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617

  6. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus brevis ATCC 8287, a surface (S-layer) strain, possesses a variety of functional properties that make it both a potential probiotic and a good vaccine vector candidate. With this in mind, our aim was to study the survival of L. brevis in the porcine gut and investigate the effect of th...

  7. Lactobacillus allii sp. nov. isolated from scallion kimchi.

    PubMed

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-12-01

    A novel strain of lactic acid bacteria, WiKim39 T , was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39 T belonged to the genus Lactobacillus, and shared 97.1-98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39 T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39 T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39 T (=KCTC 21077 T =JCM 31938 T ).

  8. Lactobacillus allii sp. nov. isolated from scallion kimchi

    PubMed Central

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-01-01

    A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1–98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T). PMID:29043955

  9. Lactobacillus

    MedlinePlus

    ... eye symptoms. Preventing diarrhea caused by antibiotics. Taking probiotics products containing lactobacillus strains helps prevent diarrhea caused ... the first 1-2 years of life, lactobacillus probiotics can reduce the chance of the child developing ...

  10. Lactobacillus perolens sp. nov., a soft drink spoilage bacterium.

    PubMed

    Back, W; Bohak, I; Ehrmann, M; Ludwig, W; Pot, B; Kersters, K; Schleifer, K H

    1999-09-01

    Lactic acid bacteria that are able to spoil soft drinks with low pH comprise a limited number of acidotolerant or acidophilic species of the genera Lactobacillus, Leuconostoc and Weissella. Various Gram-positive rods causing turbidity and off-flavour were isolated from orange lemonades. Physiological and biochemical studies including SDS-PAGE whole-cell protein analysis showed a homogeneous group of organisms. The 16S rRNA gene sequence analysis of two representatives revealed that they formed a phylogenetically distinct line within the genus Lactobacillus. All strains were facultatively heterofermentative, producing L-lactic acid. Based on the data presented a new species L. perolens is proposed. The name refers to the off-flavour caused by high amounts of diacetyl. The type strain of L. perolens is DSM 12744 (LMG 18936). A rRNA targeted oligonucleotide probe was designed that allows a fast and reliable identification of L. perolens.

  11. 16S-ARDRA and MALDI-TOF mass spectrometry as tools for identification of Lactobacillus bacteria isolated from poultry.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2016-06-13

    The objective of our study is to evaluate the potential use of Amplified 16S Ribosomal DNA Restriction Analysis (16S-ARDRA) and MALDI-TOF mass spectrometry (MS) as methods for species identification of Lactobacillus strains in poultry. A total of 80 Lactobacillus strains isolated from the cloaca of chicken, geese and turkeys were identified to the species level by MALDI-TOF MS (on-plate extraction method) and 16S-ARDRA. The two techniques produced comparable classification results, some of which were additionally confirmed by sequencing of 16S rDNA. MALDI-TOF MS enabled rapid species identification but produced more than one reliable identification result for 16.25 % of examined strains (mainly of the species L. johnsonii). For 30 % of isolates intermediate log(scores) of 1.70-1.99 were obtained, indicating correct genus identification but only presumptive species identification. The 16S-ARDRA protocol was based on digestion of 16S rDNA with the restriction enzymes MseI, HinfI, MboI and AluI. This technique was able to distinguish 17 of the 19 Lactobacillus reference species tested and enabled identification of all 80 wild isolates. L. salivarius dominated among the 15 recognized species, followed by L. johnsonii and L. ingluviei. The MALDI-TOF MS and 16S-ARDRA assays are valuable tools for the identification of avian lactobacilli to the species level. MALDI-TOF MS is a fast, simple and cost-effective technique, and despite generating a high percentage of results with a log(score) <2.00, the on-plate extraction method is characterized by high-performance. For samples for which Biotyper produces more than one reliable result, MALDI-TOF MS must be used in combination with genotypic techniques to achieve unambiguous results. 16S-ARDRA is simple, repetitive method with high power of discrimination, whose sole limitation is its inability to discriminate between species with very high 16S rDNA sequence homology, such as L. casei and L. zeae. The assays can be used for

  12. Lactobacillus insicii sp. nov., isolated from fermented raw meat.

    PubMed

    Ehrmann, Matthias A; Kröckel, Lothar; Lick, Sonja; Radmann, Pia; Bantleon, Annegret; Vogel, Rudi F

    2016-01-01

    The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8 % 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4 %), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3 %), Lactobacillus versmoldensis DSM 14857T (96.9 %) and Lactobacillus furfuricola JCM 18764T (97.2 %). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70 % and the DNA G+C content was 36.3 mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T ( = CECT 8802T = DSM 29801T).

  13. Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia.

    PubMed

    Leisner, J J; Vancanneyt, M; Lefebvre, K; Vandemeulebroecke, K; Hoste, B; Vilalta, N Euras; Rusul, G; Swings, J

    2002-05-01

    Lactic acid bacteria (LAB) are the predominant micro-organisms in tempoyak, a Malaysian acid-fermented condiment. In a study on the diversity of LAB in this product, three isolates could not be identified using SDS-PAGE of whole-cell proteins or API 50 CH. The taxonomic position of the three isolates was clarified in the present study. 16S rDNA sequencing classified a representative strain in the genus Lactobacillus, clearly separated from all known species, and most closely related to the Lactobacillus reuteri phylogenetic group. DNA-DNA hybridization experiments and an extensive phenotypic description confirm that the strains represent a single and separate novel species among the obligately heterofermentative lactobacilli. The three isolates are distinguished at the intra-species level by plasmid profiling, pulsed-field gel electrophoresis of macro-restriction fragments and biochemical features. The name Lactobacillus durianis sp. nov. is proposed for the novel taxon and the type strain is LMG 19193T (= CCUG 45405T).

  14. Lactobacillus curtus sp. nov., isolated from beer in Finland.

    PubMed

    Asakawa, Yuki; Takesue, Nobuchika; Asano, Shizuka; Shimotsu, Satoshi; Iijima, Kazumaru; Suzuki, Koji; Motoyama, Yasuo; Aizawa, Masayuki

    2017-10-01

    A Gram-stain-positive, catalase-negative and short-rod-shaped organism, designated VTT E-94560, was isolated from beer in Finland and deposited in the VTT culture collection as a strain of Lactobacillus rossiae. However, the results of 16S rRNA gene sequence analysis showed that VTT E-94560 was only related to Lactobacillus rossiae JCM 16176 T with 97.0 % sequence similarity, lower than the 98.7 % regarded as the boundary for the species differentiation. Additional phylogenetic studies on the pheS gene, rpoA gene and 16S-23S rRNA internally transcribed spacer region further reinforced the taxonomically independent status of VTT E-94560 and its related Lactobacillus species including L. rossiae and Lactobacillus siliginis. Strain VTT E-94560 also exhibited several differences in its carbohydrate fermentation profiles from those related Lactobacillus species. In addition, DNA-DNA relatedness between VTT E-94560 and these two type strains was 4 % (L. rossiae JCM 16176 T ) and 12 % (L. siliginins JCM 16155 T ), respectively, which were lower than the 70 % cut-off for general species delineation, indicating that these three strains are not taxonomically identical at the species level. These studies revealed that VTT E-94560 represents a novel species, for which the name Lactobacillus curtus sp. nov. is proposed. The type strain is VTT E-94560 T (=JCM 31185 T ).

  15. 7A projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals.

    PubMed

    Norville, Julie E; Kelly, Deborah F; Knight, Thomas F; Belcher, Angela M; Walz, Thomas

    2007-12-01

    Two-dimensional crystallization on lipid monolayers is a versatile tool to obtain structural information of proteins by electron microscopy. An inherent problem with this approach is to prepare samples in a way that preserves the crystalline order of the protein array and produces specimens that are sufficiently flat for high-resolution data collection at high tilt angles. As a test specimen to optimize the preparation of lipid monolayer crystals for electron microscopy imaging, we used the S-layer protein sbpA, a protein with potential for designing arrays of both biological and inorganic materials with engineered properties for a variety of nanotechnology applications. Sugar embedding is currently considered the best method to prepare two-dimensional crystals of membrane proteins reconstituted into lipid bilayers. We found that using a loop to transfer lipid monolayer crystals to an electron microscopy grid followed by embedding in trehalose and quick-freezing in liquid ethane also yielded the highest resolution images for sbpA lipid monolayer crystals. Using images of specimens prepared in this way we could calculate a projection map of sbpA at 7A resolution, one of the highest resolution projection structures obtained with lipid monolayer crystals to date.

  16. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    PubMed

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: kinetics of formation and matrix characterization.

    PubMed

    Leccese Terraf, María Cecilia; Juárez Tomás, María Silvina; Rault, Lucie; Le Loir, Yves; Even, Sergine; Nader-Macías, María Elena Fátima

    2016-09-01

    Adhesion and biofilm formation are strain properties that reportedly contribute to the permanence of lactobacilli in the human vagina. The kinetics of biofilm formation and the chemical nature of the biofilm matrix formed by Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 and Lactobacillus rhamnosus CRL 1332, vaginal beneficial strains, were evaluated in this work. Crystal violet-stained microplate assay and techniques of epifluorescence, electron and confocal microscopy were applied. The highest density and complexity of biofilms of both vaginal lactobacilli were observed at 72 h of incubation. Protease, proteinase K, α-chymotrypsin and trypsin treatments efficiently detached L. reuteri CRL 1324 biofilm that was also partially affected by α-amylase. However, L. rhamnosus CRL 1332 biofilm was slightly affected by protease, proteinase K and α-amylase. Confocal microscopy revealed greater amount of polysaccharides in L. rhamnosus CRL 1332 biofilm matrix than in L. reuteri CRL 1324 biofilm matrix. The results indicate that proteins are one of the main components of the L. reuteri CRL 1324 biofilm, while the biofilm matrix of L. rhamnosus CRL 1332 is composed of carbohydrates and proteins. The results obtained support the knowledge, understanding and characterization of two biofilm-forming vaginal Lactobacillus strains.

  19. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum.

    PubMed

    Rud, Ida; Jensen, Peter Ruhdal; Naterstad, Kristine; Axelsson, Lars

    2006-04-01

    A synthetic promoter library (SPL) for Lactobacillus plantarum has been developed, which generalizes the approach for obtaining synthetic promoters. The consensus sequence, derived from rRNA promoters extracted from the L. plantarum WCFS1 genome, was kept constant, and the non-consensus sequences were randomized. Construction of the SPL was performed in a vector (pSIP409) previously developed for high-level, inducible gene expression in L. plantarum and Lactobacillus sakei. A wide range of promoter strengths was obtained with the approach, covering 3-4 logs of expression levels in small increments of activity. The SPL was evaluated for the ability to drive beta-glucuronidase (GusA) and aminopeptidase N (PepN) expression. Protein production from the synthetic promoters was constitutive, and the most potent promoters gave high protein production with levels comparable to those of native rRNA promoters, and production of PepN protein corresponding to approximately 10-15 % of the total cellular protein. High correlation was obtained between the activities of promoters when tested in L. sakei and L. plantarum, which indicates the potential of the SPL for other Lactobacillus species. The SPL enables fine-tuning of stable gene expression for various applications in L. plantarum.

  20. Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov.

    PubMed

    Meroth, Christiane B; Hammes, Walter P; Hertel, Christian

    2004-03-01

    The microbiota of two industrially processed rice sourdoughs was characterised by bacteriological culture in combination with PCR-denaturing gradient gel electrophoresis (DGGE) and 16S/28S rDNA sequence analysis. Rice sourdough I was continuously propagated for several years by back-slopping every week, whereas sourdough II was processed by using a commercial starter culture and back-slopping daily for three days. In rice sourdough II Candida krusei and Saccharomyces cerevisiae as well as Lactobacillus fermentum, Lactobacillus gallinarum, Lactobacillus kimchii, Lactobacillus plantarum, and Lactobacillus pontis dominated at the first day of fermentation. RAPD analysis of lactobacilli revealed identical profiles for each of the species except for L. fermentum and L. pontis indicating the presence of different strains. Fluctuations within the LAB community during fermentation were monitored by PCR-DGGE. L. pontis decreased in numbers over time and L. curvatus became dominant after 3 days of fermentation. Rice sourdough I contained S. cerevisiae, Lactobacillus paracasei (present with three different RAPD types), Lactobacillus paralimentarius, and a Lactobacillus strain which could not be allotted to any valid species. Phylogenetic analysis based on 16S rDNA sequences revealed Lactobacillus brevis as the closest relative (97.3% sequence similarity). Differences in some phenotypic characteristics and DNA-DNA relatedness indicated that the strain represents a new Lactobacillus species, for which the name Lactobacillus spicheri is proposed.

  1. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough.

    PubMed

    Valcheva, Rosica; Ferchichi, Mounir F; Korakli, Maher; Ivanova, Iskra; Gänzle, Michael G; Vogel, Rudi F; Prévost, Hervé; Onno, Bernard; Dousset, Xavier

    2006-03-01

    A polyphasic taxonomic study of the bacterial flora isolated from traditional French wheat sourdough, using phenotypic characterization and phylogenetic as well as genetic methods, revealed a consistent group of isolates that could not be assigned to any recognized species. These results were confirmed by randomly amplified polymorphic DNA and amplified fragment length polymorphism fingerprinting analyses. Cells were Gram-positive, homofermentative rods. Comparative 16S rRNA gene sequence analysis of the representative strain LP33T indicated that these strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives Lactobacillus farciminis, Lactobacillus alimentarius, Lactobacillus paralimentarius and Lactobacillus mindensis. DNA-DNA reassociation experiments with the three phylogenetically closest Lactobacillus species confirmed that LP33T (= DSM 16982T = CIP 108546T = TMW 1.1265T) represents the type strain of a novel species, for which the name Lactobacillus nantensis sp. nov. is proposed.

  2. Homodimeric β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: Expression in Lactobacillus plantarum and Biochemical Characterization

    PubMed Central

    2012-01-01

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ∼170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS. PMID:22283494

  3. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization.

    PubMed

    Nguyen, Tien-Thanh; Nguyen, Hoang Anh; Arreola, Sheryl Lozel; Mlynek, Georg; Djinović-Carugo, Kristina; Mathiesen, Geir; Nguyen, Thu-Ha; Haltrich, Dietmar

    2012-02-22

    The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ~170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS.

  4. Lactobacillus casei BL23 Produces Microvesicles Carrying Proteins That Have Been Associated with Its Probiotic Effect

    PubMed Central

    Domínguez Rubio, A. Paula; Martínez, Jimena H.; Martínez Casillas, Diana C.; Coluccio Leskow, Federico; Piuri, Mariana; Pérez, Oscar E.

    2017-01-01

    Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism for intercellular communication. We report the isolation and characterization of MVs from the probiotic strain Lactobacillus casei BL23. MVs were characterized using analytical high performance techniques, DLS, AFM and TEM. Similar to what has been described for other Gram-positive bacteria, MVs were on the nanometric size range (30–50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins. Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively present in the MVs. The MVs content included cell envelope associated and secretory proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural components of the ribosome, membrane transporters, cell wall-associated hydrolases and phage related proteins. In particular, we identified proteins described as mediators of Lactobacillus’ probiotic effects such as p40, p75 and the product of LCABL_31160, annotated as an adhesion protein. The presence of these proteins suggests a role for the MVs in the bacteria-gastrointestinal cells interface. The expression and further encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria could represent a scientific novelty, with applications in food, nutraceuticals and clinical therapies. PMID:28979244

  5. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)). © 2015 IUMS.

  6. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    PubMed

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage.

    PubMed

    Zou, Yuanqiang; Liu, Feng; Fang, Chengxiang; Wan, Daiwei; Yang, Rentao; Su, Qingqing; Yang, Ruifu; Zhao, Jiao

    2013-05-01

    Two Lactobacillus strains, designated LY-73(T) and LY-30B, were isolated from a dairy beverage, sold in Shenzhen market, China. The two isolates were Gram-positive, non-spore-forming, non-motile, facultatively anaerobic rods that were heterofermentative and did not exhibit catalase activity. Sequencing of the 16S rRNA, pheS and rpoA genes revealed that the two isolates shared 99.5, 99.8 and 99.9 % sequence similarity, which indicates that they belong to the same species. Phylogenetic analysis demonstrated clustering of the two isolates with the genus Lactobacillus. Strain LY-73(T) showed highest 16S rRNA gene sequence similarities with Lactobacillus harbinensis KACC 12409(T) (97.73%), Lactobacillus perolens DSM 12744(T) (96.96 %) and Lactobacillus selangorensis DSM 13344(T) (93.10 %). Comparative analyses of their rpoA and pheS gene sequences indicated that the novel strains were significantly different from other Lactobacillus species. Low DNA-DNA reassociation values (50.5 %) were obtained between strain LY-73(T) and its phylogenetically closest neighbours. The G+C contents of the DNA of the two novel isolates were 56.1 and 56.5 mol%. Straight-chain unsaturated fatty acids C18 : 1ω9c (78.85 and 74.29 %) were the dominant components, and the cell-wall peptidoglycan was of the l-Lys-d-Asp type. Based on phenotypic characteristics, and chemotaxonomic and genotypic data, the novel strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus shenzhenensis sp. nov. is proposed, with LY-73(T) ( = CCTCC M 2011481(T) = KACC 16878(T)) as the type strain.

  8. Lactobacillus salivarius 1077 (NRRL B-50053) bacteriocin

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  9. Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions.

    PubMed

    Duary, Raj Kumar; Batish, Virender Kumar; Grover, Sunita

    2012-03-01

    Probiotic bacteria must overcome the toxicity of bile salts secreted in the gut and adhere to the epithelial cells to enable their better colonization with extended transit time. Expression of bile salt hydrolase and other proteins on the surface of probiotic bacteria can help in better survivability and optimal functionality in the gut. Two putative Lactobacillus plantarum isolates i.e., Lp9 and Lp91 along with standard strain CSCC5276 were used. A battery of six housekeeping genes viz. gapB, dnaG, gyrA, ldhD, rpoD and 16S rRNA were evaluated by using geNorm 3.4 excel based application for normalizing the expression of bile salt hydrolase (bsh), mucus-binding protein (mub), mucus adhesion promoting protein (mapA), and elongation factor thermo unstable (EF-Tu) in Lp9 and Lp91. The maximal level of relative bsh gene expression was recorded in Lp91 with 2.89 ± 0.14, 4.57 ± 0.37 and 6.38 ± 0.19 fold increase at 2% bile salt concentration after 1, 2 and 3 h, respectively. Similarly, mub and mapA genes were maximally expressed in Lp9 at the level of 20.07 ± 1.28 and 30.92 ± 1.51 fold, when MRS was supplemented with 0.05% mucin and 1% each of bile and pancreatin (pH 6.5). However, in case of EF-Tu, the maximal expression of 42.84 ± 5.64 fold was recorded in Lp91 in the presence of mucin alone (0.05%). Hence, the expression of bsh, mub, mapA and EF-Tu could be considered as prospective biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut.

  10. Lactobacillus versmoldensis sp. nov., isolated from raw fermented sausage.

    PubMed

    Kröckel, L; Schillinger, U; Franz, C M A P; Bantleon, A; Ludwig, W

    2003-03-01

    Lactobacillus versmoldensis sp. nov. (KU-3T) was isolated from raw fermented sausages. The new species was present in high numbers, and frequently dominated the lactic acid bacteria (LAB) populations of the products. 16S rDNA sequence data revealed that the isolates are closely related to the species Lactobacillus kimchii DSM 13961T, Lactobacillus paralimentarius DSM 13238T, Lactobacillus alimentarius DSM 20249T and Lactobacillus farciminis DSM 20184T. DNA-DNA reassociation data, however, clearly distinguished the new isolates from these species; they showed a low degree of DNA relatedness with the type strains of this group of phylogenetically closely related lactobacilli. These results warrant separate species status for strain KU-3T, for which the name Lactobacillus versmoldensis sp. nov. is proposed. The type strain is KU-3T (=DSM 14857T =NCCB 100034T =ATCC BAA-478T).

  11. Factors controlling in vitro recrystallization of the Caulobacter crescentus paracrystalline S-layer.

    PubMed Central

    Nomellini, J F; Kupcu, S; Sleytr, U B; Smit, J

    1997-01-01

    The S-layer of Caulobacter is a two-dimensional paracrystalline array on the cell surface composed of a single protein, RsaA. We have established conditions for preparation of stable, soluble protein and then efficient in vitro recrystallization of the purified protein. Efficient recrystallization and long range order could not be obtained with pure protein only, though it was apparent that calcium was required for crystallization. Recrystallization was obtained when lipid vesicles were provided, but only when the vesicles contained the specific species of Caulobacter smooth lipopolysaccharide (SLPS) that previous studies implicated as a requirement for attaching the S-layer to the cell surface. The specific type of phospholipids did not appear critical; phospholipids rather different from those present in Caulobacter membranes or archaebacterial tetraether lipids worked equally well. The source of LPS was critical; rough and smooth variants of Salmonella typhimurium LPS as well as the rough form of Caulobacter LPS were ineffective. The requirement for calcium ions for recrystallization was further evaluated; strontium ions could substitute for calcium, and to a lesser extent, cobalt, barium, manganese and magnesium ions also stimulated crystallization. On the other hand, nickel and cadmium provided only weak crystallization stimulation, and zinc, copper, iron, aluminum ions, and the monovalent potassium, sodium, and lithium ions were ineffective. The recrystallization could also be reproduced with Langmuir-Blodgett lipid monolayers at an air-water interface. As with the vesicle experiments, this was only successful when SLPS was incorporated into the lipid mix. The best method for RsaA preparation, leading to apparently monomeric protein that was stable for many months, was an extraction with a low pH aqueous solution. We also achieved recrystallization, albeit at lower efficiency, using RsaA protein solubilized by 8 M urea, a method which allows retrieval of

  12. Bacteriocins from Lactobacillus plantarum – production, genetic organization and mode of action

    PubMed Central

    Todorov, Svetoslav D.

    2009-01-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented. PMID:24031346

  13. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study.

    PubMed

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  14. Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-zhe; Chen, Hsin-Chih; Chiang, Yu-Cheng; Tsen, Hau-Yang

    2009-01-01

    PCR primers specific for the detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum were designed based on the elongation factor Tu gene (tuf). The specificity of these four primer sets were confirmed by PCR with 88 bacterial strains of Lactobacillus, Enterococcus, Bifidobacterium, and other bacterial species. Results indicated that these primer sets generated predicted PCR products of 397, 230, 202, and 161 bp for L. acidophilus, L. delbrueckii, L. casei group, and B. longum, respectively. Bacterial species other than the target organisms tested did not generate false-positive results. When these four primer sets were combined for the simultaneous detection of the lactic acid bacteria (LAB) in fermented milk products including yogurt, the LAB species listed on the labels of these products could be identified without the preenrichment step. The identification limit for each LAB strain with this multiplex PCR method was N X 10(3) CFU/ml in milk samples. The results of our multiplex PCR method were confirmed by PCR assay using primers based on the 16S rDNA or the 16S-23S intergenic spacer region and by biochemical tests using the API 50 CHL kit. When this multiplex PCR method was used with the determination of counts of total viable LAB and bifidobacteria, the quality of commercial fermented milk products could be assured.

  15. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan Li; He Qiang; Max Planck Institute of Colloids and Interfaces, Golm/Potsdam D-14476

    2007-03-09

    Hemoglobin (Hb) protein microcapsules held together by cross-linker, glutaraldehyde (GA), were successfully fabricated by covalent layer-by-layer (LbL) technique. The Schiff base reaction occurred on the colloid templates between the aldehyde groups of GA and free amino sites of Hb results in the formation of GA/Hb microcapsules after the removal of the templates. The structure of obtained monodisperse protein microcapsule was characterized by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The UV-Vis spectra measurements demonstrate the existence of Hb in the assembled capsules. Cyclic voltammetry (CV) and potential-controlled amperometric measurements (I-t curve) confirm that hemoglobin microcapsules after fabricationmore » remain their heme electroactivity. Moreover, direct electron transfer process from protein to electrode surface was performed to detect the heme electrochemistry without using any mediator or promoter. The experiments of fluorescence recovery after photobleaching (FRAP) by CLSM demonstrate that the hemoglobin protein microcapsules have an improved permeability comparing to the conventional polyelectrolyte microcapsules.« less

  16. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages

    PubMed Central

    Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent. PMID:27120199

  17. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent.

  18. Survey on the phage resistance mechanisms displayed by a dairy Lactobacillus helveticus strain.

    PubMed

    Zago, Miriam; Orrù, Luigi; Rossetti, Lia; Lamontanara, Antonella; Fornasari, Maria Emanuela; Bonvini, Barbara; Meucci, Aurora; Carminati, Domenico; Cattivelli, Luigi; Giraffa, Giorgio

    2017-09-01

    In this study the presence and functionality of phage defence mechanisms in Lactobacillus helveticus ATCC 10386, a strain of dairy origin which is sensitive to ΦLh56, were investigated. After exposure of ATCC 10386 to ΦLh56, the whole-genome sequences of ATCC 10386 and of a phage-resistant derivative (LhM3) were compared. LhM3 showed deletions in the S-layer protein and a higher expression of the genes involved in the restriction/modification (R/M) system. Genetic data were substantiated by measurements of bacteriophage adsorption rates, efficiency of plaquing, cell wall protein size and by gene expression analysis. In LhM3 two phage resistance mechanisms, the inhibition of phage adsorption and the upregulation of Type I R/M genes, take place and explain its resistance to ΦLh56. Although present in both ATCC 10386 and LhM3 genomes, the CRISPR machinery did not seem to play a role in the phage resistance of LhM3. Overall, the natural selection of phage resistant strains resulted successful in detecting variants carrying multiple phage defence mechanisms in L. helveticus. The concurrent presence of multiple phage-resistance systems should provide starter strains with increased fitness and robustness in dairy ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of Lactobacillus formosensis S215T and Lactobacillus buchneri on quality and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage.

    PubMed

    Mangwe, M C; Rangubhet, K T; Mlambo, V; Yu, B; Chiang, H I

    2016-11-01

    This study investigated the influence of two microbial inoculants; Lactobacillus formosensis and Lactobacillus buchneri on fermentation quality, chemical composition, aerobic stability and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage. Sweet potato vines were ensiled for 28 and 60 days; without inoculant (CON), with Lact. buchneri (LB) or with Lact. formosensis (LF), both inoculants applied to achieve 1 × 10 6  CFU g -1 fresh forage. Lactobacillus formosensis silage had lower pH and higher lactic acid than all treatments. Yeasts and moulds were not detected in LB silage after ensiling. Lactobacillus buchneri silage was more aerobically stable than all treatments, whereas LF was more stable than CON silage. In vitro ruminal biological activity of condensed tannins was lower in microbial-inoculated silages than CON after ensiling. Lactobacillus formosensis improved fermentability by reducing silage pH and improved aerobic stability by producing more propionate, which inhibited yeast activity. Lactobacillus buchneri improved aerobic stability of the silage by producing more acetate. Both strains effectively reduced the antinutritional effect of condensed tannins after ensiling. Lactobacillus formosensis has the potential to be used as a silage inoculant because of its ability to improve fermentability and aerobic stability in sweet potato vines silage. © 2016 The Society for Applied Microbiology.

  20. A Highly Expressed High-Molecular-Weight S-Layer Complex of Pelosinus sp. Strain UFO1 Binds Uranium

    PubMed Central

    Thorgersen, Michael P.; Lancaster, W. Andrew; Rajeev, Lara; Ge, Xiaoxuan; Vaccaro, Brian J.; Poole, Farris L.; Arkin, Adam P.; Mukhopadhyay, Aindrila

    2016-01-01

    ABSTRACT Cell suspensions of Pelosinus sp. strain UFO1 were previously shown, using spectroscopic analysis, to sequester uranium as U(IV) complexed with carboxyl and phosphoryl group ligands on proteins. The goal of our present study was to characterize the proteins involved in uranium binding. Virtually all of the uranium in UFO1 cells was associated with a heterodimeric protein, which was termed the uranium-binding complex (UBC). The UBC was composed of two S-layer domain proteins encoded by UFO1_4202 and UFO1_4203. Samples of UBC purified from the membrane fraction contained 3.3 U atoms/heterodimer, but significant amounts of phosphate were not detected. The UBC had an estimated molecular mass by gel filtration chromatography of 15 MDa, and it was proposed to contain 150 heterodimers (UFO1_4203 and UFO1_4202) and about 500 uranium atoms. The UBC was also the dominant extracellular protein, but when purified from the growth medium, it contained only 0.3 U atoms/heterodimer. The two genes encoding the UBC were among the most highly expressed genes within the UFO1 genome, and their expressions were unchanged by the presence or absence of uranium. Therefore, the UBC appears to be constitutively expressed and is the first line of defense against uranium, including by secretion into the extracellular medium. Although S-layer proteins were previously shown to bind U(VI), here we showed that U(IV) binds to S-layer proteins, we identified the proteins involved, and we quantitated the amount of uranium bound. IMPORTANCE Widespread uranium contamination from industrial sources poses hazards to human health and to the environment. Herein, we identified a highly abundant uranium-binding complex (UBC) from Pelosinus sp. strain UFO1. The complex makes up the primary protein component of the S-layer of strain UFO1 and binds 3.3 atoms of U(IV) per heterodimer. While other bacteria have been shown to bind U(VI) on their S-layer, we demonstrate here an example of U(IV) bound by an

  1. A Highly Expressed High-Molecular-Weight S-Layer Complex of Pelosinus sp. Strain UFO1 Binds Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorgersen, Michael P.; Lancaster, W. Andrew; Rajeev, Lara

    Cell suspensions of Pelosinus sp. strain UFO1 were previously shown, using spectroscopic analysis, to sequester uranium as U(IV) complexed with carboxyl and phosphoryl group ligands on proteins. The goal of our present study was to characterize the proteins involved in uranium binding. Virtually all of the uranium in UFO1 cells was associated with a heterodimeric protein, which was termed the uranium-binding complex (UBC). The UBC was composed of two S-layer domain proteins encoded by UFO1_4202 and UFO1_4203. Samples of UBC purified from the membrane fraction contained 3.3 U atoms/heterodimer, but significant amounts of phosphate were not detected. The UBC hadmore » an estimated molecular mass by gel filtration chromatography of 15 MDa, and it was proposed to contain 150 heterodimers (UFO1_4203 and UFO1_4202) and about 500 uranium atoms. The UBC was also the dominant extracellular protein, but when purified from the growth medium, it contained only 0.3 U atoms/heterodimer. The two genes encoding the UBC were among the most highly expressed genes within the UFO1 genome, and their expressions were unchanged by the presence or absence of uranium. Therefore, the UBC appears to be constitutively expressed and is the first line of defense against uranium, including by secretion into the extracellular medium. Although S-layer proteins were previously shown to bind U(VI), here we showed that U(IV) binds to S-layer proteins, we identified the proteins involved, and we quantitated the amount of uranium bound. Widespread uranium contamination from industrial sources poses hazards to human health and to the environment. Here in this paper, we identified a highly abundant uranium-binding complex (UBC) from Pelosinus sp. strain UFO1. The complex makes up the primary protein component of the S-layer of strain UFO1 and binds 3.3 atoms of U(IV) per heterodimer. Finally, while other bacteria have been shown to bind U(VI) on their S-layer, we demonstrate here an example of U

  2. A Highly Expressed High-Molecular-Weight S-Layer Complex of Pelosinus sp. Strain UFO1 Binds Uranium.

    PubMed

    Thorgersen, Michael P; Lancaster, W Andrew; Rajeev, Lara; Ge, Xiaoxuan; Vaccaro, Brian J; Poole, Farris L; Arkin, Adam P; Mukhopadhyay, Aindrila; Adams, Michael W W

    2017-02-15

    Cell suspensions of Pelosinus sp. strain UFO1 were previously shown, using spectroscopic analysis, to sequester uranium as U(IV) complexed with carboxyl and phosphoryl group ligands on proteins. The goal of our present study was to characterize the proteins involved in uranium binding. Virtually all of the uranium in UFO1 cells was associated with a heterodimeric protein, which was termed the uranium-binding complex (UBC). The UBC was composed of two S-layer domain proteins encoded by UFO1_4202 and UFO1_4203. Samples of UBC purified from the membrane fraction contained 3.3 U atoms/heterodimer, but significant amounts of phosphate were not detected. The UBC had an estimated molecular mass by gel filtration chromatography of 15 MDa, and it was proposed to contain 150 heterodimers (UFO1_4203 and UFO1_4202) and about 500 uranium atoms. The UBC was also the dominant extracellular protein, but when purified from the growth medium, it contained only 0.3 U atoms/heterodimer. The two genes encoding the UBC were among the most highly expressed genes within the UFO1 genome, and their expressions were unchanged by the presence or absence of uranium. Therefore, the UBC appears to be constitutively expressed and is the first line of defense against uranium, including by secretion into the extracellular medium. Although S-layer proteins were previously shown to bind U(VI), here we showed that U(IV) binds to S-layer proteins, we identified the proteins involved, and we quantitated the amount of uranium bound. Widespread uranium contamination from industrial sources poses hazards to human health and to the environment. Herein, we identified a highly abundant uranium-binding complex (UBC) from Pelosinus sp. strain UFO1. The complex makes up the primary protein component of the S-layer of strain UFO1 and binds 3.3 atoms of U(IV) per heterodimer. While other bacteria have been shown to bind U(VI) on their S-layer, we demonstrate here an example of U(IV) bound by an S-layer complex

  3. The Surface Layer Homology Domain-Containing Proteins of Alkaliphilic Bacillus pseudofirmus OF4 Play an Important Role in Alkaline Adaptation via Peptidoglycan Synthesis.

    PubMed

    Fujinami, Shun; Ito, Masahiro

    2018-01-01

    It is well known that the Na + cycle and the cell wall are essential for alkaline adaptation of Na + -dependent alkaliphilic Bacillus species. In Bacillus pseudofirmus OF4, surface layer protein A (SlpA), the most abundant protein in the surface layer (S-layer) of the cell wall, is involved in alkaline adaptation, especially under low Na + concentrations. The presence of a large number of genes that encode S-layer homology (SLH) domain-containing proteins has been suggested from the genome sequence of B. pseudofirmus OF4. However, other than SlpA, the functions of SLH domain-containing proteins are not well known. Therefore, a deletion mutant of the csaB gene, required for the retention of SLH domain-containing proteins on the cell wall, was constructed to investigate its physiological properties. The csaB mutant strain of B. pseudofirmus OF4 had a chained morphology and alkaline sensitivity even under a 230 mM Na + concentration at which there is no growth difference between the parental strain and the slpA mutant strain. Ultra-thin section transmission electron microscopy showed that a csaB mutant strain lacked an S-layer part, and its peptidoglycan (PG) layer was disturbed. The slpA mutant strain also lacked an S-layer part, although its PG layer was not disturbed. These results suggested that the surface layer homology domain-containing proteins of B. pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis.

  4. Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins.

    PubMed

    Sethupathy, Sivasamy; Ananthi, Sivagnanam; Selvaraj, Anthonymuthu; Shanmuganathan, Balakrishnan; Vigneshwari, Loganathan; Balamurugan, Krishnaswamy; Mahalingam, Sundarasamy; Pandian, Shunmugiah Karutha

    2017-11-27

    Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.

  5. Proteomic analyses of ethanol tolerance in Lactobacillus buchneri NRRL B-30929

    USDA-ARS?s Scientific Manuscript database

    The Lactobacillus buchneri NRRL B-30929 strain, isolated from a fuel ethanol production facility, exhibits high tolerance to environmental ethanol concentrations. This study aimed to identify proteins produced by B-30929 in response to environmental ethanol. Cellular proteins expressed by B-30929 gr...

  6. Phosphodiesterase inhibitors suppress Lactobacillus casei cell-wall-induced NF-κB and MAPK activations and cell proliferation through protein kinase A--or exchange protein activated by cAMP-dependent signal pathway.

    PubMed

    Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro

    2012-01-01

    Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.

  7. The S-layer homology domain-containing protein SlhA from Paenibacillus alvei CCM 2051(T) is important for swarming and biofilm formation.

    PubMed

    Janesch, Bettina; Koerdt, Andrea; Messner, Paul; Schäffer, Christina

    2013-01-01

    Swarming and biofilm formation have been studied for a variety of bacteria. While this is well investigated for Gram-negative bacteria, less is known about Gram-positive bacteria, including Paenibacillus alvei, a secondary invader of diseased honeybee colonies infected with Melissococcus pluton, the causative agent of European foulbrood (EFB). Paenibacillus alvei CCM 2051(T) is a Gram-positive bacterium which was recently shown to employ S-layer homology (SLH) domains as cell wall targeting modules to display proteins on its cell surface. This study deals with the newly identified 1335-amino acid protein SlhA from P. alvei which carries at the C‑terminus three consecutive SLH-motifs containing the predicted binding sequences SRGE, VRQD, and LRGD instead of the common TRAE motif. Based on the proof of cell surface location of SlhA by fluorescence microscopy using a SlhA-GFP chimera, the binding mechanism was investigated in an in vitro assay. To unravel a putative function of the SlhA protein, a knockout mutant was constructed. Experimental data indicated that one SLH domain is sufficient for anchoring of SlhA to the cell surface, and the SLH domains of SlhA recognize both the peptidoglycan and the secondary cell wall polymer in vitro. This is in agreement with previous data from the S-layer protein SpaA, pinpointing a wider utilization of that mechanism for cell surface display of proteins in P. alvei. Compared to the wild-type bacterium ΔslhA revealed changed colony morphology, loss of swarming motility and impaired biofilm formation. The phenotype was similar to that of the flagella knockout Δhag, possibly due to reduced EPS production influencing the functionality of the flagella of ΔslhA. This study demonstrates the involvement of the SLH domain-containing protein SlhA in swarming and biofilm formation of P. alvei CCM 2051(T).

  8. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    PubMed

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.

  9. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  10. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection

    PubMed Central

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-01-01

    BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects. PMID:24567124

  11. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection.

    PubMed

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-02-24

    Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.

  12. Role of luxS in Stress Tolerance and Adhesion Ability in Lactobacillus plantarum KLDS1.0391

    PubMed Central

    Jia, Fang-Fang; Zheng, Hui-Qi; Sun, Si-Rui; Pang, Xue-Hui; Liang, Yu; Shang, Jia-Cui; Zhu, Zong-Tao

    2018-01-01

    Lactobacillus plantarum, a probiotic, has a high survival rate and high colonization ability in the gastrointestinal tract. Tolerance to the gastrointestinal environment and adhesion to intestinal epithelial cells by some Lactobacillus species (excluding L. plantarum) are related to luxS/AI-2. Here, the role of luxS in tolerance to simulated digestive juice (SDJ) and adhesion to Caco-2 cells by L. plantarum KLDS1.0391 (hereafter, KLDS1.0391) was investigated. The KLDS1.0391 luxS mutant strain was constructed by homologous recombination. When luxS was deleted, acid and bile salt tolerance and survival rates in SDJ significantly decreased (p < 0.05 for all). The ability of the luxS deletion strain to adhere to Caco-2 cells was markedly lower than that of the wild-type strain (p < 0.05). The ability of the luxS mutant strain to adhere (competition, exclusion, and displacement) to Escherichia coli ATCC 25922 was significantly lower than that of the wild-type strain (p < 0.05 for all). A significant decrease was noted only in the exclusion adhesion inhibition of the luxS mutant strain to Salmonella typhimurium ATCC 14028 (p < 0.05). These results indicate that the luxS gene plays an important role in the gastrointestinal environment tolerance and adhesion ability of KLDS1.0391. PMID:29651434

  13. Formation of the outer layer of the Dictyostelium spore coat depends on the inner-layer protein SP85/PsB.

    PubMed

    Metcalf, Talibah; Kelley, Karen; Erdos, Gregory W; Kaplan, Lee; West, Christopher M

    2003-02-01

    The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.

  14. Identification by 16S rRNA Gene Sequencing of Lactobacillus salivarius Bacteremic Cholecystitis

    PubMed Central

    Woo, Patrick C. Y.; Fung, Ami M. Y.; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2002-01-01

    An anaerobic, nonsporulating, gram-positive bacterium was isolated from blood and bile pus cultures of a 70-year-old man with bacteremic acute cholecystitis. The API 20A system showed that it was 70% Actinomyces naeslundii and 30% Bifidobacterium species, whereas the Vitek ANI system and the ATB ID32A Expression system showed that it was “unidentified.” The 16S rRNA gene of the strain was amplified and sequenced. There were 3 base differences between the nucleotide sequence of the isolate and that of Lactobacillus salivarius subsp. salivarius or L. salivarius subsp. salicinius, indicating that the isolate was a strain of L. salivarius. The patient responded to cholecystectomy and a 2-week course of antibiotic treatment. Identification of the organism in the present study was important because the duration of antibiotic therapy would have been entirely different depending on the organism. If the bacterium had been identified as Actinomyces, penicillin for 6 months would have been the regimen of choice. However, it was Lactobacillus, and a 2-week course of antibiotic was sufficient. PMID:11773128

  15. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue.

    PubMed

    Coghetto, Chaline Caren; Vasconcelos, Carolina Bettker; Brinques, Graziela Brusch; Ayub, Marco Antônio Záchia

    In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87gL -1 , whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59gL -1 , corresponding to a productivity of 1.46gL -1 h -1 . This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Use of Protein A as the Primary Layer in Fluorescent Microsphere Technology.

    DTIC Science & Technology

    1992-08-01

    mAb) to the galactose-binding adherence lectin of Entamoeba histolytica were assessed for their abilities to bind protein A, using BlAcore. Of the six...permission of the Commander, U.S. Army Chemical Research, Development and Engineering Center (CRDEC), ATTN: SMCCR- SPS -T, Aberdeen Proving Ground, MD...14 6 USE OF PROTEIN A AS THE PRIMARY LAYER IN FLUORESCENT MICROSPHERE TECHNOLOGY 1. INTRODUCTION Entamoeba histolytica causes amebic colitis worldwide

  17. Controlled immobilization of His-tagged proteins for protein-ligand interaction experiments using Ni²⁺-NTA layer on glass surfaces.

    PubMed

    Cherkouk, Charaf; Rebohle, Lars; Lenk, Jens; Keller, Adrian; Ou, Xin; Laube, Markus; Neuber, Christin; Haase-Kohn, Cathleen; Skorupa, Wolfgang; Pietzsch, Jens

    2015-01-01

    Gold surfaces functionalized with nickel-nitrilotriacetic acid (Ni²⁺-NTA) as self-assembled monolayers (SAM) to immobilize histidine (His)-tagged biomolecules are broadly reported in the literature. However, the increasing demand of using microfluidic systems and biosensors takes more and more advantage on silicon technology which provides dedicated glass surfaces and substantially allows cost and resource savings. Here we present a novel method for the controlled oriented immobilization of His-tagged proteins on glass surfaces functionalized with a Ni²⁺-NTA layer. Exemplarily, the protein pattern morphology after immobilization on the Ni²⁺-NTA layer of His6-tagged soluble receptor for advanced glycation endproducts (sRAGE) was investigated and compared to non-oriented immobilization of sRAGE on amino SAM by using scanning electron microscopy (SEM). Moreover, we demonstrated interaction of immobilized sRAGE with three structurally different ligands, S100A12, S100A4, and glycated low density lipoproteins (glycLDL), by means of peak-force tapping atomic force microscopy (PF-AFM). We showed a clear discrimination of different protein-ligand orientations by differential height measurements.

  18. Lactobacillus casei Encapsulated in Soy Protein Isolate and Alginate Microparticles Prepared by Spray Drying

    PubMed Central

    2017-01-01

    Summary This article presents a novel formulation for preparation of Lactobacillus casei 01 encapsulated in soy protein isolate and alginate microparticles using spray drying method. A response surface methodology was used to optimise the formulation and the central composite face-centered design was applied to study the effects of critical material attributes and process parameters on viability of the probiotic after microencapsulation and in simulated gastrointestinal conditions. Spherical microparticles were produced in high yield (64%), narrow size distribution (d50=9.7 µm, span=0.47) and favourable mucoadhesive properties, with viability of the probiotic of 11.67, 10.05, 9.47 and 9.20 log CFU/g after microencapsulation, 3 h in simulated gastric and intestinal conditions and four-month cold storage, respectively. Fourier-transform infrared spectroscopy confirmed the probiotic stability after microencapsulation, while differential scanning calorimetry and thermogravimetry pointed to high thermal stability of the soy protein isolate-alginate microparticles with encapsulated probiotic. These favourable properties of the probiotic microparticles make them suitable for incorporation into functional food or pharmaceutical products. PMID:28867947

  19. Specific degradation of the mucus adhesion-promoting protein (MapA) of Lactobacillus reuteri to an antimicrobial peptide.

    PubMed

    Bøhle, Liv Anette; Brede, Dag Anders; Diep, Dzung B; Holo, Helge; Nes, Ingolf F

    2010-11-01

    The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota.

  20. Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material.

    PubMed

    Jiang, Yujun; Zheng, Zhe; Zhang, Tiehua; Hendricks, Gregory; Guo, Mingruo

    2016-09-01

    Survivability of probiotics in foods is essential for developing functional food containing probiotics. We investigated polymerized whey protein (PWP)-based microencapsulation process which is developed for protecting probiotics like Lactobacillus acidophilus NCFM and compared with the method using sodium alginate (SA). The entrapment rate was 89.3 ± 4.8% using PWP, while it was 73.2 ± 1.4% for SA. The microencapsulated NCFM by PWP and SA were separately subjected to digestion juices and post-fermentation storage of fermented cows' and goats' milk using the encapsulated culture. The log viable count of NCFM in PWP-based microencapsulation was 4.56, compared with that of 4.26 in SA-based ones and 3.13 for free culture. Compared with using SA as wall material, PWP was more effective in protecting probiotic. Microencapsulation of L. acidophilus NCFM using PWP as wall material can be exploited in the development of fermented dairy products with better survivability of probiotic organism.

  1. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds.

    PubMed

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-12-01

    Two strains, KBL13(T) and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13(T) and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA-DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13(T) and GBL13, belong to the same species. In the representative strain, KBL13(T), the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231(T) (=ATCC 11741(T); AF089108) is the type strain most closely related to the strain KBL13(T) as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA-DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13(T) represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13(T) (=JCM 14209(T)=DSM 18933(T)).

  2. Assessment of in vitro oxalate degradation by Lactobacillus species cultured from veterinary probiotics.

    PubMed

    Cho, Jenny G; Gebhart, Connie J; Furrow, Eva; Lulich, Jody P

    2015-09-01

    To culture Lactobacillus spp from veterinary probiotics and measure their in vitro oxalate-degrading capacity. 2 commercial veterinary probiotics containing Lactobacillus spp. Lactobacillus spp were cultured anaerobically on selective deMan, Rogosa, Sharpe agar medium and subcultured for speciation by 16S rDNA gene sequencing. Isolates were inoculated into broth containing sodium oxalate (5 mg/L) and incubated anaerobically for 72 hours. An oxalate-degrading isolate of Lactobacillus acidophilus (American Type Culture Collection [ATCC] 53544) was the positive control sample; sterile broth containing a known quantity of sodium oxalate was the negative control sample. Oxalate concentrations were detected with ion chromatography. Oxalate degradation was assessed with Dunnett tests to detect differences in mean oxalate concentration for each isolate, compared with results for the negative control. Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei or Lactobacillus zeae (too closely related to differentiate) were isolated from probiotic 1, and L plantarum was isolated from probiotic 2. Sequencing of the 16S rDNA gene confirmed 100% homology to type species. Lactobacillus acidophilus (ATCC 53544) and L acidophilus from probiotic 1 significantly decreased oxalate concentrations by 85.3 and 161.9 mg/L, respectively. Lactobacillus plantarum from probiotics 1 and 2 significantly increased oxalate concentrations by 56.1 and 36.1 mg/L, respectively. Lactobacillus casei did not alter oxalate concentrations. Lactobacillus acidophilus isolates significantly reduced oxalate concentrations. In vivo studies are needed to determine whether probiotics containing L acidophilus decrease urine oxalate concentrations and reduce risk of urolith recurrence in dogs with a history of calcium oxalate urolithiasis.

  3. Lactobacillus paralimentarius sp. nov., isolated from sourdough.

    PubMed

    Cai, Y; Okada, H; Mori, H; Benno, Y; Nakase, T

    1999-10-01

    Six strains of lactic acid bacteria isolated from sourdough were characterized taxonomically. They were Gram-positive, catalase-negative, facultatively anaerobic rods that did not produce gas from glucose. Morphological and physiological data indicated that the strains belong to the genus Lactobacillus and they were similar to Lactobacillus alimentarius in phenotypic characteristics. These strains shared the same phenotypic characteristics and exhibited intragroup DNA homology values of over 89.8%, indicating that they comprised a single species. The G + C content of the DNA for the strains was 37.2-38.0 mol%. The 16S rRNA sequence of representative strain TB 1T was determined and aligned with that of other Lactobacillus species. This strain was placed in the genus Lactobacillus on the basis of phylogenetic analysis. L. alimentarius was the most closely related species in the phylogenetic tree and this species also showed the highest sequence homology value (96%) with strain TB 1T. DNA-DNA hybridization indicated that strain TB 1T did not belong to L. alimentarius. It is proposed that these strains are placed in the genus Lactobacillus as a new species, Lactobacillus paralimentarius sp. nov. The type strain of L. paralimentarius is TB 1T, which has been deposited in the Japan Collection of Microorganisms (JCM) as strain JCM 10415T.

  4. High-level expression of recombinant beta-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a Sakacin P-based expression system.

    PubMed

    Halbmayr, Elisabeth; Mathiesen, Geir; Nguyen, Thu-Ha; Maischberger, Thomas; Peterbauer, Clemens K; Eijsink, Vincent G H; Haltrich, Dietmar

    2008-06-25

    This work presents the cloning and expression of the genes encoding heterodimeric beta-galactosidases from Lactobacillus reuteri L103, Lactobacillus acidophilus R22, Lactobacillus plantarum WCFS1, and Lactobacillus sakei Lb790. These enzymes consist of two subunits of approximately 73 and 35 kDa, which are encoded by two overlapping genes, lacL and lacM, respectively. We have cloned these genes into the lactobacillal expression vectors pSIP403 and pSIP409, which are based on the sakacin P operon of L. sakei ( Sørvig et al. Microbiology 2005, 151, 2439- 2449 ), and expressed them in the host strains L. plantarum WCFS1 and L. sakei Lb790. Results varied considerably, ranging from 2.23 to 61.1 U/mg of beta-galactosidase activity, depending on the origin of the lacLM genes, the host strain, and the expression vector used. Highest expression levels were obtained in a laboratory cultivation of L. plantarum WCFS1 harboring the plasmid pEH3R containing the lacLM gene from L. reuteri L103. These cultivations yielded approximately 23 000 U of beta-galactosidase activity per liter, corresponding to the formation of roughly 100 mg of recombinant protein per liter of fermentation medium, and beta-galactosidase levels amounted to 55% of the total intracellular protein of the host organism. To further verify the suitability of this expression system, recombinant beta-galactosidase from L. reuteri was purified to apparent homogeneity. The properties of the purified enzyme were essentially identical with the properties of purified native beta-galactosidase from L. reuteri L103. The presented results lead the way to efficient overproduction of beta-galactosidase in a food-grade expression system, which is of high interest for applications in food industry.

  5. [Identification and phylogenetic analysis of one strain of Lactobacillus delbrueckii subsp. bulgaricus separated from yoghourt].

    PubMed

    Wang, Chuan; Zhang, Chaowu; Pei, Xiaofang; Liu, Hengchuan

    2007-11-01

    For being further applied and studied, one strain of Lactobacillus delbrueckii subsp. bulgaricus (wch9901) separated from yoghourt which had been identified by phenotype characteristic analysis was identified by 16S rDNA and phylogenetic analyzed. The 16S rDNA of wch9901 was amplified with the genomic DNA of wch9901 as template, and the conservative sequences of the 16S rDNA as primers. Inserted 16S rDNA amplified into clonal vector pGEM-T under the function of T4 DNA ligase to construct recombined plasmid pGEM-wch9901 16S rDNA. The recombined plasmid was identified by restriction enzyme digestion, and the eligible plasmid was presented to sequencing company for DNA sequencing. Nucleic acid sequence was blast in GenBank and phylogenetic tree was constructed using neighbor-joining method of distance methods by Mega3.1 soft. Results of blastn showed that the homology of 16S rDNA of wch9901 with the 16S rDNA of Lactobacillus delbrueckii subsp. bulgaricus strains was higher than 96%. On the phylogenetic tree, wch9901 formed a separate branch and located between Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch and another evolution branch which was composed of Lactobacillus delbrueckii subsp. bulgaricus DL2 evolution cluster and Lactobacillus delbrueckii subsp. bulgaricus JSQ evolution cluster. The distance between wch9901 evolution branch and Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch was the closest. wch9901 belonged to Lactobacillus delbrueckii subsp. bulgaricus. wch9901 showed the closest evolution relationship to Lactobacillus delbrueckii subsp. bulgaricus LGM2.

  6. Comparative Sequence Analysis of Plasmids from Lactobacillus delbrueckii and Construction of a Shuttle Cloning Vector▿

    PubMed Central

    Lee, Ju-Hoon; Halgerson, Jamie S.; Kim, Jeong-Hwan; O'Sullivan, Daniel J.

    2007-01-01

    While plasmids are very commonly associated with the majority of the lactic acid bacteria, they are only very rarely associated with Lactobacillus delbrueckii, with only four characterized to date. In this study, the complete sequence of a native plasmid, pDOJ1, from a strain of Lactobacillus delbrueckii subsp. bulgaricus was determined. It consisted of a circular DNA molecule of 6,220 bp with a G+C content of 44.6% and a characteristic ori and encoded six open reading frames (ORFs), of which functions could be predicted for three—a mobilization (Mob) protein, a transposase, and a fused primase-helicase replication protein. Comparative analysis of pDOJ1 and the other available L. delbrueckii plasmids (pLBB1, pJBL2, pN42, and pLL1212) revealed a very similar organization and amino acid identities between 85 and 98% for the putative proteins of all six predicted ORFs from pDOJ1, reflecting a common origin for L. delbrueckii plasmids. Analysis of the fused primase-helicase replication gene found a similar fused organization only in the theta replicating group B plasmids from Streptococcus thermophilus. This observation and the ability of the replicon to function in S. thermophilus support the idea that the origin of plasmids in L. delbrueckii was likely from S. thermophilus. This may reflect the close association of these two species in dairy fermentations, particularly yogurt production. As no vector based on plasmid replicons from L. delbrueckii has previously been constructed, an Escherichia coli-L. delbrueckii shuttle cloning vector, pDOJ4, was constructed from pDOJ1, the p15A ori, the chloramphenicol resistance gene of pCI372, and the lacZ polylinker from pUC18. This cloning vector was successfully introduced into E. coli, L. delbrueckii subsp. bulgaricus, S. thermophilus, and Lactococcus lactis. This shuttle cloning vector provides a new tool for molecular analysis of Lactobacillus delbrueckii and other lactic acid bacteria. PMID:17526779

  7. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics.

    PubMed

    Chung, Sungwook; Shin, Seong-Ho; Bertozzi, Carolyn R; De Yoreo, James J

    2010-09-21

    The importance of nonclassical, multistage crystallization pathways is increasingly evident from theoretical studies on colloidal systems and experimental investigations of proteins and biomineral phases. Although theoretical predictions suggest that proteins follow these pathways as a result of fluctuations that create unstable dense-liquid states, microscopic studies indicate these states are long-lived. Using in situ atomic force microscopy to follow 2D assembly of S-layer proteins on supported lipid bilayers, we have obtained a molecular-scale picture of multistage protein crystallization that reveals the importance of conformational transformations in directing the pathway of assembly. We find that monomers with an extended conformation first form a mobile adsorbed phase, from which they condense into amorphous clusters. These clusters undergo a phase transition through S-layer folding into crystalline clusters composed of compact tetramers. Growth then proceeds by formation of new tetramers exclusively at cluster edges, implying tetramer formation is autocatalytic. Analysis of the growth kinetics leads to a quantitative model in which tetramer creation is rate limiting. However, the estimated barrier is much smaller than expected for folding of isolated S-layer proteins, suggesting an energetic rationale for this multistage pathway.

  8. Cloning, expression, purification, and activity assay of proteins related to D-lactic acid formation in Lactobacillus rhamnosus.

    PubMed

    Wang, Xiuwen; Zheng, Zhaojuan; Dou, Peipei; Qin, Jiayang; Wang, Xiaochen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2010-08-01

    Two proteins that might be responsible for D-lactic acid (D-LA) formation were screened from the genome database of Lactobacillus rhamnosus GG. The coding genes of the two proteins in L. rhamnosus CASL, ldhD1 and ldhD2, were cloned and expressed in Escherichia coli Rosetta with an inducible expression vector pETDuet-1 (Novagen, Darmstadt, Germany), respectively. The two purified proteins, LdhD-1 and LdhD-2, migrated as a single protein band separately, both corresponding to an apparent molecular mass between 35 kDa and 45 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The specific activities of LdhD-1 and LdhD-2 catalyzing pyruvate to LA were 0.02 U/mg and 0.21 U/mg, respectively. The configuration of LA converted from pyruvate was determined using high-performance liquid chromatography equipped with a chiral column. Only D-LA was detected when LdhD-1 and LdhD-2 were tested. In summary, the two proteins cloned and expressed in this study were most probably responsible for D-LA formation during fermentation of L. rhamnosus CASL.

  9. Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease

    PubMed Central

    Martinez, Raquel M.; Hulten, Kristina G.; Bui, Uyen

    2014-01-01

    Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry. PMID:24131686

  10. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens

    PubMed Central

    Shokouhfard, Maliheh; Kermanshahi, Rouha Kasra; Shahandashti, Roya Vahedi; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2015-01-01

    Objective(s): Serratia marcescens is one of the nosocomial pathogen with the ability to form biofilm which is an important feature in the pathogenesis of S. marcescens. The aim of this study was to determine the anti-adhesive properties of a biosurfactant isolated from Lactobacillus acidophilus ATCC 4356, on S. marcescens strains. Materials and Methods: Lactobacillus acidophilus ATCC 4356 was selected as a probiotic strain for biosurfactant production. Anti-adhesive activities was determined by pre-coating and co- incubating methods in 96-well culture plates. Results: The FTIR analysis of derived biosurfactant revealed the composition as protein component. Due to the release of such biosurfactants, L. acidophilus was able to interfere with the adhesion and biofilm formation of the S. marcescens strains. In co-incubation method, this biosurfactant in 2.5 mg/ml concentration showed anti-adhesive activity against all tested strains of S. marcescens (P<0.05). Conclusion: Our results show that the anti-adhesive properties of L. acidophilus biosurfactant has the potential to be used against microorganisms responsible for infections in the urinary, vaginal and gastrointestinal tracts, as well as skin, making it a suitable alternative to conventional antibiotics. PMID:26730335

  11. Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products.

    PubMed

    Chao, Shiou-Huei; Kudo, Yuko; Tsai, Ying-Chieh; Watanabe, Koichi

    2012-03-01

    Three Gram-stain-positive strains were isolated from fermented mustard and were rod-shaped, non-motile, asporogenous, facultatively anaerobic, homofermentative and did not exhibit catalase activity. Comparative analyses of 16S rRNA, pheS and rpoA gene sequences demonstrated that the novel strains were members of the genus Lactobacillus. On the basis of 16S rRNA gene sequence analysis, the type strains of Lactobacillus crustorum (98.7% similarity), Lactobacillus farciminis (98.9%) and Lactobacillus mindensis (97.9%) were the closest neighbours. However, DNA-DNA reassociation values with these strains were less than 50%. Phenotypic and genotypic features demonstrated that these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus futsaii sp. nov. is proposed; the type strain is YM 0097(T) (=JCM 17355(T)=BCRC 80278(T)).

  12. Structure of Protein Layers in Polyelectrolyte Matrices Studied by Neutron Reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovskaya, Veronika; Ankner, John Francis; O'Neill, Hugh Michael

    2011-01-01

    Polyelectrolyte multilayer films obtained by localized incorporation of Green Fluorescent Protein (GFP) within electrostatically assembled matrices of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) via spin-assisted layer-by-layer growth were discovered to be highly structured, with closely packed monomolecular layers of the protein within the bio-hybrid films. The structure of the films was evaluated in both vertical and lateral directions with neutron reflectometry, using deuterated GFP as a marker for neutron scattering contrast. Importantly, the GFP preserves its structural stability upon assembly as confirmed by circular dichroism (CD) and in situ attenuated total reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). Atomic force microscopy was complimentedmore » with X-ray reflectometry to characterize the external roughness of the biohybrid films. Remarkably, films assembled with a single GFP layer confined at various distances from the substrate exhibit a strong localization of the GFP layer without intermixing into the LbL matrix. However, partial intermixing of the GFP layers with polymeric material is evidenced in multiple-GFP layer films with alternating protein-rich and protein-deficient regions. We hypothesize that the polymer-protein exchange observed in the multiple-GFP layer films suggests the existence of a critical protein concentration which can be accommodated by the multilayer matrix. Our results yield new insights into the mechanism of GFP interaction with a polyelectrolyte matrix and open opportunities for fabrication of bio-hybrid films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.« less

  13. Testing of viscous anti-HIV microbicides using Lactobacillus.

    PubMed

    Moncla, B J; Pryke, K; Rohan, L C; Yang, H

    2012-02-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  15. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  16. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds

    PubMed Central

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-01-01

    Two strains, KBL13T and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13T and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA–DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13T and GBL13, belong to the same species. In the representative strain, KBL13T, the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231T (=ATCC 11741T; AF089108) is the type strain most closely related to the strain KBL13T as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA–DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13T represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13T (=JCM 14209T=DSM 18933T). PMID:18048734

  17. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    PubMed Central

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-01-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main. PMID:26553411

  18. Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must.

    PubMed

    Mañes-Lázaro, Rosario; Ferrer, Sergi; Rodas, Ana María; Urdiain, Mercedes; Pardo, Isabel

    2008-12-01

    A Lactobacillus strain, designated 203(T), previously isolated from Bobal grape must was characterized phylogenetically, genotypically and phenotypically in order to establish whether it represents a novel species. On the basis of the 16S rRNA gene sequence, strain 203(T) was shown to belong to the genus Lactobacillus, falling within the Lactobacillus alimentarius-Lactobacillus farciminis group and being closely related to the type strains of L. alimentarius, Lactobacillus kimchii and Lactobacillus paralimentarius. DNA-DNA hybridization results confirmed the separate status of strain 203(T) at the species level. To establish the similarities and differences between 203(T) and the three aforementioned closest species, the following methods were used: amplified rDNA restriction analysis, analysis of the 16S-23S rDNA intergenic spacer region, random amplification of polymorphic DNA (RAPD) profiling, ribotyping, carbohydrate fermentation and physiological tests. Strain 203(T) could be differentiated genetically using RAPD analysis and ribotyping. Phenotypically, it can be distinguished from its closest relatives by its ability to grow at pH 3.3, by gas production from gluconate and by certain carbohydrate fermentations. On the basis of these data, strain 203(T) represents a novel species of the genus Lactobacillus, for which the name Lactobacillus bobalius sp. nov. is proposed. The type strain is 203(T) (=CECT 7310(T) =DSM 19674(T)).

  19. Oral Lactobacillus Counts Predict Weight Gain Susceptibility: A 6-Year Follow-Up Study.

    PubMed

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A H; Heitmann, Berit L

    2017-01-01

    Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. We examined the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35-65 years at baseline. Prospective observational study. In unadjusted analysis the level of oral Lactobacillus was inversely associated with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium intake of complex carbohydrates predicted diminished weight gain. A closer examination of these relations showed that BMI change and Lactobacillus level was unrelated for those with high complex carbohydrate consumption. A high level of oral Lactobacillus seems related to weight loss among those with medium and low intakes of complex carbohydrates. Absence, or a low level of oral Lactobacillus, may potentially be a novel marker to identify those at increased risk of weight gain. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  20. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    PubMed

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106.

  1. Large-scale recrystallization of the S-layer of Bacillus coagulans E38-66 at the air/water interface and on lipid films.

    PubMed Central

    Pum, D; Weinhandl, M; Hödl, C; Sleytr, U B

    1993-01-01

    S-layer protein isolated from Bacillus coagulans E38-66 could be recrystallized into large-scale coherent monolayers at an air/water interface and on phospholipid films spread on a Langmuir-Blodgett trough. Because of the asymmetry in the physiochemical surface properties of the S-layer protein, the subunits were associated with their more hydrophobic outer face with the air/water interface and oriented with their negatively charged inner face to the zwitterionic head groups of the dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylethanolamine (DPPE) monolayer films. The dynamic crystal growth at both types of interfaces was first initiated at several distant nucleation points. The individual monocrystalline areas grew isotropically in all directions until the front edge of neighboring crystals was met. The recrystallized S-layer protein and the S-layer-DPPE layer could be chemically cross-linked from the subphase with glutaraldehyde. Images PMID:8478338

  2. Specific Degradation of the Mucus Adhesion-Promoting Protein (MapA) of Lactobacillus reuteri to an Antimicrobial Peptide ▿

    PubMed Central

    Bøhle, Liv Anette; Brede, Dag Anders; Diep, Dzung B.; Holo, Helge; Nes, Ingolf F.

    2010-01-01

    The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota. PMID:20833791

  3. Nutritional comparison of Spirulina sp powder by solid-state fermentation using Aspergillus sp (FNCL 6088) and Lactobacillus plantarum (FNCL 0127)

    NASA Astrophysics Data System (ADS)

    Dewi, E. N.; Amalia, U.

    2018-01-01

    The Spirulina sp powder contains high levels of protein and Solid-State Fermentation (SSF) improved protein level. The aims of the study was to find the proximate contents in Spirulina sp’s powder fermentation. The experiments were conducted by SSF of Spirulina sp’s powder using fungi Aspergillus sp (FNCL 6088) and lactic acid bacteria Lactobacillus plantarum (FNCL 0127). SSF was carried out for 10 days at 35% moisture level. The protein contents of Spirulina sp’s powder fermented by L. plantarum were consistently lower (p < 0.05) about 43.28% than compare with the other one about 46.12% (SSF by Aspergillus sp) until the end of fermentation. The Spirulina sp fermented products contained the highest level of protein after 6 days.

  4. Protection of Lactobacillus acidophilus NRRL-B 4495 under in vitro gastrointestinal conditions with whey protein/pullulan microcapsules.

    PubMed

    Çabuk, Burcu; Tellioğlu Harsa, Şebnem

    2015-12-01

    In this research, whey protein/pullulan (WP/pullulan) microcapsules were developed in order to assess its protective effect on the viability of Lactobacillus acidophilus NRRL-B 4495 under in vitro gastrointestinal conditions. Results demonstrated that WP/pullulan microencapsulated cells exhibited significantly (p ≤ 0.05) higher resistance to simulated gastric acid and bile salt. Pullulan incorporation into protein wall matrix resulted in improved survival as compared to free cells after 3 h incubation in simulated gastric solution. Moreover WP/pullulan microcapsules were found to release over 70% of encapsulated L. acidophilus NRRL-B 4495 cells within 1 h. The effect of encapsulation during refrigerated storage was also studied. Free bacteria exhibited 3.96 log reduction while, WP/pullulan encapsulated bacteria showed 1.64 log reduction after 4 weeks of storage. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides.

    PubMed

    Knockaert, Dries; Raes, Katleen; Wille, Christophe; Struijs, Karin; Van Camp, John

    2012-08-30

    Food-isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L⁻¹), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4-vinylguaiacol (4-VG) and hydroferulic acid (HFA). Conversion to 4-VG started simultaneously with the degradation of FA, while formation of HFA started in the mid-exponential phase. Lactobacillus collinoides only formed 4-VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria. Copyright © 2012 Society of Chemical Industry.

  6. Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein.

    PubMed

    Song, S; Oh, S; Lim, K-T

    2015-06-01

    Lactobacilli in the human gastrointestinal tract have beneficial effects on the health of their host. To enhance these effects, the bioactivity of lactobacilli can be fortified through exogenous dietary or pharmacological agents, such as glycoproteins. To elucidate the inductive effect of Zanthoxylum piperitum DC (ZPDC) glycoprotein on Lactobacillus plantarum L67, we evaluated the radical-scavenging activity, anti-oxidative enzymes (SOD, GPx and CAT), growth rate, ATPase activity and β-galactosidase activity of this strain. When Lact. plantarum L67 was treated with ZPDC glycoprotein at different concentrations, the intensities of a few SDS-PAGE bands were slightly changed. The amount of a 23 kDa protein was increased upon treatment with increasing concentrations of ZPDC glycoprotein. The results of this study indicate that the radical-scavenging activity for O2(-) and OH¯, but not for the DPPH radical, increased in a concentration-dependent manner after treatment with ZPDC glycoprotein. The activation of anti-oxidative enzymes (SOD, GPx and CAT), growth rate and β-galactosidase activity also increased in a concentration-dependent manner in response to ZPDC glycoprotein treatment, whereas ATPase activity was decreased. In summary, ZPDC glycoprotein stimulated an increase in the bioactivity of Lact. plantarum L67. Significance and impact of the study: This study demonstrated that Lactobacillus plantarum L67 possesses anti-oxidative activity. This strain of lactic bacteria has been known to have various probiotic uses, such as yogurt starters and dietary additional supplements. We found, through this experiment, that the protein has a strong anti-oxidative character, and the activity can be enhanced by treatment with Zanthoxylum piperitum DC (ZPDC) glycoprotein. This study may be application of Lact. plantarum L67 treated by ZPDC glycoprotein in yogurt fermentation. It could be one of the avenues of minimizing yogurt postacidification during storage. In addition

  7. Coexisting properties of thermostability and ultraviolet radiation resistance in the main S-layer complex of Deinococcus radiodurans.

    PubMed

    Farci, Domenica; Slavov, Chavdar; Piano, Dario

    2018-01-17

    Deinococcus radiodurans is well known for its unusual resistance to different environmental stresses. Recently, we have described a novel complex composed of the surface (S)-layer protein DR_2577 and the carotenoid deinoxanthin. We also showed a role of this complex in the UV resistance under desiccation. Both these properties, UV and desiccation resistance, suggest a selective pressure generated by Sun irradiation. In order to confirm this hypothesis we checked whether this S-layer Deinoxanthin Binding Complex (SDBC) has features of thermo-resistance, a property also expected in proteins evolved under solar irradiative pressure. We performed the spectroscopic characterization of the SDBC by means of thermal shift assay, circular dichroism and related in silico analysis. Our findings identify a stability typical of thermo-adapted proteins and provide a new insight into the origin of specific S-layer types. The results are discussed in terms of co-evolutionary mechanisms related to Sun-induced desiccation and heat.

  8. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.

    PubMed

    Ehrmann, Matthias A; Müller, Martin R A; Vogel, Rudi F

    2003-01-01

    Genotypic fingerprinting to analyse the bacterial flora of an industrial sourdough revealed a coherent group of strains which could not be associated with a valid species. Comparative 16S rDNA sequence analysis showed that these strains formed a homogeneous cluster distinct from their closest relatives, Lactobacillus farciminis, Lactobacillus alimentarius and Lactobacillus kimchii. To characterize them further, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic properties have been determined. The DNA G +C content was 37.5 0.2 mol%. The peptidoglycan was of the lysine-D-iso-asparagine (L-Lys-D-Asp) type. The strains were homofermentative, Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They were found as a major stable component of a rye flour sourdough fermentation. Physiological, biochemical as well as genotypic data suggested them to be a new species of the genus Lactobacillus. This was confirmed by DNA-DNA hybridization of genomic DNA, and the name Lactobacillus mindensis is proposed. The type strain of this species is DSM 14500T (=LMG 21508T).

  9. The effect of addition of selected milk protein preparations on the growth of Lactobacillus acidophilus and physicochemical properties of fermented milk.

    PubMed

    Gustaw, Waldemar; Kozioł, Justyna; Radzki, Wojciech; Skrzypczak, Katarzyna; Michalak-Majewska, Monika; Sołowiej, Bartosz; Sławińska, Aneta; Jabłońska-Ryś, Ewa

    2016-01-01

    The intake of fermented milk products, especially yoghurts, has been systematically increasing for a few decades. The purpose of this work was to obtain milk products fermented with a mix of bacterial cultures (yoghurt bacteria and Lactobacillus acidophillus LA-5) and enriched with selected milk protein preparations. Secondly, the aim of the work was to determine physiochemical and rheological properties of the obtained products. The following additives were applied in the experiment: whey protein concentrate (WPC 65), whey protein isolate (WPI), demineralised whey powder (SPD), caseinoglycomacropeptide (CGMP), α-lactalbumin (α-la), sodium caseinate (KNa) and calcium caseinate (KCa). Milk was fermented using probiotic strain Lactobacillus acidophillus LA-5 and a typical yoghurt culture. The products were analysed in terms of the survivability of bacterial cells during refrigerated storage, rheological properties and syneresis. Fermented milk products were obtained using blends of bacterial strains: ST-B01:Lb-12 (1:1), ST-B01:Lb-12:LA-5 (1:1:2). Milk beverages fermented with typical yoghurt bacteria and LA-5 strain showed intensive syneresis. The addition of LA-5 strain caused formation of harder acid gels, comparing to typical yoghurts. Milk products which were prepared from skimmed milk possessed higher values of hardness and consistency coefficient. The increase of concentrations of milk preparations (except of WPI) did not cause significant differences in the hardness of acidic gels obtained by fermentation of mixed culture with a probiotic strain. The applied preparations improved physiochemical properties of the milk beverages which were prepared with a probiotic strain. The increase of protein milk preparations concentration resulted in a gradual decrease of the secreted whey. Among the products that were made of full milk powder and were subjected to three weeks of refrigerated storage the highest survivability of Lb. acidophilus LA-5 was noticed in the

  10. Lactobacillus cerevisiae sp. nov., isolated from a spoiled brewery sample.

    PubMed

    Koob, Jennifer; Jacob, Fritz; Wenning, Mareike; Hutzler, Mathias

    2017-09-01

    A Gram-stain-positive, non-motile, rod-shaped bacterium, designated TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T), was isolated from spoiled beer. This bacterium did not form spores, and was catalase-negative and facultatively anaerobic. Its taxonomic position was determined in a polyphasic study. The 16S rRNA gene sequence similarity data showed that the strain belonged to the Lactobacillus genus with the nearest neighbours being Lactobacillus koreensis DCY50T (sequence similarity 99.5 %), Lactobacillus yonginensis THK-V8T (99.2 %) and Lactobacillus parabrevis LMG 11984T (98.7 %). Sequence comparisons of additional phylogenetic markers, pheS and rpoA, confirmed the 16S rRNA gene sequence tree topology. The maximum rpoA sequence similarity was 92.3 % with L. yonginensis THK-V8T. The DNA G+C content of the isolate was 50.0 mol%. The DNA-DNA relatedness showed that strain TUM BP 140423000-2250T could be clearly distinguished from L. koreensis DCY 50T (30.8±0.4 %) and L. yonginensis THK-V8T (23.6±5.9 %). The major fatty acids were C18 : 1ω9c, summed feature 7 (comprised of C19 : 0 cyclo ω10c/C19 : 1ω6c) and C16 : 0. Based on phenotypic and genotypic studies, the authors propose classifying the new isolate as a representative of a novel species of the genus Lactobacillus, Lactobacillus cerevisiae sp. nov. The type strain is deposited at the Research Centre Weihenstephan for Brewing and Food Quality as TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T).

  11. In vitro antagonistic effect of Lactobacillus on organisms associated with bacterial vaginosis.

    PubMed

    Strus, Magdalena; Malinowska, Magdalena; Heczko, Piotr B

    2002-01-01

    To assess antagonistic properties of Lactobacillus strains isolated from the vaginas of healthy women as compared to the most common bacterial agents related to vaginosis. Antagonistic activity of different Lactobacillus strains isolated from the vaginas of healthy women not treated for infections with an antibiotic for the previous three months was screened using an agar slab method. The activity was tested against test organisms associated with bacterial vaginosis and/or urinary tract infections: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli, Gardnerella vaginalis, Peptostreptococcus anaerobius and Prevotella bivia. Many of the 146 Lactobacillus strains tested exerted apparent antagonistic activities against gram-positive aerobic cocci and gram-negative rods, such as S aureus and E coli, and a marked number of Lactobacillus strains inhibited facultative bacteria, such as Gardnerella vaginalis and the anaerobes P anaerobius and P bivia. Only a few lactobacilli were able to inhibit growth of E faecalis and S agalactiae. Indicator bacteria growth inhibition probably relies upon several different complementary mechanisms. The specific indicator bacteria species determines which mechanism predominates. Lactobacillus strains taken from normal vaginal flora demonstrated antagonistic activity against a variety of bacteria related to vaginal and urinary tract infections. The specific occurrence rates of active Lactobacillus strains are different, and this difference is dependent on the indicator bacteria species.

  12. Evaluation of Phytate-Degrading Lactobacillus Culture Administration to Broiler Chickens

    PubMed Central

    Askelson, Tyler E.; Campasino, Ashley; Lee, Jason T.

    2014-01-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics. PMID:24271165

  13. Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens.

    PubMed

    Askelson, Tyler E; Campasino, Ashley; Lee, Jason T; Duong, Tri

    2014-02-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics.

  14. Lactobacillus panisapium sp. nov., from honeybee Apis cerana bee bread.

    PubMed

    Wang, Cong; Huang, Yan; Li, Li; Guo, Jun; Wu, Zhengyun; Deng, Yu; Dai, Lirong; Ma, Shichun

    2018-03-01

    A novel facultatively anaerobic, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative bacterium of the genus Lactobacillus, designated strain Bb 2-3 T , was isolated from bee bread of Apis cerana collected from a hive in Kunming, China. The strain was regular rod-shaped. Optimal growth occurred at 37 °C, pH 6.5 with 5.0 g l -1 NaCl. The predominant fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 iso. Respiratory quinones were not detected. Seven glycolipids, three lipids, phosphatidylglycerol and diphosphatidylglycerol were detected. The peptidoglycan type A4α l-Lys-d-Asp was determined. Strain Bb 2-3 T was closely related to Lactobacillus bombicola DSM 28793 T , Lactobacillus apis LMG 26964 T and Lactobacillus helsingborgensis DSM 26265 T , with 97.8, 97.6 and 97.0 % 16S rRNA gene sequence similarity, respectively. A comparison of two housekeeping genes, rpoA and pheS, revealed that strain Bb 2-3 T was well separated from the reference strains of species of the genus Lactobacillus. The average nucleotide identity between strain Bb 2-3 T and the type strains of closely related species was lower than the 95-96 % threshold value for delineation of genomic prokaryotic species. The G+C content of the genomic DNA of strain Bb 2-3 T was 37.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain Bb 2-3 T is proposed to represent a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus panisapium sp. nov. The type strain is Bb 2-3 T (=DSM 102188 T =ACCC 19955 T ).

  15. Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents.

    PubMed

    Killer, J; Havlík, J; Vlková, E; Rada, V; Pechar, R; Benada, O; Kopečný, J; Kofroňová, O; Sechovcová, H

    2014-05-01

    Three strains of regular, long, Gram-stain-positive bacterial rods were isolated using TPY, M.R.S. and Rogosa agar under anaerobic conditions from the digestive tract of wild mice (Mus musculus). All 16S rRNA gene sequences of these isolates were most similar to sequences of Lactobacillus gasseri ATCC 33323T and Lactobacillus johnsonii ATCC 33200T (97.3% and 97.2% sequence similarities, respectively). The novel strains shared 99.2-99.6% 16S rRNA gene sequence similarities. Type strains of L. gasseri and L. johnsonii were also most related to the newly isolated strains according to rpoA (83.9-84.0% similarities), pheS (84.6-87.8%), atpA (86.2-87.7%), hsp60 (89.4-90.4%) and tuf (92.7-93.6%) gene sequence similarities. Phylogenetic studies based on 16S rRNA, hsp60, rpoA, atpA and pheS gene sequences, other genotypic and many phenotypic characteristics (results of API 50 CHL, Rapid ID 32A and API ZYM biochemical tests; cellular fatty acid profiles; cellular polar lipid profiles; end products of glucose fermentation) showed that these bacterial strains represent a novel species within the genus Lactobacillus. The name Lactobacillus rodentium sp. nov. is proposed to accommodate this group of new isolates. The type strain is MYMRS/TLU1T (=DSM 24759T=CCM 7945T).

  16. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk.

    PubMed

    Riaz Rajoka, Muhammad Shahid; Zhao, Haobin; Lu, Yao; Lian, Ziyang; Li, Na; Hussain, Nazim; Shao, Dongyan; Jin, Mingliang; Li, Qi; Shi, Junling

    2018-05-15

    Lactic acid bacteria have been categorized as probiotics and play a crucial role in human health by stimulating the supply of nutrients, shaping the immune system, and preventing the colonization of pathogenic microbes. This study investigated the mechanisms for the action of three potential probiotic Lactobacillus strains: Lactobacillus casei SR1, Lactobacillus casei SR2, and Lactobacillus paracasei SR4 isolated from human breast milk. These Lactobacillus strains were identified via 16S DNA sequencing and characterized via biochemical assays including acid resistance, bile resistance, antioxidant activity, and antibiotic susceptibility. The bioactivity of the cell-free culture supernatant (CFCS) secreted by these strains on the cervix cancer (HeLa) cell line was also evaluated via cytotoxicity assay and apoptosis analysis. The mechanism of anticancer activity was also investigated via RT-qPCR and western blotting. The results demonstrated that these newly isolated Lactobacillus strains from human milk displayed noticeable probiotic characteristics such as excellent antibiotic susceptibility, outstanding antioxidant activity, and promising resistance to low pH and high concentration of bile salts. The results of the conducted bioactivity assays verified that the CFCSs had acceptable anticancer effects on cervix cancer (HeLa) cells by upregulating the expression of apoptotic genes BAX, BAD, caspase3, caspase8, and caspase9 and by downregulating the expression of the BCl-2 gene. Overall, these results indicate that the Lactobacillus strains isolated from human breast milk could be considered as a topical medication with a potential therapeutic index due to their efficacy against cervix cancer cells.

  17. Effect of High Protein Diet and Probiotic Lactobacillus casei Shirota Supplementation in Aflatoxin B1-Induced Rats

    PubMed Central

    Nurul Adilah, Z.; Liew, Winnie-Pui-Pui; Amin, I.

    2018-01-01

    Probiotic Lactobacillus casei Shirota (LcS) is a potential decontaminating agent of aflatoxin B1 (AFB1). However, few studies have investigated the influence of diet, especially a high protein (HP) diet, on the binding of AFB1 by probiotics. This research was conducted to determine the effect of HP diet on the ability of LcS to bind AFB1 and reduce aflatoxin M1 (AFM1) in AFB1-induced rats. Sprague Dawley rats were randomly divided into three groups: A (HP only), B (HP + 108 CFU LcS + 25 μg AFB1/kg BW), and C (HP + 25 μg AFB1/kg BW). Levels of AST and ALP were higher in all groups but other liver function's biomarkers were in the normal range, and the liver's histology showed no structural changes. The urea level of rats in group B (10.02 ± 0.73 mmol/l) was significantly lower (p < 0.05) than that of rats in group A (10.82 ± 0.26 mmol/l). The presence of carcinoma in the small intestine and colon was more obvious in group C than in group B. Moreover, rats in group B had significantly (p < 0.05) lower AFM1 concentration (0.39 ± 0.01 ng/ml) than rats in group C (5.22 ± 0.28 ng/ml). Through these findings, LcS supplementation with HP diet alleviated the adverse effects of AFB1 by preventing AFB1 absorption in the small intestine and reducing urinary AFM1.

  18. Microbiological Quality of Panicum maximum Grass Silage with Addition of Lactobacillus sp. as Starter

    NASA Astrophysics Data System (ADS)

    Sumarsih, S.; Sulistiyanto, B.; Utama, C. S.

    2018-02-01

    The aim of the research was to evaluate microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp as starter. The completely randomized design was been used on this research with 4 treaments and 3 replications. The treatments were P0 ( Panicum maximum grass silage without addition Lactobacillus sp ), P1 ( Panicum maximum grass silage with 2% addition Lactobacillus sp), P2 (Panicum maximum grass silage with 4% addition Lactobacillus sp) and P3 (Panicum maximum grass silage with 6% addition Lactobacillus sp).The parameters were microbial populations of Panicum maximum grass silage (total lactic acid bacteria, total bacteria, total fungi, and Coliform bacteria. The data obtained were analyzed variance (ANOVA) and further tests performed Duncan’s Multiple Areas. The population of lactic acid bacteria was higher (P<0.05) and the total bacteria, fungi and Coliform were lower (P<0.05) with addition Lactobacillus sp. Microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp was better than no addition Lactobacillus sp.

  19. Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia).

    PubMed

    Chen, Yi-Sheng; Miyashita, Mika; Suzuki, Ken-ichiro; Sato, Hajime; Hsu, Jar-Sheng; Yanagida, Fujitoshi

    2010-08-01

    Twenty-one homofermentative lactic acid bacteria were isolated from fermented cummingcordia (pobuzihi), a traditional food in Taiwan. The isolates had identical 16S rRNA gene sequences that were distinct from those of other lactobacilli, and their closest neighbours in the 16S rRNA gene sequence phylogenetic tree were strains of Lactobacillus acidipiscis. Levels of DNA-DNA relatedness between representative pobuzihi isolates and strains of L. acidipiscis were 17% and below. Furthermore, the new isolates could be differentiated clearly from L. acidipiscis NBRC 102163T and NBRC 102164 in terms of acid production from L-arabinose, rhamnose, mannitol, lactose and 5-ketogluconate. It was concluded that the new isolates represent a single novel species of the genus Lactobacillus, for which the name Lactobacillus pobuzihii sp. nov. is proposed. The type strain is E100301T (=RIFY 6501T =NBRC 103219T =KCTC 13174T).

  20. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei.

    PubMed

    Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth.

  1. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  2. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins.

    PubMed

    Gbassi, Gildas Komenan; Vandamme, Thierry; Ennahar, Saïd; Marchioni, Eric

    2009-01-31

    Whey proteins were used as a coating material to improve encapsulation of Lactobacillus plantarum strains in calcium alginate beads. L. plantarum 299v, L. plantarum 800 and L. plantarum CIP A159 were used in this study. Inactivation experiments were carried out in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Cross-sections of freeze-dried beads revealed the random distribution of bacteria throughout the alginate network. From an initial count of 10.04+/-0.01 log(10) CFU g(-1) for L. plantarum 299v, 10.12+/-0.04 for L. plantarum CIP A159 and 10.03+/-0.01 for L. plantarum 800, bacteria in coated beads and incubated in SGF (37 degrees C, 60 min) showed a better survival for L. plantarum 299v, L. plantarum CIP A159 and L. plantarum 800 (respectively 7.76+/-0.12, 6.67+/-0.08 and 5.81+/-0.25 log(10) CFU g(-1)) when compared to uncoated beads (2.19+/-0.09, 1.89+/-0.09 and 1.65+/-0.10 log(10) CFU g(-1)) (p<0.05). Only bacteria in the coated beads survived in the SIF medium (37 degrees C, 180 min) after SGF treatment. This preliminary work showed that whey proteins are a convenient, cheap and efficient material for coating alginate beads loaded with bacteria.

  3. Lactobacillus frumenti Facilitates Intestinal Epithelial Barrier Function Maintenance in Early-Weaned Piglets

    PubMed Central

    Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua

    2018-01-01

    Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance

  4. A Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development

    PubMed Central

    Yu, Rosa R.; Cheng, Andrew T.; Lagenaur, Laurel A.; Huang, Wenjun; Weiss, Deborah E.; Treece, Jim; Sanders-Beer, Brigitte E.; Hamer, Dean H.; Lee, Peter P.; Xu, Qiang; Liu, Yang

    2015-01-01

    Background We sought to establish a nonhuman primate model of vaginal Lactobacillus colonization suitable for evaluating live microbial microbicide candidates. Methods Vaginal and rectal microflora in Chinese rhesus macaques (Macaca mulatta) were analyzed, with cultivable bacteria identified by 16S rRNA gene sequencing. Live lactobacilli were intravaginally administered to evaluate bacterial colonization. Results Chinese rhesus macaques harbored abundant vaginal Lactobacillus, with Lactobacillus johnsonii as the predominant species. Like humans, most examined macaques harbored only one vaginal Lactobacillus species. Vaginal and rectal Lactobacillus isolates from the same animal exhibited different genetic and biochemical profiles. Vaginal Lactobacillus was cleared by a vaginal suppository of azithromycin, and endogenous L. johnsonii was subsequently restored by intravaginal inoculation. Importantly, prolonged colonization of a human vaginal Lactobacillus jensenii was established in these animals. Conclusions The Chinese rhesus macaque harbors vaginal Lactobacillus and is a potentially useful model to support the pre-clinical evaluation of Lactobacillus-based topical microbicides. PMID:19367737

  5. Biodiversity of Lactobacillus sanfranciscensis strains isolated from five sourdoughs.

    PubMed

    Kitahara, M; Sakata, S; Benno, Y

    2005-01-01

    Five different sourdoughs were investigated for the composition of lactic acid bacteria (LAB) and the biodiversity of Lactobacillus sanfranciscensis strains. A total of 57 strains were isolated from five sourdoughs. Isolated strains were all identified by the 16S rDNA sequence and species-specific primers for L. sanfranciscensis. Results of identification showed that LAB strains were L. sanfranciscensis, Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus fermentum, Lactobacillus pontis, Lactobacillus casei, Weisella confusa and Pediococcus pentosaceus. A total of 21 strains were identified as L. sanfranciscensis and these isolates were detected in all five sourdoughs. Ribotyping was applied to investigate the relationship between intraspecies diversity of L. sanfranciscensis and sourdough. A total of 22 strains of L. sanfranciscensis including L. sanfranciscensis JCM 5668T were compared by ribotyping. The dendrogram of 21 ribotyping patterns showed four clusters, and L. sanfranciscensis JCM 5668T was independent of the others. The different biotypes of L. sanfranciscensis were present in two sourdoughs compared with other three sourdoughs. The LAB compositions of five sourdoughs were different and the relationship between intraspecies diversity of L. sanfranciscensis strains and five sourdoughs was shown by ribotyping. This study demonstrated that ribotyping was useful for distinguishing L. sanfranciscensis strains. A further important result is that the intra-species diversity of L. sanfranciscensis strains seems to be related to the sourdough preparation.

  6. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay.

    PubMed

    Le Roy, Caroline I; Štšepetova, Jelena; Sepp, Epp; Songisepp, Epp; Claus, Sandrine P; Mikelsaar, Marika

    2015-10-13

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.

  7. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay

    PubMed Central

    Sepp, Epp; Songisepp, Epp; Claus, Sandrine P.; Mikelsaar, Marika

    2015-01-01

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population. PMID:26437083

  8. Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein.

    PubMed

    Chung, Pei-Hsuan; Wu, Ying-Ying; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei; Chen, Lee-Wei

    2016-09-01

    Altered intestinal microbiota and subsequent endotoxemia play pathogenic roles in diabetes. We aimed to study the mechanisms of intestinal defense impairment in type 1 diabetes and the effects of Lactobacillus salivarius as well as fructooligosaccharides (FOS) supplementation on diabetes-induced bacterial translocation. Alterations in the enteric microbiome, expression of mucosal antibacterial proteins and bacteria-killing activity of the intestinal mucosa in streptozotocin (STZ)-induced diabetic mice and Ins2(Akita) mice were investigated. The effects of dead L. salivarius (2×10(8)CFU/ml) and FOS (250 mg per day) supplementation for 1 week on endotoxin levels and Klebsiella pneumoniae translocation were also examined. Finally, germ-free mice were cohoused with wild-type or Ins2(Akita) mice for 2 weeks to examine the contribution of microbiota on the antibacterial protein expression. STZ-induced diabetic mice developed intestinal defense impairment as demonstrated by decreased mucosal bacteria-killing activity; reduction of non-defensin family proteins, such as Reg3β, Reg3γ, CRP-ductin and RELMβ, but not the defensin family proteins; and increased bacterial translocation. Intestinal bacteria overgrowth, enteric dysbiosis and increased intestinal bacterial translocation, particularly pathogenic K. pneumoniae in STZ-induced diabetic mice and Ins2(Akita) mice, were noted. Treating diabetic mice with dead L. salivarius or FOS reversed enteric dysbiosis, restored mucosal antibacterial protein and lessened endotoxin levels as well as K. pneumoniae translocation. Moreover, germ-free mice cohoused with wild-type mice demonstrated more intestinal Reg3β and RELMβ expression than those cohoused with Ins2(Akita) mice. These results indicate that hyperglycemia induces enteric dysbiosis, reduction of non-defensin proteins as well as bacteria-killing activity of the intestinal mucosa and intestinal defense impairment. Reversal of enteric dysbiosis with dead L. salivarius or

  9. Discrimination and divergence among Lactobacillus plantarum-group (LPG) isolates with reference to their probiotic functionalities from vegetable origin.

    PubMed

    Devi, Sundru Manjulata; Aishwarya, Subramanian; Halami, Prakash M

    2016-12-01

    The present study was aimed to evaluate the diversity and probiotic properties of Lactobacillus plantarum-group cultures from vegetable origin. First, genotypic diversity of L. plantarum (n=34) was achieved by PCR of Random Amplified Polymorphic DNA and recA gene-specific multiplex PCR. The isolates were segregated into five groups namely, Lactobacillus pentosus, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus plantarum subsp. plantarum and argentoratensis. Further discrimination was achieved by restriction fragment length polymorphism of probiotic adhesion genes viz.fbp, mub and msa gene. As determined by nucleotide sequence analysis and bioinformatics Pfam database, the putative Fbp protein had only one FBP domain, whereas Mub protein had 8-10 MUB domain repeats. However, L. pentosus (except CFR MFT9), L. plantarum subsp. argentoratensis (except CFR MFT5) and L. arizonensis (except CFR MFT2) isolates gave no amplicon for the tested marker genes. Selected cultures (n=15) showed tolerance to simulated digestive fluids (20-85%), exhibited auto-aggregation (10-77%), cellular hydrophobicity (12-78%), and broad spectrum of anti-microbial activity. Concurrently, high adherence capacity to mucin was achieved for L. plantarum subsp. plantarum (MCC 2974 and CFR MFT1) and L. paraplantarum (MTCC 9483, MCC 2977, MCC 2978), which had an additional MUB domain repeat. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  11. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    PubMed

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  12. Construction and immunogenicity analysis of Lactobacillus plantarum expressing a porcine epidemic diarrhea virus S gene fused to a DC-targeting peptide.

    PubMed

    Huang, Ke-Yan; Yang, Gui-Lian; Jin, Yu-Bei; Liu, Jing; Chen, Hong-Liang; Wang, Peng-Bo; Jiang, Yan-Long; Shi, Chun-Wei; Huang, Hai-Bin; Wang, Jian-Zhong; Wang, Guan; Kang, Yuan-Huan; Yang, Wen-Tao; Wang, Chun-Feng

    2018-03-02

    Porcine epidemic diarrhea virus (PEDV) is one of the most important causative pathogens of swine diarrhea, which is widely prevalent throughout the world and is responsible for significant economic losses in the commercial pig industry, both domestic and abroad. The spike (S) protein in the PEDV capsid structure can carry the major B lymphocyte epitope, which induces production of neutralizing antibodies and provides immunoprotective effects. Moreover, the conserved region encoded by the S gene can be considered a target for establishing a new diagnostic method and is a new candidate for vaccine design. In this study, use of anchorin pgsA' allowed the fusion protein of S-DCpep to express on the surface of recombinant Lactobacillus plantarum (NC8-pSIP409-pgsA'-S-DCpep) NC8 strain. Mice were immunized by lavage administration of the recombinant NC8-pSIP409-pgsA'-S-DCpep, which was observed to induce DC activation and high production of sIgA and IgG antibodies in experimental animals, while also eliciting production of significantly more IgA + B220 + B cells. More importantly, secretion of cytokines IFN-γ, IL-4 and IL-17 in mice that were vaccinated with NC8-pSIP409-pgsA'-S-DCpep was remarkably increased. The results of our study suggest that NC8-pSIP409-pgsA'-S-DCpep potently triggers cellular and humoral immune responses. The obtained experimental results can provide a theoretical basis that lays the foundation for production of a novel oral vaccine against PED. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Application of culture-dependent and culture-independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains.

    PubMed

    Hamet, Maria Fernanda; Londero, Alejandra; Medrano, Micaela; Vercammen, Elisabeth; Van Hoorde, Koenraad; Garrote, Graciela L; Huys, Geert; Vandamme, Peter; Abraham, Analía G

    2013-12-01

    The biological and technological characteristics of kefiran as well as its importance in grain integrity led us to analyze the microbial kefir grain consortium with focus on Lactobacillus kefiranofaciens. The presence of L. kefiranofaciens in the nine kefir grains studied was demonstrated by denaturing gradient gel electrophoresis. By culture dependent methods applying a methodology focused on the search of this species, 22 isolates with typical morphology were obtained and identified applying a combination of SDS-PAGE of whole cell proteins, (GTG)5-PCR and sequence analysis of the housekeeping gene encoding the α-subunit of bacterial phenylalanyl-tRNA synthase (pheS). This polyphasic approach allowed the reliable identification of 11 L. kefiranofaciens, 5 Lactobacillus paracasei, 4 Lactobacillus kefiri and 2 Lactobacillus parakefiri isolates. Isolated L. kefiranofaciens strains produced polysaccharide in strain-dependent concentrations and EPS produced by them also differed in the degree of polymerization. The isolation and accurate identification of L. kefiranofaciens is relevant taking into account the important role of this microorganism in the grain ecosystem as well as its potential application as starter in food fermentations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    PubMed Central

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( < 1 % 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  16. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria.

    PubMed

    Abdelmaksoud, Abdallah A; Koparde, Vishal N; Sheth, Nihar U; Serrano, Myrna G; Glascock, Abigail L; Fettweis, Jennifer M; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2016-03-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.

  17. Lactobacillus ixorae sp. nov., isolated from a flower (West-Indian jasmine).

    PubMed

    Techo, Sujitra; Miyashita, Mika; Shibata, Chiyo; Tanaka, Naoto; Wisetkhan, Preeyarach; Visessanguan, Wonnop; Tanasupawat, Somboon

    2016-12-01

    A Gram-stain-positive, lactic acid bacterium, strain Ru20-1T, was isolated from a flower (West-Indian jasmine) collected from Kalasin province, Thailand. A polyphasic approach was used to determine the taxonomic position of this strain. Studies of morphological and biochemical characteristics revealed that strain Ru20-1T belonged to the genus Lactobacillus. The strain was heterofermentative, non-spore-forming and rod-shaped. It produced dl-lactic acid. Based on 16S rRNA gene sequence similarity, this strain was closely related to Lactobacillus lindneri LMG 14528T (96.8 %), Lactobacillus sanfranciscensis NRIC 1548T (95.4 %) and Lactobacillus florum NRIC 0771T (95.2 %), respectively. In addition, the pheS gene sequence of strain Ru20-1T was closely related to those of L. sanfranciscensis NRIC 1548T (92.0 %), L. lindneri LMG 14528T (89.0 %) and L. florum NRIC 0771T(85.0 %). Phylogenetic analysis indicated that strain Ru20-1T was clearly separated from closely related species of the genus Lactobacillus. The DNA G+C content of strain Ru20-1T was 47.8 mol %. The cell-wall peptidoglycan type was l-Lys-d-Asp. The major cellular fatty acids were C18 : 1ω9c, C20 : 0, C20 : 1ω9c and summed feature 7 (unknown 18.846 and/or C19 : 1ω6c and/or C19 : 0 cyclo). On the basis of the data provided, strain Ru20-1T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus ixorae sp. nov. is proposed. The type strain is Ru20-1T (=LMG 29008T=NBRC 111239T=PCU 346T=TISTR 2381T).

  18. Direct effects of fermented cow's milk product with Lactobacillus paracasei CBA L74 on human enterocytes.

    PubMed

    Paparo, L; Aitoro, R; Nocerino, R; Fierro, C; Bruno, C; Canani, R Berni

    2018-01-29

    Cow's milk fermented with Lactobacillus paracasei CBA L74 (FM-CBAL74) exerts a preventive effect against infectious diseases in children. We evaluated if this effect is at least in part related to a direct modulation of non-immune and immune defence mechanisms in human enterocytes. Human enterocytes (Caco-2) were stimulated for 48 h with FM-CBAL74 at different concentrations. Cell growth was assessed by colorimetric assay; cell differentiation (assessed by lactase expression), tight junction proteins (zonula occludens1 and occludin), mucin 2, and toll-like receptor (TRL) pathways were analysed by real-time PCR; innate immunity peptide synthesis, beta-defensin-2 (HBD-2) and cathelicidin (LL-37) were evaluated by ELISA. Mucus layer thickness was analysed by histochemistry. FMCBA L74 stimulated cell growth and differentiation, tight junction proteins and mucin 2 expression, and mucus layer thickness in a dose-dependent fashion. A significant stimulation of HBD-2 and LL-37 synthesis, associated with a modulation of TLR pathway, was also observed. FM-CBAL74 regulates non-immune and immune defence mechanisms through a direct interaction with the enterocytes. These effects could be involved in the preventive action against infectious diseases demonstrated by this fermented product in children.

  19. Biosynthesis of Lipoteichoic Acid in Lactobacillus rhamnosus: Role of DltD in d-Alanylation

    PubMed Central

    Debabov, Dmitri V.; Kiriukhin, Michael Y.; Neuhaus, Francis C.

    2000-01-01

    The dlt operon (dltA to dltD) of Lactobacillus rhamnosus 7469 encodes four proteins responsible for the esterification of lipoteichoic acid (LTA) by d-alanine. These esters play an important role in controlling the net anionic charge of the poly (GroP) moiety of LTA. dltA and dltC encode the d-alanine–d-alanyl carrier protein ligase (Dcl) and d-alanyl carrier protein (Dcp), respectively. Whereas the functions of DltA and DltC are defined, the functions of DltB and DltD are unknown. To define the role of DltD, the gene was cloned and sequenced and a mutant was constructed by insertional mutagenesis of dltD from Lactobacillus casei 102S. Permeabilized cells of a dltD::erm mutant lacked the ability to incorporate d-alanine into LTA. This defect was complemented by the expression of DltD from pNZ123/dlt. In in vitro assays, DltD bound Dcp for ligation with d-alanine by Dcl in the presence of ATP. In contrast, the homologue of Dcp, the Escherichia coli acyl carrier protein (ACP), involved in fatty acid biosynthesis, was not bound to DltD and thus was not ligated with d-alanine. DltD also catalyzed the hydrolysis of the mischarged d-alanyl–ACP. The hydrophobic N-terminal sequence of DltD was required for anchoring the protein in the membrane. It is hypothesized that this membrane-associated DltD facilitates the binding of Dcp and Dcl for ligation of Dcp with d-alanine and that the resulting d-alanyl–Dcp is translocated to the primary site of d-alanylation. PMID:10781555

  20. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F.

    PubMed

    Tyler, C A; Kopit, L; Doyle, C; Yu, A O; Hugenholtz, J; Marco, M L

    2016-05-01

    This study examined the fermentative growth and polyol production of Lactobacillus florum and other plant-associated lactic acid bacteria (LAB). Sugar consumption and end-product production were measured for Lact. florum 2F in the presence of fructose, glucose and both sugars combined. The genome of Lact. florum was examined for genes required for mannitol and erythritol biosynthesis. The capacity for other plant-associated LAB to synthesize polyols was also assessed. Lactobacillus florum exhibited higher growth rates and cell yields in the presence of both fructose and glucose. Lactobacillus florum 2F produced lactate, acetate and ethanol as well as erythritol and mannitol. Lactobacillus florum 2F synthesized mannitol during growth on fructose and erythritol during growth on glucose. Gene and protein homology searches identified a mannitol dehydrogenase in the Lact. florum 2F genome but not the genes responsible for erythritol biosynthesis. Lastly, we found that numerous other heterofermentative LAB species synthesize erythritol and/or mannitol. Lactobacillus florum is a recently identified, plant-associated, fructophilic LAB species. Our results show that Lact. florum growth rates and heterofermentation end-products differ depending on the sugar substrates present and growth yields can be improved when combinations of sugars are provided. Lactobacillus florum 2F produces erythritol and mannitol, two polyols that are relevant to foods and potentially also in plant environments. The capacity for polyol biosynthesis appears to be common among plant-associated, LAB species. © 2016 The Society for Applied Microbiology.

  1. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces.

    PubMed

    Osawa, Ro; Fujisawa, Tomohiko; Pukall, Rüdiger

    2006-07-01

    A Gram-positive, rod-shaped, non-endospore-forming bacterium, strain ASB1(T), able to degrade tannin, was isolated from faeces of the Japanese large wood mouse, Apodemus speciosus. Comparative analysis of the 16S rRNA gene sequence revealed that the strain could be assigned as a member of the genus Lactobacillus. The nearest phylogenetic neighbours were determined as Lactobacillus animalis DSM 20602(T) (98.9 % 16S rRNA gene sequence similarity) and Lactobacillus murinus ASF 361 (98.9 %). Subsequent polyphasic analysis, including automated ribotyping and DNA-DNA hybridization experiments, confirmed that the isolate represents a novel species, for which the name Lactobacillus apodemi sp. nov. is proposed. The DNA G+C content of the novel strain is 38.5 mol%. The cell-wall peptidoglycan is of type A4alpha L-lys-D-asp. The type strain is ASB1(T) (=DSM 16634(T)=CIP 108913(T)).

  2. A gastro-resistant ovalbumin bi-layered mini-tablet-in-tablet system for the delivery of Lactobacillus acidophilus probiotic to simulated human intestinal and colon conditions.

    PubMed

    Govender, Mershen; Choonara, Yahya Essop; van Vuuren, Sandy; Kumar, Pradeep; du Toit, Lisa Claire; Pillay, Viness

    2015-07-01

    The viability of probiotic bacteria during formulation processes and delivery is vital to ensure health benefits. This study focuses on the use of gastro-resistant denatured ovalbumin for the targeted delivery of probiotic Lactobacillus acidophilus to simulated human intestinal and colon conditions through a bi-layered mini-tablet-in-tablet system (BMTTS). The BMTTS consists of two gastro-resistant ovalbumin mini-tablets containing L. acidophilus suspended in lactose and eudragit S100 for targeted intestinal and colonic delivery respectively. Luminescence has been utilized to ensure probiotic viability during formulation processes in addition to determining all probiotic release profiles. The mechanism of probiotic release from the ovalbumin matrix was ascertained using mathematical modelling and molecular docking studies. Magnetic resonance imaging and differential scanning calorimetry are also included as part of the in-vitro characterization of the ovalbumin system. The BMTTS was effective in the delivery of L. acidophilus to simulated human intestinal and colon conditions. Formulation processes were furthermore determined to maintain probiotic viability. Statistical analysis of the release data noted a significant effect of pH denaturation on the release properties of ovalbumin. Magnetic resonance imaging results have indicated a decrease in ovalbumin matrix size upon exposure to simulated intestinal fluid. Molecular docking studies carried out depicted the interaction and binding positions inherent to the ovalbumin-pancreatic trypsin interaction complex indicating the possible enzymatic degradation of ovalbumin leading to the release of the probiotic from the protein matrix. The BMTTS has been determined to be effective in the protection and delivery of probiotic L. acidophilus to simulated human intestinal and colonic conditions. Molecular docking analysis has noted that pancreatin exerts a significant effect on probiotic release from the gastro

  3. Eruca sativa might influence the growth, survival under simulated gastrointestinal conditions and some biological features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus strains.

    PubMed

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-10-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power.

  4. Eruca sativa Might Influence the Growth, Survival under Simulated Gastrointestinal Conditions and Some Biological Features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus Strains

    PubMed Central

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-01-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power. PMID:25275269

  5. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    PubMed

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  6. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens

    PubMed Central

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-01-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis (Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis (Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment. PMID:28580872

  7. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits.

    PubMed

    Chen, Yi-Sheng; Wang, Li-Ting; Liao, Yu-Jou; Lan, Yi-Shan; Chang, Chi-Huan; Chang, Yu-Chung; Wu, Hui-Chung; Lo, Huei-Yin; Otoguro, Misa; Yanagida, Fujitoshi

    2017-12-01

    Two Gram-stain-positive, catalase-negative, rod-shaped, bacterial strains (313 T and 311) were isolated from banana fruits in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both strains corresponded to the type strain of Lactobacillus nantensis (99.19 %), followed by Lactobacillus crustorum (98.99 %), Lactobacillus heilongjiangensis (98.59 %) and Lactobacillus farciminis (98.52 %). Phylogenetic analysis based on the sequences of two housekeeping genes, pheS and rpoA, revealed that these two strains were well separated from the Lactobacillus reference strains. DNA-DNA relatedness values revealed genotype separation of the two strains from the above four species. The DNA G+C content of strain 313 T was 35.5 mol%. The strains were homofermentative and mainly produced l-lactic acid from glucose. The major cellular fatty acids of strain 313 T were 18 : 1ω6c and/or 18 : 1ω7c, 16 : 0, and 19 : 1ω6c and/or 19 : 0 cyclo ω10c. Based on their physiological and genotypic characteristics, the isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillusmusae sp. nov. is proposed. The type strain is 313 T =NBRC 112868 T =BCRC 81020 T ).

  8. In vitro antagonistic growth effects of Lactobacillus fermentum and lactobacillus salivarius and their fermentative broth on periodontal pathogens.

    PubMed

    Chen, Ling-Ju; Tsai, Hsiu-Ting; Chen, Wei-Jen; Hsieh, Chu-Yang; Wang, Pi-Chieh; Chen, Chung-Shih; Wang, Lina; Yang, Chi-Chiang

    2012-10-01

    As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis in vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, although different inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health.

  9. Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films

    PubMed Central

    Soukoulis, Christos; Singh, Poonam; Macnaughtan, William; Parmenter, Christopher; Fisk, Ian D.

    2016-01-01

    Probiotic incorporation in edible films and coatings has been shown recently to be an efficient strategy for the delivery of probiotics in foods. In the present work, the impact of the compositional, physicochemical and structural properties of binary starch-protein edible films on Lactobacillus rhamnosus GG viability and stability was evaluated. Native rice and corn starch, as well as bovine skin gelatine, sodium caseinate and soy protein concentrate were used for the fabrication of the probiotic edible films. Starch and protein type both impacted the structural, mechanical, optical and thermal properties of the films, and the process loss of L. rhamnosus GG during evaporation-dehydration was significantly lower in the presence of proteins (0.91–1.07 log CFU/g) compared to solely starch based systems (1.71 log CFU/g). A synergistic action between rice starch and proteins was detected when monitoring the viability of L. rhamnosus GG over four weeks at fridge and room temperature conditions. In particular, a 3- to 7-fold increase in the viability of L. rhamnosus GG was observed in the presence of proteins, with sodium caseinate – rice starch based films offering the most enhanced stability. The film's shelf-life (as calculated using the FAO/WHO (2011) basis of 6 log viable CFU/g) ranged between 27-96 and 15–24 days for systems stored at fridge or room temperature conditions respectively. PMID:26726280

  10. Cloning, expression, and characterization of a novel (S)-specific alcohol dehydrogenase from Lactobacillus kefir.

    PubMed

    Chen, Qilei; Hu, Youjia; Zhao, Wenjie; Zhu, Chunbao; Zhu, Baoquan

    2010-01-01

    A gene encoding a novel (S)-specific NADH-dependent alcohol dehydrogenase (LK-ADH) was isolated from the genomic DNA of Lactobacillus kefir DSM 20587 by thermal asymmetric interlaced-polymerase chain reaction. The nucleotide sequence of (S)-LK-ADH gene (adhS) was determined, which consists of an open reading frame of 1,044 bp, coding for 347 amino acids with a molecular mass of 37.065 kDa. After a BLAST similarity search in GenBank database, the amino acid sequence of (S)-LK-ADH showed some homologies to several zinc containing medium-chain alcohol dehydrogenases. This novel gene was deposited into GenBank with the accession number of EU877965. adhS gene was subcloned into plasmid pET-28a(+), and recombinant (S)-LK-ADH was successfully expressed in E. coli BL21(DE3) by isopropyl-beta-D-1-thiogalactopyranoside induction. Purified enzyme showed a high enantioselectivity in the reduction of acetophenone to (S)-phenylethanol with an ee value of 99.4%. The substrate specificity and cofactor preference of recombinant (S)-LK-ADH were also tested.

  11. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages.

    PubMed

    Rocha-Ramírez, L M; Pérez-Solano, R A; Castañón-Alonso, S L; Moreno Guerrero, S S; Ramírez Pacheco, A; García Garibay, M; Eslava, C

    2017-01-01

    Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF- κ B pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus . The results obtained from the tested strains ( Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF- α , IL-12p70, and IL-6. However, IL-1 β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus , S. typhimurium , and E. coli , were increased by pretreatment with Lactobacillus . The nuclear translocation NF- κ B pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages.

  12. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages

    PubMed Central

    Moreno Guerrero, S. S.; Ramírez Pacheco, A.; García Garibay, M.; Eslava, C.

    2017-01-01

    Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages. PMID:28758133

  13. Safety evaluation of Lactobacillus delbrueckii subsp. lactis UO 004, a probiotic bacterium.

    PubMed

    Fernández, M Fernanda; Boris, Soledad; Barbés, Covadonga

    2005-03-01

    Lactobacillus delbrueckii subsp. lactis UO 004 was evaluated for its use as a potential probiotic from a safety point of view. The strain did not exhibit mucinolytic or other enzymatic activities that might be detrimental, such as those involving glycosidases (beta-D-glucosaminidase or alpha-D-galactosidase) or arylamidases (factor Xa and quimotrypsin-like activities), frequently present in Lactobacillus strains isolated from patients with endocarditis, although it was able to express protein Ca and kallikrein-like activities. On the other hand, the presence of the strain did not interfere with the growth of certain species of normal intestinal microbiota, such as Enterococcus fecalis, Escherichia coli, Bifidobacterium bifidum or Bacteroides fragilis. Moreover, the potential probiotic strain UO 004 is sensitive to antibiotics with transmissible resistance mechanisms in Lactobacillus such as chloramphenicol, erythromycin, tetracycline and vancomycin. In addition, strain L. delbrueckii UO 004 was not able to translocate towards the intestinal barrier of mice or produce changes in their activity or general health status.

  14. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    PubMed

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture.

  15. Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation.

    PubMed

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages.

  16. Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties.

    PubMed

    Odila Pereira, Joana; Soares, José; J P Monteiro, Maria; Gomes, Ana; Pintado, Manuela

    2018-05-01

    Edible coatings/films with functional ingredients may be a solution to consumers' demands for high-quality food products and an extended shelf-life. The aim of this work was to evaluate the antimicrobial efficiency of edible coatings incorporated with probiotics on sliced ham preservation. Coatings was developed based on whey protein isolates with incorporation of Bifidobacterium animalis Bb-12® or Lactobacillus casei-01. The physicochemical analyses showed that coating decreased water and weight loss on the ham. Furthermore, color analysis showed that coated sliced ham, exhibited no color change, comparatively to uncoated slices. The edible coatings incorporating the probiotic strains inhibited detectable growth of Staphylococcus spp., Pseudomonas spp., Enterobacteriaceae and yeasts/molds, at least, for 45days of storage at 4°C. The sensory evaluation demonstrated that there was a preference for the sliced coated ham. Probiotic bacteria viable cell numbers were maintained at ca. 10 8 CFU/g throughout storage time, enabling the slice of ham to act as a suitable carrier for the beneficial bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  18. The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content.

    PubMed

    Boekhorst, Jos; Siezen, Roland J; Zwahlen, Marie-Camille; Vilanova, David; Pridmore, Raymond D; Mercenier, Annick; Kleerebezem, Michiel; de Vos, Willem M; Brüssow, Harald; Desiere, Frank

    2004-11-01

    The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of Lactobacillus plantarum (3.3 Mb) and Lactobacillus johnsonii (2.0 Mb). L. johnsonii is predominantly found in the gastrointestinal tract, while L. plantarum is also found on plants and plant-derived material, and is used in a variety of industrial fermentations. The L. plantarum and L. johnsonii chromosomes have only 28 regions with conservation of gene order, totalling about 0.75 Mb; these regions are not co-linear, indicating major chromosomal rearrangements. Metabolic reconstruction indicates many differences between L. johnsonii and L. plantarum: numerous enzymes involved in sugar metabolism and in biosynthesis of amino acids, nucleotides, fatty acids and cofactors are lacking in L. johnsonii. Major differences were seen in the number and types of putative extracellular proteins, which are of interest because of their possible role in host-microbe interactions. The differences between L. plantarum and L. johnsonii, both in genome organization and gene content, are exceptionally large for two bacteria of the same genus, emphasizing the difficulty in taxonomic classification of lactobacilli.

  19. Multiplex PCR for the Detection of Lactobacillus pontis and Two Related Species in a Sourdough Fermentation

    PubMed Central

    Müller, Martin R. A.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2000-01-01

    A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation. PMID:10788389

  20. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogenss.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Nowaczek, Anna; Wernicki, Andrzej

    2016-03-01

    This study was conducted to identify and evaluate the antimicrobial activity of some Lactobacillus isolates of chicken origin. Among 90 isolates 14 Lactobacillus species were distinguished using MALDI-TOF mass spectrometry and 16S-ARDRA. The dominant species was L. salivarius (34.4%), followed by L. johnsonii (23.3%), L. crispatus (13.3%) and L. reuteri (11.1%). All lactobacilli were screened for antimicrobial activity against wild-type strains of Salmonella enterica, Escherichia coli, and Clostridium perfringens. Results from the agar slab method showed that all Lactobacillus isolates were able to produce active compounds on solid media with antagonistic properties against these pathogens. The highest sensitivity to lactobacilli was observed in C. perfringens strains, and the lowest in E. coli. Lactobacillus salivarius exhibited particularly strong antagonism towards all of the indicator bacteria. Strains of L. ingluviei and L. johnsonii and one strain of L. salivarius (10d) selectively inhibited the growth of C. perfringens. No antimicrobial activity of many Lactobacillus isolates was observed when cell-free culture supernatant was used in a well diffusion assay. All Lactobacillus isolates exhibited the ability to produce H2O2 and proved to be hydrophobic (excluding one of L. salivarius). [Int Microbiol 19(1):57-67 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  1. Characterization of Endogenous Plasmids from Lactobacillus salivarius UCC118▿ †

    PubMed Central

    Fang, Fang; Flynn, Sarah; Li, Yin; Claesson, Marcus J.; van Pijkeren, Jan-Peter; Collins, J. Kevin; van Sinderen, Douwe; O'Toole, Paul W.

    2008-01-01

    The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK homologs, and this plasmid could be cured when PemI was produced in trans. The minimal replicon of pSF118-20 was determined by deletion analysis. Shuttle vector derivatives of pSF118-20 were generated that included the replication region (pLS203) and the replication region plus mobilization genes (pLS208). The plasmid pLS203 was stably maintained without selection in Lactobacillus plantarum, Lactobacillus fermentum, and the pSF118-20-cured derivative strain of L. salivarius UCC118 (strain LS201). Cloning in pLS203 of genes encoding luciferase and green fluorescent protein, and expression from a constitutive L. salivarius promoter, demonstrated the utility of this vector for the expression of heterologous genes in Lactobacillus. This study thus expands the knowledge base and vector repertoire of probiotic lactobacilli. PMID:18390685

  2. Lactobacillus iners: Friend or Foe?

    PubMed

    Petrova, Mariya I; Reid, Gregor; Vaneechoutte, Mario; Lebeer, Sarah

    2017-03-01

    The vaginal microbial community is typically characterized by abundant lactobacilli. Lactobacillus iners, a fairly recently detected species, is frequently present in the vaginal niche. However, the role of this species in vaginal health is unclear, since it can be detected in normal conditions as well as during vaginal dysbiosis, such as bacterial vaginosis, a condition characterized by an abnormal increase in bacterial diversity and lack of typical lactobacilli. Compared to other Lactobacillus species, L. iners has more complex nutritional requirements and a Gram-variable morphology. L. iners has an unusually small genome (ca. 1 Mbp), indicative of a symbiotic or parasitic lifestyle, in contrast to other lactobacilli that show niche flexibility and genomes of up to 3-4 Mbp. The presence of specific L. iners genes, such as those encoding iron-sulfur proteins and unique σ-factors, reflects a high degree of niche specification. The genome of L. iners strains also encodes inerolysin, a pore-forming toxin related to vaginolysin of Gardnerella vaginalis. Possibly, this organism may have clonal variants that in some cases promote a healthy vagina, and in other cases are associated with dysbiosis and disease. Future research should examine this friend or foe relationship with the host. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species].

    PubMed

    Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei

    2009-02-01

    We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.

  4. Haloferax volcanii archaeosortase is required for motility, mating, and C-terminal processing of the S-layer glycoprotein: Haloferax volcanii archeosortase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdul Halim, Mohd Farid; Pfeiffer, Friedhelm; Zou, James

    2013-05-28

    Cell surfaces are decorated by a variety of proteins that facilitate interactions with their environments and support cell stability.These secreted proteins are anchored to the cell by mechanisms that are diverse, and, in archaea, poorly understood. Recently published in silico data suggest that in some species a subset of secreted euryarchaeal proteins, which includes the S-­layer glycoprotein, is processed and covalently linked tot he cell membrane by enzymes referred to as archaeosortases. In silico work led to the proposal that an independent, sortase-like system for proteolysis-coupled carboxy-terminal lipid modification exists in bacteria (exosortase) and archaea (archaeosortase). Here, we provide themore » first in vivo characterization of an archaeosortase in the haloarchaeal model organism Haloferax volcanii. Deletion of the artA gene (HVO_0915) resulted in multiple biological phenotypes: (a) poor growth, especially under low-salt conditions, (b) alterations in cell shape and the S-layer, (c) impaired motility, suppressors of which still exhibit poor growth, and (d) impaired conjugation. We studied one of the ArtA substrates, the S-layer glycoprotein, using detailed proteomic analysis. While the carboxy-terminal region of S-layer glycoproteins, consisting of a threonine-rich O-glycosylated region followed by a hydrophobic transmembrane helix, has been notoriously resistant to any proteomic peptide identification, we were able to identify two overlapping peptides from the transmembrane domain present in the ΔartA strain but not in the wild-type strain. This clearly shows that ArtA is involved in carboxy-terminal posttranslational processing of the S-layer glycoprotein. As it is known from previous studies that a lipid is covalently attached to the carboxy-terminal region of the S-layer glycoprotein, our data strongly support the conclusion that archaeosortase functions analogously to sortase, mediating proteolysis-coupled, covalent cell surface

  5. Lactobacillus Strain Diversity Based on Partial hsp60 Gene Sequences and Design of PCR-Restriction Fragment Length Polymorphism Assays for Species Identification and Differentiation▿ †

    PubMed Central

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages. PMID:17993558

  6. Genetic Characterization and Physiological Role of Endopeptidase O from Lactobacillus helveticus CNRZ32

    PubMed Central

    Chen, Yo-Shen; Steele, James L.

    1998-01-01

    A previously identified insert expressing an endopeptidase from a Lactobacillus helveticus CNRZ32 genomic library was characterized. Nucleotide sequence analysis revealed an open reading frame of 1,941 bp encoding a putative protein of 71.2 kDa which contained a zinc-protease motif. Protein homology searches revealed that this enzyme has 40% similarity with endopeptidase O (PepO) from Lactococcus lactis P8-2-47. Northern hybridization revealed that pepO is monocistronic and is expressed throughout the growth phase. CNRZ32 derivatives lacking PepO activity were constructed via gene replacement. Enzyme assays revealed that the PepO mutant had significantly reduced endopeptidase activity when compared to CNRZ32 with two of the three substrates examined. Growth studies indicated that PepO has no detectable effect on growth rate or acid production by Lactobacillus helveticus CNRZ32 in amino acid defined or skim milk medium. PMID:9726890

  7. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, William J.; Public Health England, Porton Down, Salisbury SP4 0JG; Kirby, Jonathan M.

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA)more » into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.« less

  8. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  9. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed Central

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387

  10. Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.

    PubMed

    Do Carmo, A P; da Silva, D F; De Oliveira, M N V; Borges, A C; De Carvalho, A F; De Moraes, C A

    2011-09-01

    A basic requirement for the prediction of the potential use of lactic acid bacteria (LAB) in the dairy industry is the identification of specific genes involved in flavour-forming pathways. The probiotic Lactobacillus delbrueckii UFV H2b20 was submitted to a genetic characterisation and phylogenetic analysis of genes involved in protein catabolism. Eight genes belonging to this system were identified, which possess a closely phylogenetic relationship to NCFM strains representative, as it was demonstrated for oppC and oppBII, encoding oligopeptide transport system components. PepC, PepN, and PepX might be essential for growth of LAB, probiotic or not, since the correspondent genes are always present, including in L. delbrueckii UFV H2b20 genome. For pepX gene, a probable link between carbohydrate catabolism and PepX expression may exists, where it is regulated by PepR1/CcpA-like, a common feature between Lactobacillus strains and also in L. delbrueckii UFV H2b20. The well conserved evolutionary history of the ilvE gene is evidence that the pathways leading to branched-chain amino acid degradation, such as isoleucine and valine, are similar among L. delbrueckii subsp. bulgaricus strains and L. delbrueckii UFV H2b20. Thus, the involvement of succinate in flavour formation can be attributed to IlvE activity. The presence of aminopeptidase G in L. delbrueckii UFV H2b20 genome, which is absent in several strains, might improve the proteolytic activity and effectiveness. The nucleotide sequence encoding PepG revealed that it is a cysteine endopeptidase, belonging to Peptidase C1 superfamily; sequence analysis showed 99% identity with L. delbrueckii subsp. bulgaricus ATCC 11842 pepG, whereas protein sequence analysis revealed 100% similarity with PepG from the same organism. The present study proposes a schematic model to explain how the proteolytic system of the probiotic L. delbrueckii UFV H2b20 works, based on the components identified so far.

  11. Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles.

    PubMed

    Lakatos, Mathias; Matys, Sabine; Raff, Johannes; Pompe, Wolfgang

    2015-11-01

    Herein, we present simple and rapid colorimetric and UV/VIS spectroscopic methods for detecting anionic arsenic (V) complexes in aqueous media. The methods exploit the aggregation of S-layer-functionalized spherical gold nanoparticles of sizes between 20 and 50 nm in the presence of arsenic species. The gold nanoparticles were functionalized with oligomers of the S-layer protein of Lysinibacillus sphaericus JG-A12. The aggregation of the nanoparticles results in a color change from burgundy-red for widely dispersed nanoparticles to blue for aggregated nanoparticles. A detailed signal analysis was achieved by measuring the shift of the particle plasmon resonance signal with UV/VIS spectroscopy. To further improve signal sensitivity, the influence of larger nanoparticles was tested. In the case of 50 nm gold nanoparticles, a concentration of the anionic arsenic (V) complex lower than 24 ppb was detectable. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Kinetic analysis and mathematical modeling of growth parameters of Lactobacillus plantarum in protein-rich isolates from tomato seed.

    PubMed

    Mechmeche, Manel; Kachouri, Faten; Yaghlane, Hana B; Ksontini, Hamida; Setti, Khaoula; Hamdi, Moktar

    2017-03-01

    The aim of the present study was to evaluate the applicability of using protein-rich isolates from tomato seed as a sole source of nutrition for the growth of lactic acid bacteria. Unstructured mathematical and logistic models were proposed to describe growth, pH drop, lactic acid production and nutriment consumption by Lactobacillus plantarum in whole and defatted isolates in order to compare their suitability for the production of a fermented beverage. These media have considerable good quantities of nutriment that allowed the growth of L. plantarum, after which the cell numbers begin to decline. The maximum biomass was observed in defatted isolate (1.42 g L -1 ) followed by the whole isolate (1.24 g L -1 ). The lactic acid increased by about 5.5 and 6.5 times respectively in whole and defatted protein isolates. However, significant nutriment consumption occurred during the growth phase as well as stationary phase. A reduction of 61.90% and 95.88% in sugar content, as well as 21.91% and 16.93% reduction in protein content were observed respectively in whole and defatted isolates. In most cases, the proposed models adequately describe the biochemical changes taking place during fermentation and are a promising approach for the formulation of tomato seed-based functional foods.

  13. Identification of Lactobacillus alimentarius and Lactobacillus farciminis with 16S-23S rDNA intergenic spacer region polymorphism and PCR amplification using species-specific oligonucleotide.

    PubMed

    Rachman, C N; Kabadjova, P; Prévost, H; Dousset, X

    2003-01-01

    The restriction fragment length polymorphism (RFLP) method was used to differentiate Lactobacillus species having closely related identities in the 16S-23S rDNA intergenic spacer region (ISR). Species-specific primers for Lact. farciminis and Lact. alimentarius were designed and allowed rapid identification of these species. The 16S-23S rDNA spacer region was amplified by primers tAla and 23S/p10, then digested by HinfI and TaqI enzymes and analysed by electrophoresis. Digestion by HinfI was not sufficient to differentiate Lact. sakei, Lact. curvatus, Lact. farciminis, Lact. alimentarius, Lact. plantarum and Lact. paraplantarum. In contrast, digestion carried out by TaqI revealed five different patterns allowing these species to be distinguished, except for Lact. plantarum from Lact. paraplantarum. The 16S-23S rDNA spacer region of Lact. farciminis and Lact. alimentarius were amplified and then cloned into vector pCR(R)2.1 and sequenced. The DNA sequences obtained were analysed and species-specific primers were designed from these sequences. The specificity of these primers was positively demonstrated as no response was obtained for 14 other species tested. The species-specific primers for Lact. farciminis and Lact. alimentarius were shown to be useful for identifying these species among other lactobacilli. The RFLP profile obtained upon digestion with HinfI and TaqI enzymes can be used to discriminate Lact. farciminis, Lact. alimentarius, Lact. sakei, Lact. curvatus and Lact. plantarum. In this paper, we have established the first species-specific primer for PCR identification of Lact. farciminis and Lact. alimentarius. Both species-specific primer and RFLP, could be used as tools for rapid identification of lactobacilli up to species level.

  14. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamakoshi, Takako; Makino, Teruhiko, E-mail: tmakino@med.u-toyama.ac.jp; Ur Rehman, Mati

    2013-03-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain andmore » a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes.« less

  15. Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†

    PubMed Central

    Russell, W. M.; Klaenhammer, T. R.

    2001-01-01

    The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918

  16. Immunogenicity in Swine of Orally Administered Recombinant Lactobacillus plantarum Expressing Classical Swine Fever Virus E2 Protein in Conjunction with Thymosin α-1 as an Adjuvant

    PubMed Central

    Xu, Yi-Gang; Guan, Xue-Ting; Liu, Zhong-Mei; Tian, Chang-Yong

    2015-01-01

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P < 0.05) in the levels of immune responses were observed between L. plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV. PMID:25819954

  17. Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform

    PubMed Central

    Bumgardner, Sara A.; Zhang, Lin; LaVoy, Alora S.; Frank, Chad B.; Kajikawa, Akinobu; Klaenhammer, Todd R.

    2018-01-01

    Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform. PMID:29734365

  18. Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults.

    PubMed

    Ait Seddik, Hamza; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2017-04-01

    Sixty-seven (67) lactic acid bacteria (LAB) isolates belonging to Lactobacillus genus were isolated from human feces and tested for their auto-aggregation and cell surface hydrophobicity in order to establish their adhesion capabilities, a prerequisite for probiotic selection. Strains with the upmost auto-aggregation and cell surface hydrophobicity scores were identified by MALDI-TOF spectrometry and 16S rDNA sequencing as Lactobacillus plantarum (p25lb1 and p98lb1) and Lactobacillus salivarius (p85lb1 and p104lb1). These strains were also able to adhere to human epithelial colorectal adenocarcinoma Caco-2 cells, with percentages ranging from 4.68 to 9.59%. They displayed good survival under conditions mimicking the gastrointestinal environment and remarkably impeded adhesion and invasion of human Caco-2 by Listeria monocytogenes and Enteropathogenic Escherichia coli. It should also be noted that Lb. plantarum p98lb1 was able to reduce in vitro cholesterol concentration by about 32%, offering an additional health attribute. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Draft Genome Sequence of Lactobacillus panis DSM 6035T, First Isolated from Sourdough

    PubMed Central

    Zhu, Yixin; Fang, Daiqiong; Shi, Ding; Li, Ang; Lv, Longxian; Yan, Ren; Yao, Jian; Hua, Dasong; Hu, Xinjun; Guo, Feifei; Wu, Wenrui; Guo, Jing; Chen, Yanfei; Jiang, Xiawei; Chen, Xiaoxiao

    2015-01-01

    We report a draft genome sequence of Lactobacillus panis DSM 6035T, isolated from sourdough. The genome of this strain is 2,082,789 bp long, with 47.9% G+C content. A total of 2,047 protein-coding genes were predicted. PMID:26205855

  20. Mixed Lactobacillus plantarum Strains Inhibit Staphylococcus aureus Induced Inflammation and Ameliorate Intestinal Microflora in Mice.

    PubMed

    Ren, Dayong; Gong, Shengjie; Shu, Jingyan; Zhu, Jianwei; Rong, Fengjun; Zhang, Zhenye; Wang, Di; Gao, Liangfeng; Qu, Tianming; Liu, Hongyan; Chen, Ping

    2017-01-01

    Objective . Staphylococcus aureus is an important pathogen that causes intestinal infection. We examined the immunomodulatory function of single and mixed Lactobacillus plantarum strains, as well as their impacts on the structure of the microbiome in mice infected with Staphylococcus aureus . The experiment was divided into three groups: protection, treatment, and control. Serum IFN- γ and IL-4 levels, as well as intestinal sIgA levels, were measured during and 1 week after infection with Staphylococcus aureus with and without Lactobacillus plantarum treatment. We used 16s rRNA tagged sequencing to analyze microbiome composition. IFN- γ /IL-4 ratio decreased significantly from infection to convalescence, especially in the mixed Lactobacillus plantarum group. In the mixed Lactobacillus plantarum group the secretion of sIgA in the intestine of mice (9.4-9.7 ug/mL) was significantly higher than in the single lactic acid bacteria group. The dominant phyla in mice are Firmicutes , Bacteroidetes , and Proteobacteria . Treatment with mixed lactic acid bacteria increased the anti-inflammatory factor and the secretion of sIgA in the intestine of mice infected with Staphylococcus aureus and inhibited inflammation.

  1. The probiotic Lactobacillus johnsonii NCC 533 produces high-molecular-mass inulin from sucrose by using an inulosucrase enzyme.

    PubMed

    Anwar, Munir A; Kralj, Slavko; van der Maarel, Marc J E C; Dijkhuizen, Lubbert

    2008-06-01

    Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with beta(2-6) and beta(2-1) linkages, respectively. The probiotic bacterium Lactobacillus johnsonii strain NCC 533 possesses a single fructansucrase gene (open reading frame AAS08734) annotated as a putative levansucrase precursor. However, (13)C nuclear magnetic resonance (NMR) analysis of the fructan product synthesized in situ revealed that this is of the inulin type. The ftf gene of L. johnsonii was cloned and expressed to elucidate its exact identity. The purified L. johnsonii protein was characterized as an inulosucrase enzyme, producing inulin from sucrose, as identified by (13)C NMR analysis. Thin-layer chromatographic analysis of the reaction products showed that InuJ synthesized, besides the inulin polymer, a broad range of fructose oligosaccharides. Maximum InuJ enzyme activity was observed in a pH range of 4.5 to 7.0, decreasing sharply at pH 7.5. InuJ exhibited the highest enzyme activity at 55 degrees C, with a drastic decrease at 60 degrees C. Calcium ions were found to have an important effect on enzyme activity and stability. Kinetic analysis showed that the transfructosylation reaction of the InuJ enzyme does not obey Michaelis-Menten kinetics. The non-Michaelian behavior of InuJ may be attributed to the oligosaccharides that were initially formed in the reaction and which may act as better acceptors than the growing polymer chain. This is only the second example of the isolation and characterization of an inulosucrase enzyme and its inulin (oligosaccharide) product from a Lactobacillus strain. Furthermore, this is the first Lactobacillus strain shown to produce inulin polymer in situ.

  2. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods

    PubMed Central

    2010-01-01

    Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602

  3. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods.

    PubMed

    Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J

    2010-09-17

    Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.

  4. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth.

    PubMed

    Keski-Nisula, Leea; Kyynäräinen, Hanna-Reetta; Kärkkäinen, Ulla; Karhukorpi, Jari; Heinonen, Seppo; Pekkanen, Juha

    2013-05-01

    To estimate the transmission of maternal vaginal microbiota to neonates during term delivery, focusing on Lactobacillus flora in relation to various obstetric clinical factors. Fifty consecutive pregnant healthy women with singleton term pregnancies and their newborn infants. Vertical transmission of Lactobacillus flora to the newborn during delivery was evaluated in 45 mother-newborn pairs. Lactobacillus-dominant mixed flora was detected in 90% (N = 45) of vaginal samples, but only in 28% (N = 14) of neonatal cultures (transmission rate 31%). All neonates with Lactobacillus-dominant mixed flora had findings similar to those in maternal cultures. Cocci-dominant flora was the most common finding in neonates. Administration of antibiotics to the mother during the intrapartum period before birth and duration of rupture of membranes (ROM), regardless of maternal antibiotic treatment, were associated significantly with a decreased transmission rate of Lactobacillus-dominant mixed flora to neonates. Maternal intrapartum antibiotics and prolonged expectant management after ROM were associated with decreased transmission rate of vaginal Lactobacillus flora to the neonate during birth. As early colonization of Lactobacillus flora may have a preventive role in the development of allergic diseases later, the significance of intrapartum prophylactic antibiotics needs to be highlighted in forthcoming studies, especially as regards immunological development of the offspring. ©2013 The Author(s)/Acta Paediatrica ©2013 Foundation Acta Paediatrica.

  5. X-Prolyl Dipeptidyl Aminopeptidase Gene (pepX) Is Part of the glnRA Operon in Lactobacillus rhamnosus

    PubMed Central

    Varmanen, Pekka; Savijoki, Kirsi; Åvall, Silja; Palva, Airi; Tynkkynen, Soile

    2000-01-01

    A peptidase gene expressing X-prolyl dipeptidyl aminopeptidase (PepX) activity was cloned from Lactobacillus rhamnosus 1/6 by using the chromogenic substrate l-glycyl-l-prolyl-β-naphthylamide for screening of a genomic library in Escherichia coli. The nucleotide sequence of a 3.5-kb HindIII fragment expressing the peptidase activity revealed one complete open reading frame (ORF) of 2,391 nucleotides. The 797-amino-acid protein encoded by this ORF was shown to be 40, 39, and 36% identical with PepXs from Lactobacillus helveticus, Lactobacillus delbrueckii, and Lactococcus lactis, respectively. By Northern analysis with a pepX-specific probe, transcripts of 4.5 and 7.0 kb were detected, indicating that pepX is part of a polycistronic operon in L. rhamnosus. Cloning and sequencing of the upstream region of pepX revealed the presence of two ORFs of 360 and 1,338 bp that were shown to be able to encode proteins with high homology to GlnR and GlnA proteins, respectively. By multiple primer extension analyses, the only functional promoter in the pepX region was located 25 nucleotides upstream of glnR. Northern analysis with glnA- and pepX-specific probes indicated that transcription from glnR promoter results in a 2.0-kb dicistronic glnR-glnA transcript and also in a longer read-through polycistronic transcript of 7.0 kb that was detected with both probes in samples from cells in exponential growth phase. The glnA gene was disrupted by a single-crossover recombinant event using a nonreplicative plasmid carrying an internal part of glnA. In the disruption mutant, glnRA-specific transcription was derepressed 10-fold compared to the wild type, but the 7.0-kb transcript was no longer detectable with either the glnA- or pepX-specific probe, demonstrating that pepX is indeed part of glnRA operon in L. rhamnosus. Reverse transcription-PCR analysis further supported this operon structure. An extended stem-loop structure was identified immediately upstream of pepX in the gln

  6. X-prolyl dipeptidyl aminopeptidase gene (pepX) is part of the glnRA operon in Lactobacillus rhamnosus.

    PubMed

    Varmanen, P; Savijoki, K; Avall, S; Palva, A; Tynkkynen, S

    2000-01-01

    A peptidase gene expressing X-prolyl dipeptidyl aminopeptidase (PepX) activity was cloned from Lactobacillus rhamnosus 1/6 by using the chromogenic substrate L-glycyl-L-prolyl-beta-naphthylamide for screening of a genomic library in Escherichia coli. The nucleotide sequence of a 3.5-kb HindIII fragment expressing the peptidase activity revealed one complete open reading frame (ORF) of 2,391 nucleotides. The 797-amino-acid protein encoded by this ORF was shown to be 40, 39, and 36% identical with PepXs from Lactobacillus helveticus, Lactobacillus delbrueckii, and Lactococcus lactis, respectively. By Northern analysis with a pepX-specific probe, transcripts of 4.5 and 7.0 kb were detected, indicating that pepX is part of a polycistronic operon in L. rhamnosus. Cloning and sequencing of the upstream region of pepX revealed the presence of two ORFs of 360 and 1,338 bp that were shown to be able to encode proteins with high homology to GlnR and GlnA proteins, respectively. By multiple primer extension analyses, the only functional promoter in the pepX region was located 25 nucleotides upstream of glnR. Northern analysis with glnA- and pepX-specific probes indicated that transcription from glnR promoter results in a 2.0-kb dicistronic glnR-glnA transcript and also in a longer read-through polycistronic transcript of 7.0 kb that was detected with both probes in samples from cells in exponential growth phase. The glnA gene was disrupted by a single-crossover recombinant event using a nonreplicative plasmid carrying an internal part of glnA. In the disruption mutant, glnRA-specific transcription was derepressed 10-fold compared to the wild type, but the 7.0-kb transcript was no longer detectable with either the glnA- or pepX-specific probe, demonstrating that pepX is indeed part of glnRA operon in L. rhamnosus. Reverse transcription-PCR analysis further supported this operon structure. An extended stem-loop structure was identified immediately upstream of pepX in the gln

  7. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells.

    PubMed

    Miyoshi, Yukihiro; Okada, Sanae; Uchimura, Tai; Satoh, Eiichi

    2006-07-01

    Lactobacillus reuteri is one of the dominant lactobacilli found in the gastrointestinal tract of various animals. A surface protein of L. reuteri 104R, mucus adhesion promoting protein (MapA), is considered to be an adhesion factor of this strain. We investigated the relation between MapA and adhesion of L. reuteri to human intestinal (Caco-2) cells. Quantitative analysis of the adhesion of L. reuteri strains to Caco-2 cells showed that various L. reuteri strains bind not only to mucus but also to intestinal epithelial cells. In addition, purified MapA bound to Caco-2 cells, and this binding inhibited the adhesion of L. reuteri in a concentration-dependent manner. Based on these observations, the adhesion of L. reuteri appears due to the binding of MapA to receptor-like molecules on Caco-2 cells. Further, far-western analysis indicated the existence of multiple receptor-like molecules in Caco-2 cells.

  8. An Extracellular Serine/Threonine-Rich Protein from Lactobacillus plantarum NCIMB 8826 Is a Novel Aggregation-Promoting Factor with Affinity to Mucin

    PubMed Central

    Hevia, Arancha; Martínez, Noelia; Ladero, Víctor; Álvarez, Miguel A.; Margolles, Abelardo

    2013-01-01

    Autoaggregation in lactic acid bacteria is directly related to the production of certain extracellular proteins, notably, aggregation-promoting factors (APFs). Production of aggregation-promoting factors confers beneficial traits to probiotic-producing strains, contributing to their fitness for the intestinal environment. Furthermore, coaggregation with pathogens has been proposed to be a beneficial mechanism in probiotic lactic acid bacteria. This mechanism would limit attachment of the pathogen to the gut mucosa, favoring its removal by the human immune system. In the present paper, we have characterized a novel aggregation-promoting factor in Lactobacillus plantarum. A mutant with a knockout of the D1 gene showed loss of its autoaggregative phenotype and a decreased ability to bind to mucin, indicating an adhesion role of this protein. In addition, heterologous production of the D1 protein or an internal fragment of the protein, characterized by its abundance in serine/threonine, strongly induced autoaggregation in Lactococcus lactis. This result strongly suggested that this internal fragment is responsible for the bioactivity of D1 as an APF. To our knowledge, this is the first report on a gene coding for an aggregation-promoting factor in Lb. plantarum. PMID:23892754

  9. Atomic-layer soft plasma etching of MoS2

    PubMed Central

    Xiao, Shaoqing; Xiao, Peng; Zhang, Xuecheng; Yan, Dawei; Gu, Xiaofeng; Qin, Fang; Ni, Zhenhua; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2016-01-01

    Transition from multi-layer to monolayer and sub-monolayer thickness leads to the many exotic properties and distinctive applications of two-dimensional (2D) MoS2. This transition requires atomic-layer-precision thinning of bulk MoS2 without damaging the remaining layers, which presently remains elusive. Here we report a soft, selective and high-throughput atomic-layer-precision etching of MoS2 in SF6 + N2 plasmas with low-energy (<0.4 eV) electrons and minimized ion-bombardment-related damage. Equal numbers of MoS2 layers are removed uniformly across domains with vastly different initial thickness, without affecting the underlying SiO2 substrate and the remaining MoS2 layers. The etching rates can be tuned to achieve complete MoS2 removal and any desired number of MoS2 layers including monolayer. Layer-dependent vibrational and photoluminescence spectra of the etched MoS2 are also demonstrated. This soft plasma etching technique is versatile, scalable, compatible with the semiconductor manufacturing processes, and may be applicable for a broader range of 2D materials and intended device applications. PMID:26813335

  10. Assessment of phenotypic and genotypic antibiotic susceptibility of vaginal Lactobacillus sp.

    PubMed

    Štšepetova, J; Taelma, H; Smidt, I; Hütt, P; Lapp, E; Aotäht, E; Mändar, R

    2017-08-01

    To assess antibiotic susceptibility of vaginal lactobacilli strains and provide the data required for assessing the potential of antibiotic resistance risk of new strains selected as probiotic. Potential probiotic vaginal lactobacilli used in the study included 31 vaginal strains of Lactobacillus crispatus (n = 27), Lactobacillus gasseri (n = 3) and Lactobacillus jensenii (n = 1) obtained from the collection of Competence Centre on Health Technologies. Two commercial probiotic strains were used as controls (Lactobacillus rhamnosus GR-1 and Lactobacillus fermentum RC-14). The phenotypic and genotypic antibiotic resistances of the strains were determined by E-test and PCR methods. The location (chromosomal DNA or plasmid) of antibiotic resistance genes was also detected. All lactobacilli strains expressed high level of resistance to kanamycin, metronidazole, norfloxacin and trimethoprim/sulphamethoxazole. Some of the strains also expressed resistance to other antibiotics (chloramphenicol, vancomycin) indicating acquired resistance. I class integrons were found in 20% (6/31) of the strains. The RPP (ribosomal protection protein) gene was found to be positive in 30% (9/31) of the strains. Only one L. jensenii strain was determined with tet(M) gene. The tet(K) gene was positive in 26·7% (8/31) and erm(B) gene in 43·3% (13/31) of strains. Three RPP and both four tet(K) and erm(B) genes were located in plasmids. High antibiotic resistance to clinically important antibiotics was demonstrated, including metronidazole, sulphonamides, aminoglycoside and quinolones. In addition, acquired tetracycline and erythromycin resistance genes were detected in either plasmid or chromosomal DNA of certain isolates, in some of the cases for the first time in the literature. It appears that antibiotic resistance genes erm(B) and tet(K) are widely spread in vaginal lactobacilli. This study provides new data about antimicrobial resistance and genotypic diversity of vaginal

  11. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785.

    PubMed

    Dertli, Enes; Mayer, Melinda J; Narbad, Arjan

    2015-02-04

    The bacterial cell surface is a crucial factor in cell-cell and cell-host interactions. Lactobacillus johnsonii FI9785 produces an exopolysaccharide (EPS) layer whose quantity and composition is altered in mutants that harbour genetic changes in their eps gene clusters. We have assessed the effect of changes in EPS production on cell surface characteristics that may affect the ability of L. johnsonii to colonise the poultry host and exclude pathogens. Analysis of physicochemical cell surface characteristics reflected by Zeta potential and adhesion to hexadecane showed that an increase in EPS gave a less negative, more hydrophilic surface and reduced autoaggregation. Autoaggregation was significantly higher in mutants that have reduced EPS, indicating that EPS can mask surface structures responsible for cell-cell interactions. EPS also affected biofilm formation, but here the quantity of EPS produced was not the only determinant. A reduction in EPS production increased bacterial adhesion to chicken gut explants, but made the bacteria less able to survive some stresses. This study showed that manipulation of EPS production in L. johnsonii FI9785 can affect properties which may improve its performance as a competitive exclusion agent, but that positive changes in adhesion may be compromised by a reduction in the ability to survive stress.

  12. Molecular Characterization of Mosquitocidal Toxin (Surface Layer Protein, SLP) from Bacillus cereus VCRC B540.

    PubMed

    Mani, Chinnasamy; Selvakumari, Jeyaperumal; Han, YeonSoo; Jo, YongHun; Thirugnanasambantham, Krishnaraj; Sundarapandian, Somaiah; Poopathi, Subbiah

    2018-04-01

    A marine Bacillus cereus (VCRC B540) with mosquitocidal effect was recently reported from red snapper fish (Lutjanus sanguineous) gut and surface layer protein (S-layer protein, SLP) was reported to be mosquito larvicidal factor. In this present study, the gene encoding the surface layer protein was amplified from the genomic DNA and functionally characterized. Amplification of SLP-encoding gene revealed 1,518 bp PCR product, and analysis of the sequence revealed the presence of 1482 bp open reading frame with coding capacity for a polypeptide of 493 amino acids. Phylogenetic analysis revealed with homology among closely related Bacillus cereus groups of organisms as well as Bacillus strains. Removal of nucleotides encoding signaling peptide revealed the functional cloning fragment of length 1398 bp. Theoretical molecular weight (51.7 kDa) and isoelectric point (5.99) of the deduced functional SLP protein were predicted using ProtParam. The amplified PCR product was cloned into a plasmid vector (pGEM-T), and the open reading frame free off signaling peptide was subsequently cloned inpET-28a(+) and expressed in Escherichia coli BL21 (DE3). The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant SLP was confirmed using western blotting, and functional SLP revealed mosquito larvicidal property. Therefore, the major findings revealed that SLP is a factor responsible for mosquitocidal activity, and the molecular characterization of this toxin was extensively studied.

  13. Adsorption properties of BSA and DsRed proteins deposited on thin SiO2 layers: optically non-absorbing versus absorbing proteins

    NASA Astrophysics Data System (ADS)

    Scarangella, A.; Soumbo, M.; Villeneuve-Faure, C.; Mlayah, A.; Bonafos, C.; Monje, M.-C.; Roques, C.; Makasheva, K.

    2018-03-01

    Protein adsorption on solid surfaces is of interest for many industrial and biomedical applications, where it represents the conditioning step for micro-organism adhesion and biofilm formation. To understand the driving forces of such an interaction we focus in this paper on the investigation of the adsorption of bovine serum albumin (BSA) (optically non-absorbing, model protein) and DsRed (optically absorbing, naturally fluorescent protein) on silica surfaces. Specifically, we propose synthesis of thin protein layers by means of dip coating of the dielectric surface in protein solutions with different concentrations (0.01-5.0 g l-1). We employed spectroscopic ellipsometry as the most suitable and non-destructive technique for evaluation of the protein layers’ thickness and optical properties (refractive index and extinction coefficient) after dehydration, using two different optical models, Cauchy for BSA and Lorentz for DsRed. We demonstrate that the thickness, the optical properties and the wettability of the thin protein layers can be finely controlled by proper tuning of the protein concentration in the solution. These results are correlated with the thin layer morphology, investigated by AFM, FTIR and PL analyses. It is shown that the proteins do not undergo denaturation after dehydration on the silica surface. The proteins arrange themselves in a lace-like network for BSA and in a rod-like structure for DsRed to form mono- and multi-layers, due to different mechanisms driving the organization stage.

  14. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains

    PubMed Central

    Garcia, Estefânia F.; Luciano, Winnie A.; Xavier, Danilo E.; da Costa, Whyara C. A.; de Sousa Oliveira, Kleber; Franco, Octávio L.; de Morais Júnior, Marcos A.; Lucena, Brígida T. L.; Picão, Renata C.; Magnani, Marciane; Saarela, Maria; de Souza, Evandro L.

    2016-01-01

    This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains. PMID:27625647

  15. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins.

    PubMed

    Glenting, Jacob; Beck, Hans Christian; Vrang, Astrid; Riemann, Holger; Ravn, Peter; Hansen, Anne Maria; Antonsson, Martin; Ahrné, Siv; Israelsen, Hans; Madsen, Søren

    2013-06-12

    An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Genome Sequence of the Cheese-Starter Strain Lactobacillus delbrueckii subsp. lactis CRL 581.

    PubMed

    Hebert, Elvira María; Raya, Raúl R; Brown, Lucía; Font de Valdez, Graciela; Savoy de Giori, Graciela; Taranto, María Pía

    2013-08-08

    We report the genome sequence of Lactobacillus delbrueckii subsp. lactis CRL 581 (1,911,137 bp, GC 49.7%), a proteolytic strain isolated from a homemade Argentinian hard cheese which has a key role in bacterial nutrition and releases bioactive health-beneficial peptides from milk proteins.

  17. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics.

    PubMed

    Lhomme, Emilie; Orain, Servane; Courcoux, Philippe; Onno, Bernard; Dousset, Xavier

    2015-11-20

    Fourteen bakeries located in different regions of France were selected. These bakers use natural sourdough and organic ingredients. Consequently, different organic sourdoughs used for the manufacture of French bread were studied by the enumeration of lactic acid bacteria (LAB) and 16S rRNA sequencing of the isolates. In addition, after DNA extraction the bacterial diversity was assessed by pyrosequencing of the 16S rDNA V1-V3 region. Although LAB counts showed significant variations (7.6-9.5log10CFU/g) depending on the sourdough studied, their identification through a polyphasic approach revealed a large predominance of Lactobacillus sanfranciscensis in all samples. In ten sourdoughs, both culture and independent methods identified L. sanfranciscensis as the dominant LAB species identified. In the remaining sourdoughs, culture methods identified 30-80% of the LAB as L. sanfranciscensis whereas more than 95% of the reads obtained by pyrosequencing belonged to L. sanfranciscensis. Other sub-dominant species, such as Lactobacillus curvatus, Lactobacillus hammesii, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei, were also identified. Quantification of L. sanfranciscensis by real-time PCR confirmed the predominance of this species ranging from 8.24 to 10.38log10CFU/g. Regarding the acidification characteristics, sourdough and related bread physico-chemical characteristics varied, questioning the involvement of sub-dominant species or L. sanfranciscensis intra-species diversity and/or the role of the baker's practices. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations.

    PubMed

    Nielsen, Dennis S; Schillinger, Ulrich; Franz, Charles M A P; Bresciani, José; Amoa-Awua, Wisdom; Holzapfel, Wilhelm H; Jakobsen, Mogens

    2007-07-01

    Three Gram-positive, catalase-negative, motile, rod-shaped strains, designated L486, L489(T) and L499, were isolated from fermenting cocoa. These organisms produced DL-lactic acid from glucose without gas formation. Ammonia was not produced from arginine. Acid was produced from amygdalin, D-cellobiose, aesculin, D-fructose, D-glucose, D-galactose, D-mannitol, D-mannose, N-acetylglucosamine, L-rhamnose, sucrose, salicin and D-trehalose. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type. A 16S rRNA gene sequence analysis revealed that the isolates belong phylogenetically to the genus Lactobacillus and are closely related to Lactobacillus nagelii, Lactobacillus vini and Lactobacillus satsumensis. Low DNA-DNA reassociation values were obtained between the isolates and the phylogenetically closest neighbours. On the basis of the genetic and phenotypic results, the isolates are considered to represent a novel species, for which the name Lactobacillus ghanensis is proposed. The type strain is L489(T) (=DSM 18630(T)=CCUG 53453(T)).

  19. Different immune regulatory potential of Lactobacillus plantarum and Lactobacillus sakei isolated from Kimchi.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Rim; Gim, Min Geun; Chung, Dae Kyun

    2014-12-28

    It is known that lactic acid bacteria (LAB) have many beneficial health effects, including antioxidative activity and immune regulation. In this study, the immune regulatory effects of Lactobacillus sakei and Lactobacillus plantarum, which are found in different types of kimchi, were evaluated. L. sakei and its lipoteichoic acid (LTA) have greater immune stimulating potential in IL-12, IFN-γ, and TNF-α production as compared with L. plantarum in an in vitro condition. On the other hand, L. plantarum is assumed to repress the Th1 immune response in murine experiments. After being injected with LPS, L. plantarum-fed mice maintained a healthier state, and the level of TNF-α in their blood was lower than in other bacterial strainfed mice and in the LPS-only control mice. Additionally, IL-12 production was significantly decreased and the production of IL-4 was greatly increased in the splenocytes from L. plantarum-fed mice. Further experiments revealed that the pre-injection of purified LTA from L. plantarum (pLTA), L. sakei (sLTA), and S. aureus (aLTA) decreased TNF-α and IL-4 production in LPS-injected mice. Mouse IL-12, however, was significantly increased by aLTA pre-injection. In conclusion, the L. sakei and L. plantarum strains have immune regulation effects, but the effects differ in cytokine production and the regulatory effects of the Th1/Th2 immune response.

  20. Antimicrobial activity of lactobacillus strains against uropathogens.

    PubMed

    Shim, Yoon Hee; Lee, Seung Joo; Lee, Jung Won

    2016-10-01

    The use of lactobacillus probiotics has been proposed as an alternative to prophylactic antibiotics for preventing urinary tract infection (UTI) in the era of antibiotic resistance. In this study, the antimicrobial activity of lactobacillus strains against uropathogens, was evaluated and compared with that of antibiotics. To evaluate inhibitory activities of lactobacilli against uropathogens, six lactobacillus strains (L. gasseri, L. rhamnosus, L. acidophilus, L. plantarum, L. paracasei, L. acidophilus) and four representative uropathogens of infantile UTI (extended-spectrum beta-lactamase [ESBL](-) Escherichia coli, ESBL(+) E. coli, Proteus vulgaris, Enterococcus fecalis) were selected. Lactobacillus strain in vitro inhibition of each uropathogen was evaluated on MRS agar well diffusion assay and compared with that of commercial antibiotic discs. Average inhibitory zone for each of the six lactobacillus strains against the four uropathogens showed slightly different but consistent inhibition (inhibitory zone diameter, 10.5-20.0 mm). This was different to that of the antibiotic discs, which had a wider range of inhibition (inhibitory zone diameter, <6.0-27.5 mm) depending on the uropathogen resistance pattern. The inhibitory zone of the six lactobacillus strains was between that of sensitive and resistant antibiotics (P < 0.05). Lactobacillus strains had similar moderate antimicrobial activities against uropathogens. Further research is needed to ascertain the strains with the best probiotic potential. © 2016 Japan Pediatric Society.

  1. Novel Biocatalysts Combining the Special Assembly Properties of S-Layer Proteins and the Functionality of Enzymes of Extremophiles (BIOCAT)

    DTIC Science & Technology

    2010-04-14

    THE FUNCTIONALITY OF ENZYMES OF EXTREMOPHILES 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-07-1-0313 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR... Enzymes of Extremophiles (BIOCAT) Agreement Award No.: FA9550-07-1-0313 Reporting period: April 15th. 2008 to April 14th, 2010 3Lo\\*p<\\\\%\\%, Prof...Status of effort 4 4. Nanobiotechnologie of S-layers 4 5. Biocat accomplishments 6 5.1. The S-layer-based enzyme immobilization system 6 5.2. S

  2. The aggregation-promoting factor in Lactobacillus delbrueckii ssp. bulgaricus: confirmation of the presence and expression of the apf gene and in silico analysis of the corresponding protein.

    PubMed

    Yungareva, Tsvetelina; Urshev, Zoltan

    2018-06-19

    In lactobacilli the aggregation phenotype is linked to their ability to colonize the intestinal and urogenital tracts and to counteract pathogenic bacteria. In all available complete genome sequences of Lactobacillus delbrueckii ssp. bulgaricus there are at least two genes putatively related to aggregation, one of which is annotated as aggregation-promoting factor (apf). Here we report the results from the in silico analysis of this gene and its product. The apf gene was present in the genome of all 70 tested L. delbr. ssp. bulgaricus strains. Its expression was confirmed for a selection of five strains with aggregation phenotype and two aggregation-negative strains. The mature Apf protein had a length of 257-284 amino acids with predicted molecular weight in the range of 28.64-30.36 kDa and isoelectric point of 10.6 ± 0.1, showing some similarity to Apf1 and Apf2 from L. johnsonii NCC533 and Apf1 and Apf2 from L. gasseri which are similar in size (28-35 kDa) and share a similar high isoelectric point (pI > 9). Predictive analyzes have indicated that Apf is a secretory protein. The 30 amino acid signal peptide and the predicted cleavage site in the pre-protein suggested that it was processed by Type I Signal protease. In the mature Apf protein a glutamine-rich N-terminal region was followed by an unusual lysine/alanine-rich region with variable length, supposed to be positively charged under physiological conditions, interacting with bacterial teichoic acids. The alignment of the C-termini of the Apf proteins showed similarity to conserved C-terminal domains in aggregation-related proteins in other lactobacilli such as Apf1 of Lactobacillus johnsonii ATCC 11506 and the secretory protein Sep of L. fermentum BR11, that may be involved in non-covalent binding to carbohydrates. The C-terminal anchor and the cationic domain in Apf may serve as mediators of physical cell-to-cell interaction in L. delbr. ssp. bulgaricus.

  3. Lactobacillus arizonensis sp. nov., isolated from jojoba meal.

    PubMed

    Swezey, J L; Nakamura, L K; Abbott, T P; Peterson, R E

    2000-09-01

    Five strains of simmondsin-degrading, lactic-acid-producing bacteria were isolated from fermented jojoba meal. These isolates were facultatively anaerobic, gram-positive, non-motile, non-spore-forming, homofermentative, rod-shaped organisms. They grew singly and in short chains, produced lactic acid but no gas from glucose, and did not exhibit catalase activity. Growth occurred at 15 and 45 degrees C. All strains fermented cellobiose, D-fructose, D-galactose, D-glucose, lactose, maltose, D-mannitol, D-mannose, melibiose, D-ribose, salicin, D-sorbitol, sucrose and trehalose. Some strains fermented L-(-)-arabinose and L-rhamnose. D-Xylose was not fermented and starch was not hydrolysed. The mean G+C content of the DNA was 48 mol%. Phylogenetic analyses of 16S rDNA established that the isolates were members of the genus Lactobacillus. DNA reassociation of 45% or less was obtained between the new isolates and the reference strains of species with G+C contents of about 48 mol%. The isolates were differentiated from other homofermentative Lactobacillus spp. on the basis of 16S rDNA sequence divergence, DNA relatedness, stereoisomerism of the lactic acid produced, growth temperature and carbohydrate fermentation. The data support the conclusion that these organisms represent strains of a new species, for which the name Lactobacillus arizonensis is proposed. The type strain of L. arizonensis is NRRL B-14768T (= DSM 13273T).

  4. Complete genome sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated from fermented soybean.

    PubMed

    Liu, Chen-Jian; Wang, Rui; Gong, Fu-Ming; Liu, Xiao-Feng; Zheng, Hua-Jun; Luo, Yi-Yong; Li, Xiao-Ran

    2015-12-01

    Lactobacillus plantarum is an important probiotic and is mostly isolated from fermented foods. We sequenced the genome of L. plantarum strain 5-2, which was derived from fermented soybean isolated from Yunnan province, China. The strain was determined to contain 3114 genes. Fourteen complete insertion sequence (IS) elements were found in 5-2 chromosome. There were 24 DNA replication proteins and 76 DNA repair proteins in the 5-2 genome. Consistent with the classification of L. plantarum as a facultative heterofermentative lactobacillus, the 5-2 genome encodes key enzymes required for the EMP (Embden-Meyerhof-Parnas) and phosphoketolase (PK) pathways. Several components of the secretion machinery are found in the 5-2 genome, which was compared with L. plantarum ST-III, JDM1 and WCFS1. Most of the specific proteins in the four genomes appeared to be related to their prophage elements. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [Diversity of Lactobacillus in vagina of vulvovaginal candidiasis].

    PubMed

    2015-04-07

    To investigate the Lactobacillus species in the vaginas of vulvovaginal candidiasis and to assess the prevalence of each Lactobacillus species in vulvovaginal candidiasis. 154 vaginal samples were analyzed, 92 of which were from fertile healthy women, and 62 of which were from women with vulvovaginal candidiasis; and species-specific PCR showed the prevalence of each Lactobacillus species Species-specific PCR was used to investigate the prevalence of each Lactobacillus species in healthy Chinese women and the women with vulvovaginal candidiasis. In women with vulvovaginal candidiasis: L. iners (6.5%), L. cripatus (79.0%), L. gasseri (37.1%), L. jensenii (74.2%), L. acidophilus (16.1%), L. brevis (19.4%), L. plantarum (1.6%), L. johnsonii (51.6%), L. fermentum (8.1%), L. salivarius (9.7%), L. reuter (1.6%), L. paracasei (8.1%), L. delbrueckii (3. 2% ) ; More than two different Lactobacillus species coexisted in 98% of women with vulvovaginal candidiasis, and no anyone species existed in 2% of them; In fertile women: L. iners (82.6%), L. cripatus (70.7%), L. gasseri (67.4%), L. jensenii (40.2%), L. acidophilus (39.1%), L. brevis (23.9%), L. plantarum (5.4%), L. rhamnosus (1.1%), L. paracasei (1.1%), L. reuter (1.1%) i, L. johnsonii (3.3%), L. fermentum (2.2%), L. salivarius (2.2%); More than two different Lactobacillus species coexisted in 97% of fertile women, and only one species existed in 3% of fertile women. Species of lactobacillus in women with vulvovaginal candidiasis did not significantly reduced compared with healthy women. Lactobacillus inert may be a marker of the change of vaginal microenvironment; Lactobacillus crispatus is a dominant lactobacillus in the vaginal of fertile healthy women, pregnant women and women with vulvovaginal candidiasis.

  6. Gut REG3γ-Associated Lactobacillus Induces Anti-inflammatory Macrophages to Maintain Adipose Tissue Homeostasis

    PubMed Central

    Huang, Yugang; Qi, HouBao; Zhang, Zhiqian; Wang, Enlin; Yun, Huan; Yan, Hui; Su, Xiaomin; Liu, Yingquan; Tang, Zenzen; Gao, Yunhuan; Shang, Wencong; Zhou, Jiang; Wang, Tianze; Che, Yongzhe; Zhang, Yuan; Yang, Rongcun

    2017-01-01

    Gut microbiota may not only affect composition of local immune cells but also affect systemic immune cells. However, it is not completely clear how gut microbiota modulate these immune systems. Here, we found that there exist expanded macrophage pools in huREG3γtgIEC mice. REG3γ-associated Lactobacillus, which is homology to Lactobacillus Taiwanese, could enlarge macrophage pools not only in the small intestinal lamina propria but also in the spleen and adipose tissues. STAT3-mediated signal(s) was a critical factor in the Lactobacillus-mediated anti-inflammatory macrophages. We also offered evidence for critical cellular links among REG3γ-associated Lactobacillus, tissue macrophages, and obesity diseases. Anti-inflammatory macrophages in the lamina propria, which are induced by REG3γ-associated Lactobacillus, may migrate into adipose tissues and are involved in resistance against high-fat diet-mediated obesity. Thus, REG3γ-associated Lactobacillus-induced anti-inflammatory macrophages in gut tissues may play a role in adipose tissue homeostasis. PMID:28928739

  7. The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion.

    PubMed

    Dellaglio, Franco; Felis, Giovanna E; Torriani, Sandra

    2002-01-01

    On the basis of considerable published evidence, it is concluded that the species Lactobacillus casei is not correctly represented by the strain actually designated as the type strain ATCC 393. It is proposed that the Judicial Commission consider: (1) that ATCC 393T is scientifically unsuitable as the type strain of Lactobacillus casei and should be reclassified as Lactobacillus zeae; (2) that Lactobacillus casei ATCC 334 and Lactobacillus paracasei strains are members of the same taxon and therefore can be united within the name Lactobacillus casei (Rules 42 and 23a), the name Lactobacillus paracasei being rejected; and (3) designating ATCC 334 as the neotype strain for the species

  8. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1.

    PubMed

    Leonard, Michael T; Valladares, Ricardo B; Ardissone, Alexandria; Gonzalez, Claudio F; Lorca, Graciela L; Triplett, Eric W

    2014-05-08

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model.

  9. Antagonistic Activity of Lactobacillus Isolates against Salmonella typhi In Vitro

    PubMed Central

    Abdel-Daim, Amira; Hassouna, Nadia; Hafez, Mohamed; Ashor, Mohamed Seif Aldeen; Aboulwafa, Mohammad M.

    2013-01-01

    Background. Enteric fever is a global health problem, and rapidly developing resistance to various drugs makes the situation more alarming. The potential use of Lactobacillus to control typhoid fever represents a promising approach, as it may exert protective actions through various mechanisms. Methods. In this study, the probiotic potential and antagonistic activities of 32 Lactobacillus isolates against Salmonella typhi were evaluated. The antimicrobial activity of cell free supernatants of Lactobacillus isolates, interference of Lactobacillus isolates with the Salmonella adherence and invasion, cytoprotective effect of Lactobacillus isolates, and possibility of concurrent use of tested Lactobacillus isolates and antibiotics were evaluated by testing their susceptibilities to antimicrobial agents, and their oxygen tolerance was also examined. Results. The results revealed that twelve Lactobacillus isolates could protect against Salmonella typhi infection through interference with both its growth and its virulence properties, such as adherence, invasion, and cytotoxicity. These Lactobacillus isolates exhibited MIC values for ciprofloxacin higher than those of Salmonella typhi and oxygen tolerance and were identified as Lactobacillus plantarum. Conclusion. The tested Lactobacillus plantarum isolates can be introduced as potential novel candidates that have to be subjected for in vivo and application studies for treatment and control of typhoid fever. PMID:24191248

  10. Identification & Characterization of lactobacillus salavarius bacteriocins and its relevance in cancer therapeutics.

    PubMed

    Shaikh, Faraz; Abhinand, Pa; Ragunath, Pk

    2012-01-01

    Therapeutic agents with a goal to eradicate cancer needs to capable of inhibiting the growth and kill, any preformed tumor and should also inhibit oncogenic transformation of normal cells to cancer cells. Bacteriocins are bacterial proteins produced to prevent the growth of competing microorganisms in a particular biological niche and have been proved to possess antineoplastic activity. The entire genome of Lactobacillus salavarius was scanned for putative bacteriocins and subsequently these bacteriocins were characterized by subjecting them as functional annotation algorithms. Azurin is a well characterized bacteriocins with proven cytostatic and apoptotic effect against human cancer cell and was taken as control. Functional characterization revealed that the three bacteriocins Lsl_003, Lsl_0510, Lsl_0554 possessed functional properties very similar to that of Azurin. Molecular screening of these bacteriocins against the common cancer targets p53, Rb1 and AR revealed that Lsl_0510 possessed highest binding affinity towards the all the three receptors making it to ideal candidate for future cancer therapeutics. P53 - Protein 53, Rb1 - Retinoblastoma 1, AR - Androgen Receptor, Lsl - Lactobacillus salavarius.

  11. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of β-lactoglobulin.

    PubMed

    Pescuma, Micaela; Hébert, Elvira M; Haertlé, Thomas; Chobert, Jean-Marc; Mozzi, Fernanda; Font de Valdez, Graciela

    2015-03-01

    Whey, a cheese by-product used as a food additive, is produced worldwide at 40.7 million tons per year. β-Lactoglobulin (BLG), the main whey protein, is poorly digested and is highly allergenic. We aimed to study the contribution of Lactobacillus delbrueckii subsp. bulgaricus CRL 454 to BLG digestion and to analyse its ability to degrade the main allergenic sequences of this protein. Pre-hydrolysis of BLG by L. delbrueckii subsp. bulgaricus CRL 454 increases digestion of BLG assayed by an in vitro simulated gastrointestinal system. Moreover, peptides from hydrolysis of the allergenic sequences V41-K60, Y102-R124, C121-L140 and L149-I162 were found when BLG was hydrolysed by this strain. Interestingly, peptides possessing antioxidant, ACE inhibitory, antimicrobial and immuno-modulating properties were found in BLG degraded by both the Lactobacillus strain and digestive enzymes. To conclude, pre-hydrolysis of BLG by L. delbrueckii subsp. bulgaricus CRL 454 has a positive effect on BLG digestion and could diminish allergenic reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri.

    PubMed

    Ianniello, R G; Zheng, J; Zotta, T; Ricciardi, A; Gänzle, M G

    2015-09-01

    This study evaluated the aerobic and respiratory metabolism in Lactobacillus reuteri and Lactobacillus spicheri, two heterofermentative species used in sourdough fermentation. In silico genome analysis, production of metabolites and gene expression of pyruvate oxidase, pyruvate dehydrogenase and cytochrome oxidase were assessed in anaerobic and aerobic cultures of Lact. reuteri and Lact. spicheri. Respiring homofermentative Lactobacillus casei N87 and Lact. rhamnosus N132 were used for comparison. Aerobiosis and respiration increased the biomass production of heterofermentative strains compared to anaerobic cultivation. Respiration led to acetoin production by Lact. rhamnosus and Lact. casei, but not in heterofermentative strains, in which lactate and acetate were the major end-products. Lactobacillus spicheri LP38 showed the highest oxygen uptake. Pyruvate oxidase, respiratory cytochromes, NADH oxidase and NADH peroxidase were present in the genome of Lact. spicheri LP38. Both Lact. spicheri LP38 and Lact. rhamnosus N132 overexpressed pox in aerobic cultures, while cydA was up-regulated only when haeme was supplied; pdh was repressed during aerobic growth. Aerobic and respiratory growth provided physiological and metabolic advantages also in heterofermentative lactobacilli. The exploitation of oxygen-tolerant phenotypes of Lact. spicheri may be useful for the development of improved starter cultures. © 2015 The Society for Applied Microbiology.

  13. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp.

    PubMed

    Archer, A C; Kurrey, N K; Halami, P M

    2018-03-14

    This study aimed at characterizing the adhesion and immune-stimulatory properties of native probiotic Lactobacillus fermentum (MCC 2759 and MCC 2760) and Lactobacillus delbrueckii MCC 2775. Adhesion of the strains was assessed in Caco-2 and HT-29 cell lines. Expression of adhesion and immune markers were evaluated in Caco-2 cells by real-time qPCR. The cultures displayed >80% of adhesion to both cell lines and also induced the expression of mucin-binding protein (mub) gene in the presence of mucin, bile and pancreatin. Adhesion was mediated by carbohydrate and proteinaceous factors. The cultures stimulated the expression of inflammatory cytokines in Caco-2 cells. However, pro-inflammatory genes were down-regulated upon challenge with lipopolysaccharide and IL-10 was up-regulated by the cultures. Cell wall extract of L. fermentum MCC 2760 induced the expression of IL-6 by 5·47-fold, whereas crude culture filtrate enhanced the expression of IL-10 by 14·87-fold compared to LPS control. The bacterial cultures exhibited strong adhesion and anti-inflammatory properties. This is the first report to reveal the role of adhesion markers of L. fermentum and L. delbrueckii by qPCR. The strain-specific anti-inflammatory property of native cultures may be useful to alleviate inflammatory conditions and develop a target-based probiotic. © 2018 The Society for Applied Microbiology.

  14. Isolated Lactobacillus chronic prosthetic knee infection.

    PubMed

    Bennett, David M; Shekhel, Tatyana; Radelet, Matt; Miller, Michael D

    2014-01-01

    Lactobacillus is a gram-positive rod bacteria found primarily in the gastrointestinal and female genital tracts. Prosthetic infections in implants are being increasingly reported. The authors present a case of a 58-year-old patient with Lactobacillus septic prosthetic knee joint infection. To the authors’ knowledge, this is the first reported case of chronic prosthetic knee infection with isolated Lactobacillus species. Lactobacillus has been most commonly implicated with bacteremia and endocarditis and rarely with pneumonia, meningitis, and endovascular infection, and a vast majority of the cases are reported in immunocompromised patients. In the current case, diabetes mellitus, hepatitis, malnutrition, anemia, and liver failure were comorbid conditions, placing the patient at increased risk of infection. The findings suggest that further case series are necessary to establish the significance of Lactobacillus as an etiologic agent in chronic low-virulence, and potentially vancomycin-resistant, prosthetic joint infection. The need also exists for further research aimed at the risk of prosthetic joint infection with oral intake of certain probiotic foods and supplements. The goal of this case report is to bring to light the potential of this organism to be a cause of subtle chronic prosthetic joint infection.

  15. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    PubMed Central

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  16. Adhesion of Lactobacillus iners AB-1 to human fibronectin: a key mediator for persistence in the vagina?

    PubMed

    McMillan, Amy; Macklaim, Jean M; Burton, Jeremy P; Reid, Gregor

    2013-07-01

    Lactobacillus iners is prominent in the human vagina and is able to persist despite development of bacterial vaginosis and treatment with antibiotics. A probable factor in its persistent survival is its ability to be retained in the vaginal epithelia. Genome sequencing of the strain showed an organism deplete of many metabolic pathways, yet equipped with fibronectin (Fn)-binding adhesins. The objective of the present study was to assess the ability of L iners AB-1 to bind immobilized Fn. Results showed that the organism superiorly bound the protein compared to other species of Lactobacillus and known binders such as Staphylococcus aureus. Treatment of L iners cells by protease rendered its binding abilities to Fn nonfunctional. The findings indicate a mechanism of vaginal persistence for a Lactobacillus species, with implications for reproductive health.

  17. Characterization and use of crystalline bacterial cell surface layers

    NASA Astrophysics Data System (ADS)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  18. Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment

    PubMed Central

    Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J.

    2014-01-01

    Lactobacilli are found in a wide variety of habitats. Four species, Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii, are common and abundant in the human vagina and absent from other habitats. These may be adapted to the vagina and possess characteristics enabling them to thrive in that environment. Furthermore, stable codominance of multiple Lactobacillus species in a single community is infrequently observed. Thus, it is possible that individual vaginal Lactobacillus species possess unique characteristics that confer to them host-specific competitive advantages. We performed comparative functional genomic analyses of representatives of 25 species of Lactobacillus, searching for habitat-specific traits in the genomes of the vaginal lactobacilli. We found that the genomes of the vaginal species were significantly smaller and had significantly lower GC content than those of the nonvaginal species. No protein families were found to be specific to the vaginal species analyzed, but some were either over- or underrepresented relative to nonvaginal species. We also found that within the vaginal species, each genome coded for species-specific protein families. Our results suggest that even though the vaginal species show no general signatures of adaptation to the vaginal environment, each species has specific and perhaps unique ways of interacting with its environment, be it the host or other microbes in the community. These findings will serve as a foundation for further exploring the role of lactobacilli in the ecological dynamics of vaginal microbial communities and their ultimate impact on host health. PMID:24488312

  19. A novel protein tyrosine phosphatase like phytase from Lactobacillus fermentum NKN51: Cloning, characterization and application in mineral release for food technology applications.

    PubMed

    Sharma, Rekha; Kumar, Piyush; Kaushal, Vandana; Das, Rahul; Kumar Navani, Naveen

    2018-02-01

    A novel protein tyrosine phosphatase like phytase (PTPLP), designated as PhyLf from probiotic bacterium Lactobacillus fermentum NKN51 was identified, cloned, expressed and characterized. The recombinant PhyLf showed specific activity of 174.5 U/mg. PhyLf exhibited strict specificity towards phytate and optimum temperature at 60 °C, pH 5.0 and ionic strength of 100 mM. K m and K cat of PhyLf for phytate were 0.773 mM and 84.31 s -1 , respectively. PhyLf exhibited high resistance against oxidative inactivation. PhyLf shares no homology, sans the active site with reported PTLPs, warranting classification as a new subclass. Dephytinization of durum wheat and finger millet under in vitro gastrointestinal conditions using PhyLf enhanced the bioaccessibility of mineral ions. Probiotic origin, phytate specificity, resistance to oxidative environment and gastric milieu coupled with ability to release micronutrients are unique properties of PhyLf which present a strong case for its use in ameliorating nutritional value of cereals and animal feed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Functional role of oppA encoding an oligopeptide-binding protein from Lactobacillus salivarius Ren in bile tolerance.

    PubMed

    Wang, Guohong; Li, Dan; Ma, Xiayin; An, Haoran; Zhai, Zhengyuan; Ren, Fazheng; Hao, Yanling

    2015-08-01

    Lactobacillus salivarius is a member of the indigenous microbiota of the human gastrointestinal tract (GIT), and some L. salivarius strains are considered as probiotics. Bile tolerance is a crucial property for probiotic bacteria to survive the transit through the GIT and exert their beneficial effects. In this work, the functional role of oppA encoding an oligopeptide transporter substrate-binding protein from L. salivarius Ren in bile salt tolerance was investigated. In silico analysis revealed that the oppA gene encodes a 61.7-kDa cell surface-anchored hydrophilic protein with a canonical lipoprotein signal peptide. Homologous overexpression of OppA was shown to confer 20-fold higher tolerance to 0.5 % oxgall in L. salivarius Ren. Furthermore, the recombinant strain exhibited 1.8-fold and 3.6-fold higher survival when exposed to the sublethal concentration of sodium taurocholate and sodium taurodeoxycholate, respectively, while no significant change was observed when exposed to sodium glycocholate and sodium glycodeoxycholate (GDCA). Our results indicate that OppA confers specific resistance to taurine-conjugated bile salts in L. salivarius Ren. In addition, the OppA overexpression strain also showed significant increased resistance to heat and salt stresses, suggesting the protective role of OppA against multiple stresses in L. salivarius Ren.

  1. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    PubMed

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  2. A Reference Proteomic Database of Lactobacillus plantarum CMCC-P0002

    PubMed Central

    Tian, Wanhong; Yu, Gang; Liu, Xiankai; Wang, Jie; Feng, Erling; Zhang, Xuemin; Chen, Bei; Zeng, Ming; Wang, Hengliang

    2011-01-01

    Lactobacillus plantarum is a widespread probiotic bacteria found in many fermented food products. In this study, the whole-cell proteins and secretory proteins of L. plantarum were separated by two-dimensional electrophoresis method. A total of 434 proteins were identified by tandem mass spectrometry, including a plasmid-encoded hypothetical protein pLP9000_05. The information of first 20 highest abundance proteins was listed for the further genetic manipulation of L. plantarum, such as construction of high-level expressions system. Furthermore, the first interaction map of L. plantarum was established by Blue-Native/SDS-PAGE technique. A heterodimeric complex composed of maltose phosphorylase Map3 and Map2, and two homodimeric complexes composed of Map3 and Map2 respectively, were identified at the same time, indicating the important roles of these proteins. These findings provided valuable information for the further proteomic researches of L. plantarum. PMID:21998671

  3. A reference proteomic database of Lactobacillus plantarum CMCC-P0002.

    PubMed

    Zhu, Li; Hu, Wei; Liu, Datao; Tian, Wanhong; Yu, Gang; Liu, Xiankai; Wang, Jie; Feng, Erling; Zhang, Xuemin; Chen, Bei; Zeng, Ming; Wang, Hengliang

    2011-01-01

    Lactobacillus plantarum is a widespread probiotic bacteria found in many fermented food products. In this study, the whole-cell proteins and secretory proteins of L. plantarum were separated by two-dimensional electrophoresis method. A total of 434 proteins were identified by tandem mass spectrometry, including a plasmid-encoded hypothetical protein pLP9000_05. The information of first 20 highest abundance proteins was listed for the further genetic manipulation of L. plantarum, such as construction of high-level expressions system. Furthermore, the first interaction map of L. plantarum was established by Blue-Native/SDS-PAGE technique. A heterodimeric complex composed of maltose phosphorylase Map3 and Map2, and two homodimeric complexes composed of Map3 and Map2 respectively, were identified at the same time, indicating the important roles of these proteins. These findings provided valuable information for the further proteomic researches of L. plantarum.

  4. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Functional and Probiotic Attributes of an Indigenous Isolate of Lactobacillus plantarum

    PubMed Central

    Kaushik, Jai K.; Kumar, Ashutosh; Duary, Raj K.; Mohanty, Ashok K.; Grover, Sunita; Batish, Virender K.

    2009-01-01

    Background Probiotic microorganisms favorably alter the intestinal microflora balance, promote intestinal integrity and mobility, inhibit the growth of harmful bacteria and increase resistance to infection. Probiotics are increasingly used in nutraceuticals, functional foods or in microbial interference treatment. However, the effectiveness of probiotic organism is considered to be population-specific due to variation in gut microflora, food habits and specific host-microbial interactions. Most of the probiotic strains available in the market are of western or European origin, and a strong need for exploring new indigenous probiotic organisms is felt. Methods and Findings An indigenous isolate Lp9 identified as Lactobacillus plantarum by molecular-typing methods was studied extensively for its functional and probiotic attributes, viz., acid and bile salt tolerance, cell surface hydrophobicity, autoaggregation and Caco-2 cell-binding as well as antibacterial and antioxidative activities. Lp9 isolate could survive 2 h incubation at pH 1.5–2.0 and toxicity of 1.5–2.0% oxgall bile. Lp9 could deconjugate major bile salts like glycocholate and deoxytaurocholate, indicating its potential to cause hypocholesterolemia. The isolate exhibited cell-surface hydrophobicity of ∼37% and autoaggregation of ∼31%. Presence of putative probiotic marker genes like mucus-binding protein (mub), fibronectin-binding protein (fbp) and bile salt hydrolase (bsh) were confirmed by PCR. Presence of these genes suggested the possibility of specific interaction and colonization potential of Lp9 isolate in the gut, which was also suggested by a good adhesion ratio of 7.4±1.3% with Caco-2 cell line. The isolate demonstrated higher free radical scavenging activity than standard probiotics L. johnsonii LA1 and L. acidophilus LA7. Lp9 also exhibited antibacterial activity against E. coli, L. monocytogenes, S. typhi, S. aureus and B. cereus. Conclusion The indigenous Lactobacillus plantarum Lp

  6. Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum.

    PubMed

    Kaushik, Jai K; Kumar, Ashutosh; Duary, Raj K; Mohanty, Ashok K; Grover, Sunita; Batish, Virender K

    2009-12-01

    Probiotic microorganisms favorably alter the intestinal microflora balance, promote intestinal integrity and mobility, inhibit the growth of harmful bacteria and increase resistance to infection. Probiotics are increasingly used in nutraceuticals, functional foods or in microbial interference treatment. However, the effectiveness of probiotic organism is considered to be population-specific due to variation in gut microflora, food habits and specific host-microbial interactions. Most of the probiotic strains available in the market are of western or European origin, and a strong need for exploring new indigenous probiotic organisms is felt. An indigenous isolate Lp9 identified as Lactobacillus plantarum by molecular-typing methods was studied extensively for its functional and probiotic attributes, viz., acid and bile salt tolerance, cell surface hydrophobicity, autoaggregation and Caco-2 cell-binding as well as antibacterial and antioxidative activities. Lp9 isolate could survive 2 h incubation at pH 1.5-2.0 and toxicity of 1.5-2.0% oxgall bile. Lp9 could deconjugate major bile salts like glycocholate and deoxytaurocholate, indicating its potential to cause hypocholesterolemia. The isolate exhibited cell-surface hydrophobicity of approximately 37% and autoaggregation of approximately 31%. Presence of putative probiotic marker genes like mucus-binding protein (mub), fibronectin-binding protein (fbp) and bile salt hydrolase (bsh) were confirmed by PCR. Presence of these genes suggested the possibility of specific interaction and colonization potential of Lp9 isolate in the gut, which was also suggested by a good adhesion ratio of 7.4+/-1.3% with Caco-2 cell line. The isolate demonstrated higher free radical scavenging activity than standard probiotics L. johnsonii LA1 and L. acidophilus LA7. Lp9 also exhibited antibacterial activity against E. coli, L. monocytogenes, S. typhi, S. aureus and B. cereus. The indigenous Lactobacillus plantarum Lp9 exhibited high

  7. Lactobacillus vespulae sp. nov., isolated from gut of a queen wasp (Vespula vulgaris).

    PubMed

    Hoang, Van-An; Kim, Yeon-Ju; Nguyen, Ngoc-Lan; Kim, Si-Kwan; Yang, Deok-Chun

    2015-10-01

    A Gram-stain-positive, oxidase- and catalase-negative, rod-shaped, facultatively anaerobic bacterial strain, DCY75T, was isolated from a queen wasp (Vespula vulgaris). Growth occurred at 4–37 °C (optimum, 30 °C), at pH 3.5–8.0 (optimum, pH 5.0–6.0) and with ≤ 7.0 % (w/v) NaCl. Strain DCY75T produced gas during growth on glucose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DCY75T belonged to the genus Lactobacillus and was closely related to Lactobacillus sanfranciscensis ATCC 27651T and Lactobacillus lindneri DSM 20690T at sequence similarities of 96.7 and 96.4 %, respectively. A comparison of two housekeeping genes, pheS and rpoA, revealed that strain DCT75T was well separated from other species of the genus Lactobacillus. Strain DCY75T produced d- and l-lactic acid isomers in a ratio of 22.5 : 77.5 (v/v). The major fatty acids were summed feature 8 (comprising C18 :  1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω9c and C18 : 0.The peptidoglycan structure was of the A4α (l-Lys–d-Asp) type. Cell-wall sugars were glucose, galactose and ribose. The DNA G+C content was 35.5 ± 1.3 mol%. Based on phenotypic and genotypic properties, strain DCY75T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus vespulae sp. nov. is proposed. The type strain is DCY75T ( = KCTC 21023T = JCM 19742T).

  8. Extending viability of Lactobacillus plantarum and Lactobacillus johnsonii by microencapsulation in alginate microgels.

    PubMed

    Tiani, Kendra A; Yeung, Timothy W; McClements, D Julian; Sela, David A

    2018-03-01

    To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.

  9. Potential of Lactobacillus plantarum IBB3036 and Lactobacillus salivarius IBB3154 to persistence in chicken after in ovo delivery.

    PubMed

    Aleksandrzak-Piekarczyk, Tamara; Puzia, Weronika; Żylińska, Joanna; Cieśla, Jarosław; Gulewicz, Krzysztof A; Bardowski, Jacek K; Górecki, Roman K

    2018-03-25

    The aim of this study was to characterize and compare selected Lactobacillus strains originating from different environments (cow milk and hen feces) with respect to their applicative potential to colonize gastrointestinal track of chickens before hatching from an egg. In vitro phenotypic characterization of lactobacilli strains included the investigation of the important prerequisites for persistence in gastrointestinal tract, such as a capability to survive in the presence of bile salts and at low pH, enzymatic and sugar metabolic profiles, adhesion abilities, and resistance to osmolytes, temperature, and antibiotics. Regarding the resistance of lactobacilli to most of the various stress factors tested, the milk isolate Lactobacillus plantarum IBB3036 showed better abilities than the chicken feces isolate Lactobacillus salivarius IBB3154. However, regarding the acidification tolerance and adherence ability, L. salivarius IBB3154 revealed better characteristics. Use of these two selected lactobacilli isolates together with proper prebiotics resulted in the preparation of two S1 and S2 bioformulations, which were injected in ovo into hen Cobb500 FF fertilized eggs. Furthermore, in vivo tests assessing the persistence of L. plantarum IBB3036 and L. salivarius IBB3154 in the chicken gastrointestinal tract was monitored by PCR-based classical and quantitative techniques and revealed the presence of both strains in fecal samples collected 3 days after hatching. Subsequently, the number of L. salivarius IBB3154 increased significantly in the chicken intestine, whereas the presence of L. plantarum IBB3036 was gradually decreased. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65.

    PubMed

    Morais, I M C; Cordeiro, A L; Teixeira, G S; Domingues, V S; Nardi, R M D; Monteiro, A S; Alves, R J; Siqueira, E P; Santos, V L

    2017-09-19

    Lactobacillus species produce biosurfactants that can contribute to the bacteria's ability to prevent microbial infections associated with urogenital and gastrointestinal tracts and the skin. Here, we described the biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65 . The biosurfactants produced by L. jensenii P 6A and L. gasseri P 65 reduced the water surface tension from 72 to 43.2 mN m -1 and 42.5 mN m -1 as their concentration increased up to the critical micelle concentration (CMC) values of 7.1 and 8.58 mg mL -1 , respectively. Maximum emulsifying activity was obtained at concentrations of 1 and 5 mg mL -1 for the P 6A and P 65 strains, respectively. The Fourier transform infrared spectroscopy data revealed that the biomolecules consist of a mixture of carbohydrates, lipids and proteins. The gas chromatography-mass spectrum analysis of L. jensenii P 6A biosurfactant showed a major peak for 14-methypentadecanoic acid, which was the main fatty acid present in the biomolecule; conversely, eicosanoic acid dominated the biosurfactant produced by L. gasseri P 65 . Although both biosurfactants contain different percentages of the sugars galactose, glucose and ribose; rhamnose was only detected in the biomolecule produced by L. jensenii P 6A . Emulsifying activities were stable after a 60-min incubation at 100 °C, at pH 2-10, and after the addition of potassium chloride and sodium bicarbonate, but not in the presence of sodium chloride. The biomolecules showed antimicrobial activity against clinical isolates of Escherichia coli and Candida albicans, with MIC values of 16 µg mL -1 , and against Staphylococcus saprophyticus, Enterobacter aerogenes and Klebsiella pneumoniae at 128 µg mL -1 . The biosurfactants also disrupted preformed biofilms of microorganisms at varying concentrations, being more efficient against E. aerogenes (64%) (P 6A biosurfactant), and E. coli (46

  11. Rapid molecular identification and characteristics of Lactobacillus strains.

    PubMed

    Markiewicz, L H; Biedrzycka, E; Wasilewska, E; Bielecka, M

    2010-09-01

    Eleven type strains and 24 Lactobacillus isolates, preliminarily classified to the species due to phenotypic features, were investigated. Standard methods of identification with species-specific PCRs and typing with PFGE (with ApaI, NotI and SmaI restriction enzymes) allowed us to distinguish 16 unique strains belonging to 5 species (L. acidophilus, L. delbrueckii ssp. bulgaricus, L. plantarum, L. rhamnosus, L. salivarius). Alternative approach with 16S-23S rDNA ARDRA identification (with merely two restrictases, BsuRI and TaqI) and PCR-based typing (RAPD with two random- and rep-PCR with (GTG)(5) primers) showed to be more discriminative, i.e. 21 unique strains were classified in the same species as above. As a result, 7 out of 24 phenotypically species-assigned isolates were reclassified. The alternative procedure of rapid identification and typing of Lactobacillus isolates appeared to be equally effective and shortened from 1 week to 2-3 d (in comparison to the standard methods).

  12. TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.

    PubMed

    Hu, Jun; Han, Ke; Li, Yang; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun

    2016-11-01

    The accurate prediction of whether a protein will crystallize plays a crucial role in improving the success rate of protein crystallization projects. A common critical problem in the development of machine-learning-based protein crystallization predictors is how to effectively utilize protein features extracted from different views. In this study, we aimed to improve the efficiency of fusing multi-view protein features by proposing a new two-layered SVM (2L-SVM) which switches the feature-level fusion problem to a decision-level fusion problem: the SVMs in the 1st layer of the 2L-SVM are trained on each of the multi-view feature sets; then, the outputs of the 1st layer SVMs, which are the "intermediate" decisions made based on the respective feature sets, are further ensembled by a 2nd layer SVM. Based on the proposed 2L-SVM, we implemented a sequence-based protein crystallization predictor called TargetCrys. Experimental results on several benchmark datasets demonstrated the efficacy of the proposed 2L-SVM for fusing multi-view features. We also compared TargetCrys with existing sequence-based protein crystallization predictors and demonstrated that the proposed TargetCrys outperformed most of the existing predictors and is competitive with the state-of-the-art predictors. The TargetCrys webserver and datasets used in this study are freely available for academic use at: http://csbio.njust.edu.cn/bioinf/TargetCrys .

  13. In vitro adherence of Lactobacillus strains isolated from the vaginas of healthy Iranian women.

    PubMed

    Mousavi, Elham; Makvandi, Manoochehr; Teimoori, Ali; Ataei, Angila; Ghafari, Shokouh; Najafian, Mahin; Ourang, Ziba; Samarbaf-Zadeh, Alireza

    2016-12-01

    The lactobacilli are a part of the bacterial flora of the human vagina. Detection of normal Lactobacillus species in the vaginas of healthy women in different geographical locations, and evaluation of their specific properties, can aid in the selection of the best species for preventing sexually transmitted diseases in the future. This study was performed to isolate and identify the Lactobacillus species in the vaginas of healthy women and to evaluate the adherence of these lactobacilli to Vero and HeLa cell lines. The study included 100 women. Bacteria were isolated from healthy women and purified. Phenotypic and biochemical tests were performed to identify the lactobacilli. The Lactobacillus species were detected by molecular methods using polymerase chain reaction amplification of the full length of the 16S rDNA of the isolated bacteria. Several isolates of each species were then selected to study their adherence to Vero and HeLa cell lines. Among the 50 samples taken from healthy women meeting the inclusion criteria, Lactobacillus species were identified in 33 (66%) samples. Of these lactobacilli, 14 isolates were Lactobacillus crispatus, six (18.2%) were Lactobacillus gasseri, nine (27%) were Lactobacillus rhamnosus, and the rest were either Lactobacillus salivarius (6%) or Lactobacillus plantarum (6%). L. rhamnosus showed the greatest adhesion to the cells when compared to the other tested species. All the lactobacilli isolated in this study showed a smaller capacity for cell adherence when compared with control species. L. crispatus, L. rhamnosus, and L. gasseri were the dominant Lactobacillus species in the vaginas of healthy women in Iran. L. rhamnosus attached more readily to the cells than did the other species; therefore, this isolate is a good candidate for further studies on the potential health benefits and application of lactobacilli as probiotics. Copyright © 2016. Published by Elsevier Taiwan LLC.

  14. Crystallographic and mutational analyses of cystathionine β-synthase in the H2 S-synthetic gene cluster in Lactobacillus plantarum.

    PubMed

    Matoba, Yasuyuki; Yoshida, Tomoki; Izuhara-Kihara, Hisae; Noda, Masafumi; Sugiyama, Masanori

    2017-04-01

    Cystathionine β-synthase (CBS) catalyzes the formation of l-cystathionine from l-serine and l-homocysteine. The resulting l-cystathionine is decomposed into l-cysteine, ammonia, and α-ketobutylic acid by cystathionine γ-lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H 2 S). In some bacteria, including the plant-derived lactic acid bacterium Lactobacillus plantarum, the CBS- and CGL-encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H 2 S production in bacteria; interestingly, it has been shown that H 2 S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O-acetyl-l-serine sulfhydrylase (OASS) that catalyzes the generation of l-cysteine from O-acetyl-l-serine (l-OAS) and H 2 S. The L. plantarum CBS shows l-OAS- and l-cysteine-dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H 2 S in the presence of l-cysteine and l-homocysteine, together with the formation of l-cystathionine. The high affinity toward l-cysteine as a first substrate and tendency to use l-homocysteine as a second substrate might be associated with its enzymatic ability to generate H 2 S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H 2 S-generating activity. © 2017 The Protein Society.

  15. On Valence-Band Splitting in Layered MoS2.

    PubMed

    Zhang, Youwei; Li, Hui; Wang, Haomin; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2015-08-25

    As a representative two-dimensional semiconducting transition-metal dichalcogenide (TMD), the electronic structure in layered MoS2 is a collective result of quantum confinement, interlayer interaction, and crystal symmetry. A prominent energy splitting in the valence band gives rise to many intriguing electronic, optical, and magnetic phenomena. Despite numerous studies, an experimental determination of valence-band splitting in few-layer MoS2 is still lacking. Here, we show how the valence-band maximum (VBM) splits for one to five layers of MoS2. Interlayer coupling is found to contribute significantly to phonon energy but weakly to VBM splitting in bilayers, due to a small interlayer hopping energy for holes. Hence, spin-orbit coupling is still predominant in the splitting. A temperature-independent VBM splitting, known for single-layer MoS2, is, thus, observed for bilayers. However, a Bose-Einstein type of temperature dependence of VBM splitting prevails in three to five layers of MoS2. In such few-layer MoS2, interlayer coupling is enhanced with a reduced interlayer distance, but thermal expansion upon temperature increase tends to decouple adjacent layers and therefore decreases the splitting energy. Our findings that shed light on the distinctive behaviors about VBM splitting in layered MoS2 may apply to other hexagonal TMDs as well. They will also be helpful in extending our understanding of the TMD electronic structure for potential applications in electronics and optoelectronics.

  16. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese.

    PubMed

    Oberg, Craig J; Oberg, Taylor S; Culumber, Michele D; Ortakci, Fatih; Broadbent, Jeffery R; McMahon, Donald J

    2016-01-01

    A Gram-stain positive, rod-shaped, non-spore-forming strain (WDC04T), which may be associated with late gas production in cheese, was isolated from aged Cheddar cheese following incubation on MRS agar (pH 5.2) at 6 °C for 35 days. Strain WDC04T had 97 % 16S rRNA gene sequence similarity with Lactobacillus hokkaidonensis DSM 26202T, Lactobacillus oligofermentans 533, 'Lactobacillus danicus' 9M3, Lactobacillus suebicus CCUG 32233T and Lactobacillus vaccinostercus DSM 20634T. API 50 CH carbohydrate fermentation panels indicated strain WDC04T could only utilize one of the 50 substrates tested, ribose, although it does slowly utilize galactose. In the API ZYM system, strain WDC04T was positive for leucine arylamidase, valine arylamidase, cysteine arylamidase (weakly), naphthol-AS-BI-phosphohydrolase and β-galactosidase activities. Total genomic DNA was sequenced from strain WDC04T using a whole-genome shotgun strategy on a 454 GS Titanium pyrosequencer. The sequence was assembled into a 1.90 Mbp draft genome consisting of 105 contigs with preliminary genome annotation performed using the RAST algorithm (rast.nmpdr.org). Genome analysis confirmed the pentose phosphate pathway for ribose metabolism as well as galactose, N-acetylglucosamine, and glycerol fermentation pathways. Genomic analysis places strain WDC04T in the obligately heterofermentative group of lactobacilli and metabolic results confirm this conclusion. The result of genome sequencing, along with 16S rRNA gene sequence analysis, indicates WDC04T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus wasatchensis sp. nov. is proposed. The type strain is WDC04T ( = DSM 29958T = LMG 28678T).

  17. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    PubMed Central

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  18. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  19. Effect of Drying Methods on Protein and DNA Conformation Changes in Lactobacillus rhamnosus GG Cells by Fourier Transform Infrared Spectroscopy.

    PubMed

    Hlaing, Mya M; Wood, Bayden R; McNaughton, Don; Ying, DanYang; Dumsday, Geoff; Augustin, Mary Ann

    2017-03-01

    Microencapsulation protects cells against environmental stress encountered during the production of probiotics, which are used as live microbial food ingredients. Freeze-drying and spray-drying are used in the preparation of powdered microencapsulated probiotics. This study examines the ability of Fourier transform infrared (FTIR) spectroscopy to detect differences in cells exposed to freeze-drying and spray-drying of encapsulated Lactobacillus rhamnosus GG cells. The FTIR analysis clearly demonstrated there were more significant molecular changes in lipid, fatty acid content, protein, and DNA conformation of nonencapsulated compared to encapsulated bacterial cells. The technique was also able to differentiate between spray-dried and freeze-dried cells. The results also revealed the extent of protection from a protein-carbohydrate-based encapsulant matrix on the cells depending on the type drying process. The extent of this protection to the dehydration stress was shown to be less in spray-dried cells than in freeze-dried cells. This suggests that FTIR could be used as a rapid, noninvasive, and real-time measurement technique to detect detrimental drying effects on cells.

  20. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  1. A Rhomboid Protease Gene Deletion Affects a Novel Oligosaccharide N-Linked to the S-layer Glycoprotein of Haloferax volcanii*

    PubMed Central

    Parente, Juliana; Casabuono, Adriana; Ferrari, María Celeste; Paggi, Roberto Alejandro; De Castro, Rosana Esther; Couto, Alicia Susana; Giménez, María Inés

    2014-01-01

    Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family. PMID:24596091

  2. A rhomboid protease gene deletion affects a novel oligosaccharide N-linked to the S-layer glycoprotein of Haloferax volcanii.

    PubMed

    Parente, Juliana; Casabuono, Adriana; Ferrari, María Celeste; Paggi, Roberto Alejandro; De Castro, Rosana Esther; Couto, Alicia Susana; Giménez, María Inés

    2014-04-18

    Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family.

  3. Molecular Analysis of the Locus Responsible for Production of Plantaricin S, a Two-Peptide Bacteriocin Produced by Lactobacillus plantarum LPCO10

    PubMed Central

    Stephens, Sarah K.; Floriano, Belén; Cathcart, Declan P.; Bayley, Susan A.; Witt, Valerie F.; Jiménez-Díaz, Rufino; Warner, Philip J.; Ruiz-Barba, José Luis

    1998-01-01

    A 4.5-kb region of chromosomal DNA carrying the locus responsible for the production of plantaricin S, a two-peptide bacteriocin produced by Lactobacillus plantarum LPCO10 (R. Jiménez-Díaz, J. L. Ruiz-Barba, D. P. Cathcart, H. Holo, I. F. Nes, K. H. Sletten, and P. J. Warner, Appl. Environ. Microbiol. 61:4459–4463, 1995), has been cloned, and the nucleotide sequence has been elucidated. Two genes, designated plsA and plsB and encoding peptides α and β, respectively, of plantaricin S, plus an open reading frame (ORF), ORF2, were found to be organized in an operon. Northern blot analysis showed that these genes are cotranscribed, giving a ca. 0.7-kb mRNA, whose transcription start point was determined by primer extension. Nucleotide sequences of plsA and plsB revealed that both genes are translated as bacteriocin precursors which include N-terminal leader sequences of the double-glycine type. The role of ORF2 is unknown at the moment, although it might be expected to encode an immunity protein of the type described for other bacteriocin operons. In addition, several other potential ORFs have been found, including some which may be responsible for the regulation of bacteriocin production. Two of them, ORF8 and ORF14, show strong homology with histidine protein kinase and response regulator genes, respectively, which have been found to be involved in the regulation of the production of other bacteriocins from lactic acid bacteria. A third ORF, ORF5, shows homology with gene agrB from Staphylococcus aureus, which is involved in the mechanism of regulation of the virulence phenotype in this species. Thus, an agr-like regulatory system for the production of plantaricin S is postulated. PMID:9572965

  4. Reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius.

    PubMed

    Pang, Huili; Kitahara, Maki; Tan, Zhongfang; Wang, Yanping; Qin, Guangyong; Ohkuma, Moriya; Cai, Yimin

    2012-10-01

    Characterization and identification of strain CW 1 ( = JCM 17161) isolated from corn silage were performed. Strain CW 1 was a Gram-positive, catalase-negative and homofermentative rod that produced the DL-form of lactic acid. This strain exhibited more than 99.6% 16S rRNA gene sequence similarity and greater than 82% DNA-DNA reassociation with type strains of Lactobacillus kimchii, L. bobalius and L. paralimentarius. To clarify the taxonomic positions of these type strains, phenotypic characterization, 16S rRNA gene sequencing, ribotyping and DNA-DNA relatedness were examined. The three type strains displayed different L-arabinose, lactose, melibiose, melezitose, raffinose and N-acetyl-β-glucosaminidase fermentation patterns. Phylogenetic analysis showed that L. paralimentarius is a closer neighbour of L. kimchii and L. bobalius, sharing 99.5-99.9% 16S rRNA gene sequence similarity, which was confirmed by the high DNA-DNA relatedness (≥82%) between L. paralimentarius JCM 10415(T), L. bobalius JCM 16180(T) and L. kimchii JCM 10707(T). Therefore, it is proposed that L. kimchii and L. bobalius should be reclassified as later synonyms of L. paralimentarius.

  5. Effects of 5-hydroxytryptophan and m-hydroxybenzylhydrazine associated to Lactobacillus spp. on the humoral response of broilers challenged with Salmonella Enteritidis.

    PubMed

    Donato, T C; Baptista, A A S; Garcia, K C O D; Smaniotto, B D; Okamoto, A S; Sequeira, J L; Andreatti Filho, R L

    2015-09-01

    This study investigates the effects of different doses of serotonin, its precursor 5-hydroxytry-ptophan (5HTP), and m-hydroxybenzylhydrazine inhibitor (NSD1015), administered via intraperitoneal for 5 consecutive days, on behavior and average body weight of broilers. We also measured the humoral immune response and quantification of Salmonella Enteritidis in broilers chickens that received the drugs evaluated and a Lactobacillus pool. The study was divided into 3 experiments: Experiment 1--administration of pharmaceuticals with choice of dosage; Experiment 2--administration of pharmaceuticals and a Lactobacillus pool in birds that were not challenged with S. Enteritidis, and Experiment 3--administration of pharmaceuticals and a Lactobacillus pool in birds challenged with S. Enteritidis. The ELISA was used to scan dosages of intestinal IgA and serum IgY. We used colony-forming units to quantify S. Enteritidis. The concentrations of IgA and IgY did not show significant differences (P>0.05) in Experiment 2. In Experiment 3, NSD1015 associated with Lactobacillus determined higher IgA concentrations, promoting greater stimulus to the immune system than 5HTP. Regarding quantification of S. Enteritidis in the cecal content of birds, 5HTP associated to Lactobacillus determined the smallest number of bacteria, showing possible interaction of 5-hydroxytryptophan and Lactobacillus spp. with the immune system of broiler chickens. © 2015 Poultry Science Association Inc.

  6. New Class of Precision Antimicrobials Redefines Role of Clostridium difficile S-layer in Virulence and Viability

    PubMed Central

    Kirk, Joseph A.; Gebhart, Dana; Buckley, Anthony M.; Lok, Stephen; Scholl, Dean; Douce, Gillian R.; Govoni, Gregory R.; Fagan, Robert P.

    2017-01-01

    Avidocin-CDs are a new class of precision bactericidal agents that do not damage resident gut microbiota and are unlikely to promote the spread of antibiotic resistance. The precision killing properties result from the fusion of bacteriophage receptor binding proteins (RBPs) to a lethal contractile scaffold from an R-type bacteriocin. We recently described the prototypic Avidocin-CD, Av-CD291.2, that specifically kills C. difficile ribotype 027 strains and prevents colonization of mice. We have since selected two rare Av-CD291.2 resistant mutants of strain R20291 (RT027; S-layer cassette type-4, SCLT-4). These mutants have distinct point mutations in the slpA gene that result in an S-layer null phenotype. Reversion of the mutations to wild-type restored normal SLCT-4 S-layer formation and Av-CD291.2 sensitivity; however, complementation with other SCLT alleles did not restore Av-CD291.2 sensitivity despite restoring S-layer formation. Using newly identified phage RBPs, we constructed a panel of new Avidocin-CDs that kill C. difficile isolates in an SLCT-dependent manner, confirming the S-layer as the receptor in every case. In addition to bacteriophage adsorption, characterization of the S-layer null mutant also uncovered important roles for SlpA in sporulation, resistance to lysozyme and LL-37, and toxin production. Surprisingly, the S-layer-null mutant was found to persist in the hamster gut despite its completely attenuated virulence. Avidocin-CDs have significant therapeutic potential for the treatment and prevention of C. difficile Infection (CDI) given their exquisite specificity for the pathogen. Furthermore, the emergence of resistance forces mutants to trade virulence for continued viability and, therefore, greatly reduce their potential clinical impact. PMID:28878013

  7. Use of Lactobacillus acidophilus and Lactobacillus casei for a potential probiotic legume-based fermented product using pigeon pea (Cajanus cajan).

    PubMed

    Parra, K; Ferrer, M; Piñero, M; Barboza, Y; Medina, L M

    2013-02-01

    The aim of the present study was to evaluate the use of pigeon pea (Cajanus cajan) as an appropriate substrate in the production of a legume-based fermented product with Lactobacillus acidophilus ATCC 314 or Lactobacillus casei ATCC 393 and then to ascertain the effects of the addition of ingredients such as powdered milk and banana or strawberry sauce. The products were analyzed for viable cell counts, pH, and sensory attributes during product manufacture and throughout the refrigerated storage period at 3, 7, 14, 21, and 28 days. Nine types of products were produced. At the end of the storage period, the viability of L. acidophilus was above 7 log CFU/g in the presence of milk and 20% sucrose fruit sauce. For products with L. casei, the lack of ingredients such as milk caused no significant loss in viability; however, a high concentration of sucrose in the fruit sauce was an important factor in maintaining a high L. casei population. L. casei had high viability and good sensory attributes. Both strains could be considered suitable for a pigeon pea-based fermented potential probiotic product and a low-cost protein source.

  8. Consistent Condom Use Increases the Colonization of Lactobacillus crispatus in the Vagina

    PubMed Central

    Ma, Liyan; Lv, Zhi; Su, Jianrong; Wang, Jianjie; Yan, Donghui; Wei, Jingjuan; Pei, Shuang

    2013-01-01

    Background Non-hormonal contraception methods have been widely used, but their effects on colonization by vaginal lactobacilli remain unclear. Objective To determine the association between non-hormonal contraception methods and vaginal lactobacilli on women’s reproductive health. Methods The cross-sectional study included 164 healthy women between 18–45 years of age. The subjects were divided into different groups on the basis of the different non-hormonal contraception methods used by them. At the postmenstrual visit (day 21 or 22 of the menstrual cycle), vaginal swabs were collected for determination of Nugent score, quantitative culture and real-time polymerase chain reaction (PCR) of vaginal lactobacilli. The prevalence, colony counts and 16S rRNA gene expression of the Lactobacillus strains were compared between the different groups by Chi-square and ANOVA statistical analysis methods. Results A Nugent score of 0–3 was more common in the condom group (93.1%) than in the group that used an interuterine device(IUD) (75.4%), (p = 0.005). The prevalence of H2O2-producing Lactobacillus was significantly higher in the condom group (82.3%) than in the IUD group (68.2%), (p = 0.016). There was a significant difference in colony count (mean ± standard error (SE), log10colony forming unit (CFU)/ml) of H2O2-producing Lactobacillus between condom users (7.81±0.14) and IUD users (6.54±0.14), (p = 0.000). The 16S rRNA gene expression (mean ± SE, log10copies/ml) of Lactobacillus crispatus was significantly higher in the condom group (8.09±0.16) than in the IUD group (6.03±0.18), (p = 0.000). Conclusion Consistent condom use increases the colonization of Lactobacillus crispatus in the vagina and may protect against both bacterial vaginosis (BV) and human immunodeficiency virus (HIV). PMID:23894682

  9. Growth and viability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in traditional yoghurt enriched by honey and whey protein concentrate.

    PubMed

    Glušac, J; Stijepić, M; Đurđević-Milošević, D; Milanović, S; Kanurić, K; Vukić, V

    2015-01-01

    The ability of whey protein concentrate (WPC) (1% w/v) and/or honey (2% and 4% w⁄v) to improve lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) growth and viability in yoghurt during a 21 day period of storage was investigated. Another focus of this study was to examine fermentation kinetics and post-acidification rates through pH and lactic acid content measurements over the 21 day period. The addition of WPC and acacia honey accelerated fermentation and improved lactic acid bacteria (LAB) growth over the 21 days, but honey proportion did not significantly affect the viability of LAB. Moreover, adding honey and WPC did not support the overproduction of lactic acid, which positively influenced yoghurt stability during the 21 day storage period.

  10. Clinical characteristics of bacteraemia caused by Lactobacillus spp. and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2000-2014.

    PubMed

    Lee, Meng-Rui; Tsai, Chia-Jung; Liang, Sheng-Kai; Lin, Ching-Kai; Huang, Yu-Tsung; Hsueh, Po-Ren

    2015-10-01

    The clinical characteristics of 89 patients with Lactobacillus bacteraemia treated at a university-affiliated hospital in northern Taiwan during 2000-2014 were retrospectively evaluated. Lactobacillus spp. were identified by 16S rRNA sequencing analysis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antimicrobial susceptibilities of the isolates were determined by broth microdilution. The most commonly isolated species was Lactobacillus salivarius (n = 21), followed by Lactobacillus paracasei (n = 16) and Lactobacillus fermentum (n = 13). Excluding three isolates with lower 16S rRNA sequence similarity, MALDI-TOF/MS provided correct identification for 84.9% (73/86) of Lactobacillus isolates. Concordant identification was lowest for Lactobacillus casei (11%). The main infection foci were intra-abdominal infection (49%) and catheter-related bloodstream infection (17%). Only one-half of the patients received adequate antibiotic treatment during the bacteraemic episode. The majority of patients with Lactobacillus bacteraemia were immunocompromised. The 7-day and in-hospital mortality rates were 21% and 62%, respectively, and underlying malignancy was associated with a higher in-hospital mortality rate (odds ratio = 2.666). There were no significant differences in mortality (7-day, 14-day, 30-day and in-hospital) among patients with bacteraemia due to different Lactobacillus spp. Minimum inhibitory concentrations were highest for glycopeptides, cephalosporins and fluoroquinolones and were lowest for carbapenems and aminopenicillins. Lactobacillus bacteraemia was associated with a high mortality rate, and patient outcome was associated with underlying malignancy. MALDI-TOF/MS was able to accurately identify 84.9% of the Lactobacillus isolates, and L. salivarius was the predominant pathogen. The accuracy rate for identification of Lactobacillus spp. by MALDI-TOF/MS was lowest for L. casei. Copyright © 2015 Elsevier B

  11. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    PubMed Central

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  12. Effects of the Peptide Pheromone Plantaricin A and Cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the Exoproteome and the Adhesion Capacity of Lactobacillus plantarum DC400

    PubMed Central

    Calasso, Maria; Di Cagno, Raffaella; Campanella, Daniela; Minervini, Fabio; Gobbetti, Marco

    2013-01-01

    This study aimed at investigating the extracellular and cell wall-associated proteins (exoproteome) of Lactobacillus plantarum DC400 when cultivated on modified chemically defined medium (CDM) supplemented with the chemically synthesized pheromone plantaricin A (PlnA) or cocultured with L. plantarum DPPMA20 or Lactobacillus sanfranciscensis DPPMA174. Compared to monoculture, two-dimensional gel electrophoresis (2-DE) analysis showed that the exoproteome of L. plantarum DC400 was affected by PlnA and cocultivation with strains DPPMA20 and, especially, DPPMA174. The highest similarity of the 2-DE maps was found between DC400 cells cultivated in monoculture and in coculture with strain DPPMA20. Almost all extracellular proteins (22 spots) and cell wall-associated proteins (40 spots) which showed decreased or increased levels of synthesis during growth in CDM supplemented with PlnA and/or in coculture with strain DPPMA20 or DPPMA174 were identified. On the basis of the sequences in the Kyoto Encyclopedia of Genes and Genomes database, changes to the exoproteome concerned proteins involved in quorum sensing (QS), the transport system, stress response, carbohydrate metabolism and glycolysis, oxidation/reduction processes, the proteolytic system, amino acid metabolism, cell wall and catabolic processes, and cell shape, growth, and division. Cultivation with PlnA and cocultivation with strains DPPMA20 and, especially, DPMMA174 markedly increased the capacity of L. plantarum DC400 to form biofilms, to adhere to human Caco-2 cells, and to prevent the adhesion of potential intestinal pathogens. These phenotypic traits were in part related to oversynthesized moonlighting proteins (e.g., DnaK and GroEL, pyruvate kinase, enolase, and glyceraldehyde-3-phosphate dehydrogenase) in response to QS mechanisms and interaction with L. plantarum DPPMA20 and, especially, L. sanfranciscensis DPPMA174. PMID:23396346

  13. Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe–host interactions

    PubMed Central

    Sequeira, Saannya; Kavanaugh, Devon; MacKenzie, Donald A.; Walpole, Samuel; Leclaire, Charlotte; Gunning, A. Patrick; Latousakis, Dimitrios; Willats, William G. T.; Dong, Changjiang; Juge, Nathalie

    2018-01-01

    Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique β-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host–microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens. PMID:29507249

  14. Enzymatic fractionation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus

    USDA-ARS?s Scientific Manuscript database

    The cumulative effect of peptidase and protease activities associated with cells of Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB) was evaluated on the milk-protein based antimicrobial peptides casocidin and isracidin. Reaction mixtures of casocidin or isracidin...

  15. Theoretical study of ZnS/CdS bi-layer for thin-film CdTe solar cell

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Mohamed, A. S.; Ali, H. M.

    2018-05-01

    The performance of CdTe solar cells is strongly limited by the thickness of CdS window layer. A higher short-circuit current density might be achieved by decreasing the thickness of CdS layer as a result of reducing the absorption losses that take place in this layer. However, it is difficult to obtain uniform and pin-hole free CdS layers thinner than 50 nm. This problem can be solved through increasing the band gap of the window layer by adding a wide band gap semiconductor such as ZnS. In this work, bi-layer ZnS/CdS film was studied as an improved window layer of ITO/ZnS/CdS/CdTe solar cell. The total thickness of ZnS/CdS layer was taken about 60 nm. The effect of optical losses due to reflection at different interfaces in the cell and absorption in ITO, ZnS, CdS as well as the recombination loss have been studied. Finally, the effects of the recombination losses in the space-charge region and the reflectivity from the back contact were taken into accounts. The results revealed that the optical losses of 23% were achieved at 60 nm thickness of CdS and theses losses minimized to 18% when ZnS layer of 30 nm thickness was added to CdS layer. The minimum optical and recombination losses of about 26% were obtained at 1 ns of electron life-time and ∼0.4 μm width of the space-charge region. The maximum efficiency of 18.5% was achieved for ITO/CdS/CdTe cell and the efficiency increased up to 20% for ITO/ZnS/CdS/CdTe cell.

  16. Construction of recombinant Lactobacillus casei efficiently surface displayed and secreted porcine parvovirus VP2 protein and comparison of the immune responses induced by oral immunization.

    PubMed

    Yigang, X U; Yijing, L I

    2008-05-01

    Lactobacillus casei ATCC 393 was selected as a bacterial carrier for the development of mucosal vaccine against porcine parvovirus (PPV) infection. The PPV major structural polypeptide VP2 was used as the model parvovirus antigen. Two inducible expression systems, namely pPG611.1 of the cell-surface expression system and pPG612.1 of the secretion expression system based on the xylose operon promoter were used to express the VP2 protein. The immunogenicity of recombinant strains producing VP2 protein in two cellular locations, cell-surface exposed and secreted, was compared to each other by immunizing mice through the intragastric administration. The two types of constructs were able to induce strong specific immune responses against VP2 via intragastric administration and maximum titres of IgA and IgG were attained on days 46 post oral immunization, while the highest antibody levels were obtained with the strain producing the VP2 protein in extracellular milieu. The induced antibodies demonstrated neutralizing effects on PPV infection.

  17. Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats.

    PubMed

    Amdekar, Sarika; Singh, Vinod; Kumar, Avnish; Sharma, Poonam; Singh, Rambir

    2013-01-01

    In view of well-established immunomodulatory properties of Lactobacillus, present investigation was carried out to evaluate antioxidant and anti-inflammatory potential of Lactobacillus casei and Lactobacillus acidophilus, against inflammatory pathway and oxidative stress developed in an experimental model of arthritis. Collagen-induced arthritis (CIA) model was used. Oral administration of L. casei, L. acidophilus, standard antiarthritic drug indomethacin, and vehicle were started after induced arthritis and continued up to day 28. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, IL-17, IL-4, and IL-10 levels were estimated in serum. In parallel, oxidative stress parameters were also measured from synovial effsuate. All rats were graded for arthritis score at the end of each week. L. casei, L. acidophilus, and indomethacin treatment significantly downregulated proinflammatory and upregulated anti-inflammatory cytokines at P<0.0001. They have significantly decreased oxidative stress in synovial effsuate (P<0.0001) and also arthritis score (P<0.05). Protection provided by L. casei and L. acidophilus was more pronounced than that of indomethacin. These lines of evidence suggest that L. casei and L. acidophilus exert potent protective effect against CIA. It further establishes effective anti-inflammatory and antioxidant properties of Lactobacillus. However, additional clinical investigations are needed to prove the efficacy of Lactobacillus in treatment/management of rheumatoid arthritis.

  18. Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus

    PubMed Central

    Andersen, Joakim M.; Barrangou, Rodolphe; Abou Hachem, Maher; Lahtinen, Sampo; Goh, Yong Jun; Svensson, Birte; Klaenhammer, Todd R.

    2011-01-01

    Probiotic microbes rely on their ability to survive in the gastrointestinal tract, adhere to mucosal surfaces, and metabolize available energy sources from dietary compounds, including prebiotics. Genome sequencing projects have proposed models for understanding prebiotic catabolism, but mechanisms remain to be elucidated for many prebiotic substrates. Although β-galactooligosaccharides (GOS) are documented prebiotic compounds, little is known about their utilization by lactobacilli. This study aimed to identify genetic loci in Lactobacillus acidophilus NCFM responsible for the transport and catabolism of GOS. Whole-genome oligonucleotide microarrays were used to survey the differential global transcriptome during logarithmic growth of L. acidophilus NCFM using GOS or glucose as a sole source of carbohydrate. Within the 16.6-kbp gal-lac gene cluster, lacS, a galactoside-pentose-hexuronide permease-encoding gene, was up-regulated 5.1-fold in the presence of GOS. In addition, two β-galactosidases, LacA and LacLM, and enzymes in the Leloir pathway were also encoded by genes within this locus and up-regulated by GOS stimulation. Generation of a lacS-deficient mutant enabled phenotypic confirmation of the functional LacS permease not only for the utilization of lactose and GOS but also lactitol, suggesting a prominent role of LacS in the metabolism of a broad range of prebiotic β-galactosides, known to selectively modulate the beneficial gut microbiota. PMID:22006318

  19. ZnS/Al2S3 Layer as a Blocking Layer in Quantum Dot Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Vafapoor, Borzoo; Fathi, Davood; Eskandari, Mehdi

    2017-12-01

    In this research, the effect of treatment of the CdS/CdSe sensitized ZnO photoanode by ZnS, Al2S3, and ZnS/Al2S3 nanoparticles as a barrier layer on the performance of quantum dot sensitized solar cell is investigated. Current density-voltage (J-V) characteristics show that cell efficiency is enhanced from 3.62% to 4.82% with treatment of a CdS/CdSe/ZnS sensitized ZnO photoanode by Al2S3 nanoparticles. In addition, short- circuit current density (J sc) is increased from 11.5 mA/cm2 to 14.8 mA/cm2. The results extracted from electrochemical impedance spectroscopy indicate that charge transfer resistance (R ct) in photoanode/electrolyte interfaces decreases with deposition of Al2S3 nanoparticles on CdS/CdSe/ZnS sensitized ZnO photoanodes, while the chemical capacitance of photoanode (C μ ) and electron lifetime (t n) increase. Also, results revealed that cell performance is considerably decreased with the treatment of the AL2S3 blocking layer incorporated between ZnO nanorods and CdS/CdSe QDs.

  20. ZnS/Al2S3 Layer as a Blocking Layer in Quantum Dot Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Vafapoor, Borzoo; Fathi, Davood; Eskandari, Mehdi

    2018-03-01

    In this research, the effect of treatment of the CdS/CdSe sensitized ZnO photoanode by ZnS, Al2S3, and ZnS/Al2S3 nanoparticles as a barrier layer on the performance of quantum dot sensitized solar cell is investigated. Current density-voltage ( J- V) characteristics show that cell efficiency is enhanced from 3.62% to 4.82% with treatment of a CdS/CdSe/ZnS sensitized ZnO photoanode by Al2S3 nanoparticles. In addition, short- circuit current density ( J sc) is increased from 11.5 mA/cm2 to 14.8 mA/cm2. The results extracted from electrochemical impedance spectroscopy indicate that charge transfer resistance ( R ct) in photoanode/electrolyte interfaces decreases with deposition of Al2S3 nanoparticles on CdS/CdSe/ZnS sensitized ZnO photoanodes, while the chemical capacitance of photoanode ( C μ ) and electron lifetime ( t n) increase. Also, results revealed that cell performance is considerably decreased with the treatment of the AL2S3 blocking layer incorporated between ZnO nanorods and CdS/CdSe QDs.

  1. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [Construction of Lactobacillus rhamnosus GG particles surface display system].

    PubMed

    Su, Runyu; Nie, Boyao; Yuan, Shengling; Tao, Haoxia; Liu, Chunjie; Yang, Bailiang; Wang, Yanchun

    2017-01-25

    To describe a novel particles surface display system which is consisted of gram-positive enhancer matrix (GEM) particles and anchor proteins for bacteria-like particles vaccines, we treated Lactobacillus rhamnosus GG bacteria with 10% heated-TCA for preparing GEM particles, and then identified the harvested GEM particles by electron microscopy, RT-PCR and SDS-PAGE. Meanwhile, Escherichia coli was induced to express hybrid proteins PA3-EGFP and P60-EGFP, and GEM particles were incubated with them. Then binding of anchor proteins were determined by Western blotting, transmission electron microscopy, fluorescence microscopy and spectrofluorometry. GEM particles preserved original size and shape, and proteins and DNA contents of GEM particles were released substantially. The two anchor proteins both had efficiently immobilized on the surface of GEM. GEM particles that were bounded by anchor proteins were brushy. The fluorescence of GEM particles anchoring PA3 was slightly brighter than P60, but the difference was not significant (P>0.05). GEM particles prepared from L. rhamnosus GG have a good binding efficiency with anchor proteins PA3-EGFP and P60-EGFP. Therefore, this novel foreign protein surface display system could be used for bacteria-like particle vaccines.

  3. Differential protection by cell wall components of Lactobacillus amylovorus DSM 16698Tagainst alterations of membrane barrier and NF-kB activation induced by enterotoxigenic F4+ Escherichia coli on intestinal cells.

    PubMed

    Roselli, Marianna; Finamore, Alberto; Hynönen, Ulla; Palva, Airi; Mengheri, Elena

    2016-09-29

    The role of Lactobacillus cell wall components in the protection against pathogen infection in the gut is still largely unexplored. We have previously shown that L. amylovorus DSM 16698 T is able to reduce the enterotoxigenic F4 + Escherichia coli (ETEC) adhesion and prevent the pathogen-induced membrane barrier disruption through the regulation of IL-10 and IL-8 expression in intestinal cells. We have also demonstrated that L. amylovorus DSM 16698 T protects host cells through the inhibition of NF-kB signaling. In the present study, we investigated the role of L. amylovorus DSM 16698 T cell wall components in the protection against F4 + ETEC infection using the intestinal Caco-2 cell line. Purified cell wall fragments (CWF) from L. amylovorus DSM 16698 T were used either as such (uncoated, U-CWF) or coated with S-layer proteins (S-CWF). Differentiated Caco-2/TC7 cells on Transwell filters were infected with F4 + ETEC, treated with S-CWF or U-CWF, co-treated with S-CWF or U-CWF and F4 + ETEC for 2.5 h, or pre-treated with S-CWF or U-CWF for 1 h before F4 + ETEC addition. Tight junction (TJ) and adherens junction (AJ) proteins were analyzed by immunofluorescence and Western blot. Membrane permeability was determined by phenol red passage. Phosphorylated p65-NF-kB was measured by Western blot. We showed that both the pre-treatment with S-CWF and the co- treatment of S-CWF with the pathogen protected the cells from F4 + ETEC induced TJ and AJ injury, increased membrane permeability and activation of NF-kB expression. Moreover, the U-CWF pre-treatment, but not the co-treatment with F4 + ETEC, inhibited membrane damage and prevented NF-kB activation. The results indicate that the various components of L. amylovorus DSM 16698 T cell wall may counteract the damage caused by F4 + ETEC through different mechanisms. S-layer proteins are essential for maintaining membrane barrier function and for mounting an anti-inflammatory response against F4 + ETEC infection. U-CWF are

  4. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Hang; Lei, Qun-Li; Ren, Chun-Lai

    2015-11-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 21274062, 11474155, and 91027040).

  5. Lactobacillus delivery of bioactive interleukin-22.

    PubMed

    Lin, Yin; Krogh-Andersen, Kasper; Hammarström, Lennart; Marcotte, Harold

    2017-08-23

    Interleukin-22 (IL-22) plays a prominent role in epithelial regeneration and dampening of chronic inflammatory responses by protecting intestinal stem cells from immune-mediated tissue damage. IL-22 has a considerable therapeutic potential in graft-versus-host disease (GVHD), which is a frequent and challenging complication following allogeneic stem cell transplantation. The aim of our study was to engineer Lactobacillus for delivery of IL-22 directly to the intestinal mucosa as a new therapeutic strategy for GVHD. The secretion and surface anchoring of mouse IL-22 by Lactobacillus paracasei BL23 was demonstrated by Western blot and flow cytometry. Both secreted and anchored mouse IL-22 produced by Lactobacillus was biologically active, as determined by its ability to induce IL-10 secretion in the Colo 205 human colon cancer cell line. We have demonstrated the secretion and surface anchoring of bioactive IL-22 by Lactobacillus. Our results suggest that IL-22 expressing lactobacilli may potentially be a useful mucosal therapeutic agent for the treatment of GVHD, provided that chromosomal integration of the IL-22 expression cassettes can be achieved.

  6. Layer-By-Layer Nanoparticle Vaccines Carrying the G Protein CX3C Motif Protect against RSV Infection and Disease.

    PubMed

    Jorquera, Patricia A; Oakley, Katie E; Powell, Thomas J; Palath, Naveen; Boyd, James G; Tripp, Ralph A

    2015-10-12

    Respiratory syncytial virus (RSV) is the single most important cause of serious lower respiratory tract infections in young children; however no effective treatment or vaccine is currently available. Previous studies have shown that therapeutic treatment with a monoclonal antibody (clone 131-2G) specific to the RSV G glycoprotein CX3C motif, mediates virus clearance and decreases leukocyte trafficking to the lungs of RSV-infected mice. In this study, we show that vaccination with layer-by-layer nanoparticles (LbL-NP) carrying the G protein CX3C motif induces blocking antibodies that prevent the interaction of the RSV G protein with the fractalkine receptor (CX3CR1) and protect mice against RSV replication and disease pathogenesis. Peptides with mutations in the CX3C motif induced antibodies with diminished capacity to block G protein-CX3CR1 binding. Passive transfer of these anti-G protein antibodies to mice infected with RSV improved virus clearance and decreased immune cell trafficking to the lungs. These data suggest that vaccination with LbL-NP loaded with the CX3C motif of the RSV G protein can prevent manifestations of RSV disease by preventing the interaction between the G protein and CX3CR1 and recruitment of immune cells to the airways.

  7. Optical and structural properties of protein/gold hybrid bio-nanofilms prepared by layer-by-layer method.

    PubMed

    Pál, Edit; Hornok, Viktória; Sebok, Dániel; Majzik, Andrea; Dékány, Imre

    2010-08-01

    Lysozyme/gold thin layers were prepared by layer-by-layer (LbL) self-assembly method. The build-up of the films was followed by UV-vis-absorbance spectra, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) techniques. The structural property of films was examined by X-ray diffraction (XRD) measurements, while their morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that gold nanoparticles (NPs) had cubic crystalline structure, the primary particles form aggregates in the thin layer due to the presence of lysozyme molecules. The UV-vis measurements prove change in particle size while the colour of the film changes from wine-red to blue. The layer thickness of films was determined using the above methods and the loose, porous structure of the films explains the difference in the results. The vapour adsorption property of hybrid layers was also studied by QCM using different saturated vapours and ammonia gas. The lysozyme/Au films were most sensitive for ammonia gas among the tested gases/vapours due to the strongest interaction between the functional groups of the protein. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice.

    PubMed

    Asahara, T; Shimizu, K; Takada, T; Kado, S; Yuki, N; Morotomi, M; Tanaka, R; Nomoto, K

    2011-01-01

    The anti-infectious activity of lactobacilli against multi-drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic-induced infection. Explosive intestinal growth and subsequent lethal extra-intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 10(8) colony-forming units per mouse daily to mice. Comparison of the anti-Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869(T) , Lactobacillus plantarum ATCC 14917(T) , Lactobacillus reuteri JCM 1112(T) , Lactobacillus rhamnosus ATCC 7469(T) and Lactobacillus salivarius ATCC 11741(T) conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334(T) and Lactobacillus zeae ATCC 15820(T) . The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti-infectious activity. Moreover, heat-killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti-infectious activity. These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi-drug resistant pathogens, such as DT104. Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics. © 2010 The Authors. Journal of Applied Microbiology

  9. High-Affinity Interaction between the S-Layer Protein SbsC and the Secondary Cell Wall Polymer of Geobacillus stearothermophilus ATCC 12980 Determined by Surface Plasmon Resonance Technology▿ †

    PubMed Central

    Ferner-Ortner, Judith; Mader, Christoph; Ilk, Nicola; Sleytr, Uwe B.; Egelseer, Eva M.

    2007-01-01

    Surface plasmon resonance studies using C-terminal truncation forms of the S-layer protein SbsC (recombinant SbsC consisting of amino acids 31 to 270 [rSbsC31-270] and rSbsC31-443) and the secondary cell wall polymer (SCWP) isolated from Geobacillus stearothermophilus ATCC 12980 confirmed the exclusive responsibility of the N-terminal region comprising amino acids 31 to 270 for SCWP binding. Quantitative analyses indicated binding behavior demonstrating low, medium, and high affinities. PMID:17644609

  10. In vitro activity of farnesol against vaginal Lactobacillus spp.

    PubMed

    Wang, Fengjuan; Liu, Zhaohui; Zhang, Dai; Niu, Xiaoxi

    2017-05-01

    Farnesol, a quorum-sensing molecule in Candida albicans, can affect the growth of certain microorganisms. The objective of this study was to evaluate the in vitro activity of farnesol against vaginal Lactobacillus spp., which play a crucial role in the maintenance of vaginal health. Growth and metabolic viability of vaginal Lactobacillus spp. incubated with different concentrations of farnesol were determined by measuring the optical density of the cultures and with the MTT assay. Morphology of the farnesol-treated cells was evaluated using a scanning electron microscope. In vitro adherence of vaginal Lactobacillus cells treated with farnesol was determined by co-incubating with vaginal epithelial cells (VECs). The minimum inhibitory concentration (MIC) of farnesol for vaginal Lactobacillus spp. was 1500μM. No morphological changes were observed when the farnesol-treated Lactobacillus cells were compared with farnesol-free cells, and 100μM farnesol would reduce the adherence of vaginal Lactobacillus to VECs. Farnesol acted as a potential antimicrobial agent, had little impact on the growth, metabolism, and cytomorphology of the vaginal Lactobacillus spp.; however, it affected their adhering capacity to VECs. The safety of farnesol as an adjuvant for antimicrobial agents during the treatment of vaginitis needs to be studied further. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  12. Complexation of Uranium by Cells and S-Layer Sheets of Bacillus sphaericus JG-A12

    PubMed Central

    Merroun, Mohamed L.; Raff, Johannes; Rossberg, André; Hennig, Christoph; Reich, Tobias; Selenska-Pobell, Sonja

    2005-01-01

    Bacillus sphaericus JG-A12 is a natural isolate recovered from a uranium mining waste pile near the town of Johanngeorgenstadt in Saxony, Germany. The cells of this strain are enveloped by a highly ordered crystalline proteinaceous surface layer (S-layer) possessing an ability to bind uranium and other heavy metals. Purified and recrystallized S-layer proteins were shown to be phosphorylated by phosphoprotein-specific staining, inductive coupled plasma mass spectrometry analysis, and a colorimetric method. We used extended X-ray absorption fine-structure (EXAFS) spectroscopy to determine the structural parameters of the uranium complexes formed by purified and recrystallized S-layer sheets of B. sphaericus JG-A12. In addition, we investigated the complexation of uranium by the vegetative bacterial cells. The EXAFS analysis demonstrated that in all samples studied, the U(VI) is coordinated to carboxyl groups in a bidentate fashion with an average distance between the U atom and the C atom of 2.88 ± 0.02 Å and to phosphate groups in a monodentate fashion with an average distance between the U atom and the P atom of 3.62 ± 0.02 Å. Transmission electron microscopy showed that the uranium accumulated by the cells of this strain is located in dense deposits at the cell surface. PMID:16151146

  13. Testing of viscous anti-HIV microbicides using Lactobacillus

    PubMed Central

    Moncla, B.J.; Pryke, K.; Rohan, L. C.; Yang, H.

    2012-01-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30 min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive brief, about 2 sec, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. PMID:22226641

  14. Milk fermented by Lactobacillus species from Brazilian artisanal cheese protect germ-free-mice against Salmonella Typhimurium infection.

    PubMed

    Acurcio, L B; Sandes, S H C; Bastos, R W; Sant'anna, F M; Pedroso, S H S P; Reis, D C; Nunes, Á C; Cassali, G D; Souza, M R; Nicoli, J R

    2017-08-24

    Ingestion of milks fermented by Lactobacillus strains showing probiotic properties is an important tool to maintain gastrointestinal health. In this study, Lactobacillus rhamnosus D1 and Lactobacillus plantarum B7, isolated from Brazilian artisanal cheese, were used as starters for the functional fermented milks to assess their probiotic properties in a gnotobiotic animal model. Male germ-free Swiss mice received a single oral dose of milk fermented by each sample, and were challenged with Salmonella Typhimurium five days afterwards. Milk fermented by both Lactobacillus strains maintained counts above 10 8 cfu/ml during cold storage. Lactobacillus strains colonised the gut of the germ-free-mice, maintaining their antagonistic effect. This colonisation led to a protective effect against Salmonella challenge, as demonstrated by reduced pathogen translocation and histological lesions, when compared to control group, especially for Lactobacillus rhamnosus D1. Additionally, mRNA expression of inflammatory (interferon gamma, interleukin (IL)-6, tumour necrosis factor alpha) and anti-inflammatory (transforming growth factor β1) cytokines was augmented in animals previously colonised and then challenged, when compared to other experimental groups. Lactobacillus plantarum B7 colonisation also promoted higher expression of IL-17, showing a proper maturation of colonised germ-free-mice immune system. IL-5 was stimulated by both strains' colonisation and not by S. Typhimurium challenge.

  15. Lactobacillus acidophilus—Rutin Interplay Investigated by Proteomics

    PubMed Central

    Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna

    2015-01-01

    Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus. PMID:26544973

  16. Lactobacillus acidophilus-Rutin Interplay Investigated by Proteomics.

    PubMed

    Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna

    2015-01-01

    Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus.

  17. Characterization of Two Virulent Phages of Lactobacillus plantarum

    PubMed Central

    Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea

    2012-01-01

    We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172

  18. Draft Genome Sequence of Lactobacillus pobuzihii E100301T.

    PubMed

    Chiu, Chi-Ming; Chang, Chi-Huan; Pan, Shwu-Fen; Wu, Hui-Chung; Li, Shiao-Wen; Chang, Chuan-Hsiung; Lee, Yun-Shien; Chiang, Chih-Ming; Chen, Yi-Sheng

    2013-05-09

    Lactobacillus pobuzihii E100301(T) is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301(T).

  19. Biofilms of vaginal Lactobacillus in vitro test.

    PubMed

    Wei, Xiao-Yu; Zhang, Rui; Xiao, Bing-Bing; Liao, Qin-Ping

    2017-01-01

    This paper focuses on biofilms of Lactobacillus spp. - a type of normal flora isolated from healthy human vaginas of women of childbearing age; thereupon, it broadens the research scope of investigation of vaginal normal flora. The static slide culture method was adopted to foster biofilms, marked by specific fluorescence staining. Laser scanning confocal and scanning electron microscopy were used to observe the microstructure of the biofilms. Photographs taken from the microstructure were analysed to calculate the density of the biofilms. The body of Lactobacillus spp., though red, turned yellow when interacting with the green extracellular polysaccharides. The structure of the biofilm and aquaporin within the biofilm were imaged. Lactobacillus density increases over time. This study provides convincing evidence that Lactobacillus can form biofilms and grow over time in vitro. This finding establishes an important and necessary condition for selecting proper strains for the pharmaceutics of vaginal ecology.

  20. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  1. Antibiotic susceptibility of Lactobacillus strains isolated from domestic geese.

    PubMed

    Dec, M; Wernicki, A; Puchalski, A; Urban-Chmiel, R

    2015-01-01

    The aim of this study was to determine the antibiotic susceptibility of 93 Lactobacillus strains isolated from domestic geese raised on Polish farms. The minimal inhibitory concentration (MIC) of 13 antimicrobial substances was determined by the broth microdilution method. All strains were sensitive to the cell wall inhibitors ampicillin and amoxicillin (MIC ≤ 8 μg/ml). Resistance to inhibitors of protein synthesis and to fluoroquinolone inhibitors of replication was found in 44.1% and 60.2% of isolates, respectively; 26.9% strains were resistant to neomycin (MIC ≥ 64 μg/ml), 23.6% to tetracycline (MIC ≥ 32 μg/ml), 15% to lincomycin (MIC ≥ 64 μg/ml), 18.3% to doxycycline (MIC ≥ 32 μg/ml), 9.7% to tylosin (MIC ≥ 32 μg/ml), 56% to flumequine (MIC ≥ 256 μg/ml) and 22.6% to enrofloxacin (MIC ≥ 64 μg/ml). Bimodal distribution of MICs indicative of acquired resistance and unimodal distribution of the high MIC values indicative of intrinsic resistance were correlated with Lactobacillus species. Eleven (11.8%) strains displayed multiple resistance for at least three classes of antibiotics. Data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorisation of susceptible and resistant strains of Lactobacillus genus and help to assess the hazards associated with the occurrence of drug resistance among natural intestinal microflora.

  2. Draft Genome Sequence of Lactobacillus pobuzihii E100301T

    PubMed Central

    Chiu, Chi-ming; Chang, Chi-huan; Pan, Shwu-fen; Wu, Hui-chung; Li, Shiao-wen; Chang, Chuan-hsiung; Lee, Yun-shien; Chiang, Chih-ming

    2013-01-01

    Lactobacillus pobuzihii E100301T is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301T. PMID:23661478

  3. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts

    PubMed Central

    2011-01-01

    Background The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade. Results The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group. Conclusions The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host interactions of

  4. 21 CFR 184.1924 - Urease enzyme preparation from Lactobacillus fermentum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Urease enzyme preparation from Lactobacillus... Specific Substances Affirmed as GRAS § 184.1924 Urease enzyme preparation from Lactobacillus fermentum. (a) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic bacterium Lactobacillus...

  5. Cloning and Expression of Plantaricin W Produced by Lactobacillus plantarum U10 Isolate from "Tempoyak" Indonesian Fermented Food as Immunity Protein in Lactococcus lactis.

    PubMed

    Lages, Aksar Chair; Mustopa, Apon Zaenal; Sukmarini, Linda; Suharsono

    2015-10-01

    Plantaricins, one of bacteriocin produced by Lactobacillus plantarum, are already known to have activities against several pathogenic bacterium. L. plantarum U10 isolated from "tempoyak," an Indonesian fermented food, produced one kind of plantaricin designated as plantaricin W (plnW). The plnW is suggested as a putative membrane location of protein and has similar conserved motif which is important as immunity to bacteriocin itself. Thus, due to study about this plantaricin, several constructs have been cloned and protein was analyzed in Lactococcus lactis. In this study, plnW gene was successfully cloned into vector NICE system pNZ8148 and created the transformant named L. lactis NZ3900 pNZ8148-WU10. PlnW protein was 25.3 kDa in size. The concentration of expressed protein was significantly increased by 10 ng/mL nisin induction. Furthermore, PlnW exhibited protease activity with value of 2.22 ± 0.05 U/mL and specific activity about 1.65 ± 0.03 U/mg protein with 50 ng/mL nisin induction. Immunity study showed that the PlnW had immunity activity especially against plantaricin and rendered L. lactis recombinant an immunity broadly to other bacteriocins such as pediocin, fermentcin, and acidocin.

  6. Resilient protein co-expression network in male orbitofrontal cortex layer 2/3 during human aging.

    PubMed

    Pabba, Mohan; Scifo, Enzo; Kapadia, Fenika; Nikolova, Yuliya S; Ma, Tianzhou; Mechawar, Naguib; Tseng, George C; Sibille, Etienne

    2017-10-01

    The orbitofrontal cortex (OFC) is vulnerable to normal and pathologic aging. Currently, layer resolution large-scale proteomic studies describing "normal" age-related alterations at OFC are not available. Here, we performed a large-scale exploratory high-throughput mass spectrometry-based protein analysis on OFC layer 2/3 from 15 "young" (15-43 years) and 18 "old" (62-88 years) human male subjects. We detected 4193 proteins and identified 127 differentially expressed (DE) proteins (p-value ≤0.05; effect size >20%), including 65 up- and 62 downregulated proteins (e.g., GFAP, CALB1). Using a previously described categorization of biological aging based on somatic tissues, that is, peripheral "hallmarks of aging," and considering overlap in protein function, we show the highest representation of altered cell-cell communication (54%), deregulated nutrient sensing (39%), and loss of proteostasis (35%) in the set of OFC layer 2/3 DE proteins. DE proteins also showed a significant association with several neurologic disorders; for example, Alzheimer's disease and schizophrenia. Notably, despite age-related changes in individual protein levels, protein co-expression modules were remarkably conserved across age groups, suggesting robust functional homeostasis. Collectively, these results provide biological insight into aging and associated homeostatic mechanisms that maintain normal brain function with advancing age. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  8. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals

    PubMed Central

    Guardia, Pablo; Estradé, Sònia; Peiró, Francesca; Cabot, Andreu

    2018-01-01

    The manufacturing of semiconducting films using solution-based approaches is considered a low cost alternative to vacuum-based thin film deposition strategies. An additional advantage of solution processing methods is the possibility to control the layer nano/microstructure. Here, we detail the production of mesoporous CuGaS2 (CGS) and ZnS layers from spin-coating and subsequent cross-linking through chalcogen-chalcogen bonds of properly functionalized nanocrystals (NCs). We further produce NC-based porous CGS/ZnS bilayers and NC-based CGS–ZnS composite layers using the same strategy. Photoelectrochemical measurements are used to demonstrate the efficacy of porous layers, and particularly the CGS/ZnS bilayers, for improved current densities and photoresponses relative to denser films deposited from as-produced NCs. PMID:29621198

  10. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection.

  11. Expression of Genes Involved in Bacteriocin Production and Self-Resistance in Lactobacillus brevis 174A Is Mediated by Two Regulatory Proteins.

    PubMed

    Noda, Masafumi; Miyauchi, Rumi; Danshiitsoodol, Narandalai; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2018-04-01

    We have previously shown that the lactic acid bacterium Lactobacillus brevis 174A, isolated from Citrus iyo fruit, produces a bacteriocin designated brevicin 174A, which is comprised of two antibacterial polypeptides (designated brevicins 174A-β and 174A-γ). We have also found a gene cluster, composed of eight open reading frames (ORFs), that contains genes for the biosynthesis of brevicin 174A, self-resistance to its own bacteriocin, and two transcriptional regulatory proteins. Some lactic acid bacterial strains have a system to start the production of bacteriocin at an adequate stage of growth. Generally, the system consists of a membrane-bound histidine protein kinase (HPK) that senses a specific environmental stimulus and a corresponding response regulator (RR) that mediates the cellular response. We have previously shown that although the HPK- and RR-encoding genes are not found on the brevicin 174A biosynthetic gene cluster in the 174A strain, two putative regulatory genes, designated breD and breG , are in the gene cluster. In the present study, we demonstrate that the expression of brevicin 174A production and self-resistance is positively controlled by two transcriptional regulatory proteins, designated BreD and BreG. BreD is expressed together with BreE as the self-resistance determinant of L. brevis 174A. DNase I footprinting analysis and a promoter assay demonstrated that BreD binds to the breED promoter as a positive autoregulator. The present study also demonstrates that BreG, carrying a transmembrane domain, binds to the common promoter of breB and breC , encoding brevicins 174A-β and 174A-γ, respectively, for positive regulation. IMPORTANCE The problem of the appearance of bacteria that are resistant to practical antibiotics and the increasing demand for safe foods have increased interest in replacing conventional antibiotics with bacteriocin produced by the lactic acid bacteria. This antibacterial substance can inhibit the growth of pathogenic

  12. Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus

    PubMed Central

    Lagenaur, Laurel A; Sanders-Beer, Brigitte E; Brichacek, Beda; Pal, Ranajit; Liu, Xiaowen; Liu, Yang; Yu, Rosa; Venzon, David; Lee, Peter P; Hamer, Dean H

    2012-01-01

    Most HIV transmission in women occurs through the cervicovaginal mucosa, which is coated by a bacterial biofilm including Lactobacillus. This commensal bacterium plays a role in maintaining healthy mucosa and can be genetically engineered to produce anti-viral peptides. Here, we report a 63% reduction in transmission of a chimeric simian/human immunodeficiency virus (SHIVSF162P3) after repeated vaginal challenges of macaques treated with Lactobacillus jensenii expressing the HIV-1 entry inhibitor cyanovirin-N. Furthermore, peak viral loads in colonized macaques with breakthrough infection were reduced 6-fold. Colonization and prolonged anti-viral protein secretion by the genetically engineered lactobacilli did not cause any increase in proinflammatory markers. These findings lay the foundation for an accessible and durable approach to reduce heterosexual transmission of HIV in women that is coitally independent, inexpensive, and enhances the natural protective effects of the vaginal microflora. PMID:21734653

  13. Biochemical characterization of a recombinant Lactobacillus acidophilus strain expressing exogenous FomA protein.

    PubMed

    Ma, Li; Li, Fei; Zhang, Xiangyu; Feng, Xiping

    2018-04-30

    In previous research, to combine the immunogenicity of Fusobacterium nucleatum (F. nucleatum) and the probiotic properties of Lactobacillus acidophilus (L. acidophilus), we constructed a FomA-expressing L. acidophilus strain and assessed its immunogenicity. Our findings indicated that oral administration of the recombinant L. acidophilus strain reduced the risk of periodontal infection by Porphyromonas gingivalis (P. gingivalis) and F. nucleatum. However, because the exogenous FomA is an heterologous protein for the original bacterium, in this study, we assessed whether the biochemical characteristics of the recombinant L. acidophilus strain change due to the expression of the exogenous FomA protein. To test the biochemical characteristics of a recombinant L. acidophilus strain expressing exogenous FomA and assess its antibiotic sensitivity. We assessed the colony morphology, growth, acid production, and carbohydrate fermentation abilities of the recombinant L. acidophilus strain. In addition, we tested the adhesive ability and antimicrobial activity of the recombinant and assessed its antibiotic sensitivity through a drug susceptibility test. The experimental results showed that the colony and microscopic morphology of the recombinant L. acidophilus strain was consistent with the original strain, and the recombinant strain grew well when cultured under aerobic or anaerobic conditions, exhibiting a growth rate that was identical to that of the standard strain. Similarly, the supernatants of the recombinant L. acidophilus can inhibit the growth of E. coli and P. gingivalis at different concentrations, and the recombinant strain displayed essentially the same drug sensitivity profile as the original L. acidophilus. However, to our surprise, the recombinant strains exhibited a greater adhesion ability than the reference strain. Our study demonstrated that, in addition to an increased adhesion ability, the recombinant L. acidophilus strain maintained the basic

  14. Bacteriocins from Lactobacillus plantarum - production, genetic organization and mode of action: produção, organização genética e modo de ação.

    PubMed

    Todorov, Svetoslav D

    2009-04-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented.

  15. Determination of Bifidobacterium and Lactobacillus in breast milk of healthy women by digital PCR.

    PubMed

    Qian, L; Song, H; Cai, W

    2016-09-01

    Breast milk is one of the most important sources of postnatal microbes. Quantitative real-time polymerase chain reaction (qRT-PCR) is currently used for the quantitative analysis of bacterial 16S rRNA genes in breast milk. However, this method relies on the use of standard curves and is imprecise when quantitating target DNA of low abundance. In contrast, droplet digital PCR (DD-PCR) provides an absolute quantitation without the need for calibration curves. A comparison between DD-PCR and qRT-PCR was conducted for the quantitation of Bifidobacterium and Lactobacillus 16S RNA genes in human breast milk, and the impacts of selected maternal factors were studied on the composition of these two bacteria in breast milk. From this study, DD-PCR reported between 0-34,460 16S rRNA gene copies of Bifidobacterium genera and between 1,108-634,000 16S rRNA gene copies of Lactobacillus genera in 1 ml breast milk. The 16S rRNA gene copy number of Lactobacillus genera was much greater than that of Bifidobacterium genera in breast milk. DD-PCR showed a 10-fold lower limit of quantitation as compared to qRT-PCR. A higher correlation and agreement was observed between qRT-PCR and DD-PCR in Lactobacillus quantitation as compared to Bifidobacterium quantitation. Based on our DD-PCR quantitation, a low abundance of Bifidobacterium bacteria in breast milk was correlated to higher pre-pregnancy body mass index (BMI). However, no significant difference was observed for these two bacteria in breast milk between mothers who had vaginal deliveries and caesarean deliveries. This study suggests that DD-PCR is a better tool to quantitate the bacterial load of breast milk compared to the conventional qRT-PCR method. The number of breast milk Bifidobacterium bacteria is influenced by maternal pre-pregnancy BMI.

  16. Functional Analysis of the Lactobacillus casei BL23 Sortases

    PubMed Central

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2012-01-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  17. Effects of probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary Streptococcus mutans and Lactobacillus levels

    PubMed Central

    Tehrani, Maryam Hajnorouzali; Akhlaghi, Najmeh; Talebian, Leila; Emami, Jaber; Keyhani, Siamak Etzad

    2016-01-01

    Aims: The aim of the present study was to evaluate the effect of a probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary counts of Streptococcus mutans (SM) and Lactobacillus (LB) in children 3–6 years of age. Settings and Design: Sixty-one healthy children were randomly allocated into two parallel blocks in this double-blind, randomized controlled trial (IRCT2014120320202N1) from May to June 2015. Subjects and Methods: Finally 53 participants consumed five drops of placebo (n = 23) or probiotic (n = 30) every night for 2 weeks. Before intervention and 1 day after completion of the intervention, unstimulated salivary samples were collected, and microbiologic evaluations were carried out. Statistical Analysis: Data were analyzed with descriptive statistical methods Wilcoxon signed ranks, Mann–Whitney, and logistic regression. Results: SM level decreased significantly in probiotic group after intervention (P = 0.045), and there were significant differences in salivary SM counts after intervention between two groups (P = 0.04). In probiotic group, LB counts decreased significantly after intervention (P = 0.048); however, there were no significant differences between two groups (P = 0.216). Conclusions: Use of this probiotic drop decreased salivary counts of SM; however, LB counts did not change. In addition, use of the drop in children with higher salivary counts appeared to be more effective. PMID:27994413

  18. Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei†

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Altermann, Eric; Barrangou, Rodolphe; McGrath, Stephen; Claesson, Marcus J.; Li, Yin; Leahy, Sinead; Walker, Carey D.; Zink, Ralf; Neviani, Erasmo; Steele, Jim; Broadbent, Jeff; Klaenhammer, Todd R.; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe

    2006-01-01

    Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli. PMID:16672450

  19. Quantification of the Influence of Protein-Protein Interactions on Adsorbed Protein Structure and Bioactivity

    PubMed Central

    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.

    2013-01-01

    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-white lysozyme (HEWL) adsorbed on silica glass, poly(methyl methacrylate), and polyethylene as our model systems. In order to vary protein-protein interaction effects over a wide range, HEWL was first adsorbed to each surface type under widely varying protein solution concentrations for 2 h to saturate the surface, followed by immersion in pure buffer solution for 15 h to equilibrate the adsorbed protein layers in the absence of additionally adsorbing protein. Periodic measurements were made at selected time points of the areal density of the adsorbed protein layer as an indicator of the level of protein-protein interaction effects within the layer, and these values were then correlated with measurements of the adsorbed protein’s secondary structure and bioactivity. The results from these studies indicate that protein-protein interaction effects help stabilize the structure of HEWL adsorbed on silica glass, have little influence on the structural behavior of HEWL on HDPE, and actually serve to destabilize HEWL’s structure on PMMA. The bioactivity of HEWL on silica glass and HDPE was found to decrease in direct proportion to the degree of adsorption-induce protein unfolding. A direct correlation between bioactivity and the conformational state of adsorbed HEWL was less apparent on PMMA, thus suggesting that other factors influenced HEWL’s bioactivity on this surface, such as the accessibility of HEWL’s bioactive site being blocked by neighboring proteins or the surface

  20. Exposing the Secrets of Two Well-Known Lactobacillus casei Phages, J-1 and PL-1, by Genomic and Structural Analysis

    PubMed Central

    Dieterle, Maria Eugenia; Bowman, Charles; Batthyany, Carlos; Lanzarotti, Esteban; Turjanski, Adrián; Hatfull, Graham

    2014-01-01

    Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection. PMID:25217012

  1. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  2. Characterization of Lactobacillus from Algerian Goat’S Milk Based on Phenotypic, 16S rDNA Sequencing and their Technological Properties

    PubMed Central

    Marroki, Ahmed; Zúñiga, Manuel; Kihal, Mabrouk; Pérez- Martínez, Gaspar

    2011-01-01

    Nineteen strains of Lactobacillus isolated from goat’s milk from farms in north-west of Algeria were characterized. Isolates were identified by phenotypic, physiological and genotypic methods and some of their important technological properties were studied. Phenotypic characterization was carried out by studying physiological, morphological characteristics and carbohydrate fermentation patterns using API 50 CHL system. Isolates were also characterized by partial 16S rDNA sequencing. Results obtained with phenotypic methods were correlated with the genotypic characterization and 13 isolates were identified as L. plantarum, two isolates as L. rhamnosus and one isolate as L. fermentum. Three isolates identified as L. plantarum by phenotypic characterization were found to be L. pentosus by the genotypic method. A large diversity in technological properties (acid production in skim milk, exopolysaccharide production, aminopeptidase activity, antibacterial activity and antibiotic susceptibility) was observed. Based on these results, two strains of L. plantarum (LbMS16 and LbMS21) and one strain of L. rhamnosus (LbMF25) have been tentatively selected for use as starter cultures in the manufacture of artisanal fermented dairy products in Algeria. PMID:24031617

  3. Isolation of Lactobacillus salivarius 1077 (NRRL B-50053) and characterization of its bacteriocin and spectra of antimicrobial activity

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  4. Amplicon Sequencing of the slpH Locus Permits Culture-Independent Strain Typing of Lactobacillus helveticus in Dairy Products

    PubMed Central

    Moser, Aline; Wüthrich, Daniel; Bruggmann, Rémy; Eugster-Meier, Elisabeth; Meile, Leo; Irmler, Stefan

    2017-01-01

    The advent of massive parallel sequencing technologies has opened up possibilities for the study of the bacterial diversity of ecosystems without the need for enrichment or single strain isolation. By exploiting 78 genome data-sets from Lactobacillus helveticus strains, we found that the slpH locus that encodes a putative surface layer protein displays sufficient genetic heterogeneity to be a suitable target for strain typing. Based on high-throughput slpH gene sequencing and the detection of single-base DNA sequence variations, we established a culture-independent method to assess the biodiversity of the L. helveticus strains present in fermented dairy food. When we applied the method to study the L. helveticus strain composition in 15 natural whey cultures (NWCs) that were collected at different Gruyère, a protected designation of origin (PDO) production facilities, we detected a total of 10 sequence types (STs). In addition, we monitored the development of a three-strain mix in raclette cheese for 17 weeks. PMID:28775722

  5. The NMR contribution to protein-protein networking in Fe-S protein maturation.

    PubMed

    Banci, Lucia; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Piccioli, Mario

    2018-03-22

    Iron-sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe-S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe-2S], [3Fe-4S] and [4Fe-4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe-S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe-S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of "Fe-S interactomics". This contribution was particularly effective when protein-protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.

  6. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    PubMed

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  7. Genetic engineering of Lactobacillus diolivorans.

    PubMed

    Pflügl, Stefan; Marx, Hans; Mattanovich, Diethard; Sauer, Michael

    2013-07-01

    In this study, we developed a toolbox for genetic manipulation of Lactobacillus diolivorans, a promising production organism for 1,3-propanediol from glycerol. Two major findings play a key role for successful transformation of this organism: (1) the absence of a native plasmid, because a native plasmid is a major obstacle for transformation of L. diolivorans, and (2) the absence of DNA methylation. A suitable expression plasmid, pSHM, for homologous and heterologous protein expression in L. diolivorans was constructed. This plasmid is based on the replication origin repA of L. diolivorans. The native glyceraldehyde-3-phosphate dehydrogenase promoter is used for constitutive expression of the genes of interest. Functional expression of genes in L. diolivorans was shown with two examples: production of green fluorescent protein resulted in a 40- to 60-fold higher fluorescence of the obtained clones compared with the wild-type strain. Finally, the homologous overexpression of a putatively NADPH-dependent 1,3-propanediol oxidoreductase improved 1,3-propanediol production by 20% in batch cultures. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri

    PubMed Central

    van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S.; Britton, Robert A.

    2012-01-01

    Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution. PMID:22750793

  9. Dietary Lactobacillus acidophilus modulated skin mucus protein profile, immune and appetite genes expression in gold fish (Carassius auratus gibelio).

    PubMed

    Hosseini, Marjan; Kolangi Miandare, Hamed; Shabani, Ali; Hoseinifar, Seyed Hossein; Yarahmadi, Peyman

    2016-12-01

    The objective of the present study was to investigate the effect of dietary Lactobacillus acidophilus on skin mucus protein pattern, immune and appetite related genes expression as well as growth performance in gold fish (Carassius auratus gibelio). Three hundred healthy gold fish (2.5 ± 0.05) juveniles were randomly distributed in 12 glass aquariums (400-L; 25 fish per aquaria) and fed experimental diets contain different levels of L. acidophilus (0, 1.5 × 10 8 , 3 × 10 8 and 6 × 10 8 ) for 8 weeks. SDS-PAGE analysis of skin mucus protein profile at the end of the feeding trial revealed differences in protein profile of probiotic fed fish and control group; even three new bands were observed in L. acidophilus treated groups. Furthermore, fish fed 6 × 10 8  CFU g -1 supplemented diet showed up-regulation of both TNF-1α and TNF-2α gene expression (P < 0.05). Evaluation of appetite related gene expression showed down-regulation of ghrelin in probiotic fed fish compared those of control treatment (P < 0.05). However, administration of different levels of L. acidophilus had no significant effects on growth performance (P > 0.05). These results demonstrated that while no beneficial effects on growth performance, dietary L. acidophilus affects immune and appetite related genes expression as well as skin mucus protein profile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  11. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  12. Production of Fermented Kale Juices with Lactobacillus Strains and Nutritional Composition

    PubMed Central

    Kim, Seong Yeong

    2017-01-01

    Fermented kale juices using four types of lactobacilli were produced in the present study. After 48 h of fermentation time, viable cell counts of all ferments reached an above 109 CFU/mL. The viability of the ferments after cold storage in the refrigerator for 4 weeks showed 108 CFU/mL in all ferments. Among four types of fermented kale juices, the ferment of Lactobacillus acidophilus IFO 3025 indicated a good nutritional composition, including neutral sugar (1,909.76 μg/mL), reducing sugar (564.00 μg/mL, P<0.05), and protein contents (160.06 μg/mL, P<0.05). The results of mineral composition analysis had the highest potassium value in all ferments (854.16~895.07 μg/mL), particularly in the ferment of Lactobacillus brevis FSB-1 (P<0.001), which is necessary to sustain osmotic pressure, prevention of high blood pressure, and protein synthesis. Moreover, calcium, phosphorus, and magnesium contents related to bone health were generally sufficient in all ferments. Consequently, in this study, fermented kale juices may be suggested as a healthy fermented beverage with essential nutrients. However, the acceptability of the fermented kale juice to the Korean taste should be further investigated with a trained taste panel to determine whether inoculated fermentation could be an option for the consumers. PMID:29043222

  13. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride

    PubMed Central

    2012-01-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3′-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface. PMID:22984898

  14. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride.

    PubMed

    Moriguchi, K; Mitamura, Y; Iwami, J; Hasegawa, Y; Higuchi, N; Murakami, Y; Maeda, H; Yoshimura, F; Nakamura, H; Ohno, N

    2012-11-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3'-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface.

  15. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells

    PubMed Central

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest. PMID:26370773

  16. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells.

    PubMed

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-09-15

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.

  17. S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione.

    PubMed

    Giustarini, Daniela; Milzani, Aldo; Aldini, Giancarlo; Carini, Marina; Rossi, Ranieri; Dalle-Donne, Isabella

    2005-01-01

    S-Nitrosation of protein sulfhydryl groups is an established response to oxidative/nitrosative stress. The transient nature and reversibility of S-nitrosation, as well as its specificity, render this posttranslational modification an attractive mechanism of regulation of protein function and signal transduction, in analogy to S-glutathionylation. Several feasible mechanisms for protein S-nitrosation have been proposed, including transnitrosation by S-nitrosothiols, such as S-nitrosoglutathione (GSNO), where the nitrosonium moiety is directly transferred from one thiol to another. The reaction between GSNO and protein sulfhydryls can also produce a mixed disulfide by S-glutathionylation, which involves the nucleophilic attack of the sulfur of GSNO by the protein thiolate anion. In this study, we have investigated the possible occurrence of S-glutathionylation during reaction of GSNO with papain, creatine phosphokinase, glyceraldehyde-3-phosphate dehydrogenase, alcohol dehydrogenase, bovine serum albumin, and actin. Our results show that papain, creatine phosphokinase, and glyceraldehyde-3-phosphate dehydrogenase were significantly both S-nitrosated and S-glutathionylated by GSNO, whereas alcohol dehydrogenase, bovine serum albumin, and actin appeared nearly only S-nitrosated. The susceptibility of the modified proteins to denitrosation and deglutathionylation by reduced glutathione was also investigated.

  18. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Franden, Mary Ann; Mc Millan, James D.; Finkelstein, Mark

    1998-01-01

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid.

  19. [The change of vaginal lactobacillus in patients with high-risk human papillomavirus infection].

    PubMed

    Zhou, D; Cui, Y; Wu, F L; Deng, W H

    2016-07-05

    To study the distribution characteristics of lactobacillus in the vaginal mucosa of patients with HPV infection. The planting density of lactobacillus in vaginal secretions of 95 cases with HPV16/18 infection and 90 cases of normal women of childbearing age were observed by oil microscope. And the strains of vaginal lactobacilli in two groups were analyzed using species-specific polymerase chain reaction (Species-specific PCR) and the distribution of vaginal lactobacilli in patients with HPV16/18 infection were investigated. In HPV16/18 infective groups, the planting density of lactobacillus in the vaginal mucosa was 104 (68-186)/HP. It was significantly lower than that of the normal group (234 (161-326)/HP, P<0.05). Compared with the normal group, the positive rates of lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri were significantly lower in HPV16/18 infection group (P<0.05). The HPV16/18 infection is associated with the decreased number of lactobacillus and the imbalance of vaginal flora; Lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri may play a key role in maintaining the vaginal micro ecological environment.

  20. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Franden, M.A.; McMillan, J.D.; Finkelstein, M.

    1998-08-25

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid. 4 figs.

  1. Complete Genome Sequence for Lactobacillus helveticus CNRZ 32, an Industrial Cheese Starter and Cheese Flavor Adjunct

    PubMed Central

    Hughes, Joanne E.; Welker, Dennis L.; Tompkins, Thomas A.; Steele, James L.

    2013-01-01

    Lactobacillus helveticus is a lactic acid bacterium widely used in the manufacture of cheese and for production of bioactive peptides from milk proteins. We present the complete genome sequence for L. helveticus CNRZ 32, a strain particularly recognized for its ability to reduce bitterness and accelerate flavor development in cheese. PMID:23969047

  2. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles.

    PubMed

    Mengele, R; Sumper, M

    1992-04-25

    The outer surface of the moderate halophilic archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer glycoprotein. The polypeptide (794 amino acid residues) contains 7 N-glycosylation sites. Four of these sites were isolated as glycopeptides and the structure of one of the corresponding saccharides was determined. Oligosaccharides consisting of beta-1,4-linked glucose residues are attached to the protein via the linkage unit asparaginyl-glucose. In the related glycoprotein from the extreme halophile Halobacterium halobium, the glucose residues are replaced by sulfated glucuronic acid residues, causing a drastic increase in surface charge density. This is discussed in terms of a recent model explaining the stability of halophilic proteins.

  3. Characterization of the binding capacity of mercurial species in Lactobacillus strains.

    PubMed

    Alcántara, Cristina; Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta; Zúñiga, Manuel; Monedero, Vicente

    2017-12-01

    Metal sequestration by bacteria has been proposed as a strategy to counteract metal contamination in foodstuffs. Lactobacilli can interact with metals, although studies with important foodborne metals such as inorganic [Hg(II)] or organic (CH 3 Hg) mercury are lacking. Lactobacilli were evaluated for their potential to bind these contaminants and the nature of the interaction was assessed by the use of metal competitors, chemical and enzymatical treatments, and mutants affected in the cell wall structure. Lactobacillus strains efficiently bound Hg(II) and CH 3 Hg. Mercury binding by Lactobacillus casei BL23 was independent of cell viability. In BL23, both forms of mercury were cell wall bound. Their interaction was not inhibited by cations and it was resistant to chelating agents and protein digestion. Lactobacillus casei mutants affected in genes involved in the modulation of the negative charge of the cell wall anionic polymer lipoteichoic acid showed increased mercury biosorption. In these mutants, mercury toxicity was enhanced compared to wild-type bacteria. These data suggest that lipoteichoic acid itself or the physicochemical characteristics that it confers to the cell wall play a major role in mercury complexation. This is the first example of the biosorption of Hg(II) and CH 3 Hg in lactobacilli and it represents a first step towards their possible use as agents for diminishing mercury bioaccessibility from food at the gastrointestinal tract. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Genome sequence of Lactobacillus farciminis KCTC 3681.

    PubMed

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-04-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds.

  5. Bacteriocin production of Lactobacillus sp. from intestines of ducks (Anas domesticus L.) incubated at room temperature and antibacterial effectivity against pathogen

    NASA Astrophysics Data System (ADS)

    Arfani, Nurfitri; Nur, Fatmawati; Hafsan, Azrianingsih, Rodiyati

    2017-05-01

    Bacteriocin is a peptide that is easily degraded by proteolytic enzymes in the digestive systems of animals, including humans. It has antimicrobial activity against pathogenic bacteria. Lactobacillus sp. is one type of lactic acid bacteria (LAB) that occupies the intestines of ducks (Anas domesticus L.). The purpose of this research was to determine the optimum time of the highest protein production by Lactobacillus sp. and to determine inhibitory activity of bacteriocin against pathogenic bacteria (Escherichia coli and Staphylococcus aureus). Using the Bradford method, the results showed that the optimum time of highest bacteriocin production was after 36 hours of incubation, with a protein content of 0.93 mg/ml. The bacteriocin inhibitory activity against Escherichia coli showed that a protein concentration of 30% gave a maximum inhibition index of 1.1 mm, while for Staphylococcus aureus, a concentration of 70% gave a maximum inhibition index of 0.3 mm. Further research is required to determine the stationary state of bacteriocin production in this circumstance.

  6. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  7. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell

    PubMed Central

    Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932

  8. The Physiology of Protein S-acylation

    PubMed Central

    Chamberlain, Luke H.; Shipston, Michael J.

    2015-01-01

    Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228

  9. Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet.

    PubMed

    Feng, Jing; Jiang, Yujun; Li, Mingyu; Zhao, Siyu; Zhang, Yanming; Li, Xuesong; Wang, Hui; Lin, Guangen; Wang, Hao; Li, Tiejing; Man, Chaoxin

    2018-05-25

    Bacteria in Lactobacillus casei group, including Lactobacillus casei (L. casei), Lactobacillus paracasei (L. paracasei), and Lactobacillus rhamnosus (L. rhamnosus) are important lactic acid bacteria in the production of fermented dairy products and are faced with the controversial nomenclatural status due to their close phylogenetic similarity. To probe the evolution and phylogeny of L. casei group, 100 isolates of lactic acid bacteria originated from naturally fermented dairy products in Tibet of China were subjected to multilocus sequence typing (MLST). The MLST scheme, based on analysis of the housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA and recG, revealed that all the isolates belonged to a group containing the L. paracasei reference strains and were clearly different from the strains of L. casei and L. rhamnosus. Although nucleotide diversity (π) was low for the seven genes (ranging from 0.00341 for fusA to 0.01307 for recG), high genetic diversity represented by 83 sequence types (STs) with a discriminatory index of 0.98 was detected. A network-like structure based on split decomposition analysis, and the high values of the relative effect of recombination and mutation in the diversification of the lineages (r/m = 4.76) and the relative frequency of occurrence of recombination and mutation (ρ/θ = 2.62) indicated that intra-species recombination occurred frequently and homologous recombination played a key role in generating genotypic diversity amongst L. paracasei strains in Tibet. The discovery of 51 new STs and the results of STRUCTURE analysis suggested that the L. casei group in Tibet had an individual and particular population structure in comparison to European isolates. Overall, this research might be the first report about genetic diversity and population structure of Lactobacillus populations isolated from naturally fermented dairy products in Tibet based on MLST scheme.

  10. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times.

    PubMed

    Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex

    2012-06-15

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such

  11. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis.

    PubMed

    Ashida, Nobuhisa; Yanagihara, Sae; Shinoda, Tadashi; Yamamoto, Naoyuki

    2011-10-01

    The adhesive activities of eight Lactobacillus acidophilus strains toward intestinal epithelial Caco-2 cells were studied to understand the probiotic characteristics of the L. acidophilus L-92 strain. Most of the strains, including L-92, showed high adhesive activity; CP23 showed the lowest adhesive activity. CP23 was selected for comparative analysis of cell wall-associated proteins versus the L-92 strain. Cell wall-associated proteins extracted from L-92 and CP23 were subjected to two-dimensional electrophoresis, and major spots observed in the former were compared to the corresponding spots in the latter. To understand the effects of key components of L-92 on its adhesion to Caco-2 cells, 18 spots with stronger signals in L-92 than those in CP23 were identified by a MALDI-TOF/TOF of Ultraflex analysis. Among the identified proteins of L-92, surface-layer protein A (SlpA) was considered strongly involved in adhesion in the eight L. acidophilus strains. To study the importance of SlpA in the adhesion of L. acidophilus, the amounts of SlpA proteins in LiCl extracts of the eight strains were compared by SDSpolyacrylamide gel electrophoresis. As a result, the adhesive abilities of L. acidophilus strains to Caco-2 cells correlated closely to the amount of SlpA in the cells and the productivity of IL-12, an inflammatory cytokine, in all eight strains. These results strongly suggested that SlpA in L. acidophilus might play a key role in its attachment to Caco-2 cells and in the release of IL-12 from dendritic cells.

  12. Single-layer MoS2 electronics.

    PubMed

    Lembke, Dominik; Bertolazzi, Simone; Kis, Andras

    2015-01-20

    CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS2-based devices for electronic circuits. We will start with MoS2 transistors, which showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This

  13. Effect of Type of Protein-Based Microcapsules and Storage at Various Ambient Temperatures on the Survival and Heat Tolerance of Spray Dried Lactobacillus acidophilus.

    PubMed

    Dianawati, Dianawati; Lim, Seng Feng; Ooi, Yasmin Beng Houi; Shah, Nagendra P

    2017-09-01

    The aims of this study were to evaluate the effect of types of protein-based microcapsules and storage at various ambient temperatures on the survival of Lactobacillus acidophilus during exposure to simulated gastrointestinal tract and on the change in thermo-tolerance during heating treatment. The encapsulating materials were prepared using emulsions of protein (sodium caseinate, soy protein isolate, or pea protein), vegetable oil, and glucose, with maltodextrin was used as a wall material. The formulations were heated at 90 °C for 30 min to develop Maillard substances prior to being incorporated with L. acidophilus. The mixtures were then spray dried. The microspheres were stored at 25, 30, and 35 °C for 8 wk and examined every 4 wk. The addition of proteins as encapsulating materials demonstrated a significant protective effect (P < 0.05) as compared to the control sample. Sodium caseinate and soy protein isolate appeared more effective than pea protein in protecting the bacteria after spray drying and during the storage at different room temperatures. Storage at 35 °C resulted in a significant decrease in survival at end of storage period regardless the type of encapsulating materials. The addition of protein-based materials also enhanced the survival of L. acidophilus during exposure to simulated gastrointestinal condition as compared to the control. After spray drying and after 0th wk storage, casein, soy protein isolate, and pea protein-based formulations protected the bacteria during heat treatment. In fact, a significant decrease in thermal tolerance was inevitable after 2 wk of storage at 25 °C. © 2017 Institute of Food Technologists®.

  14. Joint Cross-Layer Design for Wireless QoS Content Delivery

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Lv, Tiejun; Zheng, Haitao

    2005-12-01

    In this paper, we propose a joint cross-layer design for wireless quality-of-service (QoS) content delivery. Central to our proposed cross-layer design is the concept of adaptation. Adaptation represents the ability to adjust protocol stacks and applications to respond to channel variations. We focus our cross-layer design especially on the application, media access control (MAC), and physical layers. The network is designed based on our proposed fast frequency-hopping orthogonal frequency division multiplex (OFDM) technique. We also propose a QoS-awareness scheduler and a power adaptation transmission scheme operating at both the base station and mobile sides. The proposed MAC scheduler coordinates the transmissions of an IP base station and mobile nodes. The scheduler also selects appropriate transmission formats and packet priorities for individual users based on current channel conditions and the users' QoS requirements. The test results show that our cross-layer design provides an excellent framework for wireless QoS content delivery.

  15. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface.

    PubMed

    Ciandrini, E; Campana, R; Baffone, W

    2017-06-01

    This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification of PDC-109-like protein(s) in buffalo seminal plasma.

    PubMed

    Harshan, Hiron M; Sankar, Surya; Singh, L P; Singh, Manish Kumar; Sudharani, S; Ansari, M R; Singh, S K; Majumdar, A C; Joshi, P

    2009-10-01

    The FN-2 family of seminal plasma proteins represents the major protein fraction of bovine seminal plasma. These proteins also constitute the major seminal plasma proteins fraction in horse, goat and bison seminal plasma and are present in pig, rat, mouse, hamster and human seminal plasma. BSP-A1 and BSP-A2, the predominant proteins of the FN-2 family, are collectively termed as PDC-109. Fn-2 proteins play an important role in fertilization, including sperm capacitation and formation of oviductal sperm reservoirs. Significantly, BSP proteins were also shown to have negative effects in the context of sperm storage. No conclusive evidence for the presence of buffalo seminal plasma protein(s) similar to PDC-109 exists. Studies with buffalo seminal plasma indicated that isolation and identification of PDC-109-like protein(s) from buffalo seminal plasma by conventional methods might be difficult. Thus, antibodies raised against PDC-109 isolated, and purified from cattle seminal plasma, were used for investigating the presence of PDC-109-like protein(s) in buffalo seminal plasma. Buffalo seminal plasma proteins were resolved on SDS-PAGE, blotted to nitro cellulose membranes and probed for the presence of PDC-109-like protein(s) using the PDC-109 antisera raised in rabbits. A distinct immunoreactive band well below the 20-kDa regions indicated the presence of PDC-109-like protein(s) in buffalo seminal plasma.

  17. S-Layer Architectures: Extending the Morphogenetic Potential of S-Layer Protein Self Assembly

    DTIC Science & Technology

    2012-07-11

    virus  capsids  (typically  30  to  100nm  in   diameter)  or  hollow  (apo) ferritin  (12  nm  in  diameter)  S...R., Sleytr, U.B., Pum, D. J. Biol. Chem. 2011, 286, 27416-27424 30. Sára,  M.   Trends  Microbiol.  2001,  9,  47-­‐49.   31. Sára

  18. Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries

    PubMed Central

    Byun, Roy; Nadkarni, Mangala A.; Chhour, Kim-Ly; Martin, F. Elizabeth; Jacques, Nicholas A.; Hunter, Neil

    2004-01-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion. PMID:15243071

  19. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries.

    PubMed

    Byun, Roy; Nadkarni, Mangala A; Chhour, Kim-Ly; Martin, F Elizabeth; Jacques, Nicholas A; Hunter, Neil

    2004-07-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion.

  20. Lactobacillus rhamnosus GG (ATCC 53103) and platelet aggregation in vitro.

    PubMed

    Korpela, R; Moilanen, E; Saxelin, M; Vapaatalo, H

    1997-06-17

    Lactobacillus rhamnosus GG is an experimentally and clinically well documented probiotic used in different dairy products. The present study aimed to investigate the safety aspects of Lactobacillus rhamnosus GG, particularly with respect to platelet aggregation, the initiating event in thrombosis. Platelet rich plasma was separated from the blood of healthy volunteers, and the effects of Lactobacillus rhamnosus GG (ATCC 53103), Lactobacillus rhamnosus (ATCC 7469) and Enterococcus faecium T2L6 in different dilutions on spontaneous, ADP- and adrenaline-induced aggregation were tested. The bacteria did not influence spontaneous aggregation. Only Enterococcus faecium T2L6 enhanced the adrenaline-induced aggregation, with a less clear effect on ADP-induced aggregation.

  1. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. Copyright © 2016. Published by Elsevier B.V.

  2. Microbiological, chemical, and sensory characteristics of Swiss cheese manufactured with adjunct Lactobacillus strains using a low cooking temperature.

    PubMed

    Kocaoglu-Vurma, N A; Harper, W J; Drake, M A; Courtney, P D

    2008-08-01

    The effect of nonstarter Lactobacillus adjunct cultures on the microbial, chemical, and sensory characteristics of Swiss cheese manufactured using the "kosher make procedure" was investigated. The kosher make procedure, which uses a lower cooking temperature than traditional Swiss cheese making, is used by many American cheese manufacturers to allow for kosher-certified whey. Cheeses were manufactured using a commercial starter culture combination and 1 of 3 non-starter Lactobacillus strains previously isolated from Swiss cheeses, Lactobacillus casei A26, L. casei B21, and Lactobacillus rhamnosus H2, as an adjunct. Control cheeses lacked the adjunct culture. Cheeses were analyzed during ripening for microbial and chemical composition. Adjunct strain L. casei A26, which utilized citrate most readily in laboratory medium, dominated the Lactobacillus population within 30 d, faster than the other adjunct cultures. There were no significant differences in Propionibacterium counts, Streptococcus thermophilus counts, protein, fat, moisture, salt, and pH among the cheeses. Free amino acid concentration ranged from 5 to 7 mmol/100 g of cheese at 90 d of ripening and was adjunct strain dependent. Lactic, acetic, and propionic acid concentrations were not significantly different among the cheeses after a 90-d ripening period; however differences in propionic acid concentrations were apparent at 60 d, with the cheeses made with L. casei adjuncts containing less propionic acid. Citric acid was depleted by the end of warm room ripening in cheeses manufactured with adjunct L. casei strains, but not with adjunct L. rhamnosus. Cheeses made with L. casei A26 were most similar to the control cheeses in diacetyl and butyric/isobutyric acid abundance as evaluated by electronic nose during the first 3 mo of ripening. The 4 cheese types differed in their descriptive sensory profiles at 8 mo of age, indicating an adjunct strain-dependent effect on particular flavor attributes. Adjunct

  3. Three new insertion sequence elements ISLdl2, ISLdl3, and ISLdl4 in Lactobacillus delbrueckii: isolation, molecular characterization, and potential use for strain identification.

    PubMed

    Ravin, Victor; Alatossava, Tapani

    2003-05-01

    A group of new insertion sequence (IS) elements, ISLdl2, ISLdl3, and ISLdl4, from Lactobacillus delbrueckii subsp. lactis ATCC 15808 was isolated, characterized, and used for strain identification together with ISLdl1, recently characterized as an L. delbrueckii IS element belonging to the ISL3 family. ISLdl2 was 1367 bp in size and had a 24 bp IR and an 8 bp DR. The single ORF of ISLdl2 encoded a protein of 392 aa similar to transposases of the IS256 family. ISLdl3 had a single ORF encoding a protein of 343 aa similar to transposases of the IS30 family. Finally, ISLdl4 had a single ORF encoding a protein of 406 aa and displayed homology to the transposases of the IS110 family. ISLdl4 was only slight different from ISL4 (Accession No. AY040213). ISLdl1, ISLdl2, and ISLdl4 were present in all of the 10 L. delbrueckii subsp. lactis and subsp. delbrueckii strains tested, as well as in three of the 11 L. delbrueckii subsp. bulgaricus strains tested. ISLdl3 was present only in four closely related strains of L. delbrueckii subsp. lactis. These IS elements were not observed in Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus helveticus, or Lactobacillus plantarum. A cluster of IS elements, ISLdl1, ISLdl2, ISLdl3, ISLdl4, and ISL6, was observed in L. delbrueckii subsp. lactis strain ATCC 15808. Within this cluster, ISLdl4 was inserted into ISLdl1 between the left IR and the start codon of ORF455, encoding a putative transposase. Most of the integration sites of the IS elements were strain-specific. We have observed that IS elements can migrate from one strain to another as integral parts of bacterial DNA by using phage LL-H as a vehicle. We demonstrate for the first time that inverse PCR and vectorette PCR methods with primers based on sequences of the IS elements could be used for identification of L. delbrueckii strains.

  4. Lactobacillus bulgaricus Proteinase Expressed in Lactococcus lactis Is a Powerful Carrier for Cell Wall-Associated and Secreted Bovine β-Lactoglobulin Fusion Proteins

    PubMed Central

    Bernasconi, Eric; Germond, Jacques-Edouard; Delley, Michèle; Fritsché, Rodolphe; Corthésy, Blaise

    2002-01-01

    Lactic acid bacteria have a good potential as agents for the delivery of heterologous proteins to the gastrointestinal mucosa and thus for the reequilibration of inappropriate immune responses to food antigens. Bovine β-lactoglobulin (BLG) is considered a major allergen in cow's milk allergy. We have designed recombinant Lactococcus lactis expressing either full-length BLG or BLG-derived octapeptide T6 (IDALNENK) as fusions with Lactobacillus bulgaricus extracellular proteinase (PrtB). In addition to constructs encoding full-length PrtB for the targeting of heterologous proteins to the cell surface, we generated vectors aiming at the release into the medium of truncated PrtB derivatives lacking 100 (PrtB∂, PrtB∂-BLG, and PrtB∂-T6) or 807 (PrtBΔ) C-terminal amino acids. Expression of recombinant products was confirmed using either anti-PrtB, anti-BLG, or anti-peptide T6 antiserum. All forms of the full-length and truncated recombinant products were efficiently translocated, irrespective of the presence of eucaryotic BLG sequences in the fusion proteins. L. lactis expressing PrtB∂-BLG yielded up to 170 μg per 109 CFU in the culture supernatant and 9 μg per 109 CFU at the bacterial cell surface within 14 h. Therefore, protein fusions relying on the use of PrtB gene products are adequate for concomitant cell surface display and secretion by recombinant L. lactis and thus may ensure maximal bioavailability of the eucaryotic antigen in the gut-associated lymphoid tissue. PMID:12039750

  5. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    PubMed Central

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  6. Characteristics of layered tin disulfide deposited by atomic layer deposition with H2S annealing

    NASA Astrophysics Data System (ADS)

    Lee, Seungjin; Shin, Seokyoon; Ham, Giyul; Lee, Juhyun; Choi, Hyeongsu; Park, Hyunwoo; Jeon, Hyeongtag

    2017-04-01

    Tin disulfide (SnS2) has attracted much attention as a two-dimensional (2D) material. A high-quality, low-temperature process for producing 2D materials is required for future electronic devices. Here, we investigate tin disulfide (SnS2) layers deposited via atomic layer deposition (ALD) using tetrakis(dimethylamino)tin (TDMASn) as a Sn precursor and H2S gas as a sulfur source at low temperature (150° C). The crystallinity of SnS2 was improved by H2S gas annealing. We carried out H2S gas annealing at various conditions (250° C, 300° C, 350° C, and using a three-step method). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) results revealed the valence state corresponding to Sn4+ and S2- in the SnS2 annealed with H2S gas. The SnS2 annealed with H2S gas had a hexagonal structure, as measured via X-ray diffraction (XRD) and the clearly out-of-plane (A1g) mode in Raman spectroscopy. The crystallinity of SnS2 was improved after H2S annealing and was confirmed using the XRD full-width at half-maximum (FWHM). In addition, high-resolution transmission electron microscopy (HR-TEM) images indicated a clear layered structure.

  7. Predominant Lactobacillus species types of vaginal microbiota in pregnant Korean women: quantification of the five Lactobacillus species and two anaerobes.

    PubMed

    Kim, Jeong Hyun; Yoo, Seung Min; Sohn, Yong Hak; Jin, Chan Hee; Yang, Yun Suk; Hwang, In Taek; Oh, Kwan Young

    2017-10-01

    To investigate the predominant Lactobacillus species types (LSTs) of vaginal microbiota in pregnant Korean women by quantifying five Lactobacillus species and two anaerobes. In all, 168 pregnant Korean women under antenatal care at Eulji University Hospital and local clinics were enrolled in the prospective cohort study during pregnancy (10-14 weeks). Vaginal samples were collected with Eswab for Quantitative polymerase chain reaction (qPCR) and stored in a -80 °C freezer. qPCR was performed for five Lactobacillus species and two anaerobes. To identify the predominant LSTs, quantifications were analyzed by the Cluster and Tree View programs of Eisen Lab. Also the quantifications were compared among classified groups. L. crispatus and L. iners were most commonly found in pregnant Korean women, followed by L. gasseri and L. jensenii; L. vaginalis was nearly absent. Five types (four predominant LSTs and one predominant anaerobe type without predominant Lactobacillus species) were classified. Five predominant LSTs were identified in vaginal microbiota of pregnant Korean women. L. crispatus and L. iners predominant types comprised a large proportion.

  8. Characterization of a Bacteriocin-Like Substance Produced by a Vaginal Lactobacillus salivarius Strain

    PubMed Central

    Ocaña, Virginia S.; Pesce de Ruiz Holgado, Aída A.; Nader-Macías, María Elena

    1999-01-01

    A novel bacteriocin-like substance produced by vaginal Lactobacillus salivarius subsp. salivarius CRL 1328 with activity against Enterococcus faecalis, Enterococcus faecium, and Neisseria gonorrhoeae was characterized. The highest level of production of this heat-resistant peptide or protein occurred during the late exponential phase. Its mode of action was shown to be bactericidal. L. salivarius subsp. salivarius CRL 1328 could be used for the design of a probiotic to prevent urogenital infections. PMID:10584033

  9. The potential risks of probiotics among HIV-infected persons: Bacteraemia due to Lactobacillus acidophilus and review of the literature.

    PubMed

    Haghighat, Leila; Crum-Cianflone, Nancy F

    2016-11-01

    Lactobacillus sp. are commensal organisms that are increasingly reported to cause invasive infections among immunosuppressed persons. However, few data exist regarding the occurrence and risk factors of these infections among HIV-infected persons. Further, the safety of products that contain lactobacilli (e.g. probiotics) in certain populations, including those with HIV/AIDS, is unclear. We report a case of Lactobacillus acidophilus bacteraemia in a patient with AIDS temporally related to excessive consumption of probiotic-enriched yogurt, and provide a comprehensive review of the literature of Lactobacillus sp. infections among HIV-infected persons. © The Author(s) 2015.

  10. First Functional and Mutational Analysis of Group 3 N-Acetylneuraminate Lyases from Lactobacillus antri and Lactobacillus sakei 23K

    PubMed Central

    García-García, María Inmaculada; Gil-Ortiz, Fernando; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2014-01-01

    N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1. PMID:24817128

  11. Protein S is protective in pulmonary fibrosis.

    PubMed

    Urawa, M; Kobayashi, T; D'Alessandro-Gabazza, C N; Fujimoto, H; Toda, M; Roeen, Z; Hinneh, J A; Yasuma, T; Takei, Y; Taguchi, O; Gabazza, E C

    2016-08-01

    Essentials Epithelial cell apoptosis is critical in the pathogenesis of idiopathic pulmonary fibrosis. Protein S, a circulating anticoagulant, inhibited apoptosis of lung epithelial cells. Overexpression of protein S in lung cells reduced bleomycin-induced pulmonary fibrosis. Intranasal therapy with exogenous protein S ameliorated bleomycin-induced pulmonary fibrosis. Background Pulmonary fibrosis is the terminal stage of interstitial lung diseases, some of them being incurable and of unknown etiology. Apoptosis plays a critical role in lung fibrogenesis. Protein S is a plasma anticoagulant with potent antiapoptotic activity. The role of protein S in pulmonary fibrosis is unknown. Objectives To evaluate the clinical relevance of protein S and its protective role in pulmonary fibrosis. Methods and Results The circulating level of protein S was measured in patients with pulmonary fibrosis and controls by the use of enzyme immunoassays. Pulmonary fibrosis was induced with bleomycin in transgenic mice overexpressing human protein S and wild-type mice, and exogenous protein S or vehicle was administered to wild-type mice; fibrosis was then compared in both models. Patients with pulmonary fibrosis had reduced circulating levels of protein S as compared with controls. Inflammatory changes, the levels of profibrotic cytokines, fibrosis score, hydroxyproline content in the lungs and oxygen desaturation were significantly reduced in protein S-transgenic mice as compared with wild-type mice. Wild-type mice treated with exogenous protein S showed significant decreases in the levels of inflammatory and profibrotic markers and fibrosis in the lungs as compared with untreated control mice. After bleomycin infusion, mice overexpressing human protein S showed significantly low caspase-3 activity, enhanced expression of antiapoptotic molecules and enhanced Akt and Axl kinase phosphorylation as compared with wild-type counterparts. Protein S also inhibited apoptosis of alveolar

  12. Effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of phage PL-1 on a Lactobacillus casei S strain.

    PubMed

    Lee, A; Eschenbruch, R; Waller, J

    1985-09-01

    The effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of virulent bacteriophage PL-1 on a Lactobacillus casei S strain isolated from a lactic acid beverage fermentation was investigated. Catechin, caffeic, and gallic acids, commercially produced red, white, and champagne tannins, ethyl alcohol, and sodium metabisulphite inhibited plaque formation. Catechin, caffeic, and gallic acids were the most effective inhibitors of plaque formation. Commercially supplied oenocyanin was not effective.

  13. Glutathione S-Transferase P-Mediated Protein S-Glutathionylation of Resident Endoplasmic Reticulum Proteins Influences Sensitivity to Drug-Induced Unfolded Protein Response

    PubMed Central

    Ye, Zhi-Wei; Zhang, Jie; Ancrum, Tiffany; Manevich, Yefim; Townsend, Danyelle M.

    2017-01-01

    Abstract Aims: S-glutathionylation of cysteine residues, catalyzed by glutathione S-transferase Pi (GSTP), alters structure/function characteristics of certain targeted proteins. Our goal is to characterize how S-glutathionylation of proteins within the endoplasmic reticulum (ER) impact cell sensitivity to ER-stress inducing drugs. Results: We identify GSTP to be an ER-resident protein where it demonstrates both chaperone and catalytic functions. Redox based proteomic analyses identified a cluster of proteins cooperatively involved in the regulation of ER stress (immunoglobulin heavy chain-binding protein [BiP], protein disulfide isomerase [PDI], calnexin, calreticulin, endoplasmin, sarco/endoplasmic reticulum Ca2+-ATPase [SERCA]) that individually co-immunoprecipitated with GSTP (implying protein complex formation) and were subject to reactive oxygen species (ROS) induced S-glutathionylation. S-glutathionylation of each of these six proteins was attenuated in cells (liver, embryo fibroblasts or bone marrow dendritic) from mice lacking GSTP (Gstp1/p2−/−) compared to wild type (Gstp1/p2+/+). Moreover, Gstp1/p2−/− cells were significantly more sensitive to the cytotoxic effects of the ER-stress inducing drugs, thapsigargin (7-fold) and tunicamycin (2-fold). Innovation: Within the family of GST isozymes, GSTP has been ascribed the broadest range of catalytic and chaperone functions. Now, for the first time, we identify it as an ER resident protein that catalyzes S-glutathionylation of critical ER proteins within this organelle. Of note, this can provide a nexus for linkage of redox based signaling and pathways that regulate the unfolded protein response (UPR). This has novel importance in determining how some drugs kill cancer cells. Conclusions: Contextually, these results provide mechanistic evidence that GSTP can exert redox regulation in the oxidative ER environment and indicate that, within the ER, GSTP influences the cellular consequences of the UPR

  14. Cold cathode emission studies on topographically modified few layer and single layer MoS2 films

    NASA Astrophysics Data System (ADS)

    Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.

    2016-01-01

    Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.

  15. Characterization of a Theta-Type Plasmid from Lactobacillus sakei: a Potential Basis for Low-Copy-Number Vectors in Lactobacilli

    PubMed Central

    Alpert, Carl-Alfred; Crutz-Le Coq, Anne-Marie; Malleret, Christine; Zagorec, Monique

    2003-01-01

    The complete nucleotide sequence of the 13-kb plasmid pRV500, isolated from Lactobacillus sakei RV332, was determined. Sequence analysis enabled the identification of genes coding for a putative type I restriction-modification system, two genes coding for putative recombinases of the integrase family, and a region likely involved in replication. The structural features of this region, comprising a putative ori segment containing 11- and 22-bp repeats and a repA gene coding for a putative initiator protein, indicated that pRV500 belongs to the pUCL287 subfamily of theta-type replicons. A 3.7-kb fragment encompassing this region was fused to an Escherichia coli replicon to produce the shuttle vector pRV566 and was observed to be functional in L. sakei for plasmid replication. The L. sakei replicon alone could not support replication in E. coli. Plasmid pRV500 and its derivative pRV566 were determined to be at very low copy numbers in L. sakei. pRV566 was maintained at a reasonable rate over 20 generations in several lactobacilli, such as Lactobacillus curvatus, Lactobacillus casei, and Lactobacillus plantarum, in addition to L. sakei, making it an interesting basis for developing vectors. Sequence relationships with other plasmids are described and discussed. PMID:12957947

  16. Synthesis of Epitaxial Single-Layer MoS2 on Au(111).

    PubMed

    Grønborg, Signe S; Ulstrup, Søren; Bianchi, Marco; Dendzik, Maciej; Sanders, Charlotte E; Lauritsen, Jeppe V; Hofmann, Philip; Miwa, Jill A

    2015-09-08

    We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.

  17. Atomic layer deposition modified track-etched conical nanochannels for protein sensing.

    PubMed

    Wang, Ceming; Fu, Qibin; Wang, Xinwei; Kong, Delin; Sheng, Qian; Wang, Yugang; Chen, Qiang; Xue, Jianming

    2015-08-18

    Nanopore-based devices have recently become popular tools to detect biomolecules at the single-molecule level. Unlike the long-chain nucleic acids, protein molecules are still quite challenging to detect, since the protein molecules are much smaller in size and usually travel too fast through the nanopore with poor signal-to-noise ratio of the induced transport signals. In this work, we demonstrate a new type of nanopore device based on atomic layer deposition (ALD) Al2O3 modified track-etched conical nanochannels for protein sensing. These devices show very promising properties of high protein (bovine serum albumin) capture rate with well time-resolved transport signals and excellent signal-to-noise ratio for the transport events. Also, a special mechanism involving transient process of ion redistribution inside the nanochannel is proposed to explain the unusual biphasic waveshapes of the current change induced by the protein transport.

  18. Low-Cd CIGS solar cells made with a hybrid CdS/Zn(O,S) buffer layer

    DOE PAGES

    Garris, Rebekah L.; Mansfield, Lorelle M.; Egaas, Brian; ...

    2016-10-27

    In Cu(In,Ga)Se2 (CIGS) solar cells, CdS and Zn(O,S) buffer layers were compared with a hybrid buffer layer consisting of thin CdS followed Zn(O,S). We explore the physics of this hybrid layer that combines the standard (Cd) approach with the alternative (Zn) approach in the pursuit to unlock further potential for CIGS technology. CdS buffer development has shown optimal interface properties, whereas Zn(O,S) buffer development has shown increased photocurrent. Although a totally Cd-free solar module is more marketable, the retention of a small amount of Cd can be beneficial to achieve optimum junction properties. As long as the amount of Cdmore » is reduced to less than 0.01% by weight, the presence of Cd does not violate the hazardous substance restrictions of the European Union (EU). We estimate the amount of Cd allowed in the EU for CIGS on both glass and stainless steel substrates, and we show that reducing Cd becomes increasingly important as substrate weights decrease. As a result, this hybrid buffer layer had reduced Cd content and a wider space charge region, while achieving equal or better solar cell performance than buffer layers of either CdS or Zn(O,S) alone.« less

  19. Expression of Human Immunodeficiency Virus Type 1 Neutralizing Antibody Fragments Using Human Vaginal Lactobacillus.

    PubMed

    Marcobal, Angela; Liu, Xiaowen; Zhang, Wenlei; Dimitrov, Antony S; Jia, Letong; Lee, Peter P; Fouts, Timothy R; Parks, Thomas P; Lagenaur, Laurel A

    Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa. We tested the feasibility of expressing single-chain and single-domain antibodies (dAbs) in Lactobacillus to be used as a topical microbicide/live biotherapeutic. Lactobacilli provide an excellent platform to express anti-HIV proteins. Broadly neutralizing antibodies have been identified against epitopes on the HIV-1 envelope and have been made into active antibody fragments. We tested single-chain variable fragment m9 and dAb-m36 and its derivative m36.4 as prototype antibodies. We cloned and expressed the antibody fragments m9, m36, and m36.4 in Lactobacillus jensenii-1153 and tested the expression levels and functionality. We made a recombinant L. jensenii 1153-1128 that expresses dAb-m36.4. All antibody fragments m9, m36, and m36.4 were expressed by lactobacilli. However, we noted the smaller m36/m36.4 were expressed to higher levels, ≥3 μg/ml. All L. jensenii-expressed antibody fragments bound to gp120/CD4 complex; Lactobacillus-produced m36.4 inhibited HIV-1 BaL in a neutralization assay. Using a TZM-bl assay, we characterized the breadth of neutralization of the m36.4. Delivery of dAbs by Lactobacillus could provide passive transfer of these antibodies to the mucosa and longevity at the site of HIV-1 transmission.

  20. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir.

    PubMed

    He, Xiu-Juan; Chen, Shao-Yun; Wu, Jian-Ping; Yang, Li-Rong; Xu, Gang

    2015-11-01

    tert-Butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) is a valuable chiral synthon, which is used for the synthesis of the cholesterol-lowering drugs atorvastatin and rosuvastatin. To date, only the alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefir (LkADH) have demonstrated catalytic activity toward the asymmetric reduction of tert-butyl 6-chloro-3,5-dioxohexanoate (CDOH) to (S)-CHOH. Herein, a tetrad mutant of LkADH (LkTADH), A94T/F147L/L199H/A202L, was screened to be more efficient in this bioreduction process, exhibiting a 3.7- and 42-fold improvement in specific activity toward CDOH (1.27 U/mg) over LbADH (0.34 U/mg) and wild-type LkADH (0.03 U/mg), respectively. The molecular basis for the improved catalytic activity of LkTADH toward CDOH was investigated using homology modeling and docking analysis. Two major issues had a significant impact on the biocatalytic efficiency of this process, including (i) the poor aqueous stability of the substrate and (ii) partial substrate inhibition. A fed-batch strategy was successfully developed to address these issues and maintain a suitably low substrate concentration throughout the entire process. Several other parameters were also optimized, including the pH, temperature, NADP(+) concentration and cell loading. A final CDOH concentration of 427 mM (100 g/L) gave (S)-CHOH in 94 % yield and 99.5 % e.e. after a reaction time of 38 h with whole cells expressing LkTADH. The space-time yield and turnover number of NADP(+) in this process were 10.6 mmol/L/h and 16,060 mol/mol, respectively, which were the highest values ever reported. This new approach therefore represents a promising alternative for the efficient synthesis of (S)-CHOH.