Sample records for lactobacillus species isolated

  1. Lactobacillus hammesii sp. nov., isolated from French sourdough.

    PubMed

    Valcheva, Rosica; Korakli, Maher; Onno, Bernard; Prévost, Hervé; Ivanova, Iskra; Ehrmann, Matthias A; Dousset, Xavier; Gänzle, Michael G; Vogel, Rudi F

    2005-03-01

    Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38(T) and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA-DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38(T) (=DSM 16381(T)=CIP 108387(T)=TMW 1.1236(T)).

  2. Assessment and comparison of probiotic potential of four Lactobacillus species isolated from feces samples of Iranian infants.

    PubMed

    Halimi, Shahnaz; Mirsalehian, Akbar

    2016-02-01

    The probiotic potential of Lactobacillus species isolated from infant feces was investigated. For this study, the antibiotic susceptibility, tolerance in gut-related conditions, antimicrobial activity, and ability to adhere to a human colorectal adenocarcinoma cell line (Caco-2 cells) of four common Lactobacillus species (Lactobacillus paracasei [n = 15], Lactobacillus rhamnosus [n = 45], Lactobacillus gasseri [n = 20] and Lactobacillus fermentum [n = 18]) were assessed. Most isolates that which were sensitive to imipenem, ampicillin, gentamycin, erythromycin and tetracycline were selected for other tests. L. gasseri isolates had the greatest sensitivity to gastric and intestinal fluids (<10% viability). L. fermentum (FH5, FH13 and FH18) had the highest adhesion to Caco-2 cells. The lowest antibacterial activity against pathogenic bacteria was shown by L. gasseri strains in spot tests. Furthermore, non-adjusted cell-free culture supernatants with low pH had greater antimicrobial activity, which was related to organic acid. The results showed that some isolates of L. rhamnosus and L. fermentum are suitable for use as a probiotic. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  3. Lactobacillus versmoldensis sp. nov., isolated from raw fermented sausage.

    PubMed

    Kröckel, L; Schillinger, U; Franz, C M A P; Bantleon, A; Ludwig, W

    2003-03-01

    Lactobacillus versmoldensis sp. nov. (KU-3T) was isolated from raw fermented sausages. The new species was present in high numbers, and frequently dominated the lactic acid bacteria (LAB) populations of the products. 16S rDNA sequence data revealed that the isolates are closely related to the species Lactobacillus kimchii DSM 13961T, Lactobacillus paralimentarius DSM 13238T, Lactobacillus alimentarius DSM 20249T and Lactobacillus farciminis DSM 20184T. DNA-DNA reassociation data, however, clearly distinguished the new isolates from these species; they showed a low degree of DNA relatedness with the type strains of this group of phylogenetically closely related lactobacilli. These results warrant separate species status for strain KU-3T, for which the name Lactobacillus versmoldensis sp. nov. is proposed. The type strain is KU-3T (=DSM 14857T =NCCB 100034T =ATCC BAA-478T).

  4. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces.

    PubMed

    Osawa, Ro; Fujisawa, Tomohiko; Pukall, Rüdiger

    2006-07-01

    A Gram-positive, rod-shaped, non-endospore-forming bacterium, strain ASB1(T), able to degrade tannin, was isolated from faeces of the Japanese large wood mouse, Apodemus speciosus. Comparative analysis of the 16S rRNA gene sequence revealed that the strain could be assigned as a member of the genus Lactobacillus. The nearest phylogenetic neighbours were determined as Lactobacillus animalis DSM 20602(T) (98.9 % 16S rRNA gene sequence similarity) and Lactobacillus murinus ASF 361 (98.9 %). Subsequent polyphasic analysis, including automated ribotyping and DNA-DNA hybridization experiments, confirmed that the isolate represents a novel species, for which the name Lactobacillus apodemi sp. nov. is proposed. The DNA G+C content of the novel strain is 38.5 mol%. The cell-wall peptidoglycan is of type A4alpha L-lys-D-asp. The type strain is ASB1(T) (=DSM 16634(T)=CIP 108913(T)).

  5. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough.

    PubMed

    Valcheva, Rosica; Ferchichi, Mounir F; Korakli, Maher; Ivanova, Iskra; Gänzle, Michael G; Vogel, Rudi F; Prévost, Hervé; Onno, Bernard; Dousset, Xavier

    2006-03-01

    A polyphasic taxonomic study of the bacterial flora isolated from traditional French wheat sourdough, using phenotypic characterization and phylogenetic as well as genetic methods, revealed a consistent group of isolates that could not be assigned to any recognized species. These results were confirmed by randomly amplified polymorphic DNA and amplified fragment length polymorphism fingerprinting analyses. Cells were Gram-positive, homofermentative rods. Comparative 16S rRNA gene sequence analysis of the representative strain LP33T indicated that these strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives Lactobacillus farciminis, Lactobacillus alimentarius, Lactobacillus paralimentarius and Lactobacillus mindensis. DNA-DNA reassociation experiments with the three phylogenetically closest Lactobacillus species confirmed that LP33T (= DSM 16982T = CIP 108546T = TMW 1.1265T) represents the type strain of a novel species, for which the name Lactobacillus nantensis sp. nov. is proposed.

  6. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Huys, Geert; Vandamme, Peter; De Vuyst, Luc; Vancanneyt, Marc

    2007-07-01

    A polyphasic taxonomic study of the lactic acid bacteria (LAB) population in three traditional Belgian sourdoughs, sampled between 2002 and 2004, revealed a group of isolates that could not be assigned to any recognized LAB species. Initially, sourdough isolates were screened by means of (GTG)(5)-PCR fingerprinting. Four isolates displaying unique (GTG)(5)-PCR patterns were further investigated by means of phenylalanyl-tRNA synthase (pheS) gene sequence analysis and represented a bifurcated branch that could not be allocated to any LAB species present in the in-house pheS database. Their phylogenetic affiliation was determined using 16S rRNA gene sequence analysis and showed that the four sourdough isolates belong to the Lactobacillus plantarum group with Lactobacillus mindensis, Lactobacillus farciminis and Lactobacillus nantensis as closest relatives. Further genotypic and phenotypic studies, including whole-cell protein analysis (SDS-PAGE), amplified fragment length polymorphism (AFLP) fingerprinting, DNA-DNA hybridization, DNA G+C content analysis, growth characteristics and biochemical features, demonstrated that the new sourdough isolates represent a novel Lactobacillus species for which the name Lactobacillus crustorum sp. nov. is proposed. The type strain of the new species is LMG 23699(T) (=CCUG 53174(T)).

  7. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T).

  8. In vitro adherence of Lactobacillus strains isolated from the vaginas of healthy Iranian women.

    PubMed

    Mousavi, Elham; Makvandi, Manoochehr; Teimoori, Ali; Ataei, Angila; Ghafari, Shokouh; Najafian, Mahin; Ourang, Ziba; Samarbaf-Zadeh, Alireza

    2016-12-01

    The lactobacilli are a part of the bacterial flora of the human vagina. Detection of normal Lactobacillus species in the vaginas of healthy women in different geographical locations, and evaluation of their specific properties, can aid in the selection of the best species for preventing sexually transmitted diseases in the future. This study was performed to isolate and identify the Lactobacillus species in the vaginas of healthy women and to evaluate the adherence of these lactobacilli to Vero and HeLa cell lines. The study included 100 women. Bacteria were isolated from healthy women and purified. Phenotypic and biochemical tests were performed to identify the lactobacilli. The Lactobacillus species were detected by molecular methods using polymerase chain reaction amplification of the full length of the 16S rDNA of the isolated bacteria. Several isolates of each species were then selected to study their adherence to Vero and HeLa cell lines. Among the 50 samples taken from healthy women meeting the inclusion criteria, Lactobacillus species were identified in 33 (66%) samples. Of these lactobacilli, 14 isolates were Lactobacillus crispatus, six (18.2%) were Lactobacillus gasseri, nine (27%) were Lactobacillus rhamnosus, and the rest were either Lactobacillus salivarius (6%) or Lactobacillus plantarum (6%). L. rhamnosus showed the greatest adhesion to the cells when compared to the other tested species. All the lactobacilli isolated in this study showed a smaller capacity for cell adherence when compared with control species. L. crispatus, L. rhamnosus, and L. gasseri were the dominant Lactobacillus species in the vaginas of healthy women in Iran. L. rhamnosus attached more readily to the cells than did the other species; therefore, this isolate is a good candidate for further studies on the potential health benefits and application of lactobacilli as probiotics. Copyright © 2016. Published by Elsevier Taiwan LLC.

  9. Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage.

    PubMed

    Zou, Yuanqiang; Liu, Feng; Fang, Chengxiang; Wan, Daiwei; Yang, Rentao; Su, Qingqing; Yang, Ruifu; Zhao, Jiao

    2013-05-01

    Two Lactobacillus strains, designated LY-73(T) and LY-30B, were isolated from a dairy beverage, sold in Shenzhen market, China. The two isolates were Gram-positive, non-spore-forming, non-motile, facultatively anaerobic rods that were heterofermentative and did not exhibit catalase activity. Sequencing of the 16S rRNA, pheS and rpoA genes revealed that the two isolates shared 99.5, 99.8 and 99.9 % sequence similarity, which indicates that they belong to the same species. Phylogenetic analysis demonstrated clustering of the two isolates with the genus Lactobacillus. Strain LY-73(T) showed highest 16S rRNA gene sequence similarities with Lactobacillus harbinensis KACC 12409(T) (97.73%), Lactobacillus perolens DSM 12744(T) (96.96 %) and Lactobacillus selangorensis DSM 13344(T) (93.10 %). Comparative analyses of their rpoA and pheS gene sequences indicated that the novel strains were significantly different from other Lactobacillus species. Low DNA-DNA reassociation values (50.5 %) were obtained between strain LY-73(T) and its phylogenetically closest neighbours. The G+C contents of the DNA of the two novel isolates were 56.1 and 56.5 mol%. Straight-chain unsaturated fatty acids C18 : 1ω9c (78.85 and 74.29 %) were the dominant components, and the cell-wall peptidoglycan was of the l-Lys-d-Asp type. Based on phenotypic characteristics, and chemotaxonomic and genotypic data, the novel strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus shenzhenensis sp. nov. is proposed, with LY-73(T) ( = CCTCC M 2011481(T) = KACC 16878(T)) as the type strain.

  10. Lactobacillus species isolated from vaginal secretions of healthy and bacterial vaginosis-intermediate Mexican women: a prospective study

    PubMed Central

    2013-01-01

    Background Lactobacillus jensenii, L. iners, L. crispatus and L. gasseri are the most frequently occurring lactobacilli in the vagina. However, the native species vary widely according to the studied population. The present study was performed to genetically determine the identity of Lactobacillus strains present in the vaginal discharge of healthy and bacterial vaginosis (BV) intermediate Mexican women. Methods In a prospective study, 31 strains preliminarily identified as Lactobacillus species were isolated from 21 samples collected from 105 non-pregnant Mexican women. The samples were classified into groups according to the Nugent score criteria proposed for detection of BV: normal (N), intermediate (I) and bacterial vaginosis (BV). We examined the isolates using culture-based methods as well as molecular analysis of the V1–V3 regions of the 16S rRNA gene. Enterobacterial repetitive intergenic consensus (ERIC) sequence analysis was performed to reject clones. Results Clinical isolates (25/31) were classified into four groups based on sequencing and analysis of the 16S rRNA gene: L. acidophilus (14/25), L. reuteri (6/25), L. casei (4/25) and L. buchneri (1/25). The remaining six isolates were presumptively identified as Enterococcus species. Within the L. acidophilus group, L. gasseri was the most frequently isolated species, followed by L. jensenii and L. crispatus. L. fermentum, L. rhamnosus and L. brevis were also isolated, and were placed in the L. reuteri, L. casei and L. buchneri groups, respectively. ERIC profile analysis showed intraspecific variability amongst the L. gasseri and L. fermentum species. Conclusions These findings agree with previous studies showing that L. crispatus, L. gasseri and L. jensenii are consistently present in the healthy vaginal ecosystem. Additional species or phylotypes were detected in the vaginal microbiota of the non-pregnant Mexican (Hispanic-mestizo) population, and thus, these results further our understanding of

  11. Lactobacillus paralimentarius sp. nov., isolated from sourdough.

    PubMed

    Cai, Y; Okada, H; Mori, H; Benno, Y; Nakase, T

    1999-10-01

    Six strains of lactic acid bacteria isolated from sourdough were characterized taxonomically. They were Gram-positive, catalase-negative, facultatively anaerobic rods that did not produce gas from glucose. Morphological and physiological data indicated that the strains belong to the genus Lactobacillus and they were similar to Lactobacillus alimentarius in phenotypic characteristics. These strains shared the same phenotypic characteristics and exhibited intragroup DNA homology values of over 89.8%, indicating that they comprised a single species. The G + C content of the DNA for the strains was 37.2-38.0 mol%. The 16S rRNA sequence of representative strain TB 1T was determined and aligned with that of other Lactobacillus species. This strain was placed in the genus Lactobacillus on the basis of phylogenetic analysis. L. alimentarius was the most closely related species in the phylogenetic tree and this species also showed the highest sequence homology value (96%) with strain TB 1T. DNA-DNA hybridization indicated that strain TB 1T did not belong to L. alimentarius. It is proposed that these strains are placed in the genus Lactobacillus as a new species, Lactobacillus paralimentarius sp. nov. The type strain of L. paralimentarius is TB 1T, which has been deposited in the Japan Collection of Microorganisms (JCM) as strain JCM 10415T.

  12. Lactobacillus allii sp. nov. isolated from scallion kimchi.

    PubMed

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-12-01

    A novel strain of lactic acid bacteria, WiKim39 T , was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39 T belonged to the genus Lactobacillus, and shared 97.1-98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39 T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39 T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39 T (=KCTC 21077 T =JCM 31938 T ).

  13. Lactobacillus allii sp. nov. isolated from scallion kimchi

    PubMed Central

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-01-01

    A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1–98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T). PMID:29043955

  14. Biodiversity of Lactobacillus sanfranciscensis strains isolated from five sourdoughs.

    PubMed

    Kitahara, M; Sakata, S; Benno, Y

    2005-01-01

    Five different sourdoughs were investigated for the composition of lactic acid bacteria (LAB) and the biodiversity of Lactobacillus sanfranciscensis strains. A total of 57 strains were isolated from five sourdoughs. Isolated strains were all identified by the 16S rDNA sequence and species-specific primers for L. sanfranciscensis. Results of identification showed that LAB strains were L. sanfranciscensis, Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus fermentum, Lactobacillus pontis, Lactobacillus casei, Weisella confusa and Pediococcus pentosaceus. A total of 21 strains were identified as L. sanfranciscensis and these isolates were detected in all five sourdoughs. Ribotyping was applied to investigate the relationship between intraspecies diversity of L. sanfranciscensis and sourdough. A total of 22 strains of L. sanfranciscensis including L. sanfranciscensis JCM 5668T were compared by ribotyping. The dendrogram of 21 ribotyping patterns showed four clusters, and L. sanfranciscensis JCM 5668T was independent of the others. The different biotypes of L. sanfranciscensis were present in two sourdoughs compared with other three sourdoughs. The LAB compositions of five sourdoughs were different and the relationship between intraspecies diversity of L. sanfranciscensis strains and five sourdoughs was shown by ribotyping. This study demonstrated that ribotyping was useful for distinguishing L. sanfranciscensis strains. A further important result is that the intra-species diversity of L. sanfranciscensis strains seems to be related to the sourdough preparation.

  15. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  16. Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia).

    PubMed

    Chen, Yi-Sheng; Miyashita, Mika; Suzuki, Ken-ichiro; Sato, Hajime; Hsu, Jar-Sheng; Yanagida, Fujitoshi

    2010-08-01

    Twenty-one homofermentative lactic acid bacteria were isolated from fermented cummingcordia (pobuzihi), a traditional food in Taiwan. The isolates had identical 16S rRNA gene sequences that were distinct from those of other lactobacilli, and their closest neighbours in the 16S rRNA gene sequence phylogenetic tree were strains of Lactobacillus acidipiscis. Levels of DNA-DNA relatedness between representative pobuzihi isolates and strains of L. acidipiscis were 17% and below. Furthermore, the new isolates could be differentiated clearly from L. acidipiscis NBRC 102163T and NBRC 102164 in terms of acid production from L-arabinose, rhamnose, mannitol, lactose and 5-ketogluconate. It was concluded that the new isolates represent a single novel species of the genus Lactobacillus, for which the name Lactobacillus pobuzihii sp. nov. is proposed. The type strain is E100301T (=RIFY 6501T =NBRC 103219T =KCTC 13174T).

  17. Lactobacillus arizonensis sp. nov., isolated from jojoba meal.

    PubMed

    Swezey, J L; Nakamura, L K; Abbott, T P; Peterson, R E

    2000-09-01

    Five strains of simmondsin-degrading, lactic-acid-producing bacteria were isolated from fermented jojoba meal. These isolates were facultatively anaerobic, gram-positive, non-motile, non-spore-forming, homofermentative, rod-shaped organisms. They grew singly and in short chains, produced lactic acid but no gas from glucose, and did not exhibit catalase activity. Growth occurred at 15 and 45 degrees C. All strains fermented cellobiose, D-fructose, D-galactose, D-glucose, lactose, maltose, D-mannitol, D-mannose, melibiose, D-ribose, salicin, D-sorbitol, sucrose and trehalose. Some strains fermented L-(-)-arabinose and L-rhamnose. D-Xylose was not fermented and starch was not hydrolysed. The mean G+C content of the DNA was 48 mol%. Phylogenetic analyses of 16S rDNA established that the isolates were members of the genus Lactobacillus. DNA reassociation of 45% or less was obtained between the new isolates and the reference strains of species with G+C contents of about 48 mol%. The isolates were differentiated from other homofermentative Lactobacillus spp. on the basis of 16S rDNA sequence divergence, DNA relatedness, stereoisomerism of the lactic acid produced, growth temperature and carbohydrate fermentation. The data support the conclusion that these organisms represent strains of a new species, for which the name Lactobacillus arizonensis is proposed. The type strain of L. arizonensis is NRRL B-14768T (= DSM 13273T).

  18. Lactobacillus curtus sp. nov., isolated from beer in Finland.

    PubMed

    Asakawa, Yuki; Takesue, Nobuchika; Asano, Shizuka; Shimotsu, Satoshi; Iijima, Kazumaru; Suzuki, Koji; Motoyama, Yasuo; Aizawa, Masayuki

    2017-10-01

    A Gram-stain-positive, catalase-negative and short-rod-shaped organism, designated VTT E-94560, was isolated from beer in Finland and deposited in the VTT culture collection as a strain of Lactobacillus rossiae. However, the results of 16S rRNA gene sequence analysis showed that VTT E-94560 was only related to Lactobacillus rossiae JCM 16176 T with 97.0 % sequence similarity, lower than the 98.7 % regarded as the boundary for the species differentiation. Additional phylogenetic studies on the pheS gene, rpoA gene and 16S-23S rRNA internally transcribed spacer region further reinforced the taxonomically independent status of VTT E-94560 and its related Lactobacillus species including L. rossiae and Lactobacillus siliginis. Strain VTT E-94560 also exhibited several differences in its carbohydrate fermentation profiles from those related Lactobacillus species. In addition, DNA-DNA relatedness between VTT E-94560 and these two type strains was 4 % (L. rossiae JCM 16176 T ) and 12 % (L. siliginins JCM 16155 T ), respectively, which were lower than the 70 % cut-off for general species delineation, indicating that these three strains are not taxonomically identical at the species level. These studies revealed that VTT E-94560 represents a novel species, for which the name Lactobacillus curtus sp. nov. is proposed. The type strain is VTT E-94560 T (=JCM 31185 T ).

  19. Lactobacillus insicii sp. nov., isolated from fermented raw meat.

    PubMed

    Ehrmann, Matthias A; Kröckel, Lothar; Lick, Sonja; Radmann, Pia; Bantleon, Annegret; Vogel, Rudi F

    2016-01-01

    The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8 % 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4 %), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3 %), Lactobacillus versmoldensis DSM 14857T (96.9 %) and Lactobacillus furfuricola JCM 18764T (97.2 %). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70 % and the DNA G+C content was 36.3 mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T ( = CECT 8802T = DSM 29801T).

  20. Assessment of Characteristics and Functional Properties of Lactobacillus Species Isolated from Kimchi for Dairy Use

    PubMed Central

    Baick, Seung-Chun

    2015-01-01

    The objective of this study was to identify lactic acid bacteria (LAB) isolated from kimchi and to evaluate its characteristics and functional properties for application in fermented dairy products as a probiotic or commercial starter culture. Eight stains isolated from kimchi were selected through an investigation of phenotypic characteristics. Two strains (DK211 and DK303) were identified as Lactobacillus plantarum, another two (DK207 and DK215) as Lactobacillus paracasei, and one (DK301) as Lactobacillus sakei. The remaining three strains were identified as species of Weissella. All selected Lactobacillus strains had acid and bile tolerance, even though there was wide variation in the ability of each strain. DK303 showed a remarkably higher proteolytic activity. There were no significant differences in β-galactosidase activity among the tested strains, except that DK301 showed no activity. Auto-aggregation varied between 82.1 and 90.0%, and hydrophobicity values ranged from 0.5 to 51.6%.The strongest auto-aggregation and hydrophobicity were observed in DK211. All selected strains showed better 1,1-diphenyl-2-picrylhydrzyl (DPPH) scavenging activity than commercial strains. DK211, DK215, DK301, and DK303 had effective inhibitory activity against all pathogens tested except E. coli. When selected strains were used for yogurt preparation as a single starter culture, the time required to reach target titratable acidity (0.9) was 11-12 h. The yogurt fermented with DK211 had favorable panelists ratings for most sensory attributes, which were comparable with yogurt fermented with a commercial strain. The results suggest that strains isolated from kimchi could be potential probiotic and starter cultures for use in yogurt manufacturing. PMID:26761848

  1. Lactobacillus kimchii sp. nov., a new species from kimchi.

    PubMed

    Yoon, J H; Kang, S S; Mheen, T I; Ahn, J S; Lee, H J; Kim, T K; Park, C S; Kho, Y H; Kang, K H; Park, Y H

    2000-09-01

    A bacteriocin-producing lactic acid bacterium, which was isolated from the Korean fermented-vegetable food kimchi, was subjected to a polyphasic taxonomic study using phenotypic characterization and phylogenetic and genetic methods. This organism (MT-1077T) has phenotypic properties that are consistent with the description characterizing the genus Lactobacillus. Phylogenetic analysis based on 16S rDNA sequences showed clearly that strain MT-1077T is a member of the genus Lactobacillus. The closest phylogenetic relatives are Lactobacillus alimentarius KCTC 3593T and Lactobacillus farciminis LMG 9200T, with levels of 16S rDNA similarity of 98.4 and 98.2%, respectively. Levels of 16S rDNA similarity between strain MT-1077T and other Lactobacillus species were less than 93.0%. Differences in some phenotypic characteristics and DNA-DNA relatedness data indicated that strain MT-1077T should be distinguished from L. alimentarius KCTC 3593T and L. farciminis LMG 9200T. On the basis of the data presented, it is proposed that strain MT-1077T should be placed in the genus Lactobacillus as a new species, Lactobacillus kimchii sp. nov. The type strain of the new species is strain MT-1077T (= KCTC 8903PT = JCM 10707T).

  2. Isolated Lactobacillus chronic prosthetic knee infection.

    PubMed

    Bennett, David M; Shekhel, Tatyana; Radelet, Matt; Miller, Michael D

    2014-01-01

    Lactobacillus is a gram-positive rod bacteria found primarily in the gastrointestinal and female genital tracts. Prosthetic infections in implants are being increasingly reported. The authors present a case of a 58-year-old patient with Lactobacillus septic prosthetic knee joint infection. To the authors’ knowledge, this is the first reported case of chronic prosthetic knee infection with isolated Lactobacillus species. Lactobacillus has been most commonly implicated with bacteremia and endocarditis and rarely with pneumonia, meningitis, and endovascular infection, and a vast majority of the cases are reported in immunocompromised patients. In the current case, diabetes mellitus, hepatitis, malnutrition, anemia, and liver failure were comorbid conditions, placing the patient at increased risk of infection. The findings suggest that further case series are necessary to establish the significance of Lactobacillus as an etiologic agent in chronic low-virulence, and potentially vancomycin-resistant, prosthetic joint infection. The need also exists for further research aimed at the risk of prosthetic joint infection with oral intake of certain probiotic foods and supplements. The goal of this case report is to bring to light the potential of this organism to be a cause of subtle chronic prosthetic joint infection.

  3. Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., isolated from silage.

    PubMed

    Tohno, Masanori; Tanizawa, Yasuhiro; Irisawa, Tomohiro; Masuda, Takaharu; Sakamoto, Mitsuo; Arita, Masanori; Ohkuma, Moriya; Kobayashi, Hisami

    2017-09-01

    Three Gram-stain positive, non-motile, non-spore-forming, catalase-negative and rod-shaped bacterial strains (IWT5T, IWT25T and IWT140), isolated from silage, were investigated by using a polyphasic taxonomic approach. Strains IWT5T and IWT25T grew at 10-37 °C and 30-37 °C, and at pH 4.0-7.5 and 4.0-7.0, respectively. The G+C contents of genomic DNA of strains IWT5T and IWT25T were 43.2 and 44.4 mol%, respectively. Strains IWT5T and IWT25T contained C16 : 0, C18 : 1 ω9c and summed feature 7 (unknown 18.846/C19 : 1 ω6c/C19 : 0cyclo ω10c) as the major fatty acids. Strain IWT5T was most closely related to the type strains of Lactobacillus mixtipabuli (99.9 % 16S rRNA gene sequence similarity) and Lactobacillus silagei (99.5 %). For IWT25T, the 16S rRNA gene sequence similarities with the closely related neighbour type strains L. mixtipabuli and L. silagei were 99.5 and 99.5 %, respectively. The 16S rRNA gene sequence similarities among the three novel isolates were 99.5-99.9 %. The average nucleotide identities of strains IWT5T and IWT25T to other neighbours of the genus Lactobacillus were less than 82 % and the genomes of IWT25T and IWT140 shared 97.3 % average nucleotide identity, demonstrating that the three strains were allocated to two different novel species of the genus Lactobacillus. Together with multilocus sequence analysis, phenotypic and chemotaxonomic characteristics, strains IWT5T (=JCM 31144T=DSM 102973T) and IWT25T (=JCM 31145T=DSM 102974T) are proposed as the type strains of novel species of the genus Lactobacillus, with the names Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., respectively.

  4. Assessment of in vitro oxalate degradation by Lactobacillus species cultured from veterinary probiotics.

    PubMed

    Cho, Jenny G; Gebhart, Connie J; Furrow, Eva; Lulich, Jody P

    2015-09-01

    To culture Lactobacillus spp from veterinary probiotics and measure their in vitro oxalate-degrading capacity. 2 commercial veterinary probiotics containing Lactobacillus spp. Lactobacillus spp were cultured anaerobically on selective deMan, Rogosa, Sharpe agar medium and subcultured for speciation by 16S rDNA gene sequencing. Isolates were inoculated into broth containing sodium oxalate (5 mg/L) and incubated anaerobically for 72 hours. An oxalate-degrading isolate of Lactobacillus acidophilus (American Type Culture Collection [ATCC] 53544) was the positive control sample; sterile broth containing a known quantity of sodium oxalate was the negative control sample. Oxalate concentrations were detected with ion chromatography. Oxalate degradation was assessed with Dunnett tests to detect differences in mean oxalate concentration for each isolate, compared with results for the negative control. Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei or Lactobacillus zeae (too closely related to differentiate) were isolated from probiotic 1, and L plantarum was isolated from probiotic 2. Sequencing of the 16S rDNA gene confirmed 100% homology to type species. Lactobacillus acidophilus (ATCC 53544) and L acidophilus from probiotic 1 significantly decreased oxalate concentrations by 85.3 and 161.9 mg/L, respectively. Lactobacillus plantarum from probiotics 1 and 2 significantly increased oxalate concentrations by 56.1 and 36.1 mg/L, respectively. Lactobacillus casei did not alter oxalate concentrations. Lactobacillus acidophilus isolates significantly reduced oxalate concentrations. In vivo studies are needed to determine whether probiotics containing L acidophilus decrease urine oxalate concentrations and reduce risk of urolith recurrence in dogs with a history of calcium oxalate urolithiasis.

  5. Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia.

    PubMed

    Leisner, J J; Vancanneyt, M; Lefebvre, K; Vandemeulebroecke, K; Hoste, B; Vilalta, N Euras; Rusul, G; Swings, J

    2002-05-01

    Lactic acid bacteria (LAB) are the predominant micro-organisms in tempoyak, a Malaysian acid-fermented condiment. In a study on the diversity of LAB in this product, three isolates could not be identified using SDS-PAGE of whole-cell proteins or API 50 CH. The taxonomic position of the three isolates was clarified in the present study. 16S rDNA sequencing classified a representative strain in the genus Lactobacillus, clearly separated from all known species, and most closely related to the Lactobacillus reuteri phylogenetic group. DNA-DNA hybridization experiments and an extensive phenotypic description confirm that the strains represent a single and separate novel species among the obligately heterofermentative lactobacilli. The three isolates are distinguished at the intra-species level by plasmid profiling, pulsed-field gel electrophoresis of macro-restriction fragments and biochemical features. The name Lactobacillus durianis sp. nov. is proposed for the novel taxon and the type strain is LMG 19193T (= CCUG 45405T).

  6. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)). © 2015 IUMS.

  7. Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S-23S rRNA restriction profiling

    PubMed Central

    Moreira, João Luiz S; Mota, Rodrigo M; Horta, Maria F; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2005-01-01

    Background The accurate identification of Lactobacillus and other co-isolated bacteria during microbial ecological studies of ecosystems such as the human or animal intestinal tracts and food products is a hard task by phenotypic methods requiring additional tests such as protein and/or lipids profiling. Results Bacteria isolated in different probiotic prospecting studies, using de Man, Rogosa and Sharpe medium (MRS), were typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR products. The set of enzymes chosen differentiates most species of Lactobacillus genus and also co-isolated bacteria such as Enterococcus, Streptococcus, Weissella, Staphylococcus, and Escherichia species. The in silico predictions of restriction patterns generated by the Lactobacillus shorter spacers digested with 11 restriction enzymes with 6 bp specificities allowed us to distinguish almost all isolates at the species level but not at the subspecies one. Simultaneous theoretical digestions of the three spacers (long, medium and short) with the same set of enzymes provided more complex patterns and allowed us to distinguish the species without purifying and cloning of PCR products. Conclusion Lactobacillus isolates and several other strains of bacteria co-isolated on MRS medium from gastrointestinal ecosystem and fermented food products could be identified using DNA fingerprints generated by restriction endonucleases. The methodology based on amplified ribosomal DNA restriction analysis (ARDRA) is easier, faster and more accurate than the current methodologies based on fermentation profiles, used in most laboratories for the purpose of identification of these bacteria in different prospecting studies. PMID:15788104

  8. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2013-11-01

    A Gram-stain-positive bacterial strain, S4-3(T), was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain S4-3(T) showed 97.9-98.7 % 16S rRNA gene sequence similarities, 84.4-94.1 % pheS gene sequence similarities and 94.4-96.9 % rpoA gene sequence similarities to the type strains of Lactobacillus nantensis, Lactobacillus mindensis, Lactobacillus crustorum, Lactobacillus futsaii, Lactobacillus farciminis and Lactobacillus kimchiensis. dnaK gene sequence similarities between S4-3(T) and Lactobacillus nantensis LMG 23510(T), Lactobacillus mindensis LMG 21932(T), Lactobacillus crustorum LMG 23699(T), Lactobacillus futsaii JCM 17355(T) and Lactobacillus farciminis LMG 9200(T) were 95.4, 91.5, 90.4, 91.7 and 93.1 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus heilongjiangensis sp. nov., is proposed and the type strain is S4-3(T) ( = LMG 26166(T) = NCIMB 14701(T)).

  9. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    PubMed

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106.

  10. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds.

    PubMed

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-12-01

    Two strains, KBL13(T) and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13(T) and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA-DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13(T) and GBL13, belong to the same species. In the representative strain, KBL13(T), the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231(T) (=ATCC 11741(T); AF089108) is the type strain most closely related to the strain KBL13(T) as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA-DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13(T) represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13(T) (=JCM 14209(T)=DSM 18933(T)).

  11. Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations.

    PubMed

    Nielsen, Dennis S; Schillinger, Ulrich; Franz, Charles M A P; Bresciani, José; Amoa-Awua, Wisdom; Holzapfel, Wilhelm H; Jakobsen, Mogens

    2007-07-01

    Three Gram-positive, catalase-negative, motile, rod-shaped strains, designated L486, L489(T) and L499, were isolated from fermenting cocoa. These organisms produced DL-lactic acid from glucose without gas formation. Ammonia was not produced from arginine. Acid was produced from amygdalin, D-cellobiose, aesculin, D-fructose, D-glucose, D-galactose, D-mannitol, D-mannose, N-acetylglucosamine, L-rhamnose, sucrose, salicin and D-trehalose. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type. A 16S rRNA gene sequence analysis revealed that the isolates belong phylogenetically to the genus Lactobacillus and are closely related to Lactobacillus nagelii, Lactobacillus vini and Lactobacillus satsumensis. Low DNA-DNA reassociation values were obtained between the isolates and the phylogenetically closest neighbours. On the basis of the genetic and phenotypic results, the isolates are considered to represent a novel species, for which the name Lactobacillus ghanensis is proposed. The type strain is L489(T) (=DSM 18630(T)=CCUG 53453(T)).

  12. Screening of Lactobacillus isolates from gastrointestinal tract of guinea fowl for probiotic qualities using in vitro tests to select species-specific probiotic candidates.

    PubMed

    Vineetha, P G; Tomar, S; Saxena, V K; Susan, C; Sandeep, S; Adil, K; Mukesh, K

    2016-08-01

    A total of 32 Lactobacillus isolates, 8 each from the crop (LGFCP1-LGFCP8), proventriculus (LGFP9-LGFP16), ileum (LGFI17-LGFI24) and caeca (LGFCM25-LGFCM32) were isolated from 25 adult guinea fowl (Pearl variety), 22-28 weeks of age, and characterised morphologically, physiologically, biochemically and by molecular methods. Isolates were screened for their probiotic quality using range of in vitro tests: aggregation test, cell surface hydrophobicity, resistance to bile salts and acidic conditions, enzymatic tests and coaggregation and antagonistic test. Based on in vitro test results and a novel scoring method, the two best isolates were selected and partial 16S rRNA sequencing was done. BLAST (Basic Local Alignment Search Tool) analysis of sequence of isolate LGFCP4 showed 99% genetic identity with Lactobacillus plantarum and LGFP16 with Lactobacillus reuteri. The study shows that these two microbial agents may be suitable as potential probiotic candidates in guinea fowl, as well as in a feed supplement for other poultry species.

  13. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds

    PubMed Central

    Morita, Hidetoshi; Shiratori, Chiharu; Murakami, Masaru; Takami, Hideto; Kato, Yukio; Endo, Akihito; Nakajima, Fumihiko; Takagi, Misako; Akita, Hiroaki; Okada, Sanae; Masaoka, Toshio

    2007-01-01

    Two strains, KBL13T and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13T and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA–DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13T and GBL13, belong to the same species. In the representative strain, KBL13T, the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231T (=ATCC 11741T; AF089108) is the type strain most closely related to the strain KBL13T as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA–DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13T represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13T (=JCM 14209T=DSM 18933T). PMID:18048734

  14. Antagonistic Activity of Lactobacillus Isolates against Salmonella typhi In Vitro

    PubMed Central

    Abdel-Daim, Amira; Hassouna, Nadia; Hafez, Mohamed; Ashor, Mohamed Seif Aldeen; Aboulwafa, Mohammad M.

    2013-01-01

    Background. Enteric fever is a global health problem, and rapidly developing resistance to various drugs makes the situation more alarming. The potential use of Lactobacillus to control typhoid fever represents a promising approach, as it may exert protective actions through various mechanisms. Methods. In this study, the probiotic potential and antagonistic activities of 32 Lactobacillus isolates against Salmonella typhi were evaluated. The antimicrobial activity of cell free supernatants of Lactobacillus isolates, interference of Lactobacillus isolates with the Salmonella adherence and invasion, cytoprotective effect of Lactobacillus isolates, and possibility of concurrent use of tested Lactobacillus isolates and antibiotics were evaluated by testing their susceptibilities to antimicrobial agents, and their oxygen tolerance was also examined. Results. The results revealed that twelve Lactobacillus isolates could protect against Salmonella typhi infection through interference with both its growth and its virulence properties, such as adherence, invasion, and cytotoxicity. These Lactobacillus isolates exhibited MIC values for ciprofloxacin higher than those of Salmonella typhi and oxygen tolerance and were identified as Lactobacillus plantarum. Conclusion. The tested Lactobacillus plantarum isolates can be introduced as potential novel candidates that have to be subjected for in vivo and application studies for treatment and control of typhoid fever. PMID:24191248

  15. Multiplex PCR for the Detection of Lactobacillus pontis and Two Related Species in a Sourdough Fermentation

    PubMed Central

    Müller, Martin R. A.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2000-01-01

    A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation. PMID:10788389

  16. Diversity and functional characterization of Lactobacillus spp. isolated throughout the ripening of a hard cheese.

    PubMed

    Bautista-Gallego, J; Alessandria, V; Fontana, M; Bisotti, S; Taricco, S; Dolci, P; Cocolin, L; Rantsiou, K

    2014-07-02

    The aim of this work was to study the Lactobacillus spp. intra- and inter- species diversity in a Piedmont hard cheese made of raw milk without thermal treatment and without addition of industrial starter, and to perform a first screening for potential functional properties. A total of 586 isolates were collected during the cheese production and identified by means of molecular methods: three hundred and four were identified as Lactobacillus rhamnosus, two hundred and forty as Lactobacillus helveticus, twenty six as Lactobacillus fermentum, eleven as Lactobacillus delbrueckii, three as Lactobacillus pontis, and two as Lactobacillus gasseri and Lactobacillus reuteri, respectively. A high genetic heterogeneity was detected by using the repetitive bacterial DNA element fingerprinting (rep-PCR) with the use of (GTG)5 primer resulting in eight clusters of L. helveticus and sixteen clusters in the case of L. rhamnosus. Most of isolates showed a high auto-aggregation property, low hydrophobicity values, and a general low survival to simulated digestion process. However, sixteen isolates showed promising functional characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Characterization of Lactobacillus fermentum PL9988 Isolated from Healthy Elderly Korean in a Longevity Village.

    PubMed

    Park, Jong-Su; Shin, Eunju; Hong, Hyunjin; Shin, Hyun-Jung; Cho, Young-Hoon; Ahn, Ki-Hyun; Paek, Kyungsoo; Lee, Yeonhee

    2015-09-01

    In this work, we wanted to develop a probiotic from famous longevity villages in Korea. We visited eight longevity villages in Korea to collect fecal samples from healthy adults who were aged above 80 years and had regular bowel movements, and isolated lactic-acid-producing bacteria from the samples. Isolated colonies that appeared on MRS agar containing bromophenol blue were identified by means of 16S rRNA sequencing, and 102 of the isolates were identified as lactic-acid-producing bacteria (18 species). Lactobacillus fermentum was the most frequently found species. Eight isolates were selected on the basis of their ability to inhibit the growth of six intestinal pathogens (Escherichia coli O157:H7, Salmonella enterica subsp. enterica Typhimurium, Salmonella enterica subsp. enterica Enteritidis, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes) and their susceptibility to 15 antimicrobial agents. Among these eight isolates, four Lactobacillus fermentum isolates were found not to produce any harmful enzymes or metabolites. Among them, Lactobacillus fermentum isolate no. 24 showed the strongest binding to intestinal epithelial cells, the highest immune-enhancing activity, anti-inflammation activity, and anti-oxidation activity as well as the highest survival rates in the presence of artificial gastric juice and bile solution. This isolate, designated Lactobacillus fermentum PL9988, has all the characteristics for a good probiotic.

  18. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits.

    PubMed

    Chen, Yi-Sheng; Wang, Li-Ting; Liao, Yu-Jou; Lan, Yi-Shan; Chang, Chi-Huan; Chang, Yu-Chung; Wu, Hui-Chung; Lo, Huei-Yin; Otoguro, Misa; Yanagida, Fujitoshi

    2017-12-01

    Two Gram-stain-positive, catalase-negative, rod-shaped, bacterial strains (313 T and 311) were isolated from banana fruits in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both strains corresponded to the type strain of Lactobacillus nantensis (99.19 %), followed by Lactobacillus crustorum (98.99 %), Lactobacillus heilongjiangensis (98.59 %) and Lactobacillus farciminis (98.52 %). Phylogenetic analysis based on the sequences of two housekeeping genes, pheS and rpoA, revealed that these two strains were well separated from the Lactobacillus reference strains. DNA-DNA relatedness values revealed genotype separation of the two strains from the above four species. The DNA G+C content of strain 313 T was 35.5 mol%. The strains were homofermentative and mainly produced l-lactic acid from glucose. The major cellular fatty acids of strain 313 T were 18 : 1ω6c and/or 18 : 1ω7c, 16 : 0, and 19 : 1ω6c and/or 19 : 0 cyclo ω10c. Based on their physiological and genotypic characteristics, the isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillusmusae sp. nov. is proposed. The type strain is 313 T =NBRC 112868 T =BCRC 81020 T ).

  19. Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must.

    PubMed

    Mañes-Lázaro, Rosario; Ferrer, Sergi; Rodas, Ana María; Urdiain, Mercedes; Pardo, Isabel

    2008-12-01

    A Lactobacillus strain, designated 203(T), previously isolated from Bobal grape must was characterized phylogenetically, genotypically and phenotypically in order to establish whether it represents a novel species. On the basis of the 16S rRNA gene sequence, strain 203(T) was shown to belong to the genus Lactobacillus, falling within the Lactobacillus alimentarius-Lactobacillus farciminis group and being closely related to the type strains of L. alimentarius, Lactobacillus kimchii and Lactobacillus paralimentarius. DNA-DNA hybridization results confirmed the separate status of strain 203(T) at the species level. To establish the similarities and differences between 203(T) and the three aforementioned closest species, the following methods were used: amplified rDNA restriction analysis, analysis of the 16S-23S rDNA intergenic spacer region, random amplification of polymorphic DNA (RAPD) profiling, ribotyping, carbohydrate fermentation and physiological tests. Strain 203(T) could be differentiated genetically using RAPD analysis and ribotyping. Phenotypically, it can be distinguished from its closest relatives by its ability to grow at pH 3.3, by gas production from gluconate and by certain carbohydrate fermentations. On the basis of these data, strain 203(T) represents a novel species of the genus Lactobacillus, for which the name Lactobacillus bobalius sp. nov. is proposed. The type strain is 203(T) (=CECT 7310(T) =DSM 19674(T)).

  20. Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products.

    PubMed

    Chao, Shiou-Huei; Kudo, Yuko; Tsai, Ying-Chieh; Watanabe, Koichi

    2012-03-01

    Three Gram-stain-positive strains were isolated from fermented mustard and were rod-shaped, non-motile, asporogenous, facultatively anaerobic, homofermentative and did not exhibit catalase activity. Comparative analyses of 16S rRNA, pheS and rpoA gene sequences demonstrated that the novel strains were members of the genus Lactobacillus. On the basis of 16S rRNA gene sequence analysis, the type strains of Lactobacillus crustorum (98.7% similarity), Lactobacillus farciminis (98.9%) and Lactobacillus mindensis (97.9%) were the closest neighbours. However, DNA-DNA reassociation values with these strains were less than 50%. Phenotypic and genotypic features demonstrated that these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus futsaii sp. nov. is proposed; the type strain is YM 0097(T) (=JCM 17355(T)=BCRC 80278(T)).

  1. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).

  2. Probiotic potential of lactobacillus strains isolated from sorghum-based traditional fermented food.

    PubMed

    Rao, K Poornachandra; Chennappa, G; Suraj, U; Nagaraja, H; Raj, A P Charith; Sreenivasa, M Y

    2015-06-01

    Sorghum-based traditional fermented food was screened for potential probiotic lactic acid bacteria. The isolates were identified by biochemical, physiological and genetic methods. Species identification was done by 16s rRNA sequence analysis. The functional probiotic potential of the two Lactobacillus species viz., Lactobacillus plantarum (Lact. plantarum) and Lactobacillus pentosus (Lact. pentosus) was assessed by different standard parameters. The strains were tolerant to pH 2 for 1 h and resistant to methicillin, kanamycin, vancomycin and norfloxacin. Two (Lact. plantarum COORG-3 and Lact. pentosus COORG-8) out of eight isolates recorded the cell surface hydrophobicity to be 59.12 and 64.06%, respectively. All the strains showed tolerance to artificial duodenum juice (pH 2) for 3 h, positive for bile salt hydrolase test and negative for haemolytic test. The neutralized cell-free supernatant of the strains Lact. pentosus COORG-4, Lact. plantarum COORG-1, Lact. plantarum COORG-7, Lact. pentosus COORG-8 and Lact. plantarum COORG-3 showed good antibiofilm activity. Lact. pentosus COORG-8 exhibited 74% activity against Pseudomonas aeruginosa-MTCC 7903 and Lact. plantarum COORG-7 showed 68% inhibition of biofilm against Klebsiella pneumonia MTCC 7407. Three (Lact. plantarum COORG-7, Lact. pentosus COORG-5 and Lact. pentosus COORG 8) out of eight isolates exhibited a good antimicrobial activity against Listeria monocytogenes and five isolates (Lact. pentosus COORG 2, Lact. plantarum COORG 1, Lact. plantarum COORG 4, Lact. pentosus COORG 3 and Lact. plantarum COORG 6) are active against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella pneumonia, Enterococcus faecalis. The study also evaluated the cholesterol lowering property of the Lactobacillus strains using hen egg yolk as the cholesterol source. The cholesterol in hen egg yolk was assimilated by 74.12 and 68.26% by Lact. plantarum COORG 4 and Lact. pentosus COORG 7

  3. Lactobacillus cerevisiae sp. nov., isolated from a spoiled brewery sample.

    PubMed

    Koob, Jennifer; Jacob, Fritz; Wenning, Mareike; Hutzler, Mathias

    2017-09-01

    A Gram-stain-positive, non-motile, rod-shaped bacterium, designated TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T), was isolated from spoiled beer. This bacterium did not form spores, and was catalase-negative and facultatively anaerobic. Its taxonomic position was determined in a polyphasic study. The 16S rRNA gene sequence similarity data showed that the strain belonged to the Lactobacillus genus with the nearest neighbours being Lactobacillus koreensis DCY50T (sequence similarity 99.5 %), Lactobacillus yonginensis THK-V8T (99.2 %) and Lactobacillus parabrevis LMG 11984T (98.7 %). Sequence comparisons of additional phylogenetic markers, pheS and rpoA, confirmed the 16S rRNA gene sequence tree topology. The maximum rpoA sequence similarity was 92.3 % with L. yonginensis THK-V8T. The DNA G+C content of the isolate was 50.0 mol%. The DNA-DNA relatedness showed that strain TUM BP 140423000-2250T could be clearly distinguished from L. koreensis DCY 50T (30.8±0.4 %) and L. yonginensis THK-V8T (23.6±5.9 %). The major fatty acids were C18 : 1ω9c, summed feature 7 (comprised of C19 : 0 cyclo ω10c/C19 : 1ω6c) and C16 : 0. Based on phenotypic and genotypic studies, the authors propose classifying the new isolate as a representative of a novel species of the genus Lactobacillus, Lactobacillus cerevisiae sp. nov. The type strain is deposited at the Research Centre Weihenstephan for Brewing and Food Quality as TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T).

  4. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health

    PubMed Central

    Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah

    2015-01-01

    The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies. PMID:25859220

  5. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  6. Isolation of a DNA Probe for Lactobacillus curvatus

    PubMed Central

    Petrick, Hendrik A. R.; Ambrosio, Riccardo E.; Holzapfel, Wilhelm H.

    1988-01-01

    A genomic library of Lactobacillus curvatus DSM 20019 was constructed in bacteriophage λ gt11. A 1.2-kilobase DNA probe specific for L. curvatus was isolated from this library. When this probe was hybridized to DNA from Lactobacillus isolates from different sources classified by conventional techniques, differing degrees of hybridization were obtained. This could imply that these isolates may have been incorrectly classified. Images PMID:16347554

  7. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods

    PubMed Central

    2010-01-01

    Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602

  8. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods.

    PubMed

    Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J

    2010-09-17

    Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.

  9. Identification of salivary Lactobacillus rhamnosus species by DNA profiling and a specific probe.

    PubMed

    Richard, B; Groisillier, A; Badet, C; Dorignac, G; Lonvaud-Funel, A

    2001-03-01

    The Lactobacillus genus has been shown to be associated with the dental carious process, but little is known about the species related to the decay, although Lactobacillus rhamnosus is suspected to be the most implicated species. Conventional identification methods based on biochemical criteria lead to ambiguous results, since the Lactobacillus species found in saliva are phenotypically close. To clarify the role of this genus in the evolution of carious disease, this work aimed to find a rapid and reliable method for identifying the L. rhamnosus species. Methods based on hybridization with DNA probes and DNA amplification by PCR were used. The dominant salivary Lactobacillus species (reference strains from the ATCC) were selected for this purpose as well as some wild strains isolated from children's saliva. DNA profiling using semirandom polymorphic DNA amplification (semi-RAPD) generated specific patterns for L. rhamnosus ATCC 7469. The profiles of all L. rhamnosus strains tested were similar and could be grouped; these strains shared four common fragments. Wild strains first identified with classic methods shared common patterns with the L. rhamnosus species and could be reclassified. One fragment of the profile was purified, cloned, used as a probe and found to be specific to the L. rhamnosus species. These results may help to localize this species within its ecological niche and to elucidate the progression of the carious process.

  10. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  11. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee.

    PubMed

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".

  12. Detection and Identification of Gastrointestinal Lactobacillus Species by Using Denaturing Gradient Gel Electrophoresis and Species-Specific PCR Primers

    PubMed Central

    Walter, J.; Tannock, G. W.; Tilsala-Timisjarvi, A.; Rodtong, S.; Loach, D. M.; Munro, K.; Alatossava, T.

    2000-01-01

    Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database. PMID:10618239

  13. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  14. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  15. Lactobacillus ixorae sp. nov., isolated from a flower (West-Indian jasmine).

    PubMed

    Techo, Sujitra; Miyashita, Mika; Shibata, Chiyo; Tanaka, Naoto; Wisetkhan, Preeyarach; Visessanguan, Wonnop; Tanasupawat, Somboon

    2016-12-01

    A Gram-stain-positive, lactic acid bacterium, strain Ru20-1T, was isolated from a flower (West-Indian jasmine) collected from Kalasin province, Thailand. A polyphasic approach was used to determine the taxonomic position of this strain. Studies of morphological and biochemical characteristics revealed that strain Ru20-1T belonged to the genus Lactobacillus. The strain was heterofermentative, non-spore-forming and rod-shaped. It produced dl-lactic acid. Based on 16S rRNA gene sequence similarity, this strain was closely related to Lactobacillus lindneri LMG 14528T (96.8 %), Lactobacillus sanfranciscensis NRIC 1548T (95.4 %) and Lactobacillus florum NRIC 0771T (95.2 %), respectively. In addition, the pheS gene sequence of strain Ru20-1T was closely related to those of L. sanfranciscensis NRIC 1548T (92.0 %), L. lindneri LMG 14528T (89.0 %) and L. florum NRIC 0771T(85.0 %). Phylogenetic analysis indicated that strain Ru20-1T was clearly separated from closely related species of the genus Lactobacillus. The DNA G+C content of strain Ru20-1T was 47.8 mol %. The cell-wall peptidoglycan type was l-Lys-d-Asp. The major cellular fatty acids were C18 : 1ω9c, C20 : 0, C20 : 1ω9c and summed feature 7 (unknown 18.846 and/or C19 : 1ω6c and/or C19 : 0 cyclo). On the basis of the data provided, strain Ru20-1T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus ixorae sp. nov. is proposed. The type strain is Ru20-1T (=LMG 29008T=NBRC 111239T=PCU 346T=TISTR 2381T).

  16. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    PubMed Central

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( < 1 % 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  17. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria.

    PubMed

    Abdelmaksoud, Abdallah A; Koparde, Vishal N; Sheth, Nihar U; Serrano, Myrna G; Glascock, Abigail L; Fettweis, Jennifer M; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2016-03-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.

  18. Characterization of culturable vaginal Lactobacillus species among women with and without bacterial vaginosis from the United States and India: a cross-sectional study.

    PubMed

    Madhivanan, Purnima; Raphael, Eva; Rumphs, Alnecia; Krupp, Karl; Ravi, Kavitha; Srinivas, Vijaya; Arun, Anjali; Reingold, Arthur L; Klausner, Jeffrey D; Riley, Lee W

    2014-07-01

    Lactobacillus species play an integral part in the health of the vaginal microbiota. We compared vaginal Lactobacillus species in women from India and the USA with and without bacterial vaginosis (BV). Between July 2009 and November 2010, a cross-sectional study was conducted among 40 women attending a women's health clinic in Mysore, India, and a sexually transmitted diseases clinic in San Francisco, USA. Women were diagnosed with BV using Amsel's criteria and the Nugent score. Lactobacillus 16S rDNA was sequenced to speciate the cultured isolates. Ten Indian and 10 US women without BV were compared with an equal number of women with BV. Lactobacilli were isolated from all healthy women, but from only 10% of Indian and 50% of US women with BV. 16S rDNA from 164 Lactobacillus colonies was sequenced from healthy women (126 colonies) and women with BV (38 colonies). Seven cultivable Lactobacillus species were isolated from 11 Indian women and nine species from 15 US women. The majority of Lactobacillus species among Indian women were L. crispatus (25.0%), L. jensenii (25.0%) and L. reuteri (16.7%). Among US women, L. crispatus (32.0%), L. jensenii (20.0%) and L. coleohominis (12.0%) predominated. L. jensenii and L. crispatus dominated the vaginal flora of healthy Indian and US women. Indian women appeared to have a higher percentage of obligate heterofermentative species, suggesting the need for a larger degree of metabolic flexibility and a more challenging vaginal environment. © 2014 The Authors.

  19. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    PubMed Central

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  20. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants

    PubMed Central

    2011-01-01

    Background Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Results Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp.delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. Conclusions This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky

  1. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants.

    PubMed

    Savino, Francesco; Cordisco, Lisa; Tarasco, Valentina; Locatelli, Emanuela; Di Gioia, Diana; Oggero, Roberto; Matteuzzi, Diego

    2011-06-30

    Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76) log10 vs 3.90 (2.50-7.10) CFU/g of faeces (p = 0.015). The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp. delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method), also in liquid co-cultures, thus demonstrating an antagonistic activity. This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms isolated from colicky infants. Our findings may stimulate

  2. Predominant Lactobacillus species types of vaginal microbiota in pregnant Korean women: quantification of the five Lactobacillus species and two anaerobes.

    PubMed

    Kim, Jeong Hyun; Yoo, Seung Min; Sohn, Yong Hak; Jin, Chan Hee; Yang, Yun Suk; Hwang, In Taek; Oh, Kwan Young

    2017-10-01

    To investigate the predominant Lactobacillus species types (LSTs) of vaginal microbiota in pregnant Korean women by quantifying five Lactobacillus species and two anaerobes. In all, 168 pregnant Korean women under antenatal care at Eulji University Hospital and local clinics were enrolled in the prospective cohort study during pregnancy (10-14 weeks). Vaginal samples were collected with Eswab for Quantitative polymerase chain reaction (qPCR) and stored in a -80 °C freezer. qPCR was performed for five Lactobacillus species and two anaerobes. To identify the predominant LSTs, quantifications were analyzed by the Cluster and Tree View programs of Eisen Lab. Also the quantifications were compared among classified groups. L. crispatus and L. iners were most commonly found in pregnant Korean women, followed by L. gasseri and L. jensenii; L. vaginalis was nearly absent. Five types (four predominant LSTs and one predominant anaerobe type without predominant Lactobacillus species) were classified. Five predominant LSTs were identified in vaginal microbiota of pregnant Korean women. L. crispatus and L. iners predominant types comprised a large proportion.

  3. 16S-ARDRA and MALDI-TOF mass spectrometry as tools for identification of Lactobacillus bacteria isolated from poultry.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2016-06-13

    The objective of our study is to evaluate the potential use of Amplified 16S Ribosomal DNA Restriction Analysis (16S-ARDRA) and MALDI-TOF mass spectrometry (MS) as methods for species identification of Lactobacillus strains in poultry. A total of 80 Lactobacillus strains isolated from the cloaca of chicken, geese and turkeys were identified to the species level by MALDI-TOF MS (on-plate extraction method) and 16S-ARDRA. The two techniques produced comparable classification results, some of which were additionally confirmed by sequencing of 16S rDNA. MALDI-TOF MS enabled rapid species identification but produced more than one reliable identification result for 16.25 % of examined strains (mainly of the species L. johnsonii). For 30 % of isolates intermediate log(scores) of 1.70-1.99 were obtained, indicating correct genus identification but only presumptive species identification. The 16S-ARDRA protocol was based on digestion of 16S rDNA with the restriction enzymes MseI, HinfI, MboI and AluI. This technique was able to distinguish 17 of the 19 Lactobacillus reference species tested and enabled identification of all 80 wild isolates. L. salivarius dominated among the 15 recognized species, followed by L. johnsonii and L. ingluviei. The MALDI-TOF MS and 16S-ARDRA assays are valuable tools for the identification of avian lactobacilli to the species level. MALDI-TOF MS is a fast, simple and cost-effective technique, and despite generating a high percentage of results with a log(score) <2.00, the on-plate extraction method is characterized by high-performance. For samples for which Biotyper produces more than one reliable result, MALDI-TOF MS must be used in combination with genotypic techniques to achieve unambiguous results. 16S-ARDRA is simple, repetitive method with high power of discrimination, whose sole limitation is its inability to discriminate between species with very high 16S rDNA sequence homology, such as L. casei and L. zeae. The assays can be used for

  4. Isolation, characterization, and evaluation of wild isolates of Lactobacillus reuteri from pig feces.

    PubMed

    Lee, Deog Yong; Seo, Yeon-Soo; Rayamajhi, Nabin; Kang, Mi Lan; Lee, Su In; Yoo, Han Sang

    2009-12-01

    Lactic acid bacteria (LAB) are a well-used probiotics for health improvements in both humans and animals. Despite of several benefits, non-host-specific LAB showed poor probiotics effects due to difficulty in colonization and competition with normal flora. Therefore, the feasibility of porcine LAB isolates was evaluated as a probiotics. Ten of 49 Lactobacillus spp. isolates harbored 2 approximately 10 kb plasmid DNA. Seven strains were selected based on the safety test, such as hemolytic activity, ammonia, indole, and phenylalanine production. After safety test, five strains were selected again by several tests, such as epithelial adherence, antimicrobial activity, tolerance against acid, bile, heat, and cold-drying, and production of acid and hydrogen peroxide. Then, enzyme profiles (ZYM test) and antibiotics resistance were analyzed for further characterization. Five Lactobacillus reuteri isolates from pig feces were selected by safety and functional tests. The plasmid DNA which was able to develop vector system was detected in the isolates. Together with these approaches, pig-specific Lactobacillus spp. originated from pigs were selected. These strains may be useful tools to develop oral delivery system.

  5. A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences.

    PubMed

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-06-01

    Species-specific primers targeting the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough. The 16S-23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388-1406 of the 16S rRNA gene and to positions 207-189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331). Clone libraries of the resulting amplicons were constructed using a pCR2.1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S-23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNA(Ile) and tRNA(Ala) genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested. Designed species-specific primers enable a rapid and accurate identification of L. mindensis, L. paralimentarius, L. panis, L. pontis and L. frumenti species among other lactobacilli. The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.

  6. Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet.

    PubMed

    Feng, Jing; Jiang, Yujun; Li, Mingyu; Zhao, Siyu; Zhang, Yanming; Li, Xuesong; Wang, Hui; Lin, Guangen; Wang, Hao; Li, Tiejing; Man, Chaoxin

    2018-05-25

    Bacteria in Lactobacillus casei group, including Lactobacillus casei (L. casei), Lactobacillus paracasei (L. paracasei), and Lactobacillus rhamnosus (L. rhamnosus) are important lactic acid bacteria in the production of fermented dairy products and are faced with the controversial nomenclatural status due to their close phylogenetic similarity. To probe the evolution and phylogeny of L. casei group, 100 isolates of lactic acid bacteria originated from naturally fermented dairy products in Tibet of China were subjected to multilocus sequence typing (MLST). The MLST scheme, based on analysis of the housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA and recG, revealed that all the isolates belonged to a group containing the L. paracasei reference strains and were clearly different from the strains of L. casei and L. rhamnosus. Although nucleotide diversity (π) was low for the seven genes (ranging from 0.00341 for fusA to 0.01307 for recG), high genetic diversity represented by 83 sequence types (STs) with a discriminatory index of 0.98 was detected. A network-like structure based on split decomposition analysis, and the high values of the relative effect of recombination and mutation in the diversification of the lineages (r/m = 4.76) and the relative frequency of occurrence of recombination and mutation (ρ/θ = 2.62) indicated that intra-species recombination occurred frequently and homologous recombination played a key role in generating genotypic diversity amongst L. paracasei strains in Tibet. The discovery of 51 new STs and the results of STRUCTURE analysis suggested that the L. casei group in Tibet had an individual and particular population structure in comparison to European isolates. Overall, this research might be the first report about genetic diversity and population structure of Lactobacillus populations isolated from naturally fermented dairy products in Tibet based on MLST scheme.

  7. Antibiotic susceptibility of Lactobacillus strains isolated from domestic geese.

    PubMed

    Dec, M; Wernicki, A; Puchalski, A; Urban-Chmiel, R

    2015-01-01

    The aim of this study was to determine the antibiotic susceptibility of 93 Lactobacillus strains isolated from domestic geese raised on Polish farms. The minimal inhibitory concentration (MIC) of 13 antimicrobial substances was determined by the broth microdilution method. All strains were sensitive to the cell wall inhibitors ampicillin and amoxicillin (MIC ≤ 8 μg/ml). Resistance to inhibitors of protein synthesis and to fluoroquinolone inhibitors of replication was found in 44.1% and 60.2% of isolates, respectively; 26.9% strains were resistant to neomycin (MIC ≥ 64 μg/ml), 23.6% to tetracycline (MIC ≥ 32 μg/ml), 15% to lincomycin (MIC ≥ 64 μg/ml), 18.3% to doxycycline (MIC ≥ 32 μg/ml), 9.7% to tylosin (MIC ≥ 32 μg/ml), 56% to flumequine (MIC ≥ 256 μg/ml) and 22.6% to enrofloxacin (MIC ≥ 64 μg/ml). Bimodal distribution of MICs indicative of acquired resistance and unimodal distribution of the high MIC values indicative of intrinsic resistance were correlated with Lactobacillus species. Eleven (11.8%) strains displayed multiple resistance for at least three classes of antibiotics. Data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorisation of susceptible and resistant strains of Lactobacillus genus and help to assess the hazards associated with the occurrence of drug resistance among natural intestinal microflora.

  8. Detection and Identification of Lactobacillus Species in Crops of Broilers of Different Ages by Using PCR-Denaturing Gradient Gel Electrophoresis and Amplified Ribosomal DNA Restriction Analysis

    PubMed Central

    Guan, Le Luo; Hagen, Karen E.; Tannock, Gerald W.; Korver, Doug R.; Fasenko, Gaylene M.; Allison, Gwen E.

    2003-01-01

    The microflora of the crop was investigated throughout the broiler production period (0 to 42 days) using PCR combined with denaturing gradient gel electrophoresis (PCR-DGGE) and selective bacteriological culture of lactobacilli followed by amplified ribosomal DNA restriction analysis (ARDRA). The birds were raised under conditions similar to those used in commercial broiler production. Lactobacilli predominated and attained populations of 108 to 109 CFU per gram of crop contents. Many of the lactobacilli present in the crop (61.9% of isolates) belonged to species of the Lactobacillus acidophilus group and could not be differentiated by PCR-DGGE. A rapid and simple ARDRA method was developed to distinguish between the members of the L. acidophilus group. HaeIII-ARDRA was used for preliminary identification of isolates in the L. acidophilus group and to identify Lactobacillus reuteri and Lactobacillus salivarius. MseI-ARDRA generated unique patterns for all species of the L. acidophilus group, identifying Lactobacillus crispatus, Lactobacillus johnsonii, and Lactobacillus gallinarum among crop isolates. The results of our study provide comprehensive knowledge of the Lactobacillus microflora in the crops of birds of different ages using nucleic acid-based methods of detection and identification based on current taxonomic criteria. PMID:14602636

  9. Clinical characteristics of bacteraemia caused by Lactobacillus spp. and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2000-2014.

    PubMed

    Lee, Meng-Rui; Tsai, Chia-Jung; Liang, Sheng-Kai; Lin, Ching-Kai; Huang, Yu-Tsung; Hsueh, Po-Ren

    2015-10-01

    The clinical characteristics of 89 patients with Lactobacillus bacteraemia treated at a university-affiliated hospital in northern Taiwan during 2000-2014 were retrospectively evaluated. Lactobacillus spp. were identified by 16S rRNA sequencing analysis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antimicrobial susceptibilities of the isolates were determined by broth microdilution. The most commonly isolated species was Lactobacillus salivarius (n = 21), followed by Lactobacillus paracasei (n = 16) and Lactobacillus fermentum (n = 13). Excluding three isolates with lower 16S rRNA sequence similarity, MALDI-TOF/MS provided correct identification for 84.9% (73/86) of Lactobacillus isolates. Concordant identification was lowest for Lactobacillus casei (11%). The main infection foci were intra-abdominal infection (49%) and catheter-related bloodstream infection (17%). Only one-half of the patients received adequate antibiotic treatment during the bacteraemic episode. The majority of patients with Lactobacillus bacteraemia were immunocompromised. The 7-day and in-hospital mortality rates were 21% and 62%, respectively, and underlying malignancy was associated with a higher in-hospital mortality rate (odds ratio = 2.666). There were no significant differences in mortality (7-day, 14-day, 30-day and in-hospital) among patients with bacteraemia due to different Lactobacillus spp. Minimum inhibitory concentrations were highest for glycopeptides, cephalosporins and fluoroquinolones and were lowest for carbapenems and aminopenicillins. Lactobacillus bacteraemia was associated with a high mortality rate, and patient outcome was associated with underlying malignancy. MALDI-TOF/MS was able to accurately identify 84.9% of the Lactobacillus isolates, and L. salivarius was the predominant pathogen. The accuracy rate for identification of Lactobacillus spp. by MALDI-TOF/MS was lowest for L. casei. Copyright © 2015 Elsevier B

  10. Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus

    PubMed Central

    De Angelis, Maria; Bottacini, Francesca; Fosso, Bruno; Kelleher, Philip; Calasso, Maria; Di Cagno, Raffaella; Ventura, Marco; Picardi, Ernesto; van Sinderen, Douwe; Gobbetti, Marco

    2014-01-01

    Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches. PMID:25264826

  11. Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease

    PubMed Central

    Martinez, Raquel M.; Hulten, Kristina G.; Bui, Uyen

    2014-01-01

    Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry. PMID:24131686

  12. Lactobacillus vespulae sp. nov., isolated from gut of a queen wasp (Vespula vulgaris).

    PubMed

    Hoang, Van-An; Kim, Yeon-Ju; Nguyen, Ngoc-Lan; Kim, Si-Kwan; Yang, Deok-Chun

    2015-10-01

    A Gram-stain-positive, oxidase- and catalase-negative, rod-shaped, facultatively anaerobic bacterial strain, DCY75T, was isolated from a queen wasp (Vespula vulgaris). Growth occurred at 4–37 °C (optimum, 30 °C), at pH 3.5–8.0 (optimum, pH 5.0–6.0) and with ≤ 7.0 % (w/v) NaCl. Strain DCY75T produced gas during growth on glucose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DCY75T belonged to the genus Lactobacillus and was closely related to Lactobacillus sanfranciscensis ATCC 27651T and Lactobacillus lindneri DSM 20690T at sequence similarities of 96.7 and 96.4 %, respectively. A comparison of two housekeeping genes, pheS and rpoA, revealed that strain DCT75T was well separated from other species of the genus Lactobacillus. Strain DCY75T produced d- and l-lactic acid isomers in a ratio of 22.5 : 77.5 (v/v). The major fatty acids were summed feature 8 (comprising C18 :  1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω9c and C18 : 0.The peptidoglycan structure was of the A4α (l-Lys–d-Asp) type. Cell-wall sugars were glucose, galactose and ribose. The DNA G+C content was 35.5 ± 1.3 mol%. Based on phenotypic and genotypic properties, strain DCY75T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus vespulae sp. nov. is proposed. The type strain is DCY75T ( = KCTC 21023T = JCM 19742T).

  13. Highly Heterogeneous Probiotic Lactobacillus Species in Healthy Iranians with Low Functional Activities

    PubMed Central

    Rohani, Mahdi; Noohi, Nasrin; Talebi, Malihe; Katouli, Mohammad; Pourshafie, Mohammad R.

    2015-01-01

    Background Lactic acid bacteria (LAB) have been considered as potentially probiotic organisms due to their potential human health properties. This study aimed to evaluate both in vitro and in vivo, the potential probiotic properties of Lactobacillus species isolated from fecal samples of healthy humans in Iran. Methods and Results A total of 470 LAB were initially isolated from 53 healthy individual and characterized to species level. Of these, 88 (86%) were Lactobacillus species. Biochemical and genetic fingerprinting with Phene-Plate system (PhP-LB) and RAPD-PCR showed that the isolates were highly diverse consisted of 67(76.1%) and 75 (85.2%) single types (STs) and a diversity indices of 0.994 and 0.997, respectively. These strains were tested for production of adhesion to Caco-2 cells, antibacterial activity, production of B12, anti-proliferative effect and interleukin-8 induction on gut epithelial cell lines and antibiotic resistance against 9 commonly used antibiotics. Strains showing the characteristics consistent with probiotic strains, were further tested for their anti-inflammatory effect in mouse colitis model. Only one L. brevis; one L. rhamnosus and two L. plantarum were shown to have significant probiotic properties. These strains showed shortening the length of colon compared to dextran sulfate sodium and disease activity index (DAI) was also significantly reduced in mouse. Conclusion Low number of LAB with potential probiotic activity as well as high diversity of lactobacilli species was evident in Iranian population. It also suggest that specific strains of L. plantarum, L. brevis and L. rhamnosus with anti-inflammatory effect in mouse model of colitis could be used as a potential probiotic candidate in inflammatory bowel disease to decrease the disease activity index. PMID:26645292

  14. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    PubMed Central

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  15. In vitro antimicrobial activities of metabolites from vaginal Lactobacillus strains against Clostridium perfringens isolated from a woman's vagina.

    PubMed

    Amin, Mansour; Moradi Choghakabodi, Parastoo; Alhassan Hamidi, Mohammad; Najafian, Mahin; Farajzadeh Sheikh, Ahmad

    2017-01-01

    More than 50 different species of bacteria may live in a woman's vagina, with lactobacilli being the predominant microorganism found in healthy adult females. Lactobacilli are relevant as a barrier to infection and are important in the impairment of colonization by pathogens, owing to competitive adherence to adhesion sites in the vaginal epithelium and their capacity to produce antimicrobial compounds. The aim of the present study was to demonstrate the inhibitory capability of Lactobacillus metabolites against Clostridium perfringens, an anaerobic Gram-positive bacterium. These bacteria were isolated from vaginal swabs by using culture-dependent approaches, and the bacteriostatic effect of Lactobacillus metabolites, extracted from different isolates, was assessed using a modified E test. Among the 100 vaginal swabs, 59 (59%) samples showed the presence of Lactobacillus strains and only one sample contained C. perfringens. Lactobacillus metabolites demonstrated the significant potency of in vitro activity against C. perfringens, with minimal inhibitory concentration values ranging from 15.6 μg/mL to 31.2 μg/mL. This study suggests that women without vaginal Lactobacillus strains may be susceptible to nonindigenous and potentially harmful microorganisms. Copyright © 2016. Published by Elsevier Taiwan LLC.

  16. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain.

  17. Genome sequences of five Lactobacillus sp. isolates from traditional Turkish sourdough

    USDA-ARS?s Scientific Manuscript database

    A high level of variation in microflora can be observed in lactic acid bacteria (LAB) profiles of sourdoughs. Here, we present draft genome sequences of Lactobacillus reuteri E81, L. reuteri LR5A, L. rhamnosus LR2, L. plantarum PFC-311 and a novel Lactobacillus sp. PFC-70 isolated from traditional T...

  18. Lactobacillus gorillae sp. nov., isolated from the faeces of captive and wild western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Tsuchida, Sayaka; Kitahara, Maki; Nguema, Pierre Philippe Mbehang; Norimitsu, Saeko; Fujita, Shiho; Yamagiwa, Juichi; Ngomanda, Alfred; Ohkuma, Moriya; Ushida, Kazunari

    2014-12-01

    Four strains of Gram-staining-positive, anaerobic rods were isolated from the faeces of western lowland gorillas (Gorilla gorilla gorilla). Three strains, KZ01(T), KZ02 and KZ03, were isolated at the Kyoto City Zoo, Japan, and one strain, GG02, was isolated in the Moukalaba-Doudou National Park, Gabon. These strains were investigated taxonomically. These strains belonged to the Lactobacillus reuteri phylogenetic group according to phylogenetic analysis based on 16S rRNA gene sequences and specific phenotypic characteristics. Phylogenetic analysis of their 16S rRNA gene sequences revealed that strains KZ01(T), KZ02, KZ03 and GG02 formed a single monophyletic cluster and had a distinct line of descent. Based on sequence similarity of the 16S rRNA gene, Lactobacillus fermentum JCM 1173(T) (96.6 %) was the closest neighbour to these novel strains, although it was clear that these strains belonged to a different species. Partial pheS sequences also supported these relationships. DNA-DNA relatedness between strain KZ01(T) and L. fermentum JCM 1173(T) was less than 22 % and the DNA G+C content of strain KZ01(T) was 50.7 mol%. The cell-wall peptidoglycan type was A4β (l-Orn-d-Asp) and the major fatty acids were C16 : 0, C18 : 1ω9c and C19 : 1 cyclo 9,10. Therefore, based on phylogenetic, phenotypic and physiological evidence, these strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus gorillae sp. nov. is proposed. The type strain is KZ01(T) ( = JCM 19575(T) = DSM 28356(T)). © 2014 IUMS.

  19. Draft Genome Sequence of Lactobacillus pobuzihii E100301T.

    PubMed

    Chiu, Chi-Ming; Chang, Chi-Huan; Pan, Shwu-Fen; Wu, Hui-Chung; Li, Shiao-Wen; Chang, Chuan-Hsiung; Lee, Yun-Shien; Chiang, Chih-Ming; Chen, Yi-Sheng

    2013-05-09

    Lactobacillus pobuzihii E100301(T) is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301(T).

  20. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk.

    PubMed

    Riaz Rajoka, Muhammad Shahid; Zhao, Haobin; Lu, Yao; Lian, Ziyang; Li, Na; Hussain, Nazim; Shao, Dongyan; Jin, Mingliang; Li, Qi; Shi, Junling

    2018-05-15

    Lactic acid bacteria have been categorized as probiotics and play a crucial role in human health by stimulating the supply of nutrients, shaping the immune system, and preventing the colonization of pathogenic microbes. This study investigated the mechanisms for the action of three potential probiotic Lactobacillus strains: Lactobacillus casei SR1, Lactobacillus casei SR2, and Lactobacillus paracasei SR4 isolated from human breast milk. These Lactobacillus strains were identified via 16S DNA sequencing and characterized via biochemical assays including acid resistance, bile resistance, antioxidant activity, and antibiotic susceptibility. The bioactivity of the cell-free culture supernatant (CFCS) secreted by these strains on the cervix cancer (HeLa) cell line was also evaluated via cytotoxicity assay and apoptosis analysis. The mechanism of anticancer activity was also investigated via RT-qPCR and western blotting. The results demonstrated that these newly isolated Lactobacillus strains from human milk displayed noticeable probiotic characteristics such as excellent antibiotic susceptibility, outstanding antioxidant activity, and promising resistance to low pH and high concentration of bile salts. The results of the conducted bioactivity assays verified that the CFCSs had acceptable anticancer effects on cervix cancer (HeLa) cells by upregulating the expression of apoptotic genes BAX, BAD, caspase3, caspase8, and caspase9 and by downregulating the expression of the BCl-2 gene. Overall, these results indicate that the Lactobacillus strains isolated from human breast milk could be considered as a topical medication with a potential therapeutic index due to their efficacy against cervix cancer cells.

  1. Evaluation in vitro of the antagonistic substances produced by Lactobacillus spp. isolated from chickens

    PubMed Central

    Lima, Edna T.; Andreatti Filho, Raphael L.; Okamoto, Adriano S.; Noujaim, José C.; Barros, Mércia R.; Crocci, Adalberto J.

    2007-01-01

    To determine the inhibitory capacity of lactic acid bacteria due to the action of antagonistic substances, we tested 474 isolates of Lactobacillus from the crop and cecum of chickens against gram-positive and gram-negative indicator microorganisms by the spot-on-the-lawn and well-diffusion antagonism methods. Of the 474 isolates, 265 demonstrated antimicrobial activity against the indicator microorganisms. Isolates identified as L. reuteri, L. salivarius, or Lactobacillus spp. inhibited Enterococcus faecalis, E. faecium, Listeria monocytogenes, and Salmonella spp. but not L. casei, L. delbrueckii, L. fermentum, or L. helveticus by the well-diffusion simultaneous antagonism method under anaerobic incubation conditions. The antagonistic substances produced by some of the Lactobacillus isolates were inactivated after treatment by proteolytic enzymes, which suggested that the substances could be antimicrobial peptides or bacteriocins. PMID:17479773

  2. Draft Genome Sequence of Lactobacillus pobuzihii E100301T

    PubMed Central

    Chiu, Chi-ming; Chang, Chi-huan; Pan, Shwu-fen; Wu, Hui-chung; Li, Shiao-wen; Chang, Chuan-hsiung; Lee, Yun-shien; Chiang, Chih-ming

    2013-01-01

    Lactobacillus pobuzihii E100301T is a novel Lactobacillus species previously isolated from pobuzihi (fermented cummingcordia) in Taiwan. Phylogenetically, this strain is closest to Lactobacillus acidipiscis, but its phenotypic characteristics can be clearly distinguished from those of L. acidipiscis. We present the draft genome sequence of strain L. pobuzihii E100301T. PMID:23661478

  3. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogenss.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Nowaczek, Anna; Wernicki, Andrzej

    2016-03-01

    This study was conducted to identify and evaluate the antimicrobial activity of some Lactobacillus isolates of chicken origin. Among 90 isolates 14 Lactobacillus species were distinguished using MALDI-TOF mass spectrometry and 16S-ARDRA. The dominant species was L. salivarius (34.4%), followed by L. johnsonii (23.3%), L. crispatus (13.3%) and L. reuteri (11.1%). All lactobacilli were screened for antimicrobial activity against wild-type strains of Salmonella enterica, Escherichia coli, and Clostridium perfringens. Results from the agar slab method showed that all Lactobacillus isolates were able to produce active compounds on solid media with antagonistic properties against these pathogens. The highest sensitivity to lactobacilli was observed in C. perfringens strains, and the lowest in E. coli. Lactobacillus salivarius exhibited particularly strong antagonism towards all of the indicator bacteria. Strains of L. ingluviei and L. johnsonii and one strain of L. salivarius (10d) selectively inhibited the growth of C. perfringens. No antimicrobial activity of many Lactobacillus isolates was observed when cell-free culture supernatant was used in a well diffusion assay. All Lactobacillus isolates exhibited the ability to produce H2O2 and proved to be hydrophobic (excluding one of L. salivarius). [Int Microbiol 19(1):57-67 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  4. Characterization of newly isolated Lactobacillus delbrueckii-like strain MF-07 isolated from chicken and its role in isoflavone biotransformation.

    PubMed

    Iqbal, Muhammad Farooq; Zhu, Wei-Yun

    2009-02-01

    Cecal microbiota of chicken was screened for bacteria involved in the biotransformation of isoflavones. A new facultative anaerobic bacterium, capable of deglycosylation of the isoflavone genistin, was isolated and identified as a Lactobacillus delbrueckii-like strain. The isolate MF-07 was Gram-positive, facultatively anaerobic, catalase negative, non-spore-forming, nonmotile and a straight rod. The polyphasic taxonomic data, along with 16S rRNA gene sequence comparison, demonstrated that the isolate MF-07 was most closely related to L. delbrueckii group of the Lactobacillus genus. Considerable amounts of genistein were accumulated with genistin as a substrate within the first 12 h of fermentation. Formononetin and daidzein were not metabolized. The influence of several carbon sources on the growth of the isolate MF-07 and biotransformation of genistin was also investigated. This is the first study in which an anaerobic Lactobacillus bacterium from the chicken intestinal tract that metabolizes genistin to produce its bioactive metabolite was identified and characterized.

  5. The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion.

    PubMed

    Dellaglio, Franco; Felis, Giovanna E; Torriani, Sandra

    2002-01-01

    On the basis of considerable published evidence, it is concluded that the species Lactobacillus casei is not correctly represented by the strain actually designated as the type strain ATCC 393. It is proposed that the Judicial Commission consider: (1) that ATCC 393T is scientifically unsuitable as the type strain of Lactobacillus casei and should be reclassified as Lactobacillus zeae; (2) that Lactobacillus casei ATCC 334 and Lactobacillus paracasei strains are members of the same taxon and therefore can be united within the name Lactobacillus casei (Rules 42 and 23a), the name Lactobacillus paracasei being rejected; and (3) designating ATCC 334 as the neotype strain for the species

  6. Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso.

    PubMed

    Adimpong, David B; Nielsen, Dennis S; Sørensen, Kim I; Vogensen, Finn K; Sawadogo-Lingani, Hagrétou; Derkx, Patrick M F; Jespersen, Lene

    2013-10-01

    Lactobacillus delbrueckii is divided into five subspecies based on phenotypic and genotypic differences. A novel isolate, designated ZN7a-9(T), was isolated from malted sorghum wort used for making an alcoholic beverage (dolo) in Burkina Faso. The results of 16S rRNA gene sequencing, DNA-DNA hybridization and peptidoglycan cell-wall structure type analyses indicated that it belongs to the species L. delbrueckii. The genome sequence of isolate ZN7a-9(T) was determined by Illumina-based sequencing. Multilocus sequence typing (MLST) and split-decomposition analyses were performed on seven concatenated housekeeping genes obtained from the genome sequence of strain ZN7a-9(T) together with 41 additional L. delbrueckii strains. The results of the MLST and split-decomposition analyses could not establish the exact subspecies of L. delbrueckii represented by strain ZN7a-9(T) as it clustered with L. delbrueckii strains unassigned to any of the recognized subspecies of L. delbrueckii. Strain ZN7a-9(T) additionally differed from the recognized type strains of the subspecies of L. delbrueckii with respect to its carbohydrate fermentation profile. In conclusion, the cumulative results indicate that strain ZN7a-9(T) represents a novel subspecies of L. delbrueckii closely related to Lactobacillus delbrueckii subsp. lactis and Lactobacillus delbrueckii subsp. delbrueckii for which the name Lactobacillus delbrueckii subsp. jakobsenii subsp. nov. is proposed. The type strain is ZN7a-9(T) = DSM 26046(T) = LMG 27067(T).

  7. Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates.

    PubMed

    Haakensen, M; Schubert, A; Ziola, B

    2009-03-15

    Identification of the beer-spoilage Lactobacillus and Pediococcus bacteria has largely taken two approaches; identification of spoilage-associated genes or identification of specific species of bacteria regardless of ability to grow in beer. The problem with these two approaches is that they are either overly inclusive (i.e., detect all bacteria of a given species regardless of spoilage potential) or overly selective (i.e., rely upon individual, putative spoilage-associated genes). Our goal was to design a method to assess the ability of Lactobacillus and Pediococcus to spoil beer that is independent of speciation or genetic background. In searching for a method by which to differentiate between beer-spoilage bacteria and bacteria that cannot grow in beer, we explored the ability of lactobacilli and pediococci isolates to grow in the presence of varying concentrations of hop-compounds and ethanol in broth medium versus on agar medium. The best method for differentiating between bacteria that can grow in beer and bacteria that do not pose a threat as beer-spoilage organisms was found to be a hop-gradient agar plate containing ethanol. This hop-gradient agar plate technique provides a rapid and simple solution to the dilemma of assessing the ability of Lactobacillus and Pediococcus isolates to grow in beer, and provides new insights into the different strategies used by these bacteria to survive under the stringent conditions of beer.

  8. Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533

    PubMed Central

    Kazou, Maria; Alexandraki, Voula; Pot, Bruno; Tsakalidou, Effie

    2017-01-01

    ABSTRACT Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese. PMID:28126948

  9. Rapid molecular identification and characteristics of Lactobacillus strains.

    PubMed

    Markiewicz, L H; Biedrzycka, E; Wasilewska, E; Bielecka, M

    2010-09-01

    Eleven type strains and 24 Lactobacillus isolates, preliminarily classified to the species due to phenotypic features, were investigated. Standard methods of identification with species-specific PCRs and typing with PFGE (with ApaI, NotI and SmaI restriction enzymes) allowed us to distinguish 16 unique strains belonging to 5 species (L. acidophilus, L. delbrueckii ssp. bulgaricus, L. plantarum, L. rhamnosus, L. salivarius). Alternative approach with 16S-23S rDNA ARDRA identification (with merely two restrictases, BsuRI and TaqI) and PCR-based typing (RAPD with two random- and rep-PCR with (GTG)(5) primers) showed to be more discriminative, i.e. 21 unique strains were classified in the same species as above. As a result, 7 out of 24 phenotypically species-assigned isolates were reclassified. The alternative procedure of rapid identification and typing of Lactobacillus isolates appeared to be equally effective and shortened from 1 week to 2-3 d (in comparison to the standard methods).

  10. Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533.

    PubMed

    Kazou, Maria; Alexandraki, Voula; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-01-26

    Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese. Copyright © 2017 Kazou et al.

  11. [Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species].

    PubMed

    Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei

    2009-02-01

    We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.

  12. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Characterization of vaginal Lactobacillus species by rplK -based multiplex qPCR in Russian women.

    PubMed

    Demkin, Vladimir V; Koshechkin, Stanislav I

    2017-10-01

    We describe a multiplex qPCR assay for identification and quantitative assessment of a set of vaginal Lactobacillus species, including L. acidophilus, L. crispatus, L. gasseri, L. helveticus, L. iners, and L. jensenii. The assay extends the previously developed qPCR method for Lactobacillus detection and total quantification based on targeting the rplK gene. Both assays use only single pair of primers and a set of probes combined in three reactions, comprising a vaginal Lactobacillus diagnostic assay panel. The utility of the diagnostic panel was evaluated by analyzing of vaginal swab specimens from 145 patients with different status of vaginal health. Most frequently, only one Lactobacillus species was dominant (68,9%), mostly L. crispatus (18,6%) or L. iners (33,1%), but two or three Lactobacillus species were also being simultaneously detected (24,9%). The diagnostic panel will facilitate investigations of the role of Lactobacillus species in the health of the female reproductive system and promote studies of variability of the vaginal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries

    PubMed Central

    Byun, Roy; Nadkarni, Mangala A.; Chhour, Kim-Ly; Martin, F. Elizabeth; Jacques, Nicholas A.; Hunter, Neil

    2004-01-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion. PMID:15243071

  15. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries.

    PubMed

    Byun, Roy; Nadkarni, Mangala A; Chhour, Kim-Ly; Martin, F Elizabeth; Jacques, Nicholas A; Hunter, Neil

    2004-07-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion.

  16. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  17. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  18. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese.

    PubMed

    Oberg, Craig J; Oberg, Taylor S; Culumber, Michele D; Ortakci, Fatih; Broadbent, Jeffery R; McMahon, Donald J

    2016-01-01

    A Gram-stain positive, rod-shaped, non-spore-forming strain (WDC04T), which may be associated with late gas production in cheese, was isolated from aged Cheddar cheese following incubation on MRS agar (pH 5.2) at 6 °C for 35 days. Strain WDC04T had 97 % 16S rRNA gene sequence similarity with Lactobacillus hokkaidonensis DSM 26202T, Lactobacillus oligofermentans 533, 'Lactobacillus danicus' 9M3, Lactobacillus suebicus CCUG 32233T and Lactobacillus vaccinostercus DSM 20634T. API 50 CH carbohydrate fermentation panels indicated strain WDC04T could only utilize one of the 50 substrates tested, ribose, although it does slowly utilize galactose. In the API ZYM system, strain WDC04T was positive for leucine arylamidase, valine arylamidase, cysteine arylamidase (weakly), naphthol-AS-BI-phosphohydrolase and β-galactosidase activities. Total genomic DNA was sequenced from strain WDC04T using a whole-genome shotgun strategy on a 454 GS Titanium pyrosequencer. The sequence was assembled into a 1.90 Mbp draft genome consisting of 105 contigs with preliminary genome annotation performed using the RAST algorithm (rast.nmpdr.org). Genome analysis confirmed the pentose phosphate pathway for ribose metabolism as well as galactose, N-acetylglucosamine, and glycerol fermentation pathways. Genomic analysis places strain WDC04T in the obligately heterofermentative group of lactobacilli and metabolic results confirm this conclusion. The result of genome sequencing, along with 16S rRNA gene sequence analysis, indicates WDC04T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus wasatchensis sp. nov. is proposed. The type strain is WDC04T ( = DSM 29958T = LMG 28678T).

  19. Molecular detection of Lactobacillus species in the neovagina of male-to-female transsexual women

    PubMed Central

    Petricevic, Ljubomir; Kaufmann, Ulrike; Domig, Konrad J.; Kraler, Manuel; Marschalek, Julian; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    There is a general opinion that penile skin lined neovagina of transsexual women is not able to support the growth of lactobacilli. This study was undertaken to prove if lactobacilli strains could survive in neovagina and to characterise the most dominant Lactobacillus species. Sixty three male-to-female transsexual women without abnormal vaginal discharge, clinical signs of infection were recruited on an ongoing basis from among transsexual outpatients in an academic research institution and tertiary care centre. Neovaginal smears were taken for molecular Lactobacillus spp. profiling by denaturing gradient gel electrophoresis (PCR–DGGE). Lactobacillus species were detected from 47/63 transsexual women (75%). The 279 Lactobacillus signals detected by PCR-DGGE technique belonged to 13 different species. Lactobacilli of the L. delbrueckii group (L. gasseri, L. crispatus, L. johnsonii, L. iners, L. jensenii) were predominant. More than 90% of women harboured a combination of two or more neovaginal Lactobacillus species. In this study we report the frequent occurrence of lactobacilli from neovagina of transsexual women. Both, frequency and composition were similar to the normal lactic acid bacterial microflora in both women of reproductive age and postmenopausal women. PMID:24434849

  20. Molecular Microbial Analysis of Lactobacillus Strains Isolated from the Gut of Calves for Potential Probiotic Use

    PubMed Central

    Soto, Lorena P.; Frizzo, Laureano S.; Bertozzi, Ezequiel; Avataneo, Elizabeth; Sequeira, Gabriel J.; Rosmini, Marcelo R.

    2010-01-01

    The intestinal microbiota has an influence on the growth and health status of the hosts. This is of particular interest in animals reared using intensive farming practices. Hence, it is necessary to know more about complexity of the beneficial intestinal microbiota. The use of molecular methods has revolutionized microbial identification by improving its quality and effectiveness. The specific aim of the study was to analyze predominant species of Lactobacillus in intestinal microbial ecosystem of young calves. Forty-two lactic acid bacteria (LAB) isolated from intestinal tract of young calves were characterized by: Amplified Ribosomal DNA Restriction Analysis (ARDRA), by using Hae III, Msp I, and Hinf I restriction enzymes, and 16S rDNA gene sequencing. ARDRA screening revealed nine unique patterns among 42 isolates, with the same pattern for 29 of the isolates. Gene fragments of 16S rDNA of 19 strains representing different patterns were sequenced to confirm the identification of these species. These results confirmed that ARDRA is a good tool for identification and discrimination of bacterial species isolated from complex ecosystem and between closely related groups. This paper provides information about the LAB species predominant in intestinal tract of young calves that could provide beneficial effects when administered as probiotic. PMID:20445780

  1. Draft Genome Sequences of Lactobacillus equicursoris CIP 110162T and Lactobacillus sp. Strain CRBIP 24.137, Isolated from Thoroughbred Racehorse Feces and Human Urine, Respectively.

    PubMed

    Cousin, Sylvie; Loux, Valentin; Ma, Laurence; Creno, Sophie; Clermont, Dominique; Bizet, Chantal; Bouchier, Christiane

    2013-08-22

    We report the draft genome sequences of strain Lactobacillus equicursoris CIP 110162(T), isolated from racehorse breed feces, and Lactobacillus sp. strain CRBIP 24.137, isolated from human urine; the two strains are closely related. The total lengths of the 116 and 62 scaffolds are about 2.157 and 2.358 Mb, with G+C contents of 46 and 45% and 2,279 and 2,342 coding sequences (CDSs), respectively.

  2. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F.

    PubMed

    Tyler, C A; Kopit, L; Doyle, C; Yu, A O; Hugenholtz, J; Marco, M L

    2016-05-01

    This study examined the fermentative growth and polyol production of Lactobacillus florum and other plant-associated lactic acid bacteria (LAB). Sugar consumption and end-product production were measured for Lact. florum 2F in the presence of fructose, glucose and both sugars combined. The genome of Lact. florum was examined for genes required for mannitol and erythritol biosynthesis. The capacity for other plant-associated LAB to synthesize polyols was also assessed. Lactobacillus florum exhibited higher growth rates and cell yields in the presence of both fructose and glucose. Lactobacillus florum 2F produced lactate, acetate and ethanol as well as erythritol and mannitol. Lactobacillus florum 2F synthesized mannitol during growth on fructose and erythritol during growth on glucose. Gene and protein homology searches identified a mannitol dehydrogenase in the Lact. florum 2F genome but not the genes responsible for erythritol biosynthesis. Lastly, we found that numerous other heterofermentative LAB species synthesize erythritol and/or mannitol. Lactobacillus florum is a recently identified, plant-associated, fructophilic LAB species. Our results show that Lact. florum growth rates and heterofermentation end-products differ depending on the sugar substrates present and growth yields can be improved when combinations of sugars are provided. Lactobacillus florum 2F produces erythritol and mannitol, two polyols that are relevant to foods and potentially also in plant environments. The capacity for polyol biosynthesis appears to be common among plant-associated, LAB species. © 2016 The Society for Applied Microbiology.

  3. Evaluation of the microbial community in industrial rye sourdough upon continuous back-slopping propagation revealed Lactobacillus helveticus as the dominant species.

    PubMed

    Viiard, E; Mihhalevski, A; Rühka, T; Paalme, T; Sarand, I

    2013-02-01

    To assess the structure and stability of a dominant lactic acid bacteria (LAB) population during the propagation of rye sourdough in an industrial semi-fluid production over a period of 7 months. The sourdough was started from a 6-year-old freeze-dried sourdough originating from the same bakery. A unique microbial consortium consisting mainly of bacteria belonging to species Lactobacillus helveticus, Lactobacillus panis and Lactobacillus pontis was identified based on culture-dependent (Rep-PCR) and culture-independent [denaturing gradient gel electrophoresis (DGGE)] methods. Three of the isolated Lact. helveticus strains showed remarkable adaptation to the sourdough conditions. They differed from the type strain by the ability to ferment compounds specific to plant material, like salicin, cellobiose and sucrose, but did not ferment lactose. We showed remarkable stability of a LAB consortium in rye sourdough started from lyophilized sourdough and propagated in a large bakery for 7 months. Lactobacillus helveticus was detected as the dominant species in the consortium and was shown to be metabolically adapted to the sourdough environment. The use of an established and adapted microbial consortium as a starter is a good alternative to commercial starter strains. © 2012 The Society for Applied Microbiology.

  4. Selected Lactobacillus strains isolated from sugary and milk kefir reduce Salmonella infection of epithelial cells in vitro.

    PubMed

    Zavala, L; Golowczyc, M A; van Hoorde, K; Medrano, M; Huys, G; Vandamme, P; Abraham, A G

    2016-09-01

    The isolation of potentially probiotic strains and the subsequent study of their properties are very important steps to gain insight in the health benefits ascribed to sugary and milk kefir. The aim of the present study was to characterise fifteen Lactobacillus strains isolated from these beverages by determining some surface properties and their ability to antagonise enterocyte cell damage after Salmonella infection in vitro. Lactobacillus surface properties were determined by hydrophobicity, autoaggregation, and coaggregation assays with Salmonella. In addition, lactobacilli adhesion to Caco-2/TC-7 cells and the effect on Salmonella invasion were evaluated. Finally, the disassembly of F-actin cytoskeleton on intestinal epithelial cells was assayed in vitro when Salmonella infection was performed in the presence of selected Lactobacillus strains. Ten out of the 15 strains showed a high adhesion capacity to Caco-2/TC-7 cells. Most of the strains were hydrophilic and non-autoaggregating. Strains isolated from sugary kefir were non-coaggregating with Salmonella, while strains Lactobacillus paracasei CIDCA 83120, 83121, 83123, 83124, 8339, 83102 isolated from milk kefir were able to coaggregate after 1 h. L. paracasei CIDCA 8339 and Lactobacillus kefiri CIDCA 83102 were able to diminish Salmonella invasion to the enterocytes. An antagonistic effect on cytoskeleton disruption elicited by the pathogen was also demonstrated. Our results suggest that both strains isolated from milk kefir could be considered as appropriate probiotic candidates.

  5. Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation.

    PubMed

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages.

  6. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  7. Acid-producing capacity from sugars and sugar alcohols among Lactobacillus isolates collected in connection with radiation therapy.

    PubMed

    Almståhl, Annica; Rudbäck, Helena; Basic, Amina; Carlén, Anette; Alstad, Torgny

    2017-12-01

    To investigate the acid-producing capacity from sugars and sugar alcohols of oral Lactobacillus collected in connection with radiation therapy (RT) to the head and neck region. Lactobacillus were collected from the tongue, buccal mucosa and supragingival plaque in 24 patients before, during, and after RT. The acid-producing capacity of Lactobacillus isolates (n=211) was analyzed using a colorimetric fermentation test in microtiter plates. Solutions containing 2% sugars (sucrose, glucose, fructose, lactose) or sugar-alcohols (sorbitol and xylitol) were used. After 24h of incubation, bacterial acid-producing capacity was determined as strong (pH<5), weak (pH  ≥5-≤ 6) or low/absent (pH>6). Data regarding intake frequency of sugar-rich products and products with sugar-alcohols was collected. The highest acid-producing capacity using the sugars was seen for isolates collected during RT. Sorbitol was fermented to a higher extent during and post RT, especially among isolates from plaque. Lactobacillus fermenting xylitol showed the highest acid-producing capacity during RT (p<0.05). No statistically significant correlations between stimulated whole salivary secretion rate and acid-producing capacity, or between the intake frequency of sugar-rich products or sugar-alcohol containing products and Lactobacillus acid-producing capacity, were found. The results suggest that Lactobacillus isolates, collected from the tongue, buccal mucosa and supragingival plaque, have a higher acid-producing capacity using sugars and sugar-alcohols during RT than one year post RT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Characterization of amygdalin-degrading Lactobacillus species.

    PubMed

    Menon, R; Munjal, N; Sturino, J M

    2015-02-01

    Cyanogenic glycosides are phytotoxic secondary metabolites produced by some crop plants. The aim of this study was to identify lactic acid bacteria (LAB) capable of catabolizing amygdalin, a model cyanogenic glycoside, for use in the biodetoxification of amygdalin-containing foods and feeds. Amygdalin-catabolizing lactobacilli were characterized using a combination of cultivation-dependent and molecular assays. Lactobacillus paraplantarum and Lactobacillus plantarum grew robustly on amygdalin (Amg(+)), while other LAB species typically failed to catabolize amygdalin (Amg(-)). Interestingly, high concentrations of amygdalin and two of its metabolic derivatives (mandelonitrile and benzaldehyde) inhibited the growth of Lact. plantarum RENO 0093. The differential regulation of genes tentatively involved in cyanohydrin metabolism illustrated that the metabolism of amygdalin- and glucose-grown cultures also differed significantly. Amygdalin fermentation was a relatively uncommon phenotype among the LAB and generally limited to strains from the Lact. plantarum group. Phenotype microarrays (PM) enabled strain-level discrimination between closely related strains within a species and suggested that phenotypic differences might affect niche specialization. Amygdalin-degrading lactobacilli with practical application in the biodetoxification of amygdalin were characterized. These strains show potential for use as starter cultures to improve the safety of foods and feeds. © 2014 The Society for Applied Microbiology.

  9. Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults.

    PubMed

    Ait Seddik, Hamza; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2017-04-01

    Sixty-seven (67) lactic acid bacteria (LAB) isolates belonging to Lactobacillus genus were isolated from human feces and tested for their auto-aggregation and cell surface hydrophobicity in order to establish their adhesion capabilities, a prerequisite for probiotic selection. Strains with the upmost auto-aggregation and cell surface hydrophobicity scores were identified by MALDI-TOF spectrometry and 16S rDNA sequencing as Lactobacillus plantarum (p25lb1 and p98lb1) and Lactobacillus salivarius (p85lb1 and p104lb1). These strains were also able to adhere to human epithelial colorectal adenocarcinoma Caco-2 cells, with percentages ranging from 4.68 to 9.59%. They displayed good survival under conditions mimicking the gastrointestinal environment and remarkably impeded adhesion and invasion of human Caco-2 by Listeria monocytogenes and Enteropathogenic Escherichia coli. It should also be noted that Lb. plantarum p98lb1 was able to reduce in vitro cholesterol concentration by about 32%, offering an additional health attribute. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. A mixture of Lactobacillus species isolated from traditional fermented foods promote recovery from antibiotic-induced intestinal disruption in mice.

    PubMed

    Shi, Y; Zhao, X; Zhao, J; Zhang, H; Zhai, Q; Narbad, A; Chen, W

    2018-03-01

    This study evaluated the antibiotic-induced changes in microbial ecology, intestinal dysbiosis and low-grade inflammation; and the combined effect of four different Lactobacillus species on recovery of microbiota composition and improvement of gut barrier function in mice. Administration of the antibiotic ampicillin for 2 weeks decreased microbial community diversity, induced caecum tumefaction and increased gut permeability in mice. Application of a probiotic cocktail of four Lactobacillus species (JUP-Y4) modulated the microbiota community structure and promoted the abundance of potentially beneficial bacteria such as Akkermansia. Ampicillin administration led to a decline in Bacteroidetes from 46·6 ± 3·91% to 0·264 ± 0·0362%; the addition of JUP-Y4 restored this to 41·4 ± 2·87%. This probiotic supplementation was more effective than natural restoration, where the levels of Bacteroidetes were only restored to 29·3 ± 2·07%. Interestingly, JUP-Y4 treatment was more effective in the restoration of microbiota in faecal samples than in caecal samples. JUP-Y4 also significantly reduced the levels of d-lactate and endotoxin (lipopolysaccharide, LPS) in the serum of mice, and increased the expression of tight-junction proteins while reducing the production of inflammatory cytokines (TNF-α, IL-6, MCP-1, IFN-γ and IL-1β) in the ileum and the colon of antibiotic-treated mice. JUP-Y4 not only promoted recovery from antibiotic-induced gut dysbiosis, but also enhanced the function of the gut barrier, reduced inflammation and lowered levels of circulating endotoxin in mice. Consumption of a mixture of Lactobacillus species may encourage faster recovery from antibiotic-induced gut dysbiosis and gut microbiota-related immune disturbance. © 2018 The Society for Applied Microbiology.

  11. Lactobacillus Strain Diversity Based on Partial hsp60 Gene Sequences and Design of PCR-Restriction Fragment Length Polymorphism Assays for Species Identification and Differentiation▿ †

    PubMed Central

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages. PMID:17993558

  12. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    PubMed Central

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  13. Lactobacillus species: taxonomic complexity and controversial susceptibilities.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M

    2015-05-15

    The genus Lactobacillus is a taxonomically complex and is composed of over 170 species that cannot be easily differentiated phenotypically and often require molecular identification. Although they are part of the normal human gastrointestinal and vaginal flora, they can also be occasional human pathogens. They are extensively used in a variety of commercial products including probiotics. Their antimicrobial susceptibilities are poorly defined in part because of their taxonomic complexity and are compounded by the different methods recommended by Clinical Laboratory Standards Institute and International Dairy Foundation. Their use as probiotics for prevention of Clostridium difficile infection is prevalent among consumers worldwide but raises the question of will the use of any concurrent antibiotic effect their ability to survive. Lactobacillus species are generally acid resistant and are able to survive ingestion. They are generally resistant to metronidazole, aminoglycosides and ciprofloxacin with L. acidophilus being susceptible to penicillin and vancomycin, whereas L. rhamnosus and L. casei are resistant to metronidazole and vancomycin. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula

    PubMed Central

    Haarman, Monique; Knol, Jan

    2006-01-01

    The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants. PMID:16597930

  15. Genome Sequence of Lactobacillus johnsonii Strain W1, Isolated from Mice.

    PubMed

    Wu, Xiaolin; Zhao, Chunyan; Guo, Zhonghe; Hao, Yuchong; Li, Jinghua; Shi, Hongyan; Sun, Yanbo

    2016-06-16

    Lactobacillus johnsonii, a member of the gut lactobacilli, plays an important role in normal gut functioning. Here, we report the draft genome sequence of L. johnsonii strain W1 isolated from ICR mice. Copyright © 2016 Wu et al.

  16. Analysis, Characterization, and Loci of the tuf Genes in Lactobacillus and Bifidobacterium Species and Their Direct Application for Species Identification

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Meylan, Valèrie; Klaenhammer, Todd R.; Zink, Ralf

    2003-01-01

    We analyzed the tuf gene, encoding elongation factor Tu, from 33 strains representing 17 Lactobacillus species and 8 Bifidobacterium species. The tuf sequences were aligned and used to infer phylogenesis among species of lactobacilli and bifidobacteria. We demonstrated that the synonymous substitution affecting this gene renders elongation factor Tu a reliable molecular clock for investigating evolutionary distances of lactobacilli and bifidobacteria. In fact, the phylogeny generated by these tuf sequences is consistent with that derived from 16S rRNA analysis. The investigation of a multiple alignment of tuf sequences revealed regions conserved among strains belonging to the same species but distinct from those of other species. PCR primers complementary to these regions allowed species-specific identification of closely related species, such as Lactobacillus casei group members. These tuf gene-based assays developed in this study provide an alternative to present methods for the identification for lactic acid bacterial species. Since a variable number of tuf genes have been described for bacteria, the presence of multiple genes was examined. Southern analysis revealed one tuf gene in the genomes of lactobacilli and bifidobacteria, but the tuf gene was arranged differently in the genomes of these two taxa. Our results revealed that the tuf gene in bifidobacteria is flanked by the same gene constellation as the str operon, as originally reported for Escherichia coli. In contrast, bioinformatic and transcriptional analyses of the DNA region flanking the tuf gene in four Lactobacillus species indicated the same four-gene unit and suggested a novel tuf operon specific for the genus Lactobacillus. PMID:14602655

  17. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  18. Formation of In Vitro Mixed-Species Biofilms by Lactobacillus pentosus and Yeasts Isolated from Spanish-Style Green Table Olive Fermentations.

    PubMed

    León-Romero, Ángela; Domínguez-Manzano, Jesús; Garrido-Fernández, Antonio; Arroyo-López, Francisco Noé; Jiménez-Díaz, Rufino

    2016-01-15

    The present work details the in vitro interactions between Lactobacillus pentosus and yeast strains isolated from table olive processing to form mixed biofilms. Among the different pairs assayed, the strongest biofilms were obtained from L. pentosus and Candida boidinii strain cocultures. However, biofilm formation was inhibited in the presence of d-(+)-mannose. In addition, biofilm formation by C. boidinii monoculture was stimulated in the absence of cell-cell contact with L. pentosus. Scanning electron microscopy revealed that a sort of "sticky" material formed by the yeasts contributed to substrate adherence. Hence, the data obtained in this work suggest that yeast-lactobacilli biofilms may be favored by the presence of a specific mate of yeast and L. pentosus, and that more than one mechanism might be implicated in the biofilm formation. This knowledge will help in the design of appropriate mixed starter cultures of L. pentosus-yeast species pairs that are able to improve the quality and safety of Spanish-style green table olive processing. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Detoxification of Aflatoxin B1 by Antifungal Compounds from Lactobacillus brevis and Lactobacillus paracasei, Isolated from Dairy Products.

    PubMed

    Gomaa, Eman Zakaria; Abdelall, Manal Farouk; El-Mahdy, Omima Mohammed

    2018-06-01

    Aflatoxins are a large group of highly toxic, mutagenic, and carcinogenic mycotoxins produced by specific species of fungi. Potential contamination of food commodities by these compounds causes extensive damage that lead to great economic losses. This study explored the potential use of antifungal compounds, produced by Lactobacillus brevis and Lactobacillus paracasei, for growth inhibition and subsequent aflatoxin B1 production from select strains of Aspergillus flavus and Aspergillus parasiticus. Lactobacilli strains were isolated from traditional Egyptian dairy products, whereas fungal strains were isolated from infected cereal seeds. There were noticeable decreases in mycelium biomass and aflatoxin production as well. L. brevis exhibited the highest reduction of aflatoxin B1 production by A. flavus and A. parasiticus, 96.31 and 90.43%, respectively. The concentrations of amino acids of the antifungal compound produced by L. brevis were significantly higher than that produced by L. paracasei. Asparagine, glutamine, glycine, alanine, and leucine were the most concentrated amino acids for both strains. The antifungal compounds produced by L. brevis and L. paracasei were active in a wide range of pH, heat stable and inactivated by proteolytic enzymes (protease K and trypsin A). The expression of Omt-A gene that involved in the later step of aflatoxin production was evaluated by real-time PCR. There was a vigorous reduction at transcriptional level of Omt-A gene observed in A. flavus that is treated by L. brevis and L. paracasei (80 and 70%, respectively). However, the reduction of Omt-A gene observed in A. parasiticus that is treated by L. brevis and L. paracasei was 64.5 and 52%, respectively. Treating maize seeds with antifungal compounds exhibited great efficiency in controlling fungal infection and increasing seed germination. The results confirmed that lactic acid bacteria are a promising strategy to control food contamination of fermented food and dairy

  20. In vitro antagonistic effect of Lactobacillus on organisms associated with bacterial vaginosis.

    PubMed

    Strus, Magdalena; Malinowska, Magdalena; Heczko, Piotr B

    2002-01-01

    To assess antagonistic properties of Lactobacillus strains isolated from the vaginas of healthy women as compared to the most common bacterial agents related to vaginosis. Antagonistic activity of different Lactobacillus strains isolated from the vaginas of healthy women not treated for infections with an antibiotic for the previous three months was screened using an agar slab method. The activity was tested against test organisms associated with bacterial vaginosis and/or urinary tract infections: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli, Gardnerella vaginalis, Peptostreptococcus anaerobius and Prevotella bivia. Many of the 146 Lactobacillus strains tested exerted apparent antagonistic activities against gram-positive aerobic cocci and gram-negative rods, such as S aureus and E coli, and a marked number of Lactobacillus strains inhibited facultative bacteria, such as Gardnerella vaginalis and the anaerobes P anaerobius and P bivia. Only a few lactobacilli were able to inhibit growth of E faecalis and S agalactiae. Indicator bacteria growth inhibition probably relies upon several different complementary mechanisms. The specific indicator bacteria species determines which mechanism predominates. Lactobacillus strains taken from normal vaginal flora demonstrated antagonistic activity against a variety of bacteria related to vaginal and urinary tract infections. The specific occurrence rates of active Lactobacillus strains are different, and this difference is dependent on the indicator bacteria species.

  1. Comparative genomic and plasmid analysis of beer-spoiling and non-beer-spoiling Lactobacillus brevis isolates.

    PubMed

    Bergsveinson, Jordyn; Ziola, Barry

    2017-12-01

    Beer-spoilage-related lactic acid bacteria (BSR LAB) belong to multiple genera and species; however, beer-spoilage capacity is isolate-specific and partially acquired via horizontal gene transfer within the brewing environment. Thus, the extent to which genus-, species-, or environment- (i.e., brewery-) level genetic variability influences beer-spoilage phenotype is unknown. Publicly available Lactobacillus brevis genomes were analyzed via BlAst Diagnostic Gene findEr (BADGE) for BSR genes and assessed for pangenomic relationships. Also analyzed were functional coding capacities of plasmids of LAB inhabiting extreme niche environments. Considerable genetic variation was observed in L. brevis isolated from clinical samples, whereas 16 candidate genes distinguish BSR and non-BSR L. brevis genomes. These genes are related to nutrient scavenging of gluconate or pentoses, mannose, and metabolism of pectin. BSR L. brevis isolates also have higher average nucleotide identity and stronger pangenome association with one another, though isolation source (i.e., specific brewery) also appears to influence the plasmid coding capacity of BSR LAB. Finally, it is shown that niche-specific adaptation and phenotype are plasmid-encoded for both BSR and non-BSR LAB. The ultimate combination of plasmid-encoded genes dictates the ability of L. brevis to survive in the most extreme beer environment, namely, gassed (i.e., pressurized) beer.

  2. Isolation of Tannin-Degrading Lactobacilli from Humans and Fermented Foods

    PubMed Central

    Osawa, Ro; Kuroiso, Keiko; Goto, Satoshi; Shimizu, Akira

    2000-01-01

    Lactobacilli with tannase activity were isolated from human feces and fermented foods. A PCR-based taxonomic assay revealed that the isolates belong to Lactobacillus plantarum, L. paraplantarum, and L. pentosus. Additional studies on a range of Lactobacillus species from established culture collections confirmed that this enzymatic activity is a phenotypic property common to these three species. PMID:10877812

  3. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development

    PubMed Central

    Yu, Rosa R.; Cheng, Andrew T.; Lagenaur, Laurel A.; Huang, Wenjun; Weiss, Deborah E.; Treece, Jim; Sanders-Beer, Brigitte E.; Hamer, Dean H.; Lee, Peter P.; Xu, Qiang; Liu, Yang

    2015-01-01

    Background We sought to establish a nonhuman primate model of vaginal Lactobacillus colonization suitable for evaluating live microbial microbicide candidates. Methods Vaginal and rectal microflora in Chinese rhesus macaques (Macaca mulatta) were analyzed, with cultivable bacteria identified by 16S rRNA gene sequencing. Live lactobacilli were intravaginally administered to evaluate bacterial colonization. Results Chinese rhesus macaques harbored abundant vaginal Lactobacillus, with Lactobacillus johnsonii as the predominant species. Like humans, most examined macaques harbored only one vaginal Lactobacillus species. Vaginal and rectal Lactobacillus isolates from the same animal exhibited different genetic and biochemical profiles. Vaginal Lactobacillus was cleared by a vaginal suppository of azithromycin, and endogenous L. johnsonii was subsequently restored by intravaginal inoculation. Importantly, prolonged colonization of a human vaginal Lactobacillus jensenii was established in these animals. Conclusions The Chinese rhesus macaque harbors vaginal Lactobacillus and is a potentially useful model to support the pre-clinical evaluation of Lactobacillus-based topical microbicides. PMID:19367737

  5. Draft Genome Sequence of Lactobacillus johnsonii Strain 16, Isolated from Mice.

    PubMed

    Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Elgavish, Sharona; Kashi, Yechezkel

    2015-10-08

    Here, we report the genome sequence of Lactobacillus johnsonii, a member of the gut lactobacilli. This draft genome of L. johnsonii strain 16 isolated from C57BL/6J mice enables the identification of bacterial genes responsible for host-specific gut persistence. Copyright © 2015 Buhnik-Rosenblau et al.

  6. Probiotic Properties of Lactobacillus Strains Isolated from Tibetan Kefir Grains

    PubMed Central

    Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying

    2013-01-01

    The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing

  7. Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88

    PubMed Central

    Ladero, Victor; Alvarez-Sieiro, Patricia; Redruello, Begoña; del Rio, Beatriz; Linares, Daniel M.; Martin, M. Cruz; Fernández, María

    2013-01-01

    Here, we report a 3.2-Mbp draft assembly for the genome of Lactobacillus plantarum IPLA 88. The sequence of this sourdough isolate provides insight into the adaptation of this versatile species to different environments. PMID:23887921

  8. A study of the effects of therapeutic doses of ionizing radiation in vitro on Lactobacillus isolates originating from the vagina - a pilot study.

    PubMed

    Gosiewski, Tomasz; Mróz, Tomasz; Ochońska, Dorota; Pabian, Wojciech; Bulanda, Malgorzata; Brzychczy-Wloch, Monika

    2016-05-31

    Ionizing radiation is used as a therapeutic option in the treatment of certain neoplastic lesions located, among others, in the pelvic region. The therapeutic doses of radiation employed often result in adverse effects manifesting themselves primarily in the form of genital tract infections in patients or diarrhea. The data available in the literature indicate disorders in the microbial ecosystem caused by ionizing radiation, which leads to the problems mentioned above. In the present study, we examined the influence of ionizing radiation on 52 selected strains of bacteria: Lactobacillus crispatus, L. fermentum, L. plantarum, L. reuteri, L. acidophilus L. amylovorus, L. casei, L. helveticus, L. paracasei, L. rhamnosus, L. salivarius and L. gasseri. This collection of Lactobacillus bacteria isolates of various species, obtained from the genital tract and gastrointestinal tract of healthy women, was tested for resistance to therapeutic doses of ionizing radiation. The species studied, were isolated from the genital tract (n = 30) and from the anus (n = 22) of healthy pregnant women. Three doses of 3 Gy (fractionated dose) and 50 Gy (total dose of the whole radiotherapy cycle) were applied. The greatest differences in survival of the tested strains in comparison to the control group (not subjected to radiation) were observed at the dose of 50 Gy. However, the results were not statistically significant. Survival decrease to zero was not demonstrated for any of the tested strains. Therapeutic doses of radiation do not affect the Lactobacillus bacteria significantly.

  9. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. [Lactobacillus sake; Lactobacillus curvatus; Lactobacillus farciminis; Staphylococcus aureus; Salmonella typimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showingmore » a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.« less

  10. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection

    PubMed Central

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-01-01

    BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects. PMID:24567124

  11. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection.

    PubMed

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-02-24

    Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.

  12. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kôso, a Japanese Sugar-Vegetable Fermented Beverage

    PubMed Central

    Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-01

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. PMID:26769925

  13. Rejection of reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius using comparative genomics.

    PubMed

    Yang, Seung-Jo; Kim, Byung-Yong; Chun, Jongsik

    2017-11-01

    Lactobacillus bobalius, Lactobacillus kimchii and Lactobacillus paralimentarius belong to the genus Lactobacillus and show close phylogenetic relationships. In a previous study, L. bobalius and L. kimchii were proposed to be reclassified as later heterotypic synonyms of L. paralimentarius using high 16S rRNA gene sequence similarities (≥99.5 %) and DNA-DNA hybridization values (≥82 %). We determined high quality whole genome assemblies of the type strains of L. bobalius and L. kimchii, which were then compared with that of L. paralimentarius. Average nucleotide identity values among three genomes ranged from 91.4 to 92.3 % which are clearly below 95~96 %, the generally recognized cutoff value for bacterial species boundaries. On the basis of comparative genomic evidence, L. bobalius, L. kimchii, and L. paralimentarius should stand as separate species in the genus Lactobacillus. We therefore suggest rejecting the previous proposal to combine these three species into a single species.

  14. Design and Evaluation of a Lactobacillus manihotivorans Species-Specific rRNA-Targeted Hybridization Probe and Its Application to the Study of Sour Cassava Fermentation

    PubMed Central

    Ampe, Frédéric

    2000-01-01

    Based on 16S rRNA sequence comparison, we have designed a 20-mer oligonucleotide that targets a region specific to the species Lactobacillus manihotivorans recently isolated from sour cassava fermentation. The probe recognized the rRNA obtained from all the L. manihotivorans strains tested but did not recognize 56 strains of microorganisms from culture collections or directly isolated from sour cassava, including 29 species of lactic acid bacteria. This probe was then successfully used in quantitative RNA blots and demonstrated the importance of L. manihotivorans in the fermentation of sour cassava starch, which could represent up to 20% of total lactic acid bacteria. PMID:10788405

  15. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kôso, a Japanese Sugar-Vegetable Fermented Beverage.

    PubMed

    Chiou, Tai-Ying; Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-14

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. Copyright © 2016 Chiou et al.

  16. The effects of inulin and fructo-oligosaccharide on the probiotic properties of Lactobacillus spp. isolated from human milk.

    PubMed

    Tulumoğlu, Şener; Erdem, Belgin; Şimşek, Ömer

    2018-05-22

    This study aims to determine the effects of inulin and fructo-oligosaccharide (FOS) on the probiotic properties of five Lactobacillus spp. isolated from human milk. Lactobacillus spp. were isolated and identified, and the growth characteristics, acid and bile salt tolerance, antagonistic effects, and cholesterol assimilation of Lactobacillus strains were investigated in the presence of inulin and FOS. Lactobacillus casei L1 was able to utilize inulin and FOS as carbon source as well as glucose even other strains were able to use, including Lactobacillus rhamnosus GG. This strain also showed high tolerance to acid and bile salt, even at pH 2.5 and 0.5% bile salt levels, respectively. Inulin and FOS promoted the antimicrobial activity of L. casei L1 against pathogenic bacteria. Cholesterol assimilation was higher than in the other and control probiotic strains in the presence inulin and FOS, which were measured as 14 and 25 mg/dL, respectively. In conclusion, L. casei L1 can use both inulin and FOS to maintain its viability both at digestive conditions and also the relevant prebiotics, and show broad antagonistic activity and cholesterol assimilation.

  17. Genome sequence of Lactobacillus johnsonii PF01, isolated from piglet feces.

    PubMed

    Lee, Je Hee; Chae, Jong Pyo; Lee, Ji Yoon; Lim, Jong-Sung; Kim, Geun-Bae; Ham, Jun-Sang; Chun, Jongsik; Kang, Dae-Kyung

    2011-09-01

    Lactobacillus johnsonii PF01, an autochthonous bacterium of the gastrointestinal tract, was isolated from a fecal sample from a piglet. The strain adhered specifically to the duodenal and jejunal epithelial cells of the piglet and had high bile resistance activity. Here we report the genomic sequence of L. johnsonii PF01. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  18. Isolation of lactobacillus reuteri from Peyer's patches and their effects on sIgA production and gut microbiota diversity.

    PubMed

    Wang, Panpan; Li, Ya; Xiao, Hang; Shi, Yonghui; Le, Guo-Wei; Sun, Jin

    2016-09-01

    We previously reported that specific Lactobacillus reuteri colonized within mouse Peyer's patches (PP) effectively prevented high fat diet induced obesity and low-grade chronic inflammation. We further investigated the role of PP Lactobacillus reuteri on sIgA production in rats in this study. Lactobacilli were isolated from rat PP. All isolates were L. reuteri and belonged to three phenotypes according to amplified fragment length polymorphism analysis. Typical strains of two main clusters, PP1 and PP2, were used to treat control and vitamin A deficient (VAD) rats, respectively. The feeding of PP1 and PP2 affected sIgA and Lactobacillus diversity by strain-specific manner. Free sIgA was significantly increased by PP1 (p = 0.069) and PP2 (p < 0.05) in the control rats but not in the VAD rats. Only PP1 significantly changed PP Lactobacillus diversity in the control rats (p < 0.05). However, PP2 specifically changed ileal Lactobacillus diversity in both control and VAD rats. Fecal sIgA was correlated with PP Lactobacillus diversity (R(2) = 0.7958, p = 0.011). Modulation of sIgA production by PP L. reuteri of rat is dependent on vitamin A and change of Lactobacillus diversity in PP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In Vitro Characterization of Lactobacillus Strains Isolated from Fruit Processing By-Products as Potential Probiotics.

    PubMed

    de Albuquerque, Thatyane Mariano Rodrigues; Garcia, Estefânia Fernandes; de Oliveira Araújo, Amanda; Magnani, Marciane; Saarela, Maria; de Souza, Evandro Leite

    2017-08-23

    Nine wild Lactobacillus strains, namely Lactobacillus plantarum 53, Lactobacillus fermentum 56, L. fermentum 60, Lactobacillus paracasei 106, L. fermentum 250, L. fermentum 263, L. fermentum 139, L. fermentum 141, and L. fermentum 296, isolated from fruit processing by-products were evaluated in vitro for a series of safety, physiological functionality, and technological properties that could enable their use as probiotics. Considering the safety aspects, the resistance to antibiotics varied among the examined strains, and none of the strains presented hemolytic and mucinolytic activity. Regarding the physiological functionality properties, none of the strains were able to deconjugate bile salts; all of them presented low to moderate cell hydrophobicity and were able to autoaggregate, coaggregate with Listeria monocytogenes and Escherichia coli, and antagonize pathogenic bacteria. Exposure to pH 2 sharply decreased the survival of the examined strains after 1- or 2-h exposure; variable decreases were noted after 3-h exposure to pH 3. Overall, exposure to pH 5 and to bile salts (0.15, 0.3, and 1%) did not decrease the strains' survival. Examined strains presented better ability to survive from the exposure to simulated gastrointestinal conditions in laboratorial media and milk than in grape juice. Considering the technological properties, all the strains were positive for proteolytic activity and EPS and diacetyl production, and most of them had good tolerance to 1-4% NaCl. These results indicate that wild Lactobacillus strains isolated from fruit processing by-products could present performance compatible with probiotic properties and technological features that enable the development of probiotic foods with distinct characteristics.

  20. Draft Genome Sequence of Lactobacillus kunkeei AR114 Isolated from Honey Bee Gut.

    PubMed

    Porcellato, Davide; Frantzen, Cyril; Rangberg, Anbjørg; Umu, Ozgun C; Gabrielsen, Christina; Nes, Ingolf F; Amdam, Gro V; Diep, Dzung B

    2015-03-19

    Lactobacillus kunkeei is a common inhabitant in honey bee gut, being present in several parts of the world. Here, we describe the draft genome of L. kunkeei AR114, an isolate from late foraging season in Norway. Copyright © 2015 Porcellato et al.

  1. Draft Genome Sequence of Lactobacillus panis DSM 6035T, First Isolated from Sourdough

    PubMed Central

    Zhu, Yixin; Fang, Daiqiong; Shi, Ding; Li, Ang; Lv, Longxian; Yan, Ren; Yao, Jian; Hua, Dasong; Hu, Xinjun; Guo, Feifei; Wu, Wenrui; Guo, Jing; Chen, Yanfei; Jiang, Xiawei; Chen, Xiaoxiao

    2015-01-01

    We report a draft genome sequence of Lactobacillus panis DSM 6035T, isolated from sourdough. The genome of this strain is 2,082,789 bp long, with 47.9% G+C content. A total of 2,047 protein-coding genes were predicted. PMID:26205855

  2. Physiological functions at single-cell level of Lactobacillus spp. isolated from traditionally fermented cabbage in response to different pH conditions.

    PubMed

    Olszewska, Magdalena A; Kocot, Aleksandra M; Łaniewska-Trokenheim, Łucja

    2015-04-20

    Changes in pH are significant environmental stresses that may be encountered by lactobacilli during fermentation processes or passage through the gastrointestinal tract. Here, we report the cell response of Lactobacillus spp. isolated from traditionally fermented cabbage subjected to acid/alkaline treatments at pH 2.5, 7.4 and 8.1, which represented pH conditions of the gastrointestinal tract. Among six isolates, four species of Lactobacillus plantarum and two of Lactobacillus brevis were identified by fluorescence in situ hybridization (FISH). The fluorescence-based strategy of combining carboxyfluorescein diacetate (CFDA) and propidium iodine (PI) into a dual-staining assay was used together with epifluorescence microscopy (EFM) and flow cytometry (FCM) for viability assessment. The results showed that the cells maintained esterase activity and membrane integrity at pH 8.1 and 7.4. There was also no loss of culturability as shown by plate counts. In contrast, the majority of 2.5 pH-treated cells had a low extent of esterase activity, and experienced membrane perturbation. For these samples, an extensive loss of culturability was demonstrated. Comparison of the results of an in situ assessment with that of the conventional culturing method has revealed that although part of the stressed population was unable to grow on the growth media, it was deemed viable using a CFDA/PI assay. However, there was no significant change in the cell morphology among pH-treated lactobacilli populations. These analyses are expected to be useful in understanding the cell response of Lactobacillus strains to pH stress and may facilitate future investigation into functional and industrial aspects of this response. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Functional properties of Lactobacillus plantarum strains isolated from Maasai traditional fermented milk products in Kenya.

    PubMed

    Mathara, Julius Maina; Schillinger, Ulrich; Kutima, Phillip M; Mbugua, Samuel K; Guigas, Claudia; Franz, Charles; Holzapfel, Wilhelm H

    2008-04-01

    Lactobacillus plantarum was the major species among the lactic acid bacterial strains isolated from traditional fermented milk of the Maasai in Kenya. Selected strains were characterized for their functional properties using in vitro standard procedures. All strains expressed acid tolerance at pH 2.0 after 2-h exposure of values that ranged from 1% to 100%, while bile tolerance of acid-stressed cells at 0.3% oxgal varied from 30% to 80%. In vitro adhesion to the mucus-secreting cell line HT 29 MTX and binding capacity to extracellular protein matrices was demonstrated for several strains. The four strains tested in a simulated stomach duodenum passage survived with recovery rates ranging from 17% to 100%. Strains were intrinsically resistant to several antibiotics tested. From these in vitro studies, a number of Lb. plantarum strains isolated from the Maasai traditional fermented milk showed probiotic potential. The strains are good candidates for multifunctional starter culture development.

  4. Draft Genome Sequence of a Novel Lactobacillus salivarius Strain Isolated from Piglet.

    PubMed

    Mackenzie, Donald A; McLay, Kirsten; Roos, Stefan; Walter, Jens; Swarbreck, David; Drou, Nizar; Crossman, Lisa C; Juge, Nathalie

    2014-02-13

    Lactobacillus salivarius is part of the vertebrate indigenous microbiota of the gastrointestinal tract, oral cavity, and milk. The properties associated with some L. salivarius strains have led to their use as probiotics. Here we describe the draft genome of the pig isolate L. salivarius cp400, providing insights into host-niche specialization.

  5. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-06-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents.

  6. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  7. Structural analysis of the alpha-D-glucan produced by the sourdough isolate Lactobacillus brevis E25

    USDA-ARS?s Scientific Manuscript database

    Cereal associated Lactic Acid Bacteria (LAB) are well known for homopolymeric exopolysaccharide (EPS) production. Herein, the structure of an EPS isolated from sourdough isolate Lactobacillus brevis E25 was determined. A modified BHI medium was used for production of EPS-E25 in order to eliminate po...

  8. Lactobacillus panisapium sp. nov., from honeybee Apis cerana bee bread.

    PubMed

    Wang, Cong; Huang, Yan; Li, Li; Guo, Jun; Wu, Zhengyun; Deng, Yu; Dai, Lirong; Ma, Shichun

    2018-03-01

    A novel facultatively anaerobic, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative bacterium of the genus Lactobacillus, designated strain Bb 2-3 T , was isolated from bee bread of Apis cerana collected from a hive in Kunming, China. The strain was regular rod-shaped. Optimal growth occurred at 37 °C, pH 6.5 with 5.0 g l -1 NaCl. The predominant fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 iso. Respiratory quinones were not detected. Seven glycolipids, three lipids, phosphatidylglycerol and diphosphatidylglycerol were detected. The peptidoglycan type A4α l-Lys-d-Asp was determined. Strain Bb 2-3 T was closely related to Lactobacillus bombicola DSM 28793 T , Lactobacillus apis LMG 26964 T and Lactobacillus helsingborgensis DSM 26265 T , with 97.8, 97.6 and 97.0 % 16S rRNA gene sequence similarity, respectively. A comparison of two housekeeping genes, rpoA and pheS, revealed that strain Bb 2-3 T was well separated from the reference strains of species of the genus Lactobacillus. The average nucleotide identity between strain Bb 2-3 T and the type strains of closely related species was lower than the 95-96 % threshold value for delineation of genomic prokaryotic species. The G+C content of the genomic DNA of strain Bb 2-3 T was 37.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain Bb 2-3 T is proposed to represent a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus panisapium sp. nov. The type strain is Bb 2-3 T (=DSM 102188 T =ACCC 19955 T ).

  9. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, L.K.

    1981-01-01

    The morphology, physiology and fermentation characteristics of this hitherto unrecognized species are described. The new Lactobacillus species can be differentiated from L. acidophilus, L. jensenii, and L. leichmannii on the basis of starch fermentation, G + C content, vitamin requirements and stereoisomerism of lactic acid produced. The type strain of L. amylovorus is NRRL B-4540. (Refs. 39).

  10. Discrimination and divergence among Lactobacillus plantarum-group (LPG) isolates with reference to their probiotic functionalities from vegetable origin.

    PubMed

    Devi, Sundru Manjulata; Aishwarya, Subramanian; Halami, Prakash M

    2016-12-01

    The present study was aimed to evaluate the diversity and probiotic properties of Lactobacillus plantarum-group cultures from vegetable origin. First, genotypic diversity of L. plantarum (n=34) was achieved by PCR of Random Amplified Polymorphic DNA and recA gene-specific multiplex PCR. The isolates were segregated into five groups namely, Lactobacillus pentosus, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus plantarum subsp. plantarum and argentoratensis. Further discrimination was achieved by restriction fragment length polymorphism of probiotic adhesion genes viz.fbp, mub and msa gene. As determined by nucleotide sequence analysis and bioinformatics Pfam database, the putative Fbp protein had only one FBP domain, whereas Mub protein had 8-10 MUB domain repeats. However, L. pentosus (except CFR MFT9), L. plantarum subsp. argentoratensis (except CFR MFT5) and L. arizonensis (except CFR MFT2) isolates gave no amplicon for the tested marker genes. Selected cultures (n=15) showed tolerance to simulated digestive fluids (20-85%), exhibited auto-aggregation (10-77%), cellular hydrophobicity (12-78%), and broad spectrum of anti-microbial activity. Concurrently, high adherence capacity to mucin was achieved for L. plantarum subsp. plantarum (MCC 2974 and CFR MFT1) and L. paraplantarum (MTCC 9483, MCC 2977, MCC 2978), which had an additional MUB domain repeat. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Phenotypic and Genotypic Characterization of Some Lactic Acid Bacteria Isolated from Bee Pollen: A Preliminary Study

    PubMed Central

    BELHADJ, Hani; HARZALLAH, Daoud; BOUAMRA, Dalila; KHENNOUF, Seddik; Dahamna, Saliha; GHADBANE, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133. PMID:24936378

  12. Phenotypic and genotypic characterization of some lactic Acid bacteria isolated from bee pollen: a preliminary study.

    PubMed

    Belhadj, Hani; Harzallah, Daoud; Bouamra, Dalila; Khennouf, Seddik; Dahamna, Saliha; Ghadbane, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133.

  13. Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand.

    PubMed

    Tanasupawat, S; Shida, O; Okada, S; Komagata, K

    2000-07-01

    Eleven strains of homofermentative, rod-shaped lactic acid bacteria and five strains of heterofermentative, sphere-shaped lactic acid bacteria were isolated from fermented fish (pla-ra and pla-chom) in Thailand. They were identified as new species and named Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., respectively, on the basis of phylogenetic analysis of the 16S rRNA gene sequences, DNA relatedness and phenotypic characteristics. The type strain of L. acidipiscis is FS60-1T (= PCU 207T = NRIC 0300T = HSCC 1411T = JCM 10692T = TISTR 1386T) and the type strain of Weissella thailandensis is FS61-1T (= PCU 210T = NRIC 0298T = HSCC 1412T = JCM 10695T = TISTR 1384T).

  14. Draft Genome Sequence of a Novel Lactobacillus salivarius Strain Isolated from Piglet

    PubMed Central

    MacKenzie, Donald A.; McLay, Kirsten; Roos, Stefan; Walter, Jens; Swarbreck, David; Drou, Nizar; Crossman, Lisa C.

    2014-01-01

    Lactobacillus salivarius is part of the vertebrate indigenous microbiota of the gastrointestinal tract, oral cavity, and milk. The properties associated with some L. salivarius strains have led to their use as probiotics. Here we describe the draft genome of the pig isolate L. salivarius cp400, providing insights into host-niche specialization. PMID:24526652

  15. Isolation of histamine-producing Lactobacillus buchneri from Swiss cheese implicated in a food poisoning outbreak.

    PubMed Central

    Sumner, S S; Speckhard, M W; Somers, E B; Taylor, S L

    1985-01-01

    A histamine-producing strain of Lactobacillus buchneri was isolated from Swiss cheese that had been implicated in an outbreak of histamine poisoning. It produced up to 4,070 nmol of histamine per ml in MRS broth supplemented with 0.1% histidine. The identification of this isolate was based on its biochemical, bacteriological, and DNA characterizations. PMID:4083875

  16. The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151.

    PubMed

    Górska-Frączek, Sabina; Sandström, Corine; Kenne, Lennart; Paściak, Mariola; Brzozowska, Ewa; Strus, Magdalena; Heczko, Piotr; Gamian, Andrzej

    2013-08-30

    The exopolysaccharide (EPS) structure from Lactobacillus johnsonii strain 151 isolated from the intestinal tract of mice was investigated. Sugar and methylation analyses together with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY, and (1)H,(13)C HSQC, HMBC experiments, revealed that the repeating unit of the EPS is the linear pentasaccharide: →6)-α-d-Galp-(1→6)-α-d-Glcp-(1→3)-β-d-Galf-(1→3)-α-d-Glcp-(1→2)-β-d-Galf-(1→ The immunoreactivity of two structurally different exopolysaccharides isolated from L. johnsonii, 151 and 142 (Carbohydr. Res. 2010, 345, 108-114), was compared. Both EPSs differed in their reactivity with antisera. EPS from L. johnsonii 151 reacted with anti-Lactobacillus polyclonal sera against cells of five different strains, while EPS from L. johnsonii 142 was found to react only with its own antiserum. The broader specificity and higher reactivity of EPS from 151 strain than EPS from 142 strain were also observed with human sera. The physiological antibodies recognizing polysaccharide antigens were present in both adults and umbilical cord blood sera. A highly specific EPS 142 bearing strain was isolated from experimentally induced inflammatory bowel disease (IBD) mice, while a strain with EPS 151 isolated from the intestinal tract of healthy mice is characterized by a broad immune reactivity common structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Examination of the technological properties of newly isolated strains of the genus Lactobacillus and possibilities for their application in the composition of starters.

    PubMed

    Denkova, Rositsa; Ilieva, Svetla; Denkova, Zapryana; Georgieva, Ljubka; Krastanov, Albert

    2014-05-04

    The ability of four Lactobacillus strains - Lactobacillus brevis LBRZ7 (isolated from fermented cabbage), Lactobacillus plantarum LBRZ12 (isolated from fermented cabbage), Lactobacillus fermentum LBRH9 (of human origin) and Lactobacillus casei ssp. rhamnosus LBRC11 (isolated from home-made cheese) - to grow in flour/water environment and to accumulate high concentrations of viable cells was examined. Two starters for sourdough were created for lab-scale production of wheat bread: a two-strain starter and a four-strain starter. Wheat bread with improved properties - greater loaf volume, enhanced flavour and softer and brighter crumb - was obtained from the 7% four-strain starter sourdough. The addition of sourdough in the production of wheat bread affected positively the technological and organoleptic characteristics of the final bread by inhibiting the growth of wild yeasts and mold and Bacillus spores without the addition of preservatives. The inclusion of 15% of the four-strain starter sourdough in the bread-making process led to enhanced safety and longer shelf life of the baked bread.

  18. Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents.

    PubMed

    Killer, J; Havlík, J; Vlková, E; Rada, V; Pechar, R; Benada, O; Kopečný, J; Kofroňová, O; Sechovcová, H

    2014-05-01

    Three strains of regular, long, Gram-stain-positive bacterial rods were isolated using TPY, M.R.S. and Rogosa agar under anaerobic conditions from the digestive tract of wild mice (Mus musculus). All 16S rRNA gene sequences of these isolates were most similar to sequences of Lactobacillus gasseri ATCC 33323T and Lactobacillus johnsonii ATCC 33200T (97.3% and 97.2% sequence similarities, respectively). The novel strains shared 99.2-99.6% 16S rRNA gene sequence similarities. Type strains of L. gasseri and L. johnsonii were also most related to the newly isolated strains according to rpoA (83.9-84.0% similarities), pheS (84.6-87.8%), atpA (86.2-87.7%), hsp60 (89.4-90.4%) and tuf (92.7-93.6%) gene sequence similarities. Phylogenetic studies based on 16S rRNA, hsp60, rpoA, atpA and pheS gene sequences, other genotypic and many phenotypic characteristics (results of API 50 CHL, Rapid ID 32A and API ZYM biochemical tests; cellular fatty acid profiles; cellular polar lipid profiles; end products of glucose fermentation) showed that these bacterial strains represent a novel species within the genus Lactobacillus. The name Lactobacillus rodentium sp. nov. is proposed to accommodate this group of new isolates. The type strain is MYMRS/TLU1T (=DSM 24759T=CCM 7945T).

  19. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988.

    PubMed

    Vancanneyt, M; Mengaud, J; Cleenwerck, I; Vanhonacker, K; Hoste, B; Dawyndt, P; Degivry, M C; Ringuet, D; Janssens, D; Swings, J

    2004-03-01

    Fourteen homofermentative lactic acid bacteria that were isolated from kefir grains and kefir fermented milks were assigned to either Lactobacillus kefiranofaciens or Lactobacillus kefirgranum, based on their characteristic morphotypes, phenotypic features and SDS-PAGE profiles of whole-cell proteins. Further genotypic analyses on representative strains from both taxa demonstrated that L. kefiranofaciens and L. kefirgranum share 100 % 16S rDNA sequence similarity and belong phylogenetically to the Lactobacillus acidophilus species group. DNA-DNA binding values of >79 % and analogous DNA G+C contents of 37-38 mol% showed that the strains studied belonged to one species: L. kefirgranum is a later synonym of L. kefiranofaciens. An emended description is proposed for L. kefiranofaciens. Due to the specific morphological and biochemical characteristics of these taxa in kefir grain formation, it is proposed that L. kefirgranum should be reclassified as L. kefiranofaciens subsp. kefirgranum subsp. nov.

  20. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Isolation and Identification of Lactic Acid Bacteria from Traditional Dairy Products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR Analysis of Predominant Species

    PubMed Central

    2016-01-01

    In this study, traditional culture method and 16S rRNA gene analysis were applied to reveal the composition and diversity of lactic acid bacteria (LAB) of fermented cow milk, huruud and urum from Baotou and Bayannur of midwestern Inner Mongolia. Also, the quantitative results of dominant LAB species in three different types of dairy products from Baotou and Bayannur were gained by quantitative polymerase chain reaction (q-PCR) technology. Two hundred and two LAB strains isolated from sixty-six samples were identified and classified into four genera, namely Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, and twenty-one species and subspecies. From these isolates, Lactococcus lactis subsp. lactis (32.18%), Lactobacillus plantarum (12.38%) and Leuconosto mesenteroides (11.39%) were considered as the dominated LAB species under the condition of cultivating in MRS and M17 medium. And the q-PCR results revealed that the number of dominant species varied from samples to samples and from region to region. This study clearly shows the composition and diversity of LAB existing in fermented cow milk, huruud and urum, which could be considered as valuable resources for LAB isolation and further probiotic selection. PMID:27621691

  2. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics.

    PubMed

    Lhomme, Emilie; Orain, Servane; Courcoux, Philippe; Onno, Bernard; Dousset, Xavier

    2015-11-20

    Fourteen bakeries located in different regions of France were selected. These bakers use natural sourdough and organic ingredients. Consequently, different organic sourdoughs used for the manufacture of French bread were studied by the enumeration of lactic acid bacteria (LAB) and 16S rRNA sequencing of the isolates. In addition, after DNA extraction the bacterial diversity was assessed by pyrosequencing of the 16S rDNA V1-V3 region. Although LAB counts showed significant variations (7.6-9.5log10CFU/g) depending on the sourdough studied, their identification through a polyphasic approach revealed a large predominance of Lactobacillus sanfranciscensis in all samples. In ten sourdoughs, both culture and independent methods identified L. sanfranciscensis as the dominant LAB species identified. In the remaining sourdoughs, culture methods identified 30-80% of the LAB as L. sanfranciscensis whereas more than 95% of the reads obtained by pyrosequencing belonged to L. sanfranciscensis. Other sub-dominant species, such as Lactobacillus curvatus, Lactobacillus hammesii, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei, were also identified. Quantification of L. sanfranciscensis by real-time PCR confirmed the predominance of this species ranging from 8.24 to 10.38log10CFU/g. Regarding the acidification characteristics, sourdough and related bread physico-chemical characteristics varied, questioning the involvement of sub-dominant species or L. sanfranciscensis intra-species diversity and/or the role of the baker's practices. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  4. An in vitro protocol for direct isolation of potential probiotic lactobacilli from raw bovine milk and traditional fermented milks.

    PubMed

    Baruzzi, Federico; Poltronieri, Palmiro; Quero, Grazia Marina; Morea, Maria; Morelli, Lorenzo

    2011-04-01

    A method for isolating potential probiotic lactobacilli directly from traditional milk-based foods was developed. The novel digestion/enrichment protocol was set up taking care to minimize the protective effect of milk proteins and fats and was validated testing three commercial fermented milks containing well-known probiotic Lactobacillus strains. Only probiotic bacteria claimed in the label were isolated from two out of three commercial fermented milks. The application of the new protocol to 15 raw milk samples and 6 traditional fermented milk samples made it feasible to isolate 11 potential probiotic Lactobacillus strains belonging to Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus vaginalis species. Even though further analyses need to ascertain functional properties of these lactobacilli, the novel protocol set-up makes it feasible to isolate quickly potential probiotic strains from traditional milk-based foods reducing the amount of time required by traditional procedures that, in addition, do not allow to isolate microorganisms occurring as sub-dominant populations.

  5. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success.

    PubMed

    Bull, Matthew; Plummer, Sue; Marchesi, Julian; Mahenthiralingam, Eshwar

    2013-12-01

    Lactobacillus acidophilus is a commercially significant bacterial probiotic, originally isolated from the human gastrointestinal tract and designated Bacillus acidophilus in 1900. Throughout the development of methods to identify and characterise bacteria, L. acidophilus has undergone multiple taxonomic revisions and is now the type species of a phylogenetic subgroup in the highly diverse and heterogeneous Lactobacillus genus. As a result of the limitations of differentiating phenotypically similar species by morphological and biochemical means and revisionary nature of Lactobacillus taxonomy, the characterisation of L. acidophilus has struggled with misidentification and misrepresentation. In contrast, due to its global use as a probiotic supplement in functional foods, L. acidophilus sensu stricto is now one of the most well-characterised Lactobacillus species. Here, we establish the provenance of L. acidophilus strains, unpicking historical and current misidentifications of L. acidophilus, and reviewing the probiotic, genomic and physiological characteristics of this important Lactobacillus species. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. (GTG)(5)-PCR fingerprinting of lactobacilli isolated from cervix of healthy women.

    PubMed

    Svec, P; Sedláček, I; Chrápavá, M; Vandamme, P

    2011-01-01

    A group of lactobacilli isolated from the cervix of 31 healthy women was characterized by (GTG)(5)-polymerase chain reaction (PCR) fingerprinting in order to evaluate this method for identification of vaginal lactobacilli. Obtained fingerprints were compared with profiles available in an in-house database of the CCM bacteria collection covering type and reference strains of multiple lactic acid bacteria including lactobacilli. Selected strains representing individual clusters were further identified by pheS gene sequencing. In total, six lactobacillus species were found among lactobacilli isolated from the cervix of healthy women. The (GTG)(5)-PCR method identified Lactobacillus gasseri (11 strains), Lactobacillus fermentum (one), and some of the Lactobacillus jensenii strains (eight out of 11), but failed to identify the remaining strains, including the Lactobacillus crispatus (18), Lactobacillus mucosae (one), and Lactobacillus vaginalis (one) species. L. jensenii strains were distributed over two fingerprint clusters. The majority of samples was dominated by one (GTG)(5)-PCR type. The rep-PCR fingerprinting using the (GTG)(5) primer allowed straightforward identification of many, but not all, isolates. This method has been shown to be a useful tool for fast screening and grouping of vaginal lactobacilli, but its combination with another identification method is needed to obtain reliable identification results. In addition, Lactobacillus acidophilus was not shown to be the most common inhabitant of the female genital tract as generally assumed.

  7. Indication for Co-evolution of Lactobacillus johnsonii with its hosts

    PubMed Central

    2012-01-01

    Background The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. Here, we studied the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts. Results A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species. The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e. chickens, humans or mice. Conclusions Our typing results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, our study supports co-evolution of the host and its intestinal lactic acid bacteria. PMID:22827843

  8. Indication for Co-evolution of Lactobacillus johnsonii with its hosts.

    PubMed

    Buhnik-Rosenblau, Keren; Matsko-Efimov, Vera; Jung, Minju; Shin, Heuynkil; Danin-Poleg, Yael; Kashi, Yechezkel

    2012-07-25

    The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. Here, we studied the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts. A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species. The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e. chickens, humans or mice. Our typing results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, our study supports co-evolution of the host and its intestinal lactic acid bacteria.

  9. Genome Sequence of Lactobacillus salivarius NIAS840, Isolated from Chicken Intestine

    PubMed Central

    Ham, Jun-Sang; Kim, Hyoun-Wook; Seol, Kuk-Hwan; Jang, Aera; Jeong, Seok-Geun; Oh, Mi-Hwa; Kim, Dong-Hun; Kang, Dae-Kyung; Kim, Geun-Bae; Cha, Chang-Jun

    2011-01-01

    Lactobacillus salivarius is a well-known lactic acid bacterium to which increasing attention has been paid recently for use as probiotics for humans and animals. L. salivarius NIAS840 was first isolated from broiler chicken feces, displaying antimicrobial activities against multidrug-resistant Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Here, we report the genome sequence of L. salivarius NIAS840 (2,046,557 bp) including a small plasmid and two megaplasmids. PMID:21914873

  10. Isolation of Lactobacillus salivarius 1077 (NRRL B-50053) and characterization of its bacteriocin and spectra of antimicrobial activity

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  11. [Diversity of Lactobacillus in vagina of vulvovaginal candidiasis].

    PubMed

    2015-04-07

    To investigate the Lactobacillus species in the vaginas of vulvovaginal candidiasis and to assess the prevalence of each Lactobacillus species in vulvovaginal candidiasis. 154 vaginal samples were analyzed, 92 of which were from fertile healthy women, and 62 of which were from women with vulvovaginal candidiasis; and species-specific PCR showed the prevalence of each Lactobacillus species Species-specific PCR was used to investigate the prevalence of each Lactobacillus species in healthy Chinese women and the women with vulvovaginal candidiasis. In women with vulvovaginal candidiasis: L. iners (6.5%), L. cripatus (79.0%), L. gasseri (37.1%), L. jensenii (74.2%), L. acidophilus (16.1%), L. brevis (19.4%), L. plantarum (1.6%), L. johnsonii (51.6%), L. fermentum (8.1%), L. salivarius (9.7%), L. reuter (1.6%), L. paracasei (8.1%), L. delbrueckii (3. 2% ) ; More than two different Lactobacillus species coexisted in 98% of women with vulvovaginal candidiasis, and no anyone species existed in 2% of them; In fertile women: L. iners (82.6%), L. cripatus (70.7%), L. gasseri (67.4%), L. jensenii (40.2%), L. acidophilus (39.1%), L. brevis (23.9%), L. plantarum (5.4%), L. rhamnosus (1.1%), L. paracasei (1.1%), L. reuter (1.1%) i, L. johnsonii (3.3%), L. fermentum (2.2%), L. salivarius (2.2%); More than two different Lactobacillus species coexisted in 97% of fertile women, and only one species existed in 3% of fertile women. Species of lactobacillus in women with vulvovaginal candidiasis did not significantly reduced compared with healthy women. Lactobacillus inert may be a marker of the change of vaginal microenvironment; Lactobacillus crispatus is a dominant lactobacillus in the vaginal of fertile healthy women, pregnant women and women with vulvovaginal candidiasis.

  12. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

    PubMed Central

    Bulgasem, Bulgasem Y.; Lani, Mohd Nizam; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G.

    2016-01-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species. PMID:28154488

  13. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species.

    PubMed

    Bulgasem, Bulgasem Y; Lani, Mohd Nizam; Hassan, Zaiton; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G

    2016-12-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly ( p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly ( p < 0.05) effective against C. krusei , C. glabrata , and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.

  14. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    PubMed

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications.

  15. Milk fermented by Lactobacillus species from Brazilian artisanal cheese protect germ-free-mice against Salmonella Typhimurium infection.

    PubMed

    Acurcio, L B; Sandes, S H C; Bastos, R W; Sant'anna, F M; Pedroso, S H S P; Reis, D C; Nunes, Á C; Cassali, G D; Souza, M R; Nicoli, J R

    2017-08-24

    Ingestion of milks fermented by Lactobacillus strains showing probiotic properties is an important tool to maintain gastrointestinal health. In this study, Lactobacillus rhamnosus D1 and Lactobacillus plantarum B7, isolated from Brazilian artisanal cheese, were used as starters for the functional fermented milks to assess their probiotic properties in a gnotobiotic animal model. Male germ-free Swiss mice received a single oral dose of milk fermented by each sample, and were challenged with Salmonella Typhimurium five days afterwards. Milk fermented by both Lactobacillus strains maintained counts above 10 8 cfu/ml during cold storage. Lactobacillus strains colonised the gut of the germ-free-mice, maintaining their antagonistic effect. This colonisation led to a protective effect against Salmonella challenge, as demonstrated by reduced pathogen translocation and histological lesions, when compared to control group, especially for Lactobacillus rhamnosus D1. Additionally, mRNA expression of inflammatory (interferon gamma, interleukin (IL)-6, tumour necrosis factor alpha) and anti-inflammatory (transforming growth factor β1) cytokines was augmented in animals previously colonised and then challenged, when compared to other experimental groups. Lactobacillus plantarum B7 colonisation also promoted higher expression of IL-17, showing a proper maturation of colonised germ-free-mice immune system. IL-5 was stimulated by both strains' colonisation and not by S. Typhimurium challenge.

  16. Functional and Probiotic Attributes of an Indigenous Isolate of Lactobacillus plantarum

    PubMed Central

    Kaushik, Jai K.; Kumar, Ashutosh; Duary, Raj K.; Mohanty, Ashok K.; Grover, Sunita; Batish, Virender K.

    2009-01-01

    Background Probiotic microorganisms favorably alter the intestinal microflora balance, promote intestinal integrity and mobility, inhibit the growth of harmful bacteria and increase resistance to infection. Probiotics are increasingly used in nutraceuticals, functional foods or in microbial interference treatment. However, the effectiveness of probiotic organism is considered to be population-specific due to variation in gut microflora, food habits and specific host-microbial interactions. Most of the probiotic strains available in the market are of western or European origin, and a strong need for exploring new indigenous probiotic organisms is felt. Methods and Findings An indigenous isolate Lp9 identified as Lactobacillus plantarum by molecular-typing methods was studied extensively for its functional and probiotic attributes, viz., acid and bile salt tolerance, cell surface hydrophobicity, autoaggregation and Caco-2 cell-binding as well as antibacterial and antioxidative activities. Lp9 isolate could survive 2 h incubation at pH 1.5–2.0 and toxicity of 1.5–2.0% oxgall bile. Lp9 could deconjugate major bile salts like glycocholate and deoxytaurocholate, indicating its potential to cause hypocholesterolemia. The isolate exhibited cell-surface hydrophobicity of ∼37% and autoaggregation of ∼31%. Presence of putative probiotic marker genes like mucus-binding protein (mub), fibronectin-binding protein (fbp) and bile salt hydrolase (bsh) were confirmed by PCR. Presence of these genes suggested the possibility of specific interaction and colonization potential of Lp9 isolate in the gut, which was also suggested by a good adhesion ratio of 7.4±1.3% with Caco-2 cell line. The isolate demonstrated higher free radical scavenging activity than standard probiotics L. johnsonii LA1 and L. acidophilus LA7. Lp9 also exhibited antibacterial activity against E. coli, L. monocytogenes, S. typhi, S. aureus and B. cereus. Conclusion The indigenous Lactobacillus plantarum Lp

  17. Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum.

    PubMed

    Kaushik, Jai K; Kumar, Ashutosh; Duary, Raj K; Mohanty, Ashok K; Grover, Sunita; Batish, Virender K

    2009-12-01

    Probiotic microorganisms favorably alter the intestinal microflora balance, promote intestinal integrity and mobility, inhibit the growth of harmful bacteria and increase resistance to infection. Probiotics are increasingly used in nutraceuticals, functional foods or in microbial interference treatment. However, the effectiveness of probiotic organism is considered to be population-specific due to variation in gut microflora, food habits and specific host-microbial interactions. Most of the probiotic strains available in the market are of western or European origin, and a strong need for exploring new indigenous probiotic organisms is felt. An indigenous isolate Lp9 identified as Lactobacillus plantarum by molecular-typing methods was studied extensively for its functional and probiotic attributes, viz., acid and bile salt tolerance, cell surface hydrophobicity, autoaggregation and Caco-2 cell-binding as well as antibacterial and antioxidative activities. Lp9 isolate could survive 2 h incubation at pH 1.5-2.0 and toxicity of 1.5-2.0% oxgall bile. Lp9 could deconjugate major bile salts like glycocholate and deoxytaurocholate, indicating its potential to cause hypocholesterolemia. The isolate exhibited cell-surface hydrophobicity of approximately 37% and autoaggregation of approximately 31%. Presence of putative probiotic marker genes like mucus-binding protein (mub), fibronectin-binding protein (fbp) and bile salt hydrolase (bsh) were confirmed by PCR. Presence of these genes suggested the possibility of specific interaction and colonization potential of Lp9 isolate in the gut, which was also suggested by a good adhesion ratio of 7.4+/-1.3% with Caco-2 cell line. The isolate demonstrated higher free radical scavenging activity than standard probiotics L. johnsonii LA1 and L. acidophilus LA7. Lp9 also exhibited antibacterial activity against E. coli, L. monocytogenes, S. typhi, S. aureus and B. cereus. The indigenous Lactobacillus plantarum Lp9 exhibited high

  18. Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women

    PubMed Central

    Tamrakar, Renuka; Yamada, Takashi; Furuta, Itsuko; Cho, Kazutoshi; Morikawa, Mamoru; Yamada, Hideto; Sakuragi, Noriaki; Minakami, Hisanori

    2007-01-01

    Background Bacterial vaginosis (BV), the etiology of which is still uncertain, increases the risk of preterm birth. Recent PCR-based studies suggested that BV is associated with complex vaginal bacterial communities, including many newly recognized bacterial species in non-pregnant women. Methods To examine whether these bacteria are also involved in BV in pregnant Japanese women, vaginal fluid samples were taken from 132 women, classified as normal (n = 98), intermediate (n = 21), or BV (n = 13) using the Nugent gram stain criteria, and studied. DNA extracted from these samples was analyzed for bacterial sequences of any Lactobacillus, four Lactobacillus species, and four BV-related bacteria by PCR with primers for 16S ribosomal DNA including a universal Lactobacillus primer, Lactobacillus species-specific primers for L. crispatus, L. jensenii, L. gasseri, and L. iners, and BV-related bacterium-specific primers for BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Results The prevalences of L. crispatus, L. jensenii, and L. gasseri were significantly higher, while those of BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium were significantly lower in the normal group than in the BV group. Unlike other Lactobacillus species, the prevalence of L. iners did not differ between the three groups and women with L. iners were significantly more likely to have BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Linear regression analysis revealed associations of BVAB2 and Megasphaera with Nugent score, and multivariate regression analyses suggested a close relationship between Eggerthella-like bacterium and BV. Conclusion The BV-related bacteria, including BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium, are common in the vagina of pregnant Japanese women with BV. The presence of L. iners may be correlated with vaginal colonization by these BV-related bacteria. PMID:17986357

  19. Genome Sequence of Lactobacillus brevis Strain D6, Isolated from Smoked Fresh Cheese

    PubMed Central

    Uroić, Ksenija; Hynönen, Ulla; Kos, Blaženka; Šušković, Jagoda

    2016-01-01

    The autochthonous Lactobacillus brevis strain D6, isolated from smoked fresh cheese, carries a 45-kDa S-layer protein. Strain D6 has shown adhesion to extracellular matrix proteins and to Caco-2 intestinal epithelial cells, as well as immunomodulatory potential and beneficial milk technological properties. Hence, it could be used as a potential probiotic starter culture for cheese production. PMID:27056237

  20. Screening, Isolation and Identification of Probiotic Producing Lactobacillus acidophilus Strains EMBS081 & EMBS082 by 16S rRNA Gene Sequencing.

    PubMed

    Chandok, Harshpreet; Shah, Pratik; Akare, Uday Raj; Hindala, Maliram; Bhadoriya, Sneha Singh; Ravi, G V; Sharma, Varsha; Bandaru, Srinivas; Rathore, Pragya; Nayarisseri, Anuraj

    2015-09-01

    16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). Its most important advantage over the traditional biochemical characterization methods is that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel species of Probiotic Lactobacillus acidophilus. The sample was collected from pond water samples of rural and urban areas of Krishna district, Vijayawada, Andhra Pradesh, India. Subsequently, the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The sequence aligned against other species was concluded to be a novel, Probiotic L. acidophilus bacteria, further which were named L. acidophilus strain EMBS081 & EMBS082. After the sequence characterization, the isolate was deposited in GenBank Database, maintained by the National Centre for Biotechnology Information NCBI. The sequence can also be retrieve from EMBL and DDBJ repositories with accession numbers JX255677 and KC150145.

  1. Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber.

    PubMed

    Daughtry, Katheryne V; Johanningsmeier, Suzanne D; Sanozky-Dawes, Rosemary; Klaenhammer, Todd R; Barrangou, Rodolphe

    2018-09-02

    Lactobacillus buchneri is a Gram-positive, obligate heterofermentative, facultative anaerobe commonly affiliated with spoilage of food products. Notably, L. buchneri is able to metabolize lactic acid into acetic acid and 1,2-propanediol. Although beneficial to the silage industry, this metabolic capability is detrimental to preservation of cucumbers by fermentation. The objective of this study was to characterize isolates of L. buchneri purified from both industrial and experimental fermented cucumber after the onset of secondary fermentation. Genotypic and phenotypic characterization included 16S rRNA sequencing, DiversiLab® rep-PCR, colony morphology, API 50 CH carbohydrate analysis, and ability to degrade lactic acid in modified MRS and fermented cucumber media. Distinct groups of isolates were identified with differing colony morphologies that varied in color (translucent white to opaque yellow), diameter (1 mm-11 mm), and shape (umbonate, flat, circular or irregular). Growth rates in MRS revealed strain differences, and a wide spectrum of carbon source utilization was observed. Some strains were able to ferment as many as 21 of 49 tested carbon sources, including inulin, fucose, gentiobiose, lactose, mannitol, potassium ketogluconate, saccharose, raffinose, galactose, and xylose, while others metabolized as few as eight carbohydrates as the sole source of carbon. All isolates degraded lactic acid in both fermented cucumber medium and modified MRS, but exhibited differences in the rate and extent of lactate degradation. Isolates clustered into eight distinct groups based on rep-PCR fingerprints with 20 of 36 of the isolates exhibiting >97% similarity. Although isolated from similar environmental niches, significant phenotypic and genotypic diversity was found among the L. buchneri cultures. A collection of unique L. buchneri strains was identified and characterized, providing the basis for further analysis of metabolic and genomic capabilities of this

  2. Immune Regulatory Effect of Newly Isolated Lactobacillus delbrueckii from Indian Traditional Yogurt.

    PubMed

    Hong, Yi-Fan; Lee, Yoon-Doo; Park, Jae-Yeon; Jeon, Boram; Jagdish, Deepa; Jang, Soojin; Chung, Dae Kyun; Kim, Hangeun

    2015-08-01

    Lactic acid bacteria (LAB) are microorganisms that are believed to provide health benefits. Here, we isolated LAB from Indian fermented foods, such as traditional Yogurt and Dosa. LAB from Yogurt most significantly induced TNF-α and IL-1β production, whereas LAB from Dosa induced mild cytokine production. After 16S rRNA gene sequencing and phylogenetic analysis, a Yogurt-borne lactic acid bacterium was identified and classified as Lactobacillus delbrueckii subsp. bulgaricus, and it was renamed L. delbrueckii K552 for the further studies. Our data suggest that the newly isolated L. delbrueckii can be used for the treatment of immune deficiency disorders.

  3. Lactobacillus caviae sp. nov., an obligately heterofermentative bacterium isolated from the oral cavity of a guinea pig (Cavia aperea f. porcellus).

    PubMed

    Killer, Jiri; Pechar, Radko; Švec, Pavel; Salmonová, Hana; Švejstil, Roman; Geigerová, Martina; Rada, Vojtěch; Vlková, Eva; Mekadim, Chahrazed

    2017-08-01

    A Gram-stain-positive, facultatively anaerobic, and catalase- and oxidase-negative bacterial strain designated MOZM2T, having 98.4 % 16S rRNA gene sequence identity with Lactobacillus reuteri DSM 20016T, was isolated from a swab of the oral cavity of a home-bred guinea pig. Comparative analyses based on the hsp60, pheS and tuf genes confirmed L. reuteri as its closest relative species, with calculated sequence similarities of 92.8, 88.8 and 96.9 %, respectively. DNA-DNA hybridisation revealed a 42 % degree of genetic similarity between the novel strain and L. reuteri DSM 20016T. Strain MOZM2T degrades carbohydrates via the 6-phosphogluconate/phosphoketolase pathway, evidenced by its production of gas from glucose and the end products of hexose catabolism. Comparative analysis of the cellular fatty acid profiles determined significant differences between MOZM2T and L. reuteri DSM 20016T in their proportions of C8 : 0, C14 : 1, C17 : 0, C18 : 2ω6t and C20 : 0 fatty acids. Results of genotypic analyses also demonstrated differences between these two strains. They also differed in DNA G+C content, and some biochemical and physiological characteristics. We therefore believe that the examined bacterial isolate should be considered as a new taxon within the group of obligately heterofermentative lactobacilli. The species name Lactobacillus caviae sp. nov. is proposed, of which the type strain is MOZM2T (=CCM 8609T=DSM 100239T=LMG 28780T).

  4. Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle.

    PubMed

    Kudo, Yuko; Oki, Kaihei; Watanabe, Koichi

    2012-11-01

    Although four strains of bacteria isolated from sunki, a traditional Japanese, non-salted pickle, were initially identified as Lactobacillus delbrueckii, the molecular and phenotypic characteristics of the strains did not match those of any of the four recognized subspecies of L. delbrueckii. Together, the results of phenotypic characterization, DNA-DNA hybridizations (in which the relatedness values between the novel strains and type strains of the recognized subspecies of L. delbrueckii were all >88.7%) and 16S rRNA gene sequence, amplified fragment length polymorphism (AFLP) and whole-cell MALDI-TOF/MS spectral pattern analyses indicated that the four novel strains represented a single, novel subspecies, for which the name Lactobacillus delbrueckii subsp. sunkii subsp. nov. is proposed. The type strain is YIT 11221(T) (=JCM 17838(T) =DSM 24966(T)).

  5. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  6. Genome Sequence of Lactobacillus brevis Strain D6, Isolated from Smoked Fresh Cheese.

    PubMed

    Kant, Ravi; Uroić, Ksenija; Hynönen, Ulla; Kos, Blaženka; Šušković, Jagoda; Palva, Airi

    2016-04-07

    The autochthonousLactobacillus brevisstrain D6, isolated from smoked fresh cheese, carries a 45-kDa S-layer protein. Strain D6 has shown adhesion to extracellular matrix proteins and to Caco-2 intestinal epithelial cells, as well as immunomodulatory potential and beneficial milk technological properties. Hence, it could be used as a potential probiotic starter culture for cheese production. Copyright © 2016 Kant et al.

  7. Complete Genome Sequence of the Yogurt Isolate Lactobacillus delbrueckii subsp. bulgaricus ACA-DC 87.

    PubMed

    Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-08-24

    Lactobacillus delbrueckii subsp. bulgaricus is widely used in the production of yogurt and cheese. In this study, we present the complete genome sequence of L. delbrueckii subsp. bulgaricus ACA-DC 87 isolated from traditional Greek yogurt. Whole-genome analysis may reveal desirable technological traits of the strain for dairy fermentations. Copyright © 2017 Alexandraki et al.

  8. Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel.

    PubMed

    Diaz, Maria; Del Rio, Beatriz; Sanchez-Llana, Esther; Ladero, Victor; Redruello, Begoña; Fernández, María; Martin, M Cruz; Alvarez, Miguel A

    2016-10-01

    The consumption of food containing large amounts of histamine can lead to histamine poisoning. Cheese is one of the most frequently involved foods. Histamine, one of the biogenic amines (BAs) exhibiting the highest safety risk, accumulates in food contaminated by microorganisms with histidine decarboxylase activity. The origin of these microorganisms may be very diverse with contamination likely occurring during post-ripening processing, but the microorganisms involved during this manufacturing step have never been identified. The present work reports the isolation of 21 histamine-producing Lactobacillus parabuchneri strains from a histamine-containing grated cheese. PCR revealed that every isolate carried the histidine decarboxylase gene (hdcA). Eight lineages were identified based on the results of genome PFGE restriction analysis plus endonuclease restriction profile analysis of the carried plasmids. Members of all lineages were able to form biofilms on polystyrene and stainless steel surfaces. L. parabuchneri is therefore an undesirable species in the dairy industry; the biofilms it can produce on food processing equipment represent a reservoir of histamine-producing bacteria and thus a source of contamination of post-ripening-processed cheeses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties.

    PubMed

    Klopper, Kyle B; Deane, Shelly M; Dicks, Leon M T

    2018-03-01

    Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).

  10. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

    PubMed

    Hammer, Austin J; Walters, Amber; Carroll, Courtney; Newell, Peter D; Chaston, John M

    2017-07-06

    The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429 bp, with 3,454 predicted genes. Copyright © 2017 Hammer et al.

  11. Lactobacillus perolens sp. nov., a soft drink spoilage bacterium.

    PubMed

    Back, W; Bohak, I; Ehrmann, M; Ludwig, W; Pot, B; Kersters, K; Schleifer, K H

    1999-09-01

    Lactic acid bacteria that are able to spoil soft drinks with low pH comprise a limited number of acidotolerant or acidophilic species of the genera Lactobacillus, Leuconostoc and Weissella. Various Gram-positive rods causing turbidity and off-flavour were isolated from orange lemonades. Physiological and biochemical studies including SDS-PAGE whole-cell protein analysis showed a homogeneous group of organisms. The 16S rRNA gene sequence analysis of two representatives revealed that they formed a phylogenetically distinct line within the genus Lactobacillus. All strains were facultatively heterofermentative, producing L-lactic acid. Based on the data presented a new species L. perolens is proposed. The name refers to the off-flavour caused by high amounts of diacetyl. The type strain of L. perolens is DSM 12744 (LMG 18936). A rRNA targeted oligonucleotide probe was designed that allows a fast and reliable identification of L. perolens.

  12. Biodiversity among Lactobacillus helveticus Strains Isolated from Different Natural Whey Starter Cultures as Revealed by Classification Trees

    PubMed Central

    Gatti, Monica; Trivisano, Carlo; Fabrizi, Enrico; Neviani, Erasmo; Gardini, Fausto

    2004-01-01

    Lactobacillus helveticus is a homofermentative thermophilic lactic acid bacterium used extensively for manufacturing Swiss type and aged Italian cheese. In this study, the phenotypic and genotypic diversity of strains isolated from different natural dairy starter cultures used for Grana Padano, Parmigiano Reggiano, and Provolone cheeses was investigated by a classification tree technique. A data set was used that consists of 119 L. helveticus strains, each of which was studied for its physiological characters, as well as surface protein profiles and hybridization with a species-specific DNA probe. The methodology employed in this work allowed the strains to be grouped into terminal nodes without difficult and subjective interpretation. In particular, good discrimination was obtained between L. helveticus strains isolated, respectively, from Grana Padano and from Provolone natural whey starter cultures. The method used in this work allowed identification of the main characteristics that permit discrimination of biotypes. In order to understand what kind of genes could code for phenotypes of technological relevance, evidence that specific DNA sequences are present only in particular biotypes may be of great interest. PMID:14711641

  13. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1.

    PubMed

    Leonard, Michael T; Valladares, Ricardo B; Ardissone, Alexandria; Gonzalez, Claudio F; Lorca, Graciela L; Triplett, Eric W

    2014-05-08

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model.

  14. Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces

    PubMed Central

    Park, Sun-Young; Cho, Seong-A; Kim, Sae-Hun; Lim, Sang-Dong

    2014-01-01

    Obesity is strongly associated with several metabolic and chronic diseases and has become a major public health problem of worldwide concern. This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum Q180. Lactobacillus plantarum Q180 was isolated from the faces of healthy adults and found to have a lipase inhibitory activity of 83.61±2.32% and inhibited adipocyte differentiation of 3T3-L1 cells (14.63±1.37%) at a concentration of 100 μg/mL. The strain was investigated for its physiological characteristics. The optimum growth temperature of L. plantarum Q180 was 37℃. Lactobacillus plantarum Q180 showed higher sensitivity to novobiocin in a comparison of fifteen different antibiotics and showed the highest resistance to rifampicin, polymyxin B and vancomycin. The strain showed higher β-galactosidase and N-acetyl-β-glucosaminidase activities. It also did not produce carcinogenic enzymes such as β-glucuronidase. The survival rate of L. plantarum Q180 in MRS broth containing 0.3% bile was 97.8%. Moreover, the strain showed a 97.2% survival rate after incubation for 3 h in pH 2.0. Lactobacillus plantarum Q180 was displayed resistance to Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus with rates of 55.6%, 38.0% and 47.6%, respectively. These results demonstrate that L. plantarum Q180 has potential as a probiotic with anti-obesity effects. PMID:26761499

  15. Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay.

    PubMed

    Bottari, Benedetta; Felis, Giovanna E; Salvetti, Elisa; Castioni, Anna; Campedelli, Ilenia; Torriani, Sandra; Bernini, Valentina; Gatti, Monica

    2017-07-01

    Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.

  16. Complete genome sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated from fermented soybean.

    PubMed

    Liu, Chen-Jian; Wang, Rui; Gong, Fu-Ming; Liu, Xiao-Feng; Zheng, Hua-Jun; Luo, Yi-Yong; Li, Xiao-Ran

    2015-12-01

    Lactobacillus plantarum is an important probiotic and is mostly isolated from fermented foods. We sequenced the genome of L. plantarum strain 5-2, which was derived from fermented soybean isolated from Yunnan province, China. The strain was determined to contain 3114 genes. Fourteen complete insertion sequence (IS) elements were found in 5-2 chromosome. There were 24 DNA replication proteins and 76 DNA repair proteins in the 5-2 genome. Consistent with the classification of L. plantarum as a facultative heterofermentative lactobacillus, the 5-2 genome encodes key enzymes required for the EMP (Embden-Meyerhof-Parnas) and phosphoketolase (PK) pathways. Several components of the secretion machinery are found in the 5-2 genome, which was compared with L. plantarum ST-III, JDM1 and WCFS1. Most of the specific proteins in the four genomes appeared to be related to their prophage elements. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Application of culture-dependent and culture-independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains.

    PubMed

    Hamet, Maria Fernanda; Londero, Alejandra; Medrano, Micaela; Vercammen, Elisabeth; Van Hoorde, Koenraad; Garrote, Graciela L; Huys, Geert; Vandamme, Peter; Abraham, Analía G

    2013-12-01

    The biological and technological characteristics of kefiran as well as its importance in grain integrity led us to analyze the microbial kefir grain consortium with focus on Lactobacillus kefiranofaciens. The presence of L. kefiranofaciens in the nine kefir grains studied was demonstrated by denaturing gradient gel electrophoresis. By culture dependent methods applying a methodology focused on the search of this species, 22 isolates with typical morphology were obtained and identified applying a combination of SDS-PAGE of whole cell proteins, (GTG)5-PCR and sequence analysis of the housekeeping gene encoding the α-subunit of bacterial phenylalanyl-tRNA synthase (pheS). This polyphasic approach allowed the reliable identification of 11 L. kefiranofaciens, 5 Lactobacillus paracasei, 4 Lactobacillus kefiri and 2 Lactobacillus parakefiri isolates. Isolated L. kefiranofaciens strains produced polysaccharide in strain-dependent concentrations and EPS produced by them also differed in the degree of polymerization. The isolation and accurate identification of L. kefiranofaciens is relevant taking into account the important role of this microorganism in the grain ecosystem as well as its potential application as starter in food fermentations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Complete Genome Sequence of Lactobacillus salivarius CECT 5713, a Probiotic Strain Isolated from Human Milk and Infant Feces▿

    PubMed Central

    Jiménez, Esther; Martín, Rocío; Maldonado, Antonio; Martín, Virginia; Gómez de Segura, Aranzazu; Fernández, Leonides; Rodríguez, Juan M.

    2010-01-01

    Lactobacillus salivarius is a homofermentative lactic acid bacterium and is frequently isolated from mucosal surfaces of healthy humans. L. salivarius CECT 5713, a strain isolated simultaneously from breast milk and infant feces of a healthy mother-infant pair, has immunomodulatory, anti-inflammatory, and anti-infectious properties, as revealed by several in vitro and in vivo assays. Here, we report its complete and annotated genome sequence. PMID:20675488

  19. Characterization and purification of a bacteriocin from Lactobacillus paracasei subsp. paracasei BMK2005, an intestinal isolate active against multidrug-resistant pathogens.

    PubMed

    Bendjeddou, Kamel; Fons, Michel; Strocker, Pierre; Sadoun, Djamila

    2012-04-01

    A strain of Lactobacillus paracasei subsp. paracasei BMK2005 isolated from healthy infant faeces has shown a remarkable antibacterial activity against 32 bacterial pathogenic strains of human clinical isolates. Among them, 13 strains belonging to species of Escherichia coli, Citrobacter freundii, Citrobacter diversus, Klebsiella oxytoca, Enterobacter cloacae and Pseudomonas aeruginosa were resistant to Cefotaxime (CTX) and Ceftazidime (CAZ), and 4 strains of Staphylococcus aureus were resistant to Methicillin (MRSA). This antibacterial activity was attributed to a bacteriocin designated as Paracaseicin A. It was heat-stable up to 120°C for 5 min and active within the pH range of 2-5. Its activity was lost when treated with proteases, which reveals its proteinaceous nature. This bacteriocin was successfully purified only by two steps of reversed phase chromatography. Its molecular mass, determined by mass spectrometry analysis, was 2,462.5 Da. To our knowledge, the present study is the first report on characterization and purification of a bacteriocin, produced by a L. paracasei subsp. paracasei strain exhibiting an antibacterial activity against various multidrug-resistant species of Gram-positive and Gram-negative bacteria, which reveals its potential for use in prevention or treatment of infections caused by multidrug-resistant species especially in cases of antibiotics-associated diarrhea (AAD).

  20. Draft Genome Sequence of Lactobacillus sp. Strain TCF032-E4, Isolated from Fermented Radish.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-07-30

    Here, we report the draft genome sequence of Lactobacillus sp. strain TCF032-E4 (= CCTCC AB2015090 = DSM 100358), isolated from a Chinese fermented radish. The total length of the 57 contigs is about 2.9 Mb, with a G+C content of 43.5 mol% and 2,797 predicted coding sequences (CDSs). Copyright © 2015 Mao et al.

  1. Comparative genomics of Lactobacillus

    PubMed Central

    Kant, Ravi; Blom, Jochen; Palva, Airi; Siezen, Roland J.; de Vos, Willem M.

    2011-01-01

    Summary The genus Lactobacillus includes a diverse group of bacteria consisting of many species that are associated with fermentations of plants, meat or milk. In addition, various lactobacilli are natural inhabitants of the intestinal tract of humans and other animals. Finally, several Lactobacillus strains are marketed as probiotics as their consumption can confer a health benefit to host. Presently, 154 Lactobacillus species are known and a growing fraction of these are subject to draft genome sequencing. However, complete genome sequences are needed to provide a platform for detailed genomic comparisons. Therefore, we selected a total of 20 genomes of various Lactobacillus strains for which complete genomic sequences have been reported. These genomes had sizes varying from 1.8 to 3.3 Mb and other characteristic features, such as G+C content that ranged from 33% to 51%. The Lactobacillus pan genome was found to consist of approximately 14 000 protein‐encoding genes while all 20 genomes shared a total of 383 sets of orthologous genes that defined the Lactobacillus core genome (LCG). Based on advanced phylogeny of the proteins encoded by this LCG, we grouped the 20 strains into three main groups and defined core group genes present in all genomes of a single group, signature group genes shared in all genomes of one group but absent in all other Lactobacillus genomes, and Group‐specific ORFans present in core group genes of one group and absent in all other complete genomes. The latter are of specific value in defining the different groups of genomes. The study provides a platform for present individual comparisons as well as future analysis of new Lactobacillus genomes. PMID:21375712

  2. Bacteriocins from Lactobacillus plantarum – production, genetic organization and mode of action

    PubMed Central

    Todorov, Svetoslav D.

    2009-01-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented. PMID:24031346

  3. Lactobacillus cypricasei Lawson et al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et al. 2000.

    PubMed

    Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean

    2006-07-01

    The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.

  4. Effect of oligosaccharides on the growth of Lactobacillus delbrueckii subsp. bulgaricus strains isolated from dairy products.

    PubMed

    Ignatova, Tseteslava; Iliev, Ilia; Kirilov, Nikolai; Vassileva, Tonka; Dalgalarrondo, Michèle; Haertlé, Thomas; Chobert, Jean-Marc; Ivanova, Iskra

    2009-10-28

    Eighteen lactic acid bacteria (LAB) strains isolated from dairy products, all identified as Lactobacillus delbrueckii subsp. bulgaricus, were tested for their ability to grow on three different oligosaccharides: fructo-oligosaccharides (FOS), gluco-oligosaccharides (GOS) and galacto-oligosaccharides (GalOS). The growth of LAB on different oligosaccharides was very different. Study of the antimicrobial activities of these LAB indicated that the system of uptake of unusual sugars influenced in a specific way the production of antimicrobial substances (bacteriocins) specific against gram-negative bacteria. The added oligosaccharides induced LAB to form end-products of a typical mixed acid fermentation. The utilization of different types of oligosaccharides may help to explain the ability of Lactobacillus strains to compete with other bacteria in the ecosystem of the human gastro-intestinal tract.

  5. In vitro antifungal, probiotic, and antioxidant functional properties of a novel Lactobacillus paraplantarum isolated from fermented dates in Saudi Arabia.

    PubMed

    Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah

    2017-12-01

    Fermented foods produced using dates are used in Gulf countries as beneficial and healthful foods. The beneficial microbial flora in fermented dates contributes to maintaining the nutritional properties of dates by preventing the growth of spoilage fungi. Here, we examined the antifungal, probiotic, and antioxidant properties of the novel Lactobacillus strain D-3 isolated from fermented dates. Analyzing the morphological, physiological, and biochemical characteristics of this strain demonstrated that it was similar to Lactobacillus species, and molecular-level amplification of the 16S rRNA gene showed that it belonged to Lactobacillus paraplantarum. Under shake flask cultivation using date juice, the strain produced significant amounts of ethanol and lactic, succinic, and acetic acids. Purification of benzoic acid extracted from the extracellular fermentation medium was confirmed by nuclear magnetic resonance, and infrared and mass spectral data revealed minimum inhibitory concentration values of 10, 20, 10, 5, and 10 mg mL -1 for Aspergillus fumigates, Curvularia lunata, Fusarium oxysporum, Gibberella moniliformis, and Penicillium chrysogenum, respectively. The strain showed several advantages, including the ability to survive under conditions similar to the gastrointestinal tract (low pH, bile salts, and antimicrobial susceptibility) and high levels of extracellular enzyme activities. The strain's growth patterns under various concentrations of H 2 O 2 and its scavenging properties towards hydroxyl radical (64.85%) and DPPH (84.97%) were also interesting properties. The antifungal, probiotic, and antioxidant properties of L. paraplantarum D3 may provide health benefits to consumers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    PubMed

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture.

  7. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products.

    PubMed

    Guo, Huiling; Pan, Lin; Li, Lina; Lu, Jie; Kwok, Laiyu; Menghe, Bilige; Zhang, Heping; Zhang, Wenyi

    2017-03-01

    Lactobacilli are widely used as starter cultures or probiotics in yoghurt, cheese, beer, wine, pickles, preserved food, and silage. They are generally recognized as safe (GRAS). However, recent studies have shown that some lactic acid bacteria (LAB) strains carry antibiotic resistance genes and are resistant to antibiotics. Some of them may even transfer their intrinsic antibiotic resistance genes to other LAB or pathogens via horizontal gene transfer, thus threatening human health. A total of 33 Lactobacillus strains was isolated from fermented milk collected from different areas of China. We analyzed (1) their levels of antibiotic resistance using a standardized dilution method, (2) their antibiotic resistance gene profiles by polymerase chain reaction (PCR) using gene-specific primers, and (3) the transferability of some of the detected resistance markers by a filter mating assay. All Lactobacillus strains were found to be resistant to vancomycin, but susceptible to gentamicin, linezolid, neomycin, erythromycin, and clindamycin. Their susceptibilities to tetracycline, kanamycin, ciprofloxacin, streptomycin, quinupristin/dalfopristin, trimethoprim, ampicillin, rifampicin, and chloramphenicol was different. Results from our PCR analysis revealed 19 vancomycin, 10 ciprofloxacin, and 1 tetracycline-resistant bacteria that carried the van(X), van(E), gyr(A), and tet(M) genes, respectively. Finally, no transferal of the monitored antibiotic resistance genes was observed in the filter mating assay. Taken together, our study generated the antibiotic resistance profiles of some milk-originated lactobacilli isolates and preliminarily assessed their risk of transferring antibiotic gene to other bacteria. The study may provide important data concerning the safe use of LAB. © 2017 Institute of Food Technologists®.

  8. Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh.

    PubMed

    Anandharaj, Marimuthu; Sivasankari, Balayogan; Santhanakaruppu, Rajendran; Manimaran, Muthusamy; Rani, Rizwana Parveen; Sivakumar, Subramaniyan

    2015-06-01

    This study sought to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from traditionally fermented south Indian koozh and gherkin (cucumber). A total of 51 LAB strains were isolated, among which four were identified as Lactobacillus spp. and three as Weissella spp. The strains were screened for their probiotic potential. All isolated Lactobacillus and Weissella strains were capable of surviving under low pH and bile salt conditions. GI9 and FKI21 were able to survive at pH 2.0 and 0.50% bile salt for 3 h without losing their viability. All LAB strains exhibited inhibitory activity against tested pathogens and were able to deconjugate bile salt. Higher deconjugation was observed in the presence of sodium glycocholate (P < 0.05). Strain FKI21 showed maximum auto-aggregation (79%) and co-aggregation with Escherichia coli MTCC 1089 (68%). Exopolysaccharide production of LAB strains ranged from 68.39 to 127.12 mg/L (P < 0.05). Moreover, GI9 (58.08 μg/ml) and FKI21 (56.25 μg/ml) exhibited maximum cholesterol reduction with bile salts. 16S rRNA sequencing confirmed GI9 and FKI21 as Lactobacillus crispatus and Weissella koreensis, respectively. This is the first study to report isolation of W. koreensis FKI21 from fermented koozh and demonstrates its cholesterol-reducing potential. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine.

    PubMed

    Dias, Rita; Vilas-Boas, Eduardo; Campos, Francisco M; Hogg, Tim; Couto, José António

    2015-08-01

    This work evaluated the effect of lysozyme on lactobacilli isolated from Port wine. Bacterial growth experiments were conducted in MRS/TJ medium and inactivation studies were performed in phosphate buffer (KH2PO4), distilled water and wine supplemented with different concentrations of lysozyme. The response of bacteria to lysozyme was found to be highly strain dependent. Some strains of Lactobacillus hilgardii together with Lactobacillus collinoides and Lactobacillus fructivorans were found to be resistant to concentrations of lysozyme as high as 2000 mg/L. It was observed that among the L. hilgardii taxon the resistant strains possess an S-layer coat. Apparently, the strains of L. collinoides and L. fructivorans studied are also S-layer producers as suggested by the total protein profile obtained by SDS-PAGE. Thus, the hypothetical protective role of the S-layer against the action of lysozyme was investigated. From the various treatments used to remove the protein from the surface of the cells, the one employing LiCl (5 M) was the most effective. LiCl pre-treated cells exposed to lysozyme (2000 mg/L) in KH2PO4 buffer maintained its resistance. However, when cells were suspended in distilled water an increased sensitivity to lysozyme was observed. Moreover, it was found that the addition of ethanol (20% v/v) to the suspension medium (distilled water) triggered a strong inactivation effect especially on cells previously treated with LiCl (reduction of >6 CFU log cycles). The results suggest that the S-layer exerts a protective effect against lysozyme and that the cell suspension medium influences the bacteriolysis efficiency. It was also noted that ethanol enhances the inactivation effect of lysozyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biodiversity and γ-Aminobutyric Acid Production by Lactic Acid Bacteria Isolated from Traditional Alpine Raw Cow's Milk Cheeses

    PubMed Central

    Nardin, Tiziana; Schiavon, Silvia; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M.

    2015-01-01

    “Nostrano-cheeses” are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus. PMID:25802859

  11. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    PubMed

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  12. Comparison of three tannases cloned from closely related lactobacillus species: L. Plantarum, L. Paraplantarum, and L. Pentosus

    PubMed Central

    2014-01-01

    Background Tannase (tannin acyl hydrolase, EC 3.1.1.20) specifically catalyzes the hydrolysis of the galloyl ester bonds in hydrolyzable tannins to release gallic acid. The enzyme was found not only in fungal species but also many bacterial species including Lactobacillus plantarum, L. paraplantarum, and L. pentosus. Recently, we identified and expressed a tannase gene of L. plantarum, tanLpl, to show remarkable differences to characterized fungal tannases. However, little is known about genes responsible for tannase activities of L. paraplantarum and L. pentosus. We here identify the tannase genes (i.e. tanLpa and tanLpe) of the above lactobacilli species, and describe their molecular diversity among the strains as well as enzymological difference between species inclusive of L. plantarum. Results The genes encoding tannase, designated tanLpa and tanLpe, were cloned from Lactobacillus paraplantarum NSO120 and Lactobacillus pentosus 21A-3, which shared 88% and 72% amino acid identity with TanLpl, cloned from Lactobacillus plantarum ATCC 14917T, respectively. These three enzymes could comprise a novel tannase subfamily of independent lineage, because no other tannases in the databases share significant sequence similarity with them. Each of tanLpl, tanLpa, and tanLpe was expressed in Bacillus subtilis RIK 1285 and recombinant enzymes were secreted and purified. The Km values of the enzymes on each galloyl ester were comparable; however, the kcat/Km values of TanLpa for EGCg, ECg, Cg, and GCg were markedly higher than those for TanLpl and TanLpe. Their enzymological properties were compared to reveal differences at least in substrate specificity. Conclusion Two tannase genes responsible for tannase activities of L. paraplantarum and L. pentosus were identified and characterized. TanLpl, TanLpa and TanLpe forming a phylogenetic cluster in the known bacterial tannase genes and had a limited diversity in each other. Their enzymological properties were compared to reveal

  13. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains

    PubMed Central

    Garcia, Estefânia F.; Luciano, Winnie A.; Xavier, Danilo E.; da Costa, Whyara C. A.; de Sousa Oliveira, Kleber; Franco, Octávio L.; de Morais Júnior, Marcos A.; Lucena, Brígida T. L.; Picão, Renata C.; Magnani, Marciane; Saarela, Maria; de Souza, Evandro L.

    2016-01-01

    This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains. PMID:27625647

  14. Immune system stimulation in rats by Lactobacillus sp. isolates from Raffia wine (Raphia vinifera).

    PubMed

    Flore, Tiepma N E; François, Zambou N; Félicité, Tchouanguep M

    2010-01-01

    The immune system consists of organs and several cell types. Antigen interaction with these cells induces a cellular immune response mediated by activated cells. The effects of lactic acid bacteria on the systemic immune response and on the secretory immune system are described. The current investigation sets out to examine the possible effects of isolated wine lacto-bacilli upon various hematologic and immunologic parameters in rats. We have fed rats with probiotic isolates from Raffia wine and challenged with castor oil; two control groups were fed with castor oil and others were not. We counted blood cells at the end of the experiment; all isolates seemed to cause a decrease of circulating white blood cells. The percentage of lymphocytes and the total protein in the spleen increased in the treated animals; also a normal aspect of faeces was observed compared to the control. These isolates of Lactobacillus seem to occur to immune cell-mediated responses in rats.

  15. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides.

    PubMed

    Knockaert, Dries; Raes, Katleen; Wille, Christophe; Struijs, Karin; Van Camp, John

    2012-08-30

    Food-isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L⁻¹), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4-vinylguaiacol (4-VG) and hydroferulic acid (HFA). Conversion to 4-VG started simultaneously with the degradation of FA, while formation of HFA started in the mid-exponential phase. Lactobacillus collinoides only formed 4-VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria. Copyright © 2012 Society of Chemical Industry.

  16. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  17. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    PubMed

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  18. Discrimination of probiotic Lactobacillus strains for poultry by repetitive sequenced-based PCR fingerprinting.

    PubMed

    Lee, Chin Mei; Sieo, Chin Chin; Cheah, Yoke-Kqueen; Abdullah, Norhani; Ho, Yin Wan

    2012-02-01

    Four repetitive element sequence-based polymerase chain reaction (rep-PCR) methods, namely repetitive extragenic palindromic PCR (REP-PCR), enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), polytrinucleotide (GTG)₅ -PCR and BOX-PCR, were evaluated for the molecular differentiation of 12 probiotic Lactobacillus strains previously isolated from the gastrointestinal tract of chickens and used as a multistrain probiotic. This study represents the first analysis of the comparative efficacy of these four rep-PCR methods and their combination (composite rep-PCR) in the molecular typing of Lactobacillus strains based on a discriminatory index (D). Species-specific and strain-specific profiles were observed from rep-PCR. From the numerical analysis of composite rep-PCR, BOX-PCR, (GTG)₅ -PCR, REP-PCR and ERIC-PCR, D values of 0.9118, 0.9044, 0.8897, 0.8750 and 0.8529 respectively were obtained. Composite rep-PCR analysis was the most discriminative method, with eight Lactobacillus strains, namely L. brevis ATCC 14869(T) , L. reuteri C 10, L. reuteri ATCC 23272(T) , L. gallinarum ATCC 33199(T) , L. salivarius ATCC 11741(T) , L. salivarius I 24, L. panis JCM 11053(T) and L. panis C 17, being differentiated at the strain level. Composite rep-PCR analysis is potentially a useful fingerprinting method to discriminate probiotic Lactobacillus strains isolated from the gastrointestinal tract of chickens. Copyright © 2011 Society of Chemical Industry.

  19. Distinctive proteolytic activity of cell envelope proteinase of Lactobacillus helveticus isolated from airag, a traditional Mongolian fermented mare's milk.

    PubMed

    Miyamoto, Mari; Ueno, Hiroshi M; Watanabe, Masayuki; Tatsuma, Yumi; Seto, Yasuyuki; Miyamoto, Taku; Nakajima, Hadjime

    2015-03-16

    Airag is a traditional fermented milk of Mongolia that is usually made from raw mare's milk. Lactobacillus helveticus is one of the lactic acid bacteria most frequently isolated from airag. In this study, we investigated the genetic and physiological characteristics of L. helveticus strains isolated from airag and clarified their significance in airag by comparing them with strains from different sources. Six strains of L. helveticus were isolated from five home-made airag samples collected from different regions of Mongolia. The optimal temperature for acidification in skim milk was 30 to 35°C for all the Mongolian strains, which is lower than those for the reference strains (JCM 1554 and JCM 1120(T)) isolated from European cheeses. All of the strains had a prtH1-like gene encoding a variant type of cell envelope proteinase (CEP). The CEP amino acid sequence in Snow Brand Typeculture (SBT) 11087 isolated from airag shared 71% identity with PrtH of L. helveticus CNRZ32 (AAD50643.1) but 98% identity with PrtH of Lactobacillus kefiranofaciens ZW3 (AEG40278.1) isolated from a traditional fermented milk in Tibet. The proteolytic activities of the CEP from SBT11087 on artificial substrate (N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide) and pure casein were measured using an intact-cell degradation assay. The activity of the CEP from SBT11087 was observed to be weak and exhibited a lower optimal temperature (40°C) than those from the reference strains (45-50°C). The specificity of the SBT11087 CEP for αS1-casein was typical of the CEPs previously reported in L. helveticus, as determined through the degradation profiles obtained through gel electrophoresis and mass spectrometry analyses. In contrast, the degradation profile of β-casein revealed that the CEP of SBT11087 primarily hydrolyzes its C-terminal domain and hydrolyzed nine of the 16 cleavage sites shared among the CEPs of other L. helveticus strains. Thus, the CEP of SBT11087 is distinct from those from

  20. Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice.

    PubMed

    Youn, Ha-Na; Lee, Dong-Hun; Lee, Yu-Na; Park, Jae-Keun; Yuk, Seong-Su; Yang, Si-Yong; Lee, Hyun-Jeong; Woo, Seo-Hyung; Kim, Hyoung-Moon; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2012-01-01

    Influenza virus infections continue to be a significant public health problem. For improved therapies and preventive measures against influenza, there has been an increased tendency in modern medicine involving the use of probiotics. In this study, we compared the protective efficacy of various live and dead Lactobacillus species against challenge with influenza virus in mice according to the administration route and dose. In addition, to understand the underlying mechanism behind this clinical protective effect, we performed immunologic assays including examination of IgA levels and cytokine profiles in the lung. The survival rate of mice receiving intranasal administration of Lactobacillus was higher than after oral administration, and administration of live bacteria was more protective than of dead bacteria. The lung levels of interleukin (IL)-12 and IgA were significantly increased (P<0.05). Conversely, the levels of the pro-inflammatory cytokines tumor necrosis factor-alpha and IL-6 were decreased. Interestingly, there were huge differences in protective effects of various Lactobacillus strains on influenza virus infection. Therefore, for clinical applications, selection of effective strains could be critical and individually optimized application regimens of the selected strains are required. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Identification and characterization of the dominant lactic acid bacteria isolated from traditional fermented milk in Mongolia.

    PubMed

    Sun, Z H; Liu, W J; Zhang, J C; Yu, J; Gao, W; Jiri, M; Menghe, B; Sun, T S; Zhang, H P

    2010-05-01

    Five samples of Airag and 20 of Tarag (both in Mongolia) were collected from scattered households. One hundred strains of lactic acid bacteria (LAB) were isolated and identified from these samples according to phenotypic characterization and 16S rRNA gene sequence analysis. Eighty-five isolates belonged to the genus Lactobacillus, 15 being classified as coccoid LAB. All isolates belonged to 5 genera and 11 to different species and subspecies. Lactobacillus (Lb.) helveticus was predominant population in Airag samples, Lb. fermentum and Lb. helveticus were the major LAB microflora in Tarag.

  2. Characterization of Oaxaca raw milk cheese microbiota with particular interest in Lactobacillus strains.

    PubMed

    Caro, Irma; Mateo, Javier; Sandoval, María H; Soto, Sergio; García-Armesto, María R; Castro, José M

    2013-06-01

    The aim of this work was to identify and characterize lactobacilli strains from Mexican Oaxaca cheese. Twenty-seven lactobacilli isolated from Oaxaca cheese were identified at species level by 16S rRNA sequencing. Selected isolates were further characterized by ribotyping. Isolates were screened, among others, by acidifying capacity, antibiotic resistance, and activity against pathogens. Lactobacillus plantarum was predominant in Oaxaca cheese. The intraspecies variability of Lb. plantarum isolates was great. Multiple antibiotic resistances were observed. Eight isolates showed antimicrobial activity against the pathogenic species tested. Four Lb. plantarum strains showing low antibiotic resistance index, antimicrobial activity against enterotoxigenic Staphylococcus aureus and Listeria innocua stains, amine-negative decarboxylase activity, and resistance to NaCl and bile salt solutions, could be preselected to complete studies focused on designing a culture for use in pasteurized-milk Oaxaca cheese manufacturing. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella Species in Human Feces by Using Group-Specific PCR Primers and Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Walter, Jens; Hertel, Christian; Tannock, Gerald W.; Lis, Claudia M.; Munro, Karen; Hammes, Walter P.

    2001-01-01

    Denaturing gradient gel electrophoresis (DGGE) of DNA fragments generated by PCR with 16S ribosomal DNA-targeted group-specific primers was used to detect lactic acid bacteria (LAB) of the genera Lactobacillus, Pediococcus, Leuconostoc, and Weissella in human feces. Analysis of fecal samples of four subjects revealed individual profiles of DNA fragments originating not only from species that have been described as intestinal inhabitants but also from characteristically food-associated bacteria such as Lactobacillus sakei, Lactobacillus curvatus, Leuconostoc mesenteroides, and Pediococcus pentosaceus. Comparison of PCR-DGGE results with those of bacteriological culture showed that the food-associated species could not be cultured from the fecal samples by plating on Rogosa agar. On the other hand, all of the LAB species cultured from feces were detected in the DGGE profile. We also detected changes in the types of LAB present in human feces during consumption of a milk product containing the probiotic strain Lactobacillus rhamnosus DR20. The analysis of fecal samples from two subjects taken before, during, and after administration of the probiotic revealed that L. rhamnosus was detectable by PCR-DGGE during the test period in the feces of both subjects, whereas it was detectable by culture in only one of the subjects. PMID:11375166

  4. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    PubMed

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm.

    PubMed

    Krzyściak, Wirginia; Kościelniak, Dorota; Papież, Monika; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Kołodziej, Iwona; Bystrowska, Beata; Jurczak, Anna

    2017-11-14

    The aim of the study was to evaluate the anti-cariogenic effects of Lactobacillus salivarius by reducing pathogenic species and biofilm mass in a double-species biofilm model. Coexistence of S. mutans with C. albicans can cause dental caries progression or recurrence of the disease in the future. Fifty-nine children with diagnosed early childhood caries (ECC) were recruited onto the study. The condition of the children's dentition was defined according to the World Health Organization guidelines. The participants were divided into children with initial enamel demineralization and children showing dentin damage. The study was performed on the S. mutans and C. albicans clinical strains, isolated from dental plaque of patients with ECC. The effect of a probiotic containing Lactobacillus salivarius on the ability of S. mutans and C. albicans to produce a double-species biofilm was investigated in an in vitro model. The biomass of the formed/non-degraded biofilm was analyzed on the basis of its crystal violet staining. The number of colonies of S. mutans and C. albicans (CFU/mL, colony forming units/mL) forming the biofilm was determined. Microorganism morphology in the biofilm was evaluated using a scanning electron microscope (SEM). In vitro analysis demonstrated that the presence of S. mutans increased the number of C. albicans colonies (CFU/mL); the double-species biofilm mass and hyphal forms produced in it by the yeast. L. salivarius inhibited the cariogenic biofilm formation of C. albicans and S. mutans . Under the influence of the probiotic; the biofilm mass and the number of S. mutans ; C. albicans and S. mutans with C. albicans colonies in the biofilm was decreased. Moreover; it can be noted that after the addition of the probiotic; fungi did not form hyphae or germ tubes of pathogenic potential. These results suggest that L. salivarius can secrete intermediates capable of inhibiting the formation of cariogenic S. mutans and C. albicans biofilm; and may

  6. Identification of novel anti-inflammatory probiotic strains isolated from pulque.

    PubMed

    Torres-Maravilla, Edgar; Lenoir, Marion; Mayorga-Reyes, Lino; Allain, Thibault; Sokol, Harry; Langella, Philippe; Sánchez-Pardo, María E; Bermúdez-Humarán, Luis G

    2016-01-01

    Probiotics are live microorganisms which when administered in adequate amounts, confer health benefits on the host. Their use is more and more widespread for both prevention and treatment of diseases, including traveler’s diarrhea and inflammatory bowel diseases (IBDs). In this work, we isolated and characterized novel candidate probiotic strains from pulque (xaxtle), a traditional Mexican alcoholic fermented beverage. A total of 14 strains were obtained from xaxtle samples isolated from three different Mexican regions. Species identification was performed by biochemical methods and 16S rRNA gene targeted PCR. The isolates belonged to the Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus brevis, and Lactobacillus composti phylogenetic groups, with L. brevis being the most dominant group. Bacteria were tested for lysozyme, low pH, and bile acid resistance. Moreover, the strains were tested for adherence to human intestinal epithelial cells and screened for their immunomodulatory properties using a cellular model. Selected bacterial strains with anti-inflammatory properties were then tested in vivo in a dinitro-benzene sulfonic acid (DNBS)-induced chronic colitis mouse model, and weight loss, gut permeability, and cytokine profiles were measured as readouts of inflammation. One of the selected strains, Lactobacillus sanfranciscensis LBH1068, improved mice health as observed by a reduction of weight loss, significant decreases in gut permeability, and cytokine modulation. Altogether, our results highlighted the potential of lactobacilli isolated from pulque and in particular the strain L. sanfranciscensis LBH1068 as a novel probiotic to treat IBD.

  7. Identification by 16S rRNA Gene Sequencing of Lactobacillus salivarius Bacteremic Cholecystitis

    PubMed Central

    Woo, Patrick C. Y.; Fung, Ami M. Y.; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2002-01-01

    An anaerobic, nonsporulating, gram-positive bacterium was isolated from blood and bile pus cultures of a 70-year-old man with bacteremic acute cholecystitis. The API 20A system showed that it was 70% Actinomyces naeslundii and 30% Bifidobacterium species, whereas the Vitek ANI system and the ATB ID32A Expression system showed that it was “unidentified.” The 16S rRNA gene of the strain was amplified and sequenced. There were 3 base differences between the nucleotide sequence of the isolate and that of Lactobacillus salivarius subsp. salivarius or L. salivarius subsp. salicinius, indicating that the isolate was a strain of L. salivarius. The patient responded to cholecystectomy and a 2-week course of antibiotic treatment. Identification of the organism in the present study was important because the duration of antibiotic therapy would have been entirely different depending on the organism. If the bacterium had been identified as Actinomyces, penicillin for 6 months would have been the regimen of choice. However, it was Lactobacillus, and a 2-week course of antibiotic was sufficient. PMID:11773128

  8. Large-Scale Phylogenomics of the Lactobacillus casei Group Highlights Taxonomic Inconsistencies and Reveals Novel Clade-Associated Features

    PubMed Central

    Wuyts, Sander; Wittouck, Stijn; De Boeck, Ilke; Allonsius, Camille N.; Pasolli, Edoardo

    2017-01-01

    ABSTRACT Although the genotypic and phenotypic properties of the Lactobacillus casei group have been studied extensively, the taxonomic structure has been the subject of debate for a long time. Here, we performed a large-scale comparative analysis by using 183 publicly available genomes supplemented with a Lactobacillus strain isolated from the human upper respiratory tract. On the basis of this analysis, we identified inconsistencies in the taxonomy and reclassified all of the genomes according to their most closely related type strains. This led to the identification of a catalase-encoding gene in all 10 L. casei sensu stricto strains, making it the first described catalase-positive species in the Lactobacillus genus. Moreover, we found that 6 of 10 L. casei genomes contained a SecA2/SecY2 gene cluster with two putative glycosylated surface adhesin proteins. Altogether, our results highlight current inconsistencies in the taxonomy of the L. casei group and reveal new clade-associated functional features. IMPORTANCE The closely related species of the Lactobacillus casei group are extensively studied because of their applications in food fermentations and as probiotics. Our results show that many strains in this group are incorrectly classified and that reclassifying them to their most closely related species type strain improves the functional predictive power of their taxonomy. In addition, our findings may spark increased interest in the L. casei species. We find that after reclassification, only 10 genomes remain classified as L. casei. These strains show some interesting properties. First, they all appear to be catalase positive. This suggests that they have increased oxidative stress resistance. Second, we isolated an L. casei strain from the human upper respiratory tract and discovered that it and multiple other L. casei strains harbor one or even two large, glycosylated putative surface adhesins. This might inspire further exploration of this species

  9. Lactobacillus crustorum KH: novel prospective probiotic strain isolated from Iranian traditional dairy products.

    PubMed

    Sharafi, Hakimeh; Derakhshan, Venos; Paknejad, Mojgan; Alidoust, Leila; Tohidi, Azadeh; Pornour, Majid; Hajfarajollah, Hamidreza; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2015-02-01

    In recent years, exploring novel probiotic strains for therapeutic intervention has been raised due to the significant increase in market demand. This study aimed to investigate the certain probiotic properties of 15 Lactobacillus isolates from Iranian traditional dairy products. Among them, a novel potential probiotic strain was isolated and identified as Lactobacillus crustorum. The characteristics of potential probiotics were examined in terms of resistance to acidity, bile, and salinity as well as antibiotic tolerance and antibacterial activity. L. crustorum KH has shown tolerance property to bile (0.3 % w), acidity (pH 2-9), and salinity (1-5 % NaCl) and strong antibacterial activity against tested enteropathogens by well-diffusion assay. Furthermore, in vivo study and histological assays were performed to study whether live and heat-killed cells of L. crustorum KH are able to protect against the challenge of Escherichia coli O157:H7 in the gastrointestinal tract of mice used as an experimental model. Therefore, heat-killed and live cells of L. crustorum KH were inoculated by gavage to different groups of 4-6-week-old female BALB/c mice in doses of 10(8) colony-forming unit (CFU)/dose. Thereafter, these mice were challenged with E. coli O157:H7 also inoculated in the gastrointestinal tract (GIT) of the animals. The results showed that heat-killed cells of L. crustorum KH exert a protective effect against E. coli O157:H7 colonization at different degrees, being lower than that produced by viable cells.

  10. Safety evaluation of Lactobacillus delbrueckii subsp. lactis UO 004, a probiotic bacterium.

    PubMed

    Fernández, M Fernanda; Boris, Soledad; Barbés, Covadonga

    2005-03-01

    Lactobacillus delbrueckii subsp. lactis UO 004 was evaluated for its use as a potential probiotic from a safety point of view. The strain did not exhibit mucinolytic or other enzymatic activities that might be detrimental, such as those involving glycosidases (beta-D-glucosaminidase or alpha-D-galactosidase) or arylamidases (factor Xa and quimotrypsin-like activities), frequently present in Lactobacillus strains isolated from patients with endocarditis, although it was able to express protein Ca and kallikrein-like activities. On the other hand, the presence of the strain did not interfere with the growth of certain species of normal intestinal microbiota, such as Enterococcus fecalis, Escherichia coli, Bifidobacterium bifidum or Bacteroides fragilis. Moreover, the potential probiotic strain UO 004 is sensitive to antibiotics with transmissible resistance mechanisms in Lactobacillus such as chloramphenicol, erythromycin, tetracycline and vancomycin. In addition, strain L. delbrueckii UO 004 was not able to translocate towards the intestinal barrier of mice or produce changes in their activity or general health status.

  11. Population structure of Lactobacillus helveticus isolates from naturally fermented dairy products based on multilocus sequence typing.

    PubMed

    Sun, Zhihong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Yu, Jie; Bilige, Menghe; Zhang, Heping; Chen, Yongfu

    2015-05-01

    Lactobacillus helveticus is an economically important lactic acid bacterium used in industrial dairy fermentation. In the present study, the population structure of 245 isolates of L. helveticus from different naturally fermented dairy products in China and Mongolia were investigated using an multilocus sequence typing scheme with 11 housekeeping genes. A total of 108 sequence types were detected, which formed 8 clonal complexes and 27 singletons. Results from Structure, SplitsTree, and ClonalFrame software analyses demonstrated the presence of 3 subpopulations in the L. helveticus isolates used in our study, namely koumiss, kurut-tarag, and panmictic lineages. Most L. helveticus isolates from particular ecological origins had specific population structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Isolation and characterization of lactic acid bacteria from pobuzihi (fermented cummingcordia), a traditional fermented food in Taiwan.

    PubMed

    Chen, Yi-Sheng; Wu, Hui-Chung; Wang, Chiung-Mei; Lin, Chia-Chun; Chen, Yi-Ting; Jhong, Yu-Jyun; Yanagida, Fujitoshi

    2013-03-01

    Lactobacillus pobuzihii is a novel species which has been previously found in pobuzihi (fermented cummingcordia), a traditional fermented food in Taiwan. However, the lactic acid bacteria (LAB) microflora in pobuzihi has not been studied in detail. In this study, LAB from pobuzihi were isolated, identified, and characterized. A total of 196 LAB were isolated; 79 cultures were isolated from the sample collected from a manufacturing factory, 38 from pobuzihi samples collected from 4 different markets, and 79 from 2 fresh cummingcordia samples. These isolates were characterized phenotypically and then divided into eight groups (A to H) by restriction fragment length polymorphism analysis and sequencing of 16S ribosomal DNA. Lactobacillus plantarum was the most abundant LAB found in most samples during the fermentation of pobuzihi. On the other hand, Enterococcus casseliflavus and Weissella cibaria were, respectively, the major species found in the two fresh cummingcordia samples. A potential novel species or subspecies of lactococcal strain was found. In addition, seven L. plantarum and five W. cibaria strains showed inhibitory activity against the indicator strain Lactobacillus sakei JCM 1157(T). This is the first report describing the distribution and varieties of LAB existing in the pobuzihi during its fermentation process and the final product on the market.

  14. Characterization of pLAC1, a cryptic plasmid isolated from Lactobacillus acidipiscis and comparative analysis with its related plasmids.

    PubMed

    Asteri, Ioanna-Areti; Papadimitriou, Konstantinos; Boutou, Effrossyni; Anastasiou, Rania; Pot, Bruno; Vorgias, Constantinos E; Tsakalidou, Effie

    2010-07-15

    The pLAC1 plasmid of Lactobacillus acidipiscis ACA-DC 1533, a strain isolated from traditional Kopanisti cheese, was characterised. Nucleotide sequence analysis revealed a circular molecule of 3478bp with a G+C content of 37.2%. Ab initio annotation indicated four putative open reading frames (orfs). orf1 and orf4 were found to encode a replication initiation protein (Rep) and a mobilization protein (Mob), respectively. The deduced products of orf2 and orf3 revealed no significant homology to other known proteins. However, in silico examination of the plasmid sequence supported the existence of a novel operon that includes rep, orf2 and orf3 in pLAC1 and that this operon is highly conserved also in plasmids pLB925A02, pSMA23, pLC88 and pC7. RT-PCR experiments allowed us to verify that these three genes are co-transcribed as a single polycistronic mRNA species. Furthermore, phylogenetic analysis of pLAC1 Rep and Mob proteins demonstrated that they may have derived from different plasmid origins, suggesting that pLAC1 is a product of a modular evolution process. Comparative analysis of full length nucleotide sequences of pLAC1 and related Lactobacillus plasmids showed that pLAC1 shares a very similar replication backbone with pLB925A02, pSMA23 and pLC88. In contrast, mob of pLAC1 was almost identical with the respective gene of plasmids pLAB1000, pLB4 and pPB1. These findings lead to the conclusion that pLAC1 acquired mob probably via an ancestral recombination event. Our overall work highlights the importance of characterizing plasmids deriving from non-starter 'wild' isolates in order to better appreciate plasmid divergence and evolution of lactic acid bacteria. 2010 Elsevier B.V. All rights reserved.

  15. Draft Genome Sequence of Lactobacillus crispatus EM-LC1, an Isolate with Antimicrobial Activity Cultured from an Elderly Subject

    PubMed Central

    Power, Susan E.; Harris, Hugh M. B.; Bottacini, Francesca; Ross, R. Paul; O’Toole, Paul W.

    2013-01-01

    Here we report the 1.86-Mb draft genome sequence of Lactobacillus crispatus EM-LC1, a fecal isolate with antimicrobial activity. This genome sequence is expected to provide insights into the antimicrobial activity of L. crispatus and improve our knowledge of its potential probiotic traits. PMID:24356836

  16. Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species.

    PubMed

    Aguirre Santos, Elsa Anaheim; Schieber, Andreas; Weber, Fabian

    2018-07-01

    Hydroxycinnamic acids are a major group of phenolic compounds widely distributed in plants. Among them, chlorogenic acids and caffeic acid have been in the focus of interest due to their impact on food quality and their putative health benefits. Numerous microorganisms like lactic acid bacteria are able to hydrolyze chlorogenic acids by cinnamoyl esterase enzymes. Data on the specificity of theses enzymes regarding the cleavage of distinct isomers of mono- or dichlorogenic acids is lacking. Lactobacillus reuteri, Lactobacillus helveticus, and Lactobacillus fermentum were screened for their ability to hydrolyze chlorogenic acid isomers in culture medium. Concentrations of chlorogenic acids and the released caffeic acid were determined by UHPLC-ESI-MS. The highest hydrolysis rate (100%) was observed for the hydrolysis of 5-CQA by Lactobacillus helveticus. A so far unknown metabolic pathway for the cleavage of 4-CQA is proposed including isomerization to 5-CQA and 3-CQA followed by hydrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Functionally Structured Genomes in Lactobacillus kunkeei Colonizing the Honey Crop and Food Products of Honeybees and Stingless Bees

    PubMed Central

    Tamarit, Daniel; Ellegaard, Kirsten M.; Wikander, Johan; Olofsson, Tobias; Vásquez, Alejandra; Andersson, Siv G.E.

    2015-01-01

    Lactobacillus kunkeei is the most abundant bacterial species in the honey crop and food products of honeybees. The 16 S rRNA genes of strains isolated from different bee species are nearly identical in sequence and therefore inadequate as markers for studies of coevolutionary patterns. Here, we have compared the 1.5 Mb genomes of ten L. kunkeei strains isolated from all recognized Apis species and another two strains from Meliponini species. A gene flux analysis, including previously sequenced Lactobacillus species as outgroups, indicated the influence of reductive evolution. The genome architecture is unique in that vertically inherited core genes are located near the terminus of replication, whereas genes for secreted proteins and putative host-adaptive traits are located near the origin of replication. We suggest that these features have resulted from a genome-wide loss of genes, with integrations of novel genes mostly occurring in regions flanking the origin of replication. The phylogenetic analyses showed that the bacterial topology was incongruent with the host topology, and that strains of the same microcluster have recombined frequently across the host species barriers, arguing against codiversification. Multiple genotypes were recovered in the individual hosts and transfers of mobile elements could be demonstrated for strains isolated from the same host species. Unlike other bacteria with small genomes, short generation times and multiple rRNA operons suggest that L. kunkeei evolves under selection for rapid growth in its natural growth habitat. The results provide an extended framework for reductive genome evolution and functional genome organization in bacteria. PMID:25953738

  18. Isolation and characterization of antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties.

    PubMed

    Valan Arasu, M; Jung, M-W; Ilavenil, S; Jane, M; Kim, D-H; Lee, K-D; Park, H-S; Hur, T-Y; Choi, G-J; Lim, Y-C; Al-Dhabi, N A; Choi, K-C

    2013-11-01

    The purpose of this study was to isolate, identify and characterize an antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties. The 16S rRNA gene-based phylogenetic affiliation was determined using bioinformatic tools and identified as Lactobacillus sp. KCC-10 with 100% sequence similarity to L. plantarum. The antifungal substances were extracted with ethyl acetate from spent medium in which Lactobacillus sp. KCC-10 was cultivated. Antifungal activity was assessed using the broth microdilution technique. The compounds were obtained by eluting the crude extract with various concentrations of solvents followed by chromatographic purification. Based on the infrared, (13) C nuclear magnetic resonance (NMR) and (1) H NMR spectral data, the compound was identified as a phenolic-related antibiotic. The minimum inhibitory concentration of the compound against Aspergillus clavatus, A. oryzae, Botrytis elliptica and Scytalidium vaccinii was 2.5 mg ml(-1) and that against A. fumigatus, A. niger and S. fusca was 5.0 mg ml(-1) , respectively. In addition, Lactobacillus sp. KCC-10 was highly sensitive towards oxgall (0.3%) but grew well in the presence of sodium taurocholate (0.3%). An antimicrobial susceptibility pattern was an intrinsic feature of this strain; thus, consumption does not represent a health risk to humans or animals. Novel L. plantarum KCC-10 with antifungal and potential probiotic properties was characterized for use in animal food. This study revealed that L. plantarum KCC-10 exhibited good antifungal activity similar to that of probiotic Lactobacillus strains. © 2013 The Society for Applied Microbiology.

  19. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    PubMed Central

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  20. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  1. Identification and evaluation of the probiotic potential of Lactobacillus paraplantarum FT259, a bacteriocinogenic strain isolated from Brazilian semi-hard artisanal cheese.

    PubMed

    Tulini, Fabrício Luiz; Winkelströter, Lizziane Kretli; De Martinis, Elaine C P

    2013-08-01

    This study aimed to identify a bacteriocinogenic Lactobacillus isolate (FT259) obtained from Brazilian semi-hard Minas type cheese and to evaluate its probiotic and antimicrobial potentials. The strain was identified by biochemical tests (at genus level), and by 16S rDNA sequencing combined with recA gene amplification (for species). To determine the inhibitory spectrum towards food borne pathogens and lactic acid bacteria, the spot-on-the-lawn assay was carried out. Moreover, the proteinaceous nature of the antimicrobial compound produced was evaluated by susceptibility to degradation by proteolytic enzymes. The isolated strain was tested for survival in acidified culture media (pH 2.0, 2.5 and 3.5), in vitro tolerance to bile salts and viability under gastric conditions. Adhesion of Lactobacillus paraplantarum FT259 to Caco-2 cells was evaluated by surface plate count on De Man, Rogosa, and Sharpe (MRS) agar and also by FISH method (fluorescent in situ hybridization) with the aid of Eub338 probe for fluorescence microscopy analysis. The isolate was identified as L. paraplantarum FT259 and it produced bacteriocins that inhibited the growth of Listeria monocytogenes, Listeria innocua and several lactic acid bacteria. It was also observed that L. paraplantarum FT259 tolerated exposure to pH 3.5, and bile salts 0.3% for up to 180 min. In experiments with simulated gastric juice, viable cells of L. paraplantarum FT259 decreased from 8.6 log CFU/mL to 3.5 log CFU/mL after 180 min. For the same strain, in studies with Caco-2 cells, 74% of adhesion was observed through plate count and FISH assays. It was also demonstrated isolated FT259 was susceptible to the majority the antibiotics tested. Overall, the results indicated L. paraplantarum FT259 is a potential probiotic and the production of bacteriocin may be an interesting feature for food applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Short communication: Antiproliferative effect of wild Lactobacillus strains isolated from fermented foods on HT-29 cells.

    PubMed

    Tuo, Y F; Zhang, L W; Yi, H X; Zhang, Y C; Zhang, W Q; Han, X; Du, M; Jiao, Y H; Wang, S M

    2010-06-01

    In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1x10(7) cfu/mL), cell wall (20 microg of protein/mL) and genomic DNA (100 microg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genome sequence of Lactobacillus salivarius SMXD51, a potential probiotic strain isolated from chicken cecum, showing anti-campylobacter activity.

    PubMed

    Kergourlay, Gilles; Messaoudi, Soumaya; Dousset, Xavier; Prévost, Hervé

    2012-06-01

    We report the draft genome sequence of Lactobacillus salivarius SMXD51, isolated from the cecum of healthy chickens showing an activity against Campylobacter--the food-borne pathogen that is the most common cause of gastroenteritis in the European Union (EU)--and potentially interesting features for a probiotic strain, explaining our interest in it.

  5. Comparative Genomic Analysis of Lactobacillus plantarum GB-LP1 Isolated from Traditional Korean Fermented Food.

    PubMed

    Yu, Jihyun; Ahn, Sojin; Kim, Kwondo; Caetano-Anolles, Kelsey; Lee, Chanho; Kang, Jungsun; Cho, Kyungjin; Yoon, Sook Hee; Kang, Dae-Kyung; Kim, Heebal

    2017-08-28

    As probiotics play an important role in maintaining a healthy gut flora environment through antitoxin activity and inhibition of pathogen colonization, they have been of interest to the medical research community for quite some time now. Probiotic bacteria such as Lactobacillus plantarum , which can be found in fermented food, are of particular interest given their easy accessibility. We performed whole-genome sequencing and genomic analysis on a GB-LP1 strain of L. plantarum isolated from Korean traditional fermented food; this strain is well known for its functions in immune response, suppression of pathogen growth, and antitoxin effects. The complete genome sequence of GB-LP1 is a single chromosome of 3,040,388 bp with 2,899 predicted open reading frames. Genomic analysis of GB-LP1 revealed two CRISPR regions and genes showing accelerated evolution, which may have antibiotic and antitoxin functions. The aim of the present study was to predict strain specific-genomic characteristics and assess the potential of this new strain as lactic acid bacteria at the genomic level using in silico analysis. These results provide insight into the L. plantarum species as well as confirm the possibility of its utility as a candidate probiotic.

  6. In vitro screening of selected probiotic properties of Lactobacillus strains isolated from traditional fermented cabbage and cucumber.

    PubMed

    Zielińska, Dorota; Rzepkowska, Anna; Radawska, Anna; Zieliński, Konrad

    2015-02-01

    Most important during probiotic selection are gastric acid and bile tolerance, the adhesion to the luminal epithelium to colonize the lower gastrointestinal tract of a human and safety for human consumption. The aim of this study was to evaluate the selected probiotic in vitro properties of Lactobacillus spp. Strains isolated from traditional fermented food. A total 38 strains were isolated from the pickled samples and 14 were identified as Lactobacillus spp. The survival of almost all strains after incubation at pH 2.5 did not change markedly, and remained at above 90 % (10(9) CFU/mL). The strains also exhibited a high survival rate at pH 3.5 (>90 %), whereas pH 1.5 all were died. Just four strains could survive 90 min. at pH 1.5 (<39 %). The incubation with 0.2 % bile salt solution resulted in a survival rates of 81-94 % after 24 h, whereas after incubation in 2 and 4 % bile salt solution it was 59-94 %. All tested strains showed very good and good resistance to 0.4 % phenol addition, however only Lb. johnsonii K4 was able to multiply. The hydrophobic nature of the cell surface of the tested strains was moderated recording hydrophobicity of Lb. johnsonii K4 and Lb. rhamnosus K3 above 60 %. Safety evaluation excluded four of tested strains as candidate probiotics, according to antibiotic resistance patterns and certain metabolic activities. On the basis on the results 10 of the selected Lactobacillus strains are safe and can survive under gastrointestinal conditions, which requires them to future in vitro and in vivo probiotic studies.

  7. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.

    PubMed

    Ehrmann, Matthias A; Müller, Martin R A; Vogel, Rudi F

    2003-01-01

    Genotypic fingerprinting to analyse the bacterial flora of an industrial sourdough revealed a coherent group of strains which could not be associated with a valid species. Comparative 16S rDNA sequence analysis showed that these strains formed a homogeneous cluster distinct from their closest relatives, Lactobacillus farciminis, Lactobacillus alimentarius and Lactobacillus kimchii. To characterize them further, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic properties have been determined. The DNA G +C content was 37.5 0.2 mol%. The peptidoglycan was of the lysine-D-iso-asparagine (L-Lys-D-Asp) type. The strains were homofermentative, Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They were found as a major stable component of a rye flour sourdough fermentation. Physiological, biochemical as well as genotypic data suggested them to be a new species of the genus Lactobacillus. This was confirmed by DNA-DNA hybridization of genomic DNA, and the name Lactobacillus mindensis is proposed. The type strain of this species is DSM 14500T (=LMG 21508T).

  8. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  9. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Weckx, Stefan

    2015-10-12

    Lactobacillus fermentum 222 and Lactobacillus plantarum 80, isolates from a spontaneous Ghanaian cocoa bean fermentation process, proved to be interesting functional starter culture strains for cocoa bean fermentations. Lactobacillus fermentum 222 is a thermotolerant strain, able to dominate the fermentation process, thereby converting citrate and producing mannitol. Lactobacillus plantarum 80 is an acid-tolerant and facultative heterofermentative strain that is competitive during cocoa bean fermentation processes. In this study, whole-genome sequencing and comparative genome analysis was used to investigate the mechanisms of these strains to dominate the cocoa bean fermentation process. Through functional annotation and analysis of the high-coverage contigs obtained through 454 pyrosequencing, plantaricin production was predicted for L. plantarum 80. For L. fermentum 222, genes encoding a complete arginine deiminase pathway were attributed. Further, in-depth functional analysis revealed the capacities of these strains associated with carbohydrate and amino acid metabolism, such as the ability to use alternative external electron acceptors, the presence of an extended pyruvate metabolism, and the occurrence of several amino acid conversion pathways. A comparative genome sequence analysis using publicly available genome sequences of strains of the species L. plantarum and L. fermentum revealed unique features of both strains studied. Indeed, L. fermentum 222 possessed genes encoding additional citrate transporters and enzymes involved in amino acid conversions, whereas L. plantarum 80 is the only member of this species that harboured a gene cluster involved in uptake and consumption of fructose and/or sorbose. In-depth genome sequence analysis of the candidate functional starter culture strains L. fermentum 222 and L. plantarum 80 revealed their metabolic capacities, niche adaptations and functionalities that enable them to dominate the cocoa bean fermentation

  10. The presence of vaginal Lactobacillus species does not contribute to a measureable difference in amniotic fluid lactate levels collected from the vaginal tract of laboring women.

    PubMed

    Hall, Beverley; Wong, Diana; Healy, Clare; Tracy, Mark B; Tracy, Sally K; Rawlinson, William D

    2017-04-01

    Amniotic fluid lactate research is based on the hypothesis that a relationship exists between fatigued uterine muscles and raised concentrations of the metabolite lactate, which is excreted into the amniotic fluid during labor. To assess potentially confounding effects of lactate-producing organisms on amniotic fluid lactate measurements, we aimed to determine if the presence of vaginal Lactobacillus species was associated with elevated levels of amniotic fluid lactate, measured from the vaginal tract of women in labor. Results from this study contribute to a large prospective longitudinal study of amniotic fluid lactate at a teaching hospital in Sydney, Australia. Amniotic fluid lactate measurement was assessed at the time of routine vaginal examination, after membranes had ruptured, using a hand-held lactate meter StatStripXPress (Nova Biomedical). Vaginal swab samples were collected at the time of the first amniotic fluid lactate measurement and stored for later detection and quantification of Lactobacillus species using a TaqMan real-time PCR assay. Swab sample and amniotic fluid lactate results were paired and analyzed. The PCR assay detected Lactobacillus species in 48 of 388 (12%) vaginal swab specimens (8% positive, 4% low positive) collected from women in labor after membranes had ruptured. There was no significant difference in median and mean (respectively) amniotic fluid lactate levels with (8.35 mmol/L; 8.95 mmol/L) or without (8.5 mmol/L; 9.08 mmol/L) Lactobacillus species detected. There was no association between the presence or level of vaginal Lactobacillus species and the measurement of amniotic fluid lactate collected from the vaginal tract of women during labor. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  11. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains.

    PubMed

    Almståhl, Annica; Lingström, Peter; Eliasson, Lars; Carlén, Anette

    2013-07-01

    The objective was to analyse the ability of Lactobacillus strains isolated from supragingival plaque of subjects with hyposalivation and from healthy controls to ferment sugars and sugar alcohols. Fifty strains isolated from interproximal plaque from subjects with radiation-induced hyposalivation (25 strains), subjects with primary Sjögren's syndrome (16 strains) and from subjects with normal salivary secretion rate (9 strains) were tested. Growth and pH were determined after 24 and 48 h of anaerobic incubation in vials containing basal media with 1 % of glucose, fructose, sucrose, mannitol, sorbitol or xylitol. No differences between strains isolated from hyposalivated subjects and controls were detected. All strains lowered the pH to <5.0 from fructose and the majority of the strains from glucose and sucrose. A pH of <5.5 was seen for 52 % of the strains using mannitol, 50 % using sorbitol and 36 % using xylitol. The ability to produce acids from sugars and sugar alcohols was highest among strains of Lactobacillus rhamnosus, Lactobacillus casei and Lactobacillus paracasei and lowest among Lactobacillus fermentum strains. A large number of Lactobacillus strains are able to ferment not only sugars but also the sugar substitutes mannitol, sorbitol and xylitol to pH levels critical for enamel demineralisation. Our findings suggest that products containing mannitol, sorbitol and/or xylitol may contribute to the acidogenic potential of the dental plaque and especially in hyposalivated subjects with high numbers of lactobacilli.

  12. Molecular Characterization of tet(M) Genes in Lactobacillus Isolates from Different Types of Fermented Dry Sausage

    PubMed Central

    Gevers, Dirk; Danielsen, Morten; Huys, Geert; Swings, Jean

    2003-01-01

    The likelihood that products prepared from raw meat and milk may act as vehicles for antibiotic-resistant bacteria is currently of great concern in food safety issues. In this study, a collection of 94 tetracycline-resistant (Tcr) lactic acid bacteria recovered from nine different fermented dry sausage types were subjected to a polyphasic molecular study with the aim of characterizing the host organisms and the tet genes, conferring tetracycline resistance, that they carry. With the (GTG)5-PCR DNA fingerprinting technique, the Tcr lactic acid bacterial isolates were identified as Lactobacillus plantarum, L. sakei subsp. carnosus, L. sakei subsp. sakei, L. curvatus, and L. alimentarius and typed to the intraspecies level. For a selection of 24 Tcr lactic acid bacterial isolates displaying unique (GTG)5-PCR fingerprints, tet genes were determined by means of PCR, and only tet(M) was detected. Restriction enzyme analysis with AccI and ScaI revealed two different tet(M) allele types. This grouping was confirmed by partial sequencing of the tet(M) open reading frame, which indicated that the two allele types displayed high sequence similarities (>99.6%) with tet(M) genes previously reported in Staphylococcus aureus MRSA 101 and in Neisseria meningitidis, respectively. Southern hybridization with plasmid profiles revealed that the isolates contained tet(M)-carrying plasmids. In addition to the tet(M) gene, one isolate also contained an erm(B) gene on a different plasmid from the one encoding the tetracycline resistance. Furthermore, it was also shown by PCR that the tet(M) genes were not located on transposons of the Tn916/Tn1545 family. To our knowledge, this is the first detailed molecular study demonstrating that taxonomically and genotypically diverse Lactobacillus strains from different types of fermented meat products can be a host for plasmid-borne tet genes. PMID:12571056

  13. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure.

    PubMed

    Ilavenil, Soundharrajan; Park, Hyung Soo; Vijayakumar, Mayakrishnan; Arasu, Mariadhas Valan; Kim, Da Hye; Ravikumar, Sivanesan; Choi, Ki Choon

    2015-01-01

    The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh) activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.

  14. Characterization and Identification of Pediococcus Species Isolated from Forage Crops and Their Application for Silage Preparation

    PubMed Central

    Cai, Yimin; Kumai, Sumio; Ogawa, Masuhiro; Benno, Yoshimi; Nakase, Takashi

    1999-01-01

    Pediococcus species isolated from forage crops were characterized, and their application to silage preparation was studied. Most isolates were distributed on forage crops at low frequency. These isolates could be divided into three (A, B, and C) groups by their sugar fermentation patterns. Strains LA 3, LA 35, and LS 5 are representative isolates from groups A, B, and C, respectively. Strains LA 3 and LA 35 had intragroup DNA homology values above 93.6%, showing that they belong to the species Pediococcus acidilactici. Strain LS 5 belonged to Pediococcus pentosaceus on the basis of DNA-DNA relatedness. All three of these strains and strain SL 1 (Lactobacillus casei, isolated from a commercial inoculant) were used as additives to alfalfa and Italian ryegrass silage preparation at two temperatures (25 and 48°C). When stored at 25°C, all of the inoculated silages were well preserved and exhibited significantly (P < 0.05) reduced fermentation losses compared to that of their control in alfalfa and Italian ryegrass silages. When stored at 48°C, silages inoculated with strains LA 3 and LA 35 were also well preserved, with a significantly (P < 0.05) lower pH, butyric acid and ammonia-nitrogen content, gas production, and dry matter loss and significantly (P < 0.05) higher lactate content than the control, but silages inoculated with LS 5 and SL 1 were of poor quality. P. acidilactici LA 3 and LA 35 are considered suitable as potential silage inoculants. PMID:10388681

  15. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  16. Molecular typing of Lactobacillus brevis isolates from Korean food using repetitive element-polymerase chain reaction.

    PubMed

    Kaur, Jasmine; Sharma, Anshul; Lee, Sulhee; Park, Young-Seo

    2018-06-01

    Lactobacillus brevis is a part of a large family of lactic acid bacteria that are present in cheese, sauerkraut, sourdough, silage, cow manure, feces, and the intestinal tract of humans and rats. It finds its use in food fermentation, and so is considered a "generally regarded as safe" organism. L. brevis strains are extensively used as probiotics and hence, there is a need for identifying and characterizing these strains. For identification and discrimination of the bacterial species at the subspecific level, repetitive element-polymerase chain reaction method is a reliable genomic fingerprinting tool. The objective of the present study was to characterize 13 strains of L. brevis isolated from various fermented foods using repetitive element-polymerase chain reaction. Repetitive element-polymerase chain reaction was performed using three primer sets, REP, Enterobacterial Repetitive Intergenic Consensus (ERIC), and (GTG) 5 , which produced different fingerprinting patterns that enable us to distinguish between the closely related strains. Fingerprinting patterns generated band range in between 150 and 5000 bp with REP, 200-7500 bp with ERIC, and 250-2000 bp with (GTG) 5 primers, respectively. The Jaccard's dissimilarity matrices were used to obtain dendrograms by the unweighted neighbor-joining method using genetic dissimilarities based on repetitive element-polymerase chain reaction fingerprinting data. Repetitive element-polymerase chain reaction proved to be a rapid and easy method that can produce reliable results in L. brevis species.

  17. Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.

    PubMed

    Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline

    2008-03-01

    The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.

  18. Protective potential of Lactobacillus species in lead toxicity model in broiler chickens.

    PubMed

    Jahromi, M F; Liang, J B; Ebrahimi, R; Soleimani, A F; Rezaeizadeh, A; Abdullah, N; Shokryazdan, P

    2017-05-01

    To alleviate adverse effects of heavy metal toxicity, diverse range of removing methods have been suggested, that is usage of algae, agricultural by-products and microorganisms. Here, we investigated lead (Pb) biosorption efficacy by two lactic acid bacteria species (LABs) in broiler chickens. In an in vitro study, Pb was added to culture medium of LABs (Lactobacillus pentosus ITA23 and Lactobacillus acidipiscis ITA44) in the form of lead acetate. Results showed that these LABs were able to absorb more than 90% of Pb from the culture medium. In follow-up in vivo study, LABs mixture was added to diet of broiler chickens contained lead acetate (200 mg/kg). Pb exposure significantly increased lipid peroxidation and decreased antioxidant activity in liver. The changes were recovered back to normal level upon LABs supplementation. Moreover, addition of LABs eliminated the liver tissue lesion and the suppressed performance in Pb-exposed chicks. Analysis of liver and serum samples indicated 48% and 28% reduction in Pb accumulation, respectively. In conclusion, results of this study showed that L. pentosus ITA23 and L. acidipiscis ITA44 effectively biosorb and expel dietary Pb from gastrointestinal tract of chickens.

  19. Draft Genome Sequences of Six Lactobacillus pentosus Strains Isolated from Brines of Traditionally Fermented Spanish-Style Green Table Olives.

    PubMed

    Calero-Delgado, Beatriz; Martín-Platero, Antonio M; Pérez-Pulido, Antonio J; Benítez-Cabello, Antonio; Casimiro-Soriguer, Carlos S; Martínez-Bueno, Manuel; Arroyo-López, Francisco Noé; Rodríguez-Gómez, Francisco; Bautista-Gallego, Joaquín; Garrido-Fernández, Antonio; Jiménez-Díaz, Rufino

    2018-05-03

    Here, we report the genome sequences of six Lactobacillus pentosus strains isolated from traditional noninoculated Spanish-style green table olive brines. The total genome sizes varied between 3.77 and 4.039 Mbp. These genome sequences will assist in revealing the genes responsible for both technological and probiotic properties of these strains. Copyright © 2018 Calero-Delgado et al.

  20. [Progress in research of relationship between vaginal Lactobacillus and preterm delivery].

    PubMed

    He, Y N; Xiong, H Y; Zheng, Y J

    2017-03-10

    The vaginal flora in most healthy women is dominated by Lactobacillus species. The absence of Lactobacillus species in vaginal flora might lead to a series of symptoms, especially in pregnant women causing adverse pregnancy outcomes, such as preterm delivery. This review focuses on the progress in the research of the relationship between vaginal Lactobacillus and preterm delivery, providing reference for the reduction of the incidence of preterm delivery.

  1. Isolation and molecular identification of lactic acid bacteria and Bifidobacterium spp. from faeces of the blue-fronted Amazon parrot in Brazil.

    PubMed

    Allegretti, L; Revolledo, L; Astolfi-Ferreira, C S; Chacón, J L; Martins, L M; Seixas, G H F; Ferreira, A J P

    2014-12-01

    In Brazil, the blue-fronted Amazon parrot (Amazona aestiva) is a common pet. The faecal microbiota of these birds include a wide variety of bacterial species, the majority of which belong to the Gram-positive lactic acid bacteria (LAB) clade. The aim of this study was to investigate differences in the diversity and abundance of LAB and Bifidobacterium spp. in the cloacae between wild and captive birds and to select, identify and characterise LAB for consideration as a parrot probiotic. Cloacal swabs were collected from 26 wild and 26 captive birds. Bacterial DNA was extracted, and the 16S rRNA genes were amplified. The numbers of PCR-positive Enterococcus, Pediococcus, and Lactobacillus species isolated from wild and captive birds were significantly different (P<0.05). Enterococcus was the most frequently isolated genus, followed by Pediococcus, Lactobacillus, Lactococcus and Bifidobacterium. Enterococcus faecium, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus coryniformis, Lactobacillus sanfranciscensis and Bifidobacterium bifidum were the most frequently isolated species from all birds. This study increases our understanding of the faecal microbiota, and may help to improve the nutrition and habitat management of captive and wild parrots. The bacterial population identified in the faecal microbiota of clinically healthy wild and captive parrots can serve as a database to analyse variations in the gut microbiota of pathogen-infected parrots and to develop probiotics specific to these genera.

  2. Genome Sequence of Lactobacillus sakei LK-145 Isolated from a Japanese Sake Cellar as a High Producer of d-Amino Acids

    PubMed Central

    Kato, Shiro

    2017-01-01

    ABSTRACT This announcement reports the complete genome sequence of strain LK-145 of Lactobacillus sakei isolated from a Japanese sake cellar as a potent strain for the production of large amounts of d-amino acids. Three putative genes encoding an amino acid racemase were identified. PMID:28818888

  3. Distinct Immunomodulation of Bone Marrow-Derived Dendritic Cell Responses to Lactobacillus plantarum WCFS1 by Two Different Polysaccharides Isolated from Lactobacillus rhamnosus LOCK 0900

    PubMed Central

    Jachymek, Wojciech; Srutkova, Dagmar; Brzozowska, Ewa; Kozakova, Hana; Gamian, Andrzej

    2014-01-01

    The structures of polysaccharides (PS) isolated from Lactobacillus rhamnosus LOCK 0900 and results from stimulation of mouse bone marrow-derived dendritic cells (BM-DC) and human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR) upon exposure to these antigens were studied. L. rhamnosus LOCK 0900 produces PS that differ greatly in their structure. The polymer L900/2, with a high average molecular mass of 830 kDa, is a branched heteropolysaccharide with a unique repeating unit consisting of seven sugar residues and pyruvic acid, whereas L900/3 has a low average molecular mass of 18 kDa and contains a pentasaccharide repeating unit and phosphorus. Furthermore, we found that both described PS neither induce cytokine production and maturation of mouse BM-DC nor induce signaling through TLR2/TLR4 receptors. However, they differ profoundly in their abilities to modulate the BM-DC immune response to the well-characterized human isolate Lactobacillus plantarum WCFS1. Exposure to L900/2 enhanced interleukin-10 (IL-10) production induced by L. plantarum WCFS1, while in contrast, L900/3 enhanced the production of IL-12p70. We conclude that PS, probably due to their chemical features, are able to modulate the immune responses to third-party antigens. The ability to induce regulatory IL-10 by L900/2 opens up the possibility to use this PS in therapy of inflammatory conditions, such as inflammatory bowel disease, whereas L900/3 might be useful in reverting the antigen-dependent Th2-skewed immune responses in allergies. PMID:25107979

  4. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.

    PubMed

    Kung, Hsien-Feng; Lee, Yi-Chen; Huang, Ya-Ling; Huang, Yu-Ru; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2017-10-01

    Histamine is a toxic chemical and is the causative agent of food poisoning. This foodborne toxin may be degraded by the oxidative deamination activity of certain microorganisms. In this study, we isolated four histamine-degrading Lactobacillus plantarum bacteria from miso products. Among them, L. plantarum D-103 exhibited 100% degradation of histamine in de Man Rogosa Sharpe (MRS) broth containing 50 ppm of histamine after 24 h of incubation at 30°C. The optimal growth, histamine oxidase, and histamine-degrading activity of L. plantarum D-103 were observed in histamine MRS broth at pH 7.0, 3% NaCl, and 30°C. It also exhibited tolerance to broad ranges of pH (4 to 10) and salt concentrations (0 to 12%) in histamine MRS broth. Therefore, the histamine-degrading L. plantarum D-103 might be used as an additive culture to prevent histamine accumulation in miso products during fermentation.

  5. Lactobacillus salivarius 1077 (NRRL B-50053) bacteriocin

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  6. Probiotic and antioxidant properties of selenium-enriched Lactobacillus brevis LSe isolated from an Iranian traditional dairy product.

    PubMed

    Shakibaie, Mojtaba; Mohammadi-Khorsand, Tayebe; Adeli-Sardou, Mahboubeh; Jafari, Mandana; Amirpour-Rostami, Sahar; Ameri, Alieh; Forootanfar, Hamid

    2017-03-01

    The present study was designed to isolate a highly selenium-tolerant lactobacillus strain from an Iranian traditional dairy product named as Spar. Different criteria such as tolerance to the low pH, simulated gastric juice (SGJ), simulated intestinal juice (SIJ) and bile salts tolerance as well as Caco-2 cell adhesion assay were examined to evaluate the probiotic potentials of the selected isolate. Furthermore, the antioxidant properties of the isolate cultivated in medium containing and free of SeO 3 2- ions were evaluated using DPPH scavenging and reducing power assays. The isolate was identified using conventional identification and 16S rDNA gene sequencing methods as Lactobacillus brevis LSe. The obtained results showed that the isolate was able to tolerate high concentration of sodium selenite (3.16mM). By decreasing the pH of the SGJ from 6 to 3, the survival percent of L. brevis LSe was not significantly changed over the time (p>0.05). In addition, the survival percent of the isolate in the SIJ (pH 6 and pH 8) was not statistically altered after 3h, 6h and 24h of incubation (p>0.05). In the presence of bile salts (0.3% and 0.6%) the survival rate of L. brevis LSe was not significantly decreased (p>0.05).L. brevis LSe also demonstrated the satisfactory ability to adhere to Caco-2 cells which were similar to that of the reference strain L. plantarum. The obtained results of antioxidant evaluation showed that L. brevis LSe containing elemental Se exhibited significantly higher radical scavenging ability (36.5±1.31%) and reducing power (OD 700 , 0.14) than L. brevis LSe cultured in selenite-free medium (p<0.05). To sum up, further investigations should be conducted to merit the probable potential health benefit of Se-enriched L. brevis LSe and its application as Se-containing supplements or fermented foods. Copyright © 2016. Published by Elsevier GmbH.

  7. Inhibition of Staphylococcus aureus biofilm by Lactobacillus isolated from fine cocoa.

    PubMed

    Melo, Tauá Alves; Dos Santos, Thalis Ferreira; de Almeida, Milena Evangelista; Junior, Luiz Alberto Gusmão Fontes; Andrade, Ewerton Ferraz; Rezende, Rachel Passos; Marques, Lucas Miranda; Romano, Carla Cristina

    2016-10-28

    Biofilm production represents an important virulence and pathogenesis factor for Staphylococcus aureus. The formation of biofilms on medical devices is a major concern in hospital environments, as they can become a constant source of infection. Probiotic bacteria, such as Lactobacillus fermentum and L. plantarum, have been found to inhibit biofilm formation; however little is known about the underlying mechanism. In this study, we tested the activity of supernatants produced by L. fermentum TCUESC01 and L. plantarum TCUESC02, isolated during the fermentation of fine cocoa, against S. aureus CCMB262 biofilm production. We measured inhibition of biofilm formation in vitro and analyzed biofilm structure by confocal and electronic microscopy. Additionally, we quantified the expression of S. aureus genes icaA and icaR involved in the synthesis of the biofilm matrix by real-time PCR. Both Lactobacillus supernatants inhibited S. aureus growth. However, only L. fermentum TCUESC01 significantly reduced the thickness of the biofilm, from 14 μm to 2.83 μm (at 18 mg∙mL -1 , 90 % of the minimum inhibitory concentration, MIC), 3.12 μm (at 14 mg∙mL -1 , 70 % of the MIC), and 5.21 μm (at 10 mg∙mL -1 , 50 % of the MIC). Additionally, L. fermentum TCUESC01 supernatant modulated the expression of icaA and icaR. L. fermentum TCUESC01 reduces the formation of S. aureus biofilm under subinhibitory conditions. Inhibition of biofilm production probably depends on modulation of the ica operon.

  8. Antimicrobial effect of probiotics on bacterial species from dental plaque.

    PubMed

    Zambori, Csilla; Morvay, Attila Alexandru; Sala, Claudia; Licker, Monica; Gurban, Camelia; Tanasie, Gabriela; Tirziu, Emil

    2016-03-31

    The antimicrobial role of probiotic Lactobacillus casei subspecies casei DG (L. casei DG) and of the mix culture of probiotic Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12 was tested on species of Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera from supragingival sites from dogs with dental disease of different breed, age, sex, weight, and diet. The research was conducted on these four genera because of their importance in zoonotic infections after dog bites. Species from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera were isolated and identified. To test the antimicrobial efficacy of L. casei DG and the mixed culture of probiotic L. acidophilus LA-5 and Bifidobacterium bifidum BB-12 on the pathogenic species, the agar overlay method was used. L. casei DG had a bactericidal effect on all analyzed species isolated from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera after 24 hours of incubation. The mixed probiotic culture made up of L. acidophilus LA-5 and Bifidobacterium BB-12 species had no bactericidal effect on the species of Staphylococcus and Streptococcus genera, which were resistant. However, it had a bacteriostatic effect on several species of Pasteurella and Neisseria genera. This work highlights the antimicrobial potential of probiotics in vitro, demonstrating that the probiotic L. casei DG has a bactericidal effect on all analyzed species isolated from dental plaque and that the mix culture of probiotic L. acidophilus LA-5 and Bifidobacterium BB-12 has only a bacteriostatic effect.

  9. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    USDA-ARS?s Scientific Manuscript database

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  10. Inhibitory effect of biofilm-forming Lactobacillus kunkeei strains against virulent Pseudomonas aeruginosa in vitro and in honeycomb moth (Galleria mellonella) infection model.

    PubMed

    Berríos, P; Fuentes, J A; Salas, D; Carreño, A; Aldea, P; Fernández, F; Trombert, A N

    2018-02-27

    Biofilms correspond to complex communities of microorganisms embedded in an extracellular polymeric matrix. Biofilm lifestyle predominates in Pseudomonas aeruginosa, an opportunistic Gram negative pathogen responsible for a wide spectrum of infections in humans, plants and animals. In this context, anti-biofilm can be considered a key strategy to control P. aeruginosa infections, thereby more research in the field is required. On the other hand, Lactobacillus species have been described as beneficial due to their anti-biofilm properties and their consequent effect against a wide spectrum of pathogens. In fact, biofilm-forming Lactobacilli seem to be more efficient than their planktonic counterpart to antagonise pathogenic bacteria. In this work, we demonstrated that Lactobacillus kunkeei, a novel Lactobacillus species isolated from honeybee guts, can form biofilms in vitro. In addition, the L. kunkeei biofilm can, in turn, inhibit the formation of P. aeruginosa biofilms. Finally, we found that L. kunkeei strains attenuate infection of P. aeruginosa in the Galleria mellonella model, presumably by affecting P. aeruginosa biofilm formation and/or their stability. Since L. kunkeei presents characteristics of a probiotic, this work provides evidence arguing that the use of this Lactobacillus species in both animals (including insects) and humans could contribute to impair P. aeruginosa biofilm formation.

  11. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  12. Production of succinic Acid from citric Acid and related acids by lactobacillus strains.

    PubMed

    Kaneuchi, C; Seki, M; Komagata, K

    1988-12-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.

  13. Ensilage of oats and wheatgrass under natural alpine climatic conditions by indigenous lactic acid bacteria species isolated from high-cold areas

    PubMed Central

    Zhang, Miao; Wang, Xiaojie; Cui, Meiyan; Wang, Yanping; Jiao, Zhen

    2018-01-01

    Five different species of selected broad-spectrum antibiotic lactic acid bacteria isolated from extremely high–cold areas were used as starters to ferment indigenous forage oats and wheatgrass under rigid alpine climatic conditions. The five isolates were Lactobacillus plantarum QZ227, Enterococcus mundtii QZ251, Pediococcus cellicola QZ311, Leuconostoc mesenteroides QZ1137 and Lactococcus lactis QZ613, and commercial Lactobacillus plantarum FG1 was used as the positive control and sterile water as the negative control. The minimum and maximum temperatures were −22°C and 23°C during the fermentation process, respectively. The pH of wheatgrass silage fermented by the QZ227 and FG1 inocula reached the expected values (≤4.15) although the pathogens detected in the silage should be further investigated. All of the inocula additives used in this study were effective in improving the fermentation quality of oat silage as indicated by the higher content of lactic acid, lower pH values (≤4.17) and significant inhibition of pathogens. QZ227 exhibited a fermentation ability that was comparable with the commercial inoculum FG1 for the whole process, and the deterioration rate was significantly lower than for FG1 after storage for 7 months. The pathogens Escherichia coli, mold and yeast were counted and isolated from the deteriorated silage. E. coli were the main NH3-N producer while F. fungi and yeast produced very little. PMID:29408855

  14. Testing of viscous anti-HIV microbicides using Lactobacillus

    PubMed Central

    Moncla, B.J.; Pryke, K.; Rohan, L. C.; Yang, H.

    2012-01-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30 min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive brief, about 2 sec, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. PMID:22226641

  15. Testing of viscous anti-HIV microbicides using Lactobacillus.

    PubMed

    Moncla, B J; Pryke, K; Rohan, L C; Yang, H

    2012-02-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Orthogonal array deciphering MRS medium requirements for isolated Lactobacillus rhamnosus ZY with cell properties characterization.

    PubMed

    Zhang, Yu; Ng, I-Son; Yao, Chuanyi; Lu, Yinghua

    2014-09-01

    Lactobacillus rhamnosus is a well-known lactic acid bacterium (LAB), but a new ZY strain was isolated for the first time from commercial probiotic powder recently. Although many studies have focused on developing cost-effective media for the production of LAB, the de Man, Rogosa and Sharpe (MRS) medium is still the most common medium for bioprocesses. The aim of the current study is to decipher the composition of MRS based on a statistical approach, which will allow a higher biomass of Lactobacillus to be obtained. In Taguchi's approach, an L27 orthogonal array was adopted to evaluate the significance of 10 ingredients in MRS, in which the effects of the components were ranked according to their effect on biomass at OD600 as dextrose > MnSO4·H2O > beef extract > CH3COONa > MgSO4 > yeast extract > proteose peptone > K2HPO4 > ammonium citrate > Tween 80. Although the individual trace elements of ammonium citrate, K2HPO4, CH3COONa and MgSO4 in MRS had an insignificant influence on the biomass after statistical analysis, the total elimination of trace elements would predominantly affect the cell growth of Lactobacillus. Further characterization of the cell properties through attenuated total reflectance of Fourier transform infrared (ATR-FTIR) spectroscopy and protein identification via SDS-PAGE coupled with tandem mass spectrometry implied that dextrose as major carbon source in MRS played the most crucial role for L. rhamnosus production. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-zhe; Chen, Hsin-Chih; Chiang, Yu-Cheng; Tsen, Hau-Yang

    2009-01-01

    PCR primers specific for the detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum were designed based on the elongation factor Tu gene (tuf). The specificity of these four primer sets were confirmed by PCR with 88 bacterial strains of Lactobacillus, Enterococcus, Bifidobacterium, and other bacterial species. Results indicated that these primer sets generated predicted PCR products of 397, 230, 202, and 161 bp for L. acidophilus, L. delbrueckii, L. casei group, and B. longum, respectively. Bacterial species other than the target organisms tested did not generate false-positive results. When these four primer sets were combined for the simultaneous detection of the lactic acid bacteria (LAB) in fermented milk products including yogurt, the LAB species listed on the labels of these products could be identified without the preenrichment step. The identification limit for each LAB strain with this multiplex PCR method was N X 10(3) CFU/ml in milk samples. The results of our multiplex PCR method were confirmed by PCR assay using primers based on the 16S rDNA or the 16S-23S intergenic spacer region and by biochemical tests using the API 50 CHL kit. When this multiplex PCR method was used with the determination of counts of total viable LAB and bifidobacteria, the quality of commercial fermented milk products could be assured.

  18. The effect of an oral probiotic containing lactobacillus, bifidobacterium, and bacillus species on the vaginal microbiota of spayed female dogs.

    PubMed

    Hutchins, R G; Bailey, C S; Jacob, M E; Harris, T L; Wood, M W; Saker, K E; Vaden, S L

    2013-01-01

    Recurrent urinary tract infections (UTIs) are often difficult to treat. Vaginal colonization with lactic acid-producing bacteria (LAB) is associated with reduced frequency of recurrent UTIs in women. Oral probiotics might help increase the prevalence of vaginal LAB and decrease the frequency of recurrent UTIs in dogs. Administration of an oral probiotic supplement containing Lactobacillus, Bifidobacterium, and Bacillus species will increase the prevalence of LAB in the vagina of dogs. Thirty-five healthy, spayed female dogs without history of recurrent UTIs. Prospective, controlled study. Enrolled dogs received an oral probiotic supplement for 14 or 28 days. A vaginal tract culture was obtained from each dog before and after oral probiotic administration. Twenty-three dogs received the oral probiotic supplement daily for a period of 14 days and 12 dogs received the oral probiotic supplement daily for a period of 28 days. Lactic acid-producing bacteria were isolated from 7 of 35 dogs prior to probiotic administration. After the treatment course, 6 of 35 dogs had LAB isolated. Only one of these dogs had LAB (Enterococcus canintestini) isolated for the first time. Enterococcus canintestini was the most common LAB isolated from all dogs in this study, although it was not included in the probiotic supplement. Lactic acid-producing bacteria are not a common isolate from the vaginal vault of dogs. Administration of this oral probiotic supplement for a 2- or 4-week period did not increase the prevalence of vaginal LAB in dogs. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  19. Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov.

    PubMed

    Meroth, Christiane B; Hammes, Walter P; Hertel, Christian

    2004-03-01

    The microbiota of two industrially processed rice sourdoughs was characterised by bacteriological culture in combination with PCR-denaturing gradient gel electrophoresis (DGGE) and 16S/28S rDNA sequence analysis. Rice sourdough I was continuously propagated for several years by back-slopping every week, whereas sourdough II was processed by using a commercial starter culture and back-slopping daily for three days. In rice sourdough II Candida krusei and Saccharomyces cerevisiae as well as Lactobacillus fermentum, Lactobacillus gallinarum, Lactobacillus kimchii, Lactobacillus plantarum, and Lactobacillus pontis dominated at the first day of fermentation. RAPD analysis of lactobacilli revealed identical profiles for each of the species except for L. fermentum and L. pontis indicating the presence of different strains. Fluctuations within the LAB community during fermentation were monitored by PCR-DGGE. L. pontis decreased in numbers over time and L. curvatus became dominant after 3 days of fermentation. Rice sourdough I contained S. cerevisiae, Lactobacillus paracasei (present with three different RAPD types), Lactobacillus paralimentarius, and a Lactobacillus strain which could not be allotted to any valid species. Phylogenetic analysis based on 16S rDNA sequences revealed Lactobacillus brevis as the closest relative (97.3% sequence similarity). Differences in some phenotypic characteristics and DNA-DNA relatedness indicated that the strain represents a new Lactobacillus species, for which the name Lactobacillus spicheri is proposed.

  20. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts

    PubMed Central

    2011-01-01

    Background The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade. Results The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group. Conclusions The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host interactions of

  1. Probiotic properties of native Lactobacillus spp. strains for dairy calves.

    PubMed

    Fernández, S; Fraga, M; Silveyra, E; Trombert, A N; Rabaza, A; Pla, M; Zunino, P

    2018-04-10

    The use of native microorganisms with probiotic capacity is an alternative tool for the treatment and prevention of several diseases that affect animals, such as neonatal calf diarrhoea. The selection of probiotic strains within a collection is based on different in vitro and in vivo assays, which predict their potential. The aim of this study was to characterise a group of native Lactobacillus spp. strains isolated from faeces of healthy calves using an in vitro approach and to assess their ability to colonise the gastrointestinal tract (GIT) of calves. Native Lactobacillus spp. strains were evaluated on their capacity to survive low pH conditions and bile salts presence, biofilm formation and adhesion to both mucus and Caco-2 cells. Based on the in vitro characterisation, four strains (Lactobacillus johnsonii TP1.1, Lactobacillus reuteri TP1.3B, L. johnsonii TP1.6 and Lactobacillus amylovorus TP8.7) were selected to evaluate their capacity to colonise and persist in the GIT of calves. The assessment of enteric persistence involved an in vivo assay with oral administration of probiotics and quantification in faeces of the administered bacterial species with real-time quantitative PCR (qPCR). The study was conducted using 15 calves (1-month-old) which were divided into five groups of three animals, four of which were treated with four different selected strains and one was the control group. Strains TP1.3B and TP1.6 managed to persist in treated animals until ten days after the end of the administration period, indicating that they could be promising candidates for the design of probiotics for calves.

  2. Selection of indigenous Lactobacillus paracasei CD4 and Lactobacillus gastricus BTM 7 as probiotic: assessment of traits combined with principal component analysis.

    PubMed

    Sharma, K; Mahajan, R; Attri, S; Goel, G

    2017-05-01

    The population of the Himalayan region is known to consume a variety of fermented and nonfermented foods and as a result they have been benefited in terms of overall health, because of the associated beneficial microbes. Therefore, the focus of the present study was to identify new strains of lactic acid bacteria (LAB) from dairy products such as milk (cow, goat, buffalo) and fermented products (curd and buttermilk) with properties suitable for use as probiotic cultures. A total of 75 isolates tentatively identified as LAB from 100 samples were initially screened for production of β-haemolysin as indicators of virulence which resulted in 38 isolates with no haemolytic activity. Further subtractive screening based on resistance to gastrointestinal tract barriers (acid and bile salts) resulted in the selection of the eight most promising strains. All these eight strains were resistant to pH 2·0, 1% bile concentration and pancreatin (1 mg l -1 ). Among the eight isolates, three isolates were identified as Brevibacillus thermoruber and the others as Brevibacillus aydinogluensis, Lactobacillus gastricus, L. paracasei, Enterococcus sp. Weisella confusa based on 16S rDNA region. Among these isolates, L. paracasei CD4 and L. gastricus BTM7 indicated maximum tolerance to simulated gastric environment. Both the isolates possessed highest score for cell surface hydrophobicity, cell autoaggregation, adherence to Caco-2 cell lines and antimicrobial activity against clinical isolates of Escherichia coli and Shigella sp. comparable to standard strain of Lactobacillus rhamnosus GG. Further principal component analysis and clustering analysis based on Euclidean Similarity index of probiotic characters revealed that L. paracasei strain CD4 and L. gastricus strain BTM7 were placed closest to reference strain L. rhamnosus GG and were therefore identified as most promising probiotic candidate cultures. These characteristics suggest that these strains could be excellent candidates

  3. Genome sequence of Lactobacillus farciminis KCTC 3681.

    PubMed

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-04-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds.

  4. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.

    PubMed

    Binh, Tran Thi Thanh; Ju, Wan-Taek; Jung, Woo-Jin; Park, Ro-Dong

    2014-01-01

    An isolate from kimchi, identified as Lactobacillus brevis, accumulated γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in the culture medium. Optimal culture conditions for growth of L. brevis and production of GABA were 6 % (w/v) l-glutamic acid, 4 % (w/v) maltose, 2 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) CaCl2, 2 g Tween 80/l, and 0.02 mM pyridoxal 5′-phosphate at initial pH 5.25 and 37 °C. GABA reached 44.4 g/l after 72 h cultivation with a conversion rate 99.7 %, based on the amount (6 %) of l-glutamic acid added. GABA was purified using ion exchange column chromatography with 70 % recovery and 97 % purity.

  5. Characterization of Feruloyl Esterases Produced by the Four Lactobacillus Species: L. amylovorus, L. acidophilus, L. farciminis and L. fermentum, Isolated from Ensiled Corn Stover.

    PubMed

    Xu, Zhenshang; He, Huiying; Zhang, Susu; Guo, Tingting; Kong, Jian

    2017-01-01

    Lactic acid bacteria (LAB) play important roles in silage fermentation, which depends on the production of sufficient organic acids to inhibit the growth of undesirable microorganisms. However, LAB are not able to degrade cellulose and hemicellulose. Bacteria and fibrolytic enzymes are usually used as inoculants to improve the silage quality and digestibility. In the present study, we isolated four Lactobacillus strains ( L. amylovorus CGMCC 11056, L. acidophilus CCTCC AB2010208, L. farciminis CCTCC AB2016237 and L. fermentum CCTCC AB2010204) with feruloyl esterase (FAE) activities from ensiled corn stover (CS) by a plate screening assay. The genes encoding FAEs were cloned and hetero-expressed in Escherichia coli . The optimal temperature and pH of these purified enzymes ranged from 45 to 50°C and from 7.0 to 8.0, respectively. They could hydrolyze hydroxycinnamoyl esters in a substrate-specific manner when methyl ferulate, methyl caffeate, methyl ρ-coumarate and methyl sinapinate were used as substrates. Moreover, these four FAEs were able to hydrolyze CS to release hydroxycinnamic acids. Furthermore, these strains could degrade hydroxycinnamic esters, and L. amylovorus CGMCC 11056 was the most efficient strain among these four isolates. These results provided a new target for the development of inoculants to improve silage quality and digestibility.

  6. Characterization of Feruloyl Esterases Produced by the Four Lactobacillus Species: L. amylovorus, L. acidophilus, L. farciminis and L. fermentum, Isolated from Ensiled Corn Stover

    PubMed Central

    Xu, Zhenshang; He, Huiying; Zhang, Susu; Guo, Tingting; Kong, Jian

    2017-01-01

    Lactic acid bacteria (LAB) play important roles in silage fermentation, which depends on the production of sufficient organic acids to inhibit the growth of undesirable microorganisms. However, LAB are not able to degrade cellulose and hemicellulose. Bacteria and fibrolytic enzymes are usually used as inoculants to improve the silage quality and digestibility. In the present study, we isolated four Lactobacillus strains (L. amylovorus CGMCC 11056, L. acidophilus CCTCC AB2010208, L. farciminis CCTCC AB2016237 and L. fermentum CCTCC AB2010204) with feruloyl esterase (FAE) activities from ensiled corn stover (CS) by a plate screening assay. The genes encoding FAEs were cloned and hetero-expressed in Escherichia coli. The optimal temperature and pH of these purified enzymes ranged from 45 to 50°C and from 7.0 to 8.0, respectively. They could hydrolyze hydroxycinnamoyl esters in a substrate-specific manner when methyl ferulate, methyl caffeate, methyl ρ-coumarate and methyl sinapinate were used as substrates. Moreover, these four FAEs were able to hydrolyze CS to release hydroxycinnamic acids. Furthermore, these strains could degrade hydroxycinnamic esters, and L. amylovorus CGMCC 11056 was the most efficient strain among these four isolates. These results provided a new target for the development of inoculants to improve silage quality and digestibility. PMID:28626449

  7. [The change of vaginal lactobacillus in patients with high-risk human papillomavirus infection].

    PubMed

    Zhou, D; Cui, Y; Wu, F L; Deng, W H

    2016-07-05

    To study the distribution characteristics of lactobacillus in the vaginal mucosa of patients with HPV infection. The planting density of lactobacillus in vaginal secretions of 95 cases with HPV16/18 infection and 90 cases of normal women of childbearing age were observed by oil microscope. And the strains of vaginal lactobacilli in two groups were analyzed using species-specific polymerase chain reaction (Species-specific PCR) and the distribution of vaginal lactobacilli in patients with HPV16/18 infection were investigated. In HPV16/18 infective groups, the planting density of lactobacillus in the vaginal mucosa was 104 (68-186)/HP. It was significantly lower than that of the normal group (234 (161-326)/HP, P<0.05). Compared with the normal group, the positive rates of lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri were significantly lower in HPV16/18 infection group (P<0.05). The HPV16/18 infection is associated with the decreased number of lactobacillus and the imbalance of vaginal flora; Lactobacillus iners, lactobacillus crispatus, and lactobacillus gasseri may play a key role in maintaining the vaginal micro ecological environment.

  8. Genetic transformation of novel isolates of chicken Lactobacillus bearing probiotic features for expression of heterologous proteins: a tool to develop live oral vaccines

    PubMed Central

    Mota, Rodrigo M; Moreira, João Luiz S; Souza, Marcelo R; Fátima Horta, M; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2006-01-01

    Background The use of lactic acid bacteria as vehicles to delivery antigens to immunize animals is a promising issue. When genetically modified, these bacteria can induce a specific local and systemic immune response against selected pathogens. Gastric acid and bile salts tolerance, production of antagonistic substances against pathogenic microorganisms, and adhesive ability to gut epithelium are other important characteristics that make these bacteria useful for oral immunization. Results Bacteria isolated on de Man, Rogosa and Sharpe medium (MRS) from different gastrointestinal portions of broiler chicks were evaluated for their resistance to artificial gastric acid and bile salts, production of hydrogen peroxide, and cell surface hydrophobicity. Thirty-eight isolates were first typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR amplicons (PCR-ARDRA). An expression cassette was assembled onto the pCR2.1-Topo vector by cloning the promoter, leader peptide, cell wall anchor and terminator sequences derived from the laminin binding S-layer protein gene of L. crispatus strain F5.7 (lbs gene). A sequence encoding the green fluorescent protein (GFP) was inserted as reporter gene, and an erythromycin resistance gene was added as selective marker. All constructs were able to express GFP in the cloning host E. coli XL1-Blue and different Lactobacillus strains as verified by FACS and laser scanning confocal microscopy. Conclusion Lactobacillus isolated from gastrointestinal tract of broiler chickens and selected for probiotic characteristics can be genetically modified by introducing an expression cassette into the lbs locus. The transformed bacteria expressed on its cell wall surface different fluorescent proteins used as reporters of promoter function. It is possible then that similar bacterial model expressing pathogen antigens can

  9. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    PubMed

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L

  10. Characterization of β-glucan formation by Lactobacillus brevis TMW 1.2112 isolated from slimy spoiled beer.

    PubMed

    Fraunhofer, Marion E; Geissler, Andreas J; Wefers, Daniel; Bunzel, Mirko; Jakob, Frank; Vogel, Rudi F

    2018-02-01

    Despite several hurdles, which hinder bacterial growth in beer, certain bacteria are still able to spoil beer. One type of spoilage is characterized by an increased viscosity and slimy texture caused by exopolysaccharide (EPS) formation of lactic acid bacteria (LAB). In this study, we characterize for the first time EPS production in a beer-spoiling strain (TMW 1.2112) of Lactobacillus brevis, a species commonly involved in beer spoilage. The strain's growth dynamics were assessed and we found an increased viscosity or ropiness in liquid or on solid media, respectively. Capsular polysaccharides (CPS) and released EPS from the cells or supernatant, respectively, were analyzed via NMR spectroscopy and methylation analysis. Both are identical β-(1→3)-glucans, which are ramified with β-glucose residues at position O2. Therefore, we assume that this EPS is mainly produced as CPS and partially released into the surrounding medium, causing viscosity of e.g. beer. CPS formation was confirmed via an agglutination test. A plasmid-located glycosyltransferase-2 was found as responsible for excess β-glucan formation, chromosomal glucanases were proposed for its degradation. The glycosyltransferase-2 gene could also be specifically identified in beer-spoiling, slime-producing Lactobacillus rossiae and Lactobacillus parabuchneri strains, suggesting it as promising marker gene for the early detection of β-glucan-producing Lactobacilli in breweries. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Genotypic and phenotypic diversity of Lactobacillus rhamnosus clinical isolates, their comparison with strain GG and their recognition by complement system

    PubMed Central

    Douillard, François P.; Ritari, Jarmo; Paulin, Lars; Järvinen, Hanna M.; Rasinkangas, Pia; Haapasalo, Karita; Meri, Seppo; Jarva, Hanna; de Vos, Willem M.

    2017-01-01

    Lactobacillus rhamnosus strains are ubiquitous in fermented foods, and in the human body where they are commensals naturally present in the normal microbiota composition of gut, vagina and skin. However, in some cases, Lactobacillus spp. have been implicated in bacteremia. The aim of the study was to examine the genomic and immunological properties of 16 clinical blood isolates of L. rhamnosus and to compare them to the well-studied L. rhamnosus probiotic strain GG. Blood cultures from bacteremic patients were collected at the Helsinki University Hospital laboratory in 2005–2011 and L. rhamnosus strains were isolated and characterized by genomic sequencing. The capacity of the L. rhamnosus strains to activate serum complement was studied using immunological assays for complement factor C3a and the terminal pathway complement complex (TCC). Binding of complement regulators factor H and C4bp was also determined using radioligand assays. Furthermore, the isolated strains were evaluated for their ability to aggregate platelets and to form biofilms in vitro. Genomic comparison between the clinical L. rhamnosus strains showed them to be clearly different from L. rhamnosus GG and to cluster in two distinct lineages. All L. rhamnosus strains activated complement in serum and none of them bound complement regulators. Four out of 16 clinical blood isolates induced platelet aggregation and/or formed more biofilms than L. rhamnosus GG, which did not display platelet aggregation activity nor showed strong biofilm formation. These findings suggest that clinical L. rhamnosus isolates show considerable heterogeneity but are clearly different from L. rhamnosus GG at the genomic level. All L. rhamnosus strains are still normally recognized by the human complement system. PMID:28493885

  12. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs).

    PubMed

    Naderi, Atiyeh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Imani Fooladi, Abbas Ali; Abdollahpour Alitappeh, Meghdad; Saffarian, Parvaneh

    2014-03-01

    Urinary tract infection (UTI) caused by bacteria is one of the most frequent infections in human population. Inappropriate use of antibiotics, often leads to appearance of drug resistance in bacteria. However, use of probiotic bacteria has been suggested as a partial replacement. This study was aimed to assess the antagonistic effects of Lactobacillus standard strains against bacteria isolated from UTI infections. Among 600 samples; those with ≥10,000 cfu/ml were selected as UTI positive samples. Enterococcus sp., Klebsiella pneumoniae, Enterobacter sp., and Escherichia coli were found the most prevalent UTI causative agents. All isolates were screened for multi drug resistance and subjected to the antimicrobial effects of three Lactobacillus strains by using microplate technique and the MICs amounts were determined. In order to verify the origin of antibiotic resistance of isolates, plasmid curing using ethidium bromide and acridine orange was carried out. No antagonistic activity in Lactobacilli suspension was detected against test on Enterococcus and Enterobacter strains and K. pneumoniae, which were resistant to most antibiotics. However, an inhibitory effect was observed for E. coli which were resistant to 8-9 antibiotics. In addition, L. casei was determined to be the most effective probiotic. RESULTS from replica plating suggested one of the plasmids could be related to the gene responsible for ampicillin resistance. Treatment of E. coli with probiotic suspension was not effective on inhibition of the plasmid carrying hypothetical ampicillin resistant gene. Moreover, the plasmid profiles obtained from probiotic-treated isolates were identical to untreated isolates.

  13. Intraspecies cellular fatty acids heterogeneity of Lactobacillus plantarum strains isolated from fermented foods in Ukraine.

    PubMed

    Garmasheva, I; Vasyliuk, O; Kovalenko, N; Ostapchuk, A; Oleschenko, L

    2015-09-01

    The intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains isolated from Ukrainian traditional fermented foods was examined. Seven cellular fatty acids were identified. All Lact. plantarum strains investigated contained C16:0 (from 7·54 to 49·83% of total fatty acids), cC18:1 (3·23-38·67% of total fatty acids) and cycC19:0 acids (9·03-67·68% of total fatty acids) as the major fatty acids. The tC18:1 acid made up 1·47-22·0% of the total fatty acids. The C14:0 and C16:1 acids were present in small amounts (0·22-6·96% and 0·66-7·42% respectively) in most Lact. plantarum strains. Differences in relative contents of some fatty acids between Lact. plantarum strains depending on the source isolation were found. Isolates of dairy origin contained slightly greater levels of the C16:0 and tC18:1 fatty acids and lower levels of the cC18:1 than strains obtained from fermented vegetables. The origin of Lact. plantarum strains affects their fatty acids composition, which in turn, appears to be related to their ability to growth under stress factors. Cellular fatty acids composition is an important chemotaxonomic characteristic of bacterial cells. At the same time cellular fatty acids play a key role in maintaining the viability of micro-organisms in different environmental conditions. In this study, intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains was examined. This work provides novel and important information about a relationship between cellular fatty acids composition of Lact. plantarum strains and source of isolation or stress resistance profile. Our results showed that cellular fatty acids composition is quite diverse among Lact. plantarum strains derived from different sources and may reflect previous cell's history. Our findings should be considered in chemotaxonomic studies of lactic acid bacteria and its ecology. © 2015 The Society for Applied Microbiology.

  14. A Lactobacillus-Deficient Vaginal Microbiota Dominates Postpartum Women in Rural Malawi

    PubMed Central

    2018-01-01

    ABSTRACT The bacterial community found in the vagina is an important determinant of a woman's health and disease status. A healthy vaginal microbiota is associated with low species richness and a high proportion of one of a number of different Lactobacillus spp. When disrupted, the resulting abnormal vaginal microbiota is associated with a number of disease states and poor pregnancy outcomes. Studies up until now have concentrated on relatively small numbers of American and European populations that may not capture the full complexity of the community or adequately predict what constitutes a healthy microbiota in all populations. In this study, we sampled and characterized the vaginal microbiota found on vaginal swabs taken postpartum from a cohort of 1,107 women in rural Malawi. We found a population dominated by Gardnerella vaginalis and devoid of the most common vaginal Lactobacillus species, even if the vagina was sampled over a year postpartum. This Lactobacillus-deficient anaerobic community, commonly labeled community state type (CST) 4, could be subdivided into four further communities. A Lactobacillus iners-dominated vaginal microbiota became more common the longer after delivery the vagina was sampled, but G. vaginalis remained the dominant organism. These results outline the difficulty in all-encompassing definitions of what a healthy or abnormal postpartum vaginal microbiota is. Previous identification of community state types and associations among bacterial species, bacterial vaginosis, and adverse birth outcomes may not represent the complex heterogeneity of the microbiota present. (This study has been registered at ClinicalTrials.gov as NCT01239693.) IMPORTANCE A bacterial community in the vaginal tract is dominated by a small number of Lactobacillus species, and when not present there is an increased incidence of inflammatory conditions and adverse birth outcomes. A switch to a vaginal bacterial community lacking in Lactobacillus species is common

  15. Lactobacillus-deficient vaginal microbiota dominate post-partum women in rural Malawi.

    PubMed

    Doyle, Ronan; Gondwe, Austridia; Fan, Yue-Mei; Maleta, Kenneth; Ashorn, Per; Klein, Nigel; Harris, Kathryn

    2018-01-05

    The bacterial community found in the vagina is an important determinant of a woman's health and disease. A healthy vaginal microbiota is associated with a lower species richness and high proportions of one of a number of different Lactobacillus spp.. When disrupted the resulting abnormal vaginal microbiota is associated with a number of disease states and poor pregnancy outcomes. Studies up until now have concentrated on relatively small numbers of American and European populations which may not capture the full complexity of the community, nor adequately predict what constitutes a healthy microbiota in all populations. In this study we sampled and characterised the vaginal microbiota from a cohort of 1107 women in rural Malawi found on vaginal swabs taken post-partum. We found a population dominated by Gardnerella vaginalis and devoid of the most common vaginal Lactobacillus species, even if the vagina was sampled over a year post-partum. The Lactobacillus -deficient anaerobic community commonly labelled community state type (CST) 4 could be sub-divided into four further communities. A Lactobacillus iners dominated vaginal microbiota became more common the longer after delivery the vagina was sampled, but G. vaginalis remained the dominant organism. These results outline the difficulty in all-encompassing definitions of what a healthy or abnormal vaginal microbiota is post-partum. Previous identification of community state types and associations between bacterial species, bacterial vaginosis and adverse birth outcomes may not represent the complex heterogeneity of the microbiota present. Importance A bacterial community in the vaginal tract that is dominated by small number of bacterial Lactobacillus species and when they are not present, there is a greater incidence of inflammatory conditions and adverse birth outcomes. A switch to a vaginal bacterial community lacking in Lactobacillus species is common after pregnancy. In this study we characterised the vaginal

  16. Genome sequence of Lactobacillus rhamnosus ATCC 8530.

    PubMed

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry

    2012-02-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  17. Biofilms of vaginal Lactobacillus in vitro test.

    PubMed

    Wei, Xiao-Yu; Zhang, Rui; Xiao, Bing-Bing; Liao, Qin-Ping

    2017-01-01

    This paper focuses on biofilms of Lactobacillus spp. - a type of normal flora isolated from healthy human vaginas of women of childbearing age; thereupon, it broadens the research scope of investigation of vaginal normal flora. The static slide culture method was adopted to foster biofilms, marked by specific fluorescence staining. Laser scanning confocal and scanning electron microscopy were used to observe the microstructure of the biofilms. Photographs taken from the microstructure were analysed to calculate the density of the biofilms. The body of Lactobacillus spp., though red, turned yellow when interacting with the green extracellular polysaccharides. The structure of the biofilm and aquaporin within the biofilm were imaged. Lactobacillus density increases over time. This study provides convincing evidence that Lactobacillus can form biofilms and grow over time in vitro. This finding establishes an important and necessary condition for selecting proper strains for the pharmaceutics of vaginal ecology.

  18. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species.

    PubMed

    Duarte, Francisca Nayara Dantas; Rodrigues, Jéssica Bezerra; da Costa Lima, Maiara; Lima, Marcos Dos Santos; Pacheco, Maria Teresa Bertoldo; Pintado, Maria Manuela Estevez; de Souza Aquino, Jailane; de Souza, Evandro Leite

    2017-08-01

    The prebiotic effects of a cashew apple (Anacardium occidentale L.) agro-industrial byproduct powder (CAP) on different potentially probiotic Lactobacillus strains, namely Lactobacillus acidophilus LA-05, Lactobacillus casei L-26 and Lactobacillus paracasei L-10, were assessed using in vitro experimental models. Accordingly, the growth of the Lactobacillus strains when cultivated in a broth containing CAP (20 or 30 g L -1 ), glucose (20 g L -1 ) or fructooligosaccharides (FOS) (20 g L -1 ) was monitored over 48 h; the prebiotic activity scores of CAP were determined; and the changes in pH values, production of organic acids and consumption of sugars in growth media were verified. During the 48-h cultivation, similar viable cell counts were observed for the Lactobacillus strains grown in the different media tested. The CAP presented positive prebiotic activity scores toward all the tested Lactobacillus strains, indicating a desirable selective fermentable activity relative to enteric organisms. The cultivation of the Lactobacillus strains in broth containing glucose, FOS or CAP resulted in high viable cell counts, a decreased pH, the production of organic acids and the consumption of sugars over time, revealing intense bacterial metabolic activity. The CAP exerts potential prebiotic effects on different potentially probiotic Lactobacillus strains and should be an added-value ingredient for the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species.

    PubMed

    Bidart, Gonzalo N; Rodríguez-Díaz, Jesús; Palomino-Schätzlein, Martina; Monedero, Vicente; Yebra, María J

    2017-01-01

    Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-D-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for β1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-β-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants.

  20. Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir.

    PubMed

    Wang, Yanping; Ahmed, Zaheer; Feng, Wu; Li, Chao; Song, Shiying

    2008-10-01

    An exopolysaccharide (EPS) producing strain, ZW3, was isolated from Tibet kefir grain and was identified as Lactobacillus kefiranofaciens. FT-IR spectroscopy revealed the presence of carboxyl, hydroxyl, and amide groups, which correspond to a typical heteropolymeric polysaccharide. The GC analysis of ZW3 EPS revealed that it was glucogalactan in nature. Exopolymer showed similar flocculation stability like xanthan gum but better than guar gum with a melting point of 93.38 degrees C which is lower than xanthan gum (153.4 degrees C) and guar gum (490.11 degrees C). Compared with other commercially available hydrocolloids like xanthan gum, guar gum and locust gum ZW3 EPS showed much better emulsifying capability.

  1. Salivaricin P, One of a Family of Two-Component Antilisterial Bacteriocins Produced by Intestinal Isolates of Lactobacillus salivarius▿

    PubMed Central

    Barrett, Eoin; Hayes, Maria; O'Connor, Paula; Gardiner, Gillian; Fitzgerald, Gerald F.; Stanton, Catherine; Ross, R. Paul; Hill, Colin

    2007-01-01

    Lactobacillus salivarius DPC6005, a porcine intestinal isolate, produces a two-component bacteriocin, salivaricin P, with homology to ABP-118 produced by a human probiotic L. salivarius strain. Indeed, molecular characterization revealed that while the peptides Sln1 and ABP-118α are identical, their companion peptides (Sln2 and ABP-118β, respectively) differ by two amino acids. This observation suggests that two-component bacteriocins may be a common feature of intestinal L. salivarius strains. PMID:17416691

  2. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina.

    PubMed

    France, Michael T; Mendes-Soares, Helena; Forney, Larry J

    2016-12-15

    Lactobacillus crispatus and Lactobacillus iners are common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from an L. iners-dominated community to one dominated by L. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes of L. iners and L. crispatus to gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species. The microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by either Lactobacillus iners or Lactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes of L. iners and L. crispatus differ in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal microbiome and

  3. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina

    PubMed Central

    France, Michael T.; Mendes-Soares, Helena

    2016-01-01

    ABSTRACT Lactobacillus crispatus and Lactobacillus iners are common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from an L. iners-dominated community to one dominated by L. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes of L. iners and L. crispatus to gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species. IMPORTANCE The microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by either Lactobacillus iners or Lactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes of L. iners and L. crispatus differ in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal

  4. Novel consortium of Klebsiella variicola and Lactobacillus species enhances the functional potential of fermented dairy products by increasing the availability of branched-chain amino acids and the amount of distinctive volatiles.

    PubMed

    Rosales-Bravo, H; Morales-Torres, H C; Vázquez-Martínez, J; Molina-Torres, J; Olalde-Portugal, V; Partida-Martínez, L P

    2017-11-01

    Identify novel bacterial taxa that could increase the availability of branched-chain amino acids and the amount of distinctive volatiles during skim milk fermentation. We recovered 344 bacterial isolates from stool samples of healthy and breastfed infants. Five were selected based on their ability to produce branched-chain amino acids. Three strains were identified as Escherichia coli, one as Klebsiella pneumoniae and other as Klebsiella variicola by molecular and biochemical methods. HPLC and solid-phase microextraction with GC-MS were used for the determination of free amino acids and volatile compounds respectively. The consortium formed by K. variicola and four Lactobacillus species showed the highest production of Leu and Ile in skim milk fermentation. In addition, the production of volatile compounds, such as acetoin, ethanol, 2-nonanone, and acetic, hexanoic and octanoic acids, increased in comparison to commercial yogurt, Emmental and Gouda cheese. Also, distinctive volatiles, such as 2,3-butanediol, 4-methyl-2- hexanone and octanol, were identified. The use of K. variicola in combination with probiotic Lactobacillus species enhances the availability of Leu and Ile and the amount of distinctive volatiles during skim milk fermentation. The identified consortium increases the functional potential of fermented dairy products. © 2017 The Society for Applied Microbiology.

  5. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    PubMed Central

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  6. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats.

    PubMed

    Martino, Maria Elena; Bayjanov, Jumamurat R; Caffrey, Brian E; Wels, Michiel; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; van Hijum, Sacha A F T; Leulier, François

    2016-12-01

    The ability of bacteria to adapt to diverse environmental conditions is well-known. The process of bacterial adaptation to a niche has been linked to large changes in the genome content, showing that many bacterial genomes reflect the constraints imposed by their habitat. However, some highly versatile bacteria are found in diverse habitats that almost share nothing in common. Lactobacillus plantarum is a lactic acid bacterium that is found in a large variety of habitat. With the aim of unravelling the link between evolution and ecological versatility of L. plantarum, we analysed the genomes of 54 L. plantarum strains isolated from different environments. Comparative genome analysis identified a high level of genomic diversity and plasticity among the strains analysed. Phylogenomic and functional divergence studies coupled with gene-trait matching analyses revealed a mixed distribution of the strains, which was uncoupled from their environmental origin. Our findings revealed the absence of specific genomic signatures marking adaptations of L. plantarum towards the diverse habitats it is associated with. This suggests fundamentally similar trends of genome evolution in L. plantarum, which occur in a manner that is apparently uncoupled from ecological constraint and reflects the nomadic lifestyle of this species. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Screening sourdough samples for gliadin-degrading activity revealed Lactobacillus casei strains able to individually metabolize the coeliac-disease-related 33-mer peptide.

    PubMed

    Alvarez-Sieiro, Patricia; Redruello, Begoña; Ladero, Victor; Martín, Maria Cruz; Fernández, María; Alvarez, Miguel A

    2016-05-01

    A selective culture medium containing acid-hydrolyzed gliadins as the sole nitrogen source was used in the search for sourdough-indigenous lactic acid bacteria (LAB) with gliadin-metabolizing activity. Twenty gliadin-degrading LAB strains were isolated from 10 sourdoughs made in different ways and from different geographical regions. Fifteen of the 20 isolated strains were identified as Lactobacillus casei, a species usually reported as subdominant in sourdough populations. The other 5 gliadin-degrading strains belonged to the more commonly encountered sourdough species Leuconostoc mesenteroides and Lactobacillus plantarum. All these strains were shown to be safe in terms of their resistance to antimicrobial agents. When individually incubated with the α2-gliadin-derived immunotoxic 33-mer peptide (97.5 ppm), half of the L. casei strains metabolized at least 50% of it within 24 h. One strain metabolized 82% of the 33-mer peptide within 8 h and made it fully disappear within 12 h. These results reveal for the first time the presence in sourdough of proteolytic L. casei strains with the capacity to individually metabolize the coeliac-disease-related 33-mer peptide.

  8. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.

    PubMed

    Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z

    2014-04-01

    The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Draft Genome Sequence of d-Branched-Chain Amino Acid Producer Lactobacillus otakiensis JCM 15040T, Isolated from a Traditional Japanese Pickle

    PubMed Central

    Mori, Kazuki; Mutaguchi, Yuta; Tashiro, Kosuke; Fujino, Yasuhiro; Ohmori, Taketo; Kuhara, Satoru; Ohshima, Toshihisa

    2013-01-01

    Lactobacillus otakiensis strain JCM 15040T was isolated from an unsalted pickling solution used in the production of sunki, a traditional Japanese pickle. Here, we prepared a draft genome sequence for this strain consisting of 40 contigs containing a total of 2,347,132 bp, 2,310 predicted coding sequences, and a G+C content of 42.4%. PMID:23929467

  10. Extending viability of Lactobacillus plantarum and Lactobacillus johnsonii by microencapsulation in alginate microgels.

    PubMed

    Tiani, Kendra A; Yeung, Timothy W; McClements, D Julian; Sela, David A

    2018-03-01

    To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.

  11. Genome Sequence of Lactobacillus farciminis KCTC 3681▿

    PubMed Central

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-01-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds. PMID:21257766

  12. Lactobacillus casei Encapsulated in Soy Protein Isolate and Alginate Microparticles Prepared by Spray Drying

    PubMed Central

    2017-01-01

    Summary This article presents a novel formulation for preparation of Lactobacillus casei 01 encapsulated in soy protein isolate and alginate microparticles using spray drying method. A response surface methodology was used to optimise the formulation and the central composite face-centered design was applied to study the effects of critical material attributes and process parameters on viability of the probiotic after microencapsulation and in simulated gastrointestinal conditions. Spherical microparticles were produced in high yield (64%), narrow size distribution (d50=9.7 µm, span=0.47) and favourable mucoadhesive properties, with viability of the probiotic of 11.67, 10.05, 9.47 and 9.20 log CFU/g after microencapsulation, 3 h in simulated gastric and intestinal conditions and four-month cold storage, respectively. Fourier-transform infrared spectroscopy confirmed the probiotic stability after microencapsulation, while differential scanning calorimetry and thermogravimetry pointed to high thermal stability of the soy protein isolate-alginate microparticles with encapsulated probiotic. These favourable properties of the probiotic microparticles make them suitable for incorporation into functional food or pharmaceutical products. PMID:28867947

  13. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study.

    PubMed

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  14. Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must.

    PubMed

    Rojo-Bezares, Beatriz; Sáenz, Yolanda; Navarro, Laura; Zarazaga, Myriam; Ruiz-Larrea, Fernanda; Torres, Carmen

    2007-08-01

    Detection and characterization of bacteriocin production by Lactobacillus plantarum strain J23, recovered from a grape must sample in Spain, have been carried out. Bacteriocin activity was degraded by proteolytic enzymes (trypsin, alfa-chymotrypsin, papaine, protease, proteinase K and acid proteases), and it was stable at high temperatures (121 degrees C, 20min), in a wide range of pH (1-12), and after treatment with organic solvents. L. plantarum J23 showed antimicrobial activity against Oenococcus oeni, and a range of Lactobacillus and Pediococcus species. Bacteriocin production was detected in liquid media only when J23 was cocultivated with some inducing bacteria, and induction took place when intact cells or 55 degrees C heated cells of the inducer were cocultivated with J23, but not with their autoclaved cells. Bacteriocin activity of J23 was not induced by high initial J23 inocula, and it was detected in cocultures during the exponential phase. The presence of ethanol or acidic pH in the media reduced bacteriocin production in the cocultures of J23 with the inducing bacteria. The presence of plantaricin-related plnEF and plnJ genes was detected by PCR and sequencing. Nevertheless, negative results were obtained for plnA, plnK, plNC8, plS and plW genes.

  15. Isolation of non-sporing anaerobic rods from infections in children.

    PubMed

    Brook, I

    1996-07-01

    From 1974 to 1994, 2033 microbiological specimens from children were submitted for cultures for anaerobic bacteria. Fifty-seven isolates of Bifidobacterium spp. were obtained from 55 (3%) children, 67 isolates of Eubacterium spp. from 65 (3%) children and 41 isolates of Lactobacillus spp. from 40 (2%) children. Most Bifidobacterium isolates were from chronic otitis media, abscesses, peritonitis, aspiration pneumonia and paronychia. Most Eubacterium isolates were from abscesses, peritonitis, decubitus ulcers and bites. Lactobacillus spp. were mainly isolated from abscesses, aspiration pneumonia, bacteraemia and conjunctivitis. Most (> 90%) infections from which these species were isolated were polymicrobial and yielded a mixture of aerobic and anaerobic bacteria. The organisms most commonly isolated with the non-sporing anaerobic gram-positive rods were Peptostreptococcus spp., Bacteroides spp., pigmented Prevotella and Porphyromonas spp., Fusobacterium spp., Staphylococcus aureus and Escherichia coli. Most Bacteroides spp. and E. coli were isolated from intra-abdominal infection and skin and soft tissue infection around the rectal area, whereas most Prevotella, Porphyromonas and Fusobacterium isolates were from oropharyngeal, pulmonary and head and neck sites. The predisposing conditions associated with the isolation of non-sporing anaerobic gram-positive rods were previous surgery, malignancy, steroid therapy and immunodeficiency. Antimicrobial therapy was given to 149 (83%) of the 160 patients, in conjunction with surgical drainage or correction of pathology in 89 (56%).

  16. Different immune regulatory potential of Lactobacillus plantarum and Lactobacillus sakei isolated from Kimchi.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Rim; Gim, Min Geun; Chung, Dae Kyun

    2014-12-28

    It is known that lactic acid bacteria (LAB) have many beneficial health effects, including antioxidative activity and immune regulation. In this study, the immune regulatory effects of Lactobacillus sakei and Lactobacillus plantarum, which are found in different types of kimchi, were evaluated. L. sakei and its lipoteichoic acid (LTA) have greater immune stimulating potential in IL-12, IFN-γ, and TNF-α production as compared with L. plantarum in an in vitro condition. On the other hand, L. plantarum is assumed to repress the Th1 immune response in murine experiments. After being injected with LPS, L. plantarum-fed mice maintained a healthier state, and the level of TNF-α in their blood was lower than in other bacterial strainfed mice and in the LPS-only control mice. Additionally, IL-12 production was significantly decreased and the production of IL-4 was greatly increased in the splenocytes from L. plantarum-fed mice. Further experiments revealed that the pre-injection of purified LTA from L. plantarum (pLTA), L. sakei (sLTA), and S. aureus (aLTA) decreased TNF-α and IL-4 production in LPS-injected mice. Mouse IL-12, however, was significantly increased by aLTA pre-injection. In conclusion, the L. sakei and L. plantarum strains have immune regulation effects, but the effects differ in cytokine production and the regulatory effects of the Th1/Th2 immune response.

  17. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    PubMed

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed

  18. Draft Genome Sequence of Lactobacillus delbrueckii Strain #22 Isolated from a Patient with Short Bowel Syndrome and Previous d-Lactic Acidosis and Encephalopathy

    PubMed Central

    Fischer, Florence; Glowatzki, Fabian; Fritzenwanker, Moritz; Hain, Torsten; Zechel-Gran, Silke; Giffhorn-Katz, Susanne; Neubauer, Bernd A.

    2016-01-01

    d-Lactic acidosis with associated encephalopathy caused by overgrowth of intestinal lactic acid bacteria is a rarely diagnosed neurological complication of patients with short bowel syndrome. Here, we report the draft genome sequence of Lactobacillus delbrueckii strain #22 isolated from a patient with short bowel syndrome and previous d-lactic acidosis/encephalopathy. PMID:27469967

  19. Actinomyces Species Isolated from Breast Infections

    PubMed Central

    Loh, S. F.; Morris, T.; Hughes, H.; Dixon, J. M.

    2015-01-01

    Actinomycosis is a chronic infection caused by Actinomyces species characterized by abscess formation, tissue fibrosis, and draining sinuses. The spectrum of infections caused by Actinomyces species ranges from classical invasive actinomycosis to a less invasive form of superficial skin and soft tissue infection. We present a review detailing all Actinomyces species isolated from breast infections in NHS Lothian between 2005 and 2013, Actinomyces species isolated from breast infections referred to the United Kingdom Anaerobe Reference Unit between 1988 and 2014, and cases describing Actinomyces breast infections published in the medical literature since 1994. Actinomyces species are fastidious organisms which can be difficult to identify and are likely to be underascertained as a cause of breast infections. Due to improved diagnostic methods, they are increasingly associated with chronic, recurrent breast infections and may play a more significant role in these infections than has previously been appreciated. PMID:26224846

  20. Lactobacillus priming of the respiratory tract: Heterologous immunity and protection against lethal pneumovirus infection.

    PubMed

    Garcia-Crespo, Katia E; Chan, Calvin C; Gabryszewski, Stanislaw J; Percopo, Caroline M; Rigaux, Peter; Dyer, Kimberly D; Domachowske, Joseph B; Rosenberg, Helene F

    2013-03-01

    We showed previously that wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus species were fully (100%) protected against the lethal sequelae of infection with the virulent pathogen, pneumonia virus of mice (PVM), a response that is associated with diminished expression of proinflammatory cytokines and diminished virus recovery. We show here that 40% of the mice primed with live Lactobacillus survived when PVM challenge was delayed for 5months. This robust and sustained resistance to PVM infection resulting from prior interaction with an otherwise unrelated microbe is a profound example of heterologous immunity. We undertook the present study in order to understand the nature and unique features of this response. We found that intranasal inoculation with L. reuteri elicited rapid, transient neutrophil recruitment in association with proinflammatory mediators (CXCL1, CCL3, CCL2, CXCL10, TNF-alpha and IL-17A) but not Th1 cytokines. IFNγ does not contribute to survival promoted by Lactobacillus-priming. Live L. reuteri detected in lung tissue underwent rapid clearance, and was undetectable at 24h after inoculation. In contrast, L. reuteri peptidoglycan (PGN) and L. reuteri genomic DNA (gDNA) were detected at 24 and 48h after inoculation, respectively. In contrast to live bacteria, intranasal inoculation with isolated L. reuteri gDNA elicited no neutrophil recruitment, had minimal impact on virus recovery and virus-associated production of CCL3, and provided no protection against the negative sequelae of virus infection. Isolated PGN elicited neutrophil recruitment and proinflammatory cytokines but did not promote sustained survival in response to subsequent PVM infection. Overall, further evaluation of the responses leading to Lactobacillus-mediated heterologous immunity may provide insight into novel antiviral preventive modalities. Published by Elsevier B.V.

  1. Lactobacillus priming of the respiratory tract: heterologous immunity and protection against lethal pneumovirus infection

    PubMed Central

    Garcia-Crespo, Katia E.; Chan, Calvin C.; Gabryszewski, Stanislaw J.; Percopo, Caroline M.; Rigaux, Peter; Dyer, Kimberly D.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2013-01-01

    We showed previously that wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus species were fully (100%) protected against the lethal sequelae of infection with the virulent pathogen, pneumonia virus of mice (PVM), a response that is associated with diminished expression of proinflammatory cytokines and diminished virus recovery. We show here that 40% of the mice primed with live Lactobacillus survived when PVM challenge was delayed for 5 months. This robust and sustained resistance to PVM infection resulting from prior interaction with an otherwise unrelated microbe is a profound example of heterologous immunity. We undertook the present study in order to understand the nature and unique features of this response. We found that intranasal inoculation with L. reuteri elicited rapid, transient neutrophil recruitment in association with proinflammatory mediators (CXCL1, CCL3, CCL2, CXCL10, TNF-alpha and IL-17A) but not Th1 cytokines. IFNγ does not contribute to survival promoted by Lactobacillus-priming. Live L. reuteri detected in lung tissue underwent rapid clearance, and was undetectable at 24 hrs after inoculation. In contrast, L. reuteri peptidoglycan (PGN) and L. reuteri genomic DNA (gDNA) were detected at 24 and 48 hours after inoculation, respectively. In contrast to live bacteria, intranasal inoculation with isolated L. reuteri gDNA elicited no neutrophil recruitment, had minimal impact on virus recovery and virus-associated production of CCL3, and provided no protection against the negative sequelae of virus infection. Isolated PGN elicited neutrophil recruitment and proinflammatory cytokines but did not promote sustained survival in response to subsequent PVM infection. Overall, further evaluation of the responses leading to Lactobacillus-mediated heterologous immunity may provide insight into novel antiviral preventive modalities. PMID:23274789

  2. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    PubMed Central

    2009-01-01

    Background The Lactic Acid Bacteria (LAB) are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD) are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i) the initial cultivable LAB strain diversity in the human gut, and (ii) the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156) contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p < 0.05). Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be evaluated using a high

  3. Effect of a novel potential probiotic Lactobacillus paracasei Jlus66 isolated from fermented milk on nonalcoholic fatty liver in rats.

    PubMed

    Ye, Haiqing; Li, Qian; Zhang, Zhengzhe; Sun, Maocheng; Zhao, Changhui; Zhang, Tiehua

    2017-12-13

    Nonalcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease worldwide. Previous evidence indicates that probiotics can be applied as a therapeutic agent for NAFLD. In this study, the potential probiotic strain Lactobacillus paracasei Jlus66 was isolated from natural fermented milk by a culture-dependent method, and its probiotic potentials were tested by established in vitro tests. In addition, the protective effect of Lactobacillus paracasei Jlus66 against NAFLD was evaluated in rat models. Compared with the high-fat-diet (HFD) group, the rats administered with 4 × 10 10 cfu Jlus66 had significantly lower body weight gain, serum triglyceride (TG), low-density lipoprotein (LDL) as well as aminotransferase (ALT). Histopathological analysis showed Jlus66 also reduced the level of hepatic triglycerides and steatosis. From the above we conclude that L. paracasei Jlus66 has great potential as a probiotic in protecting from NAFLD.

  4. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen.

    PubMed

    Yadav, Ashok Kumar; Tyagi, Ashish; Kaushik, Jai Kumar; Saklani, Asha Chandola; Grover, Sunita; Batish, Virender Kumar

    2013-12-14

    Human feacal isolates were ascertain as genus Lactobacillus using specific primer LbLMA1/R16-1 and further identified as Lactobacillus plantarum with species specific primers Lpl-3/Lpl-2. 25 L. plantarum strains were further assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to immobilized human collagen type-1. Surface proteins were isolated from selected L. plantarum 91(Lp91) strain. The purified collagen binding protein (Cbp) protein was assessed for its anti-adhesion activity against enteric Escherichia coli 0157:H7 pathogen on immobilized collagen. Four L. plantarum strains displayed high degree of hydrophobicity and significant adhesion to collagen. A 72 kDa protein was purified which reduced 59.71% adhesion of E. coli 0157:H7 on immobilized collagen as compared to control well during adhesion assay. Cbp protein is the major influencing factor in inhibition of E. coli 0157:H7 adhesion with extracellular matrix (ECM) components. Hydrophobicity and adhesion potential are closely linked attributes precipitating in better colonization potential of the lactobacillus strains. Cbp is substantiated as a crucial surface protein contributing in adhesion of lactobacillus strains. The study can very well be the platform for commercialization of indigenous probiotic strain once their functional attributes are clinically explored. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Distinctive Intestinal Lactobacillus Communities in 6-Month-Old Infants From Rural Malawi and Southwestern Finland.

    PubMed

    Aakko, Juhani; Endo, Akihito; Mangani, Charles; Maleta, Kenneth; Ashorn, Per; Isolauri, Erika; Salminen, Seppo

    2015-12-01

    Our aim was to compare the composition and diversity of Lactobacillus microbiota in infants living in Malawi and Southwestern Finland. The composition and diversity of the Lactobacillus group was analyzed in the feces of healthy 6-month-old infants living in rural Malawi (n = 44) and Southwestern Finland (n = 31), using the quantitative polymerase chain reaction method and PCR-denaturing gradient gel electrophoresis fingerprinting. Malawian infants had higher counts of lactobacilli than their Finnish counterparts (7.45 log cells/g vs 6.86 log cells/g, P < 0.001, respectively) and the Lactobacillus community was richer and more diverse in the Malawian infants. Leuconostoc citreum and Weissella confusa were the predominant species in both study groups, but Malawian infants were more often colonized by these species (100% vs 74.2%, P < 0.001; 95.5% vs 41.9%, P < 0.001, respectively). Moreover, Lactobacillus ruminis, Lactobacillus gasseri, Lactobacillus acidophilus, and Lactobacillus mucosae were detected more often in the Malawian infants (59.1% vs 0.0%, P < 0.001; 38.6% vs 9.7%, P = 0.004; 29.5% vs 0.0%, P < 0.001; 22.7% vs 3.2%, P = 0.017, respectively). Lactobacillus casei group species, however, were only detected in the Finnish infants. Malawian infants have a more abundant Lactobacillus microbiota with a distinct composition compared with Finnish infants. The environment, including diet and hygiene, may be among the factors influencing these differences.

  6. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri.

    PubMed

    Ianniello, R G; Zheng, J; Zotta, T; Ricciardi, A; Gänzle, M G

    2015-09-01

    This study evaluated the aerobic and respiratory metabolism in Lactobacillus reuteri and Lactobacillus spicheri, two heterofermentative species used in sourdough fermentation. In silico genome analysis, production of metabolites and gene expression of pyruvate oxidase, pyruvate dehydrogenase and cytochrome oxidase were assessed in anaerobic and aerobic cultures of Lact. reuteri and Lact. spicheri. Respiring homofermentative Lactobacillus casei N87 and Lact. rhamnosus N132 were used for comparison. Aerobiosis and respiration increased the biomass production of heterofermentative strains compared to anaerobic cultivation. Respiration led to acetoin production by Lact. rhamnosus and Lact. casei, but not in heterofermentative strains, in which lactate and acetate were the major end-products. Lactobacillus spicheri LP38 showed the highest oxygen uptake. Pyruvate oxidase, respiratory cytochromes, NADH oxidase and NADH peroxidase were present in the genome of Lact. spicheri LP38. Both Lact. spicheri LP38 and Lact. rhamnosus N132 overexpressed pox in aerobic cultures, while cydA was up-regulated only when haeme was supplied; pdh was repressed during aerobic growth. Aerobic and respiratory growth provided physiological and metabolic advantages also in heterofermentative lactobacilli. The exploitation of oxygen-tolerant phenotypes of Lact. spicheri may be useful for the development of improved starter cultures. © 2015 The Society for Applied Microbiology.

  7. The Lactobacillus flora in vagina and rectum of fertile and postmenopausal healthy Swedish women

    PubMed Central

    2011-01-01

    Background Lactobacillus species are the most often found inhabitants of vaginal ecosystem of fertile women. In postmenopausal women with low oestrogen levels, Lactobacillus flora is diminishing or absent. However, no studies have been performed to investigate the correlation between oestrogen levels and the lactobacilli in the gut. The aim of the present study was to investigate the relation in healthy women between vaginal and rectal microbial flora as well as possible variations with hormone levels. Methods Vaginal and rectal smears were taken from 20 healthy fertile women, average 40 years (range 28-49 years), in two different phases of the menstrual cycle, and from 20 postmenopausal women, average 60 years (range 52-85 years). Serum sex hormone levels were analyzed. Bacteria from the smears isolated on Rogosa Agar were grouped by Randomly Amplified Polymorphic DNA and identified by multiplex PCR and partial 16S rRNA gene sequencing. Results Lactobacillus crispatus was more often found in the vaginal flora of fertile women than in that of postmenopausal (p = 0.036). Fifteen of 20 fertile women had lactobacilli in their rectal smears compared to 10 postmenopausal women (p = 0.071). There was no correlation between the number of bacteria in vagina and rectum, or between the number of bacteria and hormonal levels. Neither could any association between the presence of rectal lactobacilli and hormonal levels be found. Conclusion Lactobacillus crispatus was more prevalent in the vaginal flora of fertile women, whereas the Lactobacillus flora of rectum did not correlate to the vaginal flora nor to hormonal levels. PMID:21609500

  8. Draft Genome Sequence of Lactobacillus delbrueckii Strain #22 Isolated from a Patient with Short Bowel Syndrome and Previous d-Lactic Acidosis and Encephalopathy.

    PubMed

    Domann, Eugen; Fischer, Florence; Glowatzki, Fabian; Fritzenwanker, Moritz; Hain, Torsten; Zechel-Gran, Silke; Giffhorn-Katz, Susanne; Neubauer, Bernd A

    2016-07-28

    d-Lactic acidosis with associated encephalopathy caused by overgrowth of intestinal lactic acid bacteria is a rarely diagnosed neurological complication of patients with short bowel syndrome. Here, we report the draft genome sequence of Lactobacillus delbrueckii strain #22 isolated from a patient with short bowel syndrome and previous d-lactic acidosis/encephalopathy. Copyright © 2016 Domann et al.

  9. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products.

    PubMed

    D'Aimmo, Maria Rosaria; Modesto, Monica; Biavati, Bruno

    2007-04-01

    The outlines of antibiotic resistance of some probiotic microorganisms were studied. This study was conducted with the double purpose of verifying their ability to survive if they are taken simultaneously with an antibiotic therapy and to increase the selective properties of suitable media for the isolation of samples containing mixed bacterial populations. We isolated from commercial dairy and pharmaceutical products, 34 strains declared as probiotics, belonging to the genera Bifidobacterium and Lactobacillus, and 21 strains of starter culture bacteria. All the microorganisms have been compared by electrophoresis of the soluble proteins for the purpose of identifying them. A Multiplex-PCR with genus- and species-specific primers was used to detect for Bifidobacterium animalis subsp. lactis presence. All bifidobacteria were B. animalis subsp. lactis except one Bifidobacterium longum. Sometimes the identification showed that the used strain was not the one indicated on the label. The lactobacilli were Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus. The streptococci were all Streptococcus thermophilus. The minimal inhibitory concentration (MIC) of 24 common antibiotic substances has been valued by the broth microdilution method. All tested strains were susceptible to ampicillin, bacitracin, clindamycin, dicloxacillin, erytromycin, novobiocin, penicillin G, rifampicin (MIC(90) ranging from 0.01 to 4 microg/ml); resistant to aztreonam, cycloserin, kanamycin, nalidixic acid, polymyxin B and spectinomycin (MIC(90) ranging from 64 to >1000 microg/ml). The susceptibility to cephalothin, chloramphenicol, gentamicin, lincomycin, metronidazole, neomycin, paromomycin, streptomycin, tetracycline and vancomycin was variable and depending on the species.

  10. Actinomyces Species Isolated from Breast Infections.

    PubMed

    Bing, A U; Loh, S F; Morris, T; Hughes, H; Dixon, J M; Helgason, K O

    2015-10-01

    Actinomycosis is a chronic infection caused by Actinomyces species characterized by abscess formation, tissue fibrosis, and draining sinuses. The spectrum of infections caused by Actinomyces species ranges from classical invasive actinomycosis to a less invasive form of superficial skin and soft tissue infection. We present a review detailing all Actinomyces species isolated from breast infections in NHS Lothian between 2005 and 2013, Actinomyces species isolated from breast infections referred to the United Kingdom Anaerobe Reference Unit between 1988 and 2014, and cases describing Actinomyces breast infections published in the medical literature since 1994. Actinomyces species are fastidious organisms which can be difficult to identify and are likely to be underascertained as a cause of breast infections. Due to improved diagnostic methods, they are increasingly associated with chronic, recurrent breast infections and may play a more significant role in these infections than has previously been appreciated. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Microbiological Characterization of Wet Wheat Distillers' Grain, with Focus on Isolation of Lactobacilli with Potential as Probiotics

    PubMed Central

    Pedersen, C.; Jonsson, H.; Lindberg, J. E.; Roos, S.

    2004-01-01

    Wet wheat distillers' grain (WWDG), a residue from ethanol fermentation, was examined from a microbiological perspective. After storage, WWDG was characterized by a high content of lactobacilli, nondetectable levels of other bacteria, occasional occurrence of yeasts, and a pH of about 3.6 and contained a mixture of lactic acid, acetic acid, and ethanol. The composition of lactobacilli in WWDG was simple, including primarily the species Lactobacillus amylolyticus, Lactobacillus panis, and Lactobacillus pontis, as determined by 16S rRNA gene sequencing. Since the use of WWDG as pig feed has indicated a health-promoting function, some relevant characteristics of three strains of each of these species were examined together with basal physiological parameters, such as carbohydrate utilization and growth temperature. Seven of the strains were isolated from WWDG, and two strains from pig feces were included for comparison. It was clear that all three species could grow at temperatures of 45 to 50°C, with L. amylolyticus being able to grow at temperatures as high as 54°C. This finding could be the explanation for the simple microflora of WWDG, where a low pH together with a high temperature during storage would select for these organisms. Some strains of L. panis and L. pontis showed prolonged survival at pH 2.5 in synthetic stomach juice and good growth in the presence of porcine bile salt. In addition, members of all three species were able to bind to immobilized mucus material in vitro. Especially the isolates from pig feces but, interestingly, some isolates from WWDG as well possessed properties that might be of importance for colonization of the gastrointestinal tracts of pigs. PMID:15006774

  12. Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats.

    PubMed

    Buntin, Nirunya; de Vos, Willem M; Hongpattarakere, Tipparat

    2017-10-01

    The adhesion ability to mucin varied greatly among 18 Lactobacillus plantarum isolates depending on their isolation habitats. Such ability remained at high level even though they were sequentially exposed to the gastrointestinal (GI) stresses. The majority of L. plantarum isolated from shrimp intestine and about half of food isolates exhibited adhesion ability (51.06-55.04%) about the same as the well-known adhesive L. plantarum 299v. Interestingly, five infant isolates of CIF17A2, CIF17A4, CIF17A5, CIF17AN2, and CIF17AN8 exhibited extremely high adhesion ranging from 62.69 to 72.06%. Such highly adhesive property correlating to distinctively high cell surface hydrophobicity was significantly weaken after pretreatment with LiCl and guanidine-HCl confirming the entailment of protein moiety. Regarding the draft genome information, all molecular structures of major cell wall-anchored proteins involved in the adhesion based on L. plantarum WCSF1, including lp_0964, lp_1643, lp_3114, lp_2486, lp_3127, and lp_3059 orthologues were detected in all isolates. Exceptionally, the gene-trait matching between yeast agglutination assay and the relevant mannose-specific adhesin (lp_1229) encoding gene confirmed the Msa absence in five infant isolates expressed distinctively high adhesion. Interestingly, the predicted flagellin encoding genes (fliC) firstly revealed in lp_1643, lp_2486, and lp_3114 orthologues may potentially contribute to such highly adhesive property of these isolates.

  13. In vitro evaluation of the viability of vaginal cells (VK2/E6E7) and probiotic Lactobacillus species in lemon juice.

    PubMed

    Anukam, Kingsley C; Reid, Gregor

    2009-03-01

    Women, especially in developing countries, most often bear the brunt of HIV infections. The continued lack of viable vaccines and microbicides has made some women resort to using natural products such as lemon or lime juice to avoid infection. Few in vitro studies have been done on the effect of lemon juice on vaginal cells and lactobacilli that constitute the major microbiota in healthy women. The objective of the present study was to evaluate in vitro the effect of lemon juice on the viability of vaginal cells (VK2/E6E7) and vaginal Lactobacillus species. Vaginal cells were exposed to different concentrations (0-30%) of lemon juice at pH 2.3 and 4.5 for 10 min. Viability was determined by staining the cells with propidium iodide and analysing them by flow cytometry. Lactobacillus organisms were dispensed into microplates with vaginally defined medium + peptone (VDMP) containing different concentrations of lemon juice ranging from 0 to 100%. Lemon juice at pH 2.3 had a significant (P = 0.03) toxic effect on the vaginal cell line used. At 30% concentration, the vaginal cells were practically non-viable, typified by a 95% loss of viability, whereas at pH 4.5 there was only 5% cell loss. Lemon juice had varying growth inhibitory effects on the Lactobacillus species tested. At pH 4.5 and using 10-30% lemon juice, there was a stimulatory growth effect on certain Lactobacillus species. Lemon juice (20-30%) at pH 2.3 was highly toxic to VK2/E6E7 cells, and at pH 4.5 there was no significant effect on the viability of the cells within 10 min. Lemon juice above 10% at pH 2.3 was found to be detrimental to the growth of vaginal lactobacilli. Although lemon juice may be useful in other applications, its use in the vaginal region should be discouraged.

  14. Lifestyles in transition: evolution and natural history of the genus Lactobacillus.

    PubMed

    Duar, Rebbeca M; Lin, Xiaoxi B; Zheng, Jinshui; Martino, Maria Elena; Grenier, Théodore; Pérez-Muñoz, María Elisa; Leulier, François; Gänzle, Michael; Walter, Jens

    2017-08-01

    Lactobacillus species are found in nutrient-rich habitats associated with food, feed, plants, animals and humans. Due to their economic importance, the metabolism, genetics and phylogeny of lactobacilli have been extensively studied. However, past research primarily examined lactobacilli in experimental settings abstracted from any natural history, and the ecological context in which these bacteria exist and evolve has received less attention. In this review, we synthesize phylogenetic, genomic and metabolic metadata of the Lactobacillus genus with findings from fine-scale phylogenetic and functional analyses of representative species to elucidate the evolution and natural history of its members. The available evidence indicates a high level of niche conservatism within the well-supported phylogenetic groups within the genus, with lifestyles ranging from free-living to strictly symbiotic. The findings are consistent with a model in which host-adapted Lactobacillus lineages evolved from free-living ancestors, with present-day species displaying substantial variations in terms of the reliance on environmental niches and the degree of host specificity. This model can provide a framework for the elucidation of the natural and evolutionary history of Lactobacillus species and valuable information to improve the use of this important genus in industrial and therapeutic applications. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages.

    PubMed

    Rubio, Raquel; Jofré, Anna; Martín, Belén; Aymerich, Teresa; Garriga, Margarita

    2014-04-01

    A total of 109 lactic acid bacteria isolated from infant faeces were identified by partial 16S rRNA, cpn60 and/or pheS sequencing. Lactobacillus was the most prevalent genus, representing 48% of the isolates followed by Enterococcus (38%). Lactobacillus gasseri (21%) and Enterococcus faecalis (38%) were the main species detected. A further selection of potential probiotic starter cultures for fermented sausages focused on Lactobacillus as the most technologically relevant genus in this type of product. Lactobacilli strains were evaluated for their ability to grow in vitro in the processing conditions of fermented sausages and for their functional and safety properties, including antagonistic activity against foodborne pathogens, survival from gastrointestinal tract conditions (acidity, bile and pancreatin), tyramine production, antibiotic susceptibility and aggregation capacity. The best strains according to the results obtained were Lactobacillus casei/paracasei CTC1677, L. casei/paracasei CTC1678, Lactobacillus rhamnosus CTC1679, L. gasseri CTC1700, L. gasseri CTC1704, Lactobacillus fermentum CTC1693. Those strains were further assayed as starter cultures in model sausages. L. casei/paracasei CTC1677, L. casei/paracasei CTC1678 and L. rhamnosus CTC1679 were able to lead the fermentation and dominate (levels ca. 10(8) CFU/g) the endogenous lactic acid bacteria, confirming their suitability as probiotic starter cultures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative.

    PubMed

    Ahmad Rather, I; Seo, B J; Rejish Kumar, V J; Choi, U-H; Choi, K-H; Lim, J H; Park, Y-H

    2013-07-01

    Korean kimchi is known for its myriad of lactic acid bacteria (LAB) with diverse bioactive compounds. This study was undertaken to isolate an efficient antifungal LAB strain among the isolated kimchi LABs. One thousand and four hundred LABs isolated from different kimchi samples were initially screened against Aspergillus niger. The strain exhibiting the highest antifungal activity was identified as Lactobacillus plantarum YML007 by 16S rRNA sequencing and biochemical assays using API 50 CHL kit. Lact. plantarum YML007 was further screened against Aspergillus oryzae, Aspergillus flavus, Fusarium oxysporum and other pathogenic bacteria. The morphological changes during the inhibition were assessed by scanning electron microscopy. Preliminary studies on the antifungal compound demonstrated its proteinaceous nature with a molecular weight of 1256·617 Da, analysed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF). The biopreservative activity of Lact. plantarum YML007 was evaluated using dried soybeans. Spores of A. niger were observed in the negative control after 15 days of incubation. However, fungal growth was not observed in the soybeans treated with fivefold concentrated cell-free supernatant of Lact. plantarum YML007. The broad activity of Lact. plantarum YML007 against various food spoilage moulds and bacteria suggests its scope as a food preservative. After screening 1400 kimchi bacterial isolates, strain Lactobacillus plantarum YML007 was selected with strong antifungal activity against various foodborne pathogens. From the preliminary studies, it was found that the bioactive compound is a low molecular weight novel protein of 1256·617 Da. Biopreservative potential of Lact. plantarum YML007 was demonstrated on soybean grains, and the results point out YML007 as a potent biopreservative having broad antimicrobial activity against various foodborne pathogens. © 2013 The Society for Applied Microbiology.

  17. Multilocus Genetic Characterization of Lactobacillus fermentum Isolated from Ready-to-Eat Canned Food.

    PubMed

    Sulaiman, Irshad M; Jacobs, Emily; Simpson, Steven; Kerdahi, Khalil

    2017-06-01

    The primary mission of the U.S. Food and Drug Administration is to enforce the Food, Drug, and Cosmetic Act and regulate food, drug, and cosmetic products. Thus, this agency monitors the presence of pathogenic microorganisms in these products, including canned foods, as one of the regulatory action criteria and also ensures that these products are safe for human consumption. This study was carried out to investigate the effectiveness of pathogen control and integrity of ready-to-eat canned food containing Black Bean Corn Poblano Salsa. A total of nine unopened and recalled canned glass jars from the same lot were examined initially by conventional microbiologic protocols that involved a two-step enrichment, followed by streaking on selective agar plates, for the presence of gram-positive and gram-negative bacteria. Of the eight subsamples examined for each sample, all subsamples of one of the containers were found positive for the presence of slow-growing rod-shaped, gram-positive, facultative anaerobic bacteria. The recovered isolates were subsequently sequenced at rRNA and gyrB loci. Afterward, multilocus sequence typing (MLST) was performed characterizing 11 additional known MLST loci (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). Analyses of the nucleotide sequences of rRNA, gyrB, and 11 MLST loci confirmed these gram-positive bacteria recovered from canned food to be Lactobacillus fermentum . Thus, the DNA sequencing of housekeeping MLST genes can provide species identification of L. fermentum and can be used in the canned food monitoring program of public health importance.

  18. Kinetic analysis and mathematical modeling of growth parameters of Lactobacillus plantarum in protein-rich isolates from tomato seed.

    PubMed

    Mechmeche, Manel; Kachouri, Faten; Yaghlane, Hana B; Ksontini, Hamida; Setti, Khaoula; Hamdi, Moktar

    2017-03-01

    The aim of the present study was to evaluate the applicability of using protein-rich isolates from tomato seed as a sole source of nutrition for the growth of lactic acid bacteria. Unstructured mathematical and logistic models were proposed to describe growth, pH drop, lactic acid production and nutriment consumption by Lactobacillus plantarum in whole and defatted isolates in order to compare their suitability for the production of a fermented beverage. These media have considerable good quantities of nutriment that allowed the growth of L. plantarum, after which the cell numbers begin to decline. The maximum biomass was observed in defatted isolate (1.42 g L -1 ) followed by the whole isolate (1.24 g L -1 ). The lactic acid increased by about 5.5 and 6.5 times respectively in whole and defatted protein isolates. However, significant nutriment consumption occurred during the growth phase as well as stationary phase. A reduction of 61.90% and 95.88% in sugar content, as well as 21.91% and 16.93% reduction in protein content were observed respectively in whole and defatted isolates. In most cases, the proposed models adequately describe the biochemical changes taking place during fermentation and are a promising approach for the formulation of tomato seed-based functional foods.

  19. Complete genome sequence of Lactobacillus paracasei CAUH35, a new strain isolated from traditional fermented dairy product koumiss in China.

    PubMed

    Wang, Guohong; Xiong, Yao; Xu, Qi; Yin, Jia; Hao, Yanling

    2015-11-20

    Lactobacillus paracasei CAUH35 was isolated from homemade koumiss, a traditional fermented dairy product with beneficial effects on human health. The genome consists of a circular 2,770,411 bp chromosome and four plasmids. Genome analysis revealed the presence of gene clusters involved in the production of exopolysaccharides and bacteriocin. The complete genome sequence of L. paracasei CAUH35 will provide genetic basis for further comparative and functional genomic analyses. Copyright © 2015. Published by Elsevier B.V.

  20. Discrimination of the Lactobacillus acidophilus group using sequencing, species-specific PCR and SNaPshot mini-sequencing technology based on the recA gene.

    PubMed

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Mu-Chiou; Wang, Li-Tin; Huang, Lina; Lee, Fwu-Ling

    2012-10-01

    To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing. Copyright © 2012 Society of Chemical Industry.

  1. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate.

    PubMed

    de Souza Barbosa, Matheus; Todorov, Svetoslav Dimitrov; Ivanova, Iskra; Chobert, Jean-Marc; Haertlé, Thomas; de Melo Franco, Bernadette Dora Gombossy

    2015-04-01

    The aims of this study were to isolate LAB with anti-Listeria activity from salami samples, characterize the bacteriocin/s produced by selected isolates, semi-purify them and evaluate their effectiveness for the control of Listeria monocytogenes during manufacturing of salami in a pilot scale. Two isolates (differentiated by RAPD-PCR) presented activity against 22 out of 23 L. monocytogenes strains for bacteriocin MBSa2, while the bacteriocin MBSa3 inhibited all 23 strains in addition to several other Gram-positive bacteria for both antimicrobials and were identified as Lactobacillus curvatus based on 16S rRNA sequencing. A three-step purification procedure indicated that both strains produced the same two active peptides (4457.9 Da and 4360.1 Da), homlogous to sakacins P and X, respectively. Addition of the semi-purified bacteriocins produced by Lb. curvatus MBSa2 to the batter for production of salami, experimentally contaminated with L. monocytogenes (10(4)-10(5) CFU/g), caused 2 log and 1.5 log reductions in the counts of the pathogen in the product after 10 and 20 days respectively, highlighting the interest for application of these bacteriocins to improve safety of salami during its manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Safety Characterization and Antimicrobial Properties of Kefir-Isolated Lactobacillus kefiri

    PubMed Central

    Carasi, Paula; Racedo, Silvia M.; De Antoni, Graciela; Urdaci, María C.

    2014-01-01

    Lactobacilli are generally regarded as safe; however, certain strains have been associated with cases of infection. Our workgroup has already assessed many functional properties of Lactobacillus kefiri, but parameters regarding safety must be studied before calling them probiotics. In this work, safety aspects and antimicrobial activity of L. kefiri strains were studied. None of the L. kefiri strains tested caused α- or β-hemolysis. All the strains were susceptible to tetracycline, clindamycin, streptomycin, ampicillin, erythromycin, kanamycin, and gentamicin; meanwhile, two strains were resistant to chloramphenicol. On the other hand, all L. kefiri strains were able to inhibit both Gram(+) and Gram(−) pathogens. Regarding the in vitro results, L. kefiri CIDCA 8348 was selected to perform in vivo studies. Mice treated daily with an oral dose of 108 CFU during 21 days showed no signs of pain, lethargy, dehydration, or diarrhea, and the histological studies were consistent with those findings. Moreover, no differences in proinflammatory cytokines secretion were observed between treated and control mice. No translocation of microorganisms to blood, spleen, or liver was observed. Regarding these findings, L. kefiri CIDCA 8348 is a microorganism isolated from a dairy product with a great potential as probiotic for human or animal use. PMID:24955346

  3. Safety characterization and antimicrobial properties of kefir-isolated Lactobacillus kefiri.

    PubMed

    Carasi, Paula; Díaz, Mariángeles; Racedo, Silvia M; De Antoni, Graciela; Urdaci, María C; Serradell, María de los Angeles

    2014-01-01

    Lactobacilli are generally regarded as safe; however, certain strains have been associated with cases of infection. Our workgroup has already assessed many functional properties of Lactobacillus kefiri, but parameters regarding safety must be studied before calling them probiotics. In this work, safety aspects and antimicrobial activity of L. kefiri strains were studied. None of the L. kefiri strains tested caused α- or β-hemolysis. All the strains were susceptible to tetracycline, clindamycin, streptomycin, ampicillin, erythromycin, kanamycin, and gentamicin; meanwhile, two strains were resistant to chloramphenicol. On the other hand, all L. kefiri strains were able to inhibit both Gram(+) and Gram(-) pathogens. Regarding the in vitro results, L. kefiri CIDCA 8348 was selected to perform in vivo studies. Mice treated daily with an oral dose of 10(8) CFU during 21 days showed no signs of pain, lethargy, dehydration, or diarrhea, and the histological studies were consistent with those findings. Moreover, no differences in proinflammatory cytokines secretion were observed between treated and control mice. No translocation of microorganisms to blood, spleen, or liver was observed. Regarding these findings, L. kefiri CIDCA 8348 is a microorganism isolated from a dairy product with a great potential as probiotic for human or animal use.

  4. Species diversity, community dynamics, and metabolite kinetics of spontaneous leek fermentations.

    PubMed

    Wouters, D; Bernaert, N; Conjaerts, W; Van Droogenbroeck, B; De Loose, M; De Vuyst, L

    2013-04-01

    Leek (Allium ampeloprasum var. porrum) is one of Belgium's most important vegetables. All or part of the green leek parts are often left on the fields because of their limited cooking applications compared to the white leek parts. Therefore, the possibility to perform leek fermentations in view of product valorization and diversification was investigated. This study deals with the community dynamics, species diversity, and metabolite kinetics of spontaneous leek fermentations, thereby studying the influence of added NaCl concentration, harvesting season, and duration of the fermentation. The combination of a culture-dependent and culture-independent approach revealed the prevalence of lactic acid bacteria (LAB) from the third day of fermentation onwards, which was not influenced by the fermentation conditions applied. Enterobacteriaceae, Pseudomonadaceae, and yeasts disappeared after one week of fermentation. Leuconostoc mesenteroides, Lactobacillus sakei, and Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus parabrevis were the most frequently isolated LAB species. Both added NaCl concentrations were suitable to perform successful fermentations within three weeks. By that time, glucose and fructose, the main leek carbohydrates, were metabolized into mainly lactic acid, acetic acid, ethanol, and mannitol. A sensory analysis revealed that the fermented white leek parts were generally more appreciated than the fermented green leek parts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Functional Properties of Lactobacillus mucosae Strains Isolated from Brazilian Goat Milk.

    PubMed

    de Moraes, Georgia Maciel Dias; de Abreu, Louricélia Rodrigues; do Egito, Antônio Silvio; Salles, Hévila Oliveira; da Silva, Liana Maria Ferreira; Nero, Luís Augusto; Todorov, Svetoslav Dimitrov; Dos Santos, Karina Maria Olbrich

    2017-09-01

    The search for probiotic candidates among lactic acid bacteria (LAB) isolated from food may uncover new strains with promising health and technological properties. Lactobacillus mucosae strains attracted recent research attention due to their ability to adhere to intestinal mucus and to inhibit pathogens in the gastrointestinal tract, both related to a probiotic potential. Properties of interest and safety aspects of three Lb. mucosae strains (CNPC006, CNPC007, and CNPC009) isolated from goat milk were investigated employing in vitro tests. The presence of genetic factors related to bile salt hydrolase production (bsh), intestinal adhesion properties (msa, map, mub, and ef-tu), virulence, and biogenic amine production were also verified. All strains exhibited the target map, mub, and ef-tu sequences; the msa gene was detected in CNPC006 and CNPC007 strains. Some of the searched sequences for virulence factors were detected, especially in the CNPC009 strain; all strains carried the hyl gene, related to the production of hyaluronidase. Lb. mucosae CNPC007 exhibited a high survival rate in simulated gastric and enteric conditions. Besides, all strains exhibited the bsh sequence, and CNPC006 and CNPC007 were able to deconjugate salts of glycodeoxycholic acid (GDC). Regarding technological properties for dairy product applications, a relatively higher milk acidification and clotting capacity, diacetyl production, and proteolytic activity were registered for CNPC007 in comparison to the other strains. Collectively, the results aim at Lb. mucosae CNPC007 as a promising probiotic candidate for application in dairy products, deserving further studies to confirm and explore its potential.

  6. Potential of Lactobacillus plantarum IBB3036 and Lactobacillus salivarius IBB3154 to persistence in chicken after in ovo delivery.

    PubMed

    Aleksandrzak-Piekarczyk, Tamara; Puzia, Weronika; Żylińska, Joanna; Cieśla, Jarosław; Gulewicz, Krzysztof A; Bardowski, Jacek K; Górecki, Roman K

    2018-03-25

    The aim of this study was to characterize and compare selected Lactobacillus strains originating from different environments (cow milk and hen feces) with respect to their applicative potential to colonize gastrointestinal track of chickens before hatching from an egg. In vitro phenotypic characterization of lactobacilli strains included the investigation of the important prerequisites for persistence in gastrointestinal tract, such as a capability to survive in the presence of bile salts and at low pH, enzymatic and sugar metabolic profiles, adhesion abilities, and resistance to osmolytes, temperature, and antibiotics. Regarding the resistance of lactobacilli to most of the various stress factors tested, the milk isolate Lactobacillus plantarum IBB3036 showed better abilities than the chicken feces isolate Lactobacillus salivarius IBB3154. However, regarding the acidification tolerance and adherence ability, L. salivarius IBB3154 revealed better characteristics. Use of these two selected lactobacilli isolates together with proper prebiotics resulted in the preparation of two S1 and S2 bioformulations, which were injected in ovo into hen Cobb500 FF fertilized eggs. Furthermore, in vivo tests assessing the persistence of L. plantarum IBB3036 and L. salivarius IBB3154 in the chicken gastrointestinal tract was monitored by PCR-based classical and quantitative techniques and revealed the presence of both strains in fecal samples collected 3 days after hatching. Subsequently, the number of L. salivarius IBB3154 increased significantly in the chicken intestine, whereas the presence of L. plantarum IBB3036 was gradually decreased. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    PubMed

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi.

    PubMed

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-09-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively.

  9. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi

    PubMed Central

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-01-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively. PMID:24471087

  10. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice.

    PubMed

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L

  11. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice

    PubMed Central

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    Aim To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Methods Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. Results The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Conclusions Administration of an L. crispatus CCTCC M206119 supplement aggravated

  12. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis.

    PubMed

    McLeod, Anette; Zagorec, Monique; Champomier-Vergès, Marie-Christine; Naterstad, Kristine; Axelsson, Lars

    2010-04-22

    Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish. Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall two-dimensional gel electrophoresis (2-DE) protein expression pattern was similar for the different strains, though distinct differences were seen between the two subspecies (sakei and carnosus), and a variation of about 20% in the number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher expression of stress related proteins growing on both carbon sources. It is obvious from the data obtained in this study that the proteomic approach efficiently identifies differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application point of view, an understanding of regulatory mechanisms, actions of catabolic enzymes and proteins, and

  13. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk.

    PubMed

    Jiang, Meiling; Zhang, Fen; Wan, Cuixiang; Xiong, Yonghua; Shah, Nagendra P; Wei, Hua; Tao, Xueying

    2016-03-01

    Lactobacillus plantarum WLPL04, a specific strain isolated from human breast milk, was investigated for its survival capacity (acid and bile salt tolerance, survival in simulated gastrointestinal tract, inhibition of pathogens, antibiotic susceptibility, yield of exopolysaccharides) and probiotic properties (antiadhesion of pathogens, protection from harmful effect of sodium dodecyl sulfate, and antiinflammatory stress on Caco-2 cells). The results showed that Lb. plantarum WLPL04 had broad-spectrum activity against gram-positive strains (Listeria monocytogenes CMCC54007, Bacillus cereus ATCC14579, and Staphylococcus aureus CMCC26003) and gram-negative strains (Pseudomonas aeruginosa MCC10104, Shigella sonnei ATCC25931, Enterobacter sakazakii ATCC29544, Salmonella typhimurium ATCC13311, and Escherichia coli O157:H7). Antibiotic susceptibility tests showed that Lb. plantarum WLPL04 was susceptible to 8 of 14 antibiotics (e.g., erythromycin and nitrofurantoin) and resistant to 6 of 14 antibiotics (e.g., kanamycin and bacitracin). Lactobacillus plantarum WLPL04 was able to survive at pH 2.5 for 3h and at 0.45% bile salt for 12h, suggesting that it can survive well in the gastrointestinal tract. In addition, the exopolysaccharide yield of Lb. plantarum WLPL04 reached 426.73 ± 65.56 mg/L at 24h. With strategies of competition, inhibition, and displacement, Lb. plantarum WLPL04 reduced the adhesion of E. coli O157:H7 (35.51%), Sal. typhimurium ATCC 13311 (8.10%), and Staph. aureus CMCC 26003 (40.30%) on Caco-2 cells by competition, and subsequently by 59.80, 62.50, and 42.60%, respectively, for the 3 pathogens through inhibition, and by 75.23, 39.97, and 52.88%, respectively, through displacement. Lactobacillus plantarum WLPL04 attenuated the acute stress induced by sodium dodecyl sulfate on Caco-2 cells and significantly inhibited the expression of inflammatory cytokines (IL-6, IL-8 and tumor necrosis factor-α) on Caco-2 cells but increased IL-10 expression in vitro

  14. Genotyping by randomly amplified polymorphic DNA of bacteriocin producing Lactobacillus acidophilus strains from Nigeria.

    PubMed

    Alli, John Adeolu; Iwalokun, Bamidele A; Oluwadun, Afolabi; Okonko, Iheanyi Omezuruike

    2015-01-01

    Yogurt and starter culture producers are still searching strains of Lactobacillus acidophilus to produce healthier yogurt with a longer shelf life and better texture, taste, and quality. This study determined the genotyping of bacteriocin producing Lactobacillus acidophilus strains recovered from Nigerian yogurts. Yogurt samples were collected from four different states of South West regions of Nigeria. Isolates were obtained from MRS Medium and biochemically characterized. This was further confirmed by API50CH. The bacteriocin positivity and activity was determined. Genomic characterization of our Lactobacillus acidophilus strains was done with randomly amplified polymorphic DNA-PCR. All yogurt samples containing Lactobacillus acidophilus strains meet the probiotic requirement of ≥10(6) cfu/mL. The gel picture revealed 6 RAPD clonal types of Lactobacillus acidophilus strains with RAPD type C observed to be more common. Significant differences existed in the mean growth inhibition zone (t = -7.32, P < 0.05 for E. coli ATCC; t = -6.19, P < 0.05 for E. coli clinical isolates; t = -6.16, P < 0.05 for Enterobacter sp; t = -11.92, P < 0.05 for Salmonella typhi, t = -1.10, P > 0.05 Staphylococcus aureus). No correlation between the bacteriocin production, activity, and their RAPD clonal division (X(2) = 7.49, P = 0.1610, df = 5). In conclusion, L. acidophilus isolated in Nigeria samples met the probiotic requirements of ≥10(6) cfu/mL and produce bacteriocins with good spectrum of activity.

  15. Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal.

    PubMed

    Harris, Hugh M B; Bourin, Maxence J B; Claesson, Marcus J; O'Toole, Paul W

    2017-08-01

    The genus Lactobacillus is a diverse group with a combined species count of over 200. They are the largest group within the lactic acid bacteria and one of the most important bacterial groups involved in food microbiology and human nutrition because of their fermentative and probiotic properties. Lactobacillus salivarius , a species commonly isolated from the gastrointestinal tract of humans and animals, has been described as having potential probiotic properties and results of previous studies have revealed considerable functional diversity existing on both the chromosomes and plasmids. Our study consists of comparative genomic analyses of the functional and phylogenomic diversity of 42 genomes of strains of L . salivarius using bioinformatic techniques. The main aim of the study was to describe intra-species diversity and to determine how this diversity is spread across the replicons. We found that multiple phylogenomic and non-phylogenomic methods used for reconstructing trees all converge on similar tree topologies, showing that different metrics largely agree on the evolutionary history of the species. The greatest genomic variation lies on the small plasmids, followed by the repA -type circular megaplasmid, with the chromosome varying least of all. Additionally, the presence of extra linear and circular megaplasmids is noted in several strains, while small plasmids are not always present. Glycosyl hydrolases, bacteriocins and proteases vary considerably on all replicons while two exopolysaccharide clusters and several clustered regularly interspaced short palindromic repeats-associated systems show a lot of variation on the chromosome. Overall, despite its reputation as a mammalian gastrointestinal tract specialist, the intra-specific variation of L. salivarius reveals potential strain-dependant effects on human health.

  16. Optimization of Reduced Glutathione Production by a Lactobacillus plantarum Isolate Using Plackett-Burman and Box-Behnken Designs.

    PubMed

    Al-Madboly, Lamiaa A; Khedr, Eman G; Ali, Safaa M

    2017-01-01

    In this work, we aim to optimize the production of reduced glutathione (GSH) synthesized intracellularly by a food-grade microorganism through a statistical approach. Using a colorimetric method, 25 Lactobacillus plantarum isolates were screened in an attempt to find a GSH-producing strain. It was found that 36% of the tested isolates showed positive result. Isolate (L 7 ) was found to produce 152.61 μM glutathione per gram which was the highest amount produced intracellularly. Accordingly, the later isolate was selected for the optimization process using Plackett-Burman and Box-Behnken designs. Temperature, amino acids, and urea were found to be the most significant independent variables. Following data analysis, the composition of the optimized medium was De Man-Sharp-Rogosa broth as a basal medium supplemented with NaCl (5%), H 2 O 2 (0.05%), sodium dodecyl sulfate (0.05%), amino acids (0.0281%), and urea (0.192%). The pH of the medium was adjusted to 8 and incubated for 24 h at 40°C. The GSH amount was increased by 10-fold (851%) using the optimized medium. Hence, our optimization design estimated the biotechnological potential of L. plantarum (L 7 ) for the production of GSH in the industry.

  17. Genome Sequence of Lactobacillus plantarum Strain UCMA 3037.

    PubMed

    Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias; Vernoux, Jean-Paul

    2013-05-23

    Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem.

  18. Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants.

    PubMed

    Muñoz-Quezada, Sergio; Chenoll, Empar; Vieites, José María; Genovés, Salvador; Maldonado, José; Bermúdez-Brito, Miriam; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, María José; Romero, Fernando; Suárez, Antonio; Ramón, Daniel; Gil, Angel

    2013-01-01

    The aim of the present study was to isolate, identify and characterise novel strains of lactic acid bacteria and bifidobacteria with probiotic properties from the faeces of exclusively breast-fed infants. Of the 4680 isolated colonies, 758 exhibited resistance to low pH and tolerance to high concentrations of bile salts; of these, only forty-two exhibited a strong ability to adhere to enterocytes in vitro. The identities of the isolates were confirmed by 16S ribosomal RNA (rRNA) sequencing, which permitted the grouping of the forty-two bacteria into three different strains that showed more than 99 % sequence identity with Lactobacillus paracasei, Lactobacillus rhamnosus and Bifidobacterium breve, respectively. The strain identification was confirmed by sequencing the 16S-23S rRNA intergenic spacer regions. Strains were assayed for enzymatic activity and carbohydrate utilisation, and they were deposited in the Collection Nationale de Cultures de Microorganismes (CNCM) of the Institute Pasteur and named L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036. The strains were susceptible to antibiotics and did not produce undesirable metabolites, and their safety was assessed by acute ingestion in immunocompetent and immunosuppressed BALB/c mouse models. The three novel strains inhibited in vitro the meningitis aetiological agent Listeria monocytogenes and human rotavirus infections. B. breve CNCM I-4035 led to a higher IgA concentration in faeces and plasma of mice. Overall, these results suggest that L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036 should be considered as probiotic strains, and their human health benefits should be further evaluated.

  19. Anti-inflammatory potential of a heat-killed Lactobacillus strain isolated from Kimchi on house dust mite-induced atopic dermatitis in NC/Nga mice.

    PubMed

    Choi, C-Y; Kim, Y-H; Oh, S; Lee, H J; Kim, J H; Park, S H; Kim, H J; Lee, S J; Chun, T

    2017-08-01

    Atopic dermatitis (AD) is an allergic skin disease driven by the Th2-prone immune response. Therefore, a fundamental approach to restoring the Th1/Th2 balance is needed to treat AD. Eighteen different Lactobacillus strains isolated from Kimchi were screened to identify those that stimulated immune cells to secret Th1-type or Th2-type cytokines. Lactobacillus brevis NS1401 induced the greatest IFN-γ and IL-12 secretion and the least IL-4 production among the tested Lactobacillus strains. Furthermore, oral administration of heat-killed NS1401 ameliorated the symptoms of dust mite-induced AD in NC/Nga mice by decreasing the serum IgE level and reducing the number of mast cells and eosinophils in lesions. Also, the size and number of cells in the draining lymph nodes of NS1401-administered mice were significantly reduced. In agreement with these results, secretion of a Th1-type cytokine (IFN-γ) and allergen-specific IgG2a were increased, whereas secretion of Th2-type cytokines (IL-4, IL-5, and IL-10) and allergen-specific IgG1 were decreased upon administration of NS1401 in mice. Lactobacillus brevis NS1401 alleviates the symptoms of AD by restoring the Th1/Th2 balance through enhancing Th1-prone immunity. The immunomodulatory function of L. brevis NS1401 may provide effective new therapeutics against AD. © 2017 The Society for Applied Microbiology.

  20. Potential probiotic characteristics of Lactobacillus and Enterococcus strains isolated from traditional dadih fermented milk against pathogen intestinal colonization.

    PubMed

    Collado, M Carmen; Surono, Ingrid S; Meriluoto, Jussi; Salminen, Seppo

    2007-03-01

    Traditional fermented buffalo milk in Indonesia (dadih) has been believed to have a beneficial impact on human health, which could be related to the properties of the lactic acid bacteria (LAB) involved in its fermentation process. In previous studies, it was discovered that strains of dadih lactic isolates possessed some beneficial properties in vitro. In the present study, the adhesion capacity of specific LAB isolates from dadih to intestinal mucus was analyzed. Further, the ability to inhibit model human pathogens and displace them from mucus was assessed. The adhesion of tested LAB strains was strain-dependent and varied from 1.4 to 9.8%. The most adhesive Lactobacillus plantarum strain was IS-10506, with 9.8% adhesion. The competition assay between dadih LAB isolates and pathogens showed that a 2-h preincubation with L. plantarum at 37 degrees C significantly reduced pathogen adhesion to mucus. All tested LAB strains displaced and inhibited pathogen adhesion, but the results were strain-specific and dependent on time and pathogen strains. In general, L. plantarum IS-10506 showed the best ability against pathogen adhesion.

  1. Bacteriocins from Lactobacillus plantarum - production, genetic organization and mode of action: produção, organização genética e modo de ação.

    PubMed

    Todorov, Svetoslav D

    2009-04-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented.

  2. Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus.

    PubMed

    Ricciardi, Annamaria; Parente, Eugenio; Guidone, Angela; Ianniello, Rocco Gerardo; Zotta, Teresa; Abu Sayem, S M; Varcamonti, Mario

    2012-07-02

    Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum are three closely related species which are widespread in food and non-food environments, and are important as starter bacteria or probiotics. In order to evaluate the phenotypic diversity of stress tolerance in the L. plantarum group and the ability to mount an adaptive heat shock response, the survival of exponential and stationary phase and of heat adapted exponential phase cells of six L. plantarum subsp. plantarum, one L. plantarum subsp. argentoratensis, one L. pentosus and two L. paraplantarum strains selected in a previous work upon exposure to oxidative, heat, detergent, starvation and acid stresses was compared to that of the L. plantarum WCFS1 strain. Furthermore, to evaluate the genotypic diversity in stress response genes, ten genes (encoding for chaperones DnaK, GroES and GroEL, regulators CtsR, HrcA and CcpA, ATPases/proteases ClpL, ClpP, ClpX and protease FtsH) were amplified using primers derived from the WCFS1 genome sequence and submitted to restriction with one or two endonucleases. The results were compared by univariate and multivariate statistical methods. In addition, the amplicons for hrcA and ctsR were sequenced and compared by multiple sequence alignment and polymorphism analysis. Although there was evidence of a generalized stress response in the stationary phase, with increase of oxidative, heat, and, to a lesser extent, starvation stress tolerance, and for adaptive heat stress response, with increased tolerance to heat, acid and detergent, different growth phases and adaptation patterns were found. Principal component analysis showed that while heat, acid and detergent stresses respond similarly to growth phase and adaptation, tolerance to oxidative and starvation stresses implies completely unrelated mechanisms. A dendrogram obtained using the data from multilocus restriction typing (MLRT) of stress response genes clearly separated two groups of L

  3. Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage {Phi}AQ113.

    PubMed

    Zago, Miriam; Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-08-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism.

  4. Characterization of the Genome of the Dairy Lactobacillus helveticus Bacteriophage ΦAQ113

    PubMed Central

    Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-01-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism. PMID:23728811

  5. Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota.

    PubMed

    Nunn, Kenetta L; Wang, Ying-Ying; Harit, Dimple; Humphrys, Michael S; Ma, Bing; Cone, Richard; Ravel, Jacques; Lai, Samuel K

    2015-10-06

    Cervicovaginal mucus (CVM) can provide a barrier that precludes HIV and other sexually transmitted virions from reaching target cells in the vaginal epithelium, thereby preventing or reducing infections. However, the barrier properties of CVM differ from woman to woman, and the causes of these variations are not yet well understood. Using high-resolution particle tracking of fluorescent HIV-1 pseudoviruses, we found that neither pH nor Nugent scores nor total lactic acid levels correlated significantly with virus trapping in unmodified CVM from diverse donors. Surprisingly, HIV-1 was generally trapped in CVM with relatively high concentrations of d-lactic acid and a Lactobacillus crispatus-dominant microbiota. In contrast, a substantial fraction of HIV-1 virions diffused rapidly through CVM with low concentrations of d-lactic acid that had a Lactobacillus iners-dominant microbiota or significant amounts of Gardnerella vaginalis, a bacterium associated with bacterial vaginosis. Our results demonstrate that the vaginal microbiota, including specific species of Lactobacillus, can alter the diffusional barrier properties of CVM against HIV and likely other sexually transmitted viruses and that these microbiota-associated changes may account in part for the elevated risks of HIV acquisition linked to bacterial vaginosis or intermediate vaginal microbiota. Variations in the vaginal microbiota, especially shifts away from Lactobacillus-dominant microbiota, are associated with differential risks of acquiring HIV or other sexually transmitted infections. However, emerging evidence suggests that Lactobacillus iners frequently colonizes women with recurring bacterial vaginosis, raising the possibility that L. iners may not be as protective as other Lactobacillus species. Our study was designed to improve understanding of how the cervicovaginal mucus barrier against HIV may vary between women along with the vaginal microbiota and led to the finding that the vaginal microbiota

  6. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  7. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    PubMed

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  8. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Ye, Fei; Liu, Cunxia; Liu, Hongfeng; Wang, Maopeng; Li, Yi; Sun, Yang; Li, Xiao; Tian, Mingyao; Jin, Ningyi

    2014-12-01

    This study aims to evaluate the functional and probiotic characteristics of eight indigenous Lactobacillus strains in vitro. The selected lactobacilli include strains of Lactobacillus casei subsp. casei, Lactobacillus salivarius subsp. salicinius, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus rhamnosus. All strains tolerated both pH 2 for 3 h and 1% bile salt for 24 h. The strains CICC 23174 and CGMCC 1.557 were the most adhesive strains producing the highest quantity of EPS. Although a wide variation in the ability of the eight strains to deplete cholesterol and nitrite, antagonize pathogens, scavenge free radical, and stimulate innate immune response were observed, the strains CICC 23174 and CGMCC 1.557 showed the widest range of these useful traits. Taken together, the strains CICC 23174 and CGMCC 1.557 exhibited the best probiotic properties with the potential for use in the production of probiotic fermented foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Antagonistic potential against pathogenic microorganisms and hydrogen peroxide production of indigenous lactobacilli isolated from vagina of Chinese pregnant women.

    PubMed

    Xu, Heng-Yi; Tian, Wan-Hong; Wan, Cui-Xiang; Jia, Li-Jun; Wang, Lan-Yin; Yuan, Jing; Liu, Chun-Mei; Zeng, Ming; Wei, Hua

    2008-10-01

    To investigate the indigenous lactobacilli from the vagina of pregnant women and to screen the isolates with antagonistic potential against pathogenic microorganisms. The strains were isolated from pregnant women's vagina and identified using the API50CH system. The ability of the isolates to produce hydrogen peroxide was analyzed semi-quantitatively using the TMB-HRP-MRS agar. The antagonistic effects of the isolates on pathogenic microorganisms were determined with a double layer agar plate. One hundred and three lactobacilli strains were isolated from 60 samples of vaginal secretion from healthy pregnant women. Among them, 78 strains could produce hydrogen peroxide, in which 68%, 80%, 80%, and 88% had antagonistic effects against Candida albicans CMCC98001, Staphylococcus aureus CMCC26003, Escherichia coli CMCC44113, and Pseudomonas aeruginosa CMCC10110, respectively. The recovery of hydrogen peroxide-producing lactobacilli decreases with the increasing pregnant age and time. The most commonly isolated species from vagina of Chinese pregnant women are Lactobacillus acidophilus and Lactobacillus crispatus. Most of L. acidophilus and L. crispatus produce a high H2O2 level.

  10. Lactobacillus

    MedlinePlus

    ... eye symptoms. Preventing diarrhea caused by antibiotics. Taking probiotics products containing lactobacillus strains helps prevent diarrhea caused ... the first 1-2 years of life, lactobacillus probiotics can reduce the chance of the child developing ...

  11. Honey Bees Avoid Nectar Colonized by Three Bacterial Species, But Not by a Yeast Species, Isolated from the Bee Gut

    PubMed Central

    Good, Ashley P.; Gauthier, Marie-Pierre L.; Vannette, Rachel L.; Fukami, Tadashi

    2014-01-01

    The gut microflora of the honey bee, Apis mellifera, is receiving increasing attention as a potential determinant of the bees’ health and their efficacy as pollinators. Studies have focused primarily on the microbial taxa that appear numerically dominant in the bee gut, with the assumption that the dominant status suggests their potential importance to the bees’ health. However, numerically minor taxa might also influence the bees’ efficacy as pollinators, particularly if they are not only present in the gut, but also capable of growing in floral nectar and altering its chemical properties. Nonetheless, it is not well understood whether honey bees have any feeding preference for or against nectar colonized by specific microbial species. To test whether bees exhibit a preference, we conducted a series of field experiments at an apiary using synthetic nectar inoculated with specific species of bacteria or yeast that had been isolated from the bee gut, but are considered minor components of the gut microflora. These species had also been found in floral nectar. Our results indicated that honey bees avoided nectar colonized by the bacteria Asaia astilbes, Erwinia tasmaniensis, and Lactobacillus kunkeei, whereas the yeast Metschnikowia reukaufii did not affect the feeding preference of the insects. Our results also indicated that avoidance of bacteria-colonized nectar was caused not by the presence of the bacteria per se, but by the chemical changes to nectar made by the bacteria. These findings suggest that gut microbes may not only affect the bees’ health as symbionts, but that some of the microbes may possibly affect the efficacy of A. mellifera as pollinators by altering nectar chemistry and influencing their foraging behavior. PMID:24466119

  12. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro

    PubMed Central

    Jørgensen, Mette Rose; Kragelund, Camilla; Jensen, Peter Østrup; Keller, Mette Kirstine; Twetman, Svante

    2017-01-01

    ABSTRACT Background: An alternative approach for managing Candida infections in the oral cavity by modulating the oral microbiota with probiotic bacteria has been proposed. Objective: The aim was to investigate the antifungal potential of the probiotic bacterium Lactobacillus reuteri (DSM 17938 and ATCC PTA 5289) against six oral Candida species (C. albicans, C. glabrata, C. krusei, C. tropicalis, C. dubliniensis, and C. parapsilosis). Design: The lactobacilli were tested for their ability to co-aggregate with and inhibit the growth of the yeasts assessed by spectrophotometry and the agar overlay inhibition assay. Additionally, the pH was evaluated with microsensors, and the production of hydrogen peroxide (H2O2) by the lactobacilli was verified. Results: Both L. reuteri strains showed co-aggregation abilities with the yeasts. The lactobacilli almost completely inhibited the growth of C. albicans and C. parapsilosis, but did not affect C. krusei. Statistically significant differences in co-aggregation and growth inhibition capacities between the two L. reuteri strains were observed (p<0.001). The pH measurements suggested that C. krusei can resist the acids produced by the lactobacilli. Conclusions: L. reuteri exhibited antifungal properties against five of the six most common oral Candida species. Further, the results reconfirms that the probiotic capacity of L. reuteri is strain specific. PMID:28326154

  13. Lactobacillus as a rare cause of an infected total knee replacement: a case report

    PubMed Central

    2009-01-01

    Introduction We report a rare case of an infected revision total knee replacement as a result of a Lactobacillus species infection. Lactobacillus infections have been associated with prolonged broad-spectrum antibiotic use. This can have implications in revision surgery, especially when patients have been on previous long-term suppressive antibiotic therapy. Case presentation An 81-year-old British man with a previous history of complex revision knee arthroplasty for infection presented with a hot, swollen knee joint. He had previously been on long-term suppressive antibiotic therapy. Aspiration of the knee joint yielded a culture of Lactobacillus species. Conclusion In patients undergoing revision joint arthroplasty, especially for previous infection, the presence of common and uncommon bacterial species must be excluded and eradicated before further surgical intervention. PMID:19830207

  14. High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR.

    PubMed

    Iacumin, Lucilla; Ginaldi, Federica; Manzano, Marisa; Anastasi, Veronica; Reale, Anna; Zotta, Teresa; Rossi, Franca; Coppola, Raffaele; Comi, Giuseppe

    2015-04-01

    The correct identification and characterisation of bacteria is essential for several reasons: the classification of lactic acid bacteria (LAB) has changed significantly over the years, and it is important to distinguish and define them correctly, according to the current nomenclature, avoiding problems in the interpretation of literature, as well as mislabelling when probiotic are used in food products. In this study, species-specific PCR and HRM (high-resolution melting) analysis were developed to identify strains belonging to the Lactobacillus casei group and to classify them into L. casei, Lactobacillus paracasei and Lactobacillus rhamnosus. HRM analysis confirmed to be a potent, simple, fast and economic tool for microbial identification. In particular, 201 strains, collected from International collections and attributed to the L. casei group, were examined using these techniques and the results were compared with consolidated molecular methods, already published. Seven of the tested strains don't belong to the L. casei group. Among the remaining 194 strains, 6 showed inconsistent results, leaving identification undetermined. All the applied techniques were congruent for the identification of the vast majority of the tested strains (188). Notably, for 46 of the strains, the identification differed from the previous attribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Viability and Stress Response of Putative Probiotic Lactobacillus plantarum Strains in Honey Environment.

    PubMed

    Landry, Bemmo Kamdem Ulrich; François, Zambou Ngoufack; Wang, Rui-Yan; Taicheng, Zhu; Li, Yin

    2017-12-01

    Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04 × 10 6  CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86 × 10 4  CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~ 50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.

  16. Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei†

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Altermann, Eric; Barrangou, Rodolphe; McGrath, Stephen; Claesson, Marcus J.; Li, Yin; Leahy, Sinead; Walker, Carey D.; Zink, Ralf; Neviani, Erasmo; Steele, Jim; Broadbent, Jeff; Klaenhammer, Todd R.; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe

    2006-01-01

    Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli. PMID:16672450

  17. Lactobacillus iners: Friend or Foe?

    PubMed

    Petrova, Mariya I; Reid, Gregor; Vaneechoutte, Mario; Lebeer, Sarah

    2017-03-01

    The vaginal microbial community is typically characterized by abundant lactobacilli. Lactobacillus iners, a fairly recently detected species, is frequently present in the vaginal niche. However, the role of this species in vaginal health is unclear, since it can be detected in normal conditions as well as during vaginal dysbiosis, such as bacterial vaginosis, a condition characterized by an abnormal increase in bacterial diversity and lack of typical lactobacilli. Compared to other Lactobacillus species, L. iners has more complex nutritional requirements and a Gram-variable morphology. L. iners has an unusually small genome (ca. 1 Mbp), indicative of a symbiotic or parasitic lifestyle, in contrast to other lactobacilli that show niche flexibility and genomes of up to 3-4 Mbp. The presence of specific L. iners genes, such as those encoding iron-sulfur proteins and unique σ-factors, reflects a high degree of niche specification. The genome of L. iners strains also encodes inerolysin, a pore-forming toxin related to vaginolysin of Gardnerella vaginalis. Possibly, this organism may have clonal variants that in some cases promote a healthy vagina, and in other cases are associated with dysbiosis and disease. Future research should examine this friend or foe relationship with the host. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Susceptibility to antibiotics in isolates of Lactobacillus plantarum RAPD-type Lp299v, harvested from antibiotic treated, critically ill patients after administration of probiotics.

    PubMed

    Klarin, Bengt; Larsson, Anders; Molin, Göran; Jeppsson, Bengt

    2018-05-24

    Recultured Lactobacillus plantarum 299v-like strains were tested regarding antibiotic susceptibility, and no decrease was detected. Antibiotics are frequently used to treat patients in intensive care units (ICUs) and are associated with a significant risk of selection of resistant bacterial strains. In particular, it is possible that genetic transfer of antibiotic resistance to the resident gastrointestinal flora, as well as to administered probiotics, may be increased in the ICU setting. The aim of the present investigation was to detect possible changes in antimicrobial susceptibility in reisolates of the probiotic strain Lactobacillus plantarum 299v (Lp299v) given to antibiotic treated, critically ill patients. Lp299v-like strains were identified in cultures of biopsies and fecal samples from 32 patients given the probiotic strain enterally in two previous ICU studies. The patients received a variety of antibiotics. Isolates with the same genomic RAPD profile (RAPD-type) as Lp299v were obtained to enable monitoring of antibiotic susceptibility by E-tests. Forty-two isolates, collected throughout the course of illness, were tested against 22 different antibiotics. No obvious decrease in susceptibility was found for 21 of the tested antibiotics. There was a tendency toward decreased susceptibility to ampicillin. The stable antibiotic susceptibility profiles of the Lp299v-like isolates studied here suggests this probiotic is less likely to acquire resistance when administered to critically ill patients treated with broad-spectrum antibiotics. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli.

    PubMed

    Kumar, Manesh; Dhaka, Pankaj; Vijay, Deepthi; Vergis, Jess; Mohan, Vysakh; Kumar, Ashok; Kurkure, Nitin V; Barbuddhe, Sukhadeo B; Malik, S V S; Rawool, Deepak B

    2016-09-01

    The in vitro and in vivo antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus were evaluated individually and synergistically against multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC). In vitro evaluation of each probiotic strain when co-cultured with MDR-EAEC isolates revealed a reduction in MDR-EAEC counts (eosin-methylene blue agar) in a dose- and time-dependent manner: probiotics at a dose rate of 10(10) CFU inhibited MDR-EAEC isolates at 72 h post-inoculation (PI), whereas at lower concentrations (10(8) and 10(9) CFU) MDR-EAEC isolates were inhibited at 96 h PI. The synergistic antimicrobial effect of both probiotic strains (each at 10(10) CFU) was highly significant (P < 0.01) and inhibited the growth of MDR-EAEC isolates at 24 h PI. For in vivo evaluation, weaned mice were fed orally with 10(7) CFU of MDR-EAEC. At Day 3 post-infection, treated mice were fed orally with the probiotic strains (each at 10(10) CFU). Compared with the control, post-treatment a significant (P < 0.01) reduction in MDR-EAEC counts was observed in faeces by Day 2 and in intestinal tissues of treated mice by Days 3 and 4 as evidenced by plate count (mean 2.71 log and 2.27 log, respectively) and real-time PCR (mean 1.62 log and 1.57 log, respectively) methods. Histopathologically, comparatively mild changes were observed in the ileum and colon from Days 3 to 5 post-treatment with probiotics; however, from Day 6 the changes were regenerative or normal. These observations suggest that these probiotic strains can serve as alternative therapeutics against MDR-EAEC-associated infections in humans and animals. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  20. Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains.

    PubMed

    Gangoiti, M V; Puertas, A I; Hamet, M F; Peruzzo, P J; Llamas, M G; Medrano, M; Prieto, A; Dueñas, M T; Abraham, A G

    2017-08-15

    Lactobacillus plantarum CIDCA 8327 is an exopolysaccharide (EPS)-producer strain isolated from kefir with promising properties for the development of functional foods. The aim of the present study was to characterize the structure of the EPS synthesized by this strain grown in skim milk or semidefined medium (SDM). Additionally, genes involved in EPS synthesis were detected by PCR. L. plantarum produces an EPS with a molecular weight of 10 4 Da in both media. When grown in SDM produce an heteropolysaccharide composed mainly of glucose, glucosamine and rhamnose meanwhile the EPS produced in milk was composed exclusively of glucose indicating the influence of the sugar source. FTIR spectra of this EPS showed signals attributable to an α-glucan. Both by 1 H NMR and methylation analysis it was possible to determine that this polysaccharide is a branched α-(1→4)-d-glucan composed of 80% linear α-(1→4)-d-glucopyranosyl units and 19% (1→4)-d-glucopyranosyl units substituted at O-3 by single α-d-glucopyranosil residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment

    PubMed Central

    Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J.

    2014-01-01

    Lactobacilli are found in a wide variety of habitats. Four species, Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii, are common and abundant in the human vagina and absent from other habitats. These may be adapted to the vagina and possess characteristics enabling them to thrive in that environment. Furthermore, stable codominance of multiple Lactobacillus species in a single community is infrequently observed. Thus, it is possible that individual vaginal Lactobacillus species possess unique characteristics that confer to them host-specific competitive advantages. We performed comparative functional genomic analyses of representatives of 25 species of Lactobacillus, searching for habitat-specific traits in the genomes of the vaginal lactobacilli. We found that the genomes of the vaginal species were significantly smaller and had significantly lower GC content than those of the nonvaginal species. No protein families were found to be specific to the vaginal species analyzed, but some were either over- or underrepresented relative to nonvaginal species. We also found that within the vaginal species, each genome coded for species-specific protein families. Our results suggest that even though the vaginal species show no general signatures of adaptation to the vaginal environment, each species has specific and perhaps unique ways of interacting with its environment, be it the host or other microbes in the community. These findings will serve as a foundation for further exploring the role of lactobacilli in the ecological dynamics of vaginal microbial communities and their ultimate impact on host health. PMID:24488312

  2. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4.

    PubMed Central

    Auvray, F; Coddeville, M; Ritzenthaler, P; Dupont, L

    1997-01-01

    Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction. PMID:9068626

  3. Genome Sequences of Six Wheat-Infecting Fusarium Species Isolates

    PubMed Central

    Moolhuijzen, Paula M.; Manners, John M.; Wilcox, Stephen A.; Bellgard, Matthew I.

    2013-01-01

    Fusarium pathogens represent a major constraint to wheat and barley production worldwide. To facilitate future comparative studies of Fusarium species that are pathogenic to wheat, the genome sequences of four Fusarium pseudograminearum isolates, a single Fusarium acuminatum isolate, and an organism from the Fusarium incarnatum-F. equiseti species complex are reported. PMID:24009115

  4. Use of Conserved Randomly Amplified Polymorphic DNA (RAPD) Fragments and RAPD Pattern for Characterization of Lactobacillus fermentum in Ghanaian Fermented Maize Dough

    PubMed Central

    Hayford, Alice E.; Petersen, Anne; Vogensen, Finn K.; Jakobsen, Mogens

    1999-01-01

    The present work describes the use of randomly amplified polymorphic DNA (RAPD) for the characterization of 172 dominant Lactobacillus isolates from present and previous studies of Ghanaian maize fermentation. Heterofermentative lactobacilli dominate the fermentation flora, since approximately 85% of the isolates belong to this group. Cluster analysis of the RAPD profiles obtained showed the presence of two main clusters. Cluster 1 included Lactobacillus fermentum, whereas cluster 2 comprised the remaining Lactobacillus spp. The two distinct clusters emerged at the similarity level of <50%. All isolates in cluster 1 showed similarity in their RAPD profile to the reference strains of L. fermentum included in the study. These isolates, yielding two distinct bands of approximately 695 and 773 bp with the primers used, were divided into four subclusters, indicating that several strains are involved in the fermentation and remain dominant throughout the process. The two distinct RAPD fragments were cloned, sequenced, and used as probes in Southern hybridization experiments. With one exception, Lactobacillus reuteri LMG 13045, the probes hybridized only to fragments of different sizes in EcoRI-digested chromosomal DNA of L. fermentum strains, thus indicating the specificity of the probes and variation within the L. fermentum isolates. PMID:10388723

  5. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis

    PubMed Central

    2010-01-01

    Background Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish. Results Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall two-dimensional gel electrophoresis (2-DE) protein expression pattern was similar for the different strains, though distinct differences were seen between the two subspecies (sakei and carnosus), and a variation of about 20% in the number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher expression of stress related proteins growing on both carbon sources. Conclusions It is obvious from the data obtained in this study that the proteomic approach efficiently identifies differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application point of view, an understanding of regulatory mechanisms, actions of catabolic

  6. Isolation and identification of lactic acid bacteria from koumiss in Eastern Inner Mongolia of China

    NASA Astrophysics Data System (ADS)

    Bai, Lijuan; Ji, Shujuan

    2017-01-01

    Koumiss is a traditional fermented dairy product and known as its unique physiological actions. Isolation and identification of LAB in it will yield valuable knowledge. In total, 55 LAB strains were isolated and identified of 12 koumiss samples collected in limited regions of Eastern Inner Mongolia. 16S rRNA sequence analysis results showed that were Lactobacillus helveticus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus delbrueckii, Enterococcus. durans, Leuconostoc lactis and Leuconostoc mesenteroides. It is benefit to further research on koumiss.

  7. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein.

    PubMed

    Collins, James; van Pijkeren, Jan-Peter; Svensson, Lisbeth; Claesson, Marcus J; Sturme, Mark; Li, Yin; Cooney, Jakki C; van Sinderen, Douwe; Walker, Alan W; Parkhill, Julian; Shannon, Oonagh; O'Toole, Paul W

    2012-09-01

    The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected. © 2012 Blackwell Publishing Ltd.

  8. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay.

    PubMed

    Le Roy, Caroline I; Štšepetova, Jelena; Sepp, Epp; Songisepp, Epp; Claus, Sandrine P; Mikelsaar, Marika

    2015-10-13

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.

  9. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay

    PubMed Central

    Sepp, Epp; Songisepp, Epp; Claus, Sandrine P.; Mikelsaar, Marika

    2015-01-01

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population. PMID:26437083

  10. Distribution Dynamics of Recombinant Lactobacillus in the Gastrointestinal Tract of Neonatal Rats

    PubMed Central

    Bao, Sujin; Zhu, Libin; Zhuang, Qiang; Wang, Lucia; Xu, Pin-Xian; Itoh, Keiji; Holzman, Ian R.; Lin, Jing

    2013-01-01

    One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates. PMID:23544119

  11. Characterization of the binding capacity of mercurial species in Lactobacillus strains.

    PubMed

    Alcántara, Cristina; Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta; Zúñiga, Manuel; Monedero, Vicente

    2017-12-01

    Metal sequestration by bacteria has been proposed as a strategy to counteract metal contamination in foodstuffs. Lactobacilli can interact with metals, although studies with important foodborne metals such as inorganic [Hg(II)] or organic (CH 3 Hg) mercury are lacking. Lactobacilli were evaluated for their potential to bind these contaminants and the nature of the interaction was assessed by the use of metal competitors, chemical and enzymatical treatments, and mutants affected in the cell wall structure. Lactobacillus strains efficiently bound Hg(II) and CH 3 Hg. Mercury binding by Lactobacillus casei BL23 was independent of cell viability. In BL23, both forms of mercury were cell wall bound. Their interaction was not inhibited by cations and it was resistant to chelating agents and protein digestion. Lactobacillus casei mutants affected in genes involved in the modulation of the negative charge of the cell wall anionic polymer lipoteichoic acid showed increased mercury biosorption. In these mutants, mercury toxicity was enhanced compared to wild-type bacteria. These data suggest that lipoteichoic acid itself or the physicochemical characteristics that it confers to the cell wall play a major role in mercury complexation. This is the first example of the biosorption of Hg(II) and CH 3 Hg in lactobacilli and it represents a first step towards their possible use as agents for diminishing mercury bioaccessibility from food at the gastrointestinal tract. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Identification of Lactobacillus alimentarius and Lactobacillus farciminis with 16S-23S rDNA intergenic spacer region polymorphism and PCR amplification using species-specific oligonucleotide.

    PubMed

    Rachman, C N; Kabadjova, P; Prévost, H; Dousset, X

    2003-01-01

    The restriction fragment length polymorphism (RFLP) method was used to differentiate Lactobacillus species having closely related identities in the 16S-23S rDNA intergenic spacer region (ISR). Species-specific primers for Lact. farciminis and Lact. alimentarius were designed and allowed rapid identification of these species. The 16S-23S rDNA spacer region was amplified by primers tAla and 23S/p10, then digested by HinfI and TaqI enzymes and analysed by electrophoresis. Digestion by HinfI was not sufficient to differentiate Lact. sakei, Lact. curvatus, Lact. farciminis, Lact. alimentarius, Lact. plantarum and Lact. paraplantarum. In contrast, digestion carried out by TaqI revealed five different patterns allowing these species to be distinguished, except for Lact. plantarum from Lact. paraplantarum. The 16S-23S rDNA spacer region of Lact. farciminis and Lact. alimentarius were amplified and then cloned into vector pCR(R)2.1 and sequenced. The DNA sequences obtained were analysed and species-specific primers were designed from these sequences. The specificity of these primers was positively demonstrated as no response was obtained for 14 other species tested. The species-specific primers for Lact. farciminis and Lact. alimentarius were shown to be useful for identifying these species among other lactobacilli. The RFLP profile obtained upon digestion with HinfI and TaqI enzymes can be used to discriminate Lact. farciminis, Lact. alimentarius, Lact. sakei, Lact. curvatus and Lact. plantarum. In this paper, we have established the first species-specific primer for PCR identification of Lact. farciminis and Lact. alimentarius. Both species-specific primer and RFLP, could be used as tools for rapid identification of lactobacilli up to species level.

  13. An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity.

    PubMed

    Piwat, S; Sophatha, B; Teanpaisan, R

    2015-07-01

    There is limited information concerning the adhesion and aggregation of human oral lactobacilli. In this study, the adhesion of 10 Lactobacillus species was investigated using H357 oral keratinocyte cells as an in vitro model for oral mucosa. Coaggregation with the representative oral pathogen, Streptococcus mutans ATCC 25175, and the physicochemical cell properties was also evaluated. The results demonstrated significant variations in adhesion (42-96%) and aggregation (autoaggregation, 14-95%; coaggregation, 19-65%). All strains showed a high affinity for chloroform, and most strains had a moderate-to-high hydrophobicity. All strains, except Lactobacillus casei and Lactobacillus gasseri, showed a moderate affinity for ethyl acetate. There was a strong association of autoaggregation with coaggregation (rs = 0·883, P < 0·001). The highest mean for autoaggregation (74%) and coaggregation (47%) belonged to the Lact. gasseri strains. Correlations between the adhesion and surface characteristics and aggregation were observed among the Lactobacillus fermentum and Lactobacillus paracasei strains; however, there was a variation in the strains properties within and between species. This study indicated that the Lact. gasseri, Lact. fermentum, and Lact. paracasei strains might be potential probiotics for the human oral cavity given their desirable properties. It should also be emphasized that a selective process for probiotic strains is required. Adhesion to host tissues and bacterial aggregation (auto- and coaggregation) are the highly important criteria for selecting strains with probiotic potential. These abilities are commonly involved with surface-charged characteristics. This is the first study to investigate the oral Lactobacillus species using an oral keratinocyte cell line. Significant results were found for the correlations between the adhesion and surface charge characteristics and for aggregation among certain strains of Lactobacillus gasseri, Lactobacillus

  14. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice.

    PubMed

    Ge, Jingping; Sun, Yanyang; Xin, Xing; Wang, Ying; Ping, Wenxiang

    2016-01-14

    Bacteriocins have antimicrobial activities against food-spoiling bacteria and food-borne pathogens. Paracin 1.7, a bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice, was studied. Following partial purification with ammonium sulfate precipitation, CM Sepharose Fast Flow, and Sephadex G-10 chromatography, the molecular weight of Paracin 1.7 was about 10 kDa based on Tricine-SDS-PAGE results. A 2.87 fold purified bacteriocin was produced, reaching a final yield of 39.93% and the specific activity of 1.56 × 10(3) AU/mg. The N-terminal amino acid sequence of Paracin 1.7 was VSNTFFA, and the LC/LTQ results revealed that the N-terminal amino acid sequence was similar to that of ABC-type oligopeptide transport system protein and N-acetylmuramoyl-L-alanine amidase. Paracin 1.7 was sensitive to protease K, had antimicrobial activities at a broad pH range (3.0-8.0), and was heat resistant (121 °C for 20 min). Paracin 1.7 from Lactobacillus paracasei HD1-7 is a novel bacteriocin that has potential applications in food preservation.

  15. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice

    PubMed Central

    Ge, Jingping; Sun, Yanyang; Xin, Xing; Wang, Ying; Ping, Wenxiang

    2016-01-01

    Bacteriocins have antimicrobial activities against food-spoiling bacteria and food-borne pathogens. Paracin 1.7, a bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice, was studied. Following partial purification with ammonium sulfate precipitation, CM Sepharose Fast Flow, and Sephadex G-10 chromatography, the molecular weight of Paracin 1.7 was about 10 kDa based on Tricine-SDS-PAGE results. A 2.87 fold purified bacteriocin was produced, reaching a final yield of 39.93% and the specific activity of 1.56 × 103 AU/mg. The N-terminal amino acid sequence of Paracin 1.7 was VSNTFFA, and the LC/LTQ results revealed that the N-terminal amino acid sequence was similar to that of ABC-type oligopeptide transport system protein and N-acetylmuramoyl-L-alanine amidase. Paracin 1.7 was sensitive to protease K, had antimicrobial activities at a broad pH range (3.0–8.0), and was heat resistant (121 °C for 20 min). Paracin 1.7 from Lactobacillus paracasei HD1-7 is a novel bacteriocin that has potential applications in food preservation. PMID:26763314

  16. Host Specific Diversity in Lactobacillus johnsonii as Evidenced by a Major Chromosomal Inversion and Phage Resistance Mechanisms

    PubMed Central

    Guinane, Caitriona M.; Kent, Robert M.; Norberg, Sarah; Hill, Colin; Fitzgerald, Gerald F.; Stanton, Catherine; Ross, R. Paul

    2011-01-01

    Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract. Although the genome of DPC6026 is similar in size (1.97mbp) and GC content (34.8%) to the sequenced human isolate L. johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT) and contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) elements. Interestingly, these particular elements are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific divergence of L. johnsonii strains with respect to genome inversion and phage exposure. PMID:21533100

  17. Host specific diversity in Lactobacillus johnsonii as evidenced by a major chromosomal inversion and phage resistance mechanisms.

    PubMed

    Guinane, Caitriona M; Kent, Robert M; Norberg, Sarah; Hill, Colin; Fitzgerald, Gerald F; Stanton, Catherine; Ross, R Paul

    2011-04-20

    Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract. Although the genome of DPC6026 is similar in size (1.97 mbp) and GC content (34.8%) to the sequenced human isolate L. johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT) and contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) elements. Interestingly, these particular elements are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific divergence of L. johnsonii strains with respect to genome inversion and phage exposure.

  18. Mating patterns and post-mating isolation in three cryptic species of the Engystomops petersi species complex.

    PubMed

    Trillo, Paula A; Narvaez, Andrea E; Ron, Santiago R; Hoke, Kim L

    2017-01-01

    Determining the extent of reproductive isolation in cryptic species with dynamic geographic ranges can yield important insights into the processes that generate and maintain genetic divergence in the absence of severe geographic barriers. We studied mating patterns, propensity to hybridize in nature and subsequent fertilization rates, as well as survival and development of hybrid F1 offspring for three nominal species of the Engystomops petersi species complex in Yasuní National Park, Ecuador. We found at least two species in four out of six locations sampled, and 14.3% of the wild pairs genotyped were mixed-species (heterospecific) crosses. We also found reduced fertilization rates in hybrid crosses between E. petersi females and E. "magnus" males, and between E. "magnus" females and E. "selva" males but not in the reciprocal crosses, suggesting asymmetric reproductive isolation for these species. Larval development times decreased in F1 hybrid crosses compared to same species (conspecific) crosses, but we did not find significant reduction in larval survival or early metamorph survival. Our results show evidence of post-mating isolation for at least two hybrid crosses of the cryptic species we studied. The general decrease in fertilization rates in heterospecific crosses suggests that sexual selection and reinforcement might have not only contributed to the pattern of call variation and behavioral isolation we see between species today, but they may also contribute to further signal divergence and behavioral evolution, especially in locations where hybridization is common and fertilization success is diminished.

  19. Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri

    PubMed Central

    TANIZAWA, Yasuhiro; KOBAYASHI, Hisami; KAMINUMA, Eli; SAKAMOTO, Mitsuo; OHKUMA, Moriya; NAKAMURA, Yasukazu; ARITA, Masanori; TOHNO, Masanori

    2017-01-01

    Whole-genome sequencing was performed for Lactobacillus parakefiri JCM 8573T to confirm its hitherto controversial taxonomic position. Here, we report its first reliable reference genome. Genome-wide metrics, such as average nucleotide identity and digital DNA-DNA hybridization, and phylogenomic analysis based on multiple genes supported its taxonomic status as a distinct species in the genus Lactobacillus. The availability of a reliable genome sequence will aid future investigations on the industrial applications of L. parakefiri in functional foods such as kefir grains. PMID:28748134

  20. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses.

    PubMed

    Zago, Miriam; Fornasari, Maria Emanuela; Carminati, Domenico; Burns, Patricia; Suàrez, Viviana; Vinderola, Gabriel; Reinheimer, Jorge; Giraffa, Giorgio

    2011-08-01

    Ninety-eight Lactobacillus plantarum strains isolated from Italian and Argentinean cheeses were evaluated for probiotic potential. After a preliminary subtractive screening based on the presence of msa and bsh genes, 27 strains were characterized. In general, the selected strains showed high resistance to lysozyme, good adaptation to simulated gastric juice, and a moderate to low bile tolerance. The capacity to agglutinate yeast cells in a mannose-specific manner, as well as the cell surface hydrophobicity was found to be variable among strains. Very high β-galactosidase activity was shown by a considerable number of the tested strains, whereas variable prebiotic utilization ability was observed. Only tetracycline resistance was observed in two highly resistant strains which harbored the tetM gene, whereas none of the strains showed β-glucuronidase activity or was capable of inhibiting pathogens. Three strains (Lp790, Lp813, and Lp998) were tested by in vivo trials. A considerable heterogeneity was found among a number of L. plantarum strains screened in this study, leading to the design of multiple cultures to cooperatively link strains showing the widest range of useful traits. Among the selected strains, Lp790, Lp813, and Lp998 showed the best probiotic potential and would be promising candidates for inclusion as starter cultures for the manufacture of probiotic fermented foods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Assessment of phenotypic and genotypic antibiotic susceptibility of vaginal Lactobacillus sp.

    PubMed

    Štšepetova, J; Taelma, H; Smidt, I; Hütt, P; Lapp, E; Aotäht, E; Mändar, R

    2017-08-01

    To assess antibiotic susceptibility of vaginal lactobacilli strains and provide the data required for assessing the potential of antibiotic resistance risk of new strains selected as probiotic. Potential probiotic vaginal lactobacilli used in the study included 31 vaginal strains of Lactobacillus crispatus (n = 27), Lactobacillus gasseri (n = 3) and Lactobacillus jensenii (n = 1) obtained from the collection of Competence Centre on Health Technologies. Two commercial probiotic strains were used as controls (Lactobacillus rhamnosus GR-1 and Lactobacillus fermentum RC-14). The phenotypic and genotypic antibiotic resistances of the strains were determined by E-test and PCR methods. The location (chromosomal DNA or plasmid) of antibiotic resistance genes was also detected. All lactobacilli strains expressed high level of resistance to kanamycin, metronidazole, norfloxacin and trimethoprim/sulphamethoxazole. Some of the strains also expressed resistance to other antibiotics (chloramphenicol, vancomycin) indicating acquired resistance. I class integrons were found in 20% (6/31) of the strains. The RPP (ribosomal protection protein) gene was found to be positive in 30% (9/31) of the strains. Only one L. jensenii strain was determined with tet(M) gene. The tet(K) gene was positive in 26·7% (8/31) and erm(B) gene in 43·3% (13/31) of strains. Three RPP and both four tet(K) and erm(B) genes were located in plasmids. High antibiotic resistance to clinically important antibiotics was demonstrated, including metronidazole, sulphonamides, aminoglycoside and quinolones. In addition, acquired tetracycline and erythromycin resistance genes were detected in either plasmid or chromosomal DNA of certain isolates, in some of the cases for the first time in the literature. It appears that antibiotic resistance genes erm(B) and tet(K) are widely spread in vaginal lactobacilli. This study provides new data about antimicrobial resistance and genotypic diversity of vaginal

  2. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC.

    PubMed

    Gezginc, Y; Topcal, F; Comertpay, S; Akyol, I

    2015-03-01

    The present study was conducted to evaluate the lactic acid- and acetaldehyde-producing abilities of lactic acid bacterial species isolated from traditionally manufactured Turkish yogurts using HPLC. The lactic acid bacterial species purified from the yogurts were the 2 most widely used species in industrial yogurt production: Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria have the ability to ferment hexose sugars homofermentatively to generate lactic acid and some carbonyl compounds, such as acetaldehyde through pyruvate metabolism. The levels of the compounds produced during fermentation influence the texture and the flavor of the yogurt and are themselves influenced by the chemical composition of the milk, processing conditions, and the metabolic activity of the starter culture. In the study, morphological, biochemical, and molecular characteristics were employed to identify the bacteria obtained from homemade yogurts produced in different regions of Turkey. A collection of 91 Strep. thermophilus and 35 L. bulgaricus strains were investigated for their lactic acid- and acetaldehyde-formation capabilities in various media such as cow milk, LM17 agar, and aerobic-anaerobic SM17 agar or de Man, Rogosa, and Sharpe agar. The amounts of the metabolites generated by each strain in all conditions were quantified by HPLC. The levels were found to vary depending on the species, the strain, and the growth conditions used. Whereas lactic acid production ranged between 0 and 77.9 mg/kg for Strep. thermophilus strains, it ranged from 0 to 103.5 mg/kg for L. bulgaricus. Correspondingly, the ability to generate acetaldehyde ranged from 0 to 105.9 mg/kg in Strep. thermophilus and from 0 to 126.9 mg/kg in L. bulgaricus. Our study constitutes the first attempt to determine characteristics of the wild strains isolated from traditional Turkish yogurts, and the approach presented here, which reveals the differences in metabolite production abilities of the

  3. Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage.

    PubMed

    Khan, Nurul H; Kang, Tae Sun; Grahame, Douglas A S; Haakensen, Monique C; Ratanapariyanuch, Kornsulee; Reaney, Martin J; Korber, Darren R; Tanaka, Takuji

    2013-01-01

    Conversion of glycerol to 1,3-propanediol (1,3-PDO) is an attractive option to increase the economic efficiency of the biofuel industry. A bacterial strain that produced 1,3-PDO in the presence of glycerol was isolated from thin stillage, the fermentation residue of bioethanol production. This 1,3-PDO-producing organism was identified as Lactobacillus panis through biochemical characteristics and by 16S rRNA sequencing. Characterization of the L. panis strain hereafter designated as PM1 revealed it was an aerotolerant acidophilic anaerobe able to grow over a wide range of temperatures; tolerant to high concentrations of sodium chloride, ethanol, acetic acid, and lactic acid; and resistant to many common antibiotics. L. panis PM1 could utilize glucose, lactose, galactose, maltose, xylose, and arabinose, but could not grow on sucrose or fructose. Production of 1,3-PDO by L. panis PM1 occurred only when glucose was available as the carbon source in the absence of oxygen. These metabolic characteristics strongly suggested NADH recycling for glucose metabolism is achieved through 1,3-PDO production by this strain. These characteristics classified L. panis PM1 within the group III heterofermentative lactic acid bacteria, which includes the well-characterized 1,3-PDO-producing strain, Lactobacillus reuteri. Metabolite production profiles showed that L. panis PM1 produced considerable amounts of succinic acid (~11-12 mM) from normal MRS medium, which distinguishes this strain from L. reuteri strains.

  4. In vitro evaluation of the safety and probiotic properties of Lactobacilli isolated from chicken and calves.

    PubMed

    Bujnakova, Dobroslava; Strakova, Eva; Kmet, Vladimir

    2014-10-01

    A total of 73 chicken and calves isolates were diagnosed using matrix-assisted laser desorption ionization-time-of flight mass spectrometry (Maldi-Tof MS). After a preliminary subtractive screening based on the high acid tolerance at pH 2.5 and bile resistance at 0.3% oxgall, twenty isolates belonging to the species Lactobacillus salivarius, Lactobacillus agilis, Lactobacillus reuteri, Lactobacillus murinus and Lactobacillus amylovorus were in vitro screened for the safety assessment and probiotic properties, including antibiotics susceptibility patterns, biochemical activity and potential for competitive exclusion of biofilm producing pathogens determined by crystal violet and/or quantitative Fluorescent in situ Hybridisation (FISH) assays utilizing 5'Cy 3 labelled probe Enter1432 for enteric group. Antibiotic susceptibility testing was performed according to the ISO norm 10932. The sixteen strains were susceptible to certain antimicrobial agents, except for two chicken (L. salivarius 12K, L. agilis 13K) and two calves (L. reuteri L10/1, L. murinus L9) isolates with the presence non wild-type ECOFFs (epidemiological cut-off) for gentamicin (≥256 μg ml(-1)), tetracycline (≥128 μg ml(-1)), kanamycin (≥256 μg ml(-1)) and streptomycin (≥96 μg ml(-1)). The two referenced chicken isolates gave positive aac(6')Ie-aph(2″)Ia and tet(L) PCR results. The wild-type ECOFFs isolates were subjected to the apiZYM analysis for enzyme profile evaluation and amino acid decarboxylase activities determined by qualitative plate method and multiplex PCR for the detection of four genes involved in the production of histamine (histidine decarboxylase, hdc), tyramine (tyrosine decarboxylase, tyrdc) and putrescine (via eithers ornithine decarboxylase, odc, or agmatine deiminase, agdi). From examined strains only two chicken isolates (L. reuteri 14K; L. salivarius 15K) had no harmful β-glucuronidase, β-glucosidase activities connected with detrimental effects in

  5. Characterization of lactic acid bacteria isolated from artisanal Travnik young cheeses, sweet creams and sweet kajmaks over four seasons.

    PubMed

    Terzic-Vidojevic, Amarela; Mihajlovic, Sanja; Uzelac, Gordana; Veljovic, Katarina; Tolinacki, Maja; Nikolic, Milica; Topisirovic, Ljubisa; Kojic, Milan

    2014-05-01

    The aim of this study was to investigate the composition of lactic acid bacteria (LAB) in autochthonous young cheeses, sweet creams and sweet kajmaks produced in the Vlašić mountain region of central Bosnia and Herzegovina near the town of Travnik over a four season period. These three products were made from cow's milk by a traditional method without the addition of a starter culture. Preliminary characterization with phenotype-based assays and identification using rep-PCR with a (GTG)5 primer and 16S rDNA sequence analysis were undertaken for 460 LAB isolates obtained from all the examined samples. Fifteen species were identified as follows: Lactococcus lactis, Lactococcus raffinolactis, Lactococcus garviae, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus helveticus, Enterococcus faecium, Enterococcus durans, Enterococcus faecalis, Enterococcus italicus, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Leuconostoc lactis, Streptococcus thermophilus and Streptococcus mitis. A wide genotypic and phenotypic heterogeneity of the species was observed, particularly within the Lc. lactis strains. In all of the tested dairy products across four seasons, a significantly positive correlation (r = 0.690) between the presence of lactococci and enterococci and a negative correlation (r = 0.722) between the presence of lactococci and leuconostocs were recorded. Forty-five percent of the lactobacilli and 54.4% of the lactococci exhibited proteolytic activity, whereas 18.7% of the total LAB isolates exhibited antimicrobial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Isolation and identification of a novel bacterium, Lactobacillus sakei subsp. dgh strain 5, and optimization of growth condition for highest antagonistic activity.

    PubMed

    Tashakor, Amin; Hosseinzadehdehkordi, Mahshid; Emruzi, Zeynab; Gholami, Dariush

    2017-05-01

    In the present study, we isolated Lactobacillus sakei strain DGH5 from raw beef meat. This bacterium plays an inhibitory effect against food-spoiling bacteria and food-borne pathogens, including Listeria monocytogenes, a gram-positive and pathogenic bacterium. Lactobacillus sakei strain DGH5 was identified through both phenotypical and biochemical tests accompanied with 16S rRNA sequence analysis. Among all the sources of carbon, nitrogen and phosphorous forms, we selected the most potent compounds to optimize the condition for the highest antagonistic activity. Among the sugars, polygalacturonic acid demonstrated to improve the antagonistic activity. Ammonium nitrate demonstrated to be suitable nitrogen sources. Amongst phosphorous sources, disodium hydrogen phosphate had the greatest antagonistic effect. According to Taguchi's orthogonal array, temperature, disodium hydrogen phosphate and soy Peptone had significant effect on antagonistic activity. Furthermore, mean comparisons showed that the optimum conditions achieved at pH 6.0, 25 °C temperature, 1.5% (w/v) Na 2 HPO 4 and 0.5% (w/v) peptone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Two efficient nitrite-reducing Lactobacillus strains isolated from traditional fermented pork (Nanx Wudl) as competitive starter cultures for Chinese fermented dry sausage.

    PubMed

    Chen, Xi; Li, Jiapeng; Zhou, Tong; Li, Jinchun; Yang, Junna; Chen, Wenhua; Xiong, Youling L

    2016-11-01

    Lactic acid bacteria isolated from traditional Dong pork product (Nanx Wudl) were investigated for their potential as starter cultures for Chinese fermented dry sausages. Based on preliminary screening, Lactobacillus plantarum CMRC6 and Lactobacillus sakei CMRC15, both showing excellent nitrite-reducing capacity, were used as single-strain starter cultures. For comparison, a commercial composite starter was also tested. In CMRC6 and CMRC15-inoculated sausages, lactic acid bacteria dominated the microflora and improved the microbiological safety by suppression of Enterobacteriaceae growth. Nitrite content of all inoculated sausages declined rapidly during ripening compared to non-inoculated. Texture profiles analysis showed inoculated sausages had more pronounced textural development during ripening. Sensory evaluation indicated CMRC6 and CMRC15-fermented sausages had comparable or more desirable organoleptic characteristics than sausage made with commercial starters. Therefore, CMRC6 and CMRC15 are promising candidates as multi-functional starter cultures for microbiological safety and residual nitrite control in gourmet Chinese dry sausage production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Potentially probiotic Lactobacillus strains from traditional Kurdish cheese.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Shahidi, Fakhri; Mortazavi, Seyed Ali; Milani, Elnaz; Eshaghi, Zarrin

    2014-03-01

    In this study, the probiotic potential of Lactobacillus strains isolated from traditional Kurdish cheese was investigated. The Lactobacillus strains were examined for resistance to gastric acidity and bile toxicity, antimicrobial activities, autoaggregation, coaggregation, hydrophobicity, adhesion to Caco-2 cells, and antibiotic susceptibility. The results showed that all strains tested tolerate acid gastric conditions (pH 2.0 and 3.0), and all of them were bile resistant (at 0.3 and 1% concentration). Although no antibacterial activity was detected in vitro assay for the treated (neutralized to pH 6.5 and treated with catalase) cell-free culture supernatant (CFCS) of strains, untreated CFCS showed strong antagonistic activity against two known pathogens bacteria. All strains exhibited a strong autoaggregating phenotype and manifested a high degree of coaggregation with pathogens. On the other hand, majority of studied strains were found sensitive to different antibiotics, such as ampicillin, penicillin, ciprofloxacin, chloramphenicol, erythromycin, rifampicin, and tetracycline, and were resistant to vancomycin and streptomycin. Finally, isolated strains showed good hydrophobicity and adherence to Caco-2 cell line, so they could be exploited for food manufacture.

  9. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus.

    PubMed

    Spear, Gregory T; French, Audrey L; Gilbert, Douglas; Zariffard, M Reza; Mirmonsef, Paria; Sullivan, Thomas H; Spear, William W; Landay, Alan; Micci, Sandra; Lee, Byung-Hoo; Hamaker, Bruce R

    2014-10-01

    Lactobacillus colonization of the lower female genital tract provides protection from the acquisition of sexually transmitted diseases, including human immunodeficiency virus, and from adverse pregnancy outcomes. While glycogen in vaginal epithelium is thought to support Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize glycogen in vitro. This study investigated how glycogen could be utilized by vaginal lactobacilli in the genital tract. Several Lactobacillus isolates were confirmed to not grow in glycogen, but did grow in glycogen-breakdown products, including maltose, maltotriose, maltopentaose, maltodextrins, and glycogen treated with salivary α-amylase. A temperature-dependent glycogen-degrading activity was detected in genital fluids that correlated with levels of α-amylase. Treatment of glycogen with genital fluids resulted in production of maltose, maltotriose, and maltotetraose, the major products of α-amylase digestion. These studies show that human α-amylase is present in the female lower genital tract and elucidates how epithelial glycogen can support Lactobacillus colonization in the genital tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Antibiotic Resistances of Yogurt Starter Cultures Streptococcus thermophilus and Lactobacillus bulgaricus

    PubMed Central

    Sozzi, Tommaso; Smiley, Martin B.

    1980-01-01

    Twenty-nine strains of Lactobacillus bulgaricus and 15 strains of Streptococcus thermophilus were tested for resistance to 35 antimicrobial agents by using commercially available sensitivity disks. Approximately 35% of the isolates had uncharacteristic resistance patterns. PMID:16345654

  11. Antifungal susceptibilities of Candida species isolated from urine culture.

    PubMed

    Toka Özer, Türkan; Durmaz, Süleyman; Yula, Erkan

    2016-09-01

    Candida spp. are the most common opportunistic mycosis worldwide. Although Candida albicans is the most common cause of urinary tract infections, the frequency of non-albicans Candida species is increasing with common use of antifungal in the prophylaxis and treatment. This may lead to difficulties in treatment. Antifungal tests should be applied with identification of species for effective treatment. In this study, identification of Candida species isolated from urine culture and investigation of susceptibility of these strains to amphotericin B, flucytosine, fluconazole, voriconazole was aimed. In this study, 58 Candida strains isolated from urine cultures at Osmaniye State Hospital between January 2012 and April 2013 were included. Urine culture and antifungal susceptibility tests were applied. Incidence rate of Candida spp. was determined as C. albicans (56.9%), Candida glabrata (20.6%), Candida tropicalis (10.3%), Candida parapsilosis (7%), Candida krusei (3.4%), Candida kefyr (1.8%). Most of the isolates were susceptible to amphotericin B, flucytosine, fluconazole, voriconazole. Twenty three (39.7%) Candida strains were isolated from internal medical branches and Intensive Care Unit and 12 (20.6%) from the Surgical Medical Branches. C. albicans and C. glabrata species were isolated most frequently as a candiduria factor in this hospital between January 2012 and April 2013. The analysis of antifungal susceptibility profile shows no significant resistance to antifungals. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Mating patterns and post-mating isolation in three cryptic species of the Engystomops petersi species complex

    PubMed Central

    Narvaez, Andrea E.; Ron, Santiago R.; Hoke, Kim L.

    2017-01-01

    Determining the extent of reproductive isolation in cryptic species with dynamic geographic ranges can yield important insights into the processes that generate and maintain genetic divergence in the absence of severe geographic barriers. We studied mating patterns, propensity to hybridize in nature and subsequent fertilization rates, as well as survival and development of hybrid F1 offspring for three nominal species of the Engystomops petersi species complex in Yasuní National Park, Ecuador. We found at least two species in four out of six locations sampled, and 14.3% of the wild pairs genotyped were mixed-species (heterospecific) crosses. We also found reduced fertilization rates in hybrid crosses between E. petersi females and E. “magnus” males, and between E. “magnus” females and E. “selva” males but not in the reciprocal crosses, suggesting asymmetric reproductive isolation for these species. Larval development times decreased in F1 hybrid crosses compared to same species (conspecific) crosses, but we did not find significant reduction in larval survival or early metamorph survival. Our results show evidence of post-mating isolation for at least two hybrid crosses of the cryptic species we studied. The general decrease in fertilization rates in heterospecific crosses suggests that sexual selection and reinforcement might have not only contributed to the pattern of call variation and behavioral isolation we see between species today, but they may also contribute to further signal divergence and behavioral evolution, especially in locations where hybridization is common and fertilization success is diminished. PMID:28388628

  13. Three new insertion sequence elements ISLdl2, ISLdl3, and ISLdl4 in Lactobacillus delbrueckii: isolation, molecular characterization, and potential use for strain identification.

    PubMed

    Ravin, Victor; Alatossava, Tapani

    2003-05-01

    A group of new insertion sequence (IS) elements, ISLdl2, ISLdl3, and ISLdl4, from Lactobacillus delbrueckii subsp. lactis ATCC 15808 was isolated, characterized, and used for strain identification together with ISLdl1, recently characterized as an L. delbrueckii IS element belonging to the ISL3 family. ISLdl2 was 1367 bp in size and had a 24 bp IR and an 8 bp DR. The single ORF of ISLdl2 encoded a protein of 392 aa similar to transposases of the IS256 family. ISLdl3 had a single ORF encoding a protein of 343 aa similar to transposases of the IS30 family. Finally, ISLdl4 had a single ORF encoding a protein of 406 aa and displayed homology to the transposases of the IS110 family. ISLdl4 was only slight different from ISL4 (Accession No. AY040213). ISLdl1, ISLdl2, and ISLdl4 were present in all of the 10 L. delbrueckii subsp. lactis and subsp. delbrueckii strains tested, as well as in three of the 11 L. delbrueckii subsp. bulgaricus strains tested. ISLdl3 was present only in four closely related strains of L. delbrueckii subsp. lactis. These IS elements were not observed in Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus helveticus, or Lactobacillus plantarum. A cluster of IS elements, ISLdl1, ISLdl2, ISLdl3, ISLdl4, and ISL6, was observed in L. delbrueckii subsp. lactis strain ATCC 15808. Within this cluster, ISLdl4 was inserted into ISLdl1 between the left IR and the start codon of ORF455, encoding a putative transposase. Most of the integration sites of the IS elements were strain-specific. We have observed that IS elements can migrate from one strain to another as integral parts of bacterial DNA by using phage LL-H as a vehicle. We demonstrate for the first time that inverse PCR and vectorette PCR methods with primers based on sequences of the IS elements could be used for identification of L. delbrueckii strains.

  14. Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese

    PubMed Central

    Ołdak, Aleksandra; Rzepkowska, Anna

    2017-01-01

    Oscypek and korycinski are traditional Polish cheeses, exclusively produced in Tatra and in Podlasie region, respectively, produced from raw, unpasteurized milk. The 29 Lactobacillus plantarum strains were isolated on MRS agar from 12 cheese samples and used as a material for study. The main purpose of the work was to assess the antimicrobial properties and recognition of selected strains for the unique antagonistic activity and preservation role in food. It has been found that the highest antimicrobial activity was observed in the case of L. monocytogenes strains; however, the level of that activity was different depending on the Lb. plantarum strain. Strains from oscypek produced broad spectrum, and a few strains isolated from korycinski cheese produced a narrow spectrum of antimicrobial compounds, other than organic acids and hydrogen peroxide. Moreover, the antagonistic activity shown by Lb. plantarum strains is connected with the source from which a given strain was isolated. Strains isolated from oscypek cheese represented stronger activity against L. monocytogenes, whereas strains isolated from korycinski cheese were more active against E. coli. Strains Lb. plantarum Os13 and Kor14 could be considered as good candidates for protective cultures to extend durability of food products. PMID:28626762

  15. Identification and Characterization of Novel Surface Proteins in Lactobacillus johnsonii and Lactobacillus gasseri

    PubMed Central

    Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf

    2002-01-01

    We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842

  16. Complete genome sequence of Lactobacillus kefiranofaciens ZW3.

    PubMed

    Wang, Yanping; Wang, Jingrui; Ahmed, Zaheer; Bai, Xiaojia; Wang, Jinju

    2011-08-01

    Lactobacillus kefiranofaciens ZW3 was isolated in Tibet, China, from kefir grain, a traditional dairy product that is known to provide many health benefits to humans. Here, we present the genome features of L. kefiranofaciens ZW3 and the identification of a gene cluster related to the synthesis of exopolysaccharide, an important constituent of the Tibetan kefir.

  17. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir.

    PubMed

    Wang, Ji; Zhao, Xiao; Tian, Zheng; Yang, Yawei; Yang, Zhennai

    2015-07-10

    An exopolysaccharide (EPS)-producing strain YW11 isolated from Tibet Kefir was identified as Lactobacillus plantarum, and the strain was shown to produce 90 mgL(-1) of EPS when grown in a semi-defined medium. The molecular mass of the EPS was 1.1 × 10(5)Da. The EPS was composed of glucose and galactose in a molar ratio of 2.71:1, with possible presence of N-acetylated sugar residues in the polysaccharide as confirmed by NMR spectroscopy. Rheological studies showed that the EPS had higher viscosity in skim milk, at lower temperature, or at acidic pH. The viscous nature of the EPS was confirmed by observation with scanning electron microscopy that demonstrated a highly branched and porous structure of the polysaccharide. The atomic force microscopy of the EPS further revealed presence of many spherical lumps, facilitating binding with water in aqueous solution. The EPS had a higher degradation temperature (287.7°C), suggesting high thermal stability of the EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram-positive bacteria.

    PubMed

    Aween, Mohamed Mustafa; Hassan, Zaiton; Muhialdin, Belal J; Eljamel, Yossra A; Al-Mabrok, Asma Saleh W; Lani, Mohd Nizam

    2012-07-01

    A total of 32 lactic acid bacteria (LAB) were isolated from 13 honey samples commercially marketed in Malaysia, 6 strains identified as Lactobacillus acidophilus by API CHL50. The isolates had antibacterial activities against multiple antibiotic resistant's Staphylococcus aureus (25 to 32 mm), Staphylococcus epidermis (14 to 22 mm) and Bacillus subtilis (12 to 19 mm) in the agar overlay method after 24 h incubation at 30 °C. The crude supernatant was heat stable at 90 °C and 121 °C for 1 h. Treatment with proteinase K and RNase II maintained the antimicrobial activity of all the supernatants except sample H006-A and H010-G. All the supernatants showed antimicrobial activities against target bacteria at pH 3 and pH 5 but not at pH 6 within 72 h incubation at 30 °C. S. aureus was not inhibited by sample H006-A isolated from Libyan honey and sample H008-D isolated from Malaysian honey at pH 5, compared to supernatants from other L. acidophilus isolates. The presence of different strains of L. acidophilus in honey obtained from different sources may contribute to the differences in the antimicrobial properties of honey. © 2012 Institute of Food Technologists®

  19. Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity.

    PubMed

    Briner, Alexandra E; Barrangou, Rodolphe

    2014-02-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel "spacers" that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5'-AAAA-3'. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri.

  20. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods.

    PubMed

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-03-04

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2-CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1-L6, with various homologous recombination rates. Although L2-L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.

  1. Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats.

    PubMed

    O'Hagan, Caroline; Li, Jia V; Marchesi, Julian R; Plummer, Sue; Garaiova, Iveta; Good, Mark A

    2017-10-01

    Ageing is associated with changes in the gut microbiome that may contribute to age-related changes in cognition. Previous work has shown that dietary supplements with multi-species live microorganisms can influence brain function, including induction of hippocampal synaptic plasticity and production of brain derived neurotrophic factor, in both young and aged rodents. However, the effect of such dietary supplements on memory processes has been less well documented, particularly in the context of aging. The main aim of the present study was to examine the impact of a long-term dietary supplement with a multi-species live Lactobacillus and Bifidobacteria mixture (Lactobacillus acidophilus CUL60, L. acidophilus CUL21, Bifidobacterium bifidum CUL20 and B. lactis CUL34) on tests of memory and behavioural flexibility in 15-17-month-old male rats. Following behavioural testing, the hippocampus and prefrontal cortex was extracted and analysed ex vivo using 1 H nuclear magnetic resonance ( 1 H NMR) spectroscopy to examine brain metabolites. The results showed a small beneficial effect of the dietary supplement on watermaze spatial navigation and robust improvements in long-term object recognition memory and short-term memory for object-in-place associations. Short-term object novelty and object temporal order memory was not influenced by the dietary supplement in aging rats. 1 H NMR analysis revealed diet-related regional-specific changes in brain metabolites; which indicated changes in several pathways contributing to modulation of neural signaling. These data suggest that chronic dietary supplement with multi-species live microorganisms can alter brain metabolites in aging rats and have beneficial effects on memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Bacterial population in traditional sourdough evaluated by molecular methods.

    PubMed

    Randazzo, C L; Heilig, H; Restuccia, C; Giudici, P; Caggia, C

    2005-01-01

    To study the microbial communities in artisanal sourdoughs, manufactured by traditional procedure in different areas of Sicily, and to evaluate the lactic acid bacteria (LAB) population by classical and culture-independent approaches. Forty-five LAB isolates were identified both by phenotypic and molecular methods. The restriction fragment length polymorphism and 16S ribosomal DNA gene sequencing gave evidence of a variety of species with the dominance of Lactobacillus sanfranciscensis and Lactobacillus pentosus, in all sourdoughs tested. Culture-independent method, such as denaturing gradient gel electrophoresis (DGGE) of the V6-V8 regions of the 16S rDNA, was applied for microbial community fingerprint. The DGGE profiles revealed the dominance of L. sanfranciscensis species. In addition, Lactobacillus-specific primers were used to amplify the V1-V3 regions of the 16S rDNA. DGGE profiles flourished the dominance of L. sanfranciscensis and Lactobacillus fermentum in the traditional sourdoughs, and revealed that the closely related species Lactobacillus kimchii and Lactobacillus alimentarius were not discriminated. Lactobacillus-specific PCR-DGGE analysis is a rapid tool for rapid detection of Lactobacillus species in artisanal sourdough. This study reports a characterization of Lactobacillus isolates from artisanal sourdoughs and highlights the value of DGGE approach to detect uncultivable Lactobacillus species.

  3. Potential probiotic attributes and antagonistic activity of an indigenous isolate Lactobacillus plantarum DM5 from an ethnic fermented beverage "Marcha" of north eastern Himalayas.

    PubMed

    Das, Deeplina; Goyal, Arun

    2014-05-01

    A novel isolate DM5 identified as Lactobacillus plantarum displayed in vitro probiotic properties as well as antimicrobial activity. It showed adequate level of survival to the harsh conditions of the gastrointestinal tract and survived low acidic pH 2.5 for 5 h. Artificial gastric juice and intestinal fluidic environment decreased the initial viable cell population of isolate DM5 only by 7% and 13%, respectively, while lysozyme (200 µg/ml) and bile salt (0.5%) enhanced its growth. It was found to deconjugate taurodeoxycholic acid, indicating its potential to reduce hypercholesterolemia. Isolate DM5 demonstrated cell surface hydrophobicity of 53% and autoaggregation of 54% which are the prerequisite for adhesion to epithelial cells and colonization to host. Bacteriocin activity of isolate was found to be 6400 AU/ml as it inhibited the growth of food borne pathogens Escherichia coli, Staphylococcus aureus, and Alcaligenes faecalis. The bactericidal action of bacteriocin from isolate was analyzed by flow cytometry, rendering its use as prospective probiotic and starter culture in food industry.

  4. Proteomic analysis of proteins increased or reduced by ethanol of Lactobacillus plantarum ST4 isolated from Makgeolli, traditional Korean rice wine.

    PubMed

    Lee, Seung Gyu; Lee, Kang Wook; Park, Tae Heung; Park, Ji Yeong; Han, Nam Soo; Kim, Jeong Hwan

    2012-04-01

    LAB were isolated from makgeolli locally produced around Jinju, Gyeongnam, S. Korea during spring of 2011. Randomly selected 11 isolates from MRS agar plates were identified first by API CHL 50 kits and then 16S rRNA gene sequencing. All 11 isolates were identified as Lactobacillus plantarum. Among them, ST4 grew in MRS broth with ethanol up to 10%, showing the highest alcohol resistance. L. plantarum ST4 was moderately resistant against acid and bile salts. When cellular proteins of L. plantarum ST4 under ethanol stress were analyzed by two-dimensional gel electrophoresis (2DE), the intensities of 6 spots increased, whereas 22 spots decreased at least 2-fold. Those 28 spots were identified by peptide mass fingerprinting (PMF). FusA2 (elongation factor G) increased 18.8-fold (6% ethanol) compared with control. Other proteins were AtpD (ATP synthase subunit beta), DnaK, GroEL, Tuf (elongation factor Tu), and Npr2 (NADH peroxidase), respectively. Among the 22 proteins decreased in intensities, lactate dehydrogenases (LdhD and LdhL1) were included.

  5. Intestinal Lactobacillus community structure and its correlation with diet of Southern Chinese elderly subjects.

    PubMed

    Pan, Yuanyuan; Wang, Fang; Sun, Da-Wen; Li, Quanyang

    2016-09-01

    This study aimed to investigate the relationship between the intestinal Lactobacillus species and diet of elderly subjects in a longevity area in Southern China. Healthy elderly subjects ranging from 80 to 99 years old were respectively selected from the regions of Bama and Nanning, Guangxi, China. The nested polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) technology was used to analyze the intestinal Lactobacillus community structure. Results showed that Weissella confusa, L. mucosae, L. crispatus, L. salivarius, and L. delbrueckii were the representative Lactobacillus of elderly subjects. Among them, L. crispatus and L. delbrueckii were the dominant Lactobacillus of all species. In comparison to Nanning elderly subjects, the detection frequencies of W. confusa and L. salivarius were significantly increased in Bama elderly subjects (P < 0.01), whereas L. mucosae was significantly decreased (P < 0.01). Interestingly, it was also found that there were 4 kinds of representative Lactobacillus, which were significantly correlated with dietary fiber. W. confusa (P < 0.01) and L. salivarius (P < 0.05) were significantly positively correlated with the intake of dietary fiber, while L. mucosae (P < 0.01) and L. crispatus (P < 0.05) were significantly negatively correlated with the intake of dietary fiber, respectively. Results confirmed that different diets had obvious effects on the intestinal Lactobacillus community structure of elderly subjects in Southern China, which may provide a certain theoretical basis for the elderly's healthy food strategic design and probiotics product development.

  6. Experimental hybridization and reproductive isolation between two sympatric species of tephritid fruit flies in the Anastrepha fraterculus species group.

    PubMed

    Rull, Juan; Tadeo, Eduardo; Lasa, Rodrigo; Rodríguez, Christian L; Altuzar-Molina, Alma; Aluja, Martín

    2017-06-06

    Among tephritid fruit flies, hybridization has been found to produce local adaptation and speciation, and in the case of pest species, induce behavioral and ecological alterations that can adversely impact efficient pest management. The fraterculus species group within Anastrepha (Diptera: Tephritidae), is a rapidly radiating aggregate, which includes cryptic species complexes, numerous sister species, and several pest species. Molecular studies have highlighted the possibility of introgression between A. fraterculus and A. obliqua. Reproductive isolation has been studied among morphotypes of the A. fraterculus species complex as a tool for species delimitation. Here we examined the existence and strength of prezygotic and postzygotic isolation between sympatric populations of two closely related species within the highly derived fraterculus group (A. fraterculus and A. obliqua), coexisting in nature. Although adults of both species showed a strong tendency for assortative mating, a small proportion of hybrid pairings in both directions were observed. We also observed asymmetric postzygotic isolation, with one hybrid cross displaying a strong reduction in fecundity and F1 egg fertility. Survival was greater for the progeny of homotypic and hybrid crosses in the maternal host. There was a marked female biased sex ratio distortion for both F1 hybrid adults. Hybridization between A. fraterculus and A. obliqua in nature may be difficult but possible; these two species display stronger reproductive isolation than all pairs of species previously examined in the A. fraterculus species complex. Asymmetric postzygotic isolation is suggestive of Wolbachia mediated cytoplasmic incompatibilities that may be exploited in area-wide pest management. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  7. Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses.

    PubMed

    Morales, Fredy; Morales, Jesús I; Hernández, César H; Hernández-Sánchez, Humberto

    2011-07-01

    Isolated strains of halotolerant or halophilic lactic acid bacteria (HALAB) from Cotija and doble crema cheeses were identified and partially characterized by phenotypic and genotypic methods, and their technological abilities were studied in order to test their potential use as dairy starter components. Humidity, a(w), pH, and salt concentration of cheeses were determined. Genotypic diversity was evaluated by randomly amplified polymorphic DNA-polymerase chain reaction. Molecular identification and phylogenetic reconstructions based on 16S rRNA gene sequences were performed. Additional technological abilities such as salt tolerance, acidifying, and proteolytic and lipolytic activities were also investigated. The differences among strains reflected the biodiversity of HALAB in both types of cheeses. Lactobacillus acidipiscis, Tetragenococcus halophilus, Weissella thailandensis, and Lactobacillus pentosus from Cotija cheese, and L. acidipiscis, Enterococcus faecium, Lactobacillus plantarum, Lactobacillus farciminis, and Lactobacillus rhamnosus from doble crema cheese were identified based on 16S rRNA. Quantitative and qualitative assessments showed strains of T. halophilus and L. plantarum to be proteolytic, along with E. faecium, L. farciminis, and L. pentosus to a lesser extent. Lipolytic activity could be demonstrated in strains of E. faecium, L. pentosus, L. plantarum, and T. halophilus. Strains belonging to the species L. pentosus, L. plantarum, and E. faecium were able to acidify the milk media. This study evidences the presence of HALAB that may play a role in the ripening of cheeses.

  8. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation.

    PubMed

    Berbegal, Carmen; Peña, Nuria; Russo, Pasquale; Grieco, Francesco; Pardo, Isabel; Ferrer, Sergi; Spano, Giuseppe; Capozzi, Vittorio

    2016-08-01

    Malolactic fermentation (MLF) is a secondary fermentation in wine that usually takes place during or at the end of alcoholic fermentation. Lactobacillus plantarum is able to conduct MLF (particularly under high pH conditions and in co-inoculation with yeasts), and some strains are commercially used as MLF starter cultures. Recent evidences suggest a further use of selected L. plantarum strains for the pre-alcoholic acidification of grape must. In this study, we have carried out an integrated (molecular, technological, and biotechnological) characterization of L. plantarum strains isolated from Apulian wines in order to combine the two protechnological features (MLF performances and must acidification aptitudes). Several parameters such as sugar, pH and ethanol tolerance, resistance to lyophilisation and behaviour in grape must were evaluated. Moreover, the expression of stress gene markers was investigated and was linked to the ability of L. plantarum strains to grow and perform MLF. Co-inoculation of Saccharomyces cerevisiae and L. plantarum in grape must improves the bacterial adaptation to harsh conditions of wine and reduced total fermentation time. For the first time, we applied a polyphasic approach for the characterization of L. plantarum in reason of the MLF performances. The proposed procedure can be generalized as a standard method for the selection of bacterial resources for the design of MLF starter cultures tailored for high pH must. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Functional Probiotic Characterization and In Vivo Cholesterol-Lowering Activity of Lactobacillus helveticus Isolated from Fermented Cow Milk.

    PubMed

    Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2016-10-28

    We characterized the probiotic properties of Lactobacillus helveticus strains KII13 and KHI1 isolated from fermented cow milk by in vitro and in vivo studies. The strains exhibited tolerance to simulated orogastrointestinal condition, adherence to Caco-2 cells, and antimicrobial activity. Both L. helveticus strains produced bioactive tripeptides, isoleucylprolyl-proline and valyl-prolyl-proline, during fermentation of milk. KII13 showed higher in vitro cholesterol-lowering activity (47%) compared with KHI1 (28%) and L. helveticus ATCC 15009 (22%), and hence, it was selected for in vivo study of cholesterol-lowering activity in atherogenic diet-fed hypercholesterolemic mice. For the study, mice were divided into four groups ( viz ., normal diet control group, atherogenic diet control group (HCD), KII13- atherogenic diet group (HCD-KII13), and Lactobacillus acidophilus ATCC 43121-atherogenic diet group (HCD- L.ac ) as positive control). The serum total cholesterol level was significantly decreased by 8.6% and 7.78% in the HCD-KII13 and HCD- L.ac groups ( p < 0.05), respectively, compared with the HCD group. Low-density lipoprotein cholesterol levels in both HCD-KII13 and HCD- L.ac groups were decreased by 13% and 11%, respectively, compared with the HCD group (both, p < 0.05). Analysis of cholesterol metabolism-related gene expression in mice liver showed increased expression of LDLR and SREBF2 genes in mice fed with KII13. By comparing all the results, we conclude that L. helveticus KII13 could be used as a potential probiotic strain to produce antihypertensive peptides and reduce serum cholesterol.

  10. Proteomic Analyses of Ethanol Tolerance in Lactobacillus buchneri NRRL B-30929

    USDA-ARS?s Scientific Manuscript database

    The Lactobacillus buchneri NRRL B-30929 strain, isolated from a fuel ethanol production facility, exhibits high tolerance to environmental ethanol concentrations. In this study, the ethanol tolerance trait was elucidated at the molecular level by using proteomics comparison and analyses. Cellular p...

  11. Proteomic analyses of ethanol tolerance in Lactobacillus buchneri NRRL B-30929

    USDA-ARS?s Scientific Manuscript database

    The Lactobacillus buchneri NRRL B-30929 strain, isolated from a fuel ethanol production facility, exhibits high tolerance to environmental ethanol concentrations. This study aimed to identify proteins produced by B-30929 in response to environmental ethanol. Cellular proteins expressed by B-30929 gr...

  12. Morphologically cryptic Amazonian bird species pairs exhibit strong postzygotic reproductive isolation.

    PubMed

    Pulido-Santacruz, Paola; Aleixo, Alexandre; Weir, Jason T

    2018-03-14

    We possess limited understanding of how speciation unfolds in the most species-rich region of the planet-the Amazon basin. Hybrid zones provide valuable information on the evolution of reproductive isolation, but few studies of Amazonian vertebrate hybrid zones have rigorously examined the genome-wide underpinnings of reproductive isolation. We used genome-wide genetic datasets to show that two deeply diverged, but morphologically cryptic sister species of forest understorey birds show little evidence for prezygotic reproductive isolation, but substantial postzygotic isolation. Patterns of heterozygosity and hybrid index revealed that hybrid classes with heavily recombined genomes are rare and closely match simulations with high levels of selection against hybrids. Genomic and geographical clines exhibit a remarkable similarity across loci in cline centres, and have exceptionally narrow cline widths, suggesting that postzygotic isolation is driven by genetic incompatibilities at many loci, rather than a few loci of strong effect. We propose Amazonian understorey forest birds speciate slowly via gradual accumulation of postzygotic genetic incompatibilities, with prezygotic barriers playing a less important role. Our results suggest old, cryptic Amazonian taxa classified as subspecies could have substantial postzygotic isolation deserving species recognition and that species richness is likely to be substantially underestimated in Amazonia. © 2018 The Author(s).

  13. Isolation and Identification of Oedogonium Species and Strains for Biomass Applications

    PubMed Central

    Lawton, Rebecca J.; de Nys, Rocky; Skinner, Stephen; Paul, Nicholas A.

    2014-01-01

    Freshwater macroalgae from the genus Oedogonium have recently been targeted for biomass applications; however, strains of Oedogonium for domestication have not yet been identified. Therefore, the objective of this study was to compare the performance of isolates of Oedogonium collected from multiple geographic locations under varying environmental conditions. We collected and identified wild-type isolates of Oedogonium from three geographic locations in Eastern Australia, then measured the growth of these isolates under a range of temperature treatments corresponding to ambient conditions in each geographic location. Our sampling identified 11 isolates of Oedogonium that could be successfully maintained under culture conditions. It was not possible to identify most isolates to species level using DNA barcoding techniques or taxonomic keys. However, there were considerable genetic and morphological differences between isolates, strongly supporting each being an identifiable species. Specific growth rates of species were high (>26% day−1) under 7 of the 9 temperature treatments (average tested temperature range: 20.9–27.7°C). However, the variable growth rates of species under lower temperature treatments demonstrated that some were better able to tolerate lower temperatures. There was evidence for local adaptation under lower temperature treatments (winter conditions), but not under higher temperature treatments (summer conditions). The high growth rates we recorded across multiple temperature treatments for the majority of species confirm the suitability of this diverse genus for biomass applications and the domestication of Oedogonium. PMID:24603705

  14. Characterization of bacterial isolates from the microbiota of mothers' breast milk and their infants

    PubMed Central

    Kozak, Kimberly; Charbonneau, Duane; Sanozky-Dawes, Rosemary; Klaenhammer, Todd

    2015-01-01

    This investigation assessed the potential of isolating novel probiotics from mothers and their infants. A subset of 21 isolates among 126 unique bacteria from breast milk and infant stools from 15 mother-infant pairs were examined for simulated GI transit survival, adherence to Caco-2 cells, bacteriocin production, and lack of antibiotic resistance. Of the 21 selected isolates a Lactobacillus crispatus isolate and 3 Lactobacillus gasseri isolates demonstrated good profiles of in vitro GI transit tolerance and Caco-2 cell adherence. Bacteriocin production was observed only by L. gasseri and Enterococcus faecalis isolates. Antibiotic resistance was widespread, although not universal, among isolates from infants. Highly similar isolates (≥ 97% similarity by barcode match) of Bifidobacterium longum subsp. infantis (1 match), Lactobacillus fermentum (2 matches), Lactobacillus gasseri (6 matches), and Enterococcus faecalis (1 match) were isolated from 5 infant–mother pairs. Antibiotic resistance profiles between these isolate matches were similar, except in one case where the L. gasseri isolate from the infant exhibited resistance to erythromycin and tetracycline, not observed in matching mother isolate. In a second case, L. gasseri isolates differed in resistance to ampicillin, chloramphenicol and vancomycin between the mother and infant. In this study, gram positive bacteria isolated from mothers' breast milk as well as their infants exhibited diversity in GI transit survival and acid inhibition of pathogens, but demonstrated limited ability to produce bacteriocins. Mothers and their infants offer the potential for identification of probiotics; however, even in the early stages of development, healthy infants contain isolates with antibiotic resistance. PMID:26727418

  15. Characterization of bacterial isolates from the microbiota of mothers' breast milk and their infants.

    PubMed

    Kozak, Kimberly; Charbonneau, Duane; Sanozky-Dawes, Rosemary; Klaenhammer, Todd

    2015-01-01

    This investigation assessed the potential of isolating novel probiotics from mothers and their infants. A subset of 21 isolates among 126 unique bacteria from breast milk and infant stools from 15 mother-infant pairs were examined for simulated GI transit survival, adherence to Caco-2 cells, bacteriocin production, and lack of antibiotic resistance. Of the 21 selected isolates a Lactobacillus crispatus isolate and 3 Lactobacillus gasseri isolates demonstrated good profiles of in vitro GI transit tolerance and Caco-2 cell adherence. Bacteriocin production was observed only by L. gasseri and Enterococcus faecalis isolates. Antibiotic resistance was widespread, although not universal, among isolates from infants. Highly similar isolates (≥ 97% similarity by barcode match) of Bifidobacterium longum subsp. infantis (1 match), Lactobacillus fermentum (2 matches), Lactobacillus gasseri (6 matches), and Enterococcus faecalis (1 match) were isolated from 5 infant-mother pairs. Antibiotic resistance profiles between these isolate matches were similar, except in one case where the L. gasseri isolate from the infant exhibited resistance to erythromycin and tetracycline, not observed in matching mother isolate. In a second case, L. gasseri isolates differed in resistance to ampicillin, chloramphenicol and vancomycin between the mother and infant. In this study, gram positive bacteria isolated from mothers' breast milk as well as their infants exhibited diversity in GI transit survival and acid inhibition of pathogens, but demonstrated limited ability to produce bacteriocins. Mothers and their infants offer the potential for identification of probiotics; however, even in the early stages of development, healthy infants contain isolates with antibiotic resistance.

  16. In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian rye-grass (Lolium multiflorum) forage.

    PubMed

    Vijayakumar, Mayakrishnan; Ilavenil, Soundharrajan; Kim, Da Hye; Arasu, Mariadhas Valan; Priya, Kannappan; Choi, Ki Choon

    2015-04-01

    The aim of the present study was to determine the probiotic potential of the lactic acid bacteria Lactobacillus plantarum KCC-24 (L. plantarum KCC-24), that was isolated and characterized from Italian ryegrass (Lolium multiflorum) forage. The following experiments were performed to assess the probiotic characteristics such as antifungal activity, antibiotic susceptibility, resistance to low pH, stimulated gastric juice and bile salts, proteolytic activity, auto-aggregation, cell surface hydrophobicity, and in vitro antioxidant property. The isolated L. plantarum KCC-24 exhibited significant antifungal activity against the various fungal strains of Aspergillus fumigatus (73.43%), Penicillium chrysogenum (59.04%), Penicillium roqueforti (56.67%), Botrytis elliptica (40.23%), Fusarium oxysporum (52.47%) and it was susceptible to numerous antibiotics, survived in low pH, was resistant to stimulated gastric juices and bile salts (0.3% w/v). Moreover, L. plantarum KCC-24 exhibited good proteolytic activity. In addition L. plantarum KCC-24 showed potent antioxidant and hydrogen peroxide resistant property. In conclusion, the isolated L. plantarum KCC-24 exhibited several characteristics to prove it's excellent as a potential probiotic candidate for developing quality food for ruminant animals and human. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. DNA Fingerprinting of Lactobacillus crispatus Strain CTV-05 by Repetitive Element Sequence-Based PCR Analysis in a Pilot Study of Vaginal Colonization

    PubMed Central

    Antonio, May A. D.; Hillier, Sharon L.

    2003-01-01

    Lactobacillus crispatus is one of the predominant hydrogen peroxide (H2O2)-producing species found in the vagina and is under development as a probiotic for the treatment of bacterial vaginosis. In this study, we assessed whether DNA fingerprinting by repetitive element sequence-based PCR (rep-PCR) can be used to distinguish the capsule strain of L. crispatus (CTV-05) from other endogenous strains as well as other species of vaginal lactobacilli. Vaginal and rectal lactobacilli were identified to the species level by using whole-chromosome probe DNA hybridization. The DNAs from L. crispatus, L. jensenii, L. gasseri, and an as-yet-unnamed H2O2-negative Lactobacillus species designated 1086V were subjected to rep-PCR. The results of gel electrophoresis and ethidium bromide staining of the DNA fingerprints obtained were compared. L. crispatus CTV-05 had a unique DNA fingerprint compared to all other lactobacilli. DNA fingerprints for 27 production lots of L. crispatus sampled from 1994 through 2001 were identical to that of the original strain isolated in 1993, suggesting strain stability. In a pilot study of nine women, this DNA fingerprinting method distinguished CTV-05 from other endogenous vaginal lactobacilli prior to and after vaginal capsule use. rep-PCR DNA fingerprinting is useful for strain typing and for evaluating longitudinal loss or acquisition of vaginal lactobacilli used as probiotics. PMID:12734221

  18. Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi

    PubMed Central

    Yadav, Ruby; Puniya, Anil K.; Shukla, Pratyoosh

    2016-01-01

    Present study documents the potential probiotic Lactobacillus isolated from indigenous fermented beverage Raabadi, consumed during summers in Haryana and Rajasthan regions of India. A total of five Raabadi samples were collected aseptically and 54 isolates were purified using MRS medium. All the isolates were assessed for tolerance to low pH and bile salts. It was observed that out of 54 only 24 isolates could survive the simulated gastric conditions. These isolates were further evaluated in vitro for cell surface hydrophobicity, cell surface hydrophobicity, hypocholesteramic activity, anti-oxidative potential, BSH activity, antagonistic activity, and antibiotic resistance profile. In addition, the confirmation of phenol resistance was also done. On the basis of results obtained, the survival rate of isolates was noted and six isolates were finally selected for further studies. Among them Lactobacillus plantarum RYPR1 and RYPC7 showed good survival at pH 2 which shows good acid tolerance. Moreover, L. plantarum RYPR1 showed the highest hydrophobicity (79.13%) and represented the deconjugation of bile salts, which help in their adhesion to epithelial cells and colonization. Furthermore, RYPR1 also exhibited highest cholesterol reduction (59%) and subsequent analysis of results revealed that the above mentioned isolates further exhibit a good hypocholesterolemic effect and could be possibly used to prevent hypercholesterolemia. The present study divulges that L. plantarum RYPR1 has an excellent probiotic potential. PMID:27818658

  19. Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation.

    PubMed

    Zhang, Q; Li, X J; Zhao, M M; Yu, Z

    2014-10-01

    Five LAB strains were evaluated using the acid production ability test, morphological observation, Gram staining, physiological, biochemical and acid tolerance tests. All five strains (LP1, LP2, LP3, LC1 and LC2) grew at pH 4·0, and LP1 grew at 15°C. Strains LP1, LP2 and LP3 were identified as Lactobacillus plantarum, whereas LC1 and LC2 were classified as Lactobacillus casei by sequencing 16S rDNA. The five isolated strains and two commercial inoculants (PS and CL) were added to native grass and Leymus chinensis (Trin.) Tzvel. for ensiling. All five isolated strains decreased the pH and ammonia nitrogen content, increased the lactic acid content and LP1, LP2 and LP3 increased the acetic content and lactic/acetic acid ratio of L. chinensis silage significantly. The five isolated strains and two commercial inoculants decreased the butyric acid content of the native grass silage. LP2 treatment had lower butyric acid content and ammonia nitrogen content than the other treatments. The five isolated strains improved the quality of L. chinensis silage. The five isolated strains and the two commercial inoculants were not effective in improving the fermentation quality of the native grass silage, but LP2 performed better comparatively. Significance and impact of the study: Leymus chinensis is an important grass in China and Russia, being the primary grass of the short grassland 'steppe' regions of central Asia. However, it has been difficult to make high-quality silage of this species because of low concentration of water-soluble carbohydrates (WSC). Isolating and evaluating lactic acid bacteria strains will be helpful for improving the silage quality of this extensively grown species. © 2014 The Society for Applied Microbiology.

  20. Corynebacterium species isolated from patients with mastitis.

    PubMed

    Paviour, Sue; Musaad, Sahar; Roberts, Sally; Taylor, Graeme; Taylor, Susan; Shore, Keith; Lang, Selwyn; Holland, David

    2002-12-01

    Corynebacteria were isolated from breast tissue, pus, or deep wound swabs of 24 women; the most common species isolated was the newly described Corynebacterium kroppenstedtii, followed by Corynebacterium amycolatum and Corynebacterium tuberculostearicum. Gram-positive bacilli were seen in samples sent for culture or in histological specimens for 12 women, and 9 of the 12 women from whom adequate histological specimens were obtained had conditions that met the criteria for granulomatous lobular mastitis, a chronic inflammatory disease of unknown etiology.

  1. Lactic acid bacteria isolated from apples are able to catabolise arginine.

    PubMed

    Savino, María J; Sánchez, Leandro A; Saguir, Fabiana M; de Nadra, María C Manca

    2012-03-01

    We investigated the potentiality of lactic acid bacteria (LAB) isolated from two apples variety to utilize arginine at different initial pH values. Apples surface contained average levels of bacteria ranging from log 2.49 ± 0.53 to log 3.73 ± 0.48 cfu/ml for Red Delicious and Golden Delicious varieties, respectively. Thirty-one strains able to develop in presence of arginine at low pH were phenotypically and genotipically identified as belonging to Lactobacillus, Pediococcus and Leuconostoc genera. In general, they did not produce ammonia from arginine when cultivated in basal medium with arginine (BMA) at pH 4.5 or 5.2. When this metabolite was quantified only six strains belonging to Leuconostoc dextranicum, Lactobacillus brevis and Lactobacillus plantarum species formed higher ammonia amounts in BMA as compared to control. This was correlated with arginine utilization and it was more pronounced at pH 4.5 than 5.2. Analysis of citrulline production confirmed the arginine utilization in these bacteria by the arginine deiminase (ADI) pathway. Maxima citrulline production was observed for Lactobacillus brevis M15 at the two pH values. In this strain ammonia was formed at higher rate than citrulline, which was detected in concentration lower than 1 mM. Thus, main LAB species found on apple surfaces with abilities to degrade arginine by the ADI pathway under different conditions were reported here at the first time. The results suggested that the ADI pathway in apples LAB might not be mainly relevant for their survival in the acid natural environmental, despite leading to the ammonia formation, which may contribute to the increase in pH, coping the acid stress.

  2. Characterization of veterinary hospital-associated isolates of Enterococcus species in Korea.

    PubMed

    Chung, Yeon Soo; Kwon, Ka Hee; Shin, Sook; Kim, Jae Hong; Park, Yong Ho; Yoon, Jang Won

    2014-03-28

    Possible cross-transmission of hospital-associated enterococci between human patients, medical staff, and hospital environments has been extensively studied. However, limited information is available for veterinary hospital-associated Enterococcus isolates. This study investigated the possibility of cross-transmission of antibiotic-resistant enterococci between dog patients, their owners, veterinary staff, and hospital environments. Swab samples (n =46 5) were obtained from five veterinary hospitals in Seoul, Korea, during 2011. Forty-three Enterococcus strains were isolated, representing seven enterococcal species. E. faecalis and E. faecium were the most dominant species (16 isolates each, 37.2%). Although slight differences in the antibiotic resistance profiles were observed between the phenotypic and the genotypic data, our antibiogram analysis demonstrated high prevalence of the multiple drug-resistant (MDR) isolates of E. faecalis (10/16 isolates, 62.5%) and E. faecium (12/16 isolates, 75.0%). Pulsed-field gel electrophoretic comparison of the MDR isolates revealed three different clonal sets of E. faecalis and a single set of E. faecium, which were isolated from different sample groups or dog patients at the same or two separate veterinary hospitals. These results imply a strong possibility of cross-transmission of the antibiotic-resistant enterococcal species between animal patients, owners, veterinary staff, and hospital environments.

  3. RAPD-PCR characterization of lactobacilli isolated from artisanal meat plants and traditional fermented sausages of Veneto region (Italy).

    PubMed

    Andrighetto, C; Zampese, L; Lombardi, A

    2001-07-01

    The study was carried out to evaluate the use of randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) as a method for the identification of lactobacilli isolated from meat products. RAPD-PCR with primers M13 and D8635 was applied to the identification and intraspecific differentiation of 53 lactobacilli isolates originating from traditional fermented sausages and artisanal meat plants of the Veneto region (Italy). Most of the isolates were assigned to the species Lactobacillus sakei and Lact. curvatus; differentiation of groups of strains within the species was also possible. RAPD-PCR could be applied to the identification of lactobacilli species most commonly found in meat products. The method, which is easy and rapid to perform, could be useful for the study of the lactobacilli populations present in fermented sausages, and could help in the selection of candidate strains to use as starter cultures in meat fermentation.

  4. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats.

    PubMed

    Valladares, Ricardo; Sankar, Dhyana; Li, Nan; Williams, Emily; Lai, Kin-Kwan; Abdelgeliel, Asmaa Sayed; Gonzalez, Claudio F; Wasserfall, Clive H; Larkin, Joseph; Schatz, Desmond; Atkinson, Mark A; Triplett, Eric W; Neu, Josef; Lorca, Graciela L

    2010-05-06

    The intestinal epithelium is a barrier that composes one of the most immunologically active surfaces of the body due to constant exposure to microorganisms as well as an infinite diversity of food antigens. Disruption of intestinal barrier function and aberrant mucosal immune activation have been implicated in a variety of diseases within and outside of the gastrointestinal tract. With this model in mind, recent studies have shown a link between diet, composition of intestinal microbiota, and type 1 diabetes pathogenesis. In the BioBreeding rat model of type 1 diabetes, comparison of the intestinal microbial composition of diabetes prone and diabetes resistant animals found Lactobacillus species were negatively correlated with type 1 diabetes development. Two species, Lactobacillus johnsonii and L. reuteri, were isolated from diabetes resistant rats. In this study diabetes prone rats were administered pure cultures of L. johnsonii or L. reuteri isolated from diabetes resistant rats to determine the effect on type 1 diabetes development. Findings Results Rats administered L. johnsonii, but not L. reuteri, post-weaning developed type 1 diabetes at a protracted rate. Analysis of the intestinal ileum showed administration of L. johnsonii induced changes in the native microbiota, host mucosal proteins, and host oxidative stress response. A decreased oxidative intestinal environment was evidenced by decreased expression of several oxidative response proteins in the intestinal mucosa (Gpx1, GR, Cat). In L. johnsonii fed animals low levels of the pro-inflammatory cytokine IFNgamma were correlated with low levels of iNOS and high levels of Cox2. The administration of L. johnsonii also resulted in higher levels of the tight junction protein claudin. It was determined that the administration of L. johnsonii isolated from BioBreeding diabetes resistant rats delays or inhibits the onset of type 1 diabetes in BioBreeding diabetes prone rats. Taken collectively, these data

  5. Comparative genomics of Lactobacillus salivarius strains focusing on their host adaptation.

    PubMed

    Lee, Jun-Yeong; Han, Geon Goo; Kim, Eun Bae; Choi, Yun-Jaie

    2017-12-01

    Lactobacillus salivarius is an important member of the animal gut microflora and is a promising probiotic bacterium. However, there is a lack of research on the genomic diversity of L. salivarius species. In this study, we generated 21 L. salivarius draft genomes, and investigated the pan-genome of L. salivarius strains isolated from humans, pigs and chickens using all available genomes, focusing on host adaptation. Phylogenetic clustering showed a distinct categorization of L. salivarius strains depending on their hosts. In the pan-genome, 15 host-specific genes and 16 dual-host-shared genes that only one host isolate did not possess were identified. Comparison of 56 extracellular protein encoding genes and 124 orthologs related to exopolysaccharide production in the pan-genome revealed that extracellular components of the assayed bacteria have been globally acquired and mutated under the selection pressure for host adaptation. We also found the three host-specific genes that are responsible for energy production in L. salivarius. These results showed that L. salivarius has evolved to adapt to host habitats in two ways, by gaining the abilities for niche adhesion and efficient utilization of nutrients. Our study offers a deeper understanding of the probiotic species L. salivarius, and provides a basis for future studies on L. salivarius and other mutualistic bacteria. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617

  7. Complete Genome Sequence of Lactobacillus kefiranofaciens ZW3▿

    PubMed Central

    Wang, Yanping; Wang, Jingrui; Ahmed, Zaheer; Bai, Xiaojia; Wang, Jinju

    2011-01-01

    Lactobacillus kefiranofaciens ZW3 was isolated in Tibet, China, from kefir grain, a traditional dairy product that is known to provide many health benefits to humans. Here, we present the genome features of L. kefiranofaciens ZW3 and the identification of a gene cluster related to the synthesis of exopolysaccharide, an important constituent of the Tibetan kefir. PMID:21705607

  8. Problems associated with identification of Legionella species from the environment and isolation of six possible new species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, I.J.; Sangster, N.; Ratcliff, R.M.

    1990-03-01

    Following investigation of an outbreak of legionellosis in South Australia, numerous Legionella-like organisms were isolated from water samples. Because of the limited number of commercially available direct fluorescent-antibody reagents and the cross-reactions found with some reagents, non-pneumophila legionellae proved to be difficult to identify and these isolates were stored at -70{degree}C for later study. Latex agglutination reagents for Legionella peneumpphila and Legionella anisa developed by the Institute of Medical and Veterinary Science, Adelaide, Australia, were found to be useful as rapid screening aids. Autofluorescence was useful for placing isolates into broad groups. Cellular fatty acid analysis, ubiquinone analysis, and DNAmore » hybridization techniques were necessary to provide definitive identification. The species which were isolated most frequently were L. pneumophila, followed by L. anisa, Legionella jamestowniensis, Legionella quinlivanii, Legionella rubrilucens, Legionella spiritensis, and a single isolate each of Legionella erythra, Legionella jordanis, Legionella birminghamensis, and Legionella cincinnatiensis. In addition, 10 isolates were found by DNA hybridization studies to be unrelated to any of the 26 currently known species, representing what the authors believe to be 6 possible new species.« less

  9. In vitro probiotic characterization of Lactobacillus strains from fermented radish and their anti-adherence activity against enteric pathogens.

    PubMed

    Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2015-11-01

    In this study, we evaluated the probiotic properties of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus fermentum strains isolated from fermented radish. All the strains survived the simulated oro-gastrointestinal transit condition and showed significantly higher adherence to Caco-2 cells compared with the probiotic strain Lactobacillus rhamnosus GG. The strains showed broad-spectrum antimicrobial activity, autoaggregation, and coaggregation capacity with pathogens. Furthermore, the Lactobacillus strains inhibited the adherence of Yersinia enterocolitica subsp. enterocolitica, Shigella boydii, and Salmonella choleraesuis to the Caco-2 cell line. The strains possessed bile salt hydrolase activity and their cholesterol-lowering activity in vitro was above 50% in the presence of bile. Strains of L. plantarum and L. pentosus possessed the plantaricin-encoding plnEF gene. In addition, the Lactobacillus strains maintained about 80% cell viability after freeze-drying in the presence of a combination of 5% skim milk and 5% maltodextrin as cryoprotectant, and 70% recovery of cell viability was observed in the absence of any cryoprotectant.

  10. Lactobacillus backii and Pediococcus damnosus isolated from 170-year-old beer recovered from a shipwreck lack the metabolic activities required to grow in modern lager beer.

    PubMed

    Kajala, Ilkka; Bergsveinson, Jordyn; Friesen, Vanessa; Redekop, Anna; Juvonen, Riikka; Storgårds, Erna; Ziola, Barry

    2018-01-01

    In 2010, bottles of beer containing viable bacteria of the common beer-spoilage species Lactobacillus backii and Pediococcus damnosus were recovered from a shipwreck near the Åland Islands, Finland. The 170-year quiescent state maintained by the shipwreck bacteria presented a unique opportunity to study lactic acid bacteria (LAB) evolution vis-a-vis growth and survival in the beer environment. Three shipwreck bacteria (one L. backii strain and two P. damnosus strains) and modern-day beer-spoilage isolates of the same two species were genome sequenced, characterized for hop iso-α-acid tolerance, and growth in degassed lager and wheat beer. In addition, plasmid variants of the modern-day P. damnosus strain were analyzed for the effect of plasmid-encoded genes on growth in lager beer. Coding content on two plasmids was identified as essential for LAB growth in modern lager beer. Three chromosomal regions containing genes related to sugar transport and cell wall polysaccharides were shared by pediococci able to grow in beer. Our results show that the three shipwreck bacteria lack the necessary plasmid-located genetic content to grow in modern lager beer, but carry additional genes related to acid tolerance and biofilm formation compared to their modern counterparts. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Role of Lactobacillus Species in the Intermediate Vaginal Flora in Early Pregnancy: A Retrospective Cohort Study.

    PubMed

    Farr, Alex; Kiss, Herbert; Hagmann, Michael; Machal, Susanne; Holzer, Iris; Kueronya, Verena; Husslein, Peter Wolf; Petricevic, Ljubomir

    2015-01-01

    Poor obstetrical outcomes are associated with imbalances in the vaginal flora. The present study evaluated the role of vaginal Lactobacillus species in women with intermediate vaginal flora with regard to obstetrical outcomes. We retrospectively analysed data from all women with singleton pregnancies who had undergone routine screening for asymptomatic vaginal infections at our tertiary referral centre between 2005 and 2014. Vaginal smears were Gram-stained and classified according to the Nugent scoring system as normal flora (score 0-3), intermediate vaginal flora (4-6), or bacterial vaginosis (7-10). Only women with intermediate vaginal flora were investigated. Women with a Nugent score of 4 were categorised into those with and without Lactobacilli. Follow-up smears were obtained 4-6 weeks after the initial smears. Descriptive data analysis, the Welch's t-test, the Fisher's exact test, and multiple regression analysis with adjustment for confounders were performed. Gestational age at delivery and birth weight were the outcome measures. At antenatal screening, 529/8421 women presented with intermediate vaginal flora. Amongst these, 349/529 (66%) had a Nugent score of 4, 94/529 (17.8%) a Nugent score of 5, and 86/529 (16.2%) a Nugent score of 6. Amongst those with a Nugent score of 4, 232/349 (66.5%) women were in the Lactobacilli group and 117/349 (33.5%) in the Non-Lactobacilli group. The preterm delivery rate was significantly lower in the Lactobacilli than in the Non-Lactobacilli group (OR 0.34, CI 0.21-0.55; p<0.001). Mean birth weight was 2979 ± 842 g and 2388 ± 1155 g in the study groups, respectively (MD 564.12, CI 346.23-781.92; p<0.001). On follow-up smears, bacterial vaginosis rates were 9% in the Lactobacilli and 7.8% in the Non-Lactobacilli group. The absence of vaginal Lactobacillus species and any bacterial colonisation increases the risks of preterm delivery and low birth weight in women with intermediate vaginal flora in early pregnancy.

  12. The effect of a probiotic strain (Lactobacillus acidophilus) on the plaque formation of oral Streptococci.

    PubMed

    Tahmourespour, Arezoo; Kermanshahi, Rooha Kasra

    2011-02-01

    The objective of this study was to investigate the ability of biofilm formation among mutans and non mutans oral streptococci and to determine the effect of Lactobacillus acidophilus DSM 20079 as a probiotic strain on the adhesion of selected streptococcal strains on the surfaces. The sample comprised 40 isolates of oral streptococci from dental plaque and caries of volunteer persons. Streptococcus mutans ATCC35668 (no24) was as an standard strain. The probiotic strain was Lactobacillus acidophilus DSM 20079. The ability of biofilm formation was investigated with colorimetric method and the strongest isolates were selected. Then the effect of probiotic strain on the adhesion of streptococci isolates was determined in polystyrene microtiter plate simultaneously and 30 minutes before streptococci entrance to the system. The results showed that 42% of mutans streptococci were strongly adherent (SA) and in non mutans streptococci, only 23.5% of isolates were found strongly adherent. The strong biofilm forming bacterium isolated was Streptococcus mutans strain22. In the next step, in the presence of probiotic strain the streptococcal adhesion were reduced, and this reduction was non significantly stronger if the probiotic strain was inoculated to the system before the oral bacteria. The Lactobacillus acidophilus had more effect on adherence of mutans streptococci than non mutans streptococci with significant difference (p < 0.05). Adhesion reduction is likely due to bacterial interactions and colonization of adhesion sites with probiotic strain before the presence of streptococci. Adhesion reduction can be an effective way on decreasing cariogenic potential of oral streptococci.

  13. Characterization of homofermentative lactobacilli isolated from kefir grains: potential use as probiotic.

    PubMed

    Golowczyc, Marina A; Gugliada, Maria J; Hollmann, Axel; Delfederico, Lucrecia; Garrote, Graciela L; Abraham, Analía G; Semorile, Liliana; De Antoni, Graciela

    2008-05-01

    Considering that several health promoting properties are associated with kefir consumption and a reliable probiotic product requires a complete identification of the bacterial species, the present work evaluates several proved markers of probiotic potential of eleven isolates of homofermentative lactobacilli isolated from kefir grains and molecular identification and genotypic diversity. Using restriction analysis of amplified ribosomal DNA (ARDRA) and analysis of the 16S-23S rRNA internal spacer region we confirmed that all homofermentative lactobacilli belong to the species Lactobacillus plantarum. RAPD-PCR analysis allowed the discrimination of lactobacilli in five clusters. All isolates exhibited high resistance to bile salt. High survival after one hour of exposure to pH 2.5 was observed in Lb. plantarum CIDCA 8313, 83210, 8327 and 8338. All isolates were hydrophilic and non autoaggregative. Isolate CIDCA 8337 showed the highest percentage of adhesion among strains. All tested lactobacilli had strong inhibitory power against Salmonella typhimurium and Escherichia coli. Seven out of eleven isolates showed inhibition against Sal. enterica and five isolates were effective against Sal. gallinarum. Only CIDCA 8323 and CIDCA 8327 were able to inhibit Sal. sonnei. We did not find any correlation between the five clusters based on RAPD-PCR and the probiotic properties, suggesting that these isolates have unique characteristics.

  14. Characterization of Blue Mold Penicillium Species Isolated from Stored Fruits Using Multiple Highly Conserved Loci

    PubMed Central

    Yin, Guohua; Zhang, Yuliang; Pennerman, Kayla K.; Wu, Guangxi; Hua, Sui Sheng T.; Yu, Jiujiang; Jurick, Wayne M.; Guo, Anping; Bennett, Joan W.

    2017-01-01

    Penicillium is a large genus of common molds with over 400 described species; however, identification of individual species is difficult, including for those species that cause postharvest rots. In this study, blue rot fungi from stored apples and pears were isolated from a variety of hosts, locations, and years. Based on morphological and cultural characteristics and partial amplification of the β-tubulin locus, the isolates were provisionally identified as several different species of Penicillium. These isolates were investigated further using a suite of molecular DNA markers and compared to sequences of the ex-type for cognate species in GenBank, and were identified as P. expansum (3 isolates), P. solitum (3 isolates), P. carneum (1 isolate), and P. paneum (1 isolate). Three of the markers we used (ITS, internal transcribed spacer rDNA sequence; benA, β-tubulin; CaM, calmodulin) were suitable for distinguishing most of our isolates from one another at the species level. In contrast, we were unable to amplify RPB2 sequences from four of the isolates. Comparison of our sequences with cognate sequences in GenBank from isolates with the same species names did not always give coherent data, reinforcing earlier studies that have shown large intraspecific variability in many Penicillium species, as well as possible errors in some sequence data deposited in GenBank. PMID:29371531

  15. Draft Genome Sequence of Lactobacillus salivarius L28 Isolated from Ground Beef

    PubMed Central

    Ayala, Diana I.; Cook, Peter W.; Campos, David L.; Brashears, Mindy M.; den Bakker, Henk

    2017-01-01

    ABSTRACT In this report, we describe the draft genome sequence of a newly discovered probiotic strain, Lactobacillus salivarius L28. L. salivarius L28 demonstrates antagonistic effects against human foodborne pathogens, including Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes, in coculture experiments and food matrices. PMID:28963206

  16. Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates.

    PubMed

    Strahinic, I; Busarcevic, M; Pavlica, D; Milasin, J; Golic, N; Topisirovic, L

    2007-04-01

    The objective of this study was to characterize the lactobacilli from the human oral cavity as a potential source of probiotic strains. Samples were collected from four different locations within the oral cavity: surface of healthy tooth, oral mucous membrane, surface of tooth decay and deep tooth decay. On the basis of morphological and biochemical properties eight categories were formed and 26 isolates were selected for further characterization. The isolates were determined as Lactobacillus sp. using primers specific for 16S rDNA. Sequencing of 16S rDNA genes and repetitive sequence-based polymerase chain reactions were used for determination to species and subspecies levels. Predominant species were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius and Lactobacillus paracasei subsp. paracasei, while Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus gasseri were also present. The isolates Lactobacillus salivarius BGHO1, Lactobacillus fermentum BGHO36 and BGHO64, Lactobacillus gasseri BGHO89 and Lactobacillus delbrueckii subsp. lactis BGHO99 exhibited antagonistic action on the growth of Staphylococcus aureus, Enterococcus faecalis, Micrococcus flavus, Salmonella enteritidis, Streptococcus pneumoniae and Streptococcus mutans, but not on growth of Candida albicans. Moreover, the isolates L. salivarius BGHO1 and L. gasseri BGHO89 were tolerant to low pH and high concentration of bile salts. Taken together, these findings imply that L. salivarius BGHO1 and L. gasseri BGHO89 might be subjects for additional investigation as potential probiotic strains.

  17. Lactobacillus plantarum as a Probiotic Potential from Kouzeh Cheese (Traditional Iranian Cheese) and Its Antimicrobial Activity.

    PubMed

    Jabbari, Vahid; Khiabani, Mahmoud Sowti; Mokarram, Reza Rezaei; Hassanzadeh, Azad Mohammad; Ahmadi, Elham; Gharenaghadeh, Sasan; Karimi, Nayyer; Kafil, Hossein Samadi

    2017-06-01

    The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.

  18. Legionella oakridgensis: unusual new species isolated from cooling tower water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrison, L.H.; Cherry, W.B.; Tyndall, R.L.

    1983-02-01

    A new species of Legionella represented by 10 strains isolated from industrial cooling towers is described. Legionella oakridgensis differed genetically from the other seven species of Legionella in DNA hybridization studies and differed serologically in direct fluorescent-antibody tests. The new species, unlike all other species except L. jordanis, did not require added L-cysteine for growth in serial transfer on charcoal-yeast extract agar. L. oakridgensis, as well as three other species tested, required L-cysteine for primary isolation from animal tissues. L. oakridgensis was the only species of Legionella that failed to produce alkaline phosphatase at pH 8.5. In all other respects,more » it resembled other species of Legionella, including having a high content of branched-chain cellular fatty acids and being pathogenic for guinea pigs. These bacteria have not yet been associated with human disease, but they are potential causes of legionellosis.« less

  19. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    PubMed

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Identification of Candida Species Isolated from Renal Transplant Recipients with Candiduria

    PubMed Central

    Yazdani, M. R.; Foroughifar, E.; Mohammadi, R.

    2016-01-01

    Background: Renal transplantation has long been considered the gold standard medical care for patients with end-stage renal disease. Candiduria continue to be a significant complication for renal transplant recipients. The risk of infections depends on the amount of immunosuppression and exposure to the potential pathogens. Objective: Molecular identification of Candida species isolated from renal transplant recipients with candiduria. Methods: Between 2009 and 2014, 62 Candida isolates were collected from 485 renal transplant recipients. All isolates were identified by PCR-RFLP profiles after digestion with the restriction enzyme MspI. Results: C. albicans (44%) and C. parapsilosis complex (5%) had the most and the least prevalence, respectively. Male to female ratio was 26/36, ranging in age from 19 to 62 years. Conclusion: Due to the fact that candiduria is connected with increased mortality in renal transplant recipients, precise identification of Candida species by molecular techniques can lead to an appropriate therapy among high risk patients. C. albicans remains the most prevalent species isolated from renal transplant recipients, Nevertheless, the number of non-C. albicans Candida species looks to be emerging. PMID:28078059

  1. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process.

    PubMed

    Papalexandratou, Zoi; Lefeber, Timothy; Bahrim, Bakhtiar; Lee, Ong Seng; Daniel, Heide-Marie; De Vuyst, Luc

    2013-09-01

    Two spontaneous Malaysian cocoa bean box fermentations (one farm, two plantation plots) were investigated. Physical parameters, microbial community dynamics, yeast and bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the respective fermented dry cocoa beans. Similar microbial growth and metabolite profiles were obtained for the two fermentations. Low concentrations of citric acid were found in the fresh pulp, revealing low acidity of the raw material. The main end-products of the catabolism of the pulp substrates glucose, fructose, and citric acid by yeasts, LAB, and AAB were ethanol, lactic acid, acetic acid, and/or mannitol. Hanseniaspora opuntiae, Lactobacillus fermentum, and Acetobacter pasteurianus were the prevalent species of the two fermentations. Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus pentosus, and Acetobacter ghanensis were also found during the mid-phase of the fermentation processes. Leuconostoc pseudomesenteroides and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Tatumella saanichensis and Enterobacter sp. were present in the beginning of the fermentations and they could be responsible for the degradation of citric acid and/or the production of gluconic acid and lactic acid, respectively. The presence of facultative heterofermentative LAB during the fermentations caused a high production of lactic acid. Finally, as these fermentations were carried out with high-quality raw material and were characterised by a restricted microbial species diversity, resulting in successfully fermented dry cocoa beans and good chocolates produced thereof, it is likely that the prevailing species H. opuntiae, S. cerevisiae, Lb. fermentum, and A. pasteurianus were responsible for it. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. DNA Fingerprinting of Lactic Acid Bacteria in Sauerkraut Fermentations▿ † ‡

    PubMed Central

    Plengvidhya, Vethachai; Breidt, Fredrick; Lu, Zhongjing; Fleming, Henry P.

    2007-01-01

    Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics. PMID:17921264

  3. Availability of Essential B-Group Vitamins to Lactobacillus plantarum in Green Olive Fermentation Brines

    PubMed Central

    Ruiz-Barba, J. L.; Jimenez-Diaz, R.

    1995-01-01

    The availability throughout the traditional Spanish-style green olive fermentation of four vitamins that are essential for the growth of Lactobacillus plantarum was studied. It was found that nicotinic and pantothenic acids, biotin, and vitamin B(inf6) were available in the fermentation brines within the first few days of the process, and their levels throughout the fermentative process were well above those required by L. plantarum to grow at its maximum growth rate. In laboratory medium, various yeast strains isolated from the fermentations were found to produce these vitamins in amounts several times that required by L. plantarum. This finding suggests that some yeast species might play a role in encouraging the growth of L. plantarum in Spanish-style green olive fermentation. PMID:16534988

  4. Cellular injuries of spray-dried Lactobacillus spp. isolated from kefir and their impact on probiotic properties.

    PubMed

    Golowczyc, Marina A; Silva, Joana; Teixeira, Paula; De Antoni, Graciela L; Abraham, Analía G

    2011-01-05

    The injuries caused by spray drying (SD) of three potential probiotic lactobacilli isolated from kefir grains and the impact on some probiotic properties, were evaluated. Results demonstrated that Lactobacillus plantarum 83114 and L. kefir 8321 showed a slight reduction of viability (0.11 and 0.29 log CFU/ml respectively) after SD process, and L. kefir 8348 was found to be more sensitive to the process with a reduction in viability of 0.70 log CFU/ml. Neither membrane damage, evaluated by increased sensitivity to NaCl, lysozyme, bile salt and penicillin G, nor changes in acidifying activity in MRS and milk by lactobacilli were detected after SD. L. plantarum 83114 and L. kefir 8321 after SD did not lose their capacity to adhere to intestinal cells. Nevertheless, L. kefir 8348 showed a significant loss of adhesion capacity after SD. In addition, rehydrated spray-dried L. kefir 8321 retained the ability to protect against Salmonella invasion of intestinal cells. This effect was observed when L. kefir is co-incubated with Salmonella before invasion assay. This work shows that the membrane integrity evaluated by indirect methods and some probiotic properties of lactobacilli isolated from kefir did not change significantly after SD, and these powders could be used in functional foods applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods

    PubMed Central

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2–CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1–L6, with various homologous recombination rates. Although L2–L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation. PMID:26940047

  6. Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman.

    PubMed

    Maldonado-Barragán, Antonio; Caballero-Guerrero, Belén; Martín, Virginia; Ruiz-Barba, José Luis; Rodríguez, Juan Miguel

    2016-03-12

    Lactobacillus gasseri is one of the dominant Lactobacillus species in the vaginal ecosystem. Some strains of this species have a high potential for being used as probiotics in order to maintain vaginal homeostasis, since they may confer colonization resistance against pathogens in the vagina by direct inhibition through production of antimicrobial compounds, as bacteriocins. In this work we have studied bacteriocin production of gassericin E (GasE), a novel bacteriocin produced by L. gasseri EV1461, a strain isolated from the vagina of a healthy woman, and whose production was shown to be promoted by the presence of certain specific bacteria in co-culture. Biochemical and genetic characterization of this novel bacteriocin are addressed. We found that the inhibitory spectrum of L. gasseri EV1461 was broad, being directed to species both related and non-related to the producing strain. Interestingly, L. gasseri EV1461 inhibited the grown of pathogens usually associated with bacterial vaginosis (BV). The antimicrobial activity was due to the production of a novel bacteriocin, gassericin E (GasE). Production of this bacteriocin in broth medium only was achieved at high cell densities. At low cell densities, bacteriocin production ceased and only was restored after the addition of a supernatant from a previous bacteriocin-producing EV1461 culture (autoinduction), or through co-cultivation with several other Gram-positive strains (inducing bacteria). DNA sequence of the GasE locus revealed the presence of two putative operons which could be involved in biosynthesis and immunity of this bacteriocin (gaeAXI), and in regulation, transport and processing (gaePKRTC). The gaePKR encodes a putative three-component regulatory system, involving an autoinducer peptide (GaeP), a histidine protein kinase (GaeK) and a response regulator (GaeR), while the gaeTC encodes for an ABC transporter (GaeT) and their accessory protein (GaeC), involved in transport and processing of the

  7. Draft Genome Sequence of Lactobacillus salivarius L28 Isolated from Ground Beef.

    PubMed

    Ayala, Diana I; Cook, Peter W; Campos, David L; Brashears, Mindy M; den Bakker, Henk; Nightingale, Kendra K

    2017-09-28

    In this report, we describe the draft genome sequence of a newly discovered probiotic strain, Lactobacillus salivarius L28. L. salivarius L28 demonstrates antagonistic effects against human foodborne pathogens, including Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes , in coculture experiments and food matrices. Copyright © 2017 Ayala et al.

  8. Lactobacillus plantarum isolated from kefir protects vero cells from cytotoxicity by type-II shiga toxin from Escherichia coli O157:H7.

    PubMed

    Kakisu, Emiliano; Abraham, Analía G; Farinati, Carla Tironi; Ibarra, Cristina; De Antoni, Graciela L

    2013-02-01

    Kefir is a fermented-milk beverage originating and widely consumed in the Caucasus as well as in Eastern Europe and is a source of bacteria with potential probiotic properties. Enterohaemorrhagic Escherichia coli producing Shiga toxin is commonly associated with food-transmitted diseases; the most prevalent serotype causing epidemics is Esch. coli O157:H7. The aim of this study was to evaluate the antagonism of Lactobacillus plantarum isolated from kefir against the action on Vero cells of supernatants of the Esch. coli O157:H7 strain 69160 expressing the type-II Shiga toxin (Stx2) and to study the role of the Lactobacillus cell wall in that inhibition. Spent culture supernatants of Esch. coli O157:H7 strain 69160 led to cytotoxic effects on cultured eukaryotic cells as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide-cleavage assay or by lactate-dehyrogenase release. Lb. plantarum CIDCA 83114 reduced the cytotoxic activity of Stx present in strain-69160 supernatants, and this protection was markedly higher than those of Lactobacillus kefir CIDCA 83113 and 8348 and Lb. delbrueckii subsp. bulgaricus CIDCA 333. This antagonism of cytotoxicity was mimicked by Lb. plantarum cell walls but was reduced after heating or protease treatments, thus indicating a protein or peptide as being involved in the protection mechanism. The cell surface of the lactobacilli bound the subunit B of Stx thereby decreasing the cytotoxicity. These interactions could constitute the first step in preventing the damage induced by Esch. coli O157:H7 supernatants, thus representing a valuable means of potentially mitigating the noxious effects of this food pathogen.

  9. Postzygotic barriers isolate sympatric species of Cyrtandra (Gesneriaceae) in Hawaiian montane forest understories.

    PubMed

    Johnson, Melissa A; Price, Donald K; Price, Jonathan P; Stacy, Elizabeth A

    2015-11-01

    Recent reviews of reproductive isolation (RI) in plants propose that boundaries between closely related species are maintained predominantly through prezygotic mechanisms. However, few experimental studies have explored how boundaries are maintained in long-lived species. Hawaiian Cyrtandra presents an intriguing challenge to our understanding of RI, as it comprises 60 shrub or small tree species that are almost exclusively restricted to wet forests, where sympatry of multiple species is common. We assessed the relative strengths of pre- and postzygotic barriers among four species of Cyrtandra occurring at the extremes of the main Hawaiian Island's natural island-age gradient, Kaua'i (4.7 Myr) and Hawai'i Island (0.6 Myr), to contrast the strengths and stages of reproductive isolation among species at different stages of divergence. A combination of F1 seed germination, F1 seedling survival, and F1 seedling growth isolated (61-91%) three of the species from sympatric relatives. In contrast, the fourth species was isolated (59%) from its sympatric relative through phenological differences alone. Significant postzygotic barriers in between-island crosses were also observed in one species. Results suggest that boundaries between sympatric Cyrtandra species in Hawaii are maintained predominantly through postzygotic barriers. Observations from between-island crosses indicate that postzygotic barriers can arise in allopatry, which may be important in the initial divergence of populations. Future studies of RI in Cyrtandra should include a broader range of species to determine if postzygotic isolating barriers are foremost in the maintenance of species boundaries in this large genus. © 2015 Botanical Society of America.

  10. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection.

    PubMed

    Percopo, Caroline M; Dyer, Kimberly D; Garcia-Crespo, Katia E; Gabryszewski, Stanislaw J; Shaffer, Arthur L; Domachowske, Joseph B; Rosenberg, Helene F

    2014-06-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient μMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.

  11. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.

    PubMed

    O'Sullivan, Daniel J; McSweeney, Paul L H; Cotter, Paul D; Giblin, Linda; Sheehan, Jeremiah J

    2016-04-01

    Nonstarter lactic acid bacteria are commonly implicated in undesirable gas formation in several varieties, including Cheddar, Dutch-, and Swiss-type cheeses, primarily due to their ability to ferment a wide variety of substrates. This effect can be magnified due to factors that detrimentally affect the composition or activity of starter bacteria, resulting in the presence of greater than normal amounts of fermentable carbohydrates and citrate. The objective of this study was to determine the potential for a facultatively heterofermentative Lactobacillus (Lactobacillus casei DPC6987) isolated from a cheese plant environment to promote gas defects in the event of compromised starter activity. A Swiss-type cheese was manufactured, at pilot scale and in triplicate, containing a typical starter culture (Streptococcus thermophilus and Lactobacillus helveticus) together with propionic acid bacteria. Lactobacillus helveticus populations were omitted in certain vats to mimic starter failure. Lactobacillus casei DPC6987 was added to each experimental vat at 4 log cfu/g. Cheese compositional analysis and X-ray computed tomography revealed that the failure of starter bacteria, in this case L. helveticus, coupled with the presence of a faculatively heterofermentative Lactobacillus (L. casei) led to excessive eye formation during ripening. The availability of excess amounts of lactose, galactose, and citrate during the initial ripening stages likely provided the heterofermentative L. casei with sufficient substrates for gas formation. The accrual of these fermentable substrates was notable in cheeses lacking the L. helveticus starter population. The results of this study are commercially relevant, as they demonstrate the importance of viability of starter populations and the control of specific nonstarter lactic acid bacteria to ensure appropriate eye formation in Swiss-type cheese. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights

  12. Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber

    USDA-ARS?s Scientific Manuscript database

    Lactobacillus buchneri is a Gram-positive, obligate heterofermentative, facultative anaerobe commonly affiliated with spoilage of food products. Notably, L. buchneri is able to metabolize lactic acid into acetic acid and 1,2-propanediol. Although beneficial to the silage industry, this metabolic cap...

  13. Lactobacillus buchneri Genotyping on the Basis of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Locus Diversity

    PubMed Central

    Briner, Alexandra E.

    2014-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel “spacers” that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5′-AAAA-3′. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri. PMID:24271175

  14. Batch Isolation of Microsatellites for Tropical Plant Species Pyrosequencing

    USDA-ARS?s Scientific Manuscript database

    Microsatellites were developed for ten tropical species using a method recently developed in our laboratory that involves a combination of two adapters at the SSR-enrichment stage and allows for cost saving and simultaneous loading of samples. The species for which microsatellites were isolated are...

  15. Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals.

    PubMed

    Choi, Jung-Hye; Lee, Seolhee; Nah, Ju-Young; Kim, Hee-Kyoung; Paek, Ji-Seon; Lee, Soohyung; Ham, Hyeonheui; Hong, Sung Kee; Yun, Sung-Hwan; Lee, Theresa

    2018-02-21

    To assess the risk of fumonisin contamination in Korean cereals, we isolated colonies of the Fusarium fujikuroi species complex (FFSC) from barley, maize, rice and soybean samples from 2011 to 2015. A total of 878 FFSC strains were isolated mostly from maize and rice, and species identity of the isolates were determined using the DNA sequence of the translation elongation factor 1-α (TEF-1α) and RNA polymerase II (RPB2) genes. Fusaria recovered from Korean cereals included F. fujikuroi (317 isolates and a frequency of 36%), F. proliferatum (212 isolates and 24.1%), F. verticillioides (170 isolates and 19.4%), F. concentricum (86 strains and 9.8%), F. andiyazi (56 isolates and 6.4%), F. subglutinans (28 isolates and 3.2%), F. thapsinum (5 isolates and 0.6%), and F. circinatum (2 isolates and 0.2%). The rice samples were dominated by F. fujikuroi (47.4%), F. proliferatum (27.3%), and F. concentricum (15.1%), whereas maize samples were dominated by F. verticillioides (33.9%), F. fujikuroi (25.3%), and F. proliferatum (21.1%). A phylogenetic analysis of 70 representative isolates demonstrated that each species was resolved as genealogically exclusive in the ML tree. Fumonisin production potential was evaluated using a PCR assay for the fumonisin biosynthesis gene, FUM1 in all of the isolates. Most of the isolates tested (94%) were positive for FUM1. All of the isolates assigned to F. fujikuroi, F. proliferatum, F. verticillioides and F. thapsinum were positive for FUM1 irrespective of their host origin. Seventy-seven representative isolates positive for FUM1 were examined for fumonisin production in rice medium. The majority of F. proliferatum (26/27, 96.3%), F. verticillioides (16/17, 94.1%) and F. fujikuroi (19/25, 76.0%) produced both FB 1 and FB 2 . Notably, 16 of 19 fumonisin-producing F. fujikuroi produced >1000μg/g of fumonisins (FB 1 +FB 2 ) in rice medium, which is higher than that in previous reports. These results suggest that F. fujikuroi can produce

  16. Structural and immunochemical studies of neutral exopolysaccharide produced by Lactobacillus johnsonii 142.

    PubMed

    Górska, Sabina; Jachymek, Wojciech; Rybka, Jacek; Strus, Magdalena; Heczko, Piotr B; Gamian, Andrzej

    2010-01-11

    This paper describes the structure of neutral exopolysaccharide (EPS) produced by Lactobacillus johnsonii 142, strain of the lactic acid bacteria isolated from the intestine of mice with experimentally induced inflammatory bowel disease (IBD). Sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY, and (1)H,(13)C HSQC experiments revealed that the repeating unit of the EPS is a pentasaccharide: -->3)-alpha-D-Galp-(1-->3)-beta-d-Glcp-(1-->5)-beta-D-Galf-(1-->3)-alpha-D-Galp-(1-->3)-alpha-D-Galp-(1--> The rabbit antiserum raised against whole cells of L. johnsonii 142 reacted with homologous EPS, and cross-reacted with exopolysaccharide from Lactobacillus animalis/murinus 148 isolated also from mice with IBD, but not reacted with EPS of L. johnsonii 151 from healthy mice. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Lactobacillus for preventing recurrent urinary tract infections in women: meta-analysis.

    PubMed

    Grin, Peter M; Kowalewska, Paulina M; Alhazzan, Waleed; Fox-Robichaud, Alison E

    2013-02-01

    Urinary tract infections (UTIs) are the most common infections affecting women, and often recur. Lactobacillus probiotics could potentially replace low dose, long term antibiotics as a safer prophylactic for recurrent UTI (rUTI). This systematic review and meta-analysis was performed to compile the results of existing randomized clinical trials (RCTs) to determine the efficacy of probiotic Lactobacillus species in preventing rUTI. MEDLINE and EMBASE were searched from inception to July 2012 for RCTs using a Lactobacillus prophylactic against rUTI in premenopausal adult women. A random-effects model meta-analysis was performed using a pooled risk ratio, comparing incidence of rUTI in patients receiving Lactobacillus to control. Data from 294 patients across five studies were included. There was no statistically significant difference in the risk for rUTI in patients receiving Lactobacillus versus controls, as indicated by the pooled risk ratio of 0.85 (95% confidence interval of 0.58-1.25, p = 0.41). A sensitivity analysis was performed, excluding studies using ineffective strains and studies testing for safety. Data from 127 patients in two studies were included. A statistically significant decrease in rUTI was found in patients given Lactobacillus, denoted by the pooled risk ratio of 0.51 (95% confidence interval 0.26-0.99, p = 0.05) with no statistical heterogeneity (I2 = 0%). Probiotic strains of Lactobacillus are safe and effective in preventing rUTI in adult women. However, more RCTs are required before a definitive recommendation can be made since the patient population contributing data to this meta-analysis was small.

  18. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo.

    PubMed

    Chen, Y P; Hsiao, P J; Hong, W S; Dai, T Y; Chen, M J

    2012-01-01

    Lactobacillus kefiranofaciens M1, isolated from and identified in Taiwanese milk kefir grain, has demonstrated immune-modulating activity. In the present study, we further investigated the effects of Lb. kefiranofaciens M1 on intestinal epithelial cells in vitro and on dextran sodium sulfate (DSS)-induced colitis in vivo. The possible mechanisms regarding the cytokine products and intestinal epithelial barrier restoration as well as the putative receptor for the protective effects of Lb. kefiranofaciens M1 were investigated. In vitro results indicated that Lb. kefiranofaciens M1 could strengthen the epithelial barrier function in vitro by increasing the transepithelial electrical resistance (TEER) and significantly upregulated the level of the chemokine CCL-20 at both the apical and basolateral sites. The in vivo effects of Lb. kefiranofaciens M1 on the regulation of intestinal physiology indicate that this strain could ameliorate DSS-induced colitis with a significant attenuation of the bleeding score and colon length shortening. Production of proinflammatory cytokines was decreased and that of the antiinflammatory cytokine IL-10 was increased in the DSS-treated mice given Lb. kefiranofaciens M1. The putative receptor for the protective effects of Lb. kefiranofaciens M1 was toll-like receptor 2 (TLR2), which was involved in probiotic-induced cytokine production in vitro and in attenuation of the bleeding score and colon length shortening in vivo. In this study, the kefir lactobacillus Lb. kefiranofaciens M1 clearly demonstrated an anticolitis effect. Based on these results, Lb. kefiranofaciens M1 has the potential to be applied in fermented dairy products as an alternative therapy for intestinal disorders. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Fluorescence in situ Hybridization method using Peptide Nucleic Acid probes for rapid detection of Lactobacillus and Gardnerella spp.

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331

  20. A New record of four Penicillium species isolated from Agarum clathratum in Korea.

    PubMed

    Park, Myung Soo; Lee, Seobihn; Lim, Young Woon

    2017-04-01

    Agarum clathratum, brown algae, play important ecological roles in marine ecosystem, but can cause secondary environment pollution when they pile up on the beach. In order to resolve the environment problem by A. clathratum, we focus to isolate and identify Penicillium because many species are well known to produce extracellular enzymes. A total of 32 Penicillium strains were isolated from A. clathratum samples that collected from 13 sites along the mid-east coast of Korea in summer. They were identified based on morphological characters and phylogenetic analysis using β-tubulin DNA sequences as well as a combined dataset of β-tubulin and calmodulin. A total of 32 strains were isolated and they were identified to 13 Penicillium species. The commonly isolated species were Penicillium citrinum, P. roseomaculatum, and Penicillium sp. Among 13 Penicillium species, four species - P. bilaiae, P. cremeogriseum, P. madriti, and P. roseomaculatum - have not been previously recorded in Korea. For these four new species records to Korea, we provide morphological characteristics of each strain.

  1. Identification of Malassezia species isolated from patients with extensive forms of pityriasis versicolor in Siena, Italy.

    PubMed

    Romano, Clara; Mancianti, Francesca; Nardoni, Simona; Ariti, Gaetano; Caposciutti, Paola; Fimiani, Michele

    2013-01-01

    Pityriasis versicolor (PV) is an infection caused by various species of Malassezia yeast. There is no agreement in the literature concerning the species of Malassezia and the demographic, clinical, and mycological data. To prospectively identify Malassezia species isolated from lesions of patients with extensive, long standing and recurrent forms of PV and to estimate the relationship between Malassezia species and the demographic and clinical data of the patients. All patients with PV were enrolled over a four-year period. Malassezia species were isolated in cultures and identified by morphological features and physiological tests. In the last 2 years a PCR-based technique was used to confirm the species' identification. A total of 74 patients (43 males and 31 females, mean age 39.5 years) were enrolled. Only one species was isolated in 45 patients, and more than one species were identified in the remaining 28 patients (38%). M. globosa was the most frequently isolated (60.3%) species. There was a significant association between the isolation of 2 or more species and the presence of at least one predisposing factor. In the last 29 cases, which were subjected to PCR, there were no differences in the identification of isolated species as compared to traditional methods. The isolation of more than one species in a single lesion is not infrequent in PV and is related to the presence of one predisposing factor. The isolated species isolated were not influenced by demographic and clinical features. The traditional and more recent (PCR) procedures gave the same results in the isolated species. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. Correlation of Lactobacillus rhamnosus Genotypes and Carbohydrate Utilization Signatures Determined by Phenotype Profiling

    PubMed Central

    Lambert, Jolanda; van Limpt, Kees; Wels, Michiel; Smokvina, Tamara; Knol, Jan; Kleerebezem, Michiel

    2015-01-01

    Lactobacillus rhamnosus is a bacterial species commonly colonizing the gastrointestinal (GI) tract of humans and also frequently used in food products. While some strains have been studied extensively, physiological variability among isolates of the species found in healthy humans or their diet is largely unexplored. The aim of this study was to characterize the diversity of carbohydrate utilization capabilities of human isolates and food-derived strains of L. rhamnosus in relation to their niche of isolation and genotype. We investigated the genotypic and phenotypic diversity of 25 out of 65 L. rhamnosus strains from various niches, mainly human feces and fermented dairy products. Genetic fingerprinting of the strains by amplified fragment length polymorphism (AFLP) identified 11 distinct subgroups at 70% similarity and suggested niche enrichment within particular genetic clades. High-resolution carbohydrate utilization profiling (OmniLog) identified 14 carbon sources that could be used by all of the strains tested for growth, while the utilization of 58 carbon sources differed significantly between strains, enabling the stratification of L. rhamnosus strains into three metabolic clusters that partially correlate with the genotypic clades but appear uncorrelated with the strain's origin of isolation. Draft genome sequences of 8 strains were generated and employed in a gene-trait matching (GTM) analysis together with the publicly available genomes of L. rhamnosus GG (ATCC 53103) and HN001 for several carbohydrates that were distinct for the different metabolic clusters: l-rhamnose, cellobiose, l-sorbose, and α-methyl-d-glucoside. From the analysis, candidate genes were identified that correlate with l-sorbose and α-methyl-d-glucoside utilization, and the proposed function of these genes could be confirmed by heterologous expression in a strain lacking the genes. This study expands our insight into the phenotypic and genotypic diversity of the species L. rhamnosus

  3. Combination of Multiplex PCR and PCR-Denaturing Gradient Gel Electrophoresis for Monitoring Common Sourdough-Associated Lactobacillus Species

    PubMed Central

    Settanni, Luca; Valmorri, Sara; van Sinderen, Douwe; Suzzi, Giovanna; Paparella, Antonello; Corsetti, Aldo

    2006-01-01

    A combination of denaturing gradient gel electrophoresis (DGGE) and a previously described multiplex PCR approach was employed to detect sourdough lactobacilli. Primers specific for certain groups of Lactobacillus spp. were used to amplify fragments, which were analyzed by DGGE. DGGE profiles obtained from Lactobacillus type strains acted as standards to analyze lactobacilli from four regional Abruzzo (central Italy) sourdoughs. PMID:16672538

  4. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  5. Efficient Production of Lactic Acid from Sweet Sorghum Juice by a Newly Isolated Lactobacillus salivarius CGMCC 7.75.

    PubMed

    Liu, Quanlan; Wang, Shanglong; Zhi, Jian-Fei; Ming, Henglei; Teng, Dawei

    2013-09-01

    Sweet sorghum juice was a cheap and renewable resource, and also a potential carbon source for the fermentation production of lactic acid (LA) by a lactic acid bacterium. One newly isolated strain Lactobacillus salivarius CGMCC 7.75 showed the ability to produce the highest yield and optical purity of LA from sweet sorghum juice. Studies of feeding different concentrations of sweet sorghum juice and nitrogen source suggested the optimal concentrations of fermentation were 325 ml l(-1) and 20 g l(-1), respectively. This combination produced 142.49 g l(-1) LA with a productivity level of 0.90 g of LA per gram of sugars consumed. The results indicated the high LA concentration achieved using L. salivarius CGMCC 7.75 not only gives cheap industrial product, but also broaden the application of sweet sorghum.

  6. Sexual isolation between Drosophila melanogaster, D. simulans and D. mauritiana: sex and species specific discrimination.

    PubMed

    Carracedo, M C; Suarez, C; Casares, P

    2000-01-01

    The sexual isolation among the related species Drosophila melanogaster, D. simulans and D. mauritiana is asymmetrical. While D. mauritiana males mate well with both D. melanogaster and D. simulans females, females of D. mauritiana discriminate strongly against males of these two species. Similarly, D. simulans males mate with D. melanogaster females but the reciprocal cross is difficult. Interspecific crosses between several populations of the three species were performed to determine if (i) males and females of the same species share a common sexual isolation genetic system, and (ii) males (or females) use the same genetic system to discriminate against females (or males) of the other two species. Results indicate that although differences in male and female isolation depend on the populations tested, the isolation behaviour between a pair of species is highly correlated despite the variations. However, the rank order of the isolation level along the populations was not correlated in both sexes, which suggests that different genes act in male and female sexual isolation. Neither for males nor for females, the isolation behaviour of one species was paralleled in the other two species, which indicates that the genetic systems involved in this trait are species-pair specific. The implications of these results are discussed.

  7. Molecular Identification, Antifungal Susceptibility Profile, and Biofilm Formation of Clinical and Environmental Rhodotorula Species Isolates

    PubMed Central

    Nunes, Jorge Meneses; Bizerra, Fernando César; Ferreira, Renata Carmona e

    2013-01-01

    Rhodotorula species are emergent fungal pathogens capable of causing invasive infections, primarily fungemia. They are particularly problematic in immunosuppressed patients when using a central venous catheter. In this study, we evaluated the species distribution of 51 clinical and 8 environmental Rhodotorula species isolates using the ID32C system and internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing and biofilm formation capability using a crystal violet staining assay were performed. Using ITS sequencing as the gold standard, the clinical isolates were identified as follows: 44 R. mucilaginosa isolates, 2 R. glutinis isolates, 2 R. minuta isolates, 2 R. dairenensis isolates, and 1 Rhodosporidium fluviale isolate. The environmental isolates included 7 R. mucilaginosa isolates and 1 R. slooffiae isolate. Using the ID32C system, along with a nitrate assimilation test, only 90.3% of the isolates tested were correctly identified. In the biofilm formation assay, R. mucilaginosa and R. minuta exhibited greater biofilm formation ability compared to the other Rhodotorula species; the clinical isolates of R. mucilaginosa showed greater biofilm formation compared to the environmental isolates (P = 0.04). Amphotericin B showed good in vitro activity (MIC ≤ 1 μg/ml) against planktonic cells, whereas voriconazole and posaconazole showed poor activity (MIC50/MIC90, 2/4 μg/ml). Caspofungin and fluconazole MICs were consistently high for all isolates tested (≥64 μg/ml and ≥ 4 μg/ml, respectively). In this study, we emphasized the importance of molecular methods to correctly identify Rhodotorula species isolates and non-R. mucilaginosa species in particular. The antifungal susceptibility profile reinforces amphotericin B as the antifungal drug of choice for the treatment of Rhodotorula infections. To our knowledge, this is the first study evaluating putative differences in the ability of biofilm formation among different Rhodotorula species

  8. Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates.

    PubMed

    Nunes, Jorge Meneses; Bizerra, Fernando César; Ferreira, Renata Carmona E; Colombo, Arnaldo Lopes

    2013-01-01

    Rhodotorula species are emergent fungal pathogens capable of causing invasive infections, primarily fungemia. They are particularly problematic in immunosuppressed patients when using a central venous catheter. In this study, we evaluated the species distribution of 51 clinical and 8 environmental Rhodotorula species isolates using the ID32C system and internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing and biofilm formation capability using a crystal violet staining assay were performed. Using ITS sequencing as the gold standard, the clinical isolates were identified as follows: 44 R. mucilaginosa isolates, 2 R. glutinis isolates, 2 R. minuta isolates, 2 R. dairenensis isolates, and 1 Rhodosporidium fluviale isolate. The environmental isolates included 7 R. mucilaginosa isolates and 1 R. slooffiae isolate. Using the ID32C system, along with a nitrate assimilation test, only 90.3% of the isolates tested were correctly identified. In the biofilm formation assay, R. mucilaginosa and R. minuta exhibited greater biofilm formation ability compared to the other Rhodotorula species; the clinical isolates of R. mucilaginosa showed greater biofilm formation compared to the environmental isolates (P = 0.04). Amphotericin B showed good in vitro activity (MIC ≤ 1 μg/ml) against planktonic cells, whereas voriconazole and posaconazole showed poor activity (MIC(50)/MIC(90), 2/4 μg/ml). Caspofungin and fluconazole MICs were consistently high for all isolates tested (≥64 μg/ml and ≥ 4 μg/ml, respectively). In this study, we emphasized the importance of molecular methods to correctly identify Rhodotorula species isolates and non-R. mucilaginosa species in particular. The antifungal susceptibility profile reinforces amphotericin B as the antifungal drug of choice for the treatment of Rhodotorula infections. To our knowledge, this is the first study evaluating putative differences in the ability of biofilm formation among different Rhodotorula

  9. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery.

    PubMed

    Petricevic, Ljubomir; Domig, Konrad J; Nierscher, Franz Josef; Sandhofer, Michael J; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-05-30

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery.

  10. Species-specific identification of commercial probiotic strains.

    PubMed

    Yeung, P S M; Sanders, M E; Kitts, C L; Cano, R; Tong, P S

    2002-05-01

    Products containing probiotic bacteria are gaining popularity, increasing the importance of their accurate speciation. Unfortunately, studies have suggested that improper labeling of probiotic species is common in commercial products. Species identification of a bank of commercial probiotic strains was attempted using partial 16S rDNA sequencing, carbohydrate fermentation analysis, and cellular fatty acid methyl ester analysis. Results from partial 16S rDNA sequencing indicated discrepancies between species designations for 26 out of 58 strains tested, including two ATCC Lactobacillus strains. When considering only the commercial strains obtained directly from the manufacturers, 14 of 29 strains carried species designations different from those obtained by partial 16S rDNA sequencing. Strains from six commercial products were species not listed on the label. The discrepancies mainly occurred in Lactobacillus acidophilus and Lactobacillus casei groups. Carbohydrate fermentation analysis was not sensitive enough to identify species within the L. acidophilus group. Fatty acid methyl ester analysis was found to be variable and inaccurate and is not recommended to identify probiotic lactobacilli.

  11. Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp.

    PubMed Central

    do Carmo, Monique S.; Noronha, Francisca M. F.; Arruda, Mariana O.; Costa, Ênnio P. da Silva; Bomfim, Maria R. Q.; Monteiro, Andrea S.; Ferro, Thiago A. F.; Fernandes, Elizabeth S.; Girón, Jorge A.; Monteiro-Neto, Valério

    2016-01-01

    Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains. PMID:27833605

  12. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    USDA-ARS?s Scientific Manuscript database

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  13. A selective medium for the enumeration and differentiation of Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Nwamaioha, Nwadiuto O; Ibrahim, Salam A

    2018-06-01

    Modified reinforced clostridial medium (mRCM) was developed and evaluated for the differential enumeration of Lactobacillus delbrueckii ssp. bulgaricus. Lactobacillus bulgaricus, an important species of lactic acid bacteria with health benefits, is used in the production of yogurt and other fermented foods. Our results showed that supplementing reinforced clostridial medium with 0.025% CaCl 2 , 0.01% uracil, and 0.2% Tween 80 (mRCM) significantly enhanced the growth rate of L. bulgaricus RR and ATCC 11842 strains as measured by the optical densities of these strains after 12 h of incubation at 42°C. The bacterial populations (plate count) of the RR and ATCC 11842 strains were 0.76 and 0.77 log cfu/g higher in mRCM than in de Man, Rogosa, and Sharpe and reinforced clostridial medium media, respectively. Conversely, the population counts for other bacterial species (Bifidobacterium, Lactobacillus rhamnosus, and Lactobacillus reuteri) were significantly inhibited in the mRCM medium. The addition of aniline blue dye to mRCM (mRCM-blue) improved the selectivity of L. bulgaricus in mixed lactic bacterial cultures compared with de Man, Rogosa, and Sharpe medium and lactic agar with regard to colony appearance and morphology. The mRCM-blue performed better than the conventional medium in culturing, enumerating, and differentiating L. bulgaricus. Therefore, mRCM-blue could be used as a selective medium to enhance the growth and differentiation of L. bulgaricus in order to meet the increasing demand for this beneficial species of bacteria. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Carbapenem-resistant Lactobacillus intra-abdominal infection in a renal transplant recipient with a history of probiotic consumption.

    PubMed

    Vanichanan, Jakapat; Chávez, Violeta; Wanger, Audrey; De Golovine, Aleksandra M; Vigil, Karen J

    2016-12-01

    Lactobacillus sp. is a low virulence bacterium, which rarely causes infection in immunocompetent individuals and usually is considered a contaminant. Normally this organism is susceptible to β-lactam antibiotics, yet resistant strains have been reported. Here, we report a case of a 60-year-old renal transplant recipient who developed an intra-abdominal abscess which grew a carbapenem-resistant Lactobacillus casei. This is significant since it is the first report of a clinical isolate of Lactobacillus sp. that demonstrated both microbiological and clinical resistance to carbapenem use. Moreover, the probiotic supplement that the patient had taken also grew a similar organism raising the concern of probiotic associated infection in immunocompromised individual.

  15. Hybrid female mate choice as a species isolating mechanism: environment matters.

    PubMed

    Schmidt, E M; Pfennig, K S

    2016-04-01

    A fundamental goal of biology is to understand how new species arise and are maintained. Female mate choice is potentially critical to the speciation process: mate choice can prevent hybridization and thereby generate reproductive isolation between potentially interbreeding groups. Yet, in systems where hybridization occurs, mate choice by hybrid females might also play a key role in reproductive isolation by affecting hybrid fitness and contributing to patterns of gene flow between species. We evaluated whether hybrid mate choice behaviour could serve as such an isolating mechanism using spadefoot toad hybrids of Spea multiplicata and Spea bombifrons. We assessed the mate preferences of female hybrid spadefoot toads for sterile hybrid males vs. pure-species males in two alternative habitat types in which spadefoots breed: deep or shallow water. We found that, in deep water, hybrid females preferred the calls of sterile hybrid males to those of S. multiplicata males. Thus, maladaptive hybrid mate preferences could serve as an isolating mechanism. However, in shallow water, the preference for hybrid male calls was not expressed. Moreover, hybrid females did not prefer hybrid calls to those of S. bombifrons in either environment. Because hybrid female mate choice was context-dependent, its efficacy as a reproductive isolating mechanism will depend on both the environment in which females choose their mates as well as the relative frequencies of males in a given population. Thus, reproductive isolation between species, as well as habitat specific patterns of gene flow between species, might depend critically on the nature of hybrid mate preferences and the way in which they vary across environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  16. Ecophysiology of the developing total bacterial and lactobacillus communities in the terminal small intestine of weaning piglets.

    PubMed

    Pieper, Robert; Janczyk, Pawel; Zeyner, Annette; Smidt, Hauke; Guiard, Volker; Souffrant, Wolfgang Bernhard

    2008-10-01

    Weaning of the pig is generally regarded as a stressful event which could lead to clinical implications because of the changes in the intestinal ecosystem. The functional properties of microbiota inhabiting the pig's small intestine (SI), including lactobacilli which are assumed to exert health-promoting properties, are yet poorly described. Thus, we determined the ecophysiology of bacterial groups and within genus Lactobacillus in the SI of weaning piglets and the impact of dietary changes. The SI contents of 20 piglets, 4 killed at weaning (only sow milk and no creep feed) and 4 killed at 1, 2, 5, and 11 days post weaning (pw; cereal-based diet) were examined for bacterial cell count and bacterial metabolites by fluorescence in situ hybridization (FISH). Lactobacilli were the predominant group in the SI except at 1 day pw because of a marked reduction in their number. On day 11 pw, bifidobacteria and E. coli were not detected, and Enterobacteriaceae and members of the Clostridium coccoides/Eubacterium rectale cluster were only found occasionally. L. sobrius/L. amylovorus became dominant species whereas the abundance of L. salivarius and L. gasseri/johnsonii declined. Concentration of lactic acid increased pw whereas pH, volatile fatty acids, and ammonia decreased. Carbohydrate utilization of 76 Lactobacillus spp. isolates was studied revealing a shift from lactose and galactose to starch, cellobiose, and xylose, suggesting that the bacteria colonizing the SI of piglets adapt to the newly introduced nutrients during the early weaning period. Identification of isolates based on partial 16S rRNA gene sequence data and comparison with fermentation data furthermore suggested adaptation processes below the species level. The results of our study will help to understand intestinal bacterial ecophysiology and to develop nutritional regimes to prevent or counteract complications during the weaning transition.

  17. Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†

    PubMed Central

    Russell, W. M.; Klaenhammer, T. R.

    2001-01-01

    The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918

  18. Characterization of Candida species isolated from cases of lower respiratory tract infection.

    PubMed

    Jha, B J; Dey, S; Tamang, M D; Joshy, M E; Shivananda, P G; Brahmadatan, K N

    2006-01-01

    (1) To identify and characterize the Candida species isolates from lower respiratory tract infection. (2) to determine the rate of isolation of Candida species from sputum samples. This study was carried out in the Department of Microbiology, Manipal Teaching Hospital, Pokhara, Nepal from June 2002 to January 2003. A total of 462 sputum samples were collected from patients suspected lower respiratory tract infection. The samples were processed as Gram staining to find out the suitability of the specimen, cultured on Sabouraud's Dextrose Agar (SDA) and also on blood agar and chocolate agar to identify the potential lower respiratory tract pathogens. For the identification of Candida, sputum samples were processed for Gram stain, culture, germ tube test, production of chlamydospore, sugar fermentation and assimilation test. For the identification of bacteria, Gram stain, culture, and biochemical tests were performed by standardized procedure. Out of 462 samples, 246 (53.24%) samples grew potential pathogens of lower respiratory tract. Among them Haemophilus influenzae 61(24.79%) and Streptococcus pneumoniae 57 (23.17%) were the predominant bacterial pathogens. Candida species were isolated from 30 samples (12.2%). The majority of Candida species amongst the Candida isolates were Candida albicans 21(70%) followed by Candida tropicalis 4(13.33%). Candida krusei 3(10%), Candida parapsilosis 1(3.33%) and Candida stellatoidea 1(3.33%). The highest rate of isolation of Candida was between the age of 71 and 80. Candida isolation from sputum samples is important as found in the present study in which Candida species were the third most common pathogen isolated from patients with lower respiratory tract infection.

  19. Botrytis caroliniana, a new species isolated from blackberry in South Carolina.

    PubMed

    Li, Xingpeng; Kerrigan, Julia; Chai, Wenxuan; Schnabel, Guido

    2012-01-01

    Blackberry fruits symptomatic for gray mold were collected from three commercial blackberry fields in northwestern South Carolina. Single-spore isolates were generated and two distinct phenotypes were discovered in each location; one sporulated on PDA and one did not. One isolate of each phenotype and location (six isolates total) were selected for in depth molecular and morphological characterization. Glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and DNA-dependent RNA polymerase subunit II (RPB2) coding sequence alignment revealed Botrytis cinerea as the sporulating phenotype and a new yet undescribed species as the non-sporulating phenotype. The new Botrytis sp., described herein as Botrytis caroliniana, was most closely related genetically to B. fabiopsis and B. galanthina, the causal agents of gray mold disease of broad bean and snowdrop, respectively. It produces smaller conidia than either B. fabiopsis or B. galanthina, and sequence analysis of genes encoding necrosis and ethylene-inducing proteins (NEPs) also indicated that the Botrytis isolates represent a separate and distinct species. The new species is pathogenic on blackberry fruits and broad bean leaves, which distinguishes it further from B. galanthina. The new species formed white to pale gray colonies with short, tufted aerial mycelium and produced black sclerotia on PDA at 20 C. To our knowledge this is only the third Botrytis species discovered to cause disease on blackberry in the United States.

  20. Staphylococcus muscae, a new species isolated from flies.

    PubMed

    Hájek, V; Ludwig, W; Schleifer, K H; Springer, N; Zitzelsberger, W; Kroppenstedt, R M; Kocur, M

    1992-01-01

    A new coagulase-negative species of the genus Staphylococcus, Staphylococcus muscae, is described on the basis of the results of a study of four strains that were isolated from flies. 16S rRNA sequences of the type strains of S. muscae, Staphylococcus schleiferi, and Staphylococcus sciuri were determined and used, together with the corresponding sequences of Staphylococcus aureus and Staphylococcus epidermidis, for a comparative analysis. The new species is characterized taxonomically; this species is differentiated from the other novobiocin-susceptible staphylococci by its physiological and biochemical activities, cell wall composition, and levels of genetic relatedness. The type strain of this species is strain MB4 (= CCM 4175).