Sample records for lactococcus piscium cncm

  1. Assertiveness of meat-borne Lactococcus piscium strains and their potential for competitive exclusion of spoilage bacteria in situ and in vitro.

    PubMed

    Hilgarth, M; Nani, M; Vogel, R F

    2018-05-01

    This study aimed to investigate intraspecies assertiveness of meat-borne Lactococcus piscium isolates, inhibitory effects on unwanted and harmful meat spoilers, and the prevalence on beef deliberately inoculated with Lc. piscium. Co-inoculation of Lc. piscium isolates and spoilers (Brochothrix thermosphacta, Leuconostoc gelidum subsp. gasicomitatum, Carnobacterium divergens, Pseudomonas weihenstephanensis, Serratia liquefaciens, Hafnia alvei) were conducted in sterile meat simulation medium. Differentiation of Lc. piscium strains was carried out with colony-based RAPD-PCR. Selective cultivation was used to differentiate spoilers from Lc. piscium. Intraspecies assertiveness revealed Lc. piscium TMW2.1614 as most assertive strain. Co-inoculation of selected Lc. piscium strains caused substantial growth reduction of spoilers while the extent was strain- and spoiler dependent. Monitoring the microbiota on beef steaks deliberately inoculated with Lc. piscium revealed prevalence over the endogenous microbiota while maintaining a ripened sensory impression without undesired alterations. This study reveals Lc. piscium strains TMW2.1612/2.1614/2.1615 as highly competitive against spoilers in vitro while beef deliberately inoculated with these strains maintained acceptable organoleptics. Selected Lc. piscium strains exhibit high potential for application as bioprotective cultures for competitive exclusion on beef in order to extend minimum shelf life and enhance product safety of meat. © 2018 The Society for Applied Microbiology.

  2. Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants.

    PubMed

    Muñoz-Quezada, Sergio; Chenoll, Empar; Vieites, José María; Genovés, Salvador; Maldonado, José; Bermúdez-Brito, Miriam; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, María José; Romero, Fernando; Suárez, Antonio; Ramón, Daniel; Gil, Angel

    2013-01-01

    The aim of the present study was to isolate, identify and characterise novel strains of lactic acid bacteria and bifidobacteria with probiotic properties from the faeces of exclusively breast-fed infants. Of the 4680 isolated colonies, 758 exhibited resistance to low pH and tolerance to high concentrations of bile salts; of these, only forty-two exhibited a strong ability to adhere to enterocytes in vitro. The identities of the isolates were confirmed by 16S ribosomal RNA (rRNA) sequencing, which permitted the grouping of the forty-two bacteria into three different strains that showed more than 99 % sequence identity with Lactobacillus paracasei, Lactobacillus rhamnosus and Bifidobacterium breve, respectively. The strain identification was confirmed by sequencing the 16S-23S rRNA intergenic spacer regions. Strains were assayed for enzymatic activity and carbohydrate utilisation, and they were deposited in the Collection Nationale de Cultures de Microorganismes (CNCM) of the Institute Pasteur and named L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036. The strains were susceptible to antibiotics and did not produce undesirable metabolites, and their safety was assessed by acute ingestion in immunocompetent and immunosuppressed BALB/c mouse models. The three novel strains inhibited in vitro the meningitis aetiological agent Listeria monocytogenes and human rotavirus infections. B. breve CNCM I-4035 led to a higher IgA concentration in faeces and plasma of mice. Overall, these results suggest that L. paracasei CNCM I-4034, B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036 should be considered as probiotic strains, and their human health benefits should be further evaluated.

  3. Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Abadia-Molina, Francisco; Saez-Lara, Maria Jose; Campaña-Martin, Laura; Muñoz-Quezada, Sergio; Romero, Fernando; Gil, Angel; Fontana, Luis

    2014-01-01

    We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Lepr(fa/fa) rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Lepr(fa/fa) rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Lepr(fa/fa) rats that received probiotics than in rats fed the placebo. Zucker-Lepr(fa/fa) rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Lepr(fa/fa) rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Lepr(fa/fa) rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Lepr(fa/fa) rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.

  4. Saccharomyces boulardii CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review

    PubMed Central

    Moré, Margret I; Vandenplas, Yvan

    2018-01-01

    Several properties of the probiotic medicinal yeast Saccharomyces boulardii CNCM I-745 contribute to its efficacy to prevent or treat diarrhoea. Besides immunologic effects, pathogen-binding and anti-toxin effects, as well as positive effects on the microbiota, S boulardii CNCM I-745 also has pronounced effects on digestive enzymes of the brush border membrane, known as trophic effects. The latter are the focus of this review. Literature has been reviewed after searching Medline and PMC databases. All relevant non-clinical and clinical studies are summarized. S. boulardii CNCM I-745 synthesizes and secretes polyamines, which have a role in cell proliferation and differentiation. The administration of polyamines or S. boulardii CNCM I-745 enhances the expression of intestinal digestive enzymes as well as nutrient uptake transporters. The signalling mechanisms leading to enzyme activation are not fully understood. However, polyamines have direct nucleic acid–binding capacity with regulatory impact. S. boulardii CNCM I-745 induces signalling via the mitogen-activated protein kinase pathway. In addition, effects on the phosphatidylinositol-3 kinase (PI3K) pathway have been reported. As an additional direct effect, S. boulardii CNCM I-745 secretes certain enzymes, which enhance nutrient acquisition for the yeast and the host. The increased availability of digestive enzymes seems to be one of the mechanisms by which S. boulardii CNCM I-745 counteracts diarrhoea; however, also people with certain enzyme deficiencies may profit from its administration. More studies are needed to fully understand the mechanisms of trophic activation by the probiotic yeast. PMID:29449779

  5. Saccharomyces boulardii CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review.

    PubMed

    Moré, Margret I; Vandenplas, Yvan

    2018-01-01

    Several properties of the probiotic medicinal yeast Saccharomyces boulardii CNCM I-745 contribute to its efficacy to prevent or treat diarrhoea. Besides immunologic effects, pathogen-binding and anti-toxin effects, as well as positive effects on the microbiota, S boulardii CNCM I-745 also has pronounced effects on digestive enzymes of the brush border membrane, known as trophic effects. The latter are the focus of this review. Literature has been reviewed after searching Medline and PMC databases. All relevant non-clinical and clinical studies are summarized. S. boulardii CNCM I-745 synthesizes and secretes polyamines, which have a role in cell proliferation and differentiation. The administration of polyamines or S. boulardii CNCM I-745 enhances the expression of intestinal digestive enzymes as well as nutrient uptake transporters. The signalling mechanisms leading to enzyme activation are not fully understood. However, polyamines have direct nucleic acid-binding capacity with regulatory impact. S. boulardii CNCM I-745 induces signalling via the mitogen-activated protein kinase pathway. In addition, effects on the phosphatidylinositol-3 kinase (PI3K) pathway have been reported. As an additional direct effect, S. boulardii CNCM I-745 secretes certain enzymes, which enhance nutrient acquisition for the yeast and the host. The increased availability of digestive enzymes seems to be one of the mechanisms by which S. boulardii CNCM I-745 counteracts diarrhoea; however, also people with certain enzyme deficiencies may profit from its administration. More studies are needed to fully understand the mechanisms of trophic activation by the probiotic yeast.

  6. Histology and gametogenesis in Heleobia piscium (Cochliopidae) from the Multiple Use Reserve "Isla Martín García," Buenos Aires, Argentina.

    PubMed

    Martin, Stella Maris; Díaz, Ana C

    2016-01-01

    Heleobia piscium (d'Orbigny, 1835), a member of the Cochliopidae family found only in South America, is distributed from Entre Ríos, Delta del Paraná, and the littoral of the Río de la Plata down as far as to Punta Indio (Buenos Aires), the southernmost limit of the snail's geographical distribution. To date, little information is available regarding the reproductive cycle of species within this family either in Argentina or throughout South America. The present work analyzed the histology of the reproductive system of the gonochoric species H. piscium and determined the stages oogenesis and spermatogenesis under natural conditions. Specimens of H. piscium were collected in the Multiple-Use Natural Reserve Isla Martín García, located in the Upper Río de la Plata estuary to the south of the mouth of the Uruguay River. The gametogenic cycle in both sexes was found to consist of the following stages: early maturation, maturation, and evacuation. The maturation period was found to extend from January to October and evacuation of the gametes to start in November and end in February (summer in the Southern Hemisphere). The results indicated the H. piscium exhibit a reproductive cycle without a resting period.

  7. Histology and gametogenesis in Heleobia piscium (Cochliopidae) from the Multiple Use Reserve “Isla Martín García,” Buenos Aires, Argentina

    PubMed Central

    Díaz, Ana C.

    2016-01-01

    Heleobia piscium (d’Orbigny, 1835), a member of the Cochliopidae family found only in South America, is distributed from Entre Ríos, Delta del Paraná, and the littoral of the Río de la Plata down as far as to Punta Indio (Buenos Aires), the southernmost limit of the snail’s geographical distribution. To date, little information is available regarding the reproductive cycle of species within this family either in Argentina or throughout South America. The present work analyzed the histology of the reproductive system of the gonochoric species H. piscium and determined the stages oogenesis and spermatogenesis under natural conditions. Specimens of H. piscium were collected in the Multiple-Use Natural Reserve Isla Martín García, located in the Upper Río de la Plata estuary to the south of the mouth of the Uruguay River. The gametogenic cycle in both sexes was found to consist of the following stages: early maturation, maturation, and evacuation. The maturation period was found to extend from January to October and evacuation of the gametes to start in November and end in February (summer in the Southern Hemisphere). The results indicated the H. piscium exhibit a reproductive cycle without a resting period. PMID:27761336

  8. Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS

    PubMed Central

    Scarpa, Melania; Marchiori, Chiara; Sarasin, Gloria; Caputi, Valentina; Porzionato, Andrea; Giron, Maria Cecilia; Palù, Giorgio; Castagliuolo, Ignazio

    2017-01-01

    Background We evaluated the effect of Saccharomyces boulardii CNCM I-745 on intestinal neuromuscular anomalies in an IBS-type mouse model of gastrointestinal motor dysfunctions elicited by Herpes Simplex Virus type 1 (HSV-1) exposure. Methods Mice were inoculated intranasally with HSV-1 (102 PFU) or vehicle at time 0 and 4 weeks later by the intragastric (IG) route (108 PFU). Six weeks after IG inoculum, mice were randomly allocated to receive oral gavage with either S. boulardii (107 CFU/day) or vehicle. After 4 weeks the following were determined: a) intestinal motility using fluorescein-isothiocyanate dextran distribution in the gut, fecal pellet expulsion, stool water content, and distal colonic transit of glass beads; b) integrity of the enteric nervous system (ENS) by immunohistochemistry on ileal whole-mount preparations and western blot of protein lysates from ileal longitudinal muscle and myenteric plexus; c) isometric muscle tension with electric field and pharmacological (carbachol) stimulation of ileal segments; and d) intestinal inflammation by levels of tumor necrosis factor α, interleukin(IL)-1β, IL-10 and IL-4. Results S. boulardii CNCM I-745 improved HSV-1 induced intestinal dysmotility and alteration of intestinal transit observed ten weeks after IG inoculum of the virus. Also, the probiotic yeast ameliorated the structural alterations of the ENS induced by HSV-1 (i.e., reduced peripherin immunoreactivity and expression, increased glial S100β protein immunoreactivity and neuronal nitric oxide synthase level, reduced substance P-positive fibers). Moreover, S. boulardii CNCM I-745 diminished the production of HSV-1 associated pro-inflammatory cytokines in the myenteric plexus and increased levels of anti-inflammatory interleukins. Conclusions S. boulardii CNCM I-745 ameliorated gastrointestinal neuromuscular anomalies in a mouse model of gut dysfunctions typically observed with irritable bowel syndrome. PMID:28732069

  9. Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS.

    PubMed

    Brun, Paola; Scarpa, Melania; Marchiori, Chiara; Sarasin, Gloria; Caputi, Valentina; Porzionato, Andrea; Giron, Maria Cecilia; Palù, Giorgio; Castagliuolo, Ignazio

    2017-01-01

    We evaluated the effect of Saccharomyces boulardii CNCM I-745 on intestinal neuromuscular anomalies in an IBS-type mouse model of gastrointestinal motor dysfunctions elicited by Herpes Simplex Virus type 1 (HSV-1) exposure. Mice were inoculated intranasally with HSV-1 (102 PFU) or vehicle at time 0 and 4 weeks later by the intragastric (IG) route (108 PFU). Six weeks after IG inoculum, mice were randomly allocated to receive oral gavage with either S. boulardii (107 CFU/day) or vehicle. After 4 weeks the following were determined: a) intestinal motility using fluorescein-isothiocyanate dextran distribution in the gut, fecal pellet expulsion, stool water content, and distal colonic transit of glass beads; b) integrity of the enteric nervous system (ENS) by immunohistochemistry on ileal whole-mount preparations and western blot of protein lysates from ileal longitudinal muscle and myenteric plexus; c) isometric muscle tension with electric field and pharmacological (carbachol) stimulation of ileal segments; and d) intestinal inflammation by levels of tumor necrosis factor α, interleukin(IL)-1β, IL-10 and IL-4. S. boulardii CNCM I-745 improved HSV-1 induced intestinal dysmotility and alteration of intestinal transit observed ten weeks after IG inoculum of the virus. Also, the probiotic yeast ameliorated the structural alterations of the ENS induced by HSV-1 (i.e., reduced peripherin immunoreactivity and expression, increased glial S100β protein immunoreactivity and neuronal nitric oxide synthase level, reduced substance P-positive fibers). Moreover, S. boulardii CNCM I-745 diminished the production of HSV-1 associated pro-inflammatory cytokines in the myenteric plexus and increased levels of anti-inflammatory interleukins. S. boulardii CNCM I-745 ameliorated gastrointestinal neuromuscular anomalies in a mouse model of gut dysfunctions typically observed with irritable bowel syndrome.

  10. Rough and smooth morphotypes isolated from Lactobacillus farciminis CNCM I-3699 are two closely-related variants.

    PubMed

    Tareb, Raouf; Bernardeau, Marion; Horvath, Philippe; Vernoux, Jean-Paul

    2015-01-16

    This study focused on a pleomorphic strain Lactobacillus farciminis CNCM I-3699 known as probiotic for animal applications. On plating, this strain was characterized by the presence of rough and smooth morphotypes depending on experimental conditions. Dominant smooth (S) form, bright white, having smooth edges with moist, ropy, and creamy along with rough (R) form, pale white, having irregular edges and a dry and granular aspect were always obtained from the parent strain under aerobic culture conditions. In anaerobic conditions, only S form growth was observed. Biochemical dosage of capsular exopolysaccharides showed a significant difference between S and R forms (p<0.01), in agreement with a ropy or non ropy phenotype for the S or R form, respectively. These differences were confirmed by transmission electronic microscopy. The auto-aggregation profile revealed major differences in cultural behaviors. The R morphotype presented a highly auto-aggregative ability contrary to the S morphotype. However, biochemical and molecular analyses revealed that R and S morphotypes: 1) shared the same sugar fermentation pattern; 2) belonged to L. farciminis species using 16S rDNA sequencing; 3) had identical PFGE patterns using NotI and ApaI endonucleases; and 4) had identical CRISPR loci but different from those of other L. farciminis strains. Furthermore, the novelty and uniqueness of CRISPR spacer sequences in CNCM I-3699 provides a genetic support for the development of a molecular tracking tool for CNCM I-3699 and its variants. In conclusion, L. farciminis CNCM I-3699 is a pleomorphic strain giving reproducibly rise to two phenotypically distinct morphotypes R and S. This phenomenon may explain survival and growth abilities in in vitro fluctuating aerobic-anaerobic conditions along with modulation of exopolysaccharide synthesis and autoaggregation profile. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biochemical Characterization of CPS-1, a Subclass B3 Metallo-β-Lactamase from a Chryseobacterium piscium Soil Isolate.

    PubMed

    Gudeta, Dereje Dadi; Pollini, Simona; Docquier, Jean-Denis; Bortolaia, Valeria; Rossolini, Gian Maria; Guardabassi, Luca

    2015-12-14

    CPS-1 is a subclass B3 metallo-β-lactamase from a Chryseobacterium piscium isolate collected from soil, showing 68% amino acid identity to the GOB-1 enzyme. CPS-1 was overproduced in Escherichia coli Rosetta (DE3), purified by chromatography, and biochemically characterized. This enzyme exhibits a broad-spectrum substrate profile, including penicillins, cephalosporins, and carbapenems, which overall resembles those of L1, GOB-1, and acquired subclass B3 enzymes AIM-1 and SMB-1. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 reduces bacterial translocation in rats treated with carbon tetrachloride

    PubMed Central

    Sánchez, Elisabet; Nieto, Juan C.; Vidal, Silvia; Santiago, Alba; Martinez, Xavier; Sancho, Francesc J.; Sancho-Bru, Pau; Mirelis, Beatriz; Corominola, Helena; Juárez, Candido; Manichanh, Chaysavanh; Guarner, Carlos; Soriano, German

    2017-01-01

    Probiotics can prevent pathological bacterial translocation by modulating intestinal microbiota and improving the gut barrier. The aim was to evaluate the effect of a fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 on bacterial translocation in rats with carbon tetrachloride (CCl4)-induced cirrhosis. Sprague-Dawley rats treated with CCl4 were randomized into a probiotic group that received fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 in drinking water or a water group that received water only. Laparotomy was performed one week after ascites development. We evaluated bacterial translocation, intestinal microbiota, the intestinal barrier and cytokines in mesenteric lymph nodes and serum. Bacterial translocation decreased and gut dysbiosis improved in the probiotic group compared to the water group. The ileal β-defensin-1 concentration was higher and ileal malondialdehyde levels were lower in the probiotic group than in water group. There were no differences between groups in serum cytokines but TNF-α levels in mesenteric lymph nodes were lower in the probiotic group than in the water group. Fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 decreases bacterial translocation, gut dysbiosis and ileal oxidative damage and increases ileal β-defensin-1 expression in rats treated with CCl4, suggesting an improvement in the intestinal barrier integrity. PMID:28368023

  13. Saccharomyces boulardii CNCM I-745 in different clinical conditions.

    PubMed

    Dinleyici, Ener Cagri; Kara, Ates; Ozen, Metehan; Vandenplas, Yvan

    2014-11-01

    Saccharomyces boulardii is a well-known probiotic worldwide, and there are numerous studies including experimental and clinical trials in children and adults by the use of S. boulardii. The objective of the present report is to provide an update on the evidence for the efficacy of S. boulardii CNCM I-745 in different clinical conditions. Saccharomyces boulardii is one of the best-studied probiotics in acute gastroenteritis (AGE) and is shown to be safe and to reduce the duration of diarrhea and hospitalization by about 1 day. Saccharomyces boulardii is one of the recommended probiotics for AGE in children by European Society of Paediatric Infectious Diseases and European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). Saccharomyces boulardii is also a recommended probiotic for the prevention of antibiotic-associated diarrhea (AAD), and a recent study showed promising results for the treatment of AAD in children. There is insufficient evidence to recommend the long-term use of S. boulardii in patients with irritable bowel syndrome. Although some clinical studies showed positive effects of S. boulardii on inflammation, there is no clinical evidence that S. boulardii is useful in inflammatory bowel disease. Saccharomyces boulardii could be used in patients needing Helicobacter pylori eradication because the S. boulardii improves compliance, decreases the side effects and moderately increases the eradication rate. There are new promising results (improving feeding tolerance, shorten the course of hyperbilirubinemia), but we do still not recommend the routine use of S. boulardii in newborns. Saccharomyces boulardii CNCM I-745 is a good example for the statement that each probiotic needs to be taxonomically characterized and its efficacy and safety should be documented individually in different clinical settings.

  14. Individual growth of Heleobia piscium in natural populations (Gastropoda: Cochliopidae) from the multiple use natural Reserve Isla Martin Garcia, Buenos Aires, Argentina.

    PubMed

    Martin, S M

    2008-08-01

    The present work analyses the individual growth of Heleobia piscium in natural conditions in coastal drainage channels of the Multiple Use Natural Reserve Isla Martín García, Buenos Aires, Argentina. Isla Martín García is located in the Upper Río de la Plata, to the south of the mouth of the Uruguay river (34 degrees 11' 25" S and 58 degrees 15' 38" W). Monthly collections were made from July 2005 to July 2006 in the eastern part of the island (Arena Beach). The population of H. piscium showed a complex and dynamic structure of sizes during a long period of the annual cycle. Two cohorts could be detected. The Bertalanffy growth equation was: Lt = 6 (1-e -1.85 (t+0.38)) and Lt = 3.9 (1-e -0.19 (t+4.84)) for cohorts 1 and 2, respectively. The pattern of population growth displayed a staggered model, where the greatest growth is observed during the summer. The reproductive period occurred during six months, from the beginning of summer to middle of fall. Based on only one reproductive effort, this pattern is not similar to that of other cogeneric species already studied.

  15. 16S-23S rDNA intergenic spacer region polymorphism of Lactococcus garvieae, Lactococcus raffinolactis and Lactococcus lactis as revealed by PCR and nucleotide sequence analysis.

    PubMed

    Blaiotta, Giuseppe; Pepe, Olimpia; Mauriello, Gianluigi; Villani, Francesco; Andolfi, Rosamaria; Moschetti, Giancarlo

    2002-12-01

    The intergenic spacer region (ISR) between the 16S and 23S rRNA genes was tested as a tool for differentiating lactococci commonly isolated in a dairy environment. 17 reference strains, representing 11 different species belonging to the genera Lactococcus, Streptococcus, Lactobacillus, Enterococcus and Leuconostoc, and 127 wild streptococcal strains isolated during the whole fermentation process of "Fior di Latte" cheese were analyzed. After 16S-23S rDNA ISR amplification by PCR, species or genus-specific patterns were obtained for most of the reference strains tested. Moreover, results obtained after nucleotide analysis show that the 16S-23S rDNA ISR sequences vary greatly, in size and sequence, among Lactococcus garvieae, Lactococcus raffinolactis, Lactococcus lactis as well as other streptococci from dairy environments. Because of the high degree of inter-specific polymorphism observed, 16S-23S rDNA ISR can be considered a good potential target for selecting species-specific molecular assays, such as PCR primer or probes, for a rapid and extremely reliable differentiation of dairy lactococcal isolates.

  16. BP Piscium: its flaring disc imaged with SPHERE/ZIMPOL★

    NASA Astrophysics Data System (ADS)

    de Boer, J.; Girard, J. H.; Canovas, H.; Min, M.; Sitko, M.; Ginski, C.; Jeffers, S. V.; Mawet, D.; Milli, J.; Rodenhuis, M.; Snik, F.; Keller, C. U.

    2017-03-01

    Whether BP Piscium (BP Psc) is either a pre-main sequence T Tauri star at d ≈ 80 pc, or a post-main sequence G giant at d ≈ 300 pc is still not clear. As a first-ascent giant, it is the first to be observed with a molecular and dust disc. Alternatively, BP Psc would be among the nearest T Tauri stars with a protoplanetary disc (PPD). We investigate whether the disc geometry resembles typical PPDs, by comparing polarimetric images with radiative transfer models. Our Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)/Zurich IMaging Polarimeter (ZIMPOL) observations allow us to perform polarimetric differential imaging, reference star differential imaging, and Richardson-Lucy deconvolution. We present the first visible light polarization and intensity images of the disc of BP Psc. Our deconvolution confirms the disc shape as detected before, mainly showing the southern side of the disc. In polarized intensity the disc is imaged at larger detail and also shows the northern side, giving it the typical shape of high-inclination flared discs. We explain the observed disc features by retrieving the large-scale geometry with MCMAX radiative transfer modelling, which yields a strongly flared model, atypical for discs of T Tauri stars.

  17. Genome Sequence of Rough and Smooth Variants of Pleomorphic Strain Lactobacillus farciminis CNCM-I-3699

    PubMed Central

    Tareb, R.; Bernardeau, M.

    2015-01-01

    The probiotic Lactobacillus farciminis CNCM-I-3699 is a pleomorphic strain exhibiting smooth and rough variants. We report their complete genomes consisting of a chromosome of 2, 4 Mb and a plasmid of 6,417 bp. The smooth variant differs by the presence of an additional plasmid of 35,418 bp. PMID:26383668

  18. Genome Sequence of Rough and Smooth Variants of Pleomorphic Strain Lactobacillus farciminis CNCM-I-3699.

    PubMed

    Tareb, R; Bernardeau, M; Vernoux, J P

    2015-09-17

    The probiotic Lactobacillus farciminis CNCM-I-3699 is a pleomorphic strain exhibiting smooth and rough variants. We report their complete genomes consisting of a chromosome of 2, 4 Mb and a plasmid of 6,417 bp. The smooth variant differs by the presence of an additional plasmid of 35,418 bp. Copyright © 2015 Tareb et al.

  19. The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the B. anthracis LT toxin.

    PubMed

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-10-30

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  20. The Saccharomyces boulardii CNCM I-745 Strain Shows Protective Effects against the B. anthracis LT Toxin

    PubMed Central

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-01-01

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax. PMID:26529015

  1. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice.

    PubMed

    Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G; Smokvina, Tamara; Langella, Philippe

    2016-01-01

    Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

  2. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov.

    PubMed

    Steyn, P L; Segers, P; Vancanneyt, M; Sandra, P; Kersters, K; Joubert, J J

    1998-01-01

    Sixteen heparinase-producing isolates, related to Sphingobacterium heparinum, were grouped into three major clusters by SDS-PAGE and DNA-rRNA hybridizations. Based on a polyphasic approach, it was shown that isolates of two of these clusters and S. heparinum species belong to a new genus for which the name Pedobacter is proposed. The genus consists of Pedobacter heparinus comb. nov. (formerly Sphingobacterium heparinum), which is the type species, Pedobacter piscium comb. nov. (formerly Sphingobacterium piscium), Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. and four as-yet-unnamed DNA hybridization groups. All the previously named taxa can be discriminated by phenotypic features, but have strong overall similarities with representatives of the genus Sphingobacterium and the misclassified species [Flexibacter] canadensis. All these organisms constitute a separate rRNA branch in rRNA superfamily V for which the family Sphingobacteriaceae fam. nov. is proposed.

  3. AL Pictoris and FR Piscium: Two Regular Blazhko RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    de Ponthière, P.; Hambsch, F.-J.; Menzies, K.; Sabo, R.

    2014-12-01

    The results presented are a continuation of observing campaigns conducted by a small group of amateur astronomers interested in the Blazhko effect of RR Lyrae stars. The goal of these observations is to confirm the RR Lyrae Blazhko effect and to detect any additional Blazhko modulation which cannot be identified from all sky survey data-mining. The Blazhko effect of the two observed stars is confirmed, but no additional Blazhko modulations have been detected. The observation of the RR Lyrae star AL Pictoris during 169 nights was conducted from San Pedro de Atacama (Chile). From the observed light curve, 49 pulsation maxima have been measured. Fourier analyses of (O-C), magnitude at maximum light (Mmax), and the complete light curve have provided a confirmation of published pulsation and Blazhko periods, 0.548622 and 34.07 days, respectively. The second multi-longitude observation campaign focused on the RR Lyrae star FR Piscium and was performed from Europe, the United States, and Chile. Fourier analyses of the light curve and of 59 measured brightness maxima have improved the accuracy of pulsation and Blazhko periods to 0.45568 and 51.31 days, respectively. For both stars, no additional Blazhko modulations have been detected.

  4. Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider.

    PubMed

    Goodman, Laura B; Lawton, Marie R; Franklin-Guild, Rebecca J; Anderson, Renee R; Schaan, Lynn; Thachil, Anil J; Wiedmann, Martin; Miller, Claire B; Alcaine, Samuel D; Kovac, Jasna

    2017-11-01

    A strain of lactic acid bacteria, designated 159469 T , isolated from a facial abscess in a sugar glider, was characterized genetically and phenotypically. Cells of the strain were Gram-stain-positive, coccoid and catalase-negative. Morphological, physiological and phylogenetic data indicated that the isolate belongs to the genus Lactococcus. Strain 159469 T was closely related to Lactococcus garvieae ATCC 43921 T , showing 95.86 and 98.08 % sequence similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, a pairwise average nucleotide identity blast (ANIb) value of 93.54 % and in silico DNA-DNA hybridization value of 50.7  % were determined for the genome of strain 159469 T , when compared with the genome of the type strain of Lactococcus garvieae. Based on the data presented here, the isolate represents a novel species of the genus Lactococcus, for which the name Lactococcus petauri sp. nov. is proposed. The type strain is 159469 T (=LMG 30040 T =DSM 104842 T ).

  5. Transcriptome analysis and related databases of Lactococcus lactis.

    PubMed

    Kuipers, Oscar P; de Jong, Anne; Baerends, Richard J S; van Hijum, Sacha A F T; Zomer, Aldert L; Karsens, Harma A; den Hengst, Chris D; Kramer, Naomi E; Buist, Girbe; Kok, Jan

    2002-08-01

    Several complete genome sequences of Lactococcus lactis and their annotations will become available in the near future, next to the already published genome sequence of L. lactis ssp. lactis IL 1403. This will allow intraspecies comparative genomics studies as well as functional genomics studies aimed at a better understanding of physiological processes and regulatory networks operating in lactococci. This paper describes the initial set-up of a DNA-microarray facility in our group, to enable transcriptome analysis of various Gram-positive bacteria, including a ssp. lactis and a ssp. cremoris strain of Lactococcus lactis. Moreover a global description will be given of the hardware and software requirements for such a set-up, highlighting the crucial integration of relevant bioinformatics tools and methods. This includes the development of MolGenIS, an information system for transcriptome data storage and retrieval, and LactococCye, a metabolic pathway/genome database of Lactococcus lactis.

  6. Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider

    PubMed Central

    Goodman, Laura B.; Lawton, Marie R.; Franklin-Guild, Rebecca J.; Anderson, Renee R.; Schaan, Lynn; Thachil, Anil J.; Wiedmann, Martin; Miller, Claire B.; Alcaine, Samuel D.; Kovac, Jasna

    2017-01-01

    A strain of lactic acid bacteria, designated 159469T, isolated from a facial abscess in a sugar glider, was characterized genetically and phenotypically. Cells of the strain were Gram-stain-positive, coccoid and catalase-negative. Morphological, physiological and phylogenetic data indicated that the isolate belongs to the genus Lactococcus. Strain 159469T was closely related to Lactococcus garvieae ATCC 43921T, showing 95.86 and 98.08 % sequence similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, a pairwise average nucleotide identity blast (ANIb) value of 93.54 % and in silico DNA–DNA hybridization value of 50.7  % were determined for the genome of strain 159469T, when compared with the genome of the type strain of Lactococcus garvieae. Based on the data presented here, the isolate represents a novel species of the genus Lactococcus, for which the name Lactococcus petauri sp. nov. is proposed. The type strain is 159469T (=LMG 30040T=DSM 104842T). PMID:28945531

  7. Observations, Analysis, and Spectroscopic Classification of HO Piscium: A Bright Shallow-Contact Binary with G- and M-Type Components

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; Smith, Paul M.; Robb, Russell; Faulkner, Danny R.; Van Hamme, W.

    2012-07-01

    We present a spectrum and a photometric analysis of the newly discovered, high-amplitude, solar-type, eclipsing binary HO Piscium. A spectroscopic identification, a period study, q-search, and a simultaneous UBVRc Ic light-curve solution are presented. The spectra and our photometric solution indicate that HO Psc is a W-type W UMa shallow-contact (fill-out ˜8%) binary system. The primary component has a G6V spectral type with an apparently precontact spectral type of M2V for the secondary component. The small fill-out indicates that the system has not yet achieved thermal contact and thus has recently come into physical contact. This may mean that this solar-type binary system has not attained its ˜0.4 mass ratio via a long period of magnetic braking, as would normally be assumed.

  8. Genome Sequence of Lactococcus raffinolactis Strain 4877, Isolated from Natural Dairy Starter Culture

    PubMed Central

    Meslier, Victoria; Loux, Valentin

    2012-01-01

    The nonstarter lactic acid bacterium Lactococcus raffinolactis is prevalent in a wide range of environments, such as the dairy environment, but little is known about this species. Here, we present the draft genome of Lactococcus raffinolactis strain 4877, isolated from a natural mesophilic dairy starter culture. PMID:23105090

  9. Is the Young Star RZ Piscium Consuming Its Own (Planetary) Offspring?

    NASA Astrophysics Data System (ADS)

    Punzi, K. M.; Kastner, J. H.; Melis, C.; Zuckerman, B.; Pilachowski, C.; Gingerich, L.; Knapp, T.

    2018-01-01

    The erratically variable star RZ Piscium (RZ Psc) displays extreme optical dropout events and strikingly large excess infrared emission. To ascertain the evolutionary status of this intriguing star, we obtained observations of RZ Psc with the European Space Agency’s X-ray Multi-Mirror Mission (XMM-Newton), as well as high-resolution optical spectroscopy with the Hamilton Echelle on the Lick Shane 3 m telescope and with HIRES on the Keck I 10 m telescope. The optical spectroscopy data demonstrate that RZ Psc is a pre-main sequence star with an effective temperature of 5600 ± 75 K and log g of 4.35 ± 0.10. The ratio of X-ray to bolometric luminosity, {log}{L}X/{L}{bol}, lies in the range ‑3.7 to ‑3.2, consistent with ratios typical of young, solar-mass stars, thereby providing strong support for the young star status of RZ Psc. The Li absorption line strength of RZ Psc suggests an age in the range 30–50 Myr, which in turn implies that RZ Psc lies at a distance of ∼170 pc. Adopting this estimated distance, we find the Galactic space velocity of RZ Psc to be similar to the space velocities of stars in young moving groups near the Sun. Optical spectral features indicative of activity and/or circumstellar material are present in our spectra over multiple epochs, which provide evidence for the presence of a significant mass of circumstellar gas associated with RZ Psc. We suggest that the destruction of one or more massive orbiting bodies has recently occurred within 1 au of the star, and we are viewing the aftermath of such an event along the plane of the orbiting debris.

  10. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis - a review.

    PubMed

    Moré, Margret I; Swidsinski, Alexander

    2015-01-01

    The probiotic medicinal yeast Saccharomyces cerevisiae HANSEN CBS 5926 (Saccharomyces boulardii CNCM I-745) is used for the prevention and treatment of diarrhea. Its action is based on multiple mechanisms, including immunological effects, pathogen-binding and antitoxinic effects, as well as effects on digestive enzymes. Correlated with these effects, but also due to its inherent properties, S. boulardii is able to create a favorable growth environment for the beneficial intestinal microbiota, while constituting extra protection to the host mucus layer and mucosa. This review focuses on the positive influence of S. boulardii on the composition of the intestinal microbiota. In a dysbiosis, as during diarrhea, the main microbial population (especially Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Prevotellaceae) is known to collapse by at least one order of magnitude. This gap generally leads to transient increases in pioneer-type bacteria (Enterobacteriaceae, Bifidobacteriaceae, and Clostridiaceae). Several human studies as well as animal models demonstrate that treatment with S. boulardii in dysbiosis leads to the faster reestablishment of a healthy microbiome. The most relevant effects of S. boulardii on the fecal composition include an increase of short chain fatty acid-producing bacteria (along with a rise in short chain fatty acids), especially of Lachnospiraceae and Ruminococcaceae, as well as an increase in Bacteroidaceae and Prevotellaceae. At the same time, there is a suppression of pioneer bacteria. The previously observed preventive action of S. boulardii, eg, during antibiotic therapy or regarding traveler's diarrhea, can be explained by several mechanisms, including a stabilizing effect on the healthy microbiota as well as possibly on the mucus layer. Several different dysbiotic situations could profit from the effects of S. boulardii CNCM I-745. Its additional potential lies in a general stabilization of the gut flora for at-risk populations

  11. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae.

    PubMed

    Sequeiros, Cynthia; Garcés, Marisa E; Vallejo, Marisol; Marguet, Emilio R; Olivera, Nelda L

    2015-04-01

    Bacteriocin-producing Lactococcus lactis TW34 was isolated from marine fish. TW34 bacteriocin inhibited the growth of the fish pathogen Lactococcus garvieae at 5 AU/ml (minimum inhibitory concentration), whereas the minimum bactericidal concentration was 10 AU/ml. Addition of TW34 bacteriocin to L. garvieae cultures resulted in a decrease of six orders of magnitude of viable cells counts demonstrating a bactericidal mode of action. The direct detection of the bacteriocin activity by Tricine-SDS-PAGE showed an active peptide with a molecular mass ca. 4.5 kDa. The analysis by MALDI-TOF-MS detected a strong signal at m/z 2,351.2 that corresponded to the nisin leader peptide mass without the initiating methionine, whose sequence STKDFNLDLVSVSKKDSGASPR was confirmed by MS/MS. Sequence analysis of nisin structural gene confirmed that L. lactis TW34 was a nisin Z producer. This nisin Z-producing strain with probiotic properties might be considered as an alternative in the prevention of lactococcosis, a global disease in aquaculture systems.

  12. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis – a review

    PubMed Central

    Moré, Margret I; Swidsinski, Alexander

    2015-01-01

    The probiotic medicinal yeast Saccharomyces cerevisiae HANSEN CBS 5926 (Saccharomyces boulardii CNCM I-745) is used for the prevention and treatment of diarrhea. Its action is based on multiple mechanisms, including immunological effects, pathogen-binding and antitoxinic effects, as well as effects on digestive enzymes. Correlated with these effects, but also due to its inherent properties, S. boulardii is able to create a favorable growth environment for the beneficial intestinal microbiota, while constituting extra protection to the host mucus layer and mucosa. This review focuses on the positive influence of S. boulardii on the composition of the intestinal microbiota. In a dysbiosis, as during diarrhea, the main microbial population (especially Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Prevotellaceae) is known to collapse by at least one order of magnitude. This gap generally leads to transient increases in pioneer-type bacteria (Enterobacteriaceae, Bifidobacteriaceae, and Clostridiaceae). Several human studies as well as animal models demonstrate that treatment with S. boulardii in dysbiosis leads to the faster reestablishment of a healthy microbiome. The most relevant effects of S. boulardii on the fecal composition include an increase of short chain fatty acid-producing bacteria (along with a rise in short chain fatty acids), especially of Lachnospiraceae and Ruminococcaceae, as well as an increase in Bacteroidaceae and Prevotellaceae. At the same time, there is a suppression of pioneer bacteria. The previously observed preventive action of S. boulardii, eg, during antibiotic therapy or regarding traveler’s diarrhea, can be explained by several mechanisms, including a stabilizing effect on the healthy microbiota as well as possibly on the mucus layer. Several different dysbiotic situations could profit from the effects of S. boulardii CNCM I-745. Its additional potential lies in a general stabilization of the gut flora for at-risk populations

  13. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    PubMed

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J; Romero, Fernando; Gil, Angel

    2013-01-01

    Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro

  14. Cell-Free Culture Supernatant of Bifidobacterium breve CNCM I-4035 Decreases Pro-Inflammatory Cytokines in Human Dendritic Cells Challenged with Salmonella typhi through TLR Activation

    PubMed Central

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J.; Romero, Fernando; Gil, Angel

    2013-01-01

    Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro

  15. Antimicrobial susceptibilities and random amplified polymorphic DNA-PCR fingerprint characterization of Lactococcus lactis ssp. lactis and Lactococcus garvieae isolated from bovine intramammary infections.

    PubMed

    Plumed-Ferrer, C; Barberio, A; Franklin-Guild, R; Werner, B; McDonough, P; Bennett, J; Gioia, G; Rota, N; Welcome, F; Nydam, D V; Moroni, P

    2015-09-01

    In total, 181 streptococci-like bacteria isolated from intramammary infections (IMI) were submitted by a veterinary clinic to Quality Milk Production Services (QMPS, Cornell University, Ithaca, NY). The isolates were characterized by sequence analysis, and 46 Lactococcus lactis ssp. lactis and 47 Lactococcus garvieae were tested for susceptibility to 17 antibiotics. No resistant strains were found for β-lactam antibiotics widely used in clinical practice (penicillin, ampicillin, and amoxicillin), and all minimum inhibitory concentrations (MIC) were far from the resistance breakpoints. Eight strains had MIC intermediate to cefazolin. The random amplification of polymorphic DNA (RAPD)-PCR fingerprint patterns showed a slightly higher heterogeneity for Lc. lactis ssp. lactis isolates than for Lc. garvieae isolates. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. A Food-Grade Cloning System for Industrial Strains of Lactococcus lactis

    PubMed Central

    Sørensen, Kim I.; Larsen, Rasmus; Kibenich, Annette; Junge, Mette P.; Johansen, Eric

    2000-01-01

    We have previously reported the construction of a food-grade cloning vector for Lactococcus using the ochre suppressor, supB, as the selective marker. This vector, pFG1, causes only a slight growth inhibition in the laboratory strain MG1363 but is unstable in the industrial strains tested. As supB suppresses both amber and ochre stop codons, which are present in 82% of all known lactococcal genes, this undesirable finding may result from the accumulation of elongated mistranslated polypeptides. Here, we report the development of a new food-grade cloning vector, pFG200, which is suitable for overexpressing a variety of genes in industrial strains of Lactococcus lactis. The vector uses an amber suppressor, supD, as selectable marker and consists entirely of Lactococcus DNA, with the exception of a small polylinker region. Using suppressible pyrimidine auxotrophs, selection and maintenance are efficient in any pyrimidine-free medium including milk. Importantly, the presence of this vector in a variety of industrial strains has no significant effect on the growth rate or the rate of acidification in milk, making this an ideal system for food-grade modification of industrially relevant L. lactis strains. The usefulness of this system is demonstrated by overexpressing the pepN gene in a number of industrial backgrounds. PMID:10742196

  17. Lactococcus lactis NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum

    PubMed Central

    Zuercher, Adrian W.; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick

    2012-01-01

    Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms. PMID:21961022

  18. Lactococcus lactis NCC 2287 alleviates food allergic manifestations in sensitized mice by reducing IL-13 expression specifically in the ileum.

    PubMed

    Zuercher, Adrian W; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick

    2012-01-01

    Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms.

  19. Nisin-Producing Lactococcus lactis Strains Isolated from Human Milk

    PubMed Central

    Beasley, Shea S.; Saris, Per E. J.

    2004-01-01

    Characterization by partial 16S rRNA gene sequencing, ribotyping, and green fluorescent protein-based nisin bioassay revealed that 6 of 20 human milk samples contained nisin-producing Lactococcus lactis bacteria. This suggests that the history of humans consuming nisin is older than the tradition of consuming fermented milk products. PMID:15294850

  20. Antagonistic lactic acid bacteria isolated from goat milk and identification of a novel nisin variant Lactococcus lactis

    PubMed Central

    2014-01-01

    Background The raw goat milk microbiota is considered a good source of novel bacteriocinogenic lactic acid bacteria (LAB) strains that can be exploited as an alternative for use as biopreservatives in foods. The constant demand for such alternative tools justifies studies that investigate the antimicrobial potential of such strains. Results The obtained data identified a predominance of Lactococcus and Enterococcus strains in raw goat milk microbiota with antimicrobial activity against Listeria monocytogenes ATCC 7644. Enzymatic assays confirmed the bacteriocinogenic nature of the antimicrobial substances produced by the isolated strains, and PCR reactions detected a variety of bacteriocin-related genes in their genomes. Rep-PCR identified broad genetic variability among the Enterococcus isolates, and close relations between the Lactococcus strains. The sequencing of PCR products from nis-positive Lactococcus allowed the identification of a predicted nisin variant not previously described and possessing a wide inhibitory spectrum. Conclusions Raw goat milk was confirmed as a good source of novel bacteriocinogenic LAB strains, having identified Lactococcus isolates possessing variations in their genomes that suggest the production of a nisin variant not yet described and with potential for use as biopreservatives in food due to its broad spectrum of action. PMID:24521354

  1. Determination of the carbonate dissolution mechanism of Lactococcus sp.

    NASA Astrophysics Data System (ADS)

    Yanmiş, Derya; Orhan, Furkan; Güllüce, Medine; Şahin, Fikrettin

    2017-04-01

    Magnesite, the main source for magnesium and magnesium derivatives, are also commonly used in the production of caustic, dead-burned and fused magnesia. World magnesite resources are estimated to be at 12 billion tonnes mostly located in China, Russia, North Korea, Australia and Turkey. Turkey is the second producer of the magnesite. Magnesite deposits in Turkey are sedimentary magnesite which have been formed in specific conditions as high concentrations of MgSO4 and CO2 and presence of certain organic salts or created by hot or cold dissolution connected with carbonate rocks mainly with dolomites. According to the genesis of magnesite deposits, they have some impurities as calcium, quartz, iron, etc. Impurities of magnesite, especially CaCO3, reduce its economic value and industrial usability. In our previous study, we have performed biotechnologically enrichment of magnesite by Lactococcus sp., which gave significantly important results. However, we had no information about carbonate dissolution mechanism of bacteria. Therefore, it is aimed to reveal the metabolites of Lactococcus sp. and mechanism leading to the carbonate dissolution (MgCO3 and CaCO3).

  2. [Saccharomyces boulardii CNCM I-745 influences the gut-associated immune system].

    PubMed

    Stier, Heike; Bischoff, Stephan C

    2017-06-01

    The impact of the intestinal microbiome is increasing steadily with regard to the immune function und the defense against pathogens. The medicinal yeast Saccharomyces boulardii CNCM I-745 (S. boulardii) has been used as probiotic for the prevention and treatment of infectious diarrhea since more than 50 years. Meta-analyses confirm the clinical efficacy of S. boulardii to treat diarrhea of various origins in children and adults. This review article summarizes experimental studies on molecular and immunological mechanisms which explain the proven clinical efficacy of S. boulardii. Thereby the focus is on the gut-associated immune system. S. boulardii stimulates the release of immunoglobulins and cytokines and also induces the maturation of immune cells. This suggests that S. boulardii is capable of activating the unspecific immune system. In case of an infection, S. boulardii is able to bind pathogenic bacteria and to neutralize their toxins. Moreover, the medicinal yeast can attenuate the overreacting inflammatory immune response, by interfering with the signaling cascade, which is induced by the infection, and that way influences the innate and adaptive immune system. Thanks to these mechanisms the pathogens' potential of adhesion is lessened. Thus the intestinal epithelial layer is protected and diarrhea-induced fluid loss is reduced. The different molecular and immunological mechanisms investigated in the experimental studies prove the already confirmed very good clinical efficacy of S. boulardii in infectious diarrhea caused by pathogens such as bacteria, viruses, and fungi.

  3. Antioxidant and hypolipidemic effects of soymilk fermented via Lactococcus acidophilus MF204.

    PubMed

    Chen, Jie; Wu, Yan; Yang, Chunmei; Xu, Xuejiao; Meng, Yuecheng

    2017-12-13

    Previous studies have shown that fermentations can enhance the bioactivity and absorption rate of soybean products. Fermented soybean products can alleviate hyperlipidemia and decrease risks of atherosclerosis and cardiovascular diseases. This study aimed to investigate the effects and mechanisms of soymilk fermented by Lactococcus acidophilus on blood lipids and antioxidant enzyme activities of rats fed with a high fat diet. Sixty rats were randomly assigned to six groups: normal control group (NC), high-fat control group (HFC), positive control group (cholestyramine, PC), Lactococcus acidophilus group (LA), soymilk group (SM), and fermented soymilk group (FSM), respectively. The NC group was fed with a basic diet, while the other groups were fed with a high-fat diet. After the experimental period (6 W), rats were sacrificed by decapitation. Blood and liver were collected to measure the concentrations of lipids and antioxidant enzyme activities. Results demonstrated that fermented soymilk could regulate lipid levels, restore HDL-c and TG to normal levels, and lower the concentrations of LDL-c than hypolipidemic drugs in hyperlipidemia rats. More importantly, fermented soymilk caused significant reduction in arteriosclerosis index and coronary risk index. Fermented soymilk also improved antioxidant capacities of hyperlipidemia rats. The increase of aglycone isoflavones in fermented soymilk could explain the above phenomena. In conclusion, soymilk fermented by Lactococcus acidophilus reduced risks of arteriosclerosis and coronary heart disease by regulating lipid levels and improving the antioxidant capacities of hyperlipidemia rats.

  4. Draft Genome Sequence of Magnesium-Dissolving Lactococcus garvieae A1, Isolated from Soil

    PubMed Central

    Altın, Gonca; Şahin, Fikrettin

    2017-01-01

    ABSTRACT The probiotic bacterium Lactococcus garvieae A1, isolated from soil, is interesting for biomining applications. Here, we report the draft genome sequence and annotation of this strain, with a focus on metal transporter enzymes. PMID:28546485

  5. Identification of Lactococcus-Specific Bacteriocins Produced by Lactococcal Isolates, and the Discovery of a Novel Bacteriocin, Lactococcin Z.

    PubMed

    Ishibashi, Naoki; Seto, Hiromi; Koga, Shoko; Zendo, Takeshi; Sonomoto, Kenji

    2015-09-01

    Lactic acid bacteria that produce Lactococcus-specific bacteriocins were isolated and identified as Lactococcus lactis from fresh corn or lettuce. Among them, four isolates were identified as lactococcin Q producers. Seven isolates showed antimicrobial activity against a lactococcin Q producer, L. lactis QU 4, as well as against nisin Z and lacticin Q producers belonging to L. lactis. Strain QU 7 was selected as a standard strain and showed no cross-immunity to lactococcin Q or other lactococcal bacteriocins. The bacteriocin produced by strain QU 7 was purified in three chromatographic steps, and its molecular mass was determined to be 5041.35 Da. The amino acid sequence analysis revealed that it is a novel class IId bacteriocin, referred to as lactococcin Z. It consisted of 45 amino acid residues. The lczA gene encoding the prepeptide of lactococcin Z showed homology to lactococcins A, B, and M. Thus, this report demonstrates a new example of Lactococcus-specific bacteriocins.

  6. Saccharomyces boulardii CNCM I-745 reduces the duration of diarrhoea, length of emergency care and hospital stay in children with acute diarrhoea.

    PubMed

    Dinleyici, E C; Kara, A; Dalgic, N; Kurugol, Z; Arica, V; Metin, O; Temur, E; Turel, O; Guven, S; Yasa, O; Bulut, S; Tanir, G; Yazar, A S; Karbuz, A; Sancar, M; Erguven, M; Akca, G; Eren, M; Ozen, M; Vandenplas, Y

    2015-01-01

    Evidence from the literature has shown that Saccharomyces boulardii provides a clinically significant benefit in the treatment of acute infectious diarrhoea in children. In this multicentre, randomised, prospective, controlled, single blind clinical trial performed in children with acute watery diarrhoea, we aimed to evaluate the impact of S. boulardii CNCM I-745 in hospitalised children, in children requiring emergency care unit (ECU) stay and in outpatient settings. The primary endpoint was the duration of diarrhoea (in hours). Secondary outcome measures were duration of hospitalisation and diarrhoea at the 3(rd) day of intervention. In the whole study group (363 children), the duration of diarrhoea was approximately 24 h shorter in the S. boulardii group (75.4±33.1 vs 99.8±32.5 h, P<0.001). The effect of S. boulardii (diarrhoea-free children) was observed starting at 48 h. After 72 h, only 27.3% of the children receiving probiotic still had watery diarrhoea, in contrast to 48.5% in the control group (P<0.001). The duration of diarrhoea was significantly reduced in the probiotic group in hospital, ECU and outpatient settings (P<0.001, P<0.01 and P<0.001, respectively). The percentage of diarrhoea-free children was significantly larger after 48 and 72 h in all settings. The mean length of hospital stay was shorter with more than 36 h difference in the S. boulardii group (4.60±1.72 vs 6.12±1.71 days, P<0.001). The mean length of ECU stay was shorter with more than 19 h difference in the probiotic group (1.20±0.4 vs 2.0±0.3 days, P<0.001). No adverse effects related to the probiotic were noted. Because treatment can shorten the duration of diarrhoea and reduce the length of ECU and hospital stay, there is likely a social and economic benefit of S. boulardii CNCM I-745 in adjunction to oral rehydration solution in acute infectious gastroenteritis in children.

  7. Draft Genome Sequence of Magnesium-Dissolving Lactococcus garvieae A1, Isolated from Soil.

    PubMed

    Altın, Gonca; Nikerel, Emrah; Şahin, Fikrettin

    2017-05-25

    The probiotic bacterium Lactococcus garvieae A1, isolated from soil, is interesting for biomining applications. Here, we report the draft genome sequence and annotation of this strain, with a focus on metal transporter enzymes. Copyright © 2017 Altın et al.

  8. Effect of transportation on fecal bacterial communities and fermentative activities in horses: impact of Saccharomyces cerevisiae CNCM I-1077 supplementation.

    PubMed

    Faubladier, C; Chaucheyras-Durand, F; da Veiga, L; Julliand, V

    2013-04-01

    This study evaluated the effect of transportation on fecal bacterial communities and activities in horses with or without supplementation of live yeast and attempted to link those effects with changes in blood stress markers. Four mature horses were assigned to a crossover design and fed a basal diet (60:40 forage to concentrate; 1.45% BW on a DM basis), with or without supplementation, of 2 × 10(10) cfu/d of Saccharomyces cerevisiae CNCM I-1077. After a 14-d adaptation to dietary treatments, the 5-d experiment started 1 d before transportation (d -1). At d 0, horses were simultaneously transported in a truck for 2 h. Feces were sampled 4 h after the morning meal of concentrate at d -1, 0 (immediately after transportation), and 3 for enumeration of the main functional bacterial groups and determination of fermentative variables. Within each dietary treatment, feces were pooled before DNA extraction and molecular analysis of the bacterial communities, using temporal temperature gradient electrophoreses (TTGE). Blood samples were collected at the same time for determination of white blood cells (WBC) counts and glucose and total protein concentrations. Regardless of dietary treatment, the neutrophil to lymphocyte ratio increased during transportation (P < 0.01), indicating that horses were stressed. In both treatments, TTGE profiles were clearly different before and 3 d after transportation, and the percentage of similarity between profiles at d -1 and 3 was greater in supplemented horses compared with the controls. From d 0 to 3, the molar percentage of propionate increased and total concentration of VFA and the acetate + butyrate to propionate ratio decreased, regardless of dietary treatment (P < 0.01, P = 0.02, and P < 0.01, respectively), whereas pH decreased only in control horses (P = 0.03). Regardless of day of sampling, fecal concentrations of lactate-utilizing bacteria and cellulolytic bacteria were greater in supplemented horses than in control horses (P

  9. Portal vein thrombosis and liver abscess due to Lactococcus lactis.

    PubMed

    Güz, Galip; Yeğin, Zeynep Arzu; Doğan, Ibrahim; Hizel, Kenan; Bali, Musa; Sindel, Sükrü

    2006-06-01

    A 26-year-old man was admitted with fever and abdominal pain. Abdominal ultrasonography and Doppler ultrasound eventually revealed portal vein thrombosis and a pyogenic liver abscess (17x11x11 cm). Lactococcus lactis was isolated from a culture of the abscess material. This organism is not a common pathogen in humans. This is the first published description of portal vein thrombosis and pyogenic liver abscess due to L. lactis.

  10. Suppression of oral tolerance by Lactococcus lactis in mice.

    PubMed

    Sakai, Tohru; Hirota, Yuko; Nakamoto, Mariko; Shuto, Emi; Hosaka, Toshio; Makino, Seiya; Ikegami, Shuji

    2011-01-01

    Although oral ovabumin (OVA) administration suppressed the antibody (Ab) response in OVA-immunized mice, Lactococcus lactis increased OVA-specific IgG2a in these mice. L. lactis increased the casein-specific IgG level in NC/Nga mice fed on a casein diet. The percentage of CD4(+)CD25(+) cells was increased in DO11.10 mice orally given OVA, but this increase of CD4(+)CD25(+) cells were suppressed in L. lactis-fed DO11.10 mice.

  11. Comparison of the acidifying activity of Lactococcus lactis subsp. lactis strains isolated from goat's milk and Valdeteja cheese.

    PubMed

    Alonso-Calleja, C; Carballo, J; Capita, R; Bernardo, A; García-López, M L

    2002-01-01

    This work was carried out to study the acid production by Lactococcus lactis subsp. lactis strains isolated from goat's milk and goat cheese (Valdeteja variety) in order to select a suitable starter culture for industrial goat cheese manufacturing. The titrable acidity of 45 Lactococcus lactis subsp. lactis strains isolated from a home-made batch of Valdeteja cheese with excellent sensory characteristics was measured over a period of 18 h. The strains were divided into two groups depending on the acid production rate: 20 fast acid producer (F) strains and 25 slow acid producer (S) strains. The kinetic parameters (lag phase, maximum acid production rate and value of upper asymptote curve) of the acid production curves for F and S strains were significantly (P < 0.001) different. Significant (P < 0.001) differences between titrable acidity of F and S strains were observed after the second hour of incubation. An F strain acetoin producer (Lactococcus lactis subsp. lactis 470Ch2) was selected as autochthonous starter culture for industrial Valdeteja goat cheese manufacturing.

  12. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp.

    PubMed

    Król, A; Pomastowski, P; Rafińska, K; Railean-Plugaru, V; Walczak, J; Buszewski, B

    2018-01-01

    The aim of the study was to neutralize zearalenone by lactic acid bacteria (LAB) such as Lactococcus lactis and Bifidobacterium sp. and investigate the mechanism of zearalenone (ZEA) binding. Neutralization of ZEA by LAB was confirmed by identification of binding kinetics and spectroscopic studies such as Fourier transform infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The obtained results showed that the kinetic process of zearalenone binding to L. lactis is not homogeneous but is expressed with an initial rapid stage with about 90% of ZEA biosorption and with a much slower second step. In case of Bifidobacterium sp., the neutralization process is homogeneous; the main stage can be described with about 88% of ZEA biosorption. MALDI-TOF-MS measurements and FTIR analysis confirmed the uptake of zearalenone molecules by bacterial species. Moreover, the assessment of dead and live lactic acid bacteria cells after zearalenone treatment was performed using fluorescence microscopy. Graphical abstract Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. was confirmed by identification of binding kinetics and spectroscopic studies such as FT-IR spectroscopy and MALDI-TOF-MS spectrometry. The mechanism of ZEA binding was also investigated.

  13. Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system.

    PubMed

    Stier, Heike; Bischoff, Stephan C

    2016-01-01

    The probiotic Saccharomyces boulardii CNCM I-745 (also known as Saccharomyces cerevisiae HANSEN CBS 5926; in the following S. boulardii ) has proven its effectiveness in preventive and therapeutic treatment of many gastrointestinal diseases, especially diseases associated with acute diarrhea. In particular, antibiotic-associated diarrhea, Clostridium difficile -associated diarrhea, traveller's diarrhea, as well as acute diarrhea due to common viral and bacterial infections in children and adults. The aim of this review is to summarize the experimental studies elucidating the molecular and immunological mechanisms by which these clinically proven effects are archived, with an emphasis on the gut-associated immune system. The main focus is laid on anti-inflammatory and immune-modulatory action of S. boulardii involved in bacterial or enterotoxin-mediated diarrhea and inflammation. An attempt is made to differentiate between the effects associated with cellular versus soluble factors and between prophylactic and therapeutic effects. A literature search was performed in PubMed/PubMed Central for the effects of S. boulardii on the gut-associated immune system (focus acute diarrhea). S. boulardii exhibits its positive effect by the direct effects on pathogens or their toxins as well as by influencing the host's infection-induced signaling cascades and its innate and adaptive immune system. The combination of these mechanisms results in a reduction of the pathogens' ability for adhesion or colonization and an attenuation of the overreacting inflammatory immune response. Thereby, the integrity of the intestinal epithelial cell layer is preserved or restored, and the diarrheic leakage of fluids into the intestinal lumen is attenuated.

  14. Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171.

    PubMed

    Kumari, Archana; Akkoç, Nefise; Akçelik, Mustafa

    2012-04-01

    Lactic acid bacteria (LAB) are possessing ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this regard, novel bacteriocin compound secreting capability of LAB isolated from Tulum Cheese in Turkey was demonstrated. The synthesized bacteriocin was purified by ammonium sulphate precipitation, dialysis and gel filtration. The molecular weight (≈3.4 kDa) of obtained bacteriocin was confirmed by SDS-PAGE, which revealed single peptide band. Molecular identification of LAB strain isolated from Tulum Cheese was conducted using 16S rDNA gene sequencing as Lactococcus lactis ssp. lactis LL171. The amino acid sequences (KKIDTRTGKTMEKTEKKIELSLKNMKTAT) of the bacteriocin from Lactococcus lactis ssp. lactis LL171 was found unique and novel than reported bacteriocins. Further, the bacteriocin was possessed the thermostable property and active at wide range of pH values from 1 to 11. Thus, bacteriocin reported in this study has the potential applications property as food preservative agent.

  15. Secreted expression of Leuconostoc mesenteroides glucansucrase in Lactococcus lactis for the production of insoluble glucans

    USDA-ARS?s Scientific Manuscript database

    We expressed a glucansucrase, DsrI, from Leuconostoc mesenteroides that catalyzes formation of water-insoluble glucans from sucrose in Lactococcus lactis using a nisin-controlled gene expression system. Production of DsrI was optimized using several different background vectors, signal peptides, str...

  16. Draft Genome Sequence of the Putrescine-Producing Strain Lactococcus lactis subsp. lactis 1AA59

    PubMed Central

    del Rio, Beatriz; Linares, Daniel M.; Fernandez, María; Mayo, Baltasar; Martín, M. Cruz

    2015-01-01

    We report here the 2,576,542-bp genome annotated draft assembly sequence of Lactococcus lactis subsp. lactis 1AA59. This strain—isolated from a traditional cheese—produces putrescine, one of the most frequently biogenic amines found in dairy products. PMID:26089428

  17. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Pérez, Tania; Balcázar, José Luis; Peix, Alvaro; Valverde, Angel; Velázquez, Encarna; de Blas, Ignacio; Ruiz-Zarzuela, Imanol

    2011-08-01

    The species Lactococcus lactis currently includes three subspecies; L. lactis subsp. lactis and L. lactis subsp. cremoris, isolated from milk sources, and L. lactis subsp. hordniae, isolated from the leafhopper Hordnia circellata. In this study, three strains, designated L105(T), I3 and L101, were isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). These strains were closely related to members of the species Lactococcus lactis. Strain L105(T) showed 99.4 % 16S rRNA gene sequence similarity to that of the type strains L. lactis subsp. lactis NCDO 604(T) and L. lactis subsp. hordniae NCDO 2181(T) and showed 99.9 % similarity to the type strain Lactococcus lactis subsp. cremoris NCDO 607(T). Analysis of two housekeeping genes, rpoB and recA, confirmed the close relationship between the novel strains and L. lactis subsp. cremoris with similarities of 99.3 and 99.7 %, respectively. The three strains could, however, be differentiated from their closest relatives on the basis of several phenotypic characteristics, as was the case for L. lactis subsp. lactis and L. lactis subsp. hordniae, which were also closely related on the basis of 16S rRNA, rpoB and recA gene sequence similarities. The strains isolated in this study represent a new subspecies, for which the name Lactococcus lactis subsp. tructae subsp. nov. is proposed. The type strain is L105(T) ( = LMG 24662(T)  = DSM 21502(T)).

  18. Lactococcus lactis-based vaccines: current status and future perspectives.

    PubMed

    Bahey-El-Din, Mohammed; Gahan, Cormac G M

    2011-01-01

    Lactococcus lactis offers significant potential as a platform for the delivery of vaccines especially via mucosal routes of administration. The organism has an established history of safe use in the food industry and is highly amenable to genetic manipulation, with many systems available for efficient production of secreted and surface-expressed proteins. Here we describe the benefits of using this organism as a vaccine delivery platform and outline how L. lactis based antigen delivery may be improved. Finally we discuss the safe use of L. lactis vectors and outline the potential for use of biological containment systems and killed lactococcal preparations.

  19. Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system

    PubMed Central

    Stier, Heike; Bischoff, Stephan C

    2016-01-01

    Background The probiotic Saccharomyces boulardii CNCM I-745 (also known as Saccharomyces cerevisiae HANSEN CBS 5926; in the following S. boulardii) has proven its effectiveness in preventive and therapeutic treatment of many gastrointestinal diseases, especially diseases associated with acute diarrhea. In particular, antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, traveller’s diarrhea, as well as acute diarrhea due to common viral and bacterial infections in children and adults. Aim The aim of this review is to summarize the experimental studies elucidating the molecular and immunological mechanisms by which these clinically proven effects are archived, with an emphasis on the gut-associated immune system. The main focus is laid on anti-inflammatory and immune-modulatory action of S. boulardii involved in bacterial or enterotoxin-mediated diarrhea and inflammation. An attempt is made to differentiate between the effects associated with cellular versus soluble factors and between prophylactic and therapeutic effects. Methods A literature search was performed in PubMed/PubMed Central for the effects of S. boulardii on the gut-associated immune system (focus acute diarrhea). Results and conclusion S. boulardii exhibits its positive effect by the direct effects on pathogens or their toxins as well as by influencing the host’s infection-induced signaling cascades and its innate and adaptive immune system. The combination of these mechanisms results in a reduction of the pathogens’ ability for adhesion or colonization and an attenuation of the overreacting inflammatory immune response. Thereby, the integrity of the intestinal epithelial cell layer is preserved or restored, and the diarrheic leakage of fluids into the intestinal lumen is attenuated. PMID:27695355

  20. Probiotic Saccharomyces boulardii CNCM I-745 prevents outbreak-associated Clostridium difficile-associated cecal inflammation in hamsters

    PubMed Central

    Koon, Hon Wai; Su, Bowei; Xu, Chunlan; Mussatto, Caroline C.; Tran, Diana Hoang-Ngoc; Lee, Elaine C.; Ortiz, Christina; Wang, Jiani; Lee, Jung Eun; Ho, Samantha; Chen, Xinhua; Kelly, Ciaran P.

    2016-01-01

    C. difficile infection (CDI) is a common debilitating nosocomial infection associated with high mortality. Several CDI outbreaks have been attributed to ribotypes 027, 017, and 078. Clinical and experimental evidence indicates that the nonpathogenic yeast Saccharomyces boulardii CNCM I-745 (S.b) is effective for the prevention of CDI. However, there is no current evidence suggesting this probiotic can protect from CDI caused by outbreak-associated strains. We used established hamster models infected with outbreak-associated C. difficile strains to determine whether oral administration of live or heat-inactivated S.b can prevent cecal tissue damage and inflammation. Hamsters infected with C. difficile strain VPI10463 (ribotype 087) and outbreak-associated strains ribotype 017, 027, and 078 developed severe cecal inflammation with mucosal damage, neutrophil infiltration, edema, increased NF-κB phosphorylation, and increased proinflammatory cytokine TNFα protein expression. Oral gavage of live, but not heated, S.b starting 5 days before C. difficile infection significantly reduced cecal tissue damage, NF-κB phosphorylation, and TNFα protein expression caused by infection with all strains. Moreover, S.b-conditioned medium reduced cell rounding caused by filtered supernatants from all C. difficile strains. S.b-conditioned medium also inhibited toxin A- and B-mediated actin cytoskeleton disruption. S.b is effective in preventing C. difficile infection by outbreak-associated via inhibition of the cytotoxic effects of C. difficile toxins. PMID:27514478

  1. Usefulness of FTIR spectroscopy to distinguish rough and smooth variants of Lactobacillus farciminis CNCM-I-3699.

    PubMed

    Tareb, R; Bernardeau, M; Amiel, C; Vernoux, J P

    2017-02-01

    In this study, the potential of Fourier transform infrared (FTIR) spectroscopy for assessing putative biochemical and structural differences between the two variants, rough (R) and smooth (S), of Lactobacillus farciminis CNCM-I-3699, a pleomorphic strain, was investigated. The main differences observed were localized in the polysaccharide (1200-900 cm-1) and protein (1700-1500 cm-1) regions. Based on spectral information in these two spectral ranges, clustering resulted in a dendrogram that showed a clear discrimination between both morphotypes. Significant increases in favor of morphotype S compared to R at specific wavenumbers for polysaccharides (22.18% vs. 5.24% at 1068 cm-1) and capsular polysaccharides (16% vs. 13.17% at 1048 cm-1) were recorded. Compared to S, the morphotype R exhibits a 1.27-fold higher signal at the wavenumber of 1637 cm-1 assigned to the amide I β-sheet and a 2.71-fold higher signal at the wavenumber of 1513 cm-1 assigned to the tyrosine involved in the β-sheet arrangement of proteins. The FTIR analysis is efficient to separate and give data on mainly surface component differences observed previously between S colony morphotype (ropy and exopolysaccharide positive) and the R colony morphotype (non-ropy but highly autoaggregative). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Increasing the Heme-Dependent Respiratory Efficiency of Lactococcus lactis by Inhibition of Lactate Dehydrogenase

    PubMed Central

    Arioli, Stefania; Zambelli, Daniele; Guglielmetti, Simone; De Noni, Ivano; Pedersen, Martin B.; Pedersen, Per Dedenroth; Dal Bello, Fabio

    2013-01-01

    The discovery of heme-induced respiration in Lactococcus lactis has radically improved the industrial processes used for the biomass production of this species. Here, we show that inhibition of the lactate dehydrogenase activity of L. lactis during growth under respiration-permissive conditions can stimulate aerobic respiration, thereby increasing not only growth efficiency but also the robustness of this organism. PMID:23064338

  3. Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae

    PubMed Central

    Oshima, Kenshiro; Yoshizaki, Mariko; Kawanishi, Michiko; Nakaya, Kohei; Suzuki, Takehito; Miyauchi, Eiji; Ishii, Yasuo; Tanabe, Soichi; Murakami, Masaru; Hattori, Masahira

    2011-01-01

    Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish. PMID:21829716

  4. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    PubMed

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  5. Probiotic Saccharomyces boulardii CNCM I-745 prevents outbreak-associated Clostridium difficile-associated cecal inflammation in hamsters.

    PubMed

    Koon, Hon Wai; Su, Bowei; Xu, Chunlan; Mussatto, Caroline C; Tran, Diana Hoang-Ngoc; Lee, Elaine C; Ortiz, Christina; Wang, Jiani; Lee, Jung Eun; Ho, Samantha; Chen, Xinhua; Kelly, Ciaran P; Pothoulakis, Charalabos

    2016-10-01

    C. difficile infection (CDI) is a common debilitating nosocomial infection associated with high mortality. Several CDI outbreaks have been attributed to ribotypes 027, 017, and 078. Clinical and experimental evidence indicates that the nonpathogenic yeast Saccharomyces boulardii CNCM I-745 (S.b) is effective for the prevention of CDI. However, there is no current evidence suggesting this probiotic can protect from CDI caused by outbreak-associated strains. We used established hamster models infected with outbreak-associated C. difficile strains to determine whether oral administration of live or heat-inactivated S.b can prevent cecal tissue damage and inflammation. Hamsters infected with C. difficile strain VPI10463 (ribotype 087) and outbreak-associated strains ribotype 017, 027, and 078 developed severe cecal inflammation with mucosal damage, neutrophil infiltration, edema, increased NF-κB phosphorylation, and increased proinflammatory cytokine TNFα protein expression. Oral gavage of live, but not heated, S.b starting 5 days before C. difficile infection significantly reduced cecal tissue damage, NF-κB phosphorylation, and TNFα protein expression caused by infection with all strains. Moreover, S.b-conditioned medium reduced cell rounding caused by filtered supernatants from all C. difficile strains. S.b-conditioned medium also inhibited toxin A- and B-mediated actin cytoskeleton disruption. S.b is effective in preventing C. difficile infection by outbreak-associated via inhibition of the cytotoxic effects of C. difficile toxins. Copyright © 2016 the American Physiological Society.

  6. [A comparison of the properties of bacteriocins formed by Lactococcus lactis subsp. lactis strains of diverse origin].

    PubMed

    Stoianova, L G; Egorov, N S; Fedorova, G B; Katrukha, G S; Netrusov, A I

    2007-01-01

    Bacteriocins formed by four strains of Lactococcus lactis subsp. lactis have been studied and compared: 729 (a natural strain isolated from milk), 1605 (a mutant of strain 729), F-116 (a recombinant obtained by fusing of protoplasts of the two related strain 729 and 1605), and a nisin-forming strain obtained by adaptive selection at Moscow State University. Antimicrobial activity studies revealed differences between the strains in the effects on individual groups of microorganisms; the activities of the strains were also distinct from that of Nisaplin (a commercial preparation of the bacteriocin nisin). Methods for isolation and purification of bacteriocins have been developed, making it possible to obtain individual components of antibiotic complexes as chromatographically pure preparations. Bacteriocins formed by the strains of Lactococcus lactis subsp. lactis have been identified and differences in their biological and physicochemical properties, established. A novel potent broad-spectrum antibiotic substance distinct from nisin has been isolated from the recombinant strain F-116.

  7. Lactococcus lactis As a Versatile Vehicle for Tolerogenic Immunotherapy

    PubMed Central

    Cook, Dana P.; Gysemans, Conny; Mathieu, Chantal

    2018-01-01

    Genetically modified Lactococcus lactis bacteria have been engineered as a tool to deliver bioactive proteins to mucosal tissues as a means to exert both local and systemic effects. They have an excellent safety profile, the result of years of human consumption in the food industry, as well as a lack of toxicity and immunogenicity. Also, containment strategies have been developed to promote further application as clinical protein-based therapeutics. Here, we review technological advancements made to enhanced the potential of L. lactis as live biofactories and discuss some examples of tolerogenic immunotherapies mediated by mucosal drug delivery via L. lactis. Additionally, we highlight their use to induce mucosal tolerance by targeted autoantigen delivery to the intestine as an approach to reverse autoimmune type 1 diabetes. PMID:29387056

  8. Secretory expression of a heterologous nattokinase in Lactococcus lactis.

    PubMed

    Liang, Xiaobo; Zhang, Lixin; Zhong, Jin; Huan, Liandong

    2007-05-01

    Nattokinase has been reported as an oral health product for the prevention of atherosclerosis. We developed a novel strategy to express a nattokinase from Bacillus subtilis in a live delivery vehicle, Lactococcus lactis. Promoter P( nisZ) and signal peptide SP(Usp) were used for inducible and secretory expression of nattokinase in L. lactis. Western blotting analysis demonstrated that nattokinase was successfully expressed, and about 94% of the enzyme was secreted to the culture. The recombinant nattokinase showed potent fibrinolytic activity, equivalent to 41.7 urokinase units per milliliter culture. Expression and delivery of such a fibrinolytic enzyme in the food-grade vehicle L. lactis would facilitate the widespread application of nattokinase in the control and prevention of thrombosis diseases.

  9. Natural DNA transformation is functional in Lactococcus lactis ssp. cremoris KW2.

    PubMed

    David, Blandine; Radziejwoski, Amandine; Toussaint, Frédéric; Fontaine, Laetitia; Henry de Frahan, Marie; Patout, Cédric; van Dillen, Sabine; Boyaval, Patrick; Horvath, Philippe; Fremaux, Christophe; Hols, Pascal

    2017-06-16

    Lactococcus lactis is one of the most commonly used lactic acid bacteria in the dairy industry. Activation of competence for natural DNA transformation in this species would greatly improve the selection of novel strains with desired genetic traits. Here, we investigated the activation of natural transformation in L. lactis ssp. cremoris KW2, a strain of plant origin whose genome encodes the master competence regulator ComX and the complete set of proteins usually required for natural transformation. In the absence of knowledge about competence regulation in this species, we constitutively overproduced ComX in a reporter strain of late competence phase activation and showed, by transcriptomic analyses, a ComX-dependent induction of all key competence genes. We further demonstrated that natural DNA transformation is functional in this strain and requires the competence DNA uptake machinery. Since constitutive ComX overproduction is unstable, we alternatively expressed comX under the control of an endogenous xylose-inducible promoter. This regulated system was used to successfully inactivate the adaptor protein MecA and subunits of the Clp proteolytic complex, which were previously shown to be involved in ComX degradation in streptococci. In the presence of a low amount of ComX, the deletion of mecA , clpC , or clpP genes markedly increased the activation of the late competence phase and transformability. Altogether, our results report the functionality of natural DNA transformation in L. lactis and pave the way for the identification of signaling mechanisms that trigger the competence state in this species. IMPORTANCE Lactococcus lactis is a lactic acid bacterium of major importance, which is used as a starter species for milk fermentation, a host for heterologous protein production, and a delivery platform for therapeutic molecules. Here, we report the functionality of natural transformation in L. lactis ssp. cremoris KW2 by the overproduction of the master

  10. Transcriptome analysis of grey mullet (Mugil cephalus) after challenge with Lactococcus garvieae.

    PubMed

    Byadgi, Omkar; Chen, Yao-Chung; Barnes, Andrew C; Tsai, Ming-An; Wang, Pei-Chyi; Chen, Shih-Chu

    2016-11-01

    Grey mullet (Mugil cephalus) is an economically important fish species in Taiwan mariculture industry. Moreover, grey mullet are common hosts of a bacterial infection by Lactococcus garvieae. However, until now the information related to the immune system of grey mullet is unclear. Therefore, to understand the molecular basis underlying the host immune response to L. garvieae infection, Illumina HiSeq™ 2000 was used to analyse the head kidney and spleen transcriptome of infected grey mullet. De novo assembly of paired-end reads yielded 55,203 unigenes. Comparative analysis of the expression profiles between bacterial challenge fish and control fish identified a total of 7192 from head kidney and 7280 in spleen differentially expressed genes (P < 0.05), including 4211 upregulated genes and 2981 downregulated genes in head kidney, while in spleen 3598 genes were upregulated and 3682 downregulated. A significant enrichment analysis of these differentially expressed genes (DEG) in spleen and head kidney revealed major immune-related pathways, including complement and coagulation cascades, Toll-like receptor signalling, and antigen processing and presentation. Moreover, selected DEGs were validated using qPCR. Altogether, the results obtained on immune-related genes may allow for a better understanding of immunity in grey mullet to Lactococcus garvieae, carrying out detailed functional analysis of these genes and developing strategies for efficient immune protection against infections in grey mullet. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Short communication: Genotypic and phenotypic identification of environmental streptococci and association of Lactococcus lactis ssp. lactis with intramammary infections among different dairy farms.

    PubMed

    Werner, B; Moroni, P; Gioia, G; Lavín-Alconero, L; Yousaf, A; Charter, M E; Carter, B Moslock; Bennett, J; Nydam, D V; Welcome, F; Schukken, Y H

    2014-11-01

    Lactococcus species are counted among a large and closely related group of environmental streptococci and streptococci-like bacteria that include bovine mastitis pathogenic Streptococcus, Enterococcus, and Aerococcus species. Phenotypic and biochemical identification methods can be inaccurate and unreliable for species within this group, particularly for Lactococcus spp. As a result, the incidence of Lactococcus spp. on the farm may have been historically underreported and consequently little is known about the clinical importance of this genus as a mastitis pathogen. We used molecular genetic identification methods to accurately differentiate 60 environmental streptococci and streptococci-like bacteria isolated from cows with high somatic cell count and chronic intramammary infection (IMI; >2 somatic cell scores above 4) among 5 geographically distinct farms in New York and Minnesota that exhibited an observed increase in IMI. These isolates were phenotypically identified as Streptococcus uberis and Streptococcus spp. Genetic methods identified 42 isolates (70%) as Lactococcus lactis ssp. lactis, including all 10 isolates originally phenotypically identified as Streptococcus uberis. Antibiotic inhibition testing of all Lc. lactis ssp. lactis showed that 7 isolates were resistant to tetracycline. In the present study, a predominance of Lc. lactis ssp. lactis was identified in association with chronic, clinical bovine IMI among all 5 farms and characterized antimicrobial resistance for treatment therapies. Routine use by mastitis testing labs of molecular identification methods for environmental streptococci and streptococci-like bacteria can further define the role and prevalence of Lc. lactis ssp. lactis in association with bovine IMI and may lead to more targeted therapies. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract

    PubMed Central

    Watson, Debbie; Sleator, Roy D; Hill, Colin; Gahan, Cormac GM

    2008-01-01

    Background The majority of commensal gastrointestinal bacteria used as probiotics are highly adapted to the specialised environment of the large bowel. However, unlike pathogenic bacteria; they are often inadequately equipped to endure the physicochemical stresses of gastrointestinal (GI) delivery in the host. Herein we outline a patho-biotechnology strategy to improve gastric delivery and host adaptation of a probiotic strain Bifidobacterium breve UCC2003 and the generally regarded as safe (GRAS) organism Lactococcus lactis NZ9000. Results In vitro bile tolerance of both strains was significantly enhanced (P < 0.001), following heterologous expression of the Listeria monocytogenes bile resistance mechanism BilE. Strains harbouring bilE were also recovered at significantly higher levels (P < 0.001), than control strains from the faeces and intestines of mice (n = 5), following oral inoculation. Furthermore, a B. breve strain expressing bilE demonstrated increased efficacy relative to the wild-type strain in reducing oral L. monocytogenes infection in mice. Conclusion Collectively the data indicates that bile tolerance can be enhanced in Bifidobacterium and Lactococcus species through rational genetic manipulation and that this can significantly improve delivery to and colonisation of the GI tract. PMID:18844989

  13. Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract.

    PubMed

    Watson, Debbie; Sleator, Roy D; Hill, Colin; Gahan, Cormac G M

    2008-10-09

    The majority of commensal gastrointestinal bacteria used as probiotics are highly adapted to the specialised environment of the large bowel. However, unlike pathogenic bacteria; they are often inadequately equipped to endure the physicochemical stresses of gastrointestinal (GI) delivery in the host. Herein we outline a patho-biotechnology strategy to improve gastric delivery and host adaptation of a probiotic strain Bifidobacterium breve UCC2003 and the generally regarded as safe (GRAS) organism Lactococcus lactis NZ9000. In vitro bile tolerance of both strains was significantly enhanced (P < 0.001), following heterologous expression of the Listeria monocytogenes bile resistance mechanism BilE. Strains harbouring bilE were also recovered at significantly higher levels (P < 0.001), than control strains from the faeces and intestines of mice (n = 5), following oral inoculation. Furthermore, a B. breve strain expressing bilE demonstrated increased efficacy relative to the wild-type strain in reducing oral L. monocytogenes infection in mice. Collectively the data indicates that bile tolerance can be enhanced in Bifidobacterium and Lactococcus species through rational genetic manipulation and that this can significantly improve delivery to and colonisation of the GI tract.

  14. Complete Genome Sequence of Lactococcus lactis Strain AI06, an Endophyte of the Amazonian Açaí Palm

    PubMed Central

    de Oliveira, Viviane Matoso; de Almeida Pina, André Vicioli; Pérez-Chaparro, Paula Juliana; de Almeida, Lara Mendes; de Vasconcelos, Janaina Mota; de Oliveira, Layanna Freitas; da Silva, Daisy Elaine Andrade; Rogez, Hervé Louis Ghislain; Cretenet, Marina; Mamizuka, Elsa Masae; Nunes, Marcio Roberto Teixeira

    2014-01-01

    We report the genome, in a single chromosome, of Lactococcus lactis strain AI06, isolated from the mesocarp of the açaí fruit (Euterpe oleracea) in eastern Amazonia, Brazil. This strain is an endophyte of the açaí palm and also a component of the microbiota of the edible food product. PMID:25414513

  15. Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae.

    PubMed

    Araújo, Carlos; Muñoz-Atienza, Estefanía; Pérez-Sánchez, Tania; Poeta, Patrícia; Igrejas, Gilberto; Hernández, Pablo E; Herranz, Carmen; Ruiz-Zarzuela, Imanol; Cintas, Luis M

    2015-12-01

    Probiotics represent an alternative to chemotherapy and vaccination to control fish diseases, including lactococcosis caused by Lactococcus garvieae. The aims of this study were (i) to determine the in vitro probiotic properties of three bacteriocinogenic Lactococcus lactis subsp. cremoris of aquatic origin, (ii) to evaluate in vivo the ability of L. cremoris WA2-67 to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against infection by L. garvieae, and (iii) to demonstrate the role of nisin Z (NisZ) production as an anti-infective mechanism. The three L. cremoris strains survived in freshwater at 18 °C for 7 days, withstood exposure to pH 3.0 and 10 % (v/v) rainbow trout bile, and showed different cell surface hydrophobicity (37.93-58.52 %). The wild-type NisZ-producer L. cremoris WA2-67 and its non-bacteriocinogenic mutant L. cremoris WA2-67 ∆nisZ were administered orally (10(6) CFU/g) to rainbow trout for 21 days and, subsequently, fish were challenged with L. garvieae CLG4 by the cohabitation method. The fish fed with the bacteriocinogenic strain L. cremoris WA2-67 reduced significantly (p < 0.01) the mortality (20 %) compared to the fish treated with its non-bacteriocinogenic knockout isogenic mutant (50 %) and the control (72.5 %). We demonstrated the effectiveness of L. cremoris WA2-67 to protect rainbow trout against infection with the invasive pathogen L. garvieae and the relevance of NisZ production as an anti-infective mechanism. This is the first report demonstrating the effective in vivo role of LAB bacteriocin (NisZ) production as a mechanism to protect fish against bacterial infection. Our results suggest that the wild-type NisZ-producer strain L. cremoris WA2-67 could be used in fish farming to prevent lactococcosis in rainbow trout.

  16. The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor.

    PubMed

    Kim, Tae Gwan; Yun, Jeonghee; Cho, Kyung-Suk

    2015-10-01

    The up-flow anaerobic sludge blanket (UASB) reactor is a promising method for the treatment of high-strength industrial wastewaters due to advantage of its high treatment capacity and settleable suspended biomass retention. Molasses wastewater as a sugar-rich waste is one of the most valuable raw material for bioenergy production due to its high organic strength and bioavailability. Interpretation for complex interactions of microbial community structures and operational parameters can help to establish stable biogas production. RNA-based approach for biogas production systems is recommended for analysis of functionally active community members which are significantly underestimated. In this study, methane production and active microbial community were characterized in an UASB reactor using molasses wastewater as feedstock. The UASB reactor achieved a stable process performance at an organic loading rate of 1.7~13.8-g chemical oxygen demand (COD,·L(-1) day(-1); 87-95 % COD removal efficiencies), and the maximum methane production rate was 4.01 L-CH4·at 13.8 g-COD L(-1) day(-1). Lactococcus and Methanosaeta were comprised up to 84 and 80 % of the active bacterial and archaeal communities, respectively. Network analysis of reactor performance and microbial community revealed that Lactococcus and Methanosaeta were network hub nodes and positively correlated each other. In addition, they were positively correlated with methane production and organic loading rate, and they shared the other microbial hub nodes as neighbors. The results indicate that the close association between Lactococcus and Methanosaeta is responsible for the stable production of methane in the UASB reactor using molasses wastewater.

  17. The Efficacy of Saccharomyces boulardii CNCM I-745 in Addition to Standard Helicobacter pylori Eradication Treatment in Children.

    PubMed

    Bin, Zhang; Ya-Zheng, Xu; Zhao-Hui, Deng; Bo, Chu; Li-Rong, Jiang; Vandenplas, Yvan

    2015-03-01

    This study aims to investigate Saccharomyces boulardii CNCM I-745 during Helicobacter pylori eradication in children. One hundred ninety-four H. pylori positive children were randomized in two groups. Therapy (omeprazole+clarithromycin+amoxicillin or omeprazole+clarithromycin+metronidazole in case of penicillin allergy) was given to both groups during two weeks. In the treatment group (n: 102) S. boulardii was added to the triple therapy, while the control group (n: 92) only received triple therapy. The incidence, onset, duration and severity of diarrhea and compliance to the eradication treatment were compared. A (13)C urea breath test was done 4 weeks after the end of eradication therapy in two groups of 21 patients aged 12 years and older to test the H. pylori eradication rate. In the treatment group, diarrhea occurred in 12 cases (11.76%), starting after 6.25±1.24 days, lasting 3.17±1.08 days, and compliance to eradication treatment was 100%. In the control group, diarrhea occurred in 26 cases (28.26%), starting after 4.05±1.11 days, lasting 4.02±0.87 days, and in six cases eradication treatment was stopped prematurely (p<0.05). The (13)C urea breath test showed successful H. pylori eradication in 71.4% of the patients in the treatment and in 61.9 % in the control group (not significant). S. boulardii has a beneficial effect on the prevention and treatment of diarrhea during H. pylori eradication in children. Although S. boulardii did only slightly increase H. pylori eradication rate, compliance to eradication treatment was improved.

  18. Clonality and diversity of the fish pathogen Lactococcus garvieae in Mediterranean countries.

    PubMed

    Eyngor, Marina; Zlotkin, Amir; Ghittino, Claudio; Prearo, Marino; Douet, Diane-Gaëlle; Chilmonczyk, Stefan; Eldar, Avi

    2004-09-01

    Infection with Lactococcus garvieae is considered the most important risk factor for the European trout industry, and the losses are approximately 50% of the total production. To improve our understanding of the genetic links among strains originating from different countries, we examined the population structure of L. garvieae by comparing 81 strains isolated from different sources and ecosystems (41 farms in six countries) in which the bacterium is commonly found. Genetic similarities (as assessed with molecular tools, including restriction fragment length polymorphism ribotyping with two endonucleases) were compared with serological data. The combined results reveal that in endemic sites the bacterial population displays a clonal structure, whereas bacterial diversity characterizes sites where the infection is sporadic.

  19. Complete genome sequence and description of Lactococcus garvieae M14 isolated from Algerian fermented milk.

    PubMed

    Moumene, M; Drissi, F; Croce, O; Djebbari, B; Robert, C; Angelakis, E; Benouareth, D E; Raoult, D; Merhej, V

    2016-03-01

    We describe using a polyphasic approach that combines proteomic by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis, genomic data and phenotypic characterization the features of Lactococcus garvieae strain M14 newly isolated from the fermented milk (known as raib) of an Algerian cow. The 2 188 835 bp containing genome sequence displays a metabolic capacity to form acid fermentation that is very useful for industrial applications and encodes for two bacteriocins responsible for its eventual bioprotective properties.

  20. Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from kefir.

    PubMed

    Sabir, Firat; Beyatli, Yavuz; Cokmus, Cumhur; Onal-Darilmaz, Derya

    2010-01-01

    In this study, the metabolic activities (in terms of quantities of the produced lactic acid, hydrogen peroxide, and exopolysaccharides) of 8 strains of Lactobacillus spp., Lactococcus spp., and Pediococcus spp., were determined. Lactic acid levels produced by strains were 8.1 to 17.4 mg/L. The L. acidophilus Z1L strain produced the maximum amount (3.18 μg/mL) of hydrogen peroxide. The exopolysaccharides (EPS) production by the strains was ranged between 173 and 378 mg/L. The susceptibility of 7 different antibiotics against these strains was also tested. All strains were found to be sensitive to ampicillin. The tolerance of the strains to low pH, their resistance to bile salts of strains, and their abilities to autoaggregate and coaggregate with Escherichia coli ATCC 11229 were also evaluated. High EPS-producing strains showed significant autoaggregation and coaggregation ability with test bacteria (P < 0.01). A correlation also was determined between EPS production and acid-bile tolerance (P < 0.05). EPS production possibly affects or is involved in acid-bile tolerance and aggregation of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains and supports the potential of L. acidophilus Z1L strain as new probiotic. © 2010 Institute of Food Technologists®

  1. Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish.

    PubMed

    Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H

    2009-09-01

    We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.

  2. Lactobacillus paracasei CNCM I-4034 and its culture supernatant modulate Salmonella-induced inflammation in a novel transwell co-culture of human intestinal-like dendritic and Caco-2 cells.

    PubMed

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gómez-Llorente, Carolina; Matencio, Esther; Romero, Fernando; Gil, Angel

    2015-04-01

    The action of probiotics has been studied in vitro in cells isolated from both mice and humans, particularly enterocytes (IECs), dendritic cells (DCs) and co-cultures of peripheral DCs and IECs. Peripheral DCs and murine DCs differ from human gut DCs, and to date there are no data on the action of any probiotic on co-cultured human IECs and human intestinal DCs. To address this issue, a novel transwell model was used. Human IECs (Caco-2 cells) grown in the upper chamber of transwell filters were co-cultured with intestinal-like human DCs grown in the basolateral compartment of the transwells. The system was apically exposed for 4 h to live probiotic L. paracasei CNCM I-4034 obtained from the faeces of breastfed infants or to its cell-free culture supernatant (CFS) and challenged with Salmonella typhi. The secretion of pro- and anti-inflammatory cytokines in the basolateral compartment was determined by immunoassay, and the DC expression pattern of 20 TLR signaling pathway genes was analysed by PCR array. The presence of the live probiotic alone significantly increased IL-1β, IL-6, IL-8, TGF-β2, RANTES and IP-10 levels and decreased IL-12p40, IL-10, TGF- β1 and MIP-1α levels. This release was correlated with a significant increase in the expression of almost all TLR signaling genes. By contrast, incubation of the co-culture with CFS increased IL-1β, IL-6, TGF-β2 and IP-10 production only when Salmonella was present. This induction was correlated with an overall decrease in the expression of all TLR genes except TLR9, which was strongly up-regulated. The data presented here clearly indicate that L. paracasei CNCM I-4034 significantly increases the release of pro-inflammatory cytokines, enhances TLR signaling pathway activation and stimulates rather than suppresses the innate immune system. Furthermore, our findings provide evidence that the effects of probiotics in the presence of IECs and DCs differ from the effects of probiotics on cultures of each cell type

  3. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.

    PubMed

    van der Els, Simon; James, Jennelle K; Kleerebezem, Michiel; Bron, Peter A

    2018-04-15

    CRISPR-Cas9 technology has been exploited for the removal or replacement of genetic elements in a wide range of prokaryotes and eukaryotes. Here, we describe the extension of the Cas9 application toolbox to the industrially important dairy species Lactococcus lactis The Cas9 expression vector pLABTarget, encoding the Streptocccus pyogenes Cas9 under the control of a constitutive promoter, was constructed, allowing plug and play introduction of short guide RNA (sgRNA) sequences to target specific genetic loci. Introduction of a pepN -targeting derivative of pLABTarget into L. lactis strain MG1363 led to a strong reduction in the number of transformants obtained, which did not occur in a pepN deletion derivative of the same strain, demonstrating the specificity and lethality of the Cas9-mediated double-strand breaks in the lactococcal chromosome. Moreover, the same pLABTarget derivative allowed the selection of a pepN deletion subpopulation from its corresponding single-crossover plasmid integrant precursor, accelerating the construction and selection of gene-specific deletion derivatives in L. lactis Finally, pLABTarget, which contained sgRNAs designed to target mobile genetic elements, allowed the effective curing of plasmids, prophages, and integrative conjugative elements (ICEs). These results establish that pLABTarget enables the effective exploitation of Cas9 targeting in L. lactis , while the broad-host-range vector used suggests that this toolbox could readily be expanded to other Gram-positive bacteria. IMPORTANCE Mobile genetic elements in Lactococcus lactis and other lactic acid bacteria (LAB) play an important role in dairy fermentation, having both positive and detrimental effects during the production of fermented dairy products. The pLABTarget vector offers an efficient cloning platform for Cas9 application in lactic acid bacteria. Targeting Cas9 toward mobile genetic elements enabled their effective curing, which is of particular interest in the

  4. The Efficacy of Saccharomyces boulardii CNCM I-745 in Addition to Standard Helicobacter pylori Eradication Treatment in Children

    PubMed Central

    Bin, Zhang; Ya-Zheng, Xu; Zhao-Hui, Deng; Bo, Chu; Li-Rong, Jiang

    2015-01-01

    Purpose This study aims to investigate Saccharomyces boulardii CNCM I-745 during Helicobacter pylori eradication in children. Methods One hundred ninety-four H. pylori positive children were randomized in two groups. Therapy (omeprazole+clarithromycin+amoxicillin or omeprazole+clarithromycin+metronidazole in case of penicillin allergy) was given to both groups during two weeks. In the treatment group (n: 102) S. boulardii was added to the triple therapy, while the control group (n: 92) only received triple therapy. The incidence, onset, duration and severity of diarrhea and compliance to the eradication treatment were compared. A 13C urea breath test was done 4 weeks after the end of eradication therapy in two groups of 21 patients aged 12 years and older to test the H. pylori eradication rate. Results In the treatment group, diarrhea occurred in 12 cases (11.76%), starting after 6.25±1.24 days, lasting 3.17±1.08 days, and compliance to eradication treatment was 100%. In the control group, diarrhea occurred in 26 cases (28.26%), starting after 4.05±1.11 days, lasting 4.02±0.87 days, and in six cases eradication treatment was stopped prematurely (p<0.05). The 13C urea breath test showed successful H. pylori eradication in 71.4% of the patients in the treatment and in 61.9 % in the control group (not significant). Conclusion S. boulardii has a beneficial effect on the prevention and treatment of diarrhea during H. pylori eradication in children. Although S. boulardii did only slightly increase H. pylori eradication rate, compliance to eradication treatment was improved. PMID:25866729

  5. Lactococcus lactis, causative agent of an endocarditis valvularis and parietalis thromboticans in the allis shad, Alosa alosa (L.).

    PubMed

    Wünnemann, H; Eskens, U; Prenger-Berninghoff, E; Ewers, C; Lierz, M

    2018-05-28

    Since the 1940s, the anadromous allis shad, Alosa alosa (L.), has suffered population declines throughout its distribution range in Europe. In context of EU-LIFE projects for the reintroduction of the allis shad in the Rhine system, a comprehensive study was started in 2012 to investigate infectious diseases occurring in allis shad. In course of the study, 217 mature and young-of-the-year allis shad originating from the wild population from the Gironde-Garonne-Dordogne system (GGD-system) and the Rhine system as well as 38 allis shad from the breeding population were examined by use of bacteriological and histological methods. In 2012 and 2014, an endocarditis valvularis thromboticans caused by a coccoid bacterium was detected in 16% and 25% of mature allis shad originating from the GGD-system. Results of microbiologic examinations, including biochemical characteristics, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence analysis, revealed Lactococcus lactis as causative agent of this infection. This is the first report of an endocarditis valvularis and parietalis thromboticans caused by Lactococcus lactis in fish. Possible sources of infection as well as the impact for the reintroduction programme are discussed. © 2018 John Wiley & Sons Ltd.

  6. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets

    PubMed Central

    2014-01-01

    Background Epidermal growth factor (EGF) is an important growth factor in regulation of cell proliferation, differentiation, survival and apoptosis. Studies showed that food-grade Lactococcus lactis (L. lactis) and NICE expression system have superior performance in exogenous protein expression. This study aimed to construct and express porcine EGF (pEGF), and use L. lactis as vehicle for producing and delivering pEGF. Furthermore, investigating biological activity of pEGF and exploring applications feasibility of combination effects of L. lactis and pEGF on early weaned piglets’ production. Results A recombinant Lactococcus lactis which produced and secreted pEGF at 1000 ng/ml in culture supernatant was generated. Secreted pEGF was a fully biologically active protein, as demonstrated by its capacity to stimulate L929 mouse fibroblast cell line proliferation in vitro. For in vivo study, forty piglets were randomly allocated to control, antibiotic control, empty vector-expressing L. lactis (LL-EV) and pEGF-secreting L. lactis (LL-pEGF). After 14 d of rearing, final body weight and average daily gain in LL-pEGF were greater (P < 0.05, 8.95 vs. 8.37 kg, 206.1 vs. 157.7 g/day, respectively) than those in control, but no significant differences between LL-pEGF, LL-EV and antibiotic control. Overall period average daily feed intake was higher in LL-pEGF, LL-EV and antibiotic control than in control (P < 0.05, 252.9, 255.6, 250.0, 207.3 g/day, respectively). No significant difference was observed on ADFI/ADG. LL-pEGF increased villous height in the duodenum, jejunum and ileum than in control and LL-EV (P < 0.05). Sucrase in the 3 intestinal segments, aminopeptidase A in the duodenum and Jejunum, aminopeptidase N and dipeptidase IV in the duodenum in LL-pEGF were higher than those in control (P < 0.05). Furthermore, Escherichia coli and Enterococcus counts decreased in the ileum and Lactobacillus increased in the ileum and cecum digesta in LL-pEGF compare with the

  7. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain

    PubMed Central

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S.; Esteban, Luis; Alarcón, Sergio

    2016-01-01

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. PMID:26847906

  8. A double-blinded randomized trial on growth and feeding tolerance with Saccharomyces boulardii CNCM I-745 in formula-fed preterm infants.

    PubMed

    Xu, Lingfen; Wang, Yun; Wang, Yang; Fu, Jianhua; Sun, Mei; Mao, Zhiqin; Vandenplas, Yvan

    2016-01-01

    The use of probiotics is increasingly popular in preterm neonates, as they may prevent necrotizing enterocolitis sepsis and improve growth and feeding tolerance. There is only limited literature on Saccharomyces boulardii CNCM I-745 (S. boulardii) in preterm infants. A prospective, randomized, case-controlled trial with the probiotic S. boulardii (50mg/kg twice daily) was conducted in newborns with a gestational age of 30-37 weeks and a birth weight between 1500 and 2500g. 125 neonates were enrolled; 63 in the treatment and 62 in the control group. Weight gain (16.14±1.96 vs. 10.73±1.77g/kg/day, p<0.05) and formula intake at maximal enteral feeding (128.4±6.7 vs. 112.3±7.2mL/kg/day, p<0.05) were significantly higher in the intervention group. Once enteral feeding was started, the time needed to reach full enteral feeding was significantly shorter in the probiotic group (0.4±0.1 vs. 1.7±0.5 days, p<0.05). There was no significant difference in sepsis. Necrotizing enterocolitis did not occur. No adverse effects related to S. boulardii were observed. Prophylactic supplementation of S. boulardii at a dose of 50mg/kg twice a day improved weight gain, improved feeding tolerance, and had no adverse effects in preterm infants >30 weeks old. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  9. Biocidal Inactivation of Lactococcus lactis Bacteriophages: Efficacy and Targets of Commonly Used Sanitizers

    PubMed Central

    Hayes, Stephen; Murphy, James; Mahony, Jennifer; Lugli, Gabriele A.; Ventura, Marco; Noben, Jean-Paul; Franz, Charles M. A. P.; Neve, Horst; Nauta, Arjen; Van Sinderen, Douwe

    2017-01-01

    Lactococcus lactis strains, being intensely used in the dairy industry, are particularly vulnerable to members of the so-called 936 group of phages. Sanitization and disinfection using purpose-made biocidal solutions is a critical step in controlling phage contamination in such dairy processing plants. The susceptibility of 36 936 group phages to biocidal treatments was examined using 14 biocides and commercially available sanitizers. The targets of a number of these biocides were investigated by means of electron microscopic and proteomic analyses. The results from this study highlight significant variations in phage resistance to biocides among 936 phages. Furthermore, rather than possessing resistance to specific biocides or biocide types, biocide-resistant phages tend to possess a broad tolerance to multiple classes of antimicrobial compounds. PMID:28210242

  10. Saccharomyces cerevisiae CNCM I-3856 prevents colitis induced by AIEC bacteria in the transgenic mouse model mimicking Crohn's disease.

    PubMed

    Sivignon, Adeline; de Vallée, Amélie; Barnich, Nicolas; Denizot, Jérémy; Darcha, Claude; Pignède, Georges; Vandekerckove, Pascal; Darfeuille-Michaud, Arlette

    2015-02-01

    Adherent-invasive Escherichia coli (AIEC), which colonize the ileal mucosa of patients with Crohn's disease (CD), are able to adhere to and invade intestinal epithelial cells. Overexpression of the glycoprotein CEACAM6 on host cells favors AIEC attachment and inflammation. We investigated the ability of Saccharomyces cerevisiae CNCM I-3856 to inhibit AIEC adhesion and to reduce colitis. Adhesion experiments were performed on T84 cells and on enterocytes from patients with CD with AIEC LF82 in the presence of S. cerevisiae. Colonization and symptoms of colitis were assessed in LF82-infected transgenic CEABAC10 mice treated with live S. cerevisiae or S. cerevisiae derivatives. Proinflammatory cytokines were quantified by enzyme linked immunosorbent assay. Intestinal permeability was assessed by measuring the 4 kDa dextran-FITC flux in the serum. S. cerevisiae strongly inhibited LF82 adhesion to T84 cells and to the brush border of CD enterocytes. Yeasts decreased LF82 colonization and colitis in CEABAC10 mice and restored barrier function through prevention of the LF82-induced expression of pore-forming tight junction claudin-2 at the plasma membrane of intestinal epithelial cells. These effects were accompanied by a decrease in proinflammatory cytokines IL-6, IL-1β, and KC release by the gut mucosa. Yeast derivatives exerted similar effects on LF82 colonization and colitis demonstrating that yeast viability was not essential to exert beneficial effects. S. cerevisiae yeasts reduce colitis induced by AIEC bacteria in CEACAM6-expressing mice. Such a probiotic strategy could be envisaged in a subgroup of patients with CD abnormally expressing CEACAM6 at the ileal mucosa and therefore susceptible to being colonized by AIEC bacteria.

  11. Protective effects of Lactococcus chungangensis CAU 28 on alcohol-metabolizing enzyme activity in rats.

    PubMed

    Konkit, Maytiya; Kim, Kiyoung; Kim, Jong-Hwa; Kim, Wonyong

    2018-04-19

    In this study, we investigated the beneficial effects of Lactococcus chungangensis CAU 28, a bacterial strain of nondairy origin, on alcohol metabolism in rats treated with ethanol, focusing on alcohol elimination and prevention of damage and comparing the effects with those observed for Lactococcus lactis ssp. lactis ATCC 19435. Male Sprague-Dawley rats were orally administered 20% ethanol and 3 substrates (freeze-dried cells, cream cheese, and yogurt) containing Lc. chungangensis CAU 28 or Lc. lactis ssp. lactis ATCC 19435, which were provided 1 h before or 1 h after ethanol ingestion. Blood samples were collected from the tail veins of the rats at 1, 3, 6, 12, and 24 h after ingestion of ethanol, Lc. chungangensis CAU 28 substrate, or Lc. lactis ssp. lactis ATCC 19435 substrate. Alcohol and acetaldehyde concentrations in the Lc. chungangensis CAU 28 substrate-treated rats were significantly reduced in a time-dependent manner compared with those in the Lc. lactis ssp. lactis ATCC 19435 substrate-treated rats. Among the experimental groups, treatment with cream cheese before ingestion of 20% ethanol was found to be the most effective method for reducing both alcohol and acetaldehyde levels in the blood. Alanine aminotransferase and aspartate aminotransferase activities in the Lc. chungangensis CAU 28 substrate-treated rats were significantly lower than those in the positive controls. Moreover, in the Lc. chungangensis CAU 28 cream cheese-treated group, rats showed a reduction of liver enzymes by up to 60%, with good effectiveness observed for both pre- and post-ethanol ingestion. These results suggested that intake of lactic acid bacteria, particularly in Lc. chungangensis CAU 28-supplemented dairy products, may reduce blood alcohol and acetaldehyde concentrations, thereby mitigating acute alcohol-induced hepatotoxicity by altering alcohol-metabolizing enzyme activities. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights

  12. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis

    PubMed Central

    2010-01-01

    Background The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes. Results Fragments of the scaffoldin protein CipA were functionally displayed on the cell surface of Lactococcus lactis. Scaffolds were engineered to contain a single cohesin module, two cohesin modules, one cohesin and a cellulose-binding module, or only a cellulose-binding module. Cell toxicity from over-expression of the proteins was circumvented by use of the nisA inducible promoter, and incorporation of the C-terminal anchor motif of the streptococcal M6 protein resulted in the successful surface-display of the scaffolds. The facilitated detection of successfully secreted scaffolds was achieved by fusion with the export-specific reporter staphylococcal nuclease (NucA). Scaffolds retained their ability to associate in vivo with an engineered hybrid reporter enzyme, E. coli β-glucuronidase fused to the type 1 dockerin motif of the cellulosomal enzyme CelS. Surface-anchored complexes exhibited dual enzyme activities (nuclease and β-glucuronidase), and were displayed with efficiencies

  13. Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic.

    PubMed

    Hviid, Anne-Mette Meisner; Ruhdal-Jensen, Peter; Kilstrup, Mogens

    2017-04-01

    Lactic acid bacteria currently used extensively by the dairy industry have a superior tolerance towards short-chain alcohols, which makes them interesting targets for use in future bio-refineries. The mechanism underlying the alcohol tolerance of lactic acid bacteria has so far received little attention. In the present study, the physiological alcohol stress response of Lactococcus lactis subsp. cremoris MG1363 towards the primary, even-chain alcohols ethanol, butanol and hexanol, was characterized. The alcohol tolerance of L. lactis was found to be comparable to those reported for highly alcohol-resistant lactic acid bacteria. Combined results from alcohol survival rate, live/dead staining, and a novel usage of the β-galactosidase assay, revealed that while high concentrations of ethanol and hexanol were cytostatic to L. lactis, high concentrations of butanol were cytotoxic, causing irreparable damages to the cell membrane.

  14. Thermal inactivation kinetics of Lactococcus lactis subsp. lactis bacteriophage pll98-22.

    PubMed

    Sanlibaba, Pinar; Buzrul, S; Akkoç, Nefise; Alpas, H; Akçelik, M

    2009-03-01

    Survival curves of Lactococcus lactis subsp. lactis bacteriophage pll98 inactivated by heat were obtained at seven temperature values (50-80 degrees C) in M17 broth and skim milk. Deviations from first-order kinetics in both media were observed as sigmoidal shapes in the survival curves of pll98. An empirical model with four parameters was used to define the thermal inactivation. Number of parameters of the model was reduced from four to two in order to increase the robustness of the model. The reduced model produced comparable fits to the full model. Both the survival data and the calculations done using the reduced model (time necessary to reduce the number of phage pll98 six- or seven- log10) indicated that skim milk is a more protective medium than M17 broth within the assayed temperature range.

  15. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain.

    PubMed

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S; Esteban, Luis; Alarcón, Sergio; Magni, Christian

    2016-02-04

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. Copyright © 2016 Zuljan et al.

  16. Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis

    PubMed Central

    Song, Adelene Ai Lian; Abdullah, Janna O.; Abdullah, Mohd Puad; Shafee, Norazizah; Rahim, Raha A.

    2012-01-01

    Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile. PMID:22408409

  17. Analysis of volatile compounds produced by 2 strains of Lactococcus lactis isolated from leben (Tunisian fermented milk) using solid-phase microextraction-gas chromatography.

    PubMed

    Ziadi, M; Wathelet, J P; Marlier, M; Hamdi, M; Thonart, P

    2008-08-01

    The volatile compounds that characterize Leben during fermentation with 2 Lactococcus lactis strains (SLT6 and SLT10) in flasks, in a 100-L fermentor, and during storage at 4 degrees C, were investigated and compared to those from commercial Leben. Volatile compounds from Leben were concentrated by a Carboxen-PDMS fiber and analyzed by GC-MS. These compounds include acids, alcohols, aldehydes, ketones, sulfur compounds, and hydrocarbons. Commercial Leben presented a poor volatile profile compared to the laboratory-made Leben. The mixed culture of 2 Lactococcus lactis strains resulted in higher volatile compound formation than the single strain culture. The GC volatile profiles of Leben produced in flask and in the 100-L fermentor were similar. Changes in volatile compounds were observed during storage at 4 degrees C. The effect of culture conditions on production of volatiles by SLT6 strain was studied. Aeration (0.1 mL/min) and agitation enhanced the production of diacetyl, acetoin, 3-methylbutanal, and 3-methylbutanol. Fermentation at pH 5 had no effect on volatile production.

  18. Use of waste materials for Lactococcus lactis development.

    PubMed

    Rodríguez, Noelia; Torrado, Ana; Cortés, Sandra; Domínguez, José Manuel

    2010-08-15

    Lactococcus lactis is an interesting microorganism with several industrial applications, particularly in the food industry. As well as being a probiotic species, L. lactis produces several metabolites with interesting properties, such as lactic acid (LA) and biosurfactants. Nevertheless, L. lactis is an especially demanding species since it has strong nutritional requirements, implying the use of complex and expensive culture media. The results showed the potential of L. lactis CECT-4434 as a LA and biosurfactant producer. The economical cost of L. lactis cultures can be reduced by replacing the MRS medium by the use of two waste materials: trimming vine shoots as C source, and 20 g L(-1) distilled wine lees (vinasses) as N, P and micronutrient sources. From the hemicellulosic fraction, 14.3 g L(-1) LA and 1.7 mg L(-1) surfactin equivalent were achieved after 74 h (surface tension reduction of 14.4 mN m(-1)); meanwhile, a simultaneous saccharification and fermentation process allowed the generation of 10.8 g L(-1) LA and 1.5 mg L(-1) surfactin equivalent after 72 h, reducing the surface tension by 12.1 units at the end of fermentation. Trimming vine shoots and vinasses can be used as alternative economical media for LA and cell-bound biosurfactant production. Copyright (c) 2010 Society of Chemical Industry.

  19. Draft genome sequence of Lactococcus garvieae str. PAQ102015-99, an outbreak strain isolated from a commercial trout farm in the Northwestern United States.

    USDA-ARS?s Scientific Manuscript database

    We announce the draft genome assembly of Lactococcus garvieae str. PAQ102015-99, a recently isolated strain from an outbreak of lactococcosis at a commercial trout farm in the Northwestern US. The draft genome comprises 14 contigs totaling 2,068,357 bp with an N50 of 496,618 bp and average G+C conte...

  20. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of epsD.

    PubMed

    Frantzen, Cyril A; Kleppen, Hans Petter; Holo, Helge

    2018-02-01

    Undefined mesophilic mixed (DL) starter cultures are used in the production of continental cheeses and contain unknown strain mixtures of Lactococcus lactis and leuconostocs. The choice of starter culture affects the taste, aroma, and quality of the final product. To gain insight into the diversity of Lactococcus lactis strains in starter cultures, we whole-genome sequenced 95 isolates from three different starter cultures. Pan-genomic analyses, which included 30 publically available complete genomes, grouped the strains into 21 L. lactis subsp . lactis and 28 L. lactis subsp. cremoris lineages. Only one of the 95 isolates grouped with previously sequenced strains, and the three starter cultures showed no overlap in lineage distributions. The culture diversity was assessed by targeted amplicon sequencing using purR , a core gene, and epsD , present in 93 of the 95 starter culture isolates but absent in most of the reference strains. This enabled an unprecedented discrimination of starter culture Lactococcus lactis and revealed substantial differences between the three starter cultures and compositional shifts during the cultivation of cultures in milk. IMPORTANCE In contemporary cheese production, standardized frozen seed stock starter cultures are used to ensure production stability, reproducibility, and quality control of the product. The dairy industry experiences significant disruptions of cheese production due to phage attacks, and one commonly used countermeasure to phage attack is to employ a starter rotation strategy, in which two or more starters with minimal overlap in phage sensitivity are used alternately. A culture-independent analysis of the lactococcal diversity in complex undefined starter cultures revealed large differences between the three starter cultures and temporal shifts in lactococcal composition during the production of bulk starters. A better understanding of the lactococcal diversity in starter cultures will enable the development of

  1. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    PubMed

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  2. Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice.

    PubMed

    Sugimura, Tetsu; Jounai, Kenta; Ohshio, Konomi; Suzuki, Hiroaki; Kirisako, Takayoshi; Sugihara, Yoshihiko; Fujiwara, Daisuke

    2018-05-01

    The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Transcriptional responses in Lactococcus lactis subsp. cremoris to the changes in oxygen and redox potential during milk acidification.

    PubMed

    Larsen, N; Brøsted Werner, B; Jespersen, L

    2016-08-01

    Milk acidification and metabolic activity of the starter cultures are affected by oxygen; however, molecular factors related to the redox changes are poorly defined. The objective of the study was to investigate transcriptional responses in Lactococcus lactis subsp. cremoris CHCCO2 grown in milk to the shifts of oxygen and redox potential (Eh7 ). Transcriptomic studies were performed with the use of Illumina HiSeq 2000 mRNA sequencing and validated by the real-time quantitative PCR. In total 105 differentially expressed genes were assigned functional gene names. Most of the differentially expressed genes were detected during aerobic reduction phase. Upregulated genes were implicated in lactose utilization, glycogen biosynthesis, amino sugar metabolism, oxidation-reduction, pyrimidine biosynthesis and DNA integration processes. Genes of purine nucleotide biosynthesis and genes encoding amino acid, multidrug resistance and ion ABC transporters were mostly downregulated, while oligopeptide transporter genes were reduced during oxygen depletion and induced at minimum Eh7 . Understanding of gene responses in starter cultures to the changes of oxidation-reduction state is important for the better control and reproducibility of dairy fermentations. We applied mRNA sequencing by Illumina HiSeq 2000 to investigate gene expression profile in a dairy strain of Lactococcus lactis subsp. cremoris during milk acidification. Novelty of this study lies in linking transcriptional responses to oxygen depletion and the changes of redox potential with the fermentation kinetics and clarification of molecular factors specifically expressed in milk which might be essential for bacterial performance and the final quality of cheeses. © 2016 The Society for Applied Microbiology.

  4. A General Method for Selection of α-Acetolactate Decarboxylase-Deficient Lactococcus lactis Mutants To Improve Diacetyl Formation

    PubMed Central

    Curic, Mirjana; Stuer-Lauridsen, Birgitte; Renault, Pierre; Nilsson, Dan

    1999-01-01

    The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the α-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884

  5. Cloning of the citrate permease gene of Lactococcus lactis subsp. lactis biovar diacetylactis and expression in Escherichia coli.

    PubMed Central

    Sesma, F; Gardiol, D; de Ruiz Holgado, A P; de Mendoza, D

    1990-01-01

    The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2117878

  6. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: evaluation of the probiotic potential.

    PubMed

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties.

  7. A study of lactose metabolism in Lactococcus garvieae reveals a genetic marker for distinguishing between dairy and fish biotypes.

    PubMed

    Fortina, Maria Grazia; Ricci, Giovanni; Borgo, Francesca

    2009-06-01

    Dairy and fish isolates of Lactococcus garvieae were tested for their ability to utilize lactose and to grow in milk. Fish isolates were unable to assimilate lactose, but unexpectedly, they possessed the ability to grow in milk. Genetic studies, carried out constructing different vectorette libraries, provided evidence that in fish isolates, no genes involved in lactose utilization were present. For L. garvieae dairy isolates, a single system for the catabolism of lactose was found. It consists of a lactose transport and hydrolysis depending on a phosphoenolpyruvate-dependent phosphotransferase system combined with a phospho-beta-galactosidase. The genes involved were highly similar at the nucleotide sequence level to their counterparts in Lactococcus lactis; however, while in many L. lactis strains these genes are plasmid encoded, in L. garvieae they are chromosomally located. Thus, in the species L. garvieae, the phospho-beta-galactosidase gene, detectable in all strains of dairy origin but lacking in fish isolates, can be considered a reliable genetic marker for distinguishing biotypes in the two diverse ecological niches. Moreover, we obtained information regarding the complete nucleotide sequence of the gal operon in L. garvieae, consisting of a galactose permease and the Leloir pathway enzymes. This is one of the first reports concerning the determination of the nucleotide sequences of genes (other than the 16S rDNA gene) in L. garvieae and should be considered a step in a continuous effort to explore the genome of this species, with the aim of determining the real relationship between the presence of L. garvieae in dairy products and food safety.

  8. Transcriptome Analysis of Lactococcus lactis in Coculture with Saccharomyces cerevisiae▿

    PubMed Central

    Maligoy, Mathieu; Mercade, Myriam; Cocaign-Bousquet, Muriel; Loubiere, Pascal

    2008-01-01

    The study of microbial interactions in mixed cultures remains an important conceptual and methodological challenge for which transcriptome analysis could prove to be the essential method for improving our understanding. However, the use of whole-genome DNA chips is often restricted to the pure culture of the species for which the chips were designed. In this study, massive cross-hybridization was observed between the foreign cDNA and the specific Lactococcus lactis DNA chip. A very simple method is proposed to considerably decrease this nonspecific hybridization, consisting of adding the microbial partner's DNA. A correlation was established between the resulting cross-hybridization and the phylogenetic distance between the microbial partners. The response of L. lactis to the presence of Saccharomyces cerevisiae was analyzed during the exponential growth phase in fermentors under defined growth conditions. Although no differences between growth kinetics were observed for the pure and the mixed cultures of L. lactis, the mRNA levels of 158 genes were significantly modified. More particularly, a strong reorientation of pyrimidine metabolism was observed when L. lactis was grown in mixed cultures. These changes in transcript abundance were demonstrated to be regulated by the ethanol produced by the yeast and were confirmed by an independent method (quantitative reverse transcription-PCR). PMID:17993564

  9. NMR resonance assignments of the lantibiotic immunity protein NisI from Lactococcus lactis.

    PubMed

    Hacker, Carolin; Christ, Nina Alexandra; Duchardt-Ferner, Elke; Korn, Sophie; Berninger, Lucija; Kötter, Peter; Entian, Karl-Dieter; Wöhnert, Jens

    2015-10-01

    The lantibiotic nisin is a small antimicrobial peptide which acts against a wide range of Gram-positive bacteria. Nisin-producing Lactococcus lactis strains express four genes for self-protection against their own antimicrobial compound. This immunity system consists of the lipoprotein NisI and the ABC transporter NisFEG. NisI is attached to the outside of the cytoplasmic membrane via a covalently linked diacylglycerol anchor. Both the lipoprotein and the ABC transporter are needed for full immunity but the exact immunity mechanism is still unclear. To gain insights into the highly specific immunity mechanism of nisin producing strains on a structural level we present here the backbone resonance assignment of NisI (25.8 kDa) as well as the virtually complete (1)H,(15)N,(13)C chemical shift assignments for the isolated 12.7 kDa N-terminal and 14.6 kDa C-terminal domains of NisI.

  10. Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9.

    PubMed

    Vinogradov, Evgeny; Sadovskaya, Irina; Grard, Thierry; Murphy, James; Mahony, Jennifer; Chapot-Chartier, Marie-Pierre; van Sinderen, Douwe

    2018-05-22

    Lactococcus lactis is the most widely utilised starter bacterial species in dairy fermentations. The L. lactis cell envelope contains polysaccharides, which, among other known functions, serve as bacteriophage receptors. Our previous studies have highlighted the structural diversity of these so-called cell wall polysaccharides (CWPSs) among L. lactis strains that could account for the narrow host range of most lactococcal bacteriophages. In the present work, we studied the CWPS of L. lactis strain UC509.9, an Irish dairy starter strain that is host to the temperate and well-characterized P335-type phage Tuc2009. The UC509.9 CWPS structure was analyzed by methylation, deacetylation/deamination, Smith degradation and 2D NMR spectroscopy. The CWPS consists of a linear backbone composed of a tetrasaccharide repeat unit, partially substituted with a branched phosphorylated oligosaccharide having a common trisaccharide and three non-stoichiometric substitutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Antihypertensive and hypolipidemic effect of milk fermented by specific Lactococcus lactis strains.

    PubMed

    Rodríguez-Figueroa, J C; González-Córdova, A F; Astiazaran-García, H; Hernández-Mendoza, A; Vallejo-Cordoba, B

    2013-07-01

    The antihypertensive and hypolipidemic effects of milk fermented by specific Lactococcus lactis strains in spontaneously hypertensive rats (SHR) were investigated. The SHR were fed ad libitum milk fermented by Lc. lactis NRRL B-50571, Lc. lactis NRRL B-50572, Captopril (40mg/kg of body weight, Sigma-Aldrich Co., St. Louis, MO) or purified water for 4 wk. Results suggested that Lc. lactis fermented milks presented a significant blood pressure-lowering effect. No significant difference was noted among milk fermented by Lc. lactis NRRL B-50571 and Captopril by the second and third week of treatment. Additionally, milk fermented by Lc. lactis strains modified SHR lipid profiles. Milk fermented by Lc. lactis NRRL B-50571 and B-50572 were able to reduce plasma low-density lipoprotein cholesterol and triglyceride contents. Thus, milk fermented by Lc. lactis strains may be a coadjuvant in the reduction of hypertension and hyperlipidemia and may be used as a functional food for better cardiovascular health. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Unleashing Natural Competence in Lactococcus lactis by Induction of the Competence Regulator ComX

    PubMed Central

    Mulder, Joyce; Wels, Michiel; Kuipers, Oscar P.; Bron, Peter A.

    2017-01-01

    ABSTRACT In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies. IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially

  13. Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis.

    PubMed

    Linares, Daniel M; Alvarez-Sieiro, Patricia; del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Martin, Ma Cruz; Fernandez, Maria; Alvarez, Miguel A

    2015-12-30

    Lactococcus lactis has been safely consumed in fermented foods for millennia. This Gram-positive bacterium has now become of industrial importance as an expression host for the overproduction of lipopolysaccharide-free recombinant proteins used as food ingredients, therapeutic proteins and biotechnological enzymes. This paper reports an agmatine-controlled expression (ACE) system for L. lactis, comprising the lactococcal agmatine-sensor/transcriptional activator AguR and its target promoter P(aguB). The usefulness and efficiency of this system was checked via the reporter gene gfp and by producing PEP (Myxococcus xanthus prolyl-endopeptidase), an enzyme of biomedical interest able to degrade the immunotoxic peptides produced during the gastrointestinal breakdown of gluten. The ACE system developed in this work was suitable for the efficient expression of the functional recombinant proteins GFP and PEP. The expression system was tightly regulated by the agmatine concentration and allowed high protein production without leakiness.

  14. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    PubMed

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; Carvalho, Antônio Fernandes de; Cocolin, Luca; Nero, Luís Augusto

    2015-12-02

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Characterization of the bacteriocin

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality. PMID:25763065

  16. The effect of nisin from Lactococcus lactis subsp. lactis on refrigerated patin fillet quality

    NASA Astrophysics Data System (ADS)

    Adilla, S. N.; Utami, R.; Nursiwi, A.; Nurhartadi, E.

    2017-04-01

    The effect of nisin from Lactococcus lactis subsp. lactis with spraying method application on quality of patin fillet during refrigerated storage (4±1°C) was investigated. The quality of patin fillet based on total plate count (TPC), pH, TVB-N, and TBA values during 16 days at 4±1°C. Completely Randomized Design (CDR) was used in one factor (nisin activity) at 0 IU/ml, 500 IU/ml, 1000 IU/ml, and 2000 IU/ml. The observation was done at 0, 4th, 8th, 12th, and 16th days of storage. The result showed that variation of nisin activity significantly affected the quality of fillet according to TPC, pH, and TVB-N values, however no significant difference on the obtained of TBA value. Nisin in 500 IU/ml, 1000 IU/ml, and 2000 IU/ml could extend the shelf-life of fillet until 4th, 8th, and 12th days respectively based on standard in all parameters.

  17. Novel Antibacterial Activity of Lactococcus Lactis Subspecies Lactis Z11 Isolated from Zabady

    PubMed Central

    Enan, Gamal; Abdel-Shafi, Seham; Ouda, Sahar; Negm, Sally

    2013-01-01

    The purpose of this study was to select and characterize a probiotic bacterium with distinctive antimicrobial activities. In this respect, Lactococcus lactis subspecies lactis Z11 (L. lactis Z11) isolated from Zabady (Arabian yoghurt) inhibited other strains of lactic acid bacteria and some food-born pathogens including Listeria monocytogenes, Bacillus cereus and staphylococcus aureus. The inhibitory activity of cell free supernatant (CFS) of L. lactis Z11 isolated from zabady was lost by proteolytic enzymes, heat resistant. Consequently, the active substance(s) of CFS was characterized as a bacteriocin. This bacteriocin has been shown to consist of protein but has no lipidic or glucidic moieties in its active molecule. Its activity was stable in the pH range 2.0 to 7.0 and was not affected by organic solvents. The L. lactis Z11 bacteriocin was produced in CFS throughout the mide to the late exponential phase of growth of the producer organism and maximum bacteriocin production was obtained at initial pH 6.5 at incubation temperature of about 30°C. PMID:24151453

  18. Genomic features of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid.

    PubMed

    Shimizu-Kadota, Mariko; Kato, Hiroaki; Shiwa, Yuh; Oshima, Kenshiro; Machii, Miki; Araya-Kojima, Tomoko; Zendo, Takeshi; Hattori, Masahira; Sonomoto, Kenji; Yoshikawa, Hirofumi

    2013-01-01

    Lactococcus lactis IO-1 (JCM7638) produces L-lactic acid predominantly when grown at high xylose concentrations, and its utilization is highly desired in the green plastics industry. Therefore it is worthwhile studying its genomic traits. In this study, we focused on (i) genes of possible horizontal transfer derivation (prophages, the nisin-sucrose transposon, and several restriction-modification systems), and (ii) genes for the synthetic pathways of amino acids and vitamins in the IO-1 genome. In view of the results of this analysis, we consider their meanings in strain IO-1.

  19. Relationship between Glycolysis and Exopolysaccharide Biosynthesis in Lactococcus lactis

    PubMed Central

    Ramos, Ana; Boels, Ingeborg C.; de Vos, Willem M.; Santos, Helena

    2001-01-01

    The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps+) and in nonproducer strain MG5267 (Eps−) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by 31P nuclear magnetic resonance. The concentrations of two EPS precursors, UDP-glucose and UDP-galactose, were significantly lower in the Eps+ strain than in the Eps− strain. The precursors of the peptidoglycan pathway, UDP-N-acetylglucosamine and UDP-N-acetylmuramoyl-pentapeptide, were the major UDP-sugar derivatives detected in the two strains examined, but the concentration of the latter was greater in the Eps+ strain, indicating that there is competition between EPS synthesis and cell growth. An intermediate in biosynthesis of histidine and nucleotides, 5-phosphorylribose 1-pyrophosphate, accumulated at concentrations in the millimolar range, showing that the pentose phosphate pathway was operating. Fructose 1,6-bisphosphate and glucose 6-phosphate were the prominent glycolytic intermediates during exponential growth of both strains, whereas in the stationary phase the main metabolites were 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvate. The activities of relevant enzymes, such as phosphoglucose isomerase, α-phosphoglucomutase, and UDP-glucose pyrophosphorylase, were identical in the two strains. 13C enrichment on the sugar moieties of pure EPS showed that glucose 6-phosphate is the key metabolite at the branch point between glycolysis and EPS biosynthesis and ruled out involvement of the triose phosphate pool. This study provided clues for ways to enhance EPS production by genetic manipulation. PMID:11133425

  20. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays

    PubMed Central

    Saraiva, Tessália D. L.; Silva, Wanderson M.; Pereira, Ulisses P.; Campos, Bruno C.; Benevides, Leandro J.; Rocha, Flávia S.; Figueiredo, Henrique C. P.; Azevedo, Vasco; Soares, Siomar C.

    2017-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods. PMID:28384209

  1. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Xingmin; Goehler, Andre; Heller, Knut J.

    2006-06-20

    The ltp gene, located within the lysogeny module of temperate Streptococcus thermophilus phage TP-J34, has been shown to be expressed in lysogenic strain S. thermophilus J34. It codes for a lipoprotein, as demonstrated by inhibition of cleavage of the signal sequence by globomycin. Exposure of Ltp on the surface of Lactococcus lactis protoplasts bearing a plasmid-encoded copy of ltp has been demonstrated by immunogold labeling and electron microscopy. Expression of ltp in prophage- and plasmid-cured S. thermophilus J34-6f interfered with TP-J34 infection. While plating efficiency was reduced by a factor of about 40 and lysis of strain J34-6f in liquidmore » medium was delayed considerably, phage adsorption was not affected at all. Intracellular accumulation of phage DNA was shown to be inhibited by Ltp. This indicates interference of Ltp with infection at the stage of triggering DNA release and injection into the cell, indicating a role of Ltp in superinfection exclusion. Expression of ltp in L. lactis Bu2-60 showed that the same superinfection exclusion mechanism was strongly effective against phage P008, a member of the lactococcal 936 phage species: no plaque-formation was detectable with even 10{sup 9} phage per ml applied, and lysis in liquid medium did not occur. In Lactococcus also, Ltp apparently inhibited phage DNA release and/or injection. Ltp appears to be a member of a family of small, secreted proteins with a 42 amino acids repeat structure encoded by genes of Gram-positive bacteria. Some of these homologous genes are part of the genomes of prophages.« less

  2. Lactococcus lactis subsp. lactis infection in Bester sturgeon, a cultured hybrid of Huso huso × Acipenser ruthenus, in Taiwan.

    PubMed

    Chen, Ming-Hui; Hung, Shao-Wen; Shyu, Ching-Lin; Lin, Cheng-Chung; Liu, Pan-Chen; Chang, Chen-Hsuan; Shia, Wei-Yau; Cheng, Ching-Fu; Lin, Shiun-Long; Tu, Ching-Yu; Lin, Yu-Hsing; Wang, Way-Shyan

    2012-10-01

    Approximately 5300 hybrid sturgeons with an average body weight of 600-800 g were farmed in 3 round tankers measuring 3m in diameter each containing 28,000 L of aerated groundwater. According to the owner's description, the diseased fish had anorexia, pale body color, and reddish spots on the abdomen. The morbidity and lethality rates in this outbreak were about 70% (3706/5300) and 100% (3706/3706), respectively. The clinical examination revealed enteritis, enlarged abdomen, and rapid respiration rate. The gross findings revealed a volume of about 4 mL of ascites. The histopathological examination showed multiple massive, hemorrhagic or coagulative necrotic foci in the liver and spleen. Furthermore, there was diffuse infiltration of glycogen in hepatic cells, and a few polymorphonuclear and mononuclear leucocytes were observed surrounding the spleen. Some bacterial clumps were noted around the necrotic foci. We also observed that there was moderate to severe, acute, multifocal, coagulative necrosis in the renal parenchyma, with some necrotic foci present beneath the margin of the kidney. Additionally, multifocal, coagulative necrosis was found in the pancreas. Results of microbiologic examinations, including biochemical characteristics, PCR amplification of 16S rRNA gene, sequencing and comparison, and phylogenetic analysis, revealed the pathogen of this infection was Lactococcus lactis subsp. lactis, and based on the results of an antimicrobial agent sensitivity test the bacterium was only sensitive to ampicillin and florfenicol. Additionally, results of in vivo experimental infections in hybrid tilapia showed that 1×10(8) and 1×10(9) CFU/mL of our isolate caused death in all fish and LD(50) values ranged from 10(2) to 10(5) CFU/mL. To the best of the authors' knowledge, this is the first reported case of Lactococcus lactis subsp. lactis infection in hybrid sturgeon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Recombinant Lactococcus lactis can make the difference in antigen-specific immune tolerance induction, the Type 1 Diabetes case

    PubMed Central

    2014-01-01

    Especially in western civilizations, immune diseases that are driven by innocuous (auto- or allo-) antigens are gradually evolving to become pandemic threats. A particularly poignant example is type 1 diabetes, where young children are confronted with the perspective and consequences of total pancreatic β-cell destruction. Along these disquieting observations we find ourselves equipped with impressively accumulating molecular immunological knowledge on the ins and outs of these pathologies. Often, however, it is difficult to translate this wealth into efficacious medicines. The molecular understanding, the concept of oral tolerance induction, the benefit of using recombinant Lactococcus lactis therein and recent openings towards their clinical use may well enable turning all colors to their appropriate fields on this Rubik's cube. PMID:25185797

  4. Prospective randomized controlled study on the effects of Saccharomyces boulardii CNCM I-745 and amoxicillin-clavulanate or the combination on the gut microbiota of healthy volunteers.

    PubMed

    Kabbani, Toufic A; Pallav, Kumar; Dowd, Scot E; Villafuerte-Galvez, Javier; Vanga, Rohini R; Castillo, Natalia E; Hansen, Joshua; Dennis, Melinda; Leffler, Daniel A; Kelly, Ciarán P

    2017-01-02

    Probiotics are believed to be beneficial in maintaining a healthy gut microbiota whereas antibiotics are known to induce dysbiosis. This study aimed to examine the effects of the probiotic Saccharomyces boulardii CNCM I-745 (SB), the antibiotic Amoxicillin-Clavulanate (AC) and the combination on the microbiota and symptoms of healthy humans. Healthy subjects were randomized to one of 4 study groups: SB for 14 days, AC for 7 days, SB plus AC, Control (no treatment). Participants gave stool samples and completed gastro-intestinal symptom questionnaires. Microbiota changes in stool specimens were analyzed using 16s rRNA gene pyrosequencing (bTEFAP). Only one subject withdrew prematurely due to adverse events. Subjects treated by S boulardii + AC had fewer adverse events and tolerated the study regimen better than those receiving the AC alone. Control subjects had a stable microbiota throughout the study period. Significant microbiota changes were noted in the AC alone group during antibiotic treatment. AC associated changes included reduced prevalence of the genus Roseburia and increases in Escherichia, Parabacteroides, and Enterobacter. Microbiota alterations reverted toward baseline, but were not yet completely restored 2 weeks after antibiotherapy. No significant shifts in bacterial genera were noted in the SB alone group. Adding SB to AC led to less pronounced microbiota shifts including less overgrowth of Escherichia and to a reduction in antibiotic-associated diarrhea scores. Antibiotic treatment is associated with marked microbiota changes with both reductions and increases in different genera. S. boulardii treatment can mitigate some antibiotic-induced microbiota changes (dysbiosis) and can also reduce antibiotic-associated diarrhea.

  5. Prospective randomized controlled study on the effects of Saccharomyces boulardii CNCM I-745 and amoxicillin-clavulanate or the combination on the gut microbiota of healthy volunteers

    PubMed Central

    Kabbani, Toufic A.; Pallav, Kumar; Dowd, Scot E.; Villafuerte-Galvez, Javier; Vanga, Rohini R.; Castillo, Natalia E.; Hansen, Joshua; Dennis, Melinda; Leffler, Daniel A.; Kelly, Ciarán P.

    2017-01-01

    ABSTRACT Probiotics are believed to be beneficial in maintaining a healthy gut microbiota whereas antibiotics are known to induce dysbiosis. This study aimed to examine the effects of the probiotic Saccharomyces boulardii CNCM I-745 (SB), the antibiotic Amoxicillin-Clavulanate (AC) and the combination on the microbiota and symptoms of healthy humans. Healthy subjects were randomized to one of 4 study groups: SB for 14 days, AC for 7 days, SB plus AC, Control (no treatment). Participants gave stool samples and completed gastro-intestinal symptom questionnaires. Microbiota changes in stool specimens were analyzed using 16s rRNA gene pyrosequencing (bTEFAP). Only one subject withdrew prematurely due to adverse events. Subjects treated by S boulardii + AC had fewer adverse events and tolerated the study regimen better than those receiving the AC alone. Control subjects had a stable microbiota throughout the study period. Significant microbiota changes were noted in the AC alone group during antibiotic treatment. AC associated changes included reduced prevalence of the genus Roseburia and increases in Escherichia, Parabacteroides, and Enterobacter. Microbiota alterations reverted toward baseline, but were not yet completely restored 2 weeks after antibiotherapy. No significant shifts in bacterial genera were noted in the SB alone group. Adding SB to AC led to less pronounced microbiota shifts including less overgrowth of Escherichia and to a reduction in antibiotic-associated diarrhea scores. Antibiotic treatment is associated with marked microbiota changes with both reductions and increases in different genera. S. boulardii treatment can mitigate some antibiotic-induced microbiota changes (dysbiosis) and can also reduce antibiotic-associated diarrhea. PMID:27973989

  6. Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403.

    PubMed

    Vinogradov, Evgeny; Sadovskaya, Irina; Courtin, Pascal; Kulakauskas, Saulius; Grard, Thierry; Mahony, Jennifer; van Sinderen, Douwe; Chapot-Chartier, Marie-Pierre

    2018-06-15

    In the lactic acid bacterium Lactococcus lactis, a cell wall polysaccharide (CWPS) is the bacterial receptor of the majority of infecting bacteriophages. The diversity of CWPS structures between strains explains, at least partially, the narrow host range of lactococcal phages. In the present work, we studied the polysaccharide components of the cell wall of the prototype L. lactis subsp. lactis strain IL1403. We identified a rhamnose-rich complex polysaccharide, carrying a glycerophosphate substitution, as the major component. Its structure was analyzed by 2D NMR spectroscopy, methylation analysis and MALDI-TOF MS and shown to be distinctly different from currently known lactococcal CWPS structures. It contains a linear backbone of repeated α-l-Rha disaccharide subunits, which is irregularly substituted with a trisaccharide occasionally bearing a glycerophosphate group. A poly (glycerol phosphate) teichoic acid, another important carbohydrate component of the IL1403 cell wall, was also isolated and structurally characterized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Antifungal, Anticancer and Aminopeptidase Inhibitory Potential of a Phenazine Compound Produced by Lactococcus BSN307.

    PubMed

    Varsha, Kontham Kulangara; Nishant, Gopalan; Sneha, Srambikal Mohandas; Shilpa, Ganesan; Devendra, Leena; Priya, Sulochana; Nampoothiri, Kesavan Madhavan

    2016-12-01

    A bioactive compound was purified from the culture medium of a new strain of Lactococcus BSN307 by solvent extraction followed by chromatographic techniques. This bioactive compound was identified to belong to phenazine class of compounds by MS, NMR and FTIR. The phenazine compound showed antifungal activity against Aspergillus niger , Penicillium chrysogenum as well as Fusarium oxysporum by disc diffusion assay in addition to antioxidant potential as demonstrated by DPPH scavenging assay. The compound demonstrated selective cytotoxicity against cancer cell lines HeLa and MCF-7 where IC 50 was achieved with 20 and 24 µg/mL respectively. At the same time no cytotoxicity was occurred in normal H9c2 cells. The bioactive found to be inhibitory to both leucine and proline aminopeptidases and thus revealed its potential as metalloenzyme inhibitor. This study, for the first time reports the production of phenazine class of compounds by lactic acid bacteria.

  8. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

    PubMed

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe

    2017-03-29

    Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.

  9. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection.

  10. Condensation-nuclei (Aitken Particle) measurement system used in NASA global atmospheric sampling program

    NASA Technical Reports Server (NTRS)

    Nyland, T. W.

    1979-01-01

    The condensation-nuclei (Aitken particle) measuring system used in the NASA Global Atmospheric Sampling Program is described. Included in the paper is a description of the condensation-nuclei monitor sensor, the pressurization system, and the Pollack-counter calibration system used to support the CN measurement. The monitor has a measurement range to 1000 CN/cm cubed and a noise level equivalent to 5 CN/cm cubed at flight altitudes between 6 and 13 km.

  11. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446.

    PubMed

    Simeoni, Umberto; Berger, Bernard; Junick, Jana; Blaut, Michael; Pecquet, Sophie; Rezzonico, Enea; Grathwohl, Dominik; Sprenger, Norbert; Brüssow, Harald; Szajewska, Hania; Bartoli, J-M; Brevaut-Malaty, V; Borszewska-Kornacka, M; Feleszko, W; François, P; Gire, C; Leclaire, M; Maurin, J-M; Schmidt, S; Skórka, A; Squizzaro, C; Verdot, J-J

    2016-07-01

    Non-digestible milk oligosaccharides were proposed as receptor decoys for pathogens and as nutrients for beneficial gut commensals like bifidobacteria. Bovine milk contains oligosaccharides, some of which are structurally identical or similar to those found in human milk. In a controlled, randomized double-blinded clinical trial we tested the effect of feeding a formula supplemented with a mixture of bovine milk-derived oligosaccharides (BMOS) generated from whey permeate, containing galacto-oligosaccharides and 3'- and 6'-sialyllactose, and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446. Breastfed infants served as reference group. Compared with a non-supplemented control formula, the test formula showed a similar tolerability and supported a similar growth in healthy newborns followed for 12 weeks. The control, but not the test group, differed from the breast-fed reference group by a higher faecal pH and a significantly higher diversity of the faecal microbiota. In the test group the probiotic B. lactis increased by 100-fold in the stool and was detected in all supplemented infants. BMOS stimulated a marked shift to a bifidobacterium-dominated faecal microbiota via increases in endogenous bifidobacteria (B. longum, B. breve, B. bifidum, B. pseudocatenulatum). © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Diversity Analysis of Dairy and Nondairy Lactococcus lactis Isolates, Using a Novel Multilocus Sequence Analysis Scheme and (GTG)5-PCR Fingerprinting▿

    PubMed Central

    Rademaker, Jan L. W.; Herbet, Hélène; Starrenburg, Marjo J. C.; Naser, Sabri M.; Gevers, Dirk; Kelly, William J.; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E. T.

    2007-01-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene. PMID:17890345

  13. Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting.

    PubMed

    Rademaker, Jan L W; Herbet, Hélène; Starrenburg, Marjo J C; Naser, Sabri M; Gevers, Dirk; Kelly, William J; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E T

    2007-11-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.

  14. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    PubMed

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Modeling of the Competitive Growth of Listeria monocytogenes and Lactococcus lactis in Vegetable Broth

    PubMed Central

    Breidt, Frederick; Fleming, Henry P.

    1998-01-01

    Current mathematical models used by food microbiologists do not address the issue of competitive growth in mixed cultures of bacteria. We developed a mathematical model which consists of a system of nonlinear differential equations describing the growth of competing bacterial cell cultures. In this model, bacterial cell growth is limited by the accumulation of protonated lactic acid and decreasing pH. In our experimental system, pure and mixed cultures of Lactococcus lactis and Listeria monocytogenes were grown in a vegetable broth medium. Predictions of the model indicate that pH is the primary factor that limits the growth of L. monocytogenes in competition with a strain of L. lactis which does not produce the bacteriocin nisin. The model also predicts the values of parameters that affect the growth and death of the competing populations. Further development of this model will incorporate the effects of additional inhibitors, such as bacteriocins, and may aid in the selection of lactic acid bacterium cultures for use in competitive inhibition of pathogens in minimally processed foods. PMID:9726854

  16. Detection and Viability of Lactococcus lactis throughout Cheese Ripening

    PubMed Central

    Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese. PMID:25503474

  17. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.

    PubMed

    Pek, Han Bin; Lim, Pei Yu; Liu, Chengcheng; Lee, Dong-Yup; Bi, Xuezhi; Wong, Fong Tian; Ow, Dave Siak-Wei

    2017-05-01

    To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.

  18. Combination of culture-dependent and culture-independent molecular methods for the determination of lactic microbiota in sucuk.

    PubMed

    Kesmen, Z; Yetiman, A E; Gulluce, A; Kacmaz, N; Sagdic, O; Cetin, B; Adiguzel, A; Sahin, F; Yetim, H

    2012-02-15

    In this study, the culture-dependent and culture-independent molecular methods were used for the identification of lactic acid bacteria (LAB) in sucuk a Turkish fermented dry sausage. On the one hand, the PCR-DGGE method targetting the V1 and V3 regions of 16S DNA was applied to DNA that was directly extracted from sucuk samples. On the other hand, rep-PCR fingerprinting was performed for the primary differentiation and grouping of the isolates, and the results were confirmed by sequencing of the 16S rDNA and 16S-23S rDNA intergenic spacer region. As a result of the PCR-DGGE analysis of all the samples, total 8 different lactic acid bacteria were identified, and Lactobacillus sakei, Lactobacillus curvatus and Weissella viridescens were the dominant microbiota among these bacteria. The culture-dependent approach indicated that the majority of the strains belonged to the Lactobacillus genera including Lb. sakei, Lactobacillus plantarum, Lb. curvatus, Lactobacillus brevis, Lactobacillus farciminis and Lactobacillus alimentarius. However, Leuconostoc and Weisella were also detected as minor genera. Again, Lactococcus piscium, Weissella halotolerans, Staphylococcus succinus and the comigrated Staphylococcus piscifermentans/Staphylococcus condimenti/Staphylococcus carnosus group were detected only with the culture-independent method while Lb. plantarum, Leuconostoc mesenteroides and Leuconostoc citreum were identified only by using the culture-dependent method. In the results, it was concluded that the combination of culture-dependent and culture-independent methods was necessary for reliable and detailed investigation of LAB communities in fermented food products. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Impact of Nisin-Activated Packaging on Microbiota of Beef Burgers during Storage

    PubMed Central

    Ferrocino, Ilario; Greppi, Anna; La Storia, Antonietta; Rantsiou, Kalliopi; Ercolini, Danilo

    2015-01-01

    Beef burgers were stored at 4°C in a vacuum in nisin-activated antimicrobial packaging. Microbial ecology analyses were performed on samples collected between days 0 and 21 of storage to discover the population diversity. Two batches were analyzed using RNA-based denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. The active packaging retarded the growth of the total viable bacteria and lactic acid bacteria. Culture-independent analysis by pyrosequencing of RNA extracted directly from meat showed that Photobacterium phosphoreum, Lactococcus piscium, Lactobacillus sakei, and Leuconostoc carnosum were the major operational taxonomic units (OTUs) shared between control and treated samples. Beta diversity analysis of the 16S rRNA sequence data and RNA-DGGE showed a clear separation between two batches based on the microbiota. Control samples from batch B showed a significant high abundance of some taxa sensitive to nisin, such as Kocuria rhizophila, Staphylococcus xylosus, Leuconostoc carnosum, and Carnobacterium divergens, compared to control samples from batch A. However, only from batch B was it possible to find a significant difference between controls and treated samples during storage due to the active packaging. Predicted metagenomes confirmed differences between the two batches and indicated that the use of nisin-based antimicrobial packaging can determine a reduction in the abundance of specific metabolic pathways related to spoilage. The present study aimed to assess the viable bacterial communities in beef burgers stored in nisin-based antimicrobial packaging, and it highlights the efficacy of this strategy to prolong beef burger shelf life. PMID:26546424

  20. Impact of Nisin-Activated Packaging on Microbiota of Beef Burgers during Storage.

    PubMed

    Ferrocino, Ilario; Greppi, Anna; La Storia, Antonietta; Rantsiou, Kalliopi; Ercolini, Danilo; Cocolin, Luca

    2016-01-15

    Beef burgers were stored at 4°C in a vacuum in nisin-activated antimicrobial packaging. Microbial ecology analyses were performed on samples collected between days 0 and 21 of storage to discover the population diversity. Two batches were analyzed using RNA-based denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. The active packaging retarded the growth of the total viable bacteria and lactic acid bacteria. Culture-independent analysis by pyrosequencing of RNA extracted directly from meat showed that Photobacterium phosphoreum, Lactococcus piscium, Lactobacillus sakei, and Leuconostoc carnosum were the major operational taxonomic units (OTUs) shared between control and treated samples. Beta diversity analysis of the 16S rRNA sequence data and RNA-DGGE showed a clear separation between two batches based on the microbiota. Control samples from batch B showed a significant high abundance of some taxa sensitive to nisin, such as Kocuria rhizophila, Staphylococcus xylosus, Leuconostoc carnosum, and Carnobacterium divergens, compared to control samples from batch A. However, only from batch B was it possible to find a significant difference between controls and treated samples during storage due to the active packaging. Predicted metagenomes confirmed differences between the two batches and indicated that the use of nisin-based antimicrobial packaging can determine a reduction in the abundance of specific metabolic pathways related to spoilage. The present study aimed to assess the viable bacterial communities in beef burgers stored in nisin-based antimicrobial packaging, and it highlights the efficacy of this strategy to prolong beef burger shelf life. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. [Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp. lactis 194-K].

    PubMed

    Ustiugova, E A; Timofeeva, A V; Stoianova, L G; Netrusov, A I; Katrukha, G S

    2012-01-01

    The Lactococcus lactis subsp. lactis 194-K strain has been established to be able to produce two bacteriocins, one of which was identified as the known lantibiotic nisin A, and the other 194-D bacteriocin represents a polypeptide with a 2589-Da molecular mass and comprises 20 amino acid residues. Both bacteriocins were produced in varying proportions in all of the studied nutrient media, which support the growth of the producer. Depending on the cultivation medium, the nisin A content was 380- to 1123-fold lower in the 194-K stain culture fluid than that of the 194-D peptide. In comparision to to nisin A Bacteriocin 194-D possessed a wide range of antibacterial activity and suppressed the growth of both Gram-positive and Gram-negative bacteria. An optimal medium for 194-D bacteriocin synthesis was shown to be a fermentation medium which contained yeast extract, casein hydrolysate, and potassium phosphate. The biosynthesis ofbacteriocin 194-D by the 194-K strain in these media occurred parallel to producer growth, and its maximal accumulation in the culture fluid was observed at 14-20 h of the strain's growth.

  2. Purification and Characterization of an Aminopeptidase from Lactococcus lactis subsp. cremoris AM2.

    PubMed

    Neviani, E; Boquien, C Y; Monnet, V; Thanh, L P; Gripon, J C

    1989-09-01

    An aminopeptidase was purified from cell extracts of Lactococcus lactis subsp. cremoris AM2 by ion-exchange chromatography. After electrophoresis of the purified enzyme in the presence or absence of sodium dodecyl sulfate, one protein band was detected. The enzyme was a 300-kilodalton hexamer composed of identical subunits not linked by disulfide bridges. Activity was optimal at 40 degrees C and pH 7 and was inhibited by classical thiol group inhibitors. The aminopeptidase hydrolyzed naphthylamide-substituted amino acids, as well as dipeptides and tripeptides. Longer protein chains such as the B chain of insulin were hydrolyzed, but at a much slower rate. The Michaelis constant (K(m)) and the maximal rate of hydrolysis (V(max)) were, respectively, 4.5 mM and 3,600 pkat/mg for the substrate l-histidyl-beta-naphthylamide. Amino acid analysis showed that the enzyme contained low levels of hydrophobic residues. The partial N-terminal sequence of the first 19 residues of the mature enzyme was determined. Polyclonal antibodies were obtained from the purified enzyme, and after immunoblotting, there was no cross-reaction between these antibodies and other proteins in the crude extract.

  3. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni.

    PubMed

    Tareb, Raouf; Bernardeau, Marion; Gueguen, Marielle; Vernoux, Jean-Paul

    2013-04-01

    Bacterial aggregation and/or adhesion are key factors for colonization of the digestive ecosystem and the ability of probiotic strains to exclude pathogens. In the present study, two probiotic strains, Lactobacillus rhamnosus CNCM-I-3698 and Lactobacillus farciminis CNCM-I-3699, were evaluated as viable or heat-killed forms and compared with probiotic reference Lactobacillus strains (Lb. rhamnosus GG and Lb. farciminis CIP 103136). The autoaggregation potential of both forms was higher than that of reference strains and twice that of pathogenic strains. The coaggregation potential of these two beneficial micro-organisms was evaluated against several pathogenic agents that threaten the global safety of the feed/food chain: Escherichia coli, Salmonella spp., Campylobacter spp. and Listeria monocytogenes. The strongest coaggregative interactions were demonstrated with Campylobacter spp. by a coaggregation test, confirmed by electron microscopic examination for the two forms. Viable forms were investigated for the nature of the bacterial cell-surface molecules involved, by sugar reversal tests and chemical and enzymic pretreatments. The results suggest that the coaggregation between both probiotic strains and C. jejuni CIP 70.2(T) is mediated by a carbohydrate-lectin interaction. The autoaggregation potential of the two probiotics decreased upon exposure to proteinase, SDS or LiCl, showing that proteinaceous components on the surface of the two lactobacilli play an important role in this interaction. Adhesion abilities of both Lactobacillus strains were also demonstrated at significant levels on Caco-2 cells, mucin and extracellular matrix material. Both viable and heat-killed forms of the two probiotic lactobacilli inhibited the attachment of C. jejuni CIP 70.2(T) to mucin. In conclusion, in vitro assays showed that Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, as viable or heat-killed forms, are adherent to different intestinal matrix models and are

  4. Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of Lactococcus lactis.

    PubMed

    Sadovskaya, Irina; Vinogradov, Evgeny; Courtin, Pascal; Armalyte, Julija; Meyrand, Mickael; Giaouris, Efstathios; Palussière, Simon; Furlan, Sylviane; Péchoux, Christine; Ainsworth, Stuart; Mahony, Jennifer; van Sinderen, Douwe; Kulakauskas, Saulius; Guérardel, Yann; Chapot-Chartier, Marie-Pierre

    2017-09-12

    Polysaccharides are ubiquitous components of the Gram-positive bacterial cell wall. In Lactococcus lactis , a polysaccharide pellicle (PSP) forms a layer at the cell surface. The PSP structure varies among lactococcal strains; in L. lactis MG1363, the PSP is composed of repeating hexasaccharide phosphate units. Here, we report the presence of an additional neutral polysaccharide in L. lactis MG1363 that is a rhamnan composed of α-l-Rha trisaccharide repeating units. This rhamnan is still present in mutants devoid of the PSP, indicating that its synthesis can occur independently of PSP synthesis. High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) analysis of whole bacterial cells identified a PSP at the surface of wild-type cells. In contrast, rhamnan was detected only at the surface of PSP-negative mutant cells, indicating that rhamnan is located underneath the surface-exposed PSP and is trapped inside peptidoglycan. The genetic determinants of rhamnan biosynthesis appear to be within the same genetic locus that encodes the PSP biosynthetic machinery, except the gene tagO encoding the initiating glycosyltransferase. We present a model of rhamnan biosynthesis based on an ABC transporter-dependent pathway. Conditional mutants producing reduced amounts of rhamnan exhibit strong morphological defects and impaired division, indicating that rhamnan is essential for normal growth and division. Finally, a mutation leading to reduced expression of lcpA , encoding a protein of the LytR-CpsA-Psr (LCP) family, was shown to severely affect cell wall structure. In lcpA mutant cells, in contrast to wild-type cells, rhamnan was detected by HR-MAS NMR, suggesting that LcpA participates in the attachment of rhamnan to peptidoglycan. IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including

  5. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity.

    PubMed

    Bounouala, Fatima Zohra; Roudj, Salima; Karam, Nour-Eddine; Recio, Isidra; Miralles, Beatriz

    2017-10-25

    Casein from ovine and bovine milk were hydrolyzed with two extracellular protease preparations from Lactobacillus brevis and Lactococcus lactis. The hydrolysates were analyzed by HPLC-MS/MS for peptide identification. A strain-dependent peptide profile could be observed, regardless of the casein origin, and the specificity of these two proteases could be computationally ascribed. The cleavage pattern yielding phenylalanine, leucine, or tyrosine at C-terminal appeared both at L. lactis and Lb. brevis hydrolysates. However, the cleavage C-terminal to lysine was favored with Lb. brevis protease. The hydrolysates showed ACE-inhibitory activity with IC 50 in the 16-70 μg/mL range. Ovine casein hydrolysates yielded greater ACE-inhibitory activity. Previously described antihypertensive and opioid peptides were found in these ovine and bovine casein hydrolysates and prediction of the antihypertensive activity of the sequences based on quantitative structure and activity relationship (QSAR) was performed. This approach might represent a useful classification tool regarding health-related properties prior to further purification.

  6. Survival, Physiology, and Lysis of Lactococcus lactis in the Digestive Tract

    PubMed Central

    Drouault, Sophie; Corthier, Gérard; Ehrlich, S. Dusko; Renault, Pierre

    1999-01-01

    The survival and the physiology of lactococcal cells in the different compartments of the digestive tracts of rats were studied in order to know better the fate of ingested lactic acid bacteria after oral administration. For this purpose, we used strains marked with reporter genes, the luxA-luxB gene of Vibrio harveyi and the gfp gene of Aequora victoria, that allowed us to differentiate the inoculated bacteria from food and the other intestinal bacteria. Luciferase was chosen to measure the metabolic activity of Lactococcus lactis in the digestive tract because it requires NADH, which is available only in metabolically active cells. The green fluorescent protein was used to assess the bacterial lysis independently of death. We report not only that specific factors affect the cell viability and integrity in some digestive tract compartments but also that the way bacteria are administrated has a dramatic impact. Lactococci which transit with the diet are quite resistant to gastric acidity (90 to 98% survival). In contrast, only 10 to 30% of bacteria survive in the duodenum. Viable cells are metabolically active in each compartment of the digestive tract, whereas most dead cells appear to be subject to rapid lysis. This property suggests that lactococci could be used as a vector to deliver specifically into the duodenum the proteins produced in the cytoplasm. This type of delivery vector would be particularly appropriate for targeting digestive enzymes such as lipase to treat pancreatic deficiencies. PMID:10543799

  7. Benchmarking Various Green Fluorescent Protein Variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for Live Cell Imaging

    PubMed Central

    Overkamp, Wout; Beilharz, Katrin; Detert Oude Weme, Ruud; Solopova, Ana; Karsens, Harma; Kovács, Ákos T.; Kok, Jan

    2013-01-01

    Green fluorescent protein (GFP) offers efficient ways of visualizing promoter activity and protein localization in vivo, and many different variants are currently available to study bacterial cell biology. Which of these variants is best suited for a certain bacterial strain, goal, or experimental condition is not clear. Here, we have designed and constructed two “superfolder” GFPs with codon adaptation specifically for Bacillus subtilis and Streptococcus pneumoniae and have benchmarked them against five other previously available variants of GFP in B. subtilis, S. pneumoniae, and Lactococcus lactis, using promoter-gfp fusions. Surprisingly, the best-performing GFP under our experimental conditions in B. subtilis was the one codon optimized for S. pneumoniae and vice versa. The data and tools described in this study will be useful for cell biology studies in low-GC-rich Gram-positive bacteria. PMID:23956387

  8. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

    PubMed

    Wisselink, H Wouter; Mars, Astrid E; van der Meer, Pieter; Eggink, Gerrit; Hugenholtz, Jeroen

    2004-07-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

  9. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2014-01-01

    This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239

  10. Variations in the Degree of d-Alanylation of Teichoic Acids in Lactococcus lactis Alter Resistance to Cationic Antimicrobials but Have No Effect on Bacterial Surface Hydrophobicity and Charge▿

    PubMed Central

    Giaouris, Efstathios; Briandet, Romain; Meyrand, Mickael; Courtin, Pascal; Chapot-Chartier, Marie-Pierre

    2008-01-01

    An increase of the degree of d-alanylation of teichoic acids in Lactococcus lactis resulted in a significant increase of bacterial resistance toward the cationic antimicrobials nisin and lysozyme, whereas the absence of d-alanylation led to a decreased resistance toward the same compounds. In contrast, the same variations of the d-alanylation degree did not modify bacterial cell surface charge and hydrophobicity. Bacterial adhesion to polystyrene and glass surfaces was not modified either. PMID:18539809

  11. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.

    PubMed

    Shi, Weijia; Li, Yu; Gao, Xueling; Fu, Ruiyan

    2016-03-01

    The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148). Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5-6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5-6.5) was at pH 5.5. The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.

  12. Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking Intracellular Conditions

    PubMed Central

    Goel, Anisha; Santos, Filipe; de Vos, Willem M.; Teusink, Bas

    2012-01-01

    Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and performed under different assay conditions. Furthermore, assay conditions often diverge from conditions prevailing in the intracellular environment. To establish uniform assay conditions that resemble intracellular conditions, we analyzed the intracellular composition of anaerobic glucose-limited chemostat cultures of L. lactis subsp. cremoris MG 1363. Based on this, we designed a new assay medium for enzyme activity measurements of growing cells of L. lactis, mimicking as closely as practically possible its intracellular environment. Procedures were optimized to be carried out in 96-well plates, and the reproducibility and dynamic range were checked for all enzyme activity measurements. The effects of freezing and the carryover of ammonium sulfate from the addition of coupling enzymes were also established. Activities of all 10 glycolytic and 4 fermentative enzymes were measured. Remarkably, most in vivo-like activities were lower than previously published data. Yet, the ratios of Vmax over measured in vivo fluxes were above 1. With this work, we have developed and extensively validated standard protocols for enzyme activity measurements for L. lactis. PMID:22020503

  13. Biodiversity of Lactococcus garvieae strains isolated from fish in Europe, Asia, and Australia.

    PubMed

    Eldar, A; Goria, M; Ghittino, C; Zlotkin, A; Bercovier, H

    1999-03-01

    Lactococcus garvieae (junior synonym, Enterococcus seriolicida) is a major pathogen of fish, producing fatal septicemia among fish species living in very diverse environments. The phenotypic traits of L. garvieae strains collected from three different continents (Asia, Europe, and Australia) indicated phenotypic heterogeneity. On the basis of the acidification of D-tagatose and sucrose, three biotypes were defined. DNA relatedness values and a specific PCR assay showed that all the biotypes belonged to the same genospecies, L. garvieae. All of the L. garvieae strains were serotyped as Lancefield group N. Ribotyping proved that one clone was found both in Japan, where it probably originated, and in Italy, where it was probably imported. PCR of environmental samples did not reveal the source of the contamination of the fish in Italy. Specific clones (ribotypes) were found in outbreaks in Spain and in Italy. The L. garvieae reference strain, isolated in the United Kingdom from a cow, belonged to a unique ribotype. L. garvieae is a rising zoonotic agent. The biotyping scheme, the ribotyping analysis, and the PCR assay described in this work allowed the proper identification of L. garvieae and the description of the origin and of the source of contamination of strains involved in outbreaks or in sporadic cases.

  14. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.

    PubMed

    Luoma, S; Peltoniemi, K; Joutsjoki, V; Rantanen, T; Tamminen, M; Heikkinen, I; Palva, A

    2001-03-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.

  15. Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis

    PubMed Central

    Luoma, Susanna; Peltoniemi, Kirsi; Joutsjoki, Vesa; Rantanen, Terhi; Tamminen, Marja; Heikkinen, Inka; Palva, Airi

    2001-01-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration. PMID:11229915

  16. Engineering Signal Peptides for Enhanced Protein Secretion from Lactococcus lactis

    PubMed Central

    Ng, Daphne T. W.

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts. PMID:23124224

  17. Engineering signal peptides for enhanced protein secretion from Lactococcus lactis.

    PubMed

    Ng, Daphne T W; Sarkar, Casim A

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts.

  18. Genetic and phenotypic features defining industrial relevant Lactococcus lactis, L. cremoris and L. lactis biovar. diacetylactis strains.

    PubMed

    Manno, Mariano Torres; Zuljan, Federico; Alarcón, Sergio; Esteban, Luis; Blancato, Victor; Espariz, Martín; Magni, Christian

    2018-06-23

    Lactococcus lactis strains constitute one of the most important starter cultures for cheese production. In this study, a genome-wide analysis was performed including 68 available genomes of L. lactis group strains showing the existence of two species (L. lactis and L. cremoris) and two biovars (L. lactis biovar. diacetylactis and L. cremoris biovar. lactis). The proposed classification scheme revealed coherency among phenotypic (through in silico and in vivo bacterial function profiling), phylogenomic (through maximum likelihood trees) and genomic (using overall genome sequence-based parameters) approaches. Strain biodiversity for the industrial biovar. diacetylactis was also analyzed, finding they are formed by at least three variants with the CC1 clonal complex as the only one distributed worldwide. These findings and methodologies will help improve the selection of L. lactis group strains for industrial use as well as facilitate the interpretation of previous or future research studies on this diverse group of bacteria. Copyright © 2018. Published by Elsevier B.V.

  19. Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro.

    PubMed

    Zhang, Justina Su; Guri, Anilda; Corredig, Milena; Morales-Rayas, Rocio; Hassan, Ashraf; Griffiths, Mansel; LaPointe, Gisèle

    2016-12-01

    Lactococcus lactis subsp. cremoris JFR1 has been studied in reduced fat cheese due to its ability to produce exopolysaccharides (EPS) in situ, contributing to improved textural and organoleptic properties. In this study, the effect of strain JFR1 on virulence gene expression and attachment of Salmonella to HT-29 human colon carcinoma cells was investigated. Overnight cultures of L. lactis subsp. cremoris JFR1 containing EPS, grown in M17 media with 0.5% glucose supplementation, decreased attachment as well as down regulated virulence gene expression in Salmonella enterica subsp. enterica when tested on HT-29 cells. However, EPS isolated from milk fermented with L. lactis subsp. cremoris JFR1 did not affect Salmonella virulence gene expression or attachment to HT-29 cells. These results suggest that EPS does not contribute to the attachment of Salmonella to human intestinal cells. However, the possibility that the isolation process may have affected the structural features of EPS cannot be ruled out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems.

    PubMed

    Douillard, François P; Mahony, Jennifer; Campanacci, Valérie; Cambillau, Christian; van Sinderen, Douwe

    2011-09-01

    Over the last 10 years, the NIsin Controlled Expression (NICE) system has been extensively used in the food-grade bacterium Lactococcus lactis subsp. cremoris to produce homologous and heterologous proteins for academic and biotechnological purposes. Although various L. lactis molecular tools have been developed, no expression vectors harboring the popular Gateway recombination system are currently available for this widely used cloning host. In this study, we constructed two expression vectors that combine the NICE and the Gateway recombination systems and we tested their applicability by recombining and over-expressing genes encoding structural proteins of lactococcal phages Tuc2009 and TP901-1. Over-expressed phage proteins were analyzed by immunoblotting and purified by His-tag affinity chromatography with protein productions yielding 2.8-3.7 mg/l of culture. This therefore is the first description of L. lactis NICE expression vectors which integrate the Gateway cloning technology and which are suitable for the production of sufficient amounts of proteins to facilitate subsequent structural and functional analyses. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44.

    PubMed

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-06-16

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process.

  2. Lactococcus lactis LMG2081 Produces Two Bacteriocins, a Nonlantibiotic and a Novel Lantibiotic.

    PubMed

    Mirkovic, Nemanja; Polovic, Natalija; Vukotic, Goran; Jovcic, Branko; Miljkovic, Marija; Radulovic, Zorica; Diep, Dzung B; Kojic, Milan

    2016-04-01

    Bacteriocin producers normally possess dedicated immunity systems to protect themselves from their own bacteriocins.Lactococcus lactis strains LMG2081 and BGBM50 are known as lactococcin G producers. However, BGBM50 was sensitive to LMG2081, which indicated that LMG2081 might produce additional bacteriocins that are not present in BGBM50. Therefore, whole-genome sequencing of the two strains was performed, and a lantibiotic operon (called lctLMG) was identified in LMG2081 but not in BGBM50. The lctLMG operon contains six open reading frames; the first three genes,lmgA ,lmgM, and lmgT, are involved in the biosynthesis and export of bacteriocin, while the other three genes,lmgF,lmgE, and lmgG, are involved in lantibiotic immunity. Mutational analysis confirmed that the lctLMG operon is responsible for the additional antimicrobial activity. Specifically, site-directed mutation within this operon rendered LMG2081 inactive toward BGBM50. Subsequent purification and electrospray ionization-time of flight mass spectrometric analysis confirmed that the lantibiotic bacteriocin called lacticin LMG is exported as a 25-amino-acid peptide. Lacticin LMG is highly similar to the lacticin 481 group. It is interesting that a bacteriocin producer produces two different classes of bacteriocins, whose operons are located in the chromosome and a plasmid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Lactococcus lactis LMG2081 Produces Two Bacteriocins, a Nonlantibiotic and a Novel Lantibiotic

    PubMed Central

    Mirkovic, Nemanja; Polovic, Natalija; Vukotic, Goran; Jovcic, Branko; Miljkovic, Marija; Radulovic, Zorica; Diep, Dzung B.

    2016-01-01

    Bacteriocin producers normally possess dedicated immunity systems to protect themselves from their own bacteriocins. Lactococcus lactis strains LMG2081 and BGBM50 are known as lactococcin G producers. However, BGBM50 was sensitive to LMG2081, which indicated that LMG2081 might produce additional bacteriocins that are not present in BGBM50. Therefore, whole-genome sequencing of the two strains was performed, and a lantibiotic operon (called lctLMG) was identified in LMG2081 but not in BGBM50. The lctLMG operon contains six open reading frames; the first three genes, lmgA, lmgM, and lmgT, are involved in the biosynthesis and export of bacteriocin, while the other three genes, lmgF, lmgE, and lmgG, are involved in lantibiotic immunity. Mutational analysis confirmed that the lctLMG operon is responsible for the additional antimicrobial activity. Specifically, site-directed mutation within this operon rendered LMG2081 inactive toward BGBM50. Subsequent purification and electrospray ionization–time of flight mass spectrometric analysis confirmed that the lantibiotic bacteriocin called lacticin LMG is exported as a 25-amino-acid peptide. Lacticin LMG is highly similar to the lacticin 481 group. It is interesting that a bacteriocin producer produces two different classes of bacteriocins, whose operons are located in the chromosome and a plasmid. PMID:26896142

  4. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis

    PubMed Central

    Dijkstra, Annereinou R.; Alkema, Wynand; Starrenburg, Marjo J. C.; van Hijum, Sacha A. F. T.; Bron, Peter A.

    2016-01-01

    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nan

  5. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin

    PubMed Central

    Castelain, Mickaël; Duviau, Marie-Pierre; Canette, Alexis; Schmitz, Philippe; Loubière, Pascal; Cocaign-Bousquet, Muriel; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-01-01

    Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis. PMID:27010408

  6. A novel small RNA S042 increases acid tolerance in Lactococcus lactis F44.

    PubMed

    Wu, Hao; Song, Shunyi; Tian, Kairen; Zhou, Dandan; Wang, Binbin; Liu, Jiaheng; Zhu, Hongji; Qiao, Jianjun

    2018-06-07

    Lactococcus lactis, a gram-positive bacterium, encounters various environmental stresses, especially acid stress, during fermentation. Small RNAs (sRNAs) that serve as regulators at post-transcriptional level play important roles in acid stress response. Here, a novel sRNA S042 was identified by RNA-Seq, RT-PCR and Northern blot. The transcription level of s042 was upregulated 2.29-fold under acid stress by Quantitative RT-PCR (qRT-PCR) analysis. Acid tolerance assay showed that overexpressing s042 increased the survival rate of L. lactis F44 and deleting s042 significantly inhibited the viability under acidic conditions. Moreover, the targets were predicted by online software and four genes were chosen as candidates. Among them, argR (arginine regulator) and accD (acetyl-CoA carboxylase carboxyl transferase subunit beta) were validated to be the direct targets activated by S042 through reporter fusion assay. The regulatory mechanism between S042 and its targets was further investigated through Bioinformatics and qRT-PCR. This study served to highlight the role of the novel sRNA S042 in acid resistance of L. lactis and provided new insights into the response mechanism of acid stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.

    PubMed

    Cretenet, Marina; Le Gall, Gwenaëlle; Wegmann, Udo; Even, Sergine; Shearman, Claire; Stentz, Régis; Jeanson, Sophie

    2014-12-03

    Lactococcus lactis is the most used species in the dairy industry. Its ability to adapt to technological stresses, such as oxidative stress encountered during stirring in the first stages of the cheese-making process, is a key factor to measure its technological performance. This study aimed to understand the response to oxidative stress of Lactococcus lactis subsp. cremoris MG1363 at the transcriptional and metabolic levels in relation to acidification kinetics and growth conditions, especially at an early stage of growth. For those purposes, conditions of hyper-oxygenation were initially fixed for the fermentation. Kinetics of growth and acidification were not affected by the presence of oxygen, indicating a high resistance to oxygen of the L. lactis MG1363 strain. Its resistance was explained by an efficient consumption of oxygen within the first 4 hours of culture, leading to a drop of the redox potential. The efficient consumption of oxygen by the L. lactis MG1363 strain was supported by a coherent and early adaptation to oxygen after 1 hour of culture at both gene expression and metabolic levels. In oxygen metabolism, the over-expression of all the genes of the nrd (ribonucleotide reductases) operon or fhu (ferrichrome ABC transports) genes was particularly significant. In carbon metabolism, the presence of oxygen led to an early shift at the gene level in the pyruvate pathway towards the acetate/2,3-butanediol pathway confirmed by the kinetics of metabolite production. Finally, the MG1363 strain was no longer able to consume oxygen in the stationary growth phase, leading to a drastic loss of culturability as a consequence of cumulative stresses and the absence of gene adaptation at this stage. Combining metabolic and transcriptomic profiling, together with oxygen consumption kinetics, yielded new insights into the whole genome adaptation of L. lactis to initial oxidative stress. An early and transitional adaptation to oxidative stress was revealed for L

  8. Lacticin LC14, a new bacteriocin produced by Lactococcus lactis BMG6.14: isolation, purification and partial characterization.

    PubMed

    Lasta, Samar; Ouzari, Hadda; Andreotti, Nicolas; Fajloun, Ziad; Mansuelle, Pascal; Boudabous, Abdellatif; Sampieri, Francois; Sabatier, Jean Marc

    2012-08-01

    A new bacteriocin, lacticin LC14, produced by Lactococcus lactis BMG6.14, was isolated and characterized. It was purified to homogeneity from overnight broth culture by ammonium sulfate precipitation, Sep-Pak chromatography, and two steps of reversed-phase HPLC. Lacticin LC14 showed bactericidal-type antimicrobial activity against several lactic acid bacteria and pathogenic strains including Listeria monocytogenes. It was inactivated by proteinase K and pronase E, but was resistant to papain, lysozyme, lipase and catalase. Lacticin LC14 was heat resistant, stable over a wide range of pH (2-10) and after treatment by solvents and detergents. Its N-terminal end was found unreactive towards Edman sequencing. Based on MALDI-TOF mass spectrometry, its molecular mass was 3333.7 Da. LC14 amino acid composition revealed a high proportion of hydrophobic residues, but no modified ones. LC14 may be able to challenge other well known other bacteriocins in probiotic and therapeutic applications.

  9. Expression of lycopene biosynthesis genes fused in line with Shine-Dalgarno sequences improves the stress-tolerance of Lactococcus lactis.

    PubMed

    Dong, Xiangrong; Wang, Yanping; Yang, Fengyuan; Zhao, Shanshan; Tian, Bing; Li, Tao

    2017-01-01

    Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress. Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g -1  dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain. The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.

  10. Regulation of Cell Wall Plasticity by Nucleotide Metabolism in Lactococcus lactis*

    PubMed Central

    Solopova, Ana; Formosa-Dague, Cécile; Courtin, Pascal; Furlan, Sylviane; Veiga, Patrick; Péchoux, Christine; Armalyte, Julija; Sadauskas, Mikas; Kok, Jan; Hols, Pascal; Dufrêne, Yves F.; Kuipers, Oscar P.; Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2016-01-01

    To ensure optimal cell growth and separation and to adapt to environmental parameters, bacteria have to maintain a balance between cell wall (CW) rigidity and flexibility. This can be achieved by a concerted action of peptidoglycan (PG) hydrolases and PG-synthesizing/modifying enzymes. In a search for new regulatory mechanisms responsible for the maintenance of this equilibrium in Lactococcus lactis, we isolated mutants that are resistant to the PG hydrolase lysozyme. We found that 14% of the causative mutations were mapped in the guaA gene, the product of which is involved in purine metabolism. Genetic and transcriptional analyses combined with PG structure determination of the guaA mutant enabled us to reveal the pivotal role of the pyrB gene in the regulation of CW rigidity. Our results indicate that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l-Asp available for PG synthesis and thus cause the appearance of Asp/Asn-less stem peptides in PG. Such stem peptides do not form PG cross-bridges, resulting in a decrease in PG cross-linking and, consequently, reduced PG thickness and rigidity. We hypothesize that the concurrent utilization of l-Asp for pyrimidine and PG synthesis may be part of the regulatory scheme, ensuring CW flexibility during exponential growth and rigidity in stationary phase. The fact that l-Asp availability is dependent on nucleotide metabolism, which is tightly regulated in accordance with the growth rate, provides L. lactis cells the means to ensure optimal CW plasticity without the need to control the expression of PG synthesis genes. PMID:27022026

  11. Use of murine models to detect the allergenicity of genetically modified Lactococcus lactis NZ9000/pNZPNK.

    PubMed

    Chiang, Shen-Shih; Liu, Chin-Feng; Ku, Ting-Wei; Mau, Jeng-Leun; Lin, Hsin-Tang; Pan, Tzu-Ming

    2011-04-27

    By introducing aprN into Lactococcus lactis NZ9000, the genetically modified L. lactis NZ9000/pNZPNK successfully expressed the nattokinase. The safety assessment of this novel strain was based on allergenicity of pepsin digestion stability and murine model serologic identity. Subjecting to the GM strain and host to pepsin digestion, the soluble fractions and cell debris were fast degraded completely. Feeding with ovalbumin resulted in significantly higher production of IgG1 and IgE as compared to that of L. lactis NZ9000/pNZPNK or L. lactis NZ9000. Further, the serum IgG2a level increased dose-dependently at week 2 and induced immune reaction toward Th1 pathway. Secretion of cytokines IL-4 and IL-10 fed with lactococci was significantly lower than that of the OVA group. L. lactis NZ9000/pNZPNK did not increase the proliferation of type 2 helper T cells in spleen or induce allergenicity in BALB/c mice. On the basis of the results, the new GM lactic acid bacterium is regarded as safe to use.

  12. Antilisterial Activity of Nisin-Like Bacteriocin-Producing Lactococcus lactis subsp. lactis Isolated from Traditional Sardinian Dairy Products

    PubMed Central

    Cosentino, Sofia; Fadda, Maria Elisabetta; Deplano, Maura; Melis, Roberta; Pomata, Rita; Pisano, Maria Barbara

    2012-01-01

    With the aim of selecting LAB strains with antilisterial activity to be used as protective cultures to enhance the safety of dairy products, the antimicrobial properties of 117 Lactococcus lactis subsp. lactis isolated from artisanal Sardinian dairy products were evaluated, and six strains were found to produce bacteriocin-like substances. The capacity of these strains to antagonize Listeria monocytogenes during cocultivation in skimmed milk was evaluated, showing a reduction of L. monocytogenes counts of approximately 4 log units compared to the positive control after 24 h of incubation. In order for a strain to be used as bioprotective culture, it should be carefully evaluated for the presence of virulence factors, to determine what potential risks might be involved in its use. None of the strains tested was found to produce biogenic amines or to possess haemolytic activity. In addition, all strains were sensitive to clinically important antibiotics such as ampicillin, tetracycline, and vancomycin. Our results suggest that these bac+ strains could be potentially applied in cheese manufacturing to control the growth of L. monocytogenes. PMID:22536018

  13. Nongenetically modified Lactococcus lactis-adjuvanted vaccination enhanced innate immunity against Helicobacter pylori.

    PubMed

    Liu, Wei; Tan, Zhoulin; Liu, Hai; Zeng, Zhiqin; Luo, Shuanghui; Yang, Huimin; Zheng, Lufeng; Xi, Tao; Xing, Yingying

    2017-10-01

    Gram-positive enhancer matrix particles (GEM) produced by Lactococcus lactis can enhance vaccine-induced immune response. However, the mechanism under which this adjuvant mounts the efficacy of orally administered vaccines remains unexplored. We used a prophylactic mice model to investigate the mechanism of GEM-adjuvanted vaccination. Helicobacter pylori urease-specific antibody response was monitored and detected in murine serum by ELISA. Urease-specific splenic cytokine profile was examined. Gastric inflammatory responses were measured on day 43 or 71 by quantitative real-time PCR, flow cytometry and histology. We found that GEM enhanced the efficiency of oral H. pylori vaccine by promoting innate immunity. The vaccine CUE-GEM composed of GEM particles and recombinant antigen CTB-UE provided protection of immunized mice against H. pylori insult. The protective response was associated with induction of postimmunization gastritis and local Th1/Th17 cell-medicated immune response. We showed that innate inflammatory responses including neutrophil chemokines CXCL1-2, neutrophils, and antimicrobial proteins S100A8 and MUC1 were significantly elevated. Within all infected mice, S100A8 and MUC1 levels were negatively correlated with H. pylori burden. Strikingly, mice receiving GEM also show reduction of colonization, possibly through natural host response pathways to recruit CD4 + T cells and promote S100A8 expression. These findings suggest that GEM-based vaccine may impact Th1/Th17 immunity to orchestrate innate immune response against H. pylori infection. © 2017 John Wiley & Sons Ltd.

  14. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis.

    PubMed

    Tarazanova, Mariya; Huppertz, Thom; Kok, Jan; Bachmann, Herwig

    2018-05-09

    Lactic acid bacteria are widely used for the fermentation of dairy products. While bacterial acidification rates, proteolytic activity and the production of exopolysaccharides are known to influence textural properties of fermented milk products, little is known about the role of the microbial surface on microbe-matrix interactions in dairy products. To investigate how alterations of the bacterial cell surface affect fermented milk properties, 25 isogenic Lactococcus lactis strains that differed with respect to surface charge, hydrophobicity, cell chaining, cell-clumping, attachment to milk proteins, pili expression and EPS production were used to produce fermented milk. We show that overexpression of pili increases surface hydrophobicity of various strains from 3-19% to 94-99%. A profound effect of different cell surface properties was an altered spatial distribution of the cells in the fermented product. Aggregated cells tightly fill the cavities of the protein matrix, while chaining cells seem to be localized randomly. A positive correlation was found between pili overexpression and viscosity and gel hardness of fermented milk. Gel hardness also positively correlated with clumping of cells in the fermented milk. Viscosity of fermented milk was also higher when it was produced with cells with a chaining phenotype or with cells that overexpress exopolysaccharides. Our results show that alteration of cell surface morphology affects textural parameters of fermented milk and cell localization in the product. This is indicative of a cell surface-dependent potential of bacterial cells as structure elements in fermented foods. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Chromosomal Diversity in Lactococcus lactis and the Origin of Dairy Starter Cultures

    PubMed Central

    Kelly, William J.; Ward, Lawrence J. H.; Leahy, Sinead C.

    2010-01-01

    A large collection of Lactococcus lactis strains, including wild-type isolates and dairy starter cultures, were screened on the basis of their phenotype and the macrorestriction patterns produced from pulsed-field gel electrophoresis (PFGE) analysis of SmaI digests of genomic DNA. Three groups of dairy starter cultures, used for different purposes in the dairy industry, and a fourth group made up of strains isolated from the environment were selected for analysis of their chromosomal diversity using the endonuclease I-CeuI. Chromosome architecture was largely conserved with each strain having six copies of the rRNA genes, and the chromosome size of individual strains ranged between 2,240 and 2,688 kb. The origin of L. lactis strains showed the greatest correlation with chromosome size, and dairy strains, particularly those with the cremoris phenotype, had smaller chromosomes than wild-type strains. Overall, this study, coupled with analysis of the sequenced L. lactis genomes, provides evidence that defined strain dairy starter cultures have arisen from plant L. lactis strains. Adaptation of these strains to the dairy environment has involved loss of functions resulting in smaller chromosomes and acquisition of genes (usually plasmid associated) that facilitate growth in milk. We conclude that dairy starter cultures generally and the industrially used cremoris and diacetylactis phenotype strains in particular comprise a specialized group of L. lactis strains that have been selected to become an essential component of industrial processes and have evolved accordingly, so that they are no longer fit to survive outside the dairy environment. PMID:20847124

  16. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  17. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment.

    PubMed

    Cavanagh, Daniel; Fitzgerald, Gerald F; McAuliffe, Olivia

    2015-05-01

    Lactococcus lactis is an organism of substantial economic importance, used extensively in the production of fermented foods and widely held to have evolved from plant strains. The domestication of this organism to the milk environment is associated with genome reduction and gene decay, and the acquisition of specific genes involved in protein and lactose utilisation by horizontal gene transfer. In recent years, numerous studies have focused on uncovering the physiology and molecular biology of lactococcal strains from the wider environment for exploitation in the dairy industry. This in turn has facilitated comparative genome analysis of lactococci from different environments and provided insight into the natural phenotypic and genetic diversity of L. lactis. This diversity may be exploited in dairy fermentations to develop products with improved quality and sensory attributes. In this review, we discuss the classification of L. lactis and the problems that arise with phenotype/genotype designation. We also discuss the adaptation of non-dairy lactococci to milk, the traits associated with this adaptation and the potential application of non-dairy lactococci to dairy fermentations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. D-Tagatose production in the presence of borate by resting Lactococcus lactis cells harboring Bifidobacterium longum L-arabinose isomerase.

    PubMed

    Salonen, Noora; Salonen, Kalle; Leisola, Matti; Nyyssölä, Antti

    2013-04-01

    Bifidobacterium longum NRRL B-41409 L-arabinose isomerase (L-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum L-AI were used for production of D-tagatose from D-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of D-galactose to D-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L⁻¹ substrate and at 37.5 °C after 5 days. The D-tagatose production rate of 185 g L⁻¹ day ⁻¹ was obtained at 300 g L⁻¹ galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial D-tagatose production rate was 290 g L⁻¹ day⁻¹ under these conditions.

  19. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    PubMed Central

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  20. Characterization of Plasmids in a Human Clinical Strain of Lactococcus garvieae

    PubMed Central

    Blanco, M. Mar; López-Campos, Guillermo H.; Cutuli, M. Teresa; Fernández-Garayzábal, José F.

    2012-01-01

    The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen. PMID:22768237

  1. Engineering Trehalose Synthesis in Lactococcus lactis for Improved Stress Tolerance ▿ †

    PubMed Central

    Carvalho, Ana Lúcia; Cardoso, Filipa S.; Bohn, Andreas; Neves, Ana Rute; Santos, Helena

    2011-01-01

    Trehalose accumulation is a common cell defense strategy against a variety of stressful conditions. In particular, our team detected high levels of trehalose in Propionibacterium freudenreichii in response to acid stress, a result that led to the idea that endowing Lactococcus lactis with the capacity to synthesize trehalose could improve the acid tolerance of this organism. To this end, we took advantage of the endogenous genes involved in the trehalose catabolic pathway of L. lactis, i.e., trePP and pgmB, encoding trehalose 6-phosphate phosphorylase and β-phosphoglucomutase, respectively, which enabled the synthesis of trehalose 6-phosphate. Given that L. lactis lacks trehalose 6-phosphate phosphatase, the respective gene, otsB, from the food-grade organism P. freudenreichii was used to provide the required activity. The trehalose yield was approximately 15% in resting cells and in mid-exponential-phase cells grown without pH control. The intracellular concentration of trehalose reached maximal values of approximately 170 mM, but at least 67% of the trehalose produced was found in the growth medium. The viability of mutant and control strains was examined after exposure to heat, cold or acid shock, and freeze-drying. The trehalose-producing strains showed improved tolerance (5- to 10-fold-higher survivability) to acid (pH 3) and cold shock (4°C); there was also a strong improvement in cell survival in response to heat shock (45°C), and no protection was rendered against dehydration. The insight provided by this work may help the design of food-grade strains optimized for the dairy industry as well as for oral drug delivery. PMID:21515730

  2. Dynamics in copy numbers of five plasmids of a dairy Lactococcus lactis in dairy-related conditions including near-zero growth rates.

    PubMed

    van Mastrigt, Oscar; Lommers, Marcel M A N; de Vries, Yorick C; Abee, Tjakko; Smid, Eddy J

    2018-03-23

    Lactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-encoded genes and the activity of the corresponding proteins is severely affected by changes in the number of plasmid copies. We studied the impact of growth rate on dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strain Lactococcus lactis FM03-V1 were selected which varied in size (3 to 39 kb), in replication mechanism (theta or rolling-circle) and in putative (dairy-associated) functions. Copy numbers ranged from 1.5 to 40.5 and the copy number of theta-type replicating plasmids were negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h -1 to 0.6 h -1 ), copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates showing that the plasmid replication rate was strictly controlled. One low-copy number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations reflected in complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation or presence of citrate (maximum 2.2-fold) signifying the stability in copy number of the plasmids. Importance Lactococcus lactis is extensively used in starter cultures for dairy fermentations. Important traits for growth and survival of L. lactis in dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation and oligopeptide uptake and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-encoded genes, it is important to know the factors that influence the plasmid copy numbers. We monitored plasmid copy numbers of L

  3. Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains.

    PubMed

    Rodríguez-Figueroa, J C; González-Córdova, A F; Torres-Llanez, M J; Garcia, H S; Vallejo-Cordoba, B

    2012-10-01

    The ability of specific wild Lactococcus lactis strains to hydrolyze milk proteins to release angiotensin I-converting enzyme (ACE) inhibitory peptides was evaluated. The peptide profiles were obtained from the <3 kDa water-soluble extract and subsequently fractionated by reversed-phase HPLC. The fractions with the lowest half-maximal inhibitory concentration estimated values (peptide concentration necessary to inhibit ACE activity by 50%) were Lc. lactis NRRL B-50571 fraction (F)1 (0.034 ± 0.002 μg/mL; mean ± SD) and Lc. lactis NRRL B-50572B F 0005 (0.041 ± 0.003 μg/mL; mean ± SD). All peptide fractions were analyzed by reversed-phase HPLC tandem mass spectrometry. Twenty-one novel peptide sequences associated with ACE inhibitory (ACEI) activity were identified. Several novel ACEI peptides presented peptides encrypted with proven hypotensive activity. In conclusion, specific wild Lc. lactis strains were able to hydrolyze milk proteins to generate potent ACEI peptides. However, further studies are necessary to find out the relationship between Lc. lactis strain proteolytic systems and their ability to biogenerate hypotensive peptides. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system.

    PubMed

    Kördikanlıoğlu, Burcu; Şimşek, Ömer; Saris, Per E J

    2015-01-01

    In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 μg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation. © 2015 American Institute of Chemical Engineers.

  5. Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism.

    PubMed

    Augagneur, Y; Garmyn, D; Guzzo, J

    2008-01-01

    Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions. A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenance of intracellular pH. Experiments performed on resting cells clearly showed that oxaloacetate accumulated temporarily in the supernatant of the mutant. This accumulation could be involved in the perturbations observed during citrate metabolism, as the addition of oxaloacetate in M17 medium inhibited the growth of L. lactis. The mutation of oxaloacetate decarboxylase perturbed citrate metabolism and reduced the benefits of its utilization during growth under acidic conditions. This study allows a better understanding of citrate metabolism and the role of oxaloacetate decarboxylase in the tolerance of lactic acid bacteria to acidic conditions.

  6. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  7. One-pot synthesis of GDP-l-fucose by a four-enzyme cascade expressed in Lactococcus lactis.

    PubMed

    Li, Ling; Kim, Seul-Ah; Heo, Ji Eun; Kim, Tae-Jip; Seo, Jin-Ho; Han, Nam Soo

    2017-12-20

    GDP-l-fucose is an l-fucose donor to synthesize fucosylated compounds such as human milk oligosaccharides or Lewis antigen. In this study, we used Lactococcus lactis subsp. cremoris NZ9000 to express 4 enzymes, ManB, ManC, Gmd, and WcaG and produced GDP-l-fucose by using one-pot synthesis method with mannose-6-phosphate as substrate and the enzymes as biocatalyst. For preparation of enzyme mixture, 4 genes (manB, manC, gmd, and wcaG) cloned from Escherichia coli were transformed into L. lactis strains using pNZ8008 and the recombinant cell lysates were obtained after cultivation. When mannose-6-phosphate was used as the substrate, the consecutive reactions with ManB, ManC, Gmd, and WcaG resulted in the successful production of GDP-l-fucose (0.13mM). When GDP-d-mannose was used as the substrate, it was entirely converted to GDP-l-fucose (0.2mM; 0.12g/L) via 2 enzymatic reactions mediated by Gmd and WcaG. This is the first report of GDP-l-fucose production by using multiple enzymes expressed in lactic acid bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cloning and characterization of a new broadspecific β-glucosidase from Lactococcus sp. FSJ4.

    PubMed

    Fang, Shujun; Chang, Jie; Lee, Yong Seok; Guo, Weiliang; Choi, Yong Lark; Zhou, Yongcan

    2014-01-01

    A β-glucosidase gene bglX was cloned from Lactococcus sp. FSJ4 by the method of shotgun. The bglX open reading frame consisted of 1,437 bp, encoding 478 amino acids. SDS-PAGE showed a recombinant bglX monomer of 54 kDa. Substrate specificity study revealed that the enzyme exhibited multifunctional catalysis activity against pNPG, pNPX and pNPGal. This enzyme shows higher activity against aryl glycosides of xylose than those of glucose or galactose. The enzyme exhibited the maximal activity at 40 °C, and the optimal pH was 6.0 with pNPG and 6.5 with pNPX as the substrates. Molecular modeling and substrate docking showed that there should be one active center responsible for the mutifuntional activity in this enzyme, since the active site pocket was substantially wide to allow the entry of pNPG, pNPX and pNPGal, which elucidated the structure-function relationship in substrate specificities. Substrate docking results indicated that Glu180 and Glu377 were the essential catalytic residues of the enzyme. The CDOCKER_ENERGY values obtained by substrate docking indicated that the enzyme has higher activity against pNPX than those of pNPG and pNPGal. These observations are in conformity with the results obtained from experimental investigation. Therefore, such substrate specificity makes this β-glucosidase of great interest for further study on physiological and catalytic reaction processes.

  9. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri

    PubMed Central

    van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S.; Britton, Robert A.

    2012-01-01

    Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution. PMID:22750793

  10. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    PubMed

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis

    PubMed Central

    Zhang, Huimin; Wang, Qingjing; Fisher, Derek J.; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O.; Feng, Youjun

    2016-01-01

    Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake 3H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis. PMID:27161258

  12. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis.

    PubMed

    Zhang, Huimin; Wang, Qingjing; Fisher, Derek J; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O; Feng, Youjun

    2016-05-10

    Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake (3)H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis.

  13. Comparison of genetic characteristics and pathogenicity of Lactococcus garvieae isolated from aquatic animals in Taiwan.

    PubMed

    Tsai, Ming-An; Wang, Pei-Chyi; Liaw, Li-Ling; Yoshida, Terutoyo; Chen, Shih-Chu

    2012-12-03

    Seventy-six Taiwanese bacterial isolates including 74 from diseased, cultured, aquatic animals (54 grey mullet Mugil cephalus, 3 basket mullet Chelon alatus, 2 tilapia Oreochromis niloticus, 1 grouper Epinephelus coioides, 2 yellowfin seabream Acanthopagrus latus, 1 Borneo mullet Chelon macrolepis, 1 bullfrog Rana catesbeiana, 1 Japanese eel Anguilla japonica, and 9 giant freshwater prawns Macrobrachium rosenbergii), 1 wild-caught seafood species (squid muscle collected from a restaurant) and 1 human isolate (from a patient with a history of consuming raw squid in the previously mentioned restaurant), all collected between 1999 and 2006, were confirmed by PCR assay to be Lactococcus garvieae. The phenotypic characterization was determined by rabbit anti-KG+ and KG- serums, and 74 of the 76 Taiwanese strains displayed a KG- phenotype. The genetic characterization was investigated by pulsed-field gel electrophoresis (PFGE). Genomic DNA was digested with restriction endonucleases ApaI and SmaI and separated by PFGE. Ten different L. garvieae pulsotypes were identified. Predominant pulsotypes A1a/S1a were obtained from >96% of strains (52 of 54) from grey mullet, demonstrating a clonal dissemination of L. garvieae in grey mullet in Taiwan. In experimental challenges with grey mullet and tilapia, L. garvieae pulsotypes A1/S1 and A11/S11 showed higher virulence compared with other pulsotypes.

  14. Regulation of Acetate Kinase Isozymes and Its Importance for Mixed-Acid Fermentation in Lactococcus lactis

    PubMed Central

    Puri, Pranav; Goel, Anisha; Bochynska, Agnieszka

    2014-01-01

    Acetate kinase (ACK) converts acetyl phosphate to acetate along with the generation of ATP in the pathway for mixed-acid fermentation in Lactococcus lactis. The reverse reaction yields acetyl phosphate for assimilation purposes. Remarkably, L. lactis has two ACK isozymes, and the corresponding genes are present in an operon. We purified both enzymes (AckA1 and AckA2) from L. lactis MG1363 and determined their oligomeric state, specific activities, and allosteric regulation. Both proteins form homodimeric complexes, as shown by size exclusion chromatography and static light-scattering measurements. The turnover number of AckA1 is about an order of magnitude higher than that of AckA2 for the reaction in either direction. The Km values for acetyl phosphate, ATP, and ADP are similar for both enzymes. However, AckA2 has a higher affinity for acetate than does AckA1, suggesting an important role under acetate-limiting conditions despite the lower activity. Fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, and phospho-enol-pyruvate inhibit the activities of AckA1 and AckA2 to different extents. The allosteric regulation of AckA1 and AckA2 and the pool sizes of the glycolytic intermediates are consistent with a switch from homolactic to mixed-acid fermentation upon slowing of the growth rate. PMID:24464460

  15. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein.

    PubMed

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-04-05

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)-small molecule ubiquitin-like modifier protein (SUMO)-metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 10(10) Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract.

  16. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis.

    PubMed

    Lu, Yifei; Yan, Hongxiang; Deng, Jiezhong; Huang, Zhigang; Jin, Xurui; Yu, Yanlan; Hu, Qiwen; Hu, Fuquan; Wang, Jing

    2017-09-18

    Lactococcus lactis is a food grade probiotics and widely used to express heterologous proteins. Generally, target genes are knocked into the L. lactis genome through double-crossover recombination to express heterologous proteins stably. However, creating marker-less heterologous genes knocked-in clones is laborious. In this study, an efficient heterologous gene knock-in reporter system was developed in L. lactis NZ9000. Our knock-in reporter system consists of a temperature-sensitive plasmid pJW and a recombinant L. lactis strain named NZB. The pJW contains homologous arms, and was constructed to knock-in heterologous genes at a fixed locus of NZ9000 genome. lacZ (β-galactosidase) gene was knocked into the chromosome of NZ9000 as a counter-selective marker through the plasmid pJW to generate NZB. The engineered NZB strain formed blue colonies on X-Gal plate. The desired double-crossover mutants formed white colonies distinctive from the predominantly blue colonies (parental and plasmid-integrated clones) when the embedded lacZ was replaced with the target heterologous genes carried by pJW in NZB. By using the system, the heterologous gene knocked-in clones are screened by colony phenotype change rather than by checking colonies individually. Our new knock-in reporter system provides an efficient method to create heterologous genes knocked-in clones.

  17. Pisces

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Fishes; abbrev. Psc, gen. Piscium; area 889 sq. deg.) A northern zodiacal constellation which lies between Pegasus and Cetus, and culminates at midnight in late September. Its origin dates back to Babylonian times and it is said to represent Aphrodite, the goddess of love in Greek mythology, and her son Eros, who jumped into the Euphrates to escape from the multi-headed Typhon and were turned...

  18. Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products.

    PubMed

    Zycka-Krzesinska, Joanna; Boguslawska, Joanna; Aleksandrzak-Piekarczyk, Tamara; Jopek, Jakub; Bardowski, Jacek K

    2015-10-15

    To assess the occurrence of antibiotic-resistant Lactic Acid Bacteria (LAB) in Polish raw milk and fermented artisanal products, a collection comprising 500 isolates from these products was screened. Among these isolates, six strains (IBB28, IBB160, IBB161, IBB224, IBB477 and IBB487) resistant to tetracycline were identified. The strains showing atypical tetracycline resistance were classified as Lactococcus lactis: three of them were identified as L. lactis subsp. cremoris (IBB224, IBB477 and IBB487) and the other three (IBB28, IBB160, IBB161) were identified as L. lactis subsp. lactis. The mechanism involving Ribosomal Protection Proteins (RPP) was identified as responsible for tetracycline resistance. Three of the tested strains (IBB28, IBB160 and IBB224) had genes encoding the TetS protein, whereas the remaining three (IBB161, IBB477 and IBB487) expressed TetM. The results also demonstrated that the genes encoding these proteins were located on genetic mobile elements. The tet(S) gene was found to be located on plasmids, whereas tet(M) was found within the Tn916 transposon. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Identification, Cloning, and Characterization of a Lactococcus lactis Branched-Chain α-Keto Acid Decarboxylase Involved in Flavor Formation

    PubMed Central

    Smit, Bart A.; van Hylckama Vlieg, Johan E. T.; Engels, Wim J. M.; Meijer, Laura; Wouters, Jan T. M.; Smit, Gerrit

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain α-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3′ terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain α-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions. PMID:15640202

  20. Isolation of a bacteriocin-producing Lactococcus lactis subsp. lactis and application to control Listeria monocytogenes in Moroccan jben.

    PubMed

    Benkerroum, N; Oubel, H; Zahar, M; Dlia, S; Filali-Maltouf, A

    2000-12-01

    Use of a bacteriocin-producing lactococcal strain to control Listeria monocytogenes in jben. A Lactococcus lactis strain isolated from lben was shown, by the spot technique, to produce a bacteriocin different from nisin. Inhibitory activity of the bacteriocin-producing strain against Listeria monocytogenes was investigated in jben, made from cow's milk fermented with the producer organism and contaminated with 104 or 107 cfu ml-1. Listeria counts were monitored during manufacture, and during conservation at room and at refrigeration temperatures. Results showed that the pathogen was reduced by 2.7 logarithmic units after 30 h of jben processing when the initial inoculum of 107 cfu ml(-1) was used. For the initial inoculum of 104 cfu ml(-1), the bacterium was completely eliminated at 24 h. Furthermore, the use of the bacteriocin-producing starter culture extended the shelf-life of jben by 5 days. In situ production of the lactococcal bacteriocin is an efficient biological means of controlling L. monocytogenes in jben and of allowing shelf-life extension. The proposed technology will essentially benefit minimally processed dairy products and those made with raw milk.

  1. Genetic Manipulation of Lactococcus lactis by Using Targeted Group II Introns: Generation of Stable Insertions without Selection

    PubMed Central

    Frazier, Courtney L.; San Filippo, Joseph; Lambowitz, Alan M.; Mills, David A.

    2003-01-01

    Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci. PMID:12571038

  2. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84.

    PubMed

    Petrov, Kaloyan; Urshev, Zoltan; Petrova, Penka

    2008-06-01

    A new Lactococcus lactis subsp. lactis B84, capable of utilizing starch as a sole carbon source and producing L(+)-lactate, was isolated from spontaneously fermented rye sourdough. Aiming at maximum lactic acid productivity, the components of the media and the cultivation conditions were varied. In MRS-starch medium (with absence of yeast and meat extracts), at 33 degrees C, agitation 200 rpm and pH 6.0 for 6 days complete starch hydrolysis occurred and 5.5 gl(-1) lactic acid were produced from 18 gl(-1) starch. The identification of strain B84 was based on genetic criteria. Amplified ribosomal DNA restriction analysis (ARDRA), PCR with species-specific primers and sequencing of the 16S rDNA proved its species affiliation. Four genes for enzymes, involved in starch degradation were detected in B84 genome: amyL, amyY, glgP and apu, coding cytoplasmic and extracellular alpha-amylases, glycogen phosphorylase and amylopullulanase, respectively. Reverse transcription PCR experiments showed that both genes, encoding alpha-amylases (amyL and amyY) were expressed into mRNAs, whereas apu and glgP were not. Amylase activity assay was performed at different pH and temperatures. The cell-bond amylase proved to be the key enzyme, involved in the starch hydrolysis with maximum activity at 45 degrees C and pH 5.4.

  3. Purification and characterization of two new cell-bound bioactive compounds produced by wild Lactococcus lactis strain.

    PubMed

    Saraiva, Margarete Alice Fontes; Brede, Dag Anders; Nes, Ingolf Figved; Baracat-Pereira, Maria Cristina; de Queiroz, Marisa Vieira; de Moraes, Célia Alencar

    2017-07-03

    Novel compounds and innovative methods are required considering that antibiotic resistance has reached a crisis point. In the study, two cell-bound antimicrobial compounds produced by Lactococcus lactis ID1.5 were isolated and partially characterized. Following purification by cationic exchange and a solid-phase C18 column, antimicrobial activity was recovered after three runs of RPC using 60% (v/v) and 100% (v/v) of 2-propanol for elution, suggesting that more than one antimicrobial compound were produced by L. lactis ID1.5, which were in this study called compounds AI and AII. The mass spectrum of AI and AII showed major intensity ions at m/z 1070.05 and 955.9 Da, respectively. The compound AI showed a spectrum of antimicrobial activity mainly against L. lactis species, while the organisms most sensitive to compound AII were Bacillus subtilis, Listeria innocua, Streptococcus pneumoniae and Pseudomonas aeruginosa. The antimicrobial activity of both compounds was suppressed by treatment with Tween 80. Nevertheless, both compounds showed high stability to heat and proteases treatments. The isolated compounds, AI and AII, showed distinct properties from other antimicrobial substances already reported as produced by L. lactis, and have a significant inhibitory effect against two clinically important respiratory pathogens. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate

    PubMed Central

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance. PMID:26388459

  5. Subcutaneous or oral immunization of mice with Lactococcus lactis expressing F4 fimbrial adhesin FaeG.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea in neonatal and postweaning piglets. Fimbrial adhesion of ETEC has been considered an important colonization factor with antigenicity. To safely and effectively deliver the F4 (K88) fimbrial adhesin FaeG to the immune system, we have previously constructed the secretory expression vector pNZ8112-faeG, and FaeG was produced in cytoplasmic form in Lactococcus lactis. In this work, BALB/c mice were immunized with recombinant L. lactis to further determine the immunogenicity of recombinant FaeG (rFaeG) via the subcutaneous or oral route. Subcutaneous immunization in mice with recombinant L. lactis induced a significant increase in the F4-specific serum IgG titer and the number of antibody-secreting cells (ASCs) in the spleen. Oral immunization of mice with recombinant L. lactis induced mucosal and systemic F4-specific immune responses and increased the number of ASCs in the spleen, mesenteric lymph nodes and Peyer's patches. High-dose (2.8 × 10(11) CFU) recombinant strains and adjuvant cholera toxin B subunit enhanced specific mucosal immune responses. The results suggest the feasibility of delivering rFaeG expressed in L. lactis to the immune system in order to induce an F4-specific immune response.

  6. Introduction of Peptidase Genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and Controlled Expression

    PubMed Central

    Wegmann, U.; Klein, J. R.; Drumm, I.; Kuipers, O. P.; Henrich, B.

    1999-01-01

    Peptidases PepI, PepL, PepW, and PepG from Lactobacillus delbrueckii subsp. lactis, which have no counterparts in Lactococcus lactis, and peptidase PepQ were examined to determine their potential to confer new peptidolytic properties to lactococci. Controllable expression of the corresponding genes (pep genes) was achieved by constructing translational fusions with the promoter of the nisA gene (PnisA). A suitable host strain, UKLc10, was constructed by chromosomal integration of the genes encoding the NisRK two-component system into the fivefold peptidase-deficient mutant IM16 of L. lactis. Recombinants of this strain were used to analyze growth, peptidase activities, peptide utilization, and intracellular protein cleavage products. After nisin induction of PnisA::pep fusions, all of the peptidases were visible as distinct bands in protein gels. Despite the fact that identical transcription and translation signals were used to express the pep genes, the relative amounts of individual peptidases varied considerably. All of the peptidases exhibited activities in extracts of recombinant UKLc10 clones, but only PepL and PepG allowed the clones to utilize specific peptide substrates as sources of essential amino acids. In milk medium, induction of pepG and induction of pepW resulted in growth acceleration. The activities of all five peptidases during growth in milk medium were revealed by high-performance liquid chromatography analyses of intracellular amino acid and peptide pools. PMID:10543778

  7. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein

    PubMed Central

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-01-01

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)–small molecule ubiquitin-like modifier protein (SUMO)–metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 1010 Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract. PMID:27045906

  8. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. I. Construction and diagnosis of a comprehensive dynamic model.

    PubMed

    Dolatshahi, Sepideh; Fonseca, Luis L; Voit, Eberhard O

    2016-01-01

    This article and the companion paper use computational systems modeling to decipher the complex coordination of regulatory signals controlling the glycolytic pathway in the dairy bacterium Lactococcus lactis. In this first article, the development of a comprehensive kinetic dynamic model is described. The model is based on in vivo NMR data that consist of concentration trends in key glycolytic metabolites and cofactors. The model structure and parameter values are identified with a customized optimization strategy that uses as its core the method of dynamic flux estimation. For the first time, a dynamic model with a single parameter set fits all available glycolytic time course data under anaerobic operation. The model captures observations that had not been addressed so far and suggests the existence of regulatory effects that had been observed in other species, but not in L. lactis. The companion paper uses this model to analyze details of the dynamic control of glycolysis under aerobic and anaerobic conditions.

  9. Effect of autochthonous bacteriocin-producing Lactococcus lactis on bacterial population dynamics and growth of halotolerant bacteria in Brazilian charqui.

    PubMed

    Biscola, Vanessa; Abriouel, Hikmate; Todorov, Svetoslav Dimitrov; Capuano, Verena Sant'Anna Cabral; Gálvez, Antonio; Franco, Bernadette Dora Gombossy de Melo

    2014-12-01

    Charqui is a fermented, salted and sun-dried meat product, widely consumed in Brazil and exported to several countries. Growth of microorganisms in this product is unlikely due to reduced Aw, but halophilic and halotolerant bacteria may grow and cause spoilage. Charqui is a good source of lactic acid bacteria able to produce antimicrobial bacteriocins. In this study, an autochthonous bacteriocinogenic strain (Lactococcus lactis subsp. lactis 69), isolated from charqui, was added to the meat used for charqui manufacture and evaluated for its capability to prevent the growth of spoilage bacteria during storage up to 45 days. The influence of L. lactis 69 on the bacterial diversity during the manufacturing of the product was also studied, using denaturing gradient gel electrophoresis (DGGE). L. lactis 69 did not affect the counts and diversity of lactic acid bacteria during manufacturing and storage, but influenced negatively the populations of halotolerant microorganisms, reducing the spoilage potential. The majority of tested virulence genes was absent, evidencing the safety and potential technological application of this strain as an additional hurdle to inhibit undesirable microbial growth in this and similar fermented meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Garvicin A, a Novel Class IId Bacteriocin from Lactococcus garvieae That Inhibits Septum Formation in L. garvieae Strains

    PubMed Central

    Cárdenas, Nivia; Martínez, Beatriz; Ruiz-Barba, José Luis; Fernández-Garayzábal, José F.; Rodríguez, Juan M.; Gibello, Alicia

    2013-01-01

    Lactococcus garvieae 21881, isolated in a human clinical case, produces a novel class IId bacteriocin, garvicin A (GarA), which is specifically active against other L. garvieae strains, including fish- and bovine-pathogenic isolates. Purification from active supernatants, sequence analyses, and plasmid-curing experiments identified pGL5, one of the five plasmids found in L. garvieae [M. Aguado-Urda et al., PLoS One 7(6):e40119, 2012], as the coding plasmid for the structural gene of GarA (lgnA), its putative immunity protein (lgnI), and the ABC transporter and its accessory protein (lgnC and lgnD). Interestingly, pGL5-cured strains were still resistant to GarA. Other putative bacteriocins encoded by the remaining plasmids were not detected during purification, pointing to GarA as the main inhibitor secreted by L. garvieae 21881. Mode-of-action studies revealed a potent bactericidal activity of GarA. Moreover, transmission microscopy showed that GarA seems to act by inhibiting septum formation in L. garvieae cells. This potent and species-specific inhibition by GarA holds promise for applications in the prevention or treatment of infections caused by pathogenic strains of L. garvieae in both veterinary and clinical settings. PMID:23666326

  11. Beneficial effect of Lactococcus lactis NCC 2287 in a murine model of eosinophilic esophagitis.

    PubMed

    Holvoet, S; Doucet-Ladevèze, R; Perrot, M; Barretto, C; Nutten, S; Blanchard, C

    2016-12-01

    Eosinophilic esophagitis (EoE) is a severe inflammatory disease of the esophagus which is characterized histologically by an eosinophilic infiltration into the esophageal tissue. The efficacy of probiotics in the context of atopic diseases has been well investigated but, to date, there has been no study which has evaluated probiotic effects on EoE inflammation. This study sought to identify a probiotic which improves esophageal inflammation in experimental EoE. Two candidate probiotics, Lactococcus lactis NCC 2287 and Bifidobacterium lactis NCC 2818, were tested in a murine model of EoE elicited by epicutaneous sensitization with Aspergillus fumigatus protein extract. Administration of bacterial strains in drinking water was used, respectively, as a preventive or treatment measure, or continuously throughout the study. Inflammatory parameters were assessed in the esophagus, skin, and lungs after allergen challenge. In this EoE model, supplementation with L. lactis NCC 2287 significantly decreased esophageal and bronchoalveolar eosinophilia but only when given as a therapeutic treatment. No significant effect on eosinophilia was observed when NCC 2287 was given as a preventive or a continuous intervention. NCC 2287 supplementation had no significant effect on immunoglobulin levels, skin symptom scores, or on transepidermal water loss. Supplementation with another probiotic, B. lactis NCC 2818, had no significant effect on esophageal eosinophilia. We identified a L. lactis strain, able to attenuate esophageal eosinophilic inflammation in a preclinical model of EoE. This effect is strain specific and depends on the timing and duration of bacterial supplementation. Confirmation of these observations in human clinical trials is warranted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Prophylaxis of experimentally induced ovomucoid allergy in neonatal pigs using Lactococcus lactis.

    PubMed

    Rupa, P; Schmied, J; Wilkie, B N

    2011-03-15

    Probiotic Lactococcus lactis (LL) is immunomodulatory and may prevent allergy by biasing from type-2 to a type-1 immune response. We hypothesized that newborn pigs pre-treated orally with LL are protected against allergy to ovomucoid (Ovm). Pigs were assigned to two treatment groups. Piglets were pretreated orally on days of age 1-7, 10, 12, 14, 21, 28 and 35 with LL (n=30) or medium (control, n=32) and sensitized to Ovm by intraperitoneal injection together with cholera toxin on days 14, 21 and 35. Pigs were orally challenged with egg white (day 46) and assigned scores for allergic signs. Outcomes were measured as direct skin tests, serum antibody to Ovm [IgG (H+L); IgE; IgG(1) and IgG(2)] and cytokine production by mitogen-stimulated blood mononuclear cells (BMC). Clinical signs and skin test positivity were less frequent in the LL group (p ≤ 0.0001). Serum antibody associated with IgG (H and L), IgE, IgG(1) or IgG(2) was significantly increased on day 46 (post-sensitization) compared to day 14 (pre-sensitization) (p ≤ 0.0001). The LL-treated pigs had more IgE and IgG(2)-related antibody activity and lower IgG(1)/IgG(2) and IgE/IgG(2) ratios indicating a type-1 bias in immune response (p ≤ 0.05). Concentration of type-2 cytokines interleukin IL-4 and IL-10 were significantly lower in supernatants of stimulated BMC of LL-treated pigs (p ≤ 0.0001). Interferon-γ, TGF-β and IL-13 were not detected in control or treated animals. Thus, oral treatment of neonatal pigs with LL significantly reduced subsequent frequency of allergy to Ovm associated with reduced type-2 immune response correlates hence supporting the "hygiene hypothesis" and potential use of LL as a neonatal immunoregulator. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Immunopathological evaluation of recombinant mycobacterial antigen Hsp65 expressed in Lactococcus lactis as a novel vaccine candidate

    PubMed Central

    Herrera Ramírez, J. C.; De la Mora, A. Ch.; De la Mora Valle, A.; Lopez-Valencia, G.; Hurtado, R. M. B.; Rentería Evangelista, T. B.; Rodríguez Castillo, J. L.; Rodríguez Gardea, A.; Gómez Gómez, S. D.; Medina-Basulto, G. E.

    2017-01-01

    Bovine tuberculosis (TBB) is a zoonotic disease distributed worldwide and is of great importance for public health and the livestock industry. Several experimental vaccines against this disease have been evaluated in recent years, yielding varying results. An example is the Bacillus Calmette-Guérin (BCG) vaccine, which has been used extensively in humans and tested in cattle showing mixed results related to protection (0-80%) against Mycobacterium bovis. In this study, we used the food-grade bacterium Lactococcus lactis as an expression system for production of mycobacterial protein Hsp65. For this purpose, the construction of a replicable plasmid in strain NZ9000 L. lactis (pVElepr) was conducted, which expressed the Mycobacterium leprae Hsp65 antigen, and was recognized by traded anti-Hsp65 antibodies. The strain NZ9000-pVElepr was applied to calves that were negative to tuberculin test and the immune response was monitored. The results showed that immune response was not significantly increased in calves with NZ9000-pVElepr with respect to control groups, and no injury was observed in any lung or lymph of the calves. Finally, this study suggest that the recombinant NZ9000 strain of L. lactis may protect against the development of M. bovis infection, although studies with longer exposure to this pathogen are necessary to conclude the matter. PMID:29163649

  14. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    PubMed

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. PBP2b plays a key role in both peripheral growth and septum positioning in Lactococcus lactis.

    PubMed

    David, Blandine; Duchêne, Marie-Clémence; Haustenne, Gabrielle Laurie; Pérez-Núñez, Daniel; Chapot-Chartier, Marie-Pierre; De Bolle, Xavier; Guédon, Eric; Hols, Pascal; Hallet, Bernard

    2018-01-01

    Lactococcus lactis is an ovoid bacterium that forms filaments during planktonic and biofilm lifestyles by uncoupling cell division from cell elongation. In this work, we investigate the role of the leading peptidoglycan synthase PBP2b that is dedicated to cell elongation in ovococci. We show that the localization of a fluorescent derivative of PBP2b remains associated to the septal region and superimposed with structural changes of FtsZ during both vegetative growth and filamentation indicating that PBP2b remains intimately associated to the division machinery during the whole cell cycle. In addition, we show that PBP2b-negative cells of L. lactis are not only defective in peripheral growth; they are also affected in septum positioning. This septation defect does not simply result from the absence of the protein in the cell growth machinery since it is also observed when PBP2b-deficient cells are complemented by a catalytically inactive variant of PBP2b. Finally, we show that round cells resulting from β-lactam treatment are not altered in septation, suggesting that shape elongation as such is not a major determinant for selection of the division site. Altogether, we propose that the specific PBP2b transpeptidase activity at the septum plays an important role for tagging future division sites during L. lactis cell cycle.

  16. Intramammary infusion of a live culture of Lactococcus lactis in ewes to treat staphylococcal mastitis.

    PubMed

    Mignacca, Sebastian Alessandro; Dore, Simone; Spuria, Liliana; Zanghì, Pietro; Amato, Benedetta; Duprè, Ilaria; Armas, Federica; Biasibetti, Elena; Camperio, Cristina; Lollai, Stefano A; Capucchio, Maria Teresa; Cannas, Eugenia Agnese; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia

    2017-12-01

    Alternatives to antibiotic therapy for mastitis in ruminants are needed. We present an evaluation, in two trials, of the efficacy of an intramammary infusion of a live culture of Lactococcus lactis for the treatment of subclinical and clinical mastitis in ewes. In total, 67 animals were enrolled: 19 lactating ewes (study 1), including healthy (N=6) and coagulase-negative staphylococci (CNS)-infected ewes (N=13); and 48 lactating ewes (study 2) with either CNS mastitis (N=32), or Staphylococcus aureus mastitis (N=16), for a total of 123 mammary glands. Intramammary infusions were performed with either L. lactis or PBS for 3 (study 1) or 7 (study 2) consecutive days. Antibiotic-treated and untreated control glands were included. Milk samples for microbiology, somatic cell analysis and milk production were collected before and after treatment.Results/Key findings.L. lactis rapidly activated the mammary glands' innate immune response and initiated an inflammatory response as evidenced by the recruitment of polymorphonuclear neutrophils and increased somatic cell counts. But while leading to a transient clearance of CNS in the gland, this response caused mild to moderate clinical cases of mastitis characterized by abnormal milk secretions and udder inflammation. Moreover, S. aureus infections did not improve, and CNS infections tended to relapse. Under our experimental conditions, the L. lactis treatment led to a transient clearance of the pathogen in the gland, but also caused mild to moderate clinical cases of mastitis. We believe it is still early to implement bacterial formulations as alternatives in treating mastitis in ruminants and further experimentation is needed.

  17. Skin lesion-associated pathogens from Octopus vulgaris: first detection of Photobacterium swingsii, Lactococcus garvieae and betanodavirus.

    PubMed

    Fichi, G; Cardeti, G; Perrucci, S; Vanni, A; Cersini, A; Lenzi, C; De Wolf, T; Fronte, B; Guarducci, M; Susini, F

    2015-07-23

    The common octopus Octopus vulgaris Cuvier, 1798 is extremely important in fisheries and is a useful protein source in most Mediterranean countries. Here we investigated pathogens associated with skin lesions in 9 naturally deceased specimens that included both cultured and wild common octopus. Within 30 min after death, each octopus was stored at 4°C and microbiologically examined within 24 h. Bacterial colonies, cultured from swabs taken from the lesions, were examined using taxonomical and biochemical analyses. Vibrio alginolyticus and V. parahaemolyticus were only isolated from cultured animals. A conventional PCR targeting the 16S ribosomal RNA (rRNA) gene and sequencing were performed on 2 bacterial isolates that remained unidentified after taxonomical and biochemical analysis. The sequence results indicated that the bacteria had a 99% identity with Lactococcus garvieae and Photobacterium swingsii. L. garvieae was confirmed using a specific PCR based on the 16S-23S rRNA internal transcribed spacer region, while P. swingsii was confirmed by phylogenetic analyses. Although all animals examined were found to be infected by the protozoan species Aggregata octopiana localised in the intestines, it was also present in skin lesions of 2 of the animals. Betanodavirus was detected in both cultured and wild individuals by cell culture, PCR and electron microscopy. These findings are the first report of L. garvieae and betanodavirus from skin lesions of common octopus and the first identification of P. swingsii both in octopus skin lesions and in marine invertebrates in Italy.

  18. Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Putrescine-Producing Lactococcus lactis ▿ †

    PubMed Central

    Ladero, Victor; Rattray, Fergal P.; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A.

    2011-01-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution. PMID:21803900

  19. Manipulation for plasmid elimination by transforming synthetic competitors diversifies lactococcus lactis starters applicable to food products.

    PubMed

    Kobayashi, Miho; Nomura, Masaru; Kimoto, Hiromi

    2007-11-01

    This study was designed selectively to eliminate a theta-plasmid from Lactococcus lactis strains by transforming synthetic competitors. A shuttle vector for Escherichia coli and L. lactis, pDB1, was constructed by ligating a partial replicon of pDR1-1B, which is a 7.3 kb theta-plasmid in L. lactis DRC1, with an erythromycin resistance gene into pBluescript II KS(+). This versatile vector was used to construct competitors to common lactococcal theta-plasmids. pDB1 contains the 5' half of the replication origin and the 3' region of repB of pDR1-1B, but lacks the 1.1-kb region normally found between these two segments. A set of primers, Pv3 and Pv4, was designed to amplify the 1.1-kb middle parts of the general theta-replicons of lactococcal plasmids. When the PCR products were cloned into the Nru I and Xho I sites of pDB1, synthetic replicons were constructed and replication activity was restored. A number of theta-plasmids in L. lactis ssp. lactis and cremoris were eliminated selectively by transforming the synthetic competitors. These competitors were easily eliminated by subculture for a short time in the absence of selection. The resulting variants contained no exogenous DNA and are suitable for food products, since part of the phenotype was altered without altering other plasmids indispensable for fermentation.

  20. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147.

    PubMed Central

    Ryan, M P; Rea, M C; Hill, C; Ross, R P

    1996-01-01

    Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products. PMID:8593062

  1. The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods.

    PubMed

    Gibello, Alicia; Galán-Sánchez, Fátima; Blanco, M Mar; Rodríguez-Iglesias, Manuel; Domínguez, Lucas; Fernández-Garayzábal, José F

    2016-12-01

    Lactococcus garvieae is a relevant worldwide fish pathogen affecting various farmed and wild marine and freshwater species. It has also been isolated from other animals, such as ruminants with subclinical mastitis and pigs with pneumonia. From the early 90s, L. garvieae has been associated with different human infections, mainly endocarditis. During the last five years, human infections by this bacterium appear to be increasing, likely due to the improvement in microbiological methods for bacterial identification and the alertness of this bacterium by physicians. Human L. garvieae infections have been associated with the consumption or the handling of contaminated raw fish or seafood, and recently, a genetic study showed that meat, raw milk and dairy products may also be food sources of human L. garvieae infections. However, the status of L. garvieae as a potential zoonotic bacterium is still controversial to date. In this work, we describe four new human infections by L. garvieae in elderly and inmunocompromised patients, and we show an overview on L. garvieae microbiology, epidemiology, virulence factors and relationship with its presence in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    PubMed

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  3. Distinct contributions of the nisin biosynthesis enzymes NisB and NisC and transporter NisT to prenisin production by Lactococcus lactis.

    PubMed

    van den Berg van Saparoea, H Bart; Bakkes, Patrick J; Moll, Gert N; Driessen, Arnold J M

    2008-09-01

    Several Lactococcus lactis strains produce the lantibiotic nisin. The dedicated enzymes NisB and NisC and the transporter NisT modify and secrete the ribosomally synthesized nisin precursor peptide. NisB can function in the absence of the cyclase NisC, yielding the dehydrated prenisin that lacks the thioether rings. A kinetic analysis of nisin production by L. lactis NZ9700 demonstrated that the prenisin was released from the cell into the medium before the processing of the leader sequence occurred. Upon the deletion of nisC, the production of prenisin was reduced by 70%, while in the absence of nisB, the production of prenisin was nearly completely abolished. In cells lacking nisT, no secretion was observed, while the expression of nisABC in these cells resulted in considerable growth rate inhibition caused by the intracellular accumulation of active nisin. Overall, these data indicate that the efficiency of prenisin transport by NisT is markedly enhanced by NisB, suggesting a channeling mechanism of prenisin transfer between the nisin modification enzymes and the transporter.

  4. Cloning and functional expression of the mitochondrial alternative oxidase gene (aox1) of Aspergillus niger in Lactococcus lactis and its induction by oxidizing conditions.

    PubMed

    Papagianni, Maria; Avramidis, Nicholaos

    2012-01-05

    Lactococcus lactis is a widely used food bacterium mainly known for its fermentation metabolism. An important, and for long time overlooked, trait of this species is its ability to perform respiratory metabolism in the presence of heme and under aerobic conditions. There is no evidence however for the presence of an alternative respiration pathway and AOX activity. In this study, a cDNA fragment encoding the mitochondrial alternative oxidase, the enzyme responsible for alternative respiration, from a citric acid producing Aspergillus niger strain was cloned and expressed in L. lactis as a host strain. Expression of aox1 conferred on this organism cyanide-resistant and salicylhydroxamate-sensitive growth. Bioreactor cultures under fully aerobic conditions of the transformed L. lactis showed that the alternative respiratory pathway operates and improves significantly the microorganism's response to oxidizing stress conditions as it enhances biomass production, suppresses lactate formation, and leads to accumulation of large amounts of nisin. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence.

    PubMed

    Freires, Irlan A; Avilés-Reyes, Alejandro; Kitten, Todd; Simpson-Haidaris, P J; Swartz, Michael; Knight, Peter A; Rosalen, Pedro L; Lemos, José A; Abranches, Jacqueline

    2017-01-02

    In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.

  6. Comparison of pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus PCR and biochemical tests to characterize Lactococcus garvieae.

    PubMed

    Ture, M; Altinok, I; Capkin, E

    2015-01-01

    Biochemical test, pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) were used to compare 42 strains of Lactococcus garvieae isolated from different regions of Turkey, Italy, France and Spain. Twenty biotypes of L. garvieae were formed based on 54 biochemical tests. ERIC-PCR of genomic DNA from different L. garvieae strains resulted in amplification of multiple fragments of DNA in sizes ranging between 200 and 5000 bp with various band intensities. After cutting DNA with ApaI restriction enzyme and running on the PFGE, 11–22 resolvable bands ranging from 2 to 194 kb were observed. Turkish isolates were grouped into two clusters, and only A58 (Italy) strain was connected with Turkish isolates. Similarities between Turkish, Spanish, Italian and French isolates were <50% except 216-6 Rize strain. In Turkey, first lactococcosis occurred in Mugla, and then, it has been spread all over the country. Based on ERIC-PCR, Spanish and Italian strains of L. garvieae were related to Mugla strains. Therefore, after comparing PFGE profiles, ERIC-PCR profiles and phenotypic characteristics of 42 strains of L. garvieae, there were no relationships found between these three typing methods. PFGE method was more discriminative than the other methods. © 2014 John Wiley & Sons Ltd.

  7. Expression of food-grade phytase in Lactococcus lactis from optimized conditions in milk broth.

    PubMed

    Miao, Yuzhi; Xu, Hui; Fei, Baojin; Qiao, Dairong; Cao, Yi

    2013-07-01

    The major objective of this study was to engineer lactic acid bacteria to produce the enzyme phytase from a gene native to Bacillus subtilis GYPB04. The phytase gene (phyC) of B. subtilis GYPB04 was cloned into the plasmid pMG36e for expression in Lactococcus lactis. The enzyme activity in L. lactis cultured in GM17 broth was 20.25 U/mL at 36°C. The expressed phytase was characterized as active in a pH range of 2.0-9.0 at a temperature range of 20-80°C, with an optimum pH of 5.5-6.5 and temperature of 60°C. When cultured in food-grade milk broth, the transformed L. lactis grew to an OD(600 nm) value of 1.05 and had a phytase yield of 13.58 U/mL. In same broth under optimized conditions for cell growth and phytase production, the transformant reached an OD(600 nm) value of 1.68 and a phytase yield of 42.12 U/mL, representing approximately 1.6-fold and 3.1-fold increases, respectively, compared to growth in natural milk broth. Fermentation was scaled to 5 L under optimized conditions, and product analysis revealed a final OD(600 nm) value of 1.89 and an extracellular enzyme activity of 24.23 U/mL. The results of this study may be used in the dairy fermentation industry for the development of functional, healthy yogurts and other fermented dairy foods that provide both active phytase and viable probiotics to the consumer. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Transcriptome analysis shows activation of the arginine deiminase pathway in Lactococcus lactis as a response to ethanol stress.

    PubMed

    Díez, Lorena; Solopova, Ana; Fernández-Pérez, Rocío; González, Miriam; Tenorio, Carmen; Kuipers, Oscar P; Ruiz-Larrea, Fernanda

    2017-09-18

    This paper describes the molecular response of Lactococcus lactis NZ9700 to ethanol. This strain is a well-known nisin producer and a lactic acid bacteria (LAB) model strain. Global transcriptome profiling using DNA microarrays demonstrated a bacterial adaptive response to the presence of 2% ethanol in the culture broth and differential expression of 67 genes. The highest up-regulation was detected for those genes involved in arginine degradation through the arginine deiminase (ADI) pathway (20-40 fold up-regulation). The metabolic responses to ethanol of wild type L. lactis strains were studied and compared to those of regulator-deletion mutants MG∆argR and MG∆ahrC. The results showed that in the presence of 2% ethanol those strains with an active ADI pathway reached higher growth rates when arginine was available in the culture broth than in absence of arginine. In a chemically defined medium strains with an active ADI pathway consumed arginine and produced ornithine in the presence of 2% ethanol, hence corroborating that arginine catabolism is involved in the bacterial response to ethanol. This is the first study of the L. lactis response to ethanol stress to demonstrate the relevance of arginine catabolism for bacterial adaptation and survival in an ethanol containing medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Monte-Carlo Modeling of the Central Carbon Metabolism of Lactococcus lactis: Insights into Metabolic Regulation

    PubMed Central

    Murabito, Ettore; Verma, Malkhey; Bekker, Martijn; Bellomo, Domenico; Westerhoff, Hans V.; Teusink, Bas; Steuer, Ralf

    2014-01-01

    Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation. Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular, we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models. PMID:25268481

  10. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  11. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.

    PubMed

    Amiri-Jami, Mitra; Lapointe, Gisele; Griffiths, Mansel W

    2014-04-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35 ± 0.5 mg g(-1) cell dry weight) and EPA (0.12 ± 0.04 mg g(-1) cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.

  12. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    PubMed

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  14. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese.

    PubMed

    Le Boucher, Clémentine; Gagnaire, Valérie; Briard-Bion, Valérie; Jardin, Julien; Maillard, Marie-Bernadette; Dervilly-Pinel, Gaud; Le Bizec, Bruno; Lortal, Sylvie; Jeanson, Sophie; Thierry, Anne

    2016-01-01

    In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis.

    PubMed Central

    Liu, W; Hansen, J N

    1990-01-01

    Nisin is a small gene-encoded antimicrobial protein produced by Lactococcus lactis that contains unusual dehydroalanine and dehydrobutyrine residues. The reactivity of these residues toward nucleophiles was explored by reacting nisin with a variety of mercaptans. The kinetics of reaction with 2-mercaptoethane-sulfonate and thioglycolate indicated that the reaction pathway includes a binding step. Reaction of nisin at high pH resulted in the formation of multimeric products, apparently as a result of intramolecular and intermolecular reactions between nucleophilic groups and the dehydro residues. One of the nucleophiles had a pKa of about 9.8. The unique vinyl protons of the dehydro residues that give readily identifiable proton nuclear magnetic resonances were used to observe the addition of nucleophiles to the dehydro moiety. After reaction with nucleophiles, nisin lost its antibiotic activity and no longer showed the dehydro resonances, indicating that the dehydro groups had been modified. The effect of pH on the solubility of nisin was determined; the solubility was quite high at low pH (57 mg/ml at pH 2) and was much lower at high pH (0.25 mg/ml at pH 8 to 12), as measured before significant pH-induced chemical modification had occurred. High-performance liquid chromatography on a C18 column was an effective technique for separating unmodified nisin from its reaction products. The cyanogen bromide cleavage products of nisin were about 90% less active toward inhibition of bacterial spore outgrowth than was native nisin. These results are consistent with earlier observations, which suggested that the dehydro residues of nisin have a role in the mechanism of antibiotic action, in which they act as electrophilic Michael acceptors toward nucleophiles in the cellular target. Images PMID:2119570

  17. The Lcn972 Bacteriocin-Encoding Plasmid pBL1 Impairs Cellobiose Metabolism in Lactococcus lactis▿

    PubMed Central

    Campelo, Ana B.; Gaspar, Paula; Roces, Clara; Rodríguez, Ana; Kok, Jan; Kuipers, Oscar P.; Neves, Ana Rute; Martínez, Beatriz

    2011-01-01

    pBL1 is a Lactococcus lactis theta-replicating 10.9-kbp plasmid that encodes the synthetic machinery of the bacteriocin Lcn972. In this work, the transcriptomes of exponentially growing L. lactis strains with and without pBL1 were compared. A discrete response was observed, with a total of 10 genes showing significantly changed expression. Upregulation of the lactococcal oligopeptide uptake (opp) system was observed, which was likely linked to a higher nitrogen demand required for Lcn972 biosynthesis. Strikingly, celB, coding for the membrane porter IIC of the cellobiose phosphoenolpyruvate-dependent phosphotransferase system (PTS), and the upstream gene llmg0186 were downregulated. Growth profiles for L. lactis strains MG1363, MG1363/pBL1, and MG1363 ΔcelB grown in chemically defined medium (CDM) containing cellobiose confirmed slower growth of MG1363/pBL1 and MG1363 ΔcelB, while no differences were observed with growth on glucose. The presence of pBL1 shifted the fermentation products toward a mixed acid profile and promoted substantial changes in intracellular pool sizes for glycolytic intermediates in cells growing on cellobiose as determined by high-pressure liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Overall, these data support the genetic evidence of a constriction in cellobiose uptake. Notably, several cell wall precursors accumulated, while other UDP-activated sugar pools were lower, which could reflect rerouting of precursors toward the production of structural or storage polysaccharides. Moreover, cells growing slowly on cellobiose and those lacking celB were more tolerant to Lcn972 than cellobiose-adapted cells. Thus, downregulation of celB could help to build up a response against the antimicrobial activity of Lcn972, enhancing self-immunity of the producer cells. PMID:21890668

  18. Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice.

    PubMed

    Shigemori, Suguru; Watanabe, Takafumi; Kudoh, Kai; Ihara, Masaki; Nigar, Shireen; Yamamoto, Yoshinari; Suda, Yoshihito; Sato, Takashi; Kitazawa, Haruki; Shimosato, Takeshi

    2015-11-25

    Mucosal delivery of therapeutic proteins using genetically modified strains of lactic acid bacteria (gmLAB) is being investigated as a new therapeutic strategy. We developed a strain of gmLAB, Lactococcus lactis NZ9000 (NZ-HO), which secretes the anti-inflammatory molecule recombinant mouse heme oxygenase-1 (rmHO-1). The effects of short-term continuous oral dosing with NZ-HO were evaluated in mice with dextran sulfate sodium (DSS)-induced acute colitis as a model of inflammatory bowel diseases (IBD). We identified the secretion of rmHO-1 by NZ-HO. rmHO-1 was biologically active as determined with spectroscopy. Viable NZ-HO was directly delivered to the colon via oral administration, and rmHO-1 was secreted onto the colonic mucosa in mice. Acute colitis in mice was induced by free drinking of 3 % DSS in water and was accompanied by an increase in the disease activity index score and histopathological changes. Daily oral administration of NZ-HO significantly improved these colitis-associated symptoms. In addition, NZ-HO significantly increased production of the anti-inflammatory cytokine interleukin (IL)-10 and decreased the expression of pro-inflammatory cytokines such as IL-1α and IL-6 in the colon compared to a vector control strain. Oral administration of NZ-HO alleviates DSS-induced acute colitis in mice. Our results suggest that NZ-HO may be a useful mucosal therapeutic agent for treating IBD.

  19. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.

    PubMed

    Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc

    2015-02-01

    Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments. © 2014 John Wiley & Sons Ltd.

  20. In vitro antagonistic activities of Lactobacillus spp. against Brachyspira hyodysenteriae and Brachyspira pilosicoli.

    PubMed

    Bernardeau, Marion; Gueguen, Micheline; Smith, David G E; Corona-Barrera, Enrique; Vernoux, Jean Paul

    2009-07-02

    The sensitivity of Brachyspira hyodysenteriae and Brachyspira pilosicoli, respectively the causative agents of Swine Dysentery and Porcine Intestinal Spirochaetosis to two probiotic Lactobacillus strains, L. rhamnosus CNCM-I-3698 and L. farciminis CNCM-I-3699 was studied through viability, motility and coaggregation assays. The cell-free supernatant of these lactobacilli contains lactic acid, that is stressful for Brachyspira (leading to the formation of spherical bodies), and lethal. It was demonstrated for the first time the in vitro coaggregation properties of two probiotic Lactobacillus strains (active or heat-treated) with two pathogenic strains of Brachyspira, leading to (1) trapping of spirochaetal cells in a physical network as demonstrated by SEM; (2) inhibition of the motility of Brachyspira. Such in vitro studies should encourage in vivo studies in animal model to evaluate the potential of the use of probiotic lactobacilli through a feeding strategy for the prevention of B. hyodysenteriae and B. pilosicoli.

  1. Oral administration of Lactococcus chungangensis inhibits 2,4-dinitrochlorobenzene-induced atopic-like dermatitis in NC/Nga mice.

    PubMed

    Choi, Woo Jin; Konkit, Maytiya; Kim, Yena; Kim, Mi-Kyung; Kim, Wonyong

    2016-09-01

    Interest is increasing in the potentially beneficial role of probiotics in the prevention and treatment of atopic diseases. In this study, we investigated the protective effects of Lactococcus chungangensis CAU 28(T) against atopic dermatitis using murine macrophage RAW 264.7 cells, human keratinocyte HaCaT cells, human mast cell line HMC-1 cells, and a 2,4-dinitrochlorobenzene-induced atopic dermatitis model (NC/Nga mice). The results showed that L. chungangensis CAU 28(T) exhibited potent antiinflammatory activity by inhibiting the production of the proinflammatory mediators nitric oxide and prostaglandin E2 in lipopolysaccharide-stimulated RAW 264.7 cells. Treatment with L. chungangensis CAU 28(T) reduced the release of β-hexosaminidase and histamine in HMC-1 cells stimulated with mast cell activator compound 48/80. In addition, the back skin and ears of NC/Nga mice exhibited reduced histological manifestations of atopic skin lesions such as erosion, hyperplasia of the epidermis and dermis, and inflammatory cell infiltration. Oral administration of L. chungangensis CAU 28(T) suppressed the production of IL-4, IL-5, IL-12, IFN-γ, tumor necrosis factor-α, and thymus- and activation-regulated chemokine (TARC) in skin lesions, indicating that it strongly drives the local immune system with efficacy comparable to that of tacrolimus, a topical immunomodulatory drug used for the treatment of atopic dermatitis. The findings indicate that L. chungangensis CAU 28(T) could be a novel probiotic candidate for controlling the symptoms of atopic dermatitis. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Improved Acid Stress Survival of Lactococcus lactis Expressing the Histidine Decarboxylation Pathway of Streptococcus thermophilus CHCC1524*

    PubMed Central

    Trip, Hein; Mulder, Niels L.; Lolkema, Juke S.

    2012-01-01

    Degradative amino acid decarboxylation pathways in bacteria generate secondary metabolic energy and provide resistance against acid stress. The histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524 was functionally expressed in the heterologous host Lactococcus lactis NZ9000, and the benefits of the newly acquired pathway for the host were analyzed. During growth in M17 medium in the pH range of 5–6.5, a small positive effect was observed on the biomass yield in batch culture, whereas no growth rate enhancement was evident. In contrast, a strong benefit for the engineered L. lactis strain was observed in acid stress survival. In the presence of histidine, the pathway enabled cells to survive at pH values as low as 3 for at least 2 h, conditions under which the host cells were rapidly dying. The flux through the histidine decarboxylation pathway in cells grown at physiological pH was under strict control of the electrochemical proton gradient (pmf) across the membrane. Ionophores that dissipated the membrane potential (ΔΨ) and/or the pH gradient (ΔpH) strongly increased the flux, whereas the presence of glucose almost completely inhibited the flux. Control of the pmf over the flux was exerted by both ΔΨ and ΔpH and was distributed over the transporter HdcP and the decarboxylase HdcA. The control allowed for a synergistic effect between the histidine decarboxylation and glycolytic pathways in acid stress survival. In a narrow pH range around 2.5 the synergism resulted in a 10-fold higher survival rate. PMID:22351775

  3. Growth phase-dependent proteomes of the Malaysian isolated Lactococcus lactis dairy strain M4 using label-free qualitative shotgun proteomics analysis.

    PubMed

    Yap, Theresa Wan Chen; Rabu, Amir; Abu Bakar, Farah Diba; Rahim, Raha Abdul; Mahadi, Nor Muhammad; Illias, Rosli Md; Murad, Abdul Munir Abdul

    2014-01-01

    Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MS(E)) approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.

  4. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2015-01-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products. PMID:26221109

  5. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.

    PubMed

    Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun

    2017-12-01

    Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The Contribution of Caseins to the Amino Acid Supply for Lactococcus lactis Depends on the Type of Cell Envelope Proteinase

    PubMed Central

    Flambard, Benedicte; Helinck, Sandra; Richard, Jean; Juillard, Vincent

    1998-01-01

    The ability of caseins to fulfill the amino acid requirements of Lactococcus lactis for growth was studied as a function of the type of cell envelope proteinase (PI versus PIII type). Two genetically engineered strains of L. lactis that differed only in the type of proteinase were grown in chemically defined media containing αs1-, β-, and κ-caseins (alone or in combination) as the sources of amino acids. Casein utilization resulted in limitation of the growth rate, and the extent of this limitation depended on the type of casein and proteinase. Adding different mixtures of essential amino acids to the growth medium made it possible to identify the nature of the limitation. This procedure also made it possible to identify the amino acid deficiency which was growth rate limiting for L. lactis in milk (S. Helinck, J. Richard, and V. Juillard, Appl. Environ. Microbiol. 63:2124–2130, 1997) as a function of the type of proteinase. Our results were compared with results from previous in vitro experiments in which casein degradation by purified proteinases was examined. The results were in agreement only in the case of the PI-type proteinase. Therefore, our results bring into question the validity of the in vitro approach to identification of casein-derived peptides released by a PIII-type proteinase. PMID:9603805

  7. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  8. Characterization of two nisin-producing Lactococcus lactis subsp. lactis strains isolated from a commercial sauerkraut fermentation.

    PubMed Central

    Harris, L J; Fleming, H P; Klaenhammer, T R

    1992-01-01

    Two Lactococcus lactis subsp. lactis strains, NCK400 and LJH80, isolated from a commercial sauerkraut fermentation were shown to produce nisin. LJH80 was morphologically unstable and gave rise to two stable, nisin-producing (Nip+) derivatives, NCK318-2 and NCK318-3. NCK400 and derivatives of LJH80 exhibited identical morphological and metabolic characteristics, but could be distinguished on the basis of plasmid profiles and genomic hybridization patterns to a DNA probe specific for the iso-ISS1 element, IS946. NCK318-2 and NCK318-3 harbored two and three plasmids, respectively, which hybridized with IS946. Plasmid DNA was not detected in NCK400, and DNA from this strain failed to hybridize with IS946. Despite the absence of detectable plasmid DNA in NCK400, nisin-negative derivatives (NCK402 and NCK403) were isolated after repeated transfer in broth at 37 degrees C. Nisin-negative derivatives concurrently lost the ability to ferment sucrose and became sensitive to nisin. A 4-kbp HindIII fragment containing the structural gene for nisin (spaN), cloned from L. lactis subsp. lactis ATCC 11454, was used to probe genomic DNA of NCK318-2, NCK318-3, NCK400, and NCK402 digested with EcoRI or HindIII. The spaN probe hybridized to an 8.8-kbp EcoRI fragment and a 10-kbp HindIII fragment in the Nip+ sauerkraut isolates, but did not hybridize to the Nip- derivative, NCK402. A different hybridization pattern was observed when the same probe was used against Nip+ L. lactis subsp. lactis ATCC 11454 and ATCC 7962. These phenotypic and genetic data confirmed that unique Nip+ L. lactis subsp. lactis strains were isolated from fermenting sauerkraut. Images PMID:1622214

  9. Mechanism of Citrate Metabolism by an Oxaloacetate Decarboxylase-Deficient Mutant of Lactococcus lactis IL1403 ▿

    PubMed Central

    Pudlik, Agata M.; Lolkema, Juke S.

    2011-01-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706–714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of l-lactate, indicating exchange between oxaloacetate and l-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate. PMID:21665973

  10. Biodiversity of lactic acid bacteria in Moroccan soft white cheese (Jben).

    PubMed

    Ouadghiri, Mouna; Amar, Mohamed; Vancanneyt, Marc; Swings, Jean

    2005-10-15

    The bacterial diversity occurring in traditional Moroccan soft white cheese, produced in eight different regions in Morocco, was studied. A total of 164 lactic acid bacteria were isolated, purified and identified by whole-cell protein fingerprinting and rep-PCR genomic fingerprinting. The majority of the strains belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Enterococcus. Sixteen species were identified: Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus brevis, Lactobacillus buchneri, Lactococcus lactis, Lactococcus garvieae, Lactococcus raffinolactis, Leuconostoc pseudomesenteroides, Leuconostoc mesenteroides, Leuconostoc citreum, Eterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus saccharominimus and Streptococcus sp.

  11. Lactococcus lactis expressing food-grade β-galactosidase alleviates lactose intolerance symptoms in post-weaning Balb/c mice.

    PubMed

    Li, Jingjie; Zhang, Wen; Wang, Chuan; Yu, Qian; Dai, Ruirui; Pei, Xiaofang

    2012-12-01

    The endogenous β-galactosidase expressed in intestinal microbes is demonstrated to help humans in lactose usage, and treatment associated with the promotion of beneficial microorganism in the gut is correlated with lactose tolerance. From this point, a kind of recombinant live β-galactosidase delivery system using food-grade protein expression techniques and selected probiotics as vehicle was promoted by us for the purpose of application in lactose intolerance subjects. Previously, a recombinant Lactococcus lactis MG1363 strain expressing food-grade β-galactosidase, the L. lactis MG1363/FGZW, was successfully constructed and evaluated in vitro. This study was conducted to in vivo evaluate its efficacy on alleviating lactose intolerance symptoms in post-weaning Balb/c mice, which were orally administered with 1 × 10⁶ CFU or 1 × 10⁸ CFU of L. lactis MG1363/FGZW daily for 4 weeks before lactose challenge. In comparison with naïve mice, the mice administered with L. lactis MG1363/FGZW showed significant alleviation of diarrhea symptoms in less total feces weight within 6 h post-challenge and suppressed intestinal motility after lactose challenge, although there was no significant increase of β-galactosidase activity in small intestine. The alleviation also correlated with higher species abundance, more Bifidobacterium colonization, and stronger colonization resistance in mice intestinal microflora. Therefore, this recombinant L. lactis strain effectively alleviated diarrhea symptom induced by lactose uptake in lactose intolerance model mice with the probable mechanism of promotion of lactic acid bacteria to differentiate and predominantly colonize in gut microbial community, thus making it a promising probiotic for lactose intolerance subjects.

  12. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens.

    PubMed

    Armas, Federica; Camperio, Cristina; Marianelli, Cinzia

    2017-01-01

    Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions.

  13. Listeria monocytogenes and Salmonella enterica affect the expression of nisin gene and its production by Lactococcus lactis.

    PubMed

    Abdollahi, Soosan; Ghahremani, Mohammad Hossein; Setayesh, Neda; Samadi, Nasrin

    2018-06-13

    The Lactococcus lactis is known as a probiotic bacterium and also as a producer of nisin. Nisin has been approved by related legal agencies to be used as an antimicrobial peptide in food preservation. In fact, the L. lactis is present in different food products along with other micro-organisms especially pathogenic bacteria. So, it is important to predict the behavior of nisin-producer strain in contact with other pathogens. In this regard, nisin gene expression and the level of secreted biologically active form of nisin by L. lactis subsp. lactis in modified MRS broth and whey solution in co-culture with Listeria monocytogenes or Salmonella enterica were studied. The nisin concentration was determined by microbiological assay method and the transcription level of nisin gene was assayed through quantitative reverse transcription PCR (RT-qPCR). According to our results, the highest concentration of nisin and its gene transcription level were detected in mono- and co-cultures after 16 h of incubation, concurrent with the end of L. lactis exponential phase of growth. The nisin mRNA copies in co-cultures were higher than mono-cultures only at 16 h of incubation. But, differences between nisin concentrations in mono- and co-cultures were significant at 16, 24 h and at 12, 16, 24 h of incubation in the modified MRS medium and whey solution, respectively. This incompatibility could be related to the low availability of components required for nisin precursor modification, transportation and processing in mono-cultures. Overall, the L. lactis produced more mature and active nisin when it was in contact with pathogenic bacteria. Copyright © 2018. Published by Elsevier Ltd.

  14. Expression of genes associated with stress conditions by Listeria monocytogenes in interaction with nisin producer Lactococcus lactis.

    PubMed

    Miranda, Rodrigo Otávio; Campos-Galvão, Maria Emilene Martino; Nero, Luís Augusto

    2018-03-01

    The use of nisin producers in foods is considered a mitigation strategy to control foodborne pathogens growth, such as Listeria monocytogenes, due to the production of this bacteriocin in situ. However, when the bacteriocin does not reach an adequate concentration, the target bacteria can develop a cross-response to different stress conditions in food, such as acid, thermal and osmotic. This study aimed to evaluate the interaction of a nisin-producing strain of Lactococcus lactis DY-13 and L. monocytogenes in BHI and skim milk, and its influence on general (sigB), acid (gadD2), thermal (groEL) and osmotic (gbu) stress-related genes of the pathogen. L. monocytogenes populations decreased approximately 2log in BHI and 1log in milk after 24h in co-culture with the nisin producer L. lactis, coherent with the increasing expression of nisK. Expression of stress-related genes by L. monocytogenes presented lower oscillation in BHI than in milk, indicating its better ability to survive in milk, despite the higher nisin production. Stress-related genes presented a varied expression by L. monocytogenes in the tested conditions: sigB expression remained stable or reduced over time; gadD2 presented high expression in milk; groEL presented low expression in BHI when compared to milk, trending to decrease overtime; gbu expression in milk after 24h was lower than in BHI. The presented study demonstrated the growth of a nisin producer L. lactis can affect the expression of stress-related genes by L. monocytogenes, and understating these mechanisms is crucial to enhance the conservation methods employed in foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens

    PubMed Central

    Armas, Federica; Camperio, Cristina

    2017-01-01

    Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions. PMID:28068371

  16. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.

    PubMed

    Flahaut, Nicolas A L; Wiersma, Anne; van de Bunt, Bert; Martens, Dirk E; Schaap, Peter J; Sijtsma, Lolke; Dos Santos, Vitor A Martins; de Vos, Willem M

    2013-10-01

    Lactococcus lactis subsp. cremoris MG1363 is a paradigm strain for lactococci used in industrial dairy fermentations. However, despite of its importance for process development, no genome-scale metabolic model has been reported thus far. Moreover, current models for other lactococci only focus on growth and sugar degradation. A metabolic model that includes nitrogen metabolism and flavor-forming pathways is instrumental for the understanding and designing new industrial applications of these lactic acid bacteria. A genome-scale, constraint-based model of the metabolism and transport in L. lactis MG1363, accounting for 518 genes, 754 reactions, and 650 metabolites, was developed and experimentally validated. Fifty-nine reactions are directly or indirectly involved in flavor formation. Flux Balance Analysis and Flux Variability Analysis were used to investigate flux distributions within the whole metabolic network. Anaerobic carbon-limited continuous cultures were used for estimating the energetic parameters. A thorough model-driven analysis showing a highly flexible nitrogen metabolism, e.g., branched-chain amino acid catabolism which coupled with the redox balance, is pivotal for the prediction of the formation of different flavor compounds. Furthermore, the model predicted the formation of volatile sulfur compounds as a result of the fermentation. These products were subsequently identified in the experimental fermentations carried out. Thus, the genome-scale metabolic model couples the carbon and nitrogen metabolism in L. lactis MG1363 with complete known catabolic pathways leading to flavor formation. The model provided valuable insights into the metabolic networks underlying flavor formation and has the potential to contribute to new developments in dairy industries and cheese-flavor research.

  17. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells

    PubMed Central

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest. PMID:26370773

  18. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells.

    PubMed

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-09-15

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.

  19. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.

    PubMed

    Taguchi, Yodai; Saburi, Wataru; Imai, Ryozo; Mori, Haruhide

    2017-08-01

    Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.

  20. Glioblastoma recurrence correlates with NLGN3 levels.

    PubMed

    Liu, Rui; Qin, Xing-Ping; Zhuang, Yang; Zhang, Ya; Liao, Hua-Bao; Tang, Jun-Chun; Pan, Meng-Xian; Zeng, Fei-Fei; Lei, Yang; Lei, Rui-Xue; Wang, Shu; Liu, An-Chun; Chen, Juan; Zhang, Zhi-Feng; Zhao, Dan; Wu, Song-Lin; Liu, Ren-Zhong; Wang, Ze-Fen; Wan, Qi

    2018-05-18

    Glioblastoma (GBM) is the most aggressive glioma in the brain. Recurrence of GBM is almost inevitable within a short term after tumor resection. In a retrospective study of 386 cases of GBM collected between 2013 and 2016, we found that recurrence of GBM mainly occurs in the deep brain regions, including the basal ganglia, thalamus, and corpus callosum. But the mechanism underlying this phenomenon is not clear. Previous studies suggest that neuroligin-3 (NLGN3) is necessary for GBM growth. Our results show that the levels of NLGN3 in the cortex are higher than those in the deep regions in a normal human brain, and similar patterns are also found in a normal mouse brain. In contrast, NLGN3 levels in the deep brain regions of GBM patients are high. We also show that an increase in NLGN3 concentration promotes the growth of U251 cells and U87-MG cells. Respective use of the cortex neuron culture medium (C-NCM) and basal ganglia neuron culture medium (BG-NCM) with DMEM to cultivate U251, U87-MG and GBM cells isolated from patients, we found that these cells grew faster after treatment with C-NCM and BG-NCM in which the cells treated with C-NCM grew faster than the ones treated with BG-NCM group. Inhibition of NLGN3 release by ADAM10i prevents NCM-induced cell growth. Together, this study suggests that increased levels of NLGN3 in the deep brain region under the GBM pathological circumstances may contribute to GBM recurrence in the basal ganglia, thalamus, and corpus callosum. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  1. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration.

    PubMed

    Linares, Daniel M; Del Rio, Beatriz; Redruello, Begoña; Ladero, Victor; Martin, M Cruz; de Jong, Anne; Kuipers, Oscar P; Fernandez, Maria; Alvarez, Miguel A

    2015-09-01

    Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine, a biogenic amine that raises food safety and spoilage concerns, via the agmatine deiminase (AGDI) pathway. The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene cluster. The role of the catabolic genes aguB, aguD, aguA, and aguC has been studied, but knowledge regarding the role of aguR (the first gene in the cluster) remains limited. In the present work, aguR was found to be a very low level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (aguBDAC). In response to agmatine, AguR acts as a transcriptional activator of the aguB promoter (PaguB), which drives the transcription of the aguBDAC operon. Inverted sequences required for PaguB activity were identified by deletion analysis. Further work indicated that AguR is a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and, accordingly, regulates the transcription of the aguBDAC operon through a C-terminal cytoplasmic DNA-binding domain typically found in LuxR-like proteins. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration

    PubMed Central

    Linares, Daniel M.; del Rio, Beatriz; Redruello, Begoña; Martin, M. Cruz; de Jong, Anne; Kuipers, Oscar P.; Fernandez, Maria

    2015-01-01

    Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine, a biogenic amine that raises food safety and spoilage concerns, via the agmatine deiminase (AGDI) pathway. The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene cluster. The role of the catabolic genes aguB, aguD, aguA, and aguC has been studied, but knowledge regarding the role of aguR (the first gene in the cluster) remains limited. In the present work, aguR was found to be a very low level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (aguBDAC). In response to agmatine, AguR acts as a transcriptional activator of the aguB promoter (PaguB), which drives the transcription of the aguBDAC operon. Inverted sequences required for PaguB activity were identified by deletion analysis. Further work indicated that AguR is a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and, accordingly, regulates the transcription of the aguBDAC operon through a C-terminal cytoplasmic DNA-binding domain typically found in LuxR-like proteins. PMID:26116671

  3. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling.

    PubMed

    Børsting, M W; Qvist, K B; Brockmann, E; Vindeløv, J; Pedersen, T L; Vogensen, F K; Ardö, Y

    2015-01-01

    Lactococcus lactis strains depend on a proteolytic system for growth in milk to release essential AA from casein. The cleavage specificities of the cell envelope proteinase (CEP) can vary between strains and environments and whether the enzyme is released or bound to the cell wall. Thirty-eight Lc. lactis strains were grouped according to their CEP AA sequences and according to identified peptides after hydrolysis of milk. Finally, AA positions in the substrate binding region were suggested by the use of a new CEP template based on Streptococcus C5a CEP. Aligning the CEP AA sequences of 38 strains of Lc. lactis showed that 21 strains, which were previously classified as group d, could be subdivided into 3 groups. Independently, similar subgroupings were found based on comparison of the Lc. lactis CEP AA sequences and based on normalized quantity of identified peptides released from αS1-casein and β-casein. A model structure of Lc. lactis CEP based on the crystal structure of Streptococcus C5a CEP was used to investigate the AA positions in the substrate-binding region. New AA positions were suggested, which could be relevant for the cleavage specificity of CEP; however, these could only explain 2 out of 3 found subgroups. The third subgroup could be explained by 1 to 5 AA positions located opposite the substrate binding region. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Lactolisterin BU, a Novel Class II Broad-Spectrum Bacteriocin from Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4.

    PubMed

    Lozo, Jelena; Mirkovic, Nemanja; O'Connor, Paula M; Malesevic, Milka; Miljkovic, Marija; Polovic, Natalija; Jovcic, Branko; Cotter, Paul D; Kojic, Milan

    2017-11-01

    Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 produces a novel bacteriocin, lactolisterin BU, with strong antimicrobial activity against many species of Gram-positive bacteria, including important food spoilage and foodborne pathogens, such as Listeria monocytogenes , Staphylococcus aureus , Bacillus spp., and streptococci. Lactolisterin BU was extracted from the cell surface of BGBU1-4 by 2-propanol and purified to homogeneity by C 18 solid-phase extraction and reversed-phase high-performance liquid chromatography. The molecular mass of the purified lactolisterin BU was 5,160.94 Da, and an internal fragment, AVSWAWQH, as determined by N-terminal sequencing, showed low-level similarity to existing antimicrobial peptides. Curing and transformation experiments revealed the presence of a corresponding bacteriocin operon on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4. Analysis of the bacteriocin operon revealed a leaderless bacteriocin of 43 amino acids that exhibited similarity to bacteriocin BHT-B (63%) from Streptococcus ratti , a bacteriocin with analogy to aureocin A. IMPORTANCE Lactolisterin BU, a broad-spectrum leaderless bacteriocin produced by L. lactis subsp. lactis bv. diacetylactis BGBU1-4, expresses strong antimicrobial activity against food spoilage and foodborne pathogens, such as Listeria monocytogenes , Staphylococcus aureus , Bacillus spp., and streptococci. Lactolisterin BU showed the highest similarity to aureocin-like bacteriocins produced by different bacteria. The operon for synthesis is located on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4, indicating possible horizontal transfer among producers. Copyright © 2017 American Society for Microbiology.

  5. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.

    PubMed

    Weidmann, Stéphanie; Maitre, Magali; Laurent, Julie; Coucheney, Françoise; Rieu, Aurélie; Guzzo, Jean

    2017-04-17

    Lactococcus lactis is a lactic acid bacterium widely used in cheese and fermented milk production. During fermentation, L. lactis is subjected to acid stress that impairs its growth. The small heat shock protein (sHsp) Lo18 from the acidophilic species Oenococcus oeni was expressed in L. lactis. This sHsp is known to play an important role in protein protection and membrane stabilization in O. oeni. The role of this sHsp could be studied in L. lactis, since no gene encoding for sHsp has been detected in this species. L. lactis subsp. cremoris strain MG1363 was transformed with the pDLhsp18 plasmid, which is derived from pDL278 and contains the hsp18 gene (encoding Lo18) and its own promoter sequence. The production of Lo18 during stress conditions was checked by immunoblotting and the cellular distribution of Lo18 in L. lactis cells after heat shock was determined. Our results clearly indicated a role for Lo18 in cytoplasmic protein protection and membrane stabilization during stress. The production of sHsp in L. lactis improved tolerance to heat and acid conditions in this species. Finally, the improvement of the L. lactis survival in milk medium thanks to Lo18 was highlighted, suggesting an interesting role of this sHsp. These findings suggest that the expression of a sHsp by a L. lactis strain results in greater resistance to stress, and, can consequently enhance the performances of industrial strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Lactolisterin BU, a Novel Class II Broad-Spectrum Bacteriocin from Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4

    PubMed Central

    Lozo, Jelena; Mirkovic, Nemanja; O'Connor, Paula M.; Malesevic, Milka; Miljkovic, Marija; Polovic, Natalija; Cotter, Paul D.

    2017-01-01

    ABSTRACT Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 produces a novel bacteriocin, lactolisterin BU, with strong antimicrobial activity against many species of Gram-positive bacteria, including important food spoilage and foodborne pathogens, such as Listeria monocytogenes, Staphylococcus aureus, Bacillus spp., and streptococci. Lactolisterin BU was extracted from the cell surface of BGBU1-4 by 2-propanol and purified to homogeneity by C18 solid-phase extraction and reversed-phase high-performance liquid chromatography. The molecular mass of the purified lactolisterin BU was 5,160.94 Da, and an internal fragment, AVSWAWQH, as determined by N-terminal sequencing, showed low-level similarity to existing antimicrobial peptides. Curing and transformation experiments revealed the presence of a corresponding bacteriocin operon on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4. Analysis of the bacteriocin operon revealed a leaderless bacteriocin of 43 amino acids that exhibited similarity to bacteriocin BHT-B (63%) from Streptococcus ratti, a bacteriocin with analogy to aureocin A. IMPORTANCE Lactolisterin BU, a broad-spectrum leaderless bacteriocin produced by L. lactis subsp. lactis bv. diacetylactis BGBU1-4, expresses strong antimicrobial activity against food spoilage and foodborne pathogens, such as Listeria monocytogenes, Staphylococcus aureus, Bacillus spp., and streptococci. Lactolisterin BU showed the highest similarity to aureocin-like bacteriocins produced by different bacteria. The operon for synthesis is located on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4, indicating possible horizontal transfer among producers. PMID:28842543

  7. Optimization of nisin production by Lactococcus lactis UQ2 using supplemented whey as alternative culture medium.

    PubMed

    González-Toledo, S Y; Domínguez-Domínguez, J; García-Almendárez, B E; Prado-Barragán, L A; Regalado-González, C

    2010-08-01

    Lactococcus lactis UQ2 is a nisin A-producing native strain. In the present study, the production of nisin by L. lactis UQ2 in a bioreactor using supplemented sweet whey (SW) was optimized by a statistical design of experiments and response surface methodology (RSM). In a 1st approach, a fractional factorial design (FFD) of the order 2(5-1) with 3 central points was used. The effect on nisin production of air flow, SW, soybean peptone (SP), MgSO(4)/MnSO(4) mixture, and Tween 80 was evaluated. From FFD, the most significant factors affecting nisin production were SP (P = 0.011), and SW (P = 0.037). To find optimum conditions, a central composite design (CCD) with 2 central points was used. Three factors were considered, SW (7 to 10 g/L), SP (7 to10 g/L), and small amounts of added nisin as self-inducer (NI 34.4 to 74.4 IU/L). Nisin production was expressed as international units (IU). From RSM, an optimum nisin activity of 180 IU/mL was predicted at 74.4 IU/L NI, 13.8 g/L SP, and 14.9 or 5.11 g/L SW, while confirmatory experiments showed a maximum activity of 178 +/- 5.2 IU/mL, verifying the validity of the model. The 2nd-order model showed a coefficient of determination (R(2)) of 0.828. Optimized conditions were used for constant pH fermentations, where a maximum activity of 575 +/- 17 IU/mL was achieved at pH 6.5 after 12 h. The adsorption-desorption technique was used to partially purify nisin, followed by drying. The resulting powder showed an activity of 102150 IU/g. Practical Application: Nisin production was optimized using supplemented whey as alternative culture medium, using a native L. lactis UQ2 strain. Soybean peptone, SW, and subinhibitory amounts of nisin were successfully employed to optimize nisin production by L. lactis UQ2. Dried semipurified nisin showed an activity of 102150 IU/g.

  8. Immunogenicity and immunoprotection of porcine circovirus type 2 (PCV2) Cap protein displayed by Lactococcus lactis.

    PubMed

    Li, Peng-Cheng; Qiao, Xu-Wen; Zheng, Qi-Sheng; Hou, Ji-Bo

    2016-01-27

    The capsid (Cap) protein, an important immunoprotective protein of porcine circovirus type 2 (PCV2), was expressed on the cell surface of the Gram-positive food-grade bacterium, Lactococcus lactis. Cap protein was fused to the peptidoglycan binding domain (known as the protein anchor domain, PA) of the lactococcal AcmA cell-wall hydrolase. The Cap protein fusion was non-covalently rebound to the surface of non-genetically modified, non-living high-binder L. lactis cells (designated Gram-positive enhancer matrix (GEM) particles). Expression of the recombinant GEM-displaying capsid protein (GEM-PA-Cap) was verified by Western blotting and immunofluorescence and transmission electron microscopy assays. To evaluate the immunogenicity of the recombinant Cap protein (rCap), 20 PCV2-seronegative piglets were immunized with the GEM-PA-Cap subunit vaccine, GEM alone, or phosphate-buffered saline (PBS, challenge control and empty control). Each group consisted of five piglets. The results showed that the level of PCV2-specific antibodies in piglets immunized with the GEM-PA-Cap subunit vaccine was significantly higher than that of the piglets immunized with GEM alone or the control group at all the time points post-vaccination (P<0.01). After challenge with the PCV2 wild-type strain, piglets that received the GEM-PA-Cap subunit vaccine showed significantly higher average daily weight gain (DWG) and shorter fever duration than the other two groups (P<0.001). Furthermore, a significant reduction in the gross lung lesion scores and lymph node lesion scores was noted in the GEM-PA-Cap-immunized group compared with the scores of the GEM or PBS-treated group (P<0.01). The results suggest that recombinant rCap displayed by L. lactis GEM particles provided the piglets with significant immunoprotection from PCV2-associated disease. Thus, the novel GEM-PA-Cap subunit vaccine has potential to be considered an effective and safe candidate vaccine against PCV2 infection in piglets

  9. Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection

    PubMed Central

    Ramirez, Karina; Ditamo, Yanina; Rodriguez, Liliana; Picking, Wendy L.; van Roosmalen, Maarten L.; Leenhouts, Kees; Pasetti, Marcela F.

    2010-01-01

    Safe and effective immunization of newborns and infants can significantly reduce childhood mortality, yet conventional vaccines have been largely unsuccessful in stimulating the neonatal immune system. We explored the capacity of a novel mucosal antigen delivery system consisting of non-living, non-genetically modified Lactococcus lactis particles, designated Gram-positive Enhancer Matrix (GEM), to induce immune responses in the neonatal setting. Yersinia pestis LcrV, used as model protective antigen, was displayed on the GEM particles. Newborn mice immunized intranasally with GEM-LcrV developed LcrV-specific antibodies, Th1-type cell-mediated immunity, and were protected against lethal Y. pestis (plague) infection. The GEM particles activated and enhanced the maturation of neonatal dendritic cells both in vivo and in vitro. These dendritic cells showed increased capacities for secretion of pro-inflammatory and Th1-cell polarizing cytokines, antigen presentation and stimulation of CD4+ and CD8+ T cells. These data show that mucosal immunization with L. lactis GEM particles carrying vaccine antigens represents a promising approach to prevent infectious diseases early in life. PMID:19924118

  10. Multiplex PCR to detect bacteriophages from natural whey cultures of buffalo milk and characterisation of two phages active against Lactococcus lactis, ΦApr-1 and ΦApr-2.

    PubMed

    Aprea, Giuseppe; Mullan, William Michael; Murru, Nicoletta; Fitzgerald, Gerald; Buonanno, Marialuisa; Cortesi, Maria Luisa; Prencipe, Vincenza Annunziata; Migliorati, Giacomo

    2017-09-30

    This work investigated bacteriophage induced starter failures in artisanal buffalo Mozzarella production plants in Southern Italy. Two hundred and ten samples of whey starter cultures were screened for bacteriophage infection. Multiplex polymerase chain reaction (PCR) revealed phage infection in 28.56% of samples, all showing acidification problems during cheese making. Based on DNA sequences, bacteriophages for Lactococcus lactis (L. lactis), Lactobacillus delbruekii (L. delbruekii) and Streptococcus thermophilus (S. thermophilus) were detected. Two phages active against L. lactis, ΦApr-1 and ΦApr-2, were isolated and characterised. The genomes, approximately 31.4 kb and 31 kb for ΦApr-1 and ΦApr-2 respectively, consisted of double-stranded linear DNA with pac-type system. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‑PAGE) showed one major structural protein of approximately 32.5 kDa and several minor proteins. This is the first report of phage isolation in buffalo milk and of the use of multiplex PCR to screen and study the diversity of phages against Lactic Acid Bacteria (LAB) strains in artisanal Water Buffalo Mozzarella starters.

  11. Cloning and Expression of Plantaricin W Produced by Lactobacillus plantarum U10 Isolate from "Tempoyak" Indonesian Fermented Food as Immunity Protein in Lactococcus lactis.

    PubMed

    Lages, Aksar Chair; Mustopa, Apon Zaenal; Sukmarini, Linda; Suharsono

    2015-10-01

    Plantaricins, one of bacteriocin produced by Lactobacillus plantarum, are already known to have activities against several pathogenic bacterium. L. plantarum U10 isolated from "tempoyak," an Indonesian fermented food, produced one kind of plantaricin designated as plantaricin W (plnW). The plnW is suggested as a putative membrane location of protein and has similar conserved motif which is important as immunity to bacteriocin itself. Thus, due to study about this plantaricin, several constructs have been cloned and protein was analyzed in Lactococcus lactis. In this study, plnW gene was successfully cloned into vector NICE system pNZ8148 and created the transformant named L. lactis NZ3900 pNZ8148-WU10. PlnW protein was 25.3 kDa in size. The concentration of expressed protein was significantly increased by 10 ng/mL nisin induction. Furthermore, PlnW exhibited protease activity with value of 2.22 ± 0.05 U/mL and specific activity about 1.65 ± 0.03 U/mg protein with 50 ng/mL nisin induction. Immunity study showed that the PlnW had immunity activity especially against plantaricin and rendered L. lactis recombinant an immunity broadly to other bacteriocins such as pediocin, fermentcin, and acidocin.

  12. Mucosal and systemic immune responses elicited by recombinant Lactococcus lactis expressing a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis.

    PubMed

    Torkashvand, Ali; Bahrami, Fariborz; Adib, Minoo; Ajdary, Soheila

    2018-05-05

    We constructed a food-grade expression system harboring a F1S1 fusion protein of Bordetella pertussis to be produced in Lactococcus lactis NZ3900 as a new oral vaccine model against whooping cough, caused by B. pertussis. F1S1 was composed of N-terminally truncated S1 subunit of pertussis toxin and type I immunodominant domain of filamentous hemagglutinin which are both known as protective immunogens against pertussis. The recombinant L. lactis was administered via oral or intranasal routes to BALB/c mice and the related specific systemic and mucosal immune responses were then evaluated. The results indicated significantly higher levels of specific IgA in the lung extracts and IgG in sera of mucosally-immunized mice, compared to their controls. It was revealed that higher levels of IgG2a, compared to IgG1, were produced in all mucosally-immunized mice. Moreover, immunized mice developed Th1 responses with high levels of IFN-γ production by the spleen cells. These findings provide evidence for L. lactis to be used as a suitable vehicle for expression and delivery of F1S1 fusion protein to mucosa and induction of appropriate systemic and mucosal immune responses against pertussis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Effect of thyme essential oil and Lactococcus lactis CBM21 on the microbiota composition and quality of minimally processed lamb's lettuce.

    PubMed

    Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I; Vernocchi, Pamela; Del Chierico, Federica; Russo, Alessandra; Torriani, Sandra; Putignani, Lorenza; Gardini, Fausto; Lanciotti, Rosalba

    2017-12-01

    The main aim of this work was to evaluate, at pilot scale in an industrial environment, the effects of the biocontrol agent Lactococcus lactis CBM21 and thyme essential oil compared to chlorine, used in the washing step of fresh-cut lamb's lettuce, on the microbiota and its changes in relation to the time of storage. The modification of the microbial population was studied through pyrosequencing in addition to the traditional plate counts. In addition, the volatile molecule and sensory profiles were evaluated during the storage. The results showed no significant differences in terms of total aerobic mesophilic cell loads in relation to the washing solution adopted. However, the pyrosequencing data permitted to identify the genera and species able to dominate the spoilage associations over storage in relation to the treatment applied. Also, the analyses of the volatile molecule profiles of the samples during storage allowed the identification of specific molecules as markers of the spoilage for each different treatment. The sensory analyses after 3 and 5 days of storage showed the preference of the panelists for samples washed with the combination thyme EO and the biocontrol agent. These samples were preferred for attributes such as flavor, acceptability and overall quality. These results highlighted the effect of the innovative washing solutions on the quality of lettuce through the shift of microbiota towards genera and species with lower potential in decreasing the sensory properties of the product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.

    PubMed

    Song, Li; Cui, Hongyu; Tang, Lijie; Qiao, Xinyuan; Liu, Min; Jiang, Yanping; Cui, Wen; Li, Yijing

    2014-07-01

    Integration plasmids are often used in constructing chromosomal mutations, as it enables the alternation of genes at any location by integration or replacement. Food-grade integration vectors can integrate into the host genome without introducing any selectable markers or residual bases, and the recombination often happens in non-coding region. In this study we used the temperature-sensitive pWV01 replicon to construct 2 chloramphenicol-resistant integration plasmids (pGBHC32-upp) containing the uracil phosphoribosyl transferase (upp) gene as a counterselective marker for Lactobacillus casei (L. casei) ATCC393 and Lactococcus lactis (L. lactis) MG1363. We then ligated the designed homologous arms to the pGBHC32-upp plasmids to allow their integration to the bacterial chromosome, and selected upp deletion mutants of L. casei ATCC393 and L. lactis MG1363 in the presence of 5-fluorouracil (5-FU). Analysis of genetic stability, growth curve, carbon utilization and scanning electronic microscopy showed that, except for 5-FU resistance, there were no significant differences between the wild type and mutant lactic acid bacteria. The integration system and the upp deletion strains could be used in the insertion or deletion of genes at any location of the chromosome of both L. casei ATCC 393 and L. lactis MG1363, and the homologous recombination would not introduce any selectable markers or residual bases. These mutant strains can be further investigated for heterologous protein expression and construction of a live mucosal vaccine carrier. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Genome‐scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi‐strain arrays

    PubMed Central

    Siezen, Roland J.; Bayjanov, Jumamurat R.; Felis, Giovanna E.; van der Sijde, Marijke R.; Starrenburg, Marjo; Molenaar, Douwe; Wels, Michiel; van Hijum, Sacha A. F. T.; van Hylckama Vlieg, Johan E. T.

    2011-01-01

    Summary Lactococcus lactis produces lactic acid and is widely used in the manufacturing of various fermented dairy products. However, the species is also frequently isolated from non‐dairy niches, such as fermented plant material. Recently, these non‐dairy strains have gained increasing interest, as they have been described to possess flavour‐forming activities that are rarely found in dairy isolates and have diverse metabolic properties. We performed an extensive whole‐genome diversity analysis on 39 L. lactis strains, isolated from dairy and plant sources. Comparative genome hybridization analysis with multi‐strain microarrays was used to assess presence or absence of genes and gene clusters in these strains, relative to all L. lactis sequences in public databases, whereby chromosomal and plasmid‐encoded genes were computationally analysed separately. Nearly 3900 chromosomal orthologous groups (chrOGs) were defined on basis of four sequenced chromosomes of L. lactis strains (IL1403, KF147, SK11, MG1363). Of these, 1268 chrOGs are present in at least 35 strains and represent the presently known core genome of L. lactis, and 72 chrOGs appear to be unique for L. lactis. Nearly 600 and 400 chrOGs were found to be specific for either the subspecies lactis or subspecies cremoris respectively. Strain variability was found in presence or absence of gene clusters related to growth on plant substrates, such as genes involved in the consumption of arabinose, xylan, α‐galactosides and galacturonate. Further niche‐specific differences were found in gene clusters for exopolysaccharides biosynthesis, stress response (iron transport, osmotolerance) and bacterial defence mechanisms (nisin biosynthesis). Strain variability of functions encoded on known plasmids included proteolysis, lactose fermentation, citrate uptake, metal ion resistance and exopolysaccharides biosynthesis. The present study supports the view of L. lactis as a species with a very flexible

  16. Metabolic characterization and transformation of the non-dairy Lactococcus lactis strain KF147, for production of ethanol from xylose.

    PubMed

    Petersen, Kia Vest; Liu, Jianming; Chen, Jun; Martinussen, Jan; Jensen, Peter Ruhdal; Solem, Christian

    2017-08-01

    The non-dairy lactic acid bacterium Lactococcus lactis KF147 can utilize xylose as the sole energy source. To assess whether KF147 could serve as a platform organism for converting second generation sugars into useful chemicals, the authors characterized growth and product formation for KF147 when grown on xylose. In a defined medium KF147 was found to co-metabolize xylose and arginine, resulting in bi-phasic growth. Especially at low xylose concentrations, arginine significantly improved growth rate. To facilitate further studies of the xylose metabolism, the authors eliminated arginine catabolism by deleting the arcA gene encoding the arginine deiminase. The fermentation product profile suggested two routes for xylose degradation, the phosphoketolase pathway and the pentose phosphate pathway. Inactivation of the phosphoketolase pathway redirected the entire flux through the pentose phosphate pathway whereas over-expression of phosphoketolase increased the flux through the phosphoketolase pathway. In general, significant amounts of the mixed-acid products, including lactate, formate, acetate and ethanol, were formed irrespective of xylose concentrations. To demonstrate the potential of KF147 for converting xylose into useful chemicals the authors chose to redirect metabolism towards ethanol production. A synthetic promoter library was used to drive the expression of codon-optimized versions of the Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase, and the outcome was a strain producing ethanol as the sole fermentation product with a high yield corresponding to 83% of the theoretical maximum. The results clearly indicate the great potential of using the more metabolically diverse non-dairy L. lactis strains for bio-production based on xylose containing feedstocks. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Short communication: Salt tolerance of Lactococcus lactis R-604 as influenced by mild stresses from ethanol, heat, hydrogen peroxide, and UV light.

    PubMed

    Gonzalez, Ernesto E; Olson, Douglas; Aryana, Kayanush

    2017-06-01

    Lactococcus lactis is a culture widely used in salt-containing dairy products. Salt hinders bacterial growth, but exposure to environmental stress may protect cells against subsequent stress, including salt. The objective of this study was to evaluate the salt tolerance of L. lactis R-604 after exposure to various stresses. The culture was subjected to 10% (vol/vol) ethanol for 30 min, mild heat at 52°C for 30 min, 15 mM hydrogen peroxide for 30 min, or UV light (254 nm) for 5 min and compared with a control. Starting with 5 log cfu/mL for all treatments, growth was determined in M17 broth with 5 NaCl concentrations (0, 1, 3, 5, and 7% wt/vol). Plating was conducted daily for 5 d. Salt tolerance was enhanced with mild heat exposure before growth in M17 broth with 5% (wt/vol) NaCl on d 3, 4, and 5, and with exposure to hydrogen peroxide and ethanol stresses before growth in M17 broth with 5% (wt/vol) NaCl on d 4 and 5. Exposure of this culture to mild heat, hydrogen peroxide, or ethanol before growth in M17 broth containing 5% (wt/vol) salt can enhance its survival, which could be beneficial when using it in salt-containing dairy products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Lactobacillus bulgaricus Proteinase Expressed in Lactococcus lactis Is a Powerful Carrier for Cell Wall-Associated and Secreted Bovine β-Lactoglobulin Fusion Proteins

    PubMed Central

    Bernasconi, Eric; Germond, Jacques-Edouard; Delley, Michèle; Fritsché, Rodolphe; Corthésy, Blaise

    2002-01-01

    Lactic acid bacteria have a good potential as agents for the delivery of heterologous proteins to the gastrointestinal mucosa and thus for the reequilibration of inappropriate immune responses to food antigens. Bovine β-lactoglobulin (BLG) is considered a major allergen in cow's milk allergy. We have designed recombinant Lactococcus lactis expressing either full-length BLG or BLG-derived octapeptide T6 (IDALNENK) as fusions with Lactobacillus bulgaricus extracellular proteinase (PrtB). In addition to constructs encoding full-length PrtB for the targeting of heterologous proteins to the cell surface, we generated vectors aiming at the release into the medium of truncated PrtB derivatives lacking 100 (PrtB∂, PrtB∂-BLG, and PrtB∂-T6) or 807 (PrtBΔ) C-terminal amino acids. Expression of recombinant products was confirmed using either anti-PrtB, anti-BLG, or anti-peptide T6 antiserum. All forms of the full-length and truncated recombinant products were efficiently translocated, irrespective of the presence of eucaryotic BLG sequences in the fusion proteins. L. lactis expressing PrtB∂-BLG yielded up to 170 μg per 109 CFU in the culture supernatant and 9 μg per 109 CFU at the bacterial cell surface within 14 h. Therefore, protein fusions relying on the use of PrtB gene products are adequate for concomitant cell surface display and secretion by recombinant L. lactis and thus may ensure maximal bioavailability of the eucaryotic antigen in the gut-associated lymphoid tissue. PMID:12039750

  19. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model.

    PubMed

    Guo, Shanguang; Yan, Weiwei; McDonough, Sean P; Lin, Nengfeng; Wu, Katherine J; He, Hongxuan; Xiang, Hua; Yang, Maosheng; Moreira, Maira Aparecida S; Chang, Yung-Fu

    2015-03-24

    Clostridium difficile infection (CDI) causes nosocomial antibiotic-associated diarrhea and colitis in the developed world. Two potent cytotoxins, toxin A (TcdA) and toxin B (TcdB) are the virulence factors of this disease and can be a good vaccine candidate against CDI. In the present study, we genetically engineered Lactococcus lactis to express the nontoxic, recombinant fragments derived from TcdA and TcdB C-terminal receptor binding domains (Tcd-AC and Tcd-BC) as an oral vaccine candidate. The immunogenicity of the genetically engineered L. lactis oral vaccine delivery system (animal groups LAC and LBC or the combination of both, LACBC) was compared with the recombinant TcdA and TcdB C-terminal receptor binding domain proteins (animal groups PAC and PBC or the combination of both, PACBC), which were expressed and purified from E. coli. After the C. difficile challenge, the control groups received PBS or engineered L. lactis with empty vector, showed severe diarrhea symptoms and died within 2-3 days. However, both the oral vaccine and recombinant protein vaccine groups had significantly lower mortalities, body weight decreases and histopathologic lesions than the control sham-vaccine groups (p<0.05) except group LBC which only had a 31% survival rate after the challenge. The data of post infection survival showed that an average of 86% of animals survived in groups PAC and PACBC, 75% of animals survived in group LACBC, and 65% of animals survived in group LAC. All of the vaccinated animals produced higher titers of both IgG and IgA than the control groups (p<0.05), and the antibodies were able to neutralize the cytopathic effect of toxins in vitro. The results of this study indicate that there is a potential to use L. lactis as a delivery system to develop a cost effective oral vaccine against CDI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors.

    PubMed

    Shi, Zhouming; Wei, Peilian; Zhu, Xiangcheng; Cai, Jin; Huang, Lei; Xu, Zhinan

    2012-10-10

    Hydrolysate of Jerusalem artichoke was applied for the production of l-lactic acid by immobilized Lactococcus lactis cells in a fibrous bed bioreactor system. Preliminary experiments had indicated that the high quality hydrolysate, which was derived from the 40 min acid treatment at 95 °C and pH 1.8, was sufficient to support the cell growth and synthesis of l-lactic acid. With the addition of 5 g/l yeast extract, the fermentative performance of free cell system was evidently improved. After the basal settlement of hydrolysate based fermentation, the batch mode and the fed-batch mode fermentation were carried out in the free cell system and the fibrous bed bioreactor system, respectively. In all cases the immobilized cells presented the superior ability to produce l-lactic acid. The comparison of batch mode and fed-batch mode also indicated that the growth-limiting feeding strategy could reduce the lag phase of fermentation process and enhance the production of l-lactic acid. The achieved maximum concentration of l-lactic acid was 142 g/l in the fed-batch mode. Subsequent repeated-batch fermentation of the fibrous bed bioreactor system had further exhibited the persistence and stability of this system for the high production of l-lactic acid in a long term. Our work suggested the great potential of the fibrous bed bioreactor system and hydrolysate of J. artichoke in the economical production of l-lactic acid at industrial scale. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Analysis of gut microbiota revealed Lactococcus garviaeae could be an indicative of skin ulceration syndrome in farmed sea cucumber Apostichopus japonicus.

    PubMed

    Zhang, Zhen; Xing, Ronglian; Lv, Zhimeng; Shao, Yina; Zhang, Weiwei; Zhao, Xuelin; Li, Chenghua

    2018-06-02

    Accumulative evidence has supported the pivotal roles of gut microbiota in shaping host health in a wide range of animals. However, the relationship between gut microbiota and sea cucumber disease is poorly understood. Using the Illumina sequencing of bacterial 16 S rRNA gene, we investigated the divergence of gut bacterial communities between healthy and skin ulceration syndrome (SUS) diseased Apostichopus japonicus. The results showed that bacterial phylotypes in both groups were closely related at phylum level with predominant component of Proteobacteria (>90%). However, Firmicutes and Verrucomicrobia displayed opposite trends in two groups with higher abundance of Firmicutes and lower of Verrucomicrobia in diseased group. Further KEGG enrichment revealed that bacterial-mediated infectious diseases and signal transduction pathways were significantly induced in the SUS group. We also identified one OTU of Lactococcus garvieae from Firmicutes exhibited significantly different abundances in diseased sea cucumber as compared to healthy subjects. The relative abundance of the species was 27.67% ± 10.52% in diseased group compared to 2.78% ± 2.59% in healthy sea cucumber. Three virulence genes of hlyⅢ, fbp and pva encoded by L. garvieae were investigated by qPCR, and were found to be significantly induced (P < 0.05) in diseased sea cucumbers as compared to healthy ones. All our results supported that L. garvieae might be a potential pathogen for SUS outbreak and could be served as a bio-indicator for this disease monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    PubMed

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  3. Dual-Color Bioluminescence Imaging for Simultaneous Monitoring of the Intestinal Persistence of Lactobacillus plantarum and Lactococcus lactis in Living Mice

    PubMed Central

    Poiret, Sabine; Dennin, Véronique; Boutillier, Denise; Lacorre, Delphine Armelle; Foligné, Benoit; Pot, Bruno

    2015-01-01

    Lactic acid bacteria are found in the gastrointestinal tract of mammals and have received tremendous attention due to their health-promoting properties. We report the development of two dual-color luciferase-producing Lactobacillus (Lb.) plantarum and Lactococcus (Lc.) lactis strains for noninvasive simultaneous tracking in the mouse gastrointestinal tract. We previously described the functional expression of the red luciferase mutant (CBRluc) from Pyrophorus plagiophthalamus in Lb. plantarum NCIMB8826 and Lc. lactis MG1363 (C. Daniel, S. Poiret, V. Dennin, D. Boutillier, and B. Pot, Appl Environ Microbiol 79:1086–1094, 2013, http://dx.doi.org/10.1128/AEM.03221-12). In this study, we determined that CBRluc is a better-performing luciferase for in vivo localization of both lactic acid bacteria after oral administration than the green click beetle luciferase mutant construct developed in this study. We further established the possibility to simultaneously detect red- and green-emitting lactic acid bacteria by dual-wavelength bioluminescence imaging in combination with spectral unmixing. The difference in spectra of light emission by the red and green click beetle luciferase mutants and dual bioluminescence detection allowed in vitro and in vivo quantification of the red and green emitted signals; thus, it allowed us to monitor the dynamics and fate of the two bacterial populations simultaneously. Persistence and viability of both strains simultaneously administered to mice in different ratios was studied in vivo in anesthetized mice and ex vivo in mouse feces. The application of dual-luciferase-labeled bacteria has considerable potential to simultaneously study the interactions and potential competitions of different targeted bacteria and their hosts. PMID:26025906

  4. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    PubMed

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris.

    PubMed

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-05-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.

  6. High Yields of 2,3-Butanediol and Mannitol in Lactococcus lactis through Engineering of NAD+ Cofactor Recycling ▿ †

    PubMed Central

    Gaspar, Paula; Neves, Ana Rute; Gasson, Michael J.; Shearman, Claire A.; Santos, Helena

    2011-01-01

    Manipulation of NADH-dependent steps, and particularly disruption of the las-located lactate dehydrogenase (ldh) gene in Lactococcus lactis, is common to engineering strategies envisaging the accumulation of reduced end products other than lactate. Reverse transcription-PCR experiments revealed that three out of the four genes assigned to lactate dehydrogenase in the genome of L. lactis, i.e., the ldh, ldhB, and ldhX genes, were expressed in the parental strain MG1363. Given that genetic redundancy is often a major cause of metabolic instability in engineered strains, we set out to develop a genetically stable lactococcal host tuned for the production of reduced compounds. Therefore, the ldhB and ldhX genes were sequentially deleted in L. lactis FI10089, a strain with a deletion of the ldh gene. The single, double, and triple mutants, FI10089, FI10089ΔldhB, and FI10089ΔldhBΔldhX, showed similar growth profiles and displayed mixed-acid fermentation, ethanol being the main reduced end product. Hence, the alcohol dehydrogenase-encoding gene, the adhE gene, was inactivated in FI10089, but the resulting strain reverted to homolactic fermentation due to induction of the ldhB gene. The three lactate dehydrogenase-deficient mutants were selected as a background for the production of mannitol and 2,3-butanediol. Pathways for the biosynthesis of these compounds were overexpressed under the control of a nisin promoter, and the constructs were analyzed with respect to growth parameters and product yields under anaerobiosis. Glucose was efficiently channeled to mannitol (maximal yield, 42%) or to 2,3-butanediol (maximal yield, 67%). The theoretical yield for 2,3-butanediol was achieved. We show that FI10089ΔldhB is a valuable basis for engineering strategies aiming at the production of reduced compounds. PMID:21841021

  7. Stream-Field Interactions in the Magnetic Accretor AO Piscium

    NASA Astrophysics Data System (ADS)

    Hellier, Coel; van Zyl, Liza

    2005-06-01

    UV spectra of the magnetic accretor AO Psc show absorption features for half the binary orbit. The absorption is unlike the wind-formed features often seen in similar stars. Instead, we attribute it to a fraction of the stream that overflows the impact with the accretion disk. Rapid velocity variations can be explained by changes in the trajectory of the stream depending on the orientation of the white dwarf's magnetic field. Hence, we are directly observing the interaction of an accretion stream with a rotating field. We compare this behavior to that seen in other intermediate polars and in SW Sex stars.

  8. The outer atmosphere of the carbon star TX Piscium

    NASA Technical Reports Server (NTRS)

    Eriksson, K.; Gustafsson, B.; Johnson, H. R.; Querci, F.; Querci, M.

    1986-01-01

    A high-resolution LWP IUE spectrum of the bright N-type carbon star TX Psc demonstrates that the Mg II h and k emission profiles are strongly affected by absorption from Mg II, Mn I, probably Fe I, and possibly from molecules. The indication that the absorbing matter has a column density of not less than 10 to the 20th H atoms or molecules per sq cm is consistent with absorption in a slowly expanding envelope. The integrated Mg II line flux is found to be much greater than in 1981, and the radio CO (J = 1 - 0) line from the circumstellar shell is detected. Results for a column density of not larger than 10 to the 22nd H2 molecules/sq cm, and a radial velocity close to that of the star, are in agreement with those obtained from UV data. Some dust emission from carbon grains is suggested by the far infrared flux distribution, and a mass-loss rate estimation for the star of 10 to the -6th to 10 to the -8th solar masses is obtained.

  9. Evaluation of Lactococcus lactis Isolates from Nondairy Sources with Potential Dairy Applications Reveals Extensive Phenotype-Genotype Disparity and Implications for a Revised Species

    PubMed Central

    Cavanagh, Daniel; Casey, Aidan; Altermann, Eric; Cotter, Paul D.; Fitzgerald, Gerald F.

    2015-01-01

    Lactococcus lactis is predominantly associated with dairy fermentations, but evidence suggests that the domesticated organism originated from a plant niche. L. lactis possesses an unusual taxonomic structure whereby strain phenotypes and genotypes often do not correlate, which in turn has led to confusion in L. lactis classification. A bank of L. lactis strains was isolated from various nondairy niches (grass, vegetables, and bovine rumen) and was further characterized on the basis of key technological traits, including growth in milk and key enzyme activities. Phenotypic analysis revealed all strains from nondairy sources to possess an L. lactis subsp. lactis phenotype (lactis phenotype); however, seven of these strains possessed an L. lactis subsp. cremoris genotype (cremoris genotype), determined by two separate PCR assays. Multilocus sequence typing (MLST) showed that strains with lactis and cremoris genotypes clustered together regardless of habitat, but it highlighted the increased diversity that exists among “wild” strains. Calculation of average nucleotide identity (ANI) and tetranucleotide frequency correlation coefficients (TETRA), using the JSpecies software tool, revealed that L. lactis subsp. cremoris and L. lactis subsp. lactis differ in ANI values by ∼14%, below the threshold set for species circumscription. Further analysis of strain TIFN3 and strains from nonindustrial backgrounds revealed TETRA values of <0.99 in addition to ANI values of <95%, implicating that these two groups are separate species. These findings suggest the requirement for a revision of L. lactis taxonomy. PMID:25841018

  10. Nutrition economic evaluation of a probiotic in the prevention of antibiotic-associated diarrhea.

    PubMed

    Lenoir-Wijnkoop, Irene; Nuijten, Mark J C; Craig, Joyce; Butler, Christopher C

    2014-01-01

    Antibiotic-associated diarrhea (AAD) is common and frequently more severe in hospitalized elderly adults. It can lead to increased use of healthcare resources. We estimated the cost-effectiveness of a fermented milk (FM) with probiotic in preventing AAD and in particular Clostridium difficile-associated diarrhea (CDAD). Clinical effectiveness data and cost information were incorporated in a model to estimate the cost impact of administering a FM containing the probiotic Lactobacillus paracasei ssp paracasei CNCM I-1518 in a hospital setting. Preventing AAD by the consumption of the probiotic was compared to no preventive strategy. The probiotic intervention to prevent AAD generated estimated mean cost savings of £339 per hospitalized patient over the age of 65 years and treated with antibiotics, compared to no preventive probiotic. Estimated cost savings were sensitive to variation in the incidence of AAD, and to the proportion of patients who develop non-severe/severe AAD. However, probiotics remained cost saving in all sensitivity analyses. Use of the fermented dairy drink containing the probiotic L. paracasei CNCM I-1518 to prevent AAD in older hospitalized patients treated with antibiotics could lead to substantial cost savings.

  11. Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis.

    PubMed

    Kunji, E R; Hagting, A; De Vries, C J; Juillard, V; Haandrikman, A J; Poolman, B; Konings, W N

    1995-01-27

    In the proteolytic pathway of Lactococcus lactis, milk proteins (caseins) are hydrolyzed extracellularly to oligopeptides by the proteinase (PrtP). The fate of these peptides, i.e. extracellular hydrolysis followed by amino acid uptake or transport followed by intracellular hydrolysis, has been addressed. Mutants have been constructed that lack a functional di-tripeptide transport system (DtpT) and/or oligopeptide transport system (Opp) but do express the P1-type proteinase (specific for hydrolysis of beta- and to a lesser extent kappa-casein). The wild type strain and the DtpT- mutant accumulate all beta-casein-derived amino acids in the presence of beta-casein as protein substrate and glucose as a source of metabolic energy. The amino acids are not accumulated significantly inside the cells by the Opp- and DtpT- Opp- mutants. When cells are incubated with a mixture of amino acids mimicking the composition of beta-casein, the amino acids are taken up to the same extent in all four strains. Analysis of the extracellular peptide fraction, formed by the action of PrtP on beta-casein, indicates that distinct peptides disappear only when the cells express an active Opp system. These and other experiments indicate that (i) oligopeptide transport is essential for the accumulation of all beta-casein-derived amino acids, (ii) the activity of the Opp system is sufficiently high to support high growth rates on beta-casein provided leucine and histidine are present as free amino acids, and (iii) extracellular peptidase activity is not present in L. lactis.

  12. Heterologous Coproduction of Enterocin A and Pediocin PA-1 by Lactococcus lactis: Detection by Specific Peptide-Directed Antibodies

    PubMed Central

    Martínez, José M.; Kok, Jan; Sanders, Jan W.; Hernández, Pablo E.

    2000-01-01

    Antibodies against enterocin A were obtained by immunization of rabbits with synthetic peptides PH4 and PH5 designed, respectively, on the N- and C-terminal amino acid sequences of enterocin A and conjugated to the carrier protein KLH. Anti-PH4-KLH antibodies not only recognized enterocin A but also pediocin PA-1, enterocin P, and sakacin A, three bacteriocins which share the N-terminal class IIa consensus motif (YGNGVXC) that is contained in the sequence of the peptide PH4. In contrast, anti-PH5-KLH antibodies only reacted with enterocin A because the amino acid sequences of the C-terminal parts of class IIa bacteriocins are highly variable. Enterocin A and/or pediocin PA-1 structural and immunity genes were introduced in Lactococcus lactis IL1403 to achieve (co)production of the bacteriocins. The level of production of the two bacteriocins was significantly lower than that obtained by the wild-type producers, a fact that suggests a low efficiency of transport and/or maturation of these bacteriocins by the chromosomally encoded bacteriocin translocation machinery of IL1403. Despite the low production levels, both bacteriocins could be specifically detected and quantified with the anti-PH5-KLH (anti-enterocin A) antibodies isolated in this study and the anti-PH2-KLH (anti-pediocin PA-1) antibodies previously generated (J. M. Martínez, M. I. Martínez, A. M. Suárez, C. Herranz, P. Casaus, L. M. Cintas, J. M. Rodríguez, and P. E. Hernández, Appl. Environ. Microbiol. 64:4536–4545, 1998). In this work, the availability of antibodies for the specific detection and quantification of enterocin A and pediocin PA-1 was crucial to demonstrate coproduction of both bacteriocins by L. lactis IL1403(pJM04), because indicator strains that are selectively inhibited by each bacteriocin are not available. PMID:10919819

  13. Lactococcus lactis and Lactobacillus salivarius differently modulate early immunological response of Wistar rats co-administered with Listeria monocytogenes.

    PubMed

    Lukic, J; Jancic, I; Mirkovic, N; Bufan, B; Djokic, J; Milenkovic, M; Begovic, J; Strahinic, I; Lozo, J

    2017-10-13

    In the light of the increasing resistance of bacterial pathogens to antibiotics, one of the main global strategies in applied science is development of alternative treatments, which would be safe both for the host and from the environmental perspective. Accordingly, the aim of this study was to test whether two lactic acid bacteria (LAB) strains, Lactococcus lactis BGBU1-4 and Lactobacillus salivarius BGHO1, could be applied as safe supplements for Listeria infection. Two major research objectives were set: to compare the effects of BGBU1-4 and BGHO1 on early immune response in gut tissue of Wistar rats co-administered with Listeria monocytogenes ATCC19111 and next, to test how this applies to their usage as therapeutics in acute ATCC19111 infection. Intestinal villi (IV), Peyer's patches (PP) and mesenteric lymph nodes (MLN) were used for the analysis. The results showed that BGHO1 increased the mRNA expression of innate immune markers CD14, interleukin (IL)-1β and tumour necrosis factor (TNF)-α in PP and IV, and, in parallel, caused a decrease of listeriolysin O (LLO) mRNA expression in same tissues. In MLN of BGHO1 treated rats, LLO expression was increased, along with an increase of the expression of OX-62 mRNA and CD69, pointing to the activation of adaptive immunity. On the other hand, in BGBU1-4 treated rats, there was no reduction of LLO mRNA expression and no induction of innate immunity markers in intestinal tissue. Additionally, CD14 and IL-1β, as well as LLO, but not OX-62 mRNA and CD69 expression, were elevated in MLN of BGBU1-4 treated rats. However, when applied therapeutically, both, BGBU1-4 and BGHO1, lowered Listeria count in spleens of infected rats. Our results not only reveal the potential of LAB to ameliorate Listeria infections, but suggest different immunological effects of two different LAB strains, both of which could be effective in Listeria elimination.

  14. Trimming of two major type 1 diabetes driving antigens, GAD65 and IA-2, allows for successful expression in Lactococcus lactis.

    PubMed

    Robert, S; Van Huynegem, K; Gysemans, C; Mathieu, C; Rottiers, P; Steidler, L

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease characterised by excessive immune reactions against auto-antigens of pancreatic β-cells. Restoring auto-antigen tolerance remains the superior therapeutic strategy. Oral auto-antigen administration uses the tolerogenic nature of the gut-associated immune system to induce antigen-specific tolerance. However, due to gastric degradation, proper mucosal product delivery often imposes a challenge. Recombinant Lactococcus lactis have proven to be effective and safe carriers for gastrointestinal delivery of therapeutic products: L. lactis secreting diabetes-associated auto-antigens in combination with interleukin (IL)-10 have demonstrated therapeutic efficacy in a well-defined mouse model for T1D. Here, we describe the construction of recombinant L. lactis secreting the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and tyrosine phosphatase-like protein ICA512 (IA-2), two major T1D-related auto-antigens. Attempts to secrete full size human GAD65 and IA-2 protein by L. lactis were unsuccessful. Trimming of GAD65 and IA-2 was investigated to optimise antigen secretion while maintaining sufficient bacterial growth. GAD65370-575 and IA-2635-979 showed to be efficiently secreted by recombinant L. lactis. Antigen secretion was verified by immunoblotting. Plasmid-derived GAD65 and IA-2 expression was combined in single strains with human IL-10 expression, a desired combination to allow tolerance induction. This study reports the generation of recombinant L. lactis secreting two major diabetes-related auto-antigens: human GAD65 and IA-2, by themselves or combined with the anti-inflammatory cytokine human IL-10. Prohibitive sequence obstacles hampering antigen secretion were resolved by trimming the full size proteins.

  15. Influence of Cofermentation by Amylolytic Lactobacillus plantarum and Lactococcus lactis Strains on the Fermentation Process and Rheology of Sorghum Porridge

    PubMed Central

    Byaruhanga, Yusuf B.; Muyanja, Charles M. B. K.; Aijuka, Matthew; Schüller, Reidar B.; Sahlstrøm, Stefan; Langsrud, Thor; Narvhus, Judith A.

    2012-01-01

    Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to <4.5 within 12 h, while malt as a carrier of wild starter took about 20 h. Coculturing increased lactic acid yield by 46% and 76.8% compared to the yields of MNC 21 and MNC 24 monocultures, respectively. The coculture accumulated significantly larger (P < 0.05) amounts of maltose and diacetyl than the monocultures. Sorghum malt control and the coculture hydrolyzed more starch in sorghum porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G′), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials. PMID:22610432

  16. Influence of cofermentation by amylolytic Lactobacillus plantarum and Lactococcus lactis strains on the fermentation process and rheology of sorghum porridge.

    PubMed

    Mukisa, Ivan M; Byaruhanga, Yusuf B; Muyanja, Charles M B K; Aijuka, Matthew; Schüller, Reidar B; Sahlstrøm, Stefan; Langsrud, Thor; Narvhus, Judith A

    2012-08-01

    Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to <4.5 within 12 h, while malt as a carrier of wild starter took about 20 h. Coculturing increased lactic acid yield by 46% and 76.8% compared to the yields of MNC 21 and MNC 24 monocultures, respectively. The coculture accumulated significantly larger (P < 0.05) amounts of maltose and diacetyl than the monocultures. Sorghum malt control and the coculture hydrolyzed more starch in sorghum porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G'), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials.

  17. Cyclopropanation of Membrane Unsaturated Fatty Acids Is Not Essential to the Acid Stress Response of Lactococcus lactis subsp. cremoris ▿

    PubMed Central

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-01-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-l-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells. PMID:21421775

  18. A Zn-Dependent Metallopeptidase Is Responsible for Sensitivity to LsbB, a Class II Leaderless Bacteriocin of Lactococcus lactis subsp. lactis BGMN1-5

    PubMed Central

    Uzelac, Gordana; Lozo, Jelena; Aleksandrzak-Piekarczyk, Tamara; Gabrielsen, Christina; Kristensen, Tom; Nes, Ingolf F.; Diep, Dzung B.; Topisirovic, Ljubisa

    2013-01-01

    Lactococcus lactis subsp. lactis BGMN1-5 produces a leaderless class II bacteriocin called LsbB. To identify the receptor for LsbB, a cosmid library of the LsbB-sensitive strain BGMN1-596 was constructed. About 150 cosmid clones were individually isolated and transferred to LsbB-resistant mutants of BGMN1-596. Cosmid pAZILcos/MN2, carrying a 40-kb insert, was found to restore LsbB sensitivity in LsbB-resistant mutants. Further subcloning revealed that a 1.9-kb fragment, containing only one open reading frame, was sufficient to restore sensitivity. The fragment contains the gene yvjB coding for a Zn-dependent membrane-bound metallopeptidase, suggesting that this gene may serve as the receptor for LsbB. Further support for this notion derives from several independent experiments: (i) whole-genome sequencing confirmed that all LsbB-resistant mutants contain mutations in yvjB; (ii) disruption of yvjB by direct gene knockout rendered sensitive strains BGMN1-596 and IL1403 resistant to LsbB; and (iii) most compellingly, heterologous expression of yvjB in naturally resistant strains of other species, such as Lactobacillus paracasei and Enterococcus faecalis, also rendered them sensitive to the bacteriocin. To our knowledge, this is the first time a membrane-bound peptidase gene has been shown to be involved in bacteriocin sensitivity in target cells. We also demonstrated a novel successful approach for identifying bacteriocin receptors. PMID:24123824

  19. Multilocus sequence typing of Lactococcus lactis from naturally fermented milk foods in ethnic minority areas of China.

    PubMed

    Xu, Haiyan; Sun, Zhihong; Liu, Wenjun; Yu, Jie; Song, Yuqin; Lv, Qiang; Zhang, Jiachao; Shao, Yuyu; Menghe, Bilige; Zhang, Heping

    2014-05-01

    To determine the genetic diversity and phylogenetic relationships among Lactococcus lactis isolates, 197 strains isolated from naturally homemade yogurt in 9 ethnic minority areas of 6 provinces of China were subjected to multilocus sequence typing (MLST). The MLST analysis was performed using internal fragment sequences of 12 housekeeping genes (carB, clpX, dnaA, groEL, murC, murE, pepN, pepX, pyrG, recA, rpoB, and pheS). Six (dnaA) to 8 (murC) different alleles were detected for these genes, which ranged from 33.62 (clpX) to 41.95% (recA) GC (guanine-cytosine) content. The nucleotide diversity (π) ranged from 0.00362 (murE) to 0.08439 (carB). Despite this limited allelic diversity, the allele combinations of each strain revealed 72 different sequence types, which denoted significant genotypic diversity. The dN/dS ratios (where dS is the number of synonymous substitutions per synonymous site, and dN is the number of nonsynonymous substitutions per nonsynonymous site) were lower than 1, suggesting potential negative selection for these genes. The standardized index of association of the alleles IA(S)=0.3038 supported the clonality of Lc. lactis, but the presence of network structure revealed by the split decomposition analysis of the concatenated sequence was strong evidence for intraspecies recombination. Therefore, this suggests that recombination contributed to the evolution of Lc. lactis. A minimum spanning tree analysis of the 197 isolates identified 14 clonal complexes and 23 singletons. Phylogenetic trees were constructed based on the sequence types, using the minimum evolution algorithm, and on the concatenated sequence (6,192 bp), using the unweighted pair-group method with arithmetic mean, and these trees indicated that the evolution of our Lc. lactis population was correlated with geographic origin. Taken together, our results demonstrated that MLST could provide a better understanding of Lc. lactis genome evolution, as well as useful information for

  20. Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis.

    PubMed

    Frees, D; Varmanen, P; Ingmer, H

    2001-07-01

    Exposure of cells to elevated temperatures triggers the synthesis of chaperones and proteases including components of the conserved Clp protease complex. We demonstrated previously that the proteolytic subunit, ClpP, plays a major role in stress tolerance and in the degradation of non-native proteins in the Gram-positive bacterium Lactococcus lactis. Here, we used transposon mutagenesis to generate mutants in which the temperature- and puromycin-sensitive phenotype of a lactococcal clpP null mutant was partly alleviated. In all mutants obtained, the transposon was inserted in the L. lactis trmA gene. When analysing a clpP, trmA double mutant, we found that the expression normally induced from the clpP and dnaK promoters in the clpP mutant was reduced to wild-type level upon introduction of the trmA disruption. Additionally, the degradation of puromycyl-containing polypeptides was increased, suggesting that inactivation of trmA compensates for the absence of ClpP by stimulating an as yet unidentified protease that degrades misfolded proteins. When trmA was disrupted in wild-type cells, both stress tolerance and proteolysis of puromycyl peptides was enhanced above wild-type level. Based on our results, we propose that TrmA, which is well conserved in several Gram-positive bacteria, affects the degradation of non-native proteins and thereby controls stress tolerance.

  1. Experimental and numerical study of heterogeneous pressure-temperature-induced lethal and sublethal injury of Lactococcus lactis in a medium scale high-pressure autoclave.

    PubMed

    Kilimann, K V; Kitsubun, P; Delgado, A; Gänzle, M G; Chapleau, N; Le Bail, A; Hartmann, C

    2006-07-05

    The present contribution is dedicated to experimental and theoretical assessment of microbiological process heterogeneities of the high-pressure (HP) inactivation of Lactococcus lactis ssp. cremoris MG 1363. The inactivation kinetics are determined in dependence of pressure, process time, temperature and absence or presence of co-solutes in the buffer system namely 4 M sodium chloride and 1.5 M sucrose. The kinetic analysis is carried out in a 0.1-L autoclave in order to minimise thermal and convective effects. Upon these data, a deterministic inactivation model is formulated with the logistic equation. Its independent variables represent the counts of viable cells (viable but injured) and of the stress-resistant cells (viable and not injured). This model is then coupled to a thermo-fluiddynamical simulation method, high-pressure computer fluid dynamics technique (HP-CFD), which yields spatiotemporal temperature and flow fields occurring during the HP application inside any considered autoclave. Besides the thermo-fluiddynamic quantities, the coupled model predicts also the spatiotemporal distribution of both viable (VC) and stress-resistant cell counts (SRC). In order to assess the process non-uniformity of the microbial inactivation in a 3.3-L autoclave experimentally, microbial samples are placed at two distinct locations and are exposed to various process conditions. It can be shown with both, experimental and theoretical models that thermal heterogeneities induce process non-uniformities of more than one decimal power in the counts of the viable cells at the end of the treatment. (c) 2006 Wiley Periodicals, Inc.

  2. A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species.

    PubMed

    Dinsmore, P K; O'Sullivan, D J; Klaenhammer, T R

    1998-05-28

    The abiA gene encodes an abortive bacteriophage infection mechanism that can protect Lactococcus species from infection by a variety of bacteriophages including three unrelated phage species. Five heptad leucine repeats suggestive of a leucine zipper motif were identified between residues 232 and 266 in the predicted amino acid sequence of the AbiA protein. The biological role of residues in the repeats was investigated by incorporating amino acid substitutions via site-directed mutagenesis. Each mutant was tested for phage resistance against three phages, phi 31, sk1, and c2, belonging to species P335, 936, and c2, respectively. The five residues that comprise the heptad repeats were designated L234, L242, A249, L256, and L263. Three single conservative mutations of leucine to valine in positions L235, L242, and L263 and a double mutation of two leucines (L235 and L242) to valines did not affect AbiA activity on any phages tested. Non-conservative single substitutions of charged amino acids for three of the leucines (L235, L242, and L256) virtually eliminated AbiA activity on all phages tested. Substitution of the alanine residue in the third repeat (A249) with a charged residue did not affect AbiA activity. Replacement of L242 with an alanine elimination phage resistance against phi 31, but partial resistance to sk1 and c2 remained. Two single proline substitutions for leucines L242 and L263 virtually eliminated AbiA activity against all phages, indicating that the predicted alpha-helical structure of this region is important. Mutations in an adjacent region of basic amino acids had various effects on phage resistance, suggesting that these basic residues are also important for AbiA activity. This directed mutagenesis analysis of AbiA indicated that the leucine repeat structure is essential for conferring phage resistance against three species of lactococcal bacteriophages.

  3. Continuous production of lactic acid from molasses by perfusion culture of Lactococcus lactis using a stirred ceramic membrane reactor.

    PubMed

    Ohashi, R; Yamamoto, T; Suzuki, T

    1999-01-01

    A perfusion culture system was used for continuous production of lactic acid by retaining cells at a high density of Lactococcus lactis in a stirred ceramic membrane reactor (SCMR). After the cell concentration increased to 248 g/l, half of the culture broth volume was replaced with the fermentation medium. Subsequently, a substrate solution containing glucose (run 1) or molasses (run 2) was continuously supplied to the cells retained in the SCMR. Simultaneously, the culture supernatant was extracted using a ceramic filter with a pore size of 0.2 mum. The dilution rate was initially set at 0.4 h(-1) and gradually decreased to 0.2 h(-1) due to reduction in the permeability of the filter. The concentration of glucose in the substrate solution was adjusted to 60 g/l for the transition and the first period until 240 h, 90 g/l for the second period from 240 h to 440 h, and 70 g/l for the third period from 440 h to 643 h. The average concentration of lactic acid in the filtrate reached 46 g/l in the first period, 43 g/l in the second period, and 33 g/l for the third period. The productivity obtained for the first period reached 15.8 g.l(-1).h(-1), twice as much as that achieved in repeated batch fermentations. Based on the results obtained in run 1, the substrate solution containing 120 g/l of molasses was continuously supplied for 240 h in run 2. The concentration and productivity of lactic acid reached 40 g/l and 10.6 g.l(-1).h(-1), respectively, by continuously replenishing the culture medium at a dilution rate of 0.26 h(-1). These results demonstrated that the filtration capacity of the SCMR was sufficient for a continuous and rapid replenishment of molasses solution from the dense cell culture and, therefore, the perfusion culture system is considered to provide a low-cost process for continuous production of lactic acid from cheap resources.

  4. Promoting acid resistance and nisin yield of Lactococcus lactis F44 by genetically increasing D-Asp amidation level inside cell wall.

    PubMed

    Hao, Panlong; Liang, Dongmei; Cao, Lijie; Qiao, Bin; Wu, Hao; Caiyin, Qinggele; Zhu, Hongji; Qiao, Jianjun

    2017-08-01

    Nisin fermentation by Lactococcus lactis requires a low pH to maintain a relatively higher nisin activity. However, the acidic environment will result in cell arrest, and eventually decrease the relative nisin production. Hence, constructing an acid-resistant L. lactis is crucial for nisin harvest in acidic nisin fermentation. In this paper, the first discovery of the relationship between D-Asp amidation-associated gene (asnH) and acid resistance was reported. Overexpression of asnH in L. lactis F44 (F44A) resulted in a sevenfold increase in survival capacity during acid shift (pH 3) and enhanced nisin desorption capacity compared to F44 (wild type), which subsequently contributed to higher nisin production, reaching 5346 IU/mL, 57.0% more than that of F44 in the fed-batch fermentation. Furthermore, the engineered F44A showed a moderate increase in D-Asp amidation level (from 82 to 92%) compared to F44. The concomitant decrease of the negative charge inside the cell wall was detected by a newly developed method based on the nisin adsorption amount onto cell surface. Meanwhile, peptidoglycan cross-linkage increased from 36.8% (F44) to 41.9% (F44A), and intracellular pH can be better maintained by blocking extracellular H + due to the maintenance of peptidoglycan integrity, which probably resulted from the action of inhibiting hydrolases activity. The inference was further supported by the acmC-overexpression strain F44C, which was characterized by uncontrolled peptidoglycan hydrolase activity. Our results provided a novel strategy for enhancing nisin yield through cell wall remodeling, which contributed to both continuous nisin synthesis and less nisin adsorption in acidic fermentation (dual enhancement).

  5. Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota

    PubMed Central

    Cordonnier, Charlotte; Thévenot, Jonathan; Etienne-Mesmin, Lucie; Denis, Sylvain; Alric, Monique; Livrelli, Valérie; Blanquet-Diot, Stéphanie

    2015-01-01

    The beneficial effects of probiotics are conditioned by their survival during passage through the human gastrointestinal tract and their ability to favorably influence gut microbiota. The main objective of this study was to use dynamic in vitro models of the human digestive tract to investigate the effect of fasted or fed state on the survival kinetics of the new probiotic Saccharomyces cerevisiae strain CNCM I-3856 and to assess its influence on intestinal microbiota composition and activity. The probiotic yeast showed a high survival rate in the upper gastrointestinal tract whatever the route of admistration, i.e., within a glass of water or a Western-type meal. S. cerevisiae CNCM I-3856 was more sensitive to colonic conditions, as the strain was not able to colonize within the bioreactor despite a twice daily administration. The main bacterial populations of the gut microbiota, as well as the production of short chain fatty acids were not influenced by the probiotic treatment. However, the effect of the probiotic on the gut microbiota was found to be individual dependent. This study shows that dynamic in vitro models can be advantageously used to provide useful insight into the behavior of probiotic strains in the human digestive environment. PMID:27682114

  6. Characterisation of the spoilage bacterial microbiota in oyster gills during storage at different temperatures.

    PubMed

    Chen, Huibin; Liu, Zhiyu; Wang, Meiying; Chen, Shaojun; Chen, Tuanwei

    2013-12-01

    The spoilage bacterial community in oyster gill was investigated during storage at 4, 10 and 20 °C. Aerobic plate counts and pH values were determined. Total bacterial DNA was extracted from oyster gill and bulk cells of plate count media. The major bacterial species during fresh or different temperatures storage were determined by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The initial aerobic plate count in oyster gill reached 6.70 log CFU g(-1). PCR-DGGE fingerprinting analysis of the 16S rRNA gene V3 region revealed that most of the strains in fresh oyster gill belonged to the genera Lactococcus and Enterobacter. The major spoilage bacteria at a storage temperature of 20 °C were Leuconostoc pseudomesenteroides, an uncultured bacterium, Cytophaga fermentans, Lactococcus lactis, Pseudoalteromonas sp., Enterococcus mundtii, Clostridium difficile and an uncultured Fusobacteria; those at 10 °C were Lactococcus spp., Lactobacillus curvatus, Weissella confusa and C. difficile; those at 4 °C were Lactococcus, Weissella, Enterobacter and Aeromonas. The other minor species were L. curvatus, Pseudomonas sp. and E. mundtii. Lactococcus spp. was the most common main spoilage bacteria in oyster gill during chilled storage. PCR-DGGE revealed the complexity of the bacterial microbiota and the major bacteria species in oyster gill for fresh and storage. © 2013 Society of Chemical Industry.

  7. Subtilisin QK-2: secretory expression in Lactococcus lactis and surface display onto gram-positive enhancer matrix (GEM) particles.

    PubMed

    Mao, Ruifeng; Zhou, Kangping; Han, Zhenwei; Wang, Yefu

    2016-05-12

    Purified from the supernatant of Bacillus subtilis QK02 culture broth, Subtilisin QK-2 is a type of effective thrombolytic reagent that has great exploitable potential. However, the unbearable flavor that occurs with fermentation and the complicated methods that are required to obtain pure products limit the application of this enzyme. Lactic acid bacteria (LAB)-based delivery vehicles are promising as cheap and safe options for medicinal compounds. The secretory expression and surface display using LAB may popularize Subtilisin QK-2 more easily and conveniently with minimal adverse effects. Subtilisin QK-2 was expressed successfully in two forms using lactic acid bacteria. For the secretory expression in Lactococcus lactis, Subtilisin QK-2 was efficiently secreted into the culture using the promoter P nisA and signal peptide SPUsp. The expression levels were not different in L. lactis NZ9000 and NZ3900 without the effect of different selection markers. However, leaky expression was only detected in L. lactis NZ3900. The biological activity of this secreted Subtilisin QK-2 was enhanced by modulating the pH of medium to slightly alkaline during induction and by codon optimization of either the entire gene sequence (qk') or only the propeptide gene sequence (qkpro'). For surface display onto gram-positive enhancer matrix (GEM) particles, n LysM repeats from the C-terminal region of the major autolysin AcmA of L. lactis were fused to either the C-terminus (n = 1, 3, 5) or the N-terminus (n = 1) of the Subtilisin QK-2. These fusion proteins were secreted into the culture medium, and the QK-3LysM was able to bind to the surface of various LAB GEM particles without a loss of fibrinolytic activity. Furthermore, the binding capacity significantly increased with a higher concentration of QK-3LysM. Compared to the free-form Subtilisin QK-2, the QK-3LysM displayed on the surface of GEM particles was more stable in the simulated gastric juice. Combined with the safety and

  8. Variability of ultraviolet emission in the carbon star TX Piscium

    NASA Technical Reports Server (NTRS)

    Johnson, Hollis R.; Baumert, John H.; Querci, Francois; Querci, Monique

    1986-01-01

    Multiple low-resolution IUE observations of the cool carbon star TX Psc (N0; C6, 2) permit an analysis of the variations in strength of the strongest emission lines - the Mg II line at 2800 A, the C II line at 2330 A, and certain Fe II lines. The integrated flux of the Mg II line varied by at least a factor of eight, while that of the C II line varies by at least a factor of five. The variations in Fe II may be considerably larger. The lines appear to vary together. The continuous flux in the best observed range from 2800 to 3200 A does not vary noticeably.

  9. The first Doppler images of the eclipsing binary SZ Piscium

    NASA Astrophysics Data System (ADS)

    Xiang, Yue; Gu, Shenghong; Cameron, A. Collier; Barnes, J. R.; Zhang, Liyun

    2016-02-01

    We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September-December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about 0.9 M⊙ and 1283 ± 10 d, respectively. After removing the contribution of the third body from the least-squares deconvolved profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant star-spot activities on the surface of the K subgiant component. The distributions of star-spots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.

  10. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut.

    PubMed

    Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R; Scott, June R; Amara, Rama Rao

    2015-11-15

    The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV. Copyright © 2015 by The American Association of Immunologists, Inc.

  11. Production and purification of staphylococcal nuclease in Lactococcus lactis using a new expression-secretion system and a pH-regulated mini-reactor

    PubMed Central

    2010-01-01

    Background Staphylococcal (or micrococcal) nuclease or thermonuclease (SNase or Nuc) is a naturally-secreted nucleic acid degrading enzyme that participates in Staphylococcus aureus spread in the infected host. Purified Nuc protein can be used as an exogenous reagent to clear cellular extracts and improve protein purification. Here, a recombinant form of Nuc was produced and secreted in a Gram-positive host, Lactococcus lactis, and purified from the culture medium. Results The gene segment corresponding to the S. aureus nuclease without its signal peptide was cloned in an expression-secretion vector. It was then fused to a lactococcal sequence encoding a signal peptide, and expressed under the control of a lactococcal promoter that is inducible by zinc starvation. An L. lactis subsp cremoris model strain (MG1363) transformed with the resulting plasmid was grown in either of two media (GM17v and CDM) that are free of animal compounds, allowing GMP (Good Manufacturing Practice) production. Induction conditions (concentration of the metal chelator EDTA and timing of addition) in small-scale pH-regulated fermentors were optimized using LacMF (Lactis Multi-Fermentor), a home-made parallel fermentation control system able to monitor 12 reactors simultaneously. Large amounts of recombinant Nuc (rNuc) were produced and secreted in both media, and rNuc was purified from GM17v medium in a single-step procedure. Conclusions In L. lactis, rNuc production and secretion were optimal after induction by 0.5 mM EDTA in small scale (200 mL) GM17v exponential phase cultures (at an OD600 of 2), leading to a maximal protein yield of 210 mg per L of culture medium. Purified rNuc was highly active, displaying a specific activity of 2000 U/mg. PMID:20492646

  12. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    PubMed

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points.

  13. Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis.

    PubMed

    Borrero, Juan; Jiménez, Juan J; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2011-01-01

    Replacement of the signal peptide (SP) of the bacteriocins enterocin P (EntP) and hiracin JM79 (HirJM79), produced by Enterococcus faecium P13 and Enterococcus hirae DCH5, respectively, by the signal peptide of Usp45 (SP(usp45)), the major Sec-dependent protein secreted by Lactococcus lactis, permits the production, secretion, and functional expression of EntP and HirJM79 by L. lactis. Chimeric genes encoding the SP(usp45) fused to either mature EntP (entP), with or without the immunity gene (entiP) or to mature HirJM79 (hirJM79), with or without the immunity gene (hiriJM79), were cloned into the expression vector pMG36c, carrying the P(32) constitutive promoter, and into pNZ8048 under control of the inducible PnisA promoter. The production of EntP and HirJM79 by most of the L. lactis recombinant strains was 1.5- to 3.7-fold higher and up to 3.6-fold higher than by the E. faecium P13 and E. hirae DCH5 control strains, respectively. However, the specific antimicrobial activity of the recombinant EntP was 1.1- to 6.2-fold higher than that produced by E. faecium P13, while that of the HirJM79 was a 40% to an 89% of that produced by E. hirae DCH5. Chimeras of SP(usp45) fused to mature EntP or HirJM79 drive the production and secretion of these bacteriocins in L. lactis in the absence of specific immunity and secretion proteins. The supernatants of the recombinant L. lactis NZ9000 strains, producers of EntP, showed a much higher antimicrobial activity against Listeria spp. than that of the recombinant L. lactis NZ9000 derivatives, producers of HirJM79.

  14. Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese.

    PubMed

    Torres-Llanez, M J; González-Córdova, A F; Hernandez-Mendoza, A; Garcia, H S; Vallejo-Cordoba, B

    2011-08-01

    The objective of this study was to evaluate if Mexican Fresco cheese manufactured with specific lactic acid bacteria (LAB) presented angiotensin I-converting enzyme inhibitory (ACEI) activity. Water-soluble extracts (3 kDa) obtained from Mexican Fresco cheese prepared with specific LAB (Lactococcus, Lactobacillus, Enterococcus, and mixtures: Lactococcus-Lactobacillus and Lactococcus-Enterococcus) were evaluated for ACEI activity. Specific peptide fractions with high ACEI were analyzed using reverse phase-HPLC coupled to mass spectrometry for determination of amino acid sequence. Cheese containing Enterococcus faecium or a Lactococcus lactis ssp. lactis-Enterococcus faecium mixture showed the largest number of fractions with ACEI activity and the lowest half-maximal inhibitory concentration (IC(50); <10 μg/mL). Various ACEI peptides derived from β-casein [(f(193-205), f(193-207), and f(193-209)] and α(S1)-casein [f(1-15), f(1-22), f(14-23), and f(24-34)] were found. The Mexican Fresco cheese manufactured with specific LAB strains produced peptides with potential antihypertensive activity. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects.

    PubMed

    Stein, Karina; Brand, Stephanie; Jenckel, André; Sigmund, Anna; Chen, Zhijian James; Kirschning, Carsten J; Kauth, Marion; Heine, Holger

    2017-02-01

    Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4 + T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. L lactis G121-treated murine BMDCs and human moDCs released T H 1-polarizing cytokines and induced T H 1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of T H 1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13 -/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The T H 1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8. Copyright © 2016 American Academy of Allergy, Asthma & Immunology

  16. Previous Ingestion of Lactococcus lactis by Ethanol-Treated Mice Preserves Antigen Presentation Hierarchy in the Gut and Oral Tolerance Susceptibility.

    PubMed

    Alvarenga, Débora M; Perez, Denise A; Gomes-Santos, Ana C; Miyoshi, Anderson; Azevedo, Vasco; Coelho-Dos-Reis, Jordana G A; Martins-Filho, Olindo A; Faria, Ana Maria C; Cara, Denise C; Andrade, Marileia C

    2015-08-01

    Ethanol (EtOH) consumption is able to disturb the ovalbumin (OVA)-oral tolerance induction by interfering on the function of antigen presenting cells (APC), down-regulating dendritic cells (DCs) and macrophages and up-regulating B-lymphocytes and their function, which results in an overall allergic-type immune status. In this study, the potential of a priori administration of Lactococcus lactis (LL) in avoiding loss of oral tolerance in EtOH-treated mice was investigated. Female C57BL/6 mice received, by oral route, ad libitum wild-type (WT) LL or heat-shock protein producer (Hsp65) LL for 4 consecutive days. Seven days later, mice were submitted to short-term high-dose EtOH treatment. After 24 hours, stomach, intestine, spleen, mesenteric lymph nodes (mLN) specimens were collected for biomarkers analysis. Following EtOH-treatment protocol, a group of animals underwent single-gavage OVA-tolerance protocol and sera samples collected for antibody analysis. The ingestion of WT LL or Hsp65 LL is able to restore oral tolerance to OVA in EtOH-treated mice, by reducing local and systemic allergic outcomes such as gastric mast cells and gut-interleukin-4, as well as serum IgE. WT LL treatment prevents the decrease of mLN regulatory T cells induced by the EtOH treatment. Moreover, LL treatment preserves APC hierarchy and antigen presentation commitment in EtOH-treated mice, with conserved DC and macrophage activity over B lymphocytes in mLN and preserved macrophage activity over DC and B-cell subsets in the spleen. The present findings suggest that a priori ingestion of LL preserves essential mechanisms associated with oral tolerance induction that are disturbed by EtOH ingestion. Maintenance of mucosal homeostasis by preserving APC hierarchy and antigen presentation commitment could be associated with T-regulatory subset activities in the gastrointestinal tract. Copyright © 2015 by the Research Society on Alcoholism.

  17. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity

    PubMed Central

    Fougy, Lysiane; Desmonts, Marie-Hélène; Coeuret, Gwendoline; Fassel, Christine; Hamon, Erwann; Hézard, Bernard; Champomier-Vergès, Marie-Christine

    2016-01-01

    ABSTRACT Raw sausages are perishable foodstuffs; reducing their salt content raises questions about a possible increased spoilage of these products. In this study, we evaluated the influence of salt reduction (from 2.0% to 1.5% [wt/wt]), in combination with two types of packaging (modified atmosphere [50% mix of CO2-N2] and vacuum packaging), on the onset of spoilage and on the diversity of spoilage-associated bacteria. After 21 days of storage at 8°C, spoilage was easily observed, characterized by noticeable graying of the products and the production of gas and off-odors defined as rancid, sulfurous, or sour. At least one of these types of spoilage occurred in each sample, and the global spoilage intensity was more pronounced in samples stored under modified atmosphere than under vacuum packaging and in samples with the lower salt content. Metagenetic 16S rRNA pyrosequencing revealed that vacuum-packaged samples contained a higher total bacterial richness (n = 69 operational taxonomic units [OTUs]) than samples under the other packaging condition (n = 46 OTUs). The core community was composed of 6 OTUs (Lactobacillus sakei, Lactococcus piscium, Carnobacterium divergens, Carnobacterium maltaromaticum, Serratia proteamaculans, and Brochothrix thermosphacta), whereas 13 OTUs taxonomically assigned to the Enterobacteriaceae, Enterococcaceae, and Leuconostocaceae families comprised a less-abundant subpopulation. This subdominant community was significantly more abundant when 2.0% salt and vacuum packaging were used, and this correlated with a lower degree of spoilage. Our results demonstrate that salt reduction, particularly when it is combined with CO2-enriched packaging, promotes faster spoilage of raw sausages by lowering the overall bacterial diversity (both richness and evenness). IMPORTANCE Our study takes place in the context of raw meat product manufacturing and is linked to a requirement for salt reduction. Health guidelines are calling for a reduction in

  18. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity.

    PubMed

    Fougy, Lysiane; Desmonts, Marie-Hélène; Coeuret, Gwendoline; Fassel, Christine; Hamon, Erwann; Hézard, Bernard; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane

    2016-07-01

    Raw sausages are perishable foodstuffs; reducing their salt content raises questions about a possible increased spoilage of these products. In this study, we evaluated the influence of salt reduction (from 2.0% to 1.5% [wt/wt]), in combination with two types of packaging (modified atmosphere [50% mix of CO2-N2] and vacuum packaging), on the onset of spoilage and on the diversity of spoilage-associated bacteria. After 21 days of storage at 8°C, spoilage was easily observed, characterized by noticeable graying of the products and the production of gas and off-odors defined as rancid, sulfurous, or sour. At least one of these types of spoilage occurred in each sample, and the global spoilage intensity was more pronounced in samples stored under modified atmosphere than under vacuum packaging and in samples with the lower salt content. Metagenetic 16S rRNA pyrosequencing revealed that vacuum-packaged samples contained a higher total bacterial richness (n = 69 operational taxonomic units [OTUs]) than samples under the other packaging condition (n = 46 OTUs). The core community was composed of 6 OTUs (Lactobacillus sakei, Lactococcus piscium, Carnobacterium divergens, Carnobacterium maltaromaticum, Serratia proteamaculans, and Brochothrix thermosphacta), whereas 13 OTUs taxonomically assigned to the Enterobacteriaceae, Enterococcaceae, and Leuconostocaceae families comprised a less-abundant subpopulation. This subdominant community was significantly more abundant when 2.0% salt and vacuum packaging were used, and this correlated with a lower degree of spoilage. Our results demonstrate that salt reduction, particularly when it is combined with CO2-enriched packaging, promotes faster spoilage of raw sausages by lowering the overall bacterial diversity (both richness and evenness). Our study takes place in the context of raw meat product manufacturing and is linked to a requirement for salt reduction. Health guidelines are calling for a reduction in dietary salt intake

  19. Protective immunity induced by an intranasal multivalent vaccine comprising 10 Lactococcus lactis strains expressing highly prevalent M-protein antigens derived from Group A Streptococcus.

    PubMed

    Wozniak, Aniela; Scioscia, Natalia; García, Patricia C; Dale, James B; Paillavil, Braulio A; Legarraga, Paulette; Salazar-Echegarai, Francisco J; Bueno, Susan M; Kalergis, Alexis M

    2018-04-28

    Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of Streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable and there are more than 200 different M types. We are developing an intranasal live bacterial vaccine comprised of 10 strains of Lactococcus lactis, each expressing one N-terminal fagment of M protein. Live bacterial-vectored vaccines have lower associated costs because of its less complex manufacturing processes compared to protein subunit vaccines. Moreover, intranasal administration does not require syringe or specilized personnel. The evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All of the 10 strains combined in a 10-valent vaccine (Mx10) induced serum and bronchoalveolar lavages IgG titers that ranged from 3 to 10-fold those of unimmunized mice. Survival of Mx10-immunized mice after intranasal challenge with M28 streptococci is significantly higher than unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of Mx10-immunized mice was not significantly different from unimmunized mice. Mx-10 immunized mice were significantly less colonized with S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge compared to unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to the development of broadly protective group A streptococcal vaccines. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  20. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617

  1. Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis.

    PubMed

    Wieczorek, Andrew S; Martin, Vincent J J

    2012-12-15

    The microbial synthesis of fuels, commodity chemicals, and bioactive compounds necessitates the assemblage of multiple enzyme activities to carry out sequential chemical reactions, often via substrate channeling by means of multi-domain or multi-enzyme complexes. Engineering the controlled incorporation of enzymes in recombinant protein complexes is therefore of interest. The cellulosome of Clostridium thermocellum is an extracellular enzyme complex that efficiently hydrolyzes crystalline cellulose. Enzymes interact with protein scaffolds via type 1 dockerin/cohesin interactions, while scaffolds in turn bind surface anchor proteins by means of type 2 dockerin/cohesin interactions, which demonstrate a different binding specificity than their type 1 counterparts. Recombinant chimeric scaffold proteins containing cohesins of different specificity allow binding of multiple enzymes to specific sites within an engineered complex. We report the successful display of engineered chimeric scaffold proteins containing both type 1 and type 2 cohesins on the surface of Lactococcus lactis cells. The chimeric scaffold proteins were able to form complexes with the Escherichia coli β-glucuronidase fused to either type 1 or type 2 dockerin, and differences in binding efficiencies were correlated with scaffold architecture. We used E. coli β-galactosidase, also fused to type 1 or type 2 dockerins, to demonstrate the targeted incorporation of two enzymes into the complexes. The simultaneous binding of enzyme pairs each containing a different dockerin resulted in bi-enzymatic complexes tethered to the cell surface. The sequential binding of the two enzymes yielded insights into parameters affecting assembly of the complex such as protein size and position within the scaffold. The spatial organization of enzymes into complexes is an important strategy for increasing the efficiency of biochemical pathways. In this study, chimeric protein scaffolds consisting of type 1 and type 2

  2. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    PubMed

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  3. Recombinant Invasive Lactococcus lactis Carrying a DNA Vaccine Coding the Ag85A Antigen Increases INF-γ, IL-6, and TNF-α Cytokines after Intranasal Immunization.

    PubMed

    Mancha-Agresti, Pamela; de Castro, Camila Prosperi; Dos Santos, Janete S C; Araujo, Maíra A; Pereira, Vanessa B; LeBlanc, Jean G; Leclercq, Sophie Y; Azevedo, Vasco

    2017-01-01

    Tuberculosis (TB) remains a major threat throughout the world and in 2015 it caused the death of 1.4 million people. The Bacillus Calmette-Guérin is the only existing vaccine against this ancient disease; however, it does not provide complete protection in adults. New vaccines against TB are eminently a global priority. The use of bacteria as vehicles for delivery of vaccine plasmids is a promising vaccination strategy. In this study, we evaluated the use of, an engineered invasive Lactococcus lactis (expressing Fibronectin-Binding Protein A from Staphylococcus aureus ) for the delivery of DNA plasmid to host cells, especially to the mucosal site as a new DNA vaccine against tuberculosis. One of the major antigens documented that offers protective responses against Mycobacterium tuberculosis is the Ag85A. L. lactis FnBPA + (pValac: Ag85A) which was obtained and used for intranasal immunization of C57BL/6 mice and the immune response profile was evaluated. In this study we observed that this strain was able to produce significant increases in the amount of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6) in the stimulated spleen cell supernatants, showing a systemic T helper 1 (Th1) cell response. Antibody production (IgG and sIgA anti-Ag85A) was also significantly increased in bronchoalveolar lavage, as well as in the serum of mice. In summary, these findings open new perspectives in the area of mucosal DNA vaccine, against specific pathogens using a Lactic Acid Bacteria such as L. lactis.

  4. Projected Impact of Climate Change on Hydrological Regimes in the Philippines

    PubMed Central

    Kanamaru, Hideki; Keesstra, Saskia; Maroulis, Jerry; David, Carlos Primo C.; Ritsema, Coen J.

    2016-01-01

    The Philippines is one of the most vulnerable countries in the world to the potential impacts of climate change. To fully understand these potential impacts, especially on future hydrological regimes and water resources (2010-2050), 24 river basins located in the major agricultural provinces throughout the Philippines were assessed. Calibrated using existing historical interpolated climate data, the STREAM model was used to assess future river flows derived from three global climate models (BCM2, CNCM3 and MPEH5) under two plausible scenarios (A1B and A2) and then compared with baseline scenarios (20th century). Results predict a general increase in water availability for most parts of the country. For the A1B scenario, CNCM3 and MPEH5 models predict an overall increase in river flows and river flow variability for most basins, with higher flow magnitudes and flow variability, while an increase in peak flow return periods is predicted for the middle and southern parts of the country during the wet season. However, in the north, the prognosis is for an increase in peak flow return periods for both wet and dry seasons. These findings suggest a general increase in water availability for agriculture, however, there is also the increased threat of flooding and enhanced soil erosion throughout the country. PMID:27749908

  5. Bacteria and chocolate: a successful combination for probiotic delivery.

    PubMed

    Possemiers, S; Marzorati, M; Verstraete, W; Van de Wiele, T

    2010-06-30

    In this work, chocolate has been evaluated as a potential protective carrier for oral delivery of a microencapsulated mixture of Lactobacillus helveticus CNCM I-1722 and Bifidobacterium longum CNCM I-3470. A sequential in vitro setup was used to evaluate the protection of the probiotics during passage through the stomach and small intestine, when embedded in dark and milk chocolate or liquid milk. Both chocolates offered superior protection (91% and 80% survival in milk chocolate for L. helveticus and B. longum, respectively compared to 20% and 31% found in milk). To simulate long-term administration, the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) was used. Plate counts, Denaturing Gradient Gel Electrophoresis and quantitative PCR showed that the two probiotics successfully reached the simulated colon compartments. This led to an increase in lactobacilli and bifidobacteria counts and the appearance of additional species in the fingerprints. These data indicate that the coating of the probiotics in chocolate is an excellent solution to protect them from environmental stress conditions and for optimal delivery. The simulation with our gastrointestinal model showed that the formulation of a probiotic strain in a specific food matrix could offer superior protection for the delivery of the bacterium into the colon. The chocolate example could act as a trigger for new research to identify new balanced matrices. 2010 Elsevier B.V. All rights reserved.

  6. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major.

    PubMed

    Dawood, Mahmoud A O; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; El Basuini, Mohammed F; Hossain, Md Sakhawat; Nhu, Truong H; Dossou, Serge; Moss, Amina S

    2016-02-01

    Pagrus major fingerlings (3·29 ± 0·02 g) were fed with basal diet (control) supplemented with Lactobacillus rhamnosus (LR), Lactococcus lactis (LL), and L. rhamnosus + L. lactis (LR + LL) at 10(6) cell g(-1) feed for 56 days. Feeding a mixture of LR and LL significantly increased feed utilization (FER and PER), intestine lactic acid bacteria (LAB) count, plasma total protein, alternative complement pathway (ACP), peroxidase, and mucus secretion compared with the other groups (P < 0.05). Serum lysozyme activity (LZY) significantly increased in LR + LL when compared with the control group. Additionally, fish fed the LR + LL diet showed a higher growth performance (Fn wt, WG, and SGR) and protein digestibility than the groups fed an individual LR or the control diet. Superoxide dismutase (SOD) significantly increased in LR and LR + LL groups when compared with the other groups. Moreover, the fish fed LR or LL had better improvement (P < 0.05) in growth, feed utilization, body protein and lipid contents, digestibility coefficients (dry matter, protein, and lipid), protease activity, total intestine and LAB counts, hematocrit, total plasma protein, biological antioxidant potential, ACP, serum and mucus LZY and bactericidal activities, peroxidase, SOD, and mucus secretion than the control group. Interestingly, fish fed diets with LR + LL showed significantly lower total cholesterol and triglycerides when compared with the other groups (P < 0.05). These data strongly suggest that a mixture of LR and LL probiotics may serve as a healthy immunostimulating feed additive in red sea bream aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    PubMed Central

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity. PMID:29584690

  8. Novel conjugative plasmids from the natural isolate Lactococcus lactis subspecies cremoris DPC3758: a repository of genes for the potential improvement of dairy starters.

    PubMed

    Fallico, V; Ross, R P; Fitzgerald, G F; McAuliffe, O

    2012-07-01

    A collection of 17 natural lactococcal isolates from raw milk cheeses were studied in terms of their plasmid distribution, content, and diversity. All strains in the collection harbored an abundance of plasmids, including Lactococcus lactis ssp. cremoris DPC3758, whose 8-plasmid complement was selected for sequencing. The complete sequences of pAF22 (22,388 kb), pAF14 (14,419 kb), pAF12 (12,067 kb), pAF07 (7,435 kb), and pAF04 (3,801 kb) were obtained, whereas gene functions of technological interest were mapped to pAF65 (65 kb) and pAF45 (45 kb) by PCR. The plasmids of L. lactis DPC3758 were found to encode many genes with the potential to improve the technological properties of dairy starters. These included 3 anti-phage restriction/modification (R/M) systems (1 of type I and 2 of type II) and genes for immunity/resistance to nisin, lacticin 481, cadmium, and copper. Regions encoding conjugative/mobilization functions were present in 6 of the 8 plasmids, including those containing the R/M systems, thus enabling the food-grade transfer of these mechanisms to industrial strains. Using cadmium selection, the sequential stacking of the R/M plasmids into a plasmid-free host provided the recipient with increased protection against 936- and c2-type phages. The association of food-grade selectable markers and mobilization functions on L. lactis DPC3758 plasmids will facilitate their exploitation to obtain industrial strains with enhanced phage protection and robustness. These natural plasmids also provide another example of the major role of plasmids in contributing to host fitness and preservation within its ecological niche. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals.

    PubMed

    Savijoki, K; Kahala, M; Palva, A

    1997-02-28

    A secretion cassette, based on the expression and secretion signals of a S-layer protein (SlpA) from Lactobacillus brevis, was constructed. E. coli beta-lactamase (Bla) was used as the reporter protein to determine the functionality of the S-layer signals for heterologous expression and secretion in Lactococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus gasseri and Lactobacillus casei using a low-copy-number plasmid derived from pGK12. In all hosts tested, the bla gene was expressed under the slpA signals and all Bla activity was secreted to the culture medium. The Lb. brevis S-layer promoters were very efficiently recognized in L. lactis, Lb. brevis and Lb. plantarum, whereas in Lb. gasseri the slpA promoter region appeared to be recognized at a lower level and in Lb. casei the level of transcripts was below the detection limit. The production of Bla was mainly restricted to the exponential phase of growth. The highest yield of Bla was obtained with L. lactis and Lb. brevis. Without pH control, substantial degradation of Bla occurred during prolonged cultivations with all lactic acid bacteria (LAB) tested. When growing L. lactis and Lb. brevis under pH control, the Bla activity could be stabilized also at the stationary phase. L. lactis produced up to 80 mg/l of Bla which to our knowledge represents the highest amount of a heterologous protein secreted by LAB so far. The short production phase implied a very high rate of secretion with a calculated value of 5 x 10(5) Bla molecules/cell per h. Such a high rate was also observed with Lb. plantarum, whereas in Lb. brevis the competition between the wild type slpA gene and the secretion construct probably lowered the rate of Bla production. The results obtained indicate wide applicability of the Lb. brevis slpA signals for efficient protein production and secretion in LAB.

  10. Growth, nisA Gene Expression, and In Situ Activity of Novel Lactococcus lactis subsp. cremoris Costarter Culture in Commercial Hard Cheese Production.

    PubMed

    Noutsopoulos, Dimitrios; Kakouri, Athanasia; Kartezini, Eleftheria; Pappas, Dimitrios; Hatziloukas, Efstathios; Samelis, John

    2017-12-01

    This study evaluated in situ expression of the nisA gene by an indigenous, nisin A-producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (>8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A-mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.

  11. Use of Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris isolated from TRFM in manufacturing of functional low-fat cheeses.

    PubMed

    Chiang, Ming-Lun; Chen, Hsi-Chia; Wang, Sheng-Yao; Hsieh, Yueh-Ling; Chen, Ming-Ju

    2011-09-01

    The purpose of this study was to manufacture new functional low-fat cheeses using Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris strains isolated from TRFM. After 28 d of ripening and storage, the viable populations of lactic acid bacteria (LAB) in the low-fat cheeses made with L. lactis subsp. cremoris TL1 (TL1), L. lactis subsp. cremoris TL4 (TL4), and TRFM still maintained above 10(8) CFU/g. The low-fat cheeses made with TL1 and TRFM showed higher moisture contents than the cheeses made with TL4, full-fat, and low-fat cheese controls. The low-fat cheeses made with TL1 and TL4 had higher customer preferential scores similar to full-fat cheese control in the sensory evaluation. Additionally, the low-fat cheeses fermented with TL1, TL4, and TRFM for 4 h had higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging and ferrous ion-chelating abilities than the cheeses fermented with the starters for 8 h, full-fat, and low-fat cheese controls. A better angiotensin-converting enzyme (ACE) inhibition activity was also observed in the low-fat cheeses made with TL1, TL4, and TRFM than that in the full-fat and low-fat cheese controls during ripening and storage period. As health-conscious consumers continue to seek low-fat alternatives in their diets, there remain strong interests for the dairy industry to develop low-fat cheeses to meet the demands. This study clearly demonstrated that the low-fat cheeses fermented with TL1 for 4 h showed a better overall acceptability and possessed antioxidative abilities and ACE inhibitory activities than other cheeses tested in this study. By improving its flavor and investigating the possible mechanisms of its functionalities in the future, this low-fat cheese might possibly be commercialized and give a positive impact on cheese consumption in the future. © 2011 Institute of Food Technologists®

  12. Two-phase ultraviolet spectrophotometry of the pulsating white dwarf ZZ Piscium

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Kemper, E.; Grauer, A. D.; Holm, A. V.; Panek, R. J.; Schiffer, F. H., III

    1985-01-01

    Spectra of the pulsating white dwarf ZZ Psc (= G29-38) were obtained using the International Ultraviolet Explorer. By using a multiple-exposure technique in conjunction with simultaneous ground-based exposure-metering photometry, it was possible to obtain mean on-pulse and off-pulse spectra in the 1950-1310 A wavelength range. The ratio of the time-averaged on-pulse to off-pulse spectra is best fitted by a temperature variation that is in phase with the optical light variation. This result is consistent with the hypothesis that the observed variation is due to a high-order nonradial pulsation. Conventional ultraviolet spectra of ZZ Psc showed broad absorption features at 1390 and 1600 A. These features are also found in the spectra of the cool DA-type white dwarfs G226-29 and G67-23, and appear to increase in strength with decreasing temperature. A possible explanation for the 1600 A feature is absorption by the satellite band of resonance-broadened hydrogen Ly-alpha. Such absorption would also help explain a discrepancy between the observed pulsation amplitude shortward of 1650 A and the predicted amplitudes based on model atmospheres.

  13. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation.

    PubMed

    Martín, Rebeca; Chain, Florian; Miquel, Sylvie; Natividad, Jane M; Sokol, Harry; Verdu, Elena F; Langella, Philippe; Bermúdez-Humarán, Luis G

    2014-01-01

    Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a "proof-of-concept," our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces.

  14. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates.

    PubMed

    Cirkovic, Ivana; Bozic, Dragana D; Draganic, Veselin; Lozo, Jelena; Beric, Tanja; Kojic, Milan; Arsic, Biljana; Garalejic, Eliana; Djukic, Slobodanka; Stankovic, Slavisa

    2016-01-01

    Coagulase negative staphylococci (CoNS) and Listeria monocytogenes have important roles in pathogenesis of various genital tract infections and fatal foetomaternal infections, respectively. The aim of our study was to investigate the inhibitory effects of two novel bacteriocins on biofilms of CoNS and L. monocytogenes genital isolates. The effects of licheniocin 50.2 from Bacillus licheniformis VPS50.2 and crude extract of bacteriocins produced by Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 (BGBU1-4 crude extract) were evaluated on biofilm formation and formed biofilms of eight CoNS (four S. epidermidis, two S. hominis, one S. lugdunensis and one S. haemolyticus) and 12 L. monocytogenes genital isolates. Licheniocin 50.2 and BGBU1-4 crude extract inhibited the growth of both CoNS and L. monocytogenes isolates, with MIC values in the range between 200-400 AU/ml for licheniocin 50.2 and 400-3200 AU/ml for BGBU1-4 crude extract. Subinhibitory concentrations (1/2 × and 1/4 × MIC) of licheniocin 50.2 inhibited biofilm formation by all CoNS isolates (p < 0.05, respectively), while BGBU1-4 crude extract inhibited biofilm formation by all L. monocytogenes isolates (p < 0.01 and p < 0.05, respectively). Both bacteriocins in concentrations of 100 AU/mL and 200 AU/mL reduced the amount of 24 h old CoNS and L. monocytogenes biofilms (p < 0.05, p < 0.01, p < 0.001). This study suggests that novel bacteriocins have potential to be used for genital application, to prevent biofilm formation and/or to eradicate formed biofilms, and consequently reduce genital and neonatal infections by CoNS and L. monocytogenes.

  15. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain.

    PubMed

    Camperio, Cristina; Armas, Federica; Biasibetti, Elena; Frassanito, Paolo; Giovannelli, Carlo; Spuria, Liliana; D'Agostino, Claudia; Tait, Sabrina; Capucchio, Maria Teresa; Marianelli, Cinzia

    2017-01-01

    Lactococcus lactis is one of the most important microorganisms in the dairy industry and has "generally recognized as safe" (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found in

  16. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain

    PubMed Central

    Biasibetti, Elena; Frassanito, Paolo; Giovannelli, Carlo; Spuria, Liliana; D’Agostino, Claudia; Tait, Sabrina; Capucchio, Maria Teresa

    2017-01-01

    Lactococcus lactis is one of the most important microorganisms in the dairy industry and has “generally recognized as safe” (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found

  17. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates

    PubMed Central

    Draganic, Veselin; Lozo, Jelena; Beric, Tanja; Kojic, Milan; Arsic, Biljana; Garalejic, Eliana; Djukic, Slobodanka; Stankovic, Slavisa

    2016-01-01

    Background Coagulase negative staphylococci (CoNS) and Listeria monocytogenes have important roles in pathogenesis of various genital tract infections and fatal foetomaternal infections, respectively. The aim of our study was to investigate the inhibitory effects of two novel bacteriocins on biofilms of CoNS and L. monocytogenes genital isolates. Methods The effects of licheniocin 50.2 from Bacillus licheniformis VPS50.2 and crude extract of bacteriocins produced by Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 (BGBU1-4 crude extract) were evaluated on biofilm formation and formed biofilms of eight CoNS (four S. epidermidis, two S. hominis, one S. lugdunensis and one S. haemolyticus) and 12 L. monocytogenes genital isolates. Results Licheniocin 50.2 and BGBU1-4 crude extract inhibited the growth of both CoNS and L. monocytogenes isolates, with MIC values in the range between 200–400 AU/ml for licheniocin 50.2 and 400–3200 AU/ml for BGBU1-4 crude extract. Subinhibitory concentrations (1/2 × and 1/4 × MIC) of licheniocin 50.2 inhibited biofilm formation by all CoNS isolates (p < 0.05, respectively), while BGBU1-4 crude extract inhibited biofilm formation by all L. monocytogenes isolates (p < 0.01 and p < 0.05, respectively). Both bacteriocins in concentrations of 100 AU/mL and 200 AU/mL reduced the amount of 24 h old CoNS and L. monocytogenes biofilms (p < 0.05, p < 0.01, p < 0.001). Conclusions This study suggests that novel bacteriocins have potential to be used for genital application, to prevent biofilm formation and/or to eradicate formed biofilms, and consequently reduce genital and neonatal infections by CoNS and L. monocytogenes. PMID:27930711

  18. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation

    PubMed Central

    Martín, Rebeca; Martín, Rebeca; Chain, Florian; Chain, Florian; Miquel, Sylvie; Miquel, Sylvie; Natividad, Jane M; Natividad, Jane M; Sokol, Harry; Sokol, Harry; Verdu, Elena F; Verdu, Elena F; Langella, Philippe; Langella, Philippe; Bermúdez-Humarán, Luis G; Bermúdez-Humarán, Luis G

    2014-01-01

    Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a “proof-of-concept,” our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces. PMID:24732667

  19. In ovo injection of prebiotics and synbiotics affects the digestive potency of the pancreas in growing chickens.

    PubMed

    Pruszynska-Oszmalek, E; Kolodziejski, P A; Stadnicka, K; Sassek, M; Chalupka, D; Kuston, B; Nogowski, L; Mackowiak, P; Maiorano, G; Jankowski, J; Bednarczyk, M

    2015-08-01

    The purpose of the study was to examine the effect of 2 prebiotics and 2 synbiotics on the digestive potency of pancreas in 1-, 3-, 7-, 14-, 21-, and 34-day-old cockerels. Prebiotics (inulin and Bi²tos) and synbiotics (inulin + Lactococcus lactis subsp. lactis and Bi²tos + Lactococcus lactis subsp. cremoris) were injected in ovo into the air cell on the 12th d embryonic development. Their application increased the activity of amylase, lipase, and trypsin in the pancreas. The most pronounced changes were observed at the end of the investigated rearing period (d 34). The strongest stimulative effects on amylase were shown by both synbiotics, on lipase synbiotic Bi²tos + Lactococcus lactis subsp. cremoris, and on trypsin all the used prebiotics and synbiotics. Simultaneously, neither the absolute nor the relative mass of the pancreas in comparison to control group were changed. Also, the injected in ovo compounds did not cause a deterioration in the posthatching condition of the chicken liver, as determined by measurement of the activity of marker enzymes in the blood (alanine aminotransferase and aspartate aminotransferase). Treatment with the prebiotics and synbiotics did not change the feed conversion ratio but Bi²tos (galacto-oligosaccharide) and inulin (fructan) + Lactococcus lactis subsp. lactis significantly increased final BW. © 2015 Poultry Science Association Inc.

  20. Phenotypical Analysis of the Lactobacillus rhamnosus GG Fimbrial spaFED Operon: Surface Expression and Functional Characterization of Recombinant SpaFED Pili in Lactococcus lactis

    PubMed Central

    Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided

  1. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis.

    PubMed

    Rintahaka, Johanna; Yu, Xia; Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided

  2. Biofortification of riboflavin and folate in idli batter, based on fermented cereal and pulse, by Lactococcus lactis N8 and Saccharomyces boulardii SAA655.

    PubMed

    Chandrasekar Rajendran, S C; Chamlagain, B; Kariluoto, S; Piironen, V; Saris, P E J

    2017-06-01

    Lactococcus lactis N8 and Saccharomyces boulardii SAA655 were investigated for their ability to synthesize B-vitamins (riboflavin and folate) and their functional role as microbial starters in idli fermentation. In this study, ultra-high performance liquid chromatography and microbiological assay were used to determine the total riboflavin and folate content respectively. Increased levels of folate were evident in both L. lactis N8 and S. boulardii SAA655 cultivated medium. Enhanced riboflavin levels were found only in S. boulardii SAA655 grown medium, whereas decreased riboflavin level was found in L. lactis N8 cultivated medium. To evaluate the functional role of microbial starter strains, L. lactis N8 and S. boulardii SAA655 were incorporated individually and in combination into idli batter, composed of wet grounded rice and black gram. For the experiments, naturally fermented idli batter was considered as control. The results indicated that natural idli fermentation did not enhance the riboflavin level and depleted folate levels by half. In comparison with control, L. lactis N8 and S. boulardii SAA655 incorporated idli batter (individually and in combination) increased riboflavin and folate levels by 40-90%. Apart from compensating the folate loss caused by natural fermentation, S. boulardii SAA655 fermented idli batter individually and in combination with L. lactis N8 also showed the highest leavening character. Moreover, the microbial starter incorporation did not significantly influence the pH of idli batter. Incorporation of L. lactis N8 and S. boulardii SAA655 can evidently enhance the functional and technological characteristics of idli batter. UN General Assembly declared 2016 the International Year of pulses emphasizing the importance of legumes as staple food. Furthermore, this is the first experimental report of in situ biofortifcation of riboflavin and folate using microbes in pulse based fermented staple food. The current study suggests possible

  3. Surface Display of the Receptor-Binding Region of the Lactobacillus brevis S-Layer Protein in Lactococcus lactis Provides Nonadhesive Lactococci with the Ability To Adhere to Intestinal Epithelial Cells

    PubMed Central

    Åvall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-01-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium. PMID:12676705

  4. Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells.

    PubMed

    Avall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-04-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.

  5. Lactococcus lactis expressing either Staphylococcus aureus fibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells.

    PubMed

    Innocentin, Silvia; Guimarães, Valeria; Miyoshi, Anderson; Azevedo, Vasco; Langella, Philippe; Chatel, Jean-Marc; Lefèvre, François

    2009-07-01

    Lactococci are noninvasive bacteria frequently used as protein delivery vectors and, more recently, as in vitro and in vivo DNA delivery vehicles. We previously showed that a functional eukaryotic enhanced green fluorescent protein (eGFP) expression plasmid vector was delivered in epithelial cells by Lactococcus lactis producing Listeria monocytogenes internalin A (L. lactis InlA(+)), but this strategy is limited in vivo to transgenic mice and guinea pigs. In this study, we compare the internalization ability of L. lactis InlA(+) and L. lactis producing either the fibronectin-binding protein A of Staphylococcus aureus (L. lactis FnBPA(+)) or its fibronectin binding domains C and D (L. lactis CD(+)). L. lactis FnBPA(+) and L. lactis InlA(+) showed comparable internalization rates in Caco-2 cells, while the internalization rate observed with L. lactis CD(+) was lower. As visualized by conventional and confocal fluorescence microscopy, large clusters of L. lactis FnBPA(+), L. lactis CD(+), and L. lactis InlA(+) were present in the cytoplasm of Caco-2 cells after internalization. Moreover, the internalization rates of Lactobacillus acidophilus NCFM and of an NCFM mutant strain with the gene coding for the fibronectin-binding protein (fbpA) inactivated were also evaluated in Caco-2 cells. Similar low internalization rates were observed for both wild-type L. acidophilus NCFM and the fbpA mutant, suggesting that commensal fibronectin binding proteins have a role in adhesion but not in invasion. L. lactis FnBPA(+), L. lactis CD(+), and L. lactis InlA(+) were then used to deliver a eukaryotic eGFP expression plasmid in Caco-2 cells: flow cytometry analysis showed that the highest percentage of green fluorescent Caco-2 cells was observed after coculture with either L. lactis FnBPA(+) or L. lactis InlA(+). Analysis of the in vivo efficiency of these invasive recombinant strains is currently in progress to validate their potential as DNA vaccine delivery vehicles.

  6. Saccharomyces cerevisiae Modulates Immune Gene Expressions and Inhibits ETEC-Mediated ERK1/2 and p38 Signaling Pathways in Intestinal Epithelial Cells

    PubMed Central

    Zanello, Galliano; Berri, Mustapha; Dupont, Joëlle; Sizaret, Pierre-Yves; D'Inca, Romain

    2011-01-01

    Background Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. ETEC infections cause pro-inflammatory responses in intestinal epithelial cells and subsequent diarrhea in pigs, leading to reduced growth rate and mortality. Administration of probiotics as feed additives displayed health benefits against intestinal infections. Saccharomyces cerevisiae (Sc) is non-commensal and non-pathogenic yeast used as probiotic in gastrointestinal diseases. However, the immuno-modulatory effects of Sc in differentiated porcine intestinal epithelial cells exposed to ETEC were not investigated. Methodology/Principal Findings We reported that the yeast Sc (strain CNCM I-3856) modulates transcript and protein expressions involved in inflammation, recruitment and activation of immune cells in differentiated porcine intestinal epithelial IPEC-1 cells. We demonstrated that viable Sc inhibits the ETEC-induced expression of pro-inflammatory transcripts (IL-6, IL-8, CCL20, CXCL2, CXCL10) and proteins (IL-6, IL-8). This inhibition was associated to a decrease of ERK1/2 and p38 MAPK phosphorylation, an agglutination of ETEC by Sc and an increase of the anti-inflammatory PPAR-γ nuclear receptor mRNA level. In addition, Sc up-regulates the mRNA levels of both IL-12p35 and CCL25. However, measurement of transepithelial electrical resistance displayed that Sc failed to maintain the barrier integrity in monolayer exposed to ETEC suggesting that Sc does not inhibit ETEC enterotoxin activity. Conclusions Sc (strain CNCM I-3856) displays multiple immuno-modulatory effects at the molecular level in IPEC-1 cells suggesting that Sc may influence intestinal inflammatory reaction. PMID:21483702

  7. Efficacy of the direct-fed microbial Enterococcus faecium alone or in combination with Saccharomyces cerevisiae or Lactococcus lactis during induced subacute ruminal acidosis.

    PubMed

    Chiquette, J; Lagrost, J; Girard, C L; Talbot, G; Li, S; Plaizier, J C; Hindrichsen, I K

    2015-01-01

    This study aimed at investigating Enterococcus faecium alone or E. faecium in combination with Saccharomyces cerevisiae or Lactococcus lactis during a subacute ruminal acidosis (SARA) challenge. Four ruminally fistulated Holstein dairy cows were assigned to the following treatments in a 4×4 Latin square design: (1) control (CON); (2) E. faecium (EF); (3) EF + S. cerevisiae (EFSC); (4) EF + L. lactis DSM 11037 (EFLL). Each experimental period consisted of 18 d of adaptation to the respective direct-fed microbial, 3 d of SARA challenge, and 7d of rest. Rumen pH was recorded every 10 min over 24 h on d 17 of adaptation, d 2 of SARA, and d 6 of rest. On the last day of adaptation, SARA, and rest, samples of rumen content (0 and 3 h after feeding) were taken for volatile fatty acids, lactate, vitamin B12, rumen microbes, and lipopolysaccharides determination. Blood samples (0 and 6 h after feeding) were taken for the measurement of acute-phase proteins. Dry matter intake and milk yield were recorded daily. During SARA, mean rumen pH with EFSC (5.94) was not different from that of EFLL (5.95) and tended to be higher than with CON (5.82) or EF (5.82). Postfeeding vitamin B12 concentrations in the rumen were greater with EFSC (134.5ng/g) than with EF (99.6ng/g) and tended to be greater when compared with CON (101.2ng/g) or EFLL (104.9ng/g). During rest, prefeed vitamin B12 was greater with EFSC (166.5ng/g) compared with CON (132.3ng/g). The EFSC treatment did better than EF alone on pH characteristics during adaptation and SARA and on maintenance of ruminal vitamin B12 status during SARA. Milk yield drop from d 1 to 3 of SARA was smaller with EFSC (-0.8kg/d), EF (-0.9kg/d), or EFLL (-0.9kg/d) compared with CON (-7.5kg/d). Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. A Multibacteriocin Cheese Starter System, Comprising Nisin and Lacticin 3147 in Lactococcus lactis, in Combination with Plantaricin from Lactobacillus plantarum

    PubMed Central

    Mills, S.; Griffin, C.; O'Connor, P. M.; Serrano, L. M.; Meijer, W. C.; Hill, C.

    2017-01-01

    ABSTRACT Functional starter cultures demonstrating superior technological and food safety properties are advantageous to the food fermentation industry. We evaluated the efficacies of single- and double-bacteriocin-producing starters of Lactococcus lactis capable of producing the class I bacteriocins nisin A and/or lacticin 3147 in terms of starter performance. Single producers were generated by mobilizing the conjugative bacteriophage resistance plasmid pMRC01, carrying lacticin genetic determinants, or the conjugative transposon Tn5276, carrying nisin genetic determinants, to the commercial starter L. lactis CSK2775. The effect of bacteriocin coproduction was examined by superimposing pMRC01 into the newly constructed nisin transconjugant. Transconjugants were improved with regard to antimicrobial activity and bacteriophage insensitivity compared to the recipient strain, and the double producer was immune to both bacteriocins. Bacteriocin production in the starter was stable, although the recipient strain proved to be a more efficient acidifier than transconjugant derivatives. Overall, combinations of class I bacteriocins (the double producer or a combination of single producers) proved to be as effective as individual bacteriocins for controlling Listeria innocua growth in laboratory-scale cheeses. However, using the double producer in combination with the class II bacteriocin producer Lactobacillus plantarum or using the lacticin producer with the class II producer proved to be most effective for reducing bacterial load. As emergence of bacteriocin tolerance was reduced 10-fold in the presence of nisin and lacticin, we suggest that the double producer in conjunction with the class II producer could serve as a protective culture providing a food-grade, multihurdle approach to control pathogenic growth in a variety of industrial applications. IMPORTANCE We generated a suite of single- and double-bacteriocin-producing starter cultures capable of generating the

  9. Identification and Characterization of the Novel LysM Domain-Containing Surface Protein Sep from Lactobacillus fermentum BR11 and Its Use as a Peptide Fusion Partner in Lactobacillus and Lactococcus

    PubMed Central

    Turner, Mark S.; Hafner, Louise M.; Walsh, Terry; Giffard, Philip M.

    2004-01-01

    Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria. PMID:15184172

  10. Characterization of a Wild, Novel Nisin A-Producing Lactococcus Strain with an L. lactis subsp. cremoris Genotype and an L. lactis subsp. lactis Phenotype, Isolated from Greek Raw Milk

    PubMed Central

    Parapouli, Maria; Delbès-Paus, Céline; Kakouri, Athanasia; Koukkou, Anna-Irini; Montel, Marie-Christine

    2013-01-01

    Several molecular taxonomic studies have revealed that many natural (wild) Lactococcus lactis strains of dairy origin which are phenotypically representative of the L. lactis subspecies lactis cluster genotypically within subspecies cremoris and vice versa. Recently, we isolated two wild nisin-producing (Nis+) L. lactis strains, M78 and M104, of the lactis phenotype from Greek raw milk (J. Samelis, A. Lianou, A. Kakouri, C. Delbès, I. Rogelj, B. B. Matijašic, and M. C. Montel, J. Food Prot. 72:783–790, 2009); strain M78 possess a novel nisin A sequence (GenBank accession number HM219853). In this study, the actual subspecies identity of M78 and M104 isolates was elucidated, using 16S rRNA and acmA (encoding lactococcal N-acetylmuramidase) gene and histidine biosynthesis operon polymorphisms and 16S rRNA and ldh (encoding lactate dehydrogenase) gene phylogenies. Except the acmA gene analysis, molecular tools revealed that isolates M78 and M104 clustered with strains of the cremoris genotype, including the LMG 6897T strain, while they were distant from strains of the lactis genotype, including the LMG 6890T strain. The two wild isolates had identical repetitive sequence-based PCR (rep-PCR), randomly amplified polymorphic DNA (RAPD), plasmid, and whole-cell protein profiles and shared high 16S rRNA (99.9%) and ldh (100%) gene sequence homologies. In contrast, they exhibited identical sugar fermentation and enzymatic patterns which were similar to those of the subspecies lactis LMG 6890T strain. To our knowledge, this is the first complete identification report on a wild L. lactis subsp. cremoris genotype of the lactis phenotype which is capable of nisin A production and, thus, has strong potential for use as a novel dairy starter and/or protective culture. PMID:23542625

  11. Draft Genome Sequences of Nine Strains of Brochothrix thermosphacta, Carnobacterium divergens, Lactobacillus algidus, Lactobacillus fuchuensis, Lactococcus piscium, Leuconostoc gelidum subsp. gasicomitatum, Pseudomonas lundensis, and Weissella viridescens, a Collection of Psychrotrophic Species Involved in Meat and Seafood Spoilage.

    PubMed

    Poirier, Simon; Coeuret, Gwendoline; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane

    2018-06-14

    In this study, we present the draft genome sequences of nine strains from various psychrotrophic species identified in meat products and being recognized as important emerging food spoilers. Many of these species have only one or few strains being sequenced, and this work will contribute to the improvement of the overall genomic knowledge about them. Copyright © 2018 Poirier et al.

  12. Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia Lactobacilli?

    PubMed Central

    Allain, Thibault; Chaouch, Soraya; Thomas, Myriam; Travers, Marie-Agnès; Valle, Isabelle; Langella, Philippe; Grellier, Philippe; Polack, Bruno; Florent, Isabelle; Bermúdez-Humarán, Luis G.

    2018-01-01

    Giardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH)-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals. PMID:29472903

  13. Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti-6Al-4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model.

    PubMed

    Hyzy, Sharon L; Cheng, Alice; Cohen, David J; Yatzkaier, Gustavo; Whitehead, Alexander J; Clohessy, Ryan M; Gittens, Rolando A; Boyan, Barbara D; Schwartz, Zvi

    2016-08-01

    The purpose of this study was to compare the biological effects in vivo of hierarchical surface roughness on laser sintered titanium-aluminum-vanadium (Ti-6Al-4V) implants to those of conventionally machined implants on osteoblast response in vitro and osseointegration. Laser sintered disks were fabricated to have micro-/nano-roughness and wettability. Control disks were computer numerical control (CNC) milled and then polished to be smooth (CNC-M). Laser sintered disks were polished smooth (LST-M), grit blasted (LST-B), or blasted and acid etched (LST-BE). LST-BE implants or implants manufactured by CNC milling and grit blasted (CNC-B) were implanted in the femurs of male New Zealand white rabbits. Most osteoblast differentiation markers and local factors were enhanced on rough LST-B and LST-BE surfaces in comparison to smooth CNC-M or LST-M surfaces for MG63 and normal human osteoblast cells. To determine if LST-BE implants were osteogenic in vivo, we compared them to implant surfaces used clinically. LST-BE implants had a unique surface with combined micro-/nano-roughness and higher wettability than conventional CNC-B implants. Histomorphometric analysis demonstrated a significant improvement in cortical bone-implant contact of LST-BE implants compared to CNC-B implants after 3 and 6 weeks. However, mechanical testing revealed no differences between implant pullout forces at those time points. LST surfaces enhanced osteoblast differentiation and production of local factors in vitro and improved the osseointegration process in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2086-2098, 2016. © 2016 Wiley Periodicals, Inc.

  14. Addition to thermized milk of Lactococcus lactis subsp. cremoris M104, a wild, novel nisin a-producing strain, replaces the natural antilisterial activity of the autochthonous raw milk microbiota reduced by thermization.

    PubMed

    Lianou, Alexandra; Samelis, John

    2014-08-01

    Recent research has shown that mild milk thermization treatments routinely used in traditional Greek cheese production are efficient to inactivate Listeria monocytogenes and other pathogenic or undesirable bacteria, but they also inactivate a great part of the autochthonous antagonistic microbiota of raw milk. Therefore, in this study, the antilisterial activity of raw or thermized (63°C, 30 s) milk in the presence or absence of Lactococcus lactis subsp. cremoris M104, a wild, novel, nisin A-producing (Nis-A+) raw milk isolate, was assessed. Bulk milk samples were taken from a local cheese plant before or after thermization and were inoculated with a five-strain cocktail of L. monocytogenes (approximately 4 log CFU/ml) or with the cocktail, as above, plus the Nis-A+ strain (approximately 6 log CFU/ml) as a bioprotective culture. Heat-sterilized (121°C, 5 min) raw milk inoculated with L. monocytogenes was used as a control treatment. All milk samples were incubated at 37°C for 6 h and then at 18°C for an additional 66 h. L. monocytogenes grew abundantly (>8 log CFU/ml) in heat-sterilized milk, whereas its growth was completely inhibited in all raw milk samples. Conversely, in thermized milk, L. monocytogenes increased by 2 log CFU/ml in the absence of strain M104, whereas its growth was completely inhibited in the presence of strain M104. Furthermore, nisin activity was detected only in milk samples inoculated with strain M104. Thus, postthermal supplementation of thermized bulk milk with bioprotective L. lactis subsp. cremoris cultures replaces the natural antilisterial activity of raw milk reduced by thermization.

  15. Lysines 72, 80 and 213 and aspartic acid 210 of the Lactococcus lactis LacR repressor are involved in the response to the inducer tagatose-6-phosphate leading to induction of lac operon expression.

    PubMed

    van Rooijen, R J; Dechering, K J; Niek, C; Wilmink, J; de Vos, W M

    1993-02-01

    Site-directed mutagenesis of the Lactococcus lactis lacR gene was performed to identify residues in the LacR repressor that are involved in the induction of lacABCDFEGX operon expression by tagatose-6-phosphate. A putative inducer binding domain located near the C-terminus was previously postulated based on homology studies with the Escherichia coli DeoR family of repressors, which all have a phosphorylated sugar as inducer. Residues within this domain and lysine residues that are charge conserved in the DeoR family were changed into alanine or arginine. The production of the LacR mutants K72A, K80A, K80R, D210A, K213A and K213R in the LacR-deficient L.lactis strain NZ3015 resulted in repressed phospho-beta-galactosidase (LacG) activities and decreased growth rates on lactose. Gel mobility shift assays showed that the complex between a DNA fragment carrying the lac operators and LacR mutants K72A, K80A, K213A and D210A did not dissociate in the presence of tagatose-6-phosphate, in contrast to wild type LacR. Other mutations (K62A/K63A, K72R, K73A, K73R, T212A, F214R, R216R and R216K) exhibited no gross effects on inducer response. The results strongly suggest that the lysines at positions 72, 80 and 213 and aspartic acid at position 210 are involved in the induction of lac operon expression by tagatose-6-phosphate.

  16. Characterization of lactococci isolated from milk produced in the Camembert region of Normandy.

    PubMed

    Desmasures, N; Mangin, I; Corroler, D; Guéguen, M

    1998-12-01

    Thirty-eight Lactococcus strains, isolated from raw milk produced in two dairy areas in Normandy, were identified at the phenotypic level. Only Lactococcus lactis strains with the lactis phenotype were found in the milk samples. Most strains fermented lactose (97%) and showed proteinase activity (76%). Isolates were characterized by RAPD technique and rRNA gene restriction analysis. More L. lactis strains with the lactis genotype were found in the first area, while L. lactis strains with the cremoris genotype predominated in the second area. RAPD was more efficient than rRNA gene restriction analysis in differentiating between strains with the subsp. lactis genotype. For L. lactis with the subsp. cremoris genotype, the second method gave a better result but there was poor discrimination between strains. Plasmid profiles were determined. Patterns ranged in size from 1.3 to 16.5 kbp, and 29 different profiles were found. Six groups of strains were determined, five of which were specific for the area of origin. It is suggested that the region of manufacture could influence organoleptic properties of cheeses because of different Lactococcus strains in the raw milk used for cheese making.

  17. Effect of drying methods of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris on secondary protein structure and glass transition temperature as studied by Fourier transform infrared and differential scanning calorimetry.

    PubMed

    Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P

    2013-03-01

    Protective mechanisms of casein-based microcapsules containing mannitol on Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris, changes in their secondary protein structures, and glass transition of the microcapsules were studied after spray- or freeze-drying and after 10 wk of storage in aluminum foil pouches containing different desiccants (NaOH, LiCl, or silica gel) at 25°C. An in situ Fourier transform infrared analysis was carried out to recognize any changes in fatty acids (FA) of bacterial cell envelopes, interaction between polar site of cell envelopes and microcapsules, and alteration of their secondary protein structures. Differential scanning calorimetry was used to determine glass transition of microcapsules based on glass transition temperature (T(g)) values. Hierarchical cluster analysis based on functional groups of cell envelopes and secondary protein structures was also carried out to classify the microencapsulated bacteria due to the effects of spray- or freeze-drying and storage for 10 wk. The results showed that drying process did not affect FA and secondary protein structures of bacteria; however, those structures were affected during storage depending upon the type of desiccant used. Interaction between exterior of bacterial cell envelopes and microencapsulant occurred after spray- or freeze-drying; however, these structures were maintained after storage in foil pouch containing sodium hydroxide. Method of drying and type of desiccants influenced the level of similarities of microencapsulated bacteria. Desiccants and method of drying affected glass transition, yet no T(g) ≤25°C was detected. This study demonstrated that the changes in FA and secondary structures of the microencapsulated bacteria still occurred during storage at T(g) above room temperature, indicating that the glassy state did not completely prevent chemical activities. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights

  18. Human Gut-Commensalic Lactobacillus ruminis ATCC 25644 Displays Sortase-Assembled Surface Piliation: Phenotypic Characterization of Its Fimbrial Operon through In Silico Predictive Analysis and Recombinant Expression in Lactococcus lactis

    PubMed Central

    Yu, Xia; Lyytinen, Outi; Kant, Ravi; Åvall-Jääskeläinen, Silja; von Ossowski, Ingemar; Palva, Airi

    2015-01-01

    Sortase-dependent surface pili (or fimbriae) in Gram-positive bacteria are well documented as a key virulence factor for certain harmful opportunistic pathogens. However, it is only recently known that these multi-subunit protein appendages are also belonging to the “friendly” commensals and now, with this new perspective, they have come to be categorized as a niche-adaptation factor as well. In this regard, it was shown earlier that sortase-assembled piliation is a native fixture of two human intestinal commensalics (i.e., Lactobacillus rhamnosus and Bifidobacterium bifidum), and correspondingly where the pili involved have a significant role in cellular adhesion and immunomodulation processes. We now reveal that intestinal indigenous (or autochthonous) Lactobacillus ruminis is another surface-piliated commensal lactobacillar species. Heeding to in silico expectations, the predicted loci for the LrpCBA-called pili are organized tandemly in the L. ruminis genome as a canonical fimbrial operon, which then encodes for three pilin-proteins and a single C-type sortase enzyme. Through electron microscopic means, we showed that these pilus formations are a surface assemblage of tip, basal, and backbone pilin subunits (respectively named LrpC, LrpB, and LrpA) in L. ruminis, and also when expressed recombinantly in Lactococcus lactis. As well, by using the recombinant-piliated lactococci, we could define certain ecologically relevant phenotypic traits, such as the ability to adhere to extracellular matrix proteins and gut epithelial cells, but also to effectuate an induced dampening on Toll-like receptor 2 signaling and interleukin-8 responsiveness in immune-related cells. Within the context of the intestinal microcosm, by wielding such niche-advantageous cell-surface properties the LrpCBA pilus would undoubtedly have a requisite functional role in the colonization dynamics of L. ruminis indigeneity. Our study provides only the second description of a native

  19. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses.

    PubMed

    Azizan, Kamalrul Azlan; Ressom, Habtom W; Mendoza, Eduardo R; Baharum, Syarul Nataqain

    2017-01-01

    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13 C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis ( r ) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis , in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis . Overall, the

  20. The geometry of the close environment of SV Piscium as probed by VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Klotz, D.; Sacuto, S.; Kerschbaum, F.; Paladini, C.; Olofsson, H.; Hron, J.

    2012-05-01

    Context. SV Psc is an asymptotic giant branch (AGB) star surrounded by an oxygen-rich dust envelope. The mm-CO line profile of the object's outflow shows a clear double-component structure. Because of the high angular resolution, mid-IR interferometry may give strong constraints on the origin of this composite profile. Aims: The aim of this work is to investigate the morphology of the environment around SV Psc using high-angular resolution interferometry observations in the mid-IR with the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI). Methods: Interferometric data in the N-band taken at different baseline lengths (ranging from 32-64 m) and position angles (73-142°) allow a study of the morphology of the circumstellar environment close to the star. The data are interpreted on the basis of 2-dimensional, chromatic geometrical models using the fitting software tool GEM-FIND developed for this purpose. Results: The results favor two scenarios: (i) the presence of a highly inclined, optically thin, dusty disk surrounding the central star; (ii) the presence of an unresolved binary companion at a separation of 13.7+4.2-4.8 AU and a position angle of 121.8°+15.4°-24.5° NE. The derived orbital period of the binary is 38.1+20.4-22.6 yr. This detection is in good agreement with hydrodynamic simulations showing that a close companion could be responsible for the entrainment of the gas and dust into a circumbinary structure. Based on observations made with ESO telescopes at La Silla Paranal Observatory under program IDs 082.D-0389 and 086.D-0069.

  1. Lactococcus lactis carrying the pValac eukaryotic expression vector coding for IL-4 reduces chemically-induced intestinal inflammation by increasing the levels of IL-10-producing regulatory cells.

    PubMed

    Souza, Bianca Mendes; Preisser, Tatiane Melo; Pereira, Vanessa Bastos; Zurita-Turk, Meritxell; de Castro, Camila Prósperi; da Cunha, Vanessa Pecini; de Oliveira, Rafael Pires; Gomes-Santos, Ana Cristina; de Faria, Ana Maria Caetano; Machado, Denise Carmona Cara; Chatel, Jean-Marc; Azevedo, Vasco Ariston de Carvalho; Langella, Philippe; Miyoshi, Anderson

    2016-08-30

    Inflammatory bowel diseases are characterized by chronic intestinal inflammation that leads to severe destruction of the intestinal mucosa. Therefore, the understanding of their aetiology as well as the development of new medicines is an important step for the treatment of such diseases. Consequently, the development of Lactococcus lactis strains capable of delivering a eukaryotic expression vector encoding the interleukin 4 (IL-4) of Mus musculus would represent a new strategy for the elaboration of a more effective alternative therapy against Crohn's disease. The murine IL-4 ORF was cloned into the eukaryotic expression vector pValac::dts. The resulting plasmid-pValac::dts::IL-4-was transfected into CHO cells so that its functionality could be evaluated in vitro. With fluorescent confocal microscopy, flow cytometry and ELISA, it was observed that pValac::dts::IL-4-transfected cells produced IL-4, while non-transfected cells and cells transfected with the empty vector did not. Then, pValac::dts::IL-4 was inserted into L. lactis MG1363 FnBPA(+) in order to evaluate the therapeutic potential of the recombinant strain against TNBS-induced colitis. Intragastric administration of L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) was able to decrease the severity of colitis, with animals showing decreased levels of IL-12, IL-6 and MPO activity; and increased levels of IL-4 and IL-10. Finally, LP-isolated cells from mice administered TNBS were immunophenotyped so that the main IL-4 and IL-10 producers were identified. Mice administered the recombinant strain presented significantly higher percentages of F4/80(+)MHCII(+)Ly6C(-)IL-4(+), F4/80(+)MHCII(+)Ly6C(-)IL-10(+), F4/80(+)MHCII(+)Ly6C(-)CD206(+)CD124(+)IL-10(+) and CD4(+)Foxp3(+)IL10(+) cells compared to the other groups. This study shows that L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) is a good candidate to maintain the anti-inflammatory and proinflammatory balance in the gastrointestinal tract, increasing the levels

  2. Characterization of lactic acid bacteria isolated from artisanal Travnik young cheeses, sweet creams and sweet kajmaks over four seasons.

    PubMed

    Terzic-Vidojevic, Amarela; Mihajlovic, Sanja; Uzelac, Gordana; Veljovic, Katarina; Tolinacki, Maja; Nikolic, Milica; Topisirovic, Ljubisa; Kojic, Milan

    2014-05-01

    The aim of this study was to investigate the composition of lactic acid bacteria (LAB) in autochthonous young cheeses, sweet creams and sweet kajmaks produced in the Vlašić mountain region of central Bosnia and Herzegovina near the town of Travnik over a four season period. These three products were made from cow's milk by a traditional method without the addition of a starter culture. Preliminary characterization with phenotype-based assays and identification using rep-PCR with a (GTG)5 primer and 16S rDNA sequence analysis were undertaken for 460 LAB isolates obtained from all the examined samples. Fifteen species were identified as follows: Lactococcus lactis, Lactococcus raffinolactis, Lactococcus garviae, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus helveticus, Enterococcus faecium, Enterococcus durans, Enterococcus faecalis, Enterococcus italicus, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Leuconostoc lactis, Streptococcus thermophilus and Streptococcus mitis. A wide genotypic and phenotypic heterogeneity of the species was observed, particularly within the Lc. lactis strains. In all of the tested dairy products across four seasons, a significantly positive correlation (r = 0.690) between the presence of lactococci and enterococci and a negative correlation (r = 0.722) between the presence of lactococci and leuconostocs were recorded. Forty-five percent of the lactobacilli and 54.4% of the lactococci exhibited proteolytic activity, whereas 18.7% of the total LAB isolates exhibited antimicrobial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Chemical and microbiological characterisation of kefir grains.

    PubMed

    Garrote, G L; Abraham, A G; De Antoni, G L

    2001-11-01

    Chemical and microbiological composition of four Argentinean kefir grains from different sources as well as characteristics of the corresponding fermented milk were studied. Kefir grains CIDCA AGK1, AGK2 and AGK4 did not show significant differences in their chemical and microbiological composition. In contrast, protein and yeast content of AGK3 was higher than in the other grains. Although grain microflora comprised lactobacilli, lactococcus, acetic acid bacteria and yeast, we found an important difference regarding species. Lactococcus lactis subsp. lactis, Lactobacillus kefir, Lactobacillus plantarum, Acetobacter and Saccharomyces were present in all types of kefir grain. While Leuconostoc mesenteroides was only isolated from grains CIDCA AGK1 and Lactococcus lactis subsp. lactis biovar diacetylactis, Lactobacillus parakefir and Kluyveromyces marxianus were only isolated from CIDCA AGK2 grains. All grains produced acid products with pH between 3.5 and 4.0. The apparent viscosity of AGK1 fermented milk was greater than the product obtained with AGK4. All fermented milks had inhibitory power towards Escherichia coli but AGK1 and AGK2 supernatants were able to halt the bacterial growth for at least 25 h. Grain weight increment in AGK1, AGK2 and AGK3 during growth in milk did not show significant differences. Despite their fermenting activity, AGK4 grains did not increase their weight.

  4. Diversity of lactic acid bacteria associated with fish and the fish farm environment, established by amplified rRNA gene restriction analysis.

    PubMed

    Michel, Christian; Pelletier, Claire; Boussaha, Mekki; Douet, Diane-Gaëlle; Lautraite, Armand; Tailliez, Patrick

    2007-05-01

    Lactic acid bacteria have become a major source of concern for aquaculture in recent decades. In addition to true pathogenic species of worldwide significance, such as Streptococcus iniae and Lactococcus garvieae, several species have been reported to produce occasional fish mortalities in limited geographic areas, and many unidentifiable or ill-defined isolates are regularly isolated from fish or fish products. To clarify the nature and prevalence of different fish-associated bacteria belonging to the lactic acid bacterium group, a collection of 57 isolates of different origins was studied and compared with a set of 22 type strains, using amplified rRNA gene restriction analysis (ARDRA). Twelve distinct clusters were delineated on the basis of ARDRA profiles and were confirmed by sequencing of sodA and 16S rRNA genes. These clusters included the following: Lactococcus raffinolactis, L. garvieae, Lactococcus l., S. iniae, S. dysgalactiae, S. parauberis, S. agalactiae, Carnobacterium spp., the Enterococcus "faecium" group, a heterogeneous Enterococcus-like cluster comprising indiscernible representatives of Vagococcus fluvialis or the recently recognized V. carniphilus, V. salmoninarum, and Aerococcus spp. Interestingly, the L. lactis and L. raffinolactis clusters appeared to include many commensals of fish, so opportunistic infections caused by these species cannot be disregarded. The significance for fish populations and fish food processing of three or four genetic clusters of uncertain or complex definition, namely, Aerococcus and Enterococcus clusters, should be established more accurately.

  5. Causal Relationship between Microbial Ecology Dynamics and Proteolysis during Manufacture and Ripening of Protected Designation of Origin (PDO) Cheese Canestrato Pugliese

    PubMed Central

    De Pasquale, Ilaria; Calasso, Maria; Mancini, Leonardo; Ercolini, Danilo; La Storia, Antonietta; De Angelis, Maria; Gobbetti, Marco

    2014-01-01

    Pyrosequencing of the 16S rRNA gene, community-level physiological profiles determined by the use of Biolog EcoPlates, and proteolysis analyses were used to characterize Canestrato Pugliese Protected Designation of Origin (PDO) cheese. The number of presumptive mesophilic lactococci in raw ewes' milk was higher than that of presumptive mesophilic lactobacilli. The numbers of these microbial groups increased during ripening, showing temporal and numerical differences. Urea-PAGE showed limited primary proteolysis, whereas the analysis of the pH 4.6-soluble fraction of the cheese revealed that secondary proteolysis increased mainly from 45 to 75 days of ripening. This agreed with the concentration of free amino acids. Raw ewes' milk was contaminated by several bacterial phyla: Proteobacteria (68%; mainly Pseudomonas), Firmicutes (30%; mainly Carnobacterium and Lactococcus), Bacteroidetes (0.05%), and Actinobacteria (0.02%). Almost the same microbial composition persisted in the curd after molding. From day 1 of ripening onwards, the phylum Firmicutes dominated. Lactococcus dominated throughout ripening, and most of the Lactobacillus species appeared only at 7 or 15 days. At 90 days, Lactococcus (87.2%), Lactobacillus (4.8%; mainly Lactobacillus plantarum and Lactobacillus sakei), and Leuconostoc (3.9%) dominated. The relative utilization of carbon sources by the bacterial community reflected the succession. This study identified strategic phases that characterized the manufacture and ripening of Canestrato Pugliese cheese and established a causal relationship between mesophilic lactobacilli and proteolysis. PMID:24771032

  6. Causal relationship between microbial ecology dynamics and proteolysis during manufacture and ripening of protected designation of origin (PDO) cheese Canestrato Pugliese.

    PubMed

    De Pasquale, Ilaria; Calasso, Maria; Mancini, Leonardo; Ercolini, Danilo; La Storia, Antonietta; De Angelis, Maria; Di Cagno, Raffaella; Gobbetti, Marco

    2014-07-01

    Pyrosequencing of the 16S rRNA gene, community-level physiological profiles determined by the use of Biolog EcoPlates, and proteolysis analyses were used to characterize Canestrato Pugliese Protected Designation of Origin (PDO) cheese. The number of presumptive mesophilic lactococci in raw ewes' milk was higher than that of presumptive mesophilic lactobacilli. The numbers of these microbial groups increased during ripening, showing temporal and numerical differences. Urea-PAGE showed limited primary proteolysis, whereas the analysis of the pH 4.6-soluble fraction of the cheese revealed that secondary proteolysis increased mainly from 45 to 75 days of ripening. This agreed with the concentration of free amino acids. Raw ewes' milk was contaminated by several bacterial phyla: Proteobacteria (68%; mainly Pseudomonas), Firmicutes (30%; mainly Carnobacterium and Lactococcus), Bacteroidetes (0.05%), and Actinobacteria (0.02%). Almost the same microbial composition persisted in the curd after molding. From day 1 of ripening onwards, the phylum Firmicutes dominated. Lactococcus dominated throughout ripening, and most of the Lactobacillus species appeared only at 7 or 15 days. At 90 days, Lactococcus (87.2%), Lactobacillus (4.8%; mainly Lactobacillus plantarum and Lactobacillus sakei), and Leuconostoc (3.9%) dominated. The relative utilization of carbon sources by the bacterial community reflected the succession. This study identified strategic phases that characterized the manufacture and ripening of Canestrato Pugliese cheese and established a causal relationship between mesophilic lactobacilli and proteolysis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Time Series Analysis of the Microbiota of Children Suffering From Acute Infectious Diarrhea and Their Recovery After Treatment.

    PubMed

    Dinleyici, Ener C; Martínez-Martínez, Daniel; Kara, Ates; Karbuz, Adem; Dalgic, Nazan; Metin, Ozge; Yazar, Ahmet S; Guven, Sirin; Kurugol, Zafer; Turel, Ozden; Kucukkoc, Mehmet; Yasa, Olcay; Eren, Makbule; Ozen, Metehan; Martí, Jose Manuel; P Garay, Carlos; Vandenplas, Yvan; Moya, Andrés

    2018-01-01

    Gut microbiota is closely related to acute infectious diarrhea, one of the leading causes of mortality and morbidity in children worldwide. Understanding the dynamics of the recovery from this disease is of clinical interest. This work aims to correlate the dynamics of gut microbiota with the evolution of children who were suffering from acute infectious diarrhea caused by a rotavirus, and their recovery after the administration of a probiotic, Saccharomyces boulardii CNCM I-745. The experiment involved 10 children with acute infectious diarrhea caused by a rotavirus, and six healthy children, all aged between 3 and 4 years. The children who suffered the rotavirus infection received S. boulardii CNCM I-745 twice daily for the first 5 days of the experiment. Fecal samples were collected from each participant at 0, 3, 5, 10, and 30 days after probiotic administration. Microbial composition was characterized by 16S rRNA gene sequencing. Alpha and beta diversity were calculated, along with dynamical analysis based on Taylor's law to assess the temporal stability of the microbiota. All children infected with the rotavirus stopped having diarrhea at day 3 after the intervention. We observed low alpha diversities in the first 5 days ( p -value < 0.05, Wilcoxon test), larger at 10 and 30 days after probiotic treatment. Canonical correspondence analysis (CCA) showed differences in the gut microbiota of healthy children and of those who suffered from acute diarrhea in the first days ( p -value < 0.05, ADONIS test), but not in the last days of the experiment. Temporal variability was larger in children infected with the rotavirus than in healthy ones. In particular, Gammaproteobacteria class was found to be abundant in children with acute diarrhea. We identified the microbiota transition from a diseased state to a healthy one with time, whose characterization may lead to relevant clinical data. This work highlights the importance of using time series for the study of

  8. Production of Phytase Enzyme by a Bioengineered Probiotic for Degrading of Phytate Phosphorus in the Digestive Tract of Poultry.

    PubMed

    Pakbaten, Bahareh; Majidzadeh Heravi, Reza; Kermanshahi, Hassan; Sekhavati, Mohammad-Hadi; Javadmanesh, Ali; Mohammadi Ziarat, Masoud

    2018-04-21

    Probiotics are beneficial microorganisms and have long been used in food production as well as health promotion products. Bioengineered probiotics are used to express and transfer native or recombinant molecules to the mucosal surface of the digestive tract to improve feed efficiency and promote health. Lactococcus lactis is a potential probiotic candidate to produce useful biological proteins. The aim of this investigation was to develop a recombinant Lactococcus lactis with the potential of producing phytase. To enhance the efficiency of expression and secretion of recombinant phytase, usp45 signal peptide was added to the expression vector containing phytase gene (appA2) derived from Escherichia coli. Sequencing of recombinant plasmid containing appA2 showed the correct construction of plasmid. Total length of the phytase insert was 1.25 kbp. A Blast search of the cloned fragment showed 99% similarity to the reported E. coli phytase sequence in the GenBank (accession number: AM946981.2). A plasmid containing usp45 and appA2 electrotransferred into Lactococcus lactis. Zymogram with polyacrylamide gel revealed that the protein extract from the supernatant and the cell pellet of recombinant bacteria had phytase activity. Enzyme activity of 4 U/ml was obtained in cell extracts, and supernatant maximal phytase activity was 19 U/ml. The recombinant L. lactis was supplemented in broiler chicken feed and showed the increase of apparent digestibility on phytate phosphorus in the digestive tract and it was same as performance of E. coli commercial phytase.

  9. Russian Kefir Grains Microbial Composition and Its Changes during Production Process.

    PubMed

    Kotova, I B; Cherdyntseva, T A; Netrusov, A I

    2016-01-01

    By combining DGGE-PCR method, classical microbiological analysis and light- and electron microscopic observations, it was found that the composition of microbial communities of central Russia regions kefir grains, starter and kefir drink include bacteria of the genera Lactobacillus, Leuconostoc and Lactococcus, and yeast anamorphs of the genera Saccharomyces, Kazachstania and Gibellulopsis. Fifteen prokaryotic and four eukaryotic pure cultures of microorganisms were isolated and identified from kefir grains. It has been shown that members of the genus Lactobacillus prevailed in kefir grains, whereas strains Leuconostoc pseudomesenteroides and Lactococcus lactis dominated in the final product - kefir drink. Yeasts contained in kefir grains in small amounts have reached a significant number of cells in the process of development of this dairy product. The possibility of reverse cell aggregation has been attempted in a mixed cultivation of all isolated pure cultures, but full formation kefir grains is not yet observed after 1.5 years of observation and reinoculations.

  10. Blind Deconvolution of Astronomical Images with a Constraint on Bandwidth Determined by the Parameters of the Optical System

    NASA Astrophysics Data System (ADS)

    Luo, Lin; Fan, Min; Shen, Mang-zuo

    2008-01-01

    Atmospheric turbulence severely restricts the spatial resolution of astronomical images obtained by a large ground-based telescope. In order to reduce effectively this effect, we propose a method of blind deconvolution, with a bandwidth constraint determined by the parameters of the telescope's optical system based on the principle of maximum likelihood estimation, in which the convolution error function is minimized by using the conjugate gradient algorithm. A relation between the parameters of the telescope optical system and the image's frequency-domain bandwidth is established, and the speed of convergence of the algorithm is improved by using the positivity constraint on the variables and the limited-bandwidth constraint on the point spread function. To avoid the effective Fourier frequencies exceed the cut-off frequency, it is required that each single image element (e.g., the pixel in the CCD imaging) in the sampling focal plane should be smaller than one fourth of the diameter of the diffraction spot. In the algorithm, no object-centered constraint was used, so the proposed method is suitable for the image restoration of a whole field of objects. By the computer simulation and by the restoration of an actually-observed image of α Piscium, the effectiveness of the proposed method is demonstrated.

  11. Targeting Mucosal Dendritic Cells with Microbial Antigens from Probiotic Lactic Acid Bacteria

    DTIC Science & Technology

    2008-03-01

    Lactoba- cillus gasseri, Lactobacillus plantarum , Lactobacillus delbreuckii, Lactobacillus rhamnosus, Lactobacillus salivarius and Lactobacillus ... Lactobacillus plantarum Helicobacter pylori UreB Mouse [105] S. pneumoniae PsaA Mouse [104] Lactococcus lactis C. tetani TTFC Mouse [81...anthracis (the causative agent of anthrax). An antigen-specific immune response can be elicited using specific strains of Lactobacillus acidophilus

  12. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  13. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Phenotypic and Genotypic Characterization of Some Lactic Acid Bacteria Isolated from Bee Pollen: A Preliminary Study

    PubMed Central

    BELHADJ, Hani; HARZALLAH, Daoud; BOUAMRA, Dalila; KHENNOUF, Seddik; Dahamna, Saliha; GHADBANE, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133. PMID:24936378

  15. Phenotypic and genotypic characterization of some lactic Acid bacteria isolated from bee pollen: a preliminary study.

    PubMed

    Belhadj, Hani; Harzallah, Daoud; Bouamra, Dalila; Khennouf, Seddik; Dahamna, Saliha; Ghadbane, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133.

  16. Bacterial succession and the dynamics of volatile compounds during the fermentation of Chinese rice wine from Shaoxing region.

    PubMed

    Liu, Shuang Ping; Mao, Jian; Liu, Yun Ya; Meng, Xiang Yong; Ji, Zhong Wei; Zhou, Zhi Lei; Ai-lati, Aisikaer

    2015-12-01

    Shaoxing rice wine is one of the most typical representatives of Chinese rice wine. It is brewed under non-sterile condition with various microorganism growing at the same time and forms a special flavor. The aims of this study was to monitor the bacterial succession by MiSeq pyrosequencing and the volatile compound dynamics by HS-SPME/GC–MS during brewing process. Moreover, the volatile compounds and bacterial community were analyzed by partial least squares regression to evaluate the effect of bacteria on volatile compounds formation. The results showed that there were ten dominating genera during Shaoxing rice wine fermentation process. Ten genera, Bacillus, Leuconostoc, Lactococcus, Weissella, Thermoactinomyces, Pseudomonas, Saccharopolyspora, Staphylococcus, Enterobacter and Lactobacillus, were identified as the main bacteria. The Bacillus and Lactobacillus dominated the Chinese rice wine ecosystems. In addition, a total of 64 volatile compounds were identified, mainly esters, alcohols, carbonyl compound and phenols. Pseudomonas were involved in synthesis of a wide variety of volatile compounds. Thermoactinomyces, Bacillus and Lactococcus also played critical roles in the formation of volatile compounds.

  17. Heme and menaquinone induced electron transport in lactic acid bacteria

    PubMed Central

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species. PMID:19480672

  18. Heme and menaquinone induced electron transport in lactic acid bacteria.

    PubMed

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  19. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  20. Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea

    PubMed Central

    Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P.; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo

    2014-01-01

    Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001–2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future. PMID:25321875

  1. Future climate data from RCP 4.5 and occurrence of malaria in Korea.

    PubMed

    Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo

    2014-10-15

    Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001-2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future.

  2. Resident lactic acid bacteria in raw milk Canestrato Pugliese cheese.

    PubMed

    Aquilanti, L; Dell'Aquila, L; Zannini, E; Zocchetti, A; Clementi, F

    2006-08-01

    Investigation of the autochthonous lactic acid bacteria (LAB) population of the raw milk protected designation of origin Canestrato Pugliese cheese using phenotypic and genotypic methodologies. Thirty phenotypic assays and three molecular techniques (restriction fragment length polymorphism, partial sequencing of the 16S rRNA gene and recA multiplex PCR assay) were applied to the identification of 304 isolates from raw milk Canestrato Pugliese cheese. As a result, 168 of 207 isolates identified were ascribed to genus Enterococcus, 25 to Lactobacillus, 13 to Lactococcus and one to Leuconostoc. More in details among the lactobacilli, the species Lactobacillus brevis and Lactobacillus plantarum were predominant, including 13 and 10 isolates respectively, whereas among the lactococci, Lactococcus lactis subsp.cremoris [corrected] was the species more frequently detected (seven isolates). Except for the enterococci, phenotypic tests were not reliable enough for the identification of the isolates, if not combined to the genotype-based molecular techniques. The polyphasic approach utilized allowed 10 different LAB species to be detected; thus suggesting the appreciable LAB diversity of the autochthonous microbial population of the Canestrato Pugliese cheese. A comprehensive study of the resident raw milk Canestrato Pugliese cheese microbial population has been undertaken.

  3. Isolation and Identification of Lactic Acid Bacteria from Traditional Dairy Products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR Analysis of Predominant Species

    PubMed Central

    2016-01-01

    In this study, traditional culture method and 16S rRNA gene analysis were applied to reveal the composition and diversity of lactic acid bacteria (LAB) of fermented cow milk, huruud and urum from Baotou and Bayannur of midwestern Inner Mongolia. Also, the quantitative results of dominant LAB species in three different types of dairy products from Baotou and Bayannur were gained by quantitative polymerase chain reaction (q-PCR) technology. Two hundred and two LAB strains isolated from sixty-six samples were identified and classified into four genera, namely Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, and twenty-one species and subspecies. From these isolates, Lactococcus lactis subsp. lactis (32.18%), Lactobacillus plantarum (12.38%) and Leuconosto mesenteroides (11.39%) were considered as the dominated LAB species under the condition of cultivating in MRS and M17 medium. And the q-PCR results revealed that the number of dominant species varied from samples to samples and from region to region. This study clearly shows the composition and diversity of LAB existing in fermented cow milk, huruud and urum, which could be considered as valuable resources for LAB isolation and further probiotic selection. PMID:27621691

  4. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection.

    PubMed

    Rosberg-Cody, Eva; Liavonchanka, Alena; Göbel, Cornelia; Ross, R Paul; O'Sullivan, Orla; Fitzgerald, Gerald F; Feussner, Ivo; Stanton, Catherine

    2011-02-17

    The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.

  5. Intestinal bacterial signatures of white feces syndrome in shrimp.

    PubMed

    Hou, Dongwei; Huang, Zhijian; Zeng, Shenzheng; Liu, Jian; Wei, Dongdong; Deng, Xisha; Weng, Shaoping; Yan, Qingyun; He, Jianguo

    2018-04-01

    Increasing evidence suggests that the intestinal microbiota is closely correlated with the host's health status. Thus, a serious disturbance that disrupts the stability of the intestinal microecosystem could cause host disease. Shrimps are one of the most important products among fishery trading commodities. However, digestive system diseases, such as white feces syndrome (WFS), frequently occur in shrimp culture and have led to enormous economic losses across the world. The WFS occurrences are unclear. Here, we compared intestinal bacterial communities of WFS shrimp and healthy shrimp. Intestinal bacterial communities of WFS shrimp exhibited less diversity but were more heterogeneous than those of healthy shrimp. The intestinal bacterial communities were significantly different between WFS shrimp and healthy shrimp; compared with healthy shrimp, in WFS shrimp, Candidatus Bacilloplasma and Phascolarctobacterium were overrepresented, whereas Paracoccus and Lactococcus were underrepresented. PICRUSt functional predictions indicated that the relative abundances of genes involved in energy metabolism and genetic information processing were significantly greater in WFS shrimp. Collectively, we found that the composition and predicted functions of the intestinal bacterial community were markedly shifted by WFS. Significant increases in Candidatus Bacilloplasma and Phascolarctobacterium and decreases in Paracoccus and Lactococcus may contribute to WFS in shrimp.

  6. Accretion and outflow activity on the late phases of pre-main-sequence evolution. The case of RZ Piscium

    NASA Astrophysics Data System (ADS)

    Potravnov, I. S.; Mkrtichian, D. E.; Grinin, V. P.; Ilyin, I. V.; Shakhovskoy, D. N.

    2017-03-01

    RZ Psc is an isolated high-latitude post-T Tauri star that demonstrates a UX Ori-type photometric activity. The star shows very weak spectroscopic signatures of accretion, but at the same time possesses the unusual footprints of the wind in Na I D lines. In the present work we investigate new spectroscopic observations of RZ Psc obtained in 2014 during two observation runs. We found variable blueshifted absorption components (BACs) in lines of the other alcali metals, K I 7699 Å and Ca II IR triplet. We also confirmed the presence of a weak emission component in the Hα line, which allowed us to estimate the mass accretion rate on the star as Ṁ ≤ 7 × 10-12M⊙ yr-1. We could not reveal any clear periodicity in the appearance of BACs in sodium lines. Nevertheless, the exact coincidence of the structure and velocities of the Na I D absorptions observed with the interval of about one year suggests that such a periodicity should exist.

  7. Microbial background flora in small-scale cheese production facilities does not inhibit growth and surface attachment of Listeria monocytogenes.

    PubMed

    Schirmer, B C T; Heir, E; Møretrø, T; Skaar, I; Langsrud, S

    2013-10-01

    The background microbiota of 5 Norwegian small-scale cheese production sites was examined and the effect of the isolated strains on the growth and survival of Listeria monocytogenes was investigated. Samples were taken from the air, food contact surfaces (storage surfaces, cheese molds, and brine) and noncontact surfaces (floor, drains, and doors) and all isolates were identified by sequencing and morphology (mold). A total of 1,314 isolates were identified and found to belong to 55 bacterial genera, 1 species of yeast, and 6 species of mold. Lactococcus spp. (all of which were Lactococcus lactis), Staphylococcus spp., Microbacterium spp., and Psychrobacter sp. were isolated from all 5 sites and Rhodococcus spp. and Chryseobacterium spp. from 4 sites. Thirty-two genera were only found in 1 out of 5 facilities each. Great variations were observed in the microbial background flora both between the 5 producers, and also within the various production sites. The greatest diversity of bacteria was found in drains and on rubber seals of doors. The flora on cheese storage shelves and in salt brines was less varied. A total of 62 bacterial isolates and 1 yeast isolate were tested for antilisterial activity in an overlay assay and a spot-on-lawn assay, but none showed significant inhibitory effects. Listeria monocytogenes was also co-cultured on ceramic tiles with bacteria dominating in the cheese production plants: Lactococcus lactis, Pseudomonas putida, Staphylococcus equorum, Rhodococcus spp., or Psychrobacter spp. None of the tested isolates altered the survival of L. monocytogenes on ceramic tiles. The conclusion of the study was that no common background flora exists in cheese production environments. None of the tested isolates inhibited the growth of L. monocytogenes. Hence, this study does not support the hypothesis that the natural background flora in cheese production environments inhibits the growth or survival of L. monocytogenes. Copyright © 2013 American

  8. Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese.

    PubMed

    Ribeiro, S C; Coelho, M C; Todorov, S D; Franco, B D G M; Dapkevicius, M L E; Silva, C C G

    2014-03-01

    Evaluate technologically relevant properties from bacteriocin-producing strains to use as starter/adjunct cultures in cheese making. Eight isolates obtained from Pico cheese produced in Azores (Portugal) were found to produce bacteriocins against Listeria monocytogenes and three isolates against Clostridium perfringens. They were identified as Lactococcus lactis and Enterococcus faecalis and submitted to technological tests: growth at different conditions of temperature and salt, acid production, proteolysis, lipolysis, coexistence, enzymatic profile and autolytic capacity. Safety evaluation was performed by evaluating haemolytic, gelatinase and DNase activity, resistance to antibiotics and the presence of virulence genes. Some isolates presented good technological features such as high autolytic activity, acid and diacetyl production. Lactococcus lactis was negative for all virulence genes tested and inhibit the growth of all Lactic acid bacteria (LAB) isolates. Enterococci were positive for the presence of some virulence genes, but none of the isolates were classified as resistant to important antibiotics. The bacteriocin-producing Lc. lactis present good potential for application in food as adjunct culture in cheese production. The study also reveals good technological features for some Enterococcus isolates. Bacteriocin-producing strains presented important technological properties to be exploited as new adjunct culture for the dairy industry, influencing flavour development and improve safety. © 2013 The Society for Applied Microbiology.

  9. Biodiversity of Bacterial Ecosystems in Traditional Egyptian Domiati Cheese▿

    PubMed Central

    El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude

    2007-01-01

    Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type. PMID:17189434

  10. Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese.

    PubMed

    El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude

    2007-02-01

    Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type.

  11. Study of the microbial ecology of wild and aquacultured Tunisian fresh fish.

    PubMed

    Boulares, Mouna; Mejri, Lobna; Hassouna, Mnasser

    2011-10-01

    Eighty samples of fresh fish were collected in Tunisia and analyzed for microbial load. Quality and hygienic safety of the meat and intestines of wild and aquacultured fresh fish were determined. The mesophilic aerobic plate count and populations of psychrotrophic lactic acid bacteria (LAB) and other psychrotrophic bacteria ranged from 5.67 to 7.29, 4.51 to 6, and 5.07 to 6.21 log CFU/g, respectively. For all microbiological determinations, bacterial counts were lower in meat than in the intestines of fresh fish. For all samples lower microbial populations were found in most of the wild fish than in the aquacultured fish. No isolates of the pathogenic genera Salmonella and Listeria were detected in any sample. Among the 160 strains of biopreservative psychrotrophic LAB and the 150 strains of spoilage psychrotrophic gram-negative bacteria identified by biochemical and molecular methods, Lactobacillus (six species) and Pseudomonas (six species) predominated. Lactococcus, Leuconostoc, Carnobacterium (C. piscicola and C. divergens), Aeromonas, and Photobacterium were the most common genera, and Lactococcus lactis, Lactobacillus plantarum, Pseudomonas fluorescens, and Aeromonas hydrophila were the most common species. These findings indicate that the microbiological quality of fresh fish in Tunisia can be preserved by controlling pathogenic and psychrotrophic bacteria.

  12. Identification and characterization of lactic acid bacteria isolated from mixed pasture of timothy and orchardgrass, and its badly preserved silage.

    PubMed

    Tohno, Masanori; Kobayashi, Hisami; Nomura, Masaru; Uegaki, Ryuichi; Cai, Yimin

    2012-04-01

    In order to understand the relationship between lactic acid bacteria (LAB) species and silage fermentation, a total of 65 LAB strains isolated from mixed pasture of timothy (Phleum pratense L.) and orchardgrass (Dactylis glomerata L.), and its badly preserved silages were subjected to phenotypic and genetic analysis. According to these analyses, the isolates were divided into 13 groups, including Enterococcus gallinarum, Lactobacillus acidipiscis, L. coryniformis subsp. coryniformis, L. coryniformis subsp. torquens, L. curvatus, L. paraplantarum, L. plantarum subsp. argentoratensis, L. plantarum subsp. plantarum, L. sakei subsp. carnosus, Lactococcus garvieae, Lactococcus lactis subsp. cremoris, Leuconostoc pseudomesenteroides, Pediococcus acidilactici, Pediococcus pentosaceus, Weissella hellenica, Weissella paramesenteroides and Carnobacterium divergens. This is the first report to document that C. divergens, L. acidipiscis, L. sakei subsp. carnosus, L. garvieae, phenotypically novel L. lactis subsp. cremoris, E. gallinarum and W. hellenica are present in vegetative forage crops. L. plantarum group strains were most frequently isolated from the badly preserved silages. Some isolates showed a wide range of growth preferences for carbohydrate utilization, optimal growth pH and temperature in vitro, indicating that they have a high growth potential. These results are useful in understanding the diversity of LAB associated with decayed silage of timothy and orchardgrass. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  13. An in vivo invertebrate evaluation system for identifying substances that suppress sucrose-induced postprandial hyperglycemia

    PubMed Central

    Matsumoto, Yasuhiko; Ishii, Masaki; Sekimizu, Kazuhisa

    2016-01-01

    Sucrose is a major sweetener added to various foods and beverages. Excessive intake of sucrose leads to increases in blood glucose levels, which can result in the development and exacerbation of lifestyle-related diseases such as obesity and diabetes. In this study, we established an in vivo evaluation system using silkworms to explore substances that suppress the increase in blood glucose levels caused by dietary intake of sucrose. Silkworm hemolymph glucose levels rapidly increased after intake of a sucrose-containing diet. Addition of acarbose or voglibose, α-glycosidase inhibitors clinically used for diabetic patients, suppressed the dietary sucrose-induced increase in the silkworm hemolymph glucose levels. Screening performed using the sucrose-induced postprandial hyperglycemic silkworm model allowed us to identify some lactic acid bacteria that inhibit the increase in silkworm hemolymph glucose levels caused by dietary intake of sucrose. The inhibitory effects of the Lactococcus lactis #Ll-1 bacterial strain were significantly greater than those of different strains of lactic acid bacteria. No effect of the Lactococcus lactis #Ll-1 strain was observed in silkworms fed a glucose diet. These results suggest that the sucrose diet-induced postprandial hyperglycemic silkworm is a useful model for evaluating chemicals and lactic acid bacteria that suppress increases in blood glucose levels. PMID:27194587

  14. An in vivo invertebrate evaluation system for identifying substances that suppress sucrose-induced postprandial hyperglycemia.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Sekimizu, Kazuhisa

    2016-05-19

    Sucrose is a major sweetener added to various foods and beverages. Excessive intake of sucrose leads to increases in blood glucose levels, which can result in the development and exacerbation of lifestyle-related diseases such as obesity and diabetes. In this study, we established an in vivo evaluation system using silkworms to explore substances that suppress the increase in blood glucose levels caused by dietary intake of sucrose. Silkworm hemolymph glucose levels rapidly increased after intake of a sucrose-containing diet. Addition of acarbose or voglibose, α-glycosidase inhibitors clinically used for diabetic patients, suppressed the dietary sucrose-induced increase in the silkworm hemolymph glucose levels. Screening performed using the sucrose-induced postprandial hyperglycemic silkworm model allowed us to identify some lactic acid bacteria that inhibit the increase in silkworm hemolymph glucose levels caused by dietary intake of sucrose. The inhibitory effects of the Lactococcus lactis #Ll-1 bacterial strain were significantly greater than those of different strains of lactic acid bacteria. No effect of the Lactococcus lactis #Ll-1 strain was observed in silkworms fed a glucose diet. These results suggest that the sucrose diet-induced postprandial hyperglycemic silkworm is a useful model for evaluating chemicals and lactic acid bacteria that suppress increases in blood glucose levels.

  15. Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria.

    PubMed

    Aspmo, Stein Ivar; Horn, Svein Jarle; Eijsink, Vincent G H

    2005-07-01

    Hydrolysates of cod viscera were tested as an alternative to commonly used complex nitrogen sources (peptones and/or extracts) for the type strains of the lactic acid bacteria Lactococcus lactis, Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus casei, Lactobacillus sakei and Pediococcus pentosaceus. Comparative studies with MRS-like media containing different nitrogen sources showed that all the fish hydrolysates performed equally well or better than commercial extracts/peptones for all selected lactic acid bacteria.

  16. A Nisin Bioassay Based on Bioluminescence

    PubMed Central

    Wahlström, G.; Saris, P. E. J.

    1999-01-01

    A Lactococcus lactis subsp. lactis strain that can sense the bacteriocin nisin and transduce the signal into bioluminescence was constructed. By using this strain, a bioassay based on bioluminescence was developed for quantification of nisin, for detection of nisin in milk, and for identification of nisin-producing strains. As little as 0.0125 ng of nisin per ml was detected within 3 h by this bioluminescence assay. This detection limit was lower than in previously described methods. PMID:10427078

  17. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.

    PubMed

    Dewan, Sailendra; Tamang, Jyoti Prakash

    2007-10-01

    Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

  18. Isolation and molecular identification of lactic acid bacteria and Bifidobacterium spp. from faeces of the blue-fronted Amazon parrot in Brazil.

    PubMed

    Allegretti, L; Revolledo, L; Astolfi-Ferreira, C S; Chacón, J L; Martins, L M; Seixas, G H F; Ferreira, A J P

    2014-12-01

    In Brazil, the blue-fronted Amazon parrot (Amazona aestiva) is a common pet. The faecal microbiota of these birds include a wide variety of bacterial species, the majority of which belong to the Gram-positive lactic acid bacteria (LAB) clade. The aim of this study was to investigate differences in the diversity and abundance of LAB and Bifidobacterium spp. in the cloacae between wild and captive birds and to select, identify and characterise LAB for consideration as a parrot probiotic. Cloacal swabs were collected from 26 wild and 26 captive birds. Bacterial DNA was extracted, and the 16S rRNA genes were amplified. The numbers of PCR-positive Enterococcus, Pediococcus, and Lactobacillus species isolated from wild and captive birds were significantly different (P<0.05). Enterococcus was the most frequently isolated genus, followed by Pediococcus, Lactobacillus, Lactococcus and Bifidobacterium. Enterococcus faecium, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus coryniformis, Lactobacillus sanfranciscensis and Bifidobacterium bifidum were the most frequently isolated species from all birds. This study increases our understanding of the faecal microbiota, and may help to improve the nutrition and habitat management of captive and wild parrots. The bacterial population identified in the faecal microbiota of clinically healthy wild and captive parrots can serve as a database to analyse variations in the gut microbiota of pathogen-infected parrots and to develop probiotics specific to these genera.

  19. Use of lacticin 481 to facilitate delivery of the bacteriophage resistance plasmid, pCBG104 to cheese starters.

    PubMed

    Mills, S; Coffey, A; O'Sullivan, L; Stokes, D; Hill, C; Fitzgerald, G F; Ross, R P

    2002-01-01

    Use of lacticin 481 to facilitate the conjugal transfer of the bacteriophage resistance plasmid pCBG104 to various starter cultures. A raw milk isolate of Lactococcus was found to harbour determinants for lacticin 481 production and immunity and phage resistance on a plasmid designated pCBG104. The lacticin 481 was successfully used to mobilize the phage resistance determinant to a variety of cheese starters enabling the formation of highly phage resistant starters. In addition, it facilitated the stacking of a number of phage resistance genes, namely a type I restriction modification system, a phage abortive infection system and a phage adsorption blocking system in a single Lactococcus strain without the use of recombinant techniques. The transconjugants were all shown to produce lacticin 481 and to contain the entire 481 operon. Subsequently one transconjugant was selected and successfully used for large-scale cheddar cheese manufacture. Lacticin 481 could be used as a food-grade selectable marker to facilitate the introduction of advantageous traits to starter cultures for industrial food fermentations. Food-grade selectable markers greatly facilitate the introduction of various advantageous traits to starter cultures for industrial food fermentation. Indeed self-cloning which is becoming increasingly important for strain improvement has a requirement for the identification and demonstration of the utility of tools such as lacticin 481.

  20. Diversity and dynamics of lactic acid bacteria in Atole agrio, a traditional maize-based fermented beverage from South-Eastern Mexico, analysed by high throughput sequencing and culturing.

    PubMed

    Pérez-Cataluña, Alba; Elizaquível, Patricia; Carrasco, Purificación; Espinosa, Judith; Reyes, Dolores; Wacher, Carmen; Aznar, Rosa

    2018-03-01

    The purpose of this work was to analyse the diversity and dynamics of lactic acid bacteria (LAB) throughout the fermentation process in Atole agrio, a traditional maize based food of Mexican origin. Samples of different fermentation times were analysed using culture-dependent and -independent approaches. Identification of LAB isolates revealed the presence of members of the genera Pediococcus, Weissella, Lactobacillus, Leuconostoc and Lactococcus, and the predominance of Pediococcus pentosaceus and Weissella confusa in liquid and solid batches, respectively. High-throughput sequencing (HTS) of the 16S rRNA gene confirmed the predominance of Lactobacillaceae and Leuconostocaceae at the beginning of the process. In liquid fermentation Acetobacteraceae dominate after 4 h as pH decreased. In contrast, Leuconostocaceae dominated the solid fermentation except at 12 h that were overgrown by Acetobacteraceae. Regarding LAB genera, Lactobacillus dominated the liquid fermentation except at 12 h when Weissella, Lactococcus and Streptococcus were the most abundant. In solid fermentation Weissella predominated all through the process. HTS determined that Lactobacillus plantarum and W. confusa dominated in the liquid and solid batches, respectively. Two oligotypes have been identified for L. plantarum and W. confusa populations, differing in a single nucleotide position each. Only one of the oligotypes was detected among the isolates obtained from each species, the biological significance of which remains unclear.

  1. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus.

    PubMed

    Xia, Yun; Lu, Maixin; Chen, Gang; Cao, Jianmeng; Gao, Fengying; Wang, Miao; Liu, Zhigang; Zhang, Defeng; Zhu, Huaping; Yi, Mengmeng

    2018-05-01

    The present study aimed to evaluate the individual and combined effects of Lactobacillus rhamnosus (LR) JCM1136 and Lactococcus lactis subsp. lactis (LL) JCM5805 on the growth, intestinal microbiota, intestinal morphology, immune response and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). A total of 720 apparently healthy juvenile Nile tilapia (0.20 ± 0.05 g) were randomly divided into four equal groups. Fish were fed with a basal diet (CK) supplemented with JCM1136 (LR), JCM5805 (LL), and JCM1136 + JCM5805 (LR+LL) at 1 × 10 8  CFU/g basal diet for 6 weeks, followed by a basal diet for 1 week. After 6 weeks of feeding, the LL treatment significantly increased the growth and feed utilization of Nile tilapia when compared with the CK. Light microscopy and transmission electron microscopy images of the midgut revealed that probiotic supplementation significantly increased gut microvilli length and microvilli density compared to CK. The transcript levels of several key immune-related genes in the mid-intestine and liver of fish were analyzed by means of quantitative polymerase chain reaction (qPCR) at the end of the sixth week. The results showed the following: when compared to CK group, fish in LR had significantly increased transcript levels of IFN-γ, lyzc, hsp70 and IL-1β in the intestine; LL fish showed significantly increased expressions of TNF-α, IFN-γ, lyzc, hsp70 and IL-1β in the intestine and liver; and intestine lyzc, hsp70 and IL-1β and liver TNF-α, IFN-γ, hsp70 and IL-1β were significantly increased in LR+LL fish. Following a 6-week period of being fed probiotics or a control diet, the tilapia were challenged with an intraperitoneal injection of 20 μl of the pathogenic Streptococcus agalactiae (WC1535) (1 × 10 5  CFU/ml). The survival rates of the probiotic-fed groups were significantly higher than that of the CK group, and the LL group had the highest survival rate. High-throughput sequencing revealed a

  2. Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques.

    PubMed

    Ryssel, Mia; Johansen, Pernille; Al-Soud, Waleed Abu; Sørensen, Søren; Arneborg, Nils; Jespersen, Lene

    2015-12-23

    Microbial successions on the surface and in the interior of surface ripened semi-hard Danish Danbo cheeses were investigated by culture-dependent and -independent techniques. Culture-independent detection of microorganisms was obtained by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing, using amplicons of 16S and 26S rRNA genes for prokaryotes and eukaryotes, respectively. With minor exceptions, the results from the culture-independent analyses correlated to the culture-dependent plating results. Even though the predominant microorganisms detected with the two culture-independent techniques correlated, a higher number of genera were detected by pyrosequencing compared to DGGE. Additionally, minor parts of the microbiota, i.e. comprising <10.0% of the operational taxonomic units (OTUs), were detected by pyrosequencing, resulting in more detailed information on the microbial succession. As expected, microbial profiles of the surface and the interior of the cheeses diverged. During cheese production pyrosequencing determined Lactococcus as the dominating genus on cheese surfaces, representing on average 94.7%±2.1% of the OTUs. At day 6 Lactococcus spp. declined to 10.0% of the OTUs, whereas Staphylococcus spp. went from 0.0% during cheese production to 75.5% of the OTUs at smearing. During ripening, i.e. from 4 to 18 weeks, Corynebacterium was the dominant genus on the cheese surface (55.1%±9.8% of the OTUs), with Staphylococcus (17.9%±11.2% of the OTUs) and Brevibacterium (10.4%±8.3% of the OTUs) being the second and third most abundant genera. Other detected bacterial genera included Clostridiisalibacter (5.0%±4.0% of the OTUs), as well as Pseudoclavibacter, Alkalibacterium and Marinilactibacillus, which represented <2% of the OTUs. At smearing, yeast counts were low with Debaryomyces being the dominant genus accounting for 46.5% of the OTUs. During ripening the yeast counts increased significantly with Debaryomyces being the predominant genus

  3. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.

    PubMed

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene

    2015-03-01

    Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both

  4. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation.

    PubMed

    Alfonzo, Antonio; Miceli, Claudia; Nasca, Anna; Franciosi, Elena; Ventimiglia, Giusi; Di Gerlando, Rosalia; Tuohy, Kieran; Francesca, Nicola; Moschetti, Giancarlo; Settanni, Luca

    2017-04-01

    The present work was carried out to retrieve the origin of lactic acid bacteria (LAB) in sourdough. To this purpose, wheat LAB were monitored from ear harvest until the first step of fermentation for sourdough development. The influence of the geographical area and variety on LAB species/strain composition was also determined. The ears of four Triticum durum varieties (Duilio, Iride, Saragolla and Simeto) were collected from several fields located within the Palermo province (Sicily, Italy) and microbiologically investigated. In order to trace the transfer of LAB during the consecutive steps of manipulation, ears were transformed aseptically and, after threshing, milling and fermentation, samples of kernels, semolinas and doughs, respectively, were analysed. LAB were not found to dominate the microbial communities of the raw materials. In general, kernels harboured lower levels of microorganisms than ears and ears than semolinas. Several samples showing no development of LAB colonies acidified the enrichment broth suggesting the presence of LAB below the detection limit. After fermentation, LAB loads increased consistently for all doughs, reaching levels of 7.0-7.5 Log CFU/g on M17. The values of pH (5.0) and TTA (5.6 mL NaOH/10 g of dough) indicated the occurrence of the acidification process for several doughs. LAB were phenotypically and genotypically differentiated by randomly amplified polymorphic DNA (RAPD)-PCR into eight groups including 51 strains belonging to the species Lactobacillus brevis, Lactobacillus coryniformis, Lactobacillus plantarum, Lactococcus lactis, Lactococcus garvieae, Enterococcus casseliflavus, Enterococcus faecium, Leuconostoc citreum, and Pediococcus pentosaceus. Lactobacilli constituted a minority the LAB community, while lactococci represented more than 50% of strains. Lower LAB complexity was found on kernels, while a richer biodiversity was observed in semolinas and fermented doughs. For broader microbiota characterisation in

  5. The debt of John Ray and Martin Lister to Guillaume Rondelet of Montpellier

    PubMed Central

    Lewis, Gillian

    2012-01-01

    The fame of its medical university and its reputation for field botany attracted visitors from all over Europe to seventeenth-century Montpellier. It was there that Martin Lister first made the acquaintance of John Ray in 1665. Twenty years later, in London, they cooperated in the production of the ambitious and lavishly illustrated Historia Piscium based on the notes of the late Francis Willughby. Ray, Lister and others contributed additional material. In their own work on fishes, cetaceans and shellfish Ray and Lister were considerably indebted to the Libri de piscibus marinis of an earlier Montpellier professor, Guillaume Rondelet, whose Aristotelian/Galenic approach to the study of medicine and living things was distinguished by a quite exceptional level of knowledge about aquatic species, based on a secure grasp of the classical and contemporary literature, but above all on his own observations in rivers, lakes, lagoons and the open sea, and his domestication (and dissection) of marine species in ponds and aquaria at his country house. Rondelet's book proved useful to Ray and to Lister as a work of reference, as a stimulus for reflection on biological problems, as an aid to nomenclature, as a source of precise descriptions of species, in both words and pictures, as a model to be improved upon in taxonomy, as a warning against reliance on hearsay, and as a valuable account of observations and experiments. Ray used it in much the same way as he used the work of those sixteenth-century botanists who met with his approval. Several of these had been Rondelet's pupils.

  6. Diversity of lactic acid bacteria in sian-sianzih (fermented clams), a traditional fermented food in Taiwan.

    PubMed

    Chen, Yi-sheng; Wu, Hui-chung; Li, Ya-han; Leong, Kun-hon; Pua, Xiao-hui; Weng, Ming-kai; Yanagida, Fujitoshi

    2012-01-30

    Sian-sianzih (fermented clams) is a popular traditional fermented food in Taiwan. The lactic acid bacteria (LAB) microflora in sian-sianzih have not been studied in detail. In this study, LAB from sian-sianzih were isolated, characterized and identified. A total of 186 cultures of LAB were isolated from seven sian-sianzih samples and 29 cultures were isolated from its main raw substrate: clams. The identification results revealed up to 11 distinct bacterial species belonging to five genera in sian-sianzih, and three species belonging to two genera in clams. The most common bacterial genera in sian-sianzih were Lactobacillus and Weissella, followed by Leuconostoc, Pediococcus and Lactococcus. A regional similarity in LAB, with differences in diversity, was observed in the current study. On the other hand, Lactococcus lactis subsp. lactis was the most common species found in raw clam samples. The results also suggested that greater LAB diversity could be observed in wild clams than in cultured ones. Furthermore, antibacterial activities of the isolates were determined, and one Weisella hellenica strain showed inhibitory activity against the indicator strain Lactobacilluas sakei JCM 1157(T) . A sensory assessment of seven sian-sianzih samples was also performed and the results indicated that diversity of LAB has a great effect on its aroma and taste formation. The results demonstrate that various LAB species are distributed in sian-sianzih and have a great effect on the flavor of sian-sianzih. Copyright © 2011 Society of Chemical Industry.

  7. Requirement of Autolytic Activity for Bacteriocin-Induced Lysis

    PubMed Central

    Martínez-Cuesta, M. Carmen; Kok, Jan; Herranz, Elisabet; Peláez, Carmen; Requena, Teresa; Buist, Girbe

    2000-01-01

    The bacteriocin produced by Lactococcus lactis IFPL105 is bactericidal against several Lactococcus and Lactobacillus strains. Addition of the bacteriocin to exponential-growth-phase cells resulted in all cases in bacteriolysis. The bacteriolytic response of the strains was not related to differences in sensitivity to the bacteriocin and was strongly reduced in the presence of autolysin inhibitors (Co2+ and sodium dodecyl sulfate). When L. lactis MG1363 and its derivative deficient in the production of the major autolysin AcmA (MG1363acmAΔ1) were incubated with the bacteriocin, the latter did not lyse and no intracellular proteins were released into the medium. Incubation of cell wall fragments of L. lactis MG1363, or of L. lactis MG1363acmAΔ1 to which extracellular AcmA was added, in the presence or absence of the bacteriocin had no effect on the speed of cell wall degradation. This result indicates that the bacteriocin does not degrade cell walls, nor does it directly activate the autolysin AcmA. The autolysin was also responsible for the observed lysis of L. lactis MG1363 cells during incubation with nisin or the mixture of lactococcins A, B, and M. The results presented here show that lysis of L. lactis after addition of the bacteriocins is caused by the resulting cell damage, which promotes uncontrolled degradation of the cell walls by AcmA. PMID:10919766

  8. High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain.

    PubMed

    Dobson, Alleson; O'Sullivan, Orla; Cotter, Paul D; Ross, Paul; Hill, Colin

    2011-07-01

    Lacticin 3147 is a two-peptide broad spectrum lantibiotic produced by Lactococcus lactis DPC3147 shown to inhibit a number of clinically relevant Gram-positive pathogens. Initially isolated from an Irish kefir grain, lacticin 3147 is one of the most extensively studied lantibiotics to date. In this study, the bacterial diversity of the Irish kefir grain from which L. lactis DPC3147 was originally isolated was for the first time investigated using a high-throughput parallel sequencing strategy. A total of 17 416 unique V4 variable regions of the 16S rRNA gene were analysed from both the kefir starter grain and its derivative kefir-fermented milk. Firmicutes (which includes the lactic acid bacteria) was the dominant phylum accounting for > 92% of sequences. Within the Firmicutes, dramatic differences in abundance were observed when the starter grain and kefir milk fermentate were compared. The kefir grain-associated bacterial community was largely composed of the Lactobacillaceae family while Streptococcaceae (primarily Lactococcus spp.) was the dominant family within the kefir milk fermentate. Sequencing data confirmed previous findings that the microbiota of kefir milk and the starter grain are quite different while at the same time, establishing that the microbial diversity of the starter grain is not uniform with a greater level of diversity associated with the interior kefir starter grain compared with the exterior. © 2011 Teagasc Food Research Centre, Moorepark. FEMS Microbiology Letters © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd.

  9. Transfer, composition and technological characterization of the lactic acid bacterial populations of the wooden vats used to produce traditional stretched cheeses.

    PubMed

    Scatassa, Maria Luisa; Gaglio, Raimondo; Macaluso, Giusi; Francesca, Nicola; Randazzo, Walter; Cardamone, Cinzia; Di Grigoli, Antonino; Moschetti, Giancarlo; Settanni, Luca

    2015-12-01

    The biofilms of 12 wooden vats used for the production of the traditional stretched cheeses Caciocavallo Palermitano and PDO Vastedda della valle del Belìce were investigated. Salmonella spp. and Listeria monocytogenes were never detected. Total coliforms were at low numbers with Escherichia coli found only in three vats. Coagulase-positive staphylococci (CPS) were below the enumeration limit, whereas lactic acid bacteria (LAB) dominated the surfaces of all vats. In general, the dominance was showed by coccus LAB. Enterococci were estimated at high numbers, but usually between 1 and 2 Log cycles lower than other LAB. LAB populations were investigated at species and strain level and for their technological properties relevant in cheese production. Eighty-five strains were analysed by a polyphasic genetic approach and allotted into 16 species within the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Streptococcus. Enterococcus faecium was found in all wooden vats and the species most frequently isolated were Enterococcus faecalis, Lactococcus lactis, Leuconostoc mesenteroides, Pediococcus acidilactici and Streptococcus thermophilus. The study of the quantitative data on acidification rate, autolysis kinetics, diacetyl production, antibacterial compound generation and proteolysis by cluster and principal component analysis led to the identification of some strains with promising dairy characteristics. Interestingly, a consistent percentage of LAB was bacteriocin-like inhibitory substances (BLIS) producer. Thus, the microbial biofilms of the wooden vats analysed in this study might contribute actively to the stability of the final cheeses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Isolation of genomic DNA using magnetic cobalt ferrite and silica particles.

    PubMed

    Prodelalová, Jana; Rittich, Bohuslav; Spanová, Alena; Petrová, Katerina; Benes, Milan J

    2004-11-12

    Adsorption separation techniques as an alternative to laborious traditional methods (e.g., based on phenol extraction procedure) have been applied for DNA purification. In this work we used two types of particles: silica and cobalt ferrite (unmodified or modified with a reagent containing weakly basic aminoethyl groups, aminophenyl groups, or alginic acid). DNA from chicken erythrocytes and DNA isolated from bacteria Lactococcus lactis were used for testing of adsorption/desorption properties of particles. The cobalt ferrite particles modified with different reagents were used for isolation of PCR-ready bacterial DNA from different dairy products.

  11. Short communication: Change of naturally occurring benzoic acid during skim milk fermentation by commercial cheese starters.

    PubMed

    Han, Noori; Park, Sun-Young; Kim, Sun-Young; Yoo, Mi-Young; Paik, Hyun-Dong; Lim, Sang-Dong

    2016-11-01

    This study sought to investigate the change of naturally occurring benzoic acid (BA) during skim milk fermentation by 4 kinds of commercial cheese starters used in domestic cheese. The culture was incubated at 3-h intervals for 24h at 30, 35, and 40°C. The BA content during fermentation by Streptococcus thermophilus STB-01 was detected after 12h at all temperatures, sharply increasing at 30°C. In Lactobacillus paracasei LC431, BA was detected after 9h at all temperatures, sharply increasing until 18h and decreasing after 18h at 30 and 35°C. In the case of R707 (consisting of Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris), BA increased from 6h to 15h and decreased after 15h at 40°C. The BA during STB-01 and CHN-11 (1:1; mixture of S. thermophilus, Lc. lactis ssp. lactis, Lc. lactis ssp. cremoris, Lc. lactis ssp. diacetylactis, Leuconostoc mesenteroides ssp. cremoris) fermentation was detected after 3h at 35 and 40°C, sharply increasing up to 12h and decreasing after 15h at 35°C, and after 6h, increasing up to 9h at 30°C. After 3h, it steadily decreased at 40°C. The highest amount of BA was found during the fermentation by R707 at 30°C; 15h with 12.46mg/kg. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Use of an alpha-galactosidase gene as a food-grade selection marker for Streptococcus thermophilus.

    PubMed

    Labrie, S; Bart, C; Vadeboncoeur, C; Moineau, S

    2005-07-01

    The alpha-galactosidase gene (aga) of Lactococcus raffinolactis ATCC 43920 was previously shown to be an efficient food-grade selection marker in Lactococcus lactis and Pediococcus acidilactici but not in Streptococcus thermophilus. In this study, we demonstrated that the alpha-galactosidase of L. raffinolactis is thermolabile and inoperative at 42 degrees C, the optimal growth temperature of S. thermophilus. An in vitro assay indicated that the activity of this alpha-galactosidase at 42 degrees C was only 3% of that at 30 degrees C, whereas the enzyme retained 23% of its activity at 37 degrees C. Transformation of Strep. thermophilus RD733 with the shuttle-vector pNZ123 bearing the aga gene of L. raffinolactis (pRAF301) generated transformants that were stable and able to grow on melibiose and raffinose at 37 degrees C or below. The transformed cells possessed 6-fold more alpha-galactosidase activity after growth on melibiose than cells grown on lactose. Slot-blot analyses of aga mRNA indicated that repression by lactose occurred at the transcriptional level. The presence of pRAF301 did not interfere with the lactic acid production when the transformed cells of Strep. thermophilus were grown at the optimal temperature in milk. Using the recombinant plasmid pRAF301, which carries a chloramphenicol resistance gene in addition to aga, we showed that both markers were equally efficient at differentiating transformed from nontransformed cells. The aga gene of L. raffinolactis can be used as a highly efficient selection marker in Strep. thermophilus.

  13. Probiotics for gastrointestinal disorders: Proposed recommendations for children of the Asia-Pacific region

    PubMed Central

    Cameron, Donald; Hock, Quak Seng; Kadim, Musal; Mohan, Neelam; Ryoo, Eell; Sandhu, Bhupinder; Yamashiro, Yuichiro; Jie, Chen; Hoekstra, Hans; Guarino, Alfredo

    2017-01-01

    Recommendations for probiotics are available in several regions. This paper proposes recommendations for probiotics in pediatric gastrointestinal diseases in the Asia-Pacific region. Epidemiology and clinical patterns of intestinal diseases in Asia-Pacific countries were discussed. Evidence-based recommendations and randomized controlled trials in the region were revised. Cultural aspects, health management issues and economic factors were also considered. Final recommendations were approved by applying the Likert scale and rated using the GRADE system. Saccharomyces boulardii CNCM I-745 (Sb) and Lactobacillus rhamnosus GG (LGG) were strongly recommended as adjunct treatment to oral rehydration therapy for gastroenteritis. Lactobacillus reuteri could also be considered. Probiotics may be considered for prevention of (with the indicated strains): antibiotic-associated diarrhea (LGG or Sb); Clostridium difficile-induced diarrhea (Sb); nosocomial diarrhea (LGG); infantile colic (L reuteri) and as adjunct treatment of Helicobacter pylori (Sb and others). Specific probiotics with a history of safe use in preterm and term infants may be considered in infants for prevention of necrotizing enterocolitis. There is insufficient evidence for recommendations in other conditions. Despite a diversity of epidemiological, socioeconomical and health system conditions, similar recommendations apply well to Asia pacific countries. These need to be validated with local randomized-controlled trials. PMID:29259371

  14. Probiotics for gastrointestinal disorders: Proposed recommendations for children of the Asia-Pacific region.

    PubMed

    Cameron, Donald; Hock, Quak Seng; Kadim, Musal; Mohan, Neelam; Ryoo, Eell; Sandhu, Bhupinder; Yamashiro, Yuichiro; Jie, Chen; Hoekstra, Hans; Guarino, Alfredo

    2017-12-07

    Recommendations for probiotics are available in several regions. This paper proposes recommendations for probiotics in pediatric gastrointestinal diseases in the Asia-Pacific region. Epidemiology and clinical patterns of intestinal diseases in Asia-Pacific countries were discussed. Evidence-based recommendations and randomized controlled trials in the region were revised. Cultural aspects, health management issues and economic factors were also considered. Final recommendations were approved by applying the Likert scale and rated using the GRADE system. Saccharomyces boulardii CNCM I-745 (Sb) and Lactobacillus rhamnosus GG ( LGG ) were strongly recommended as adjunct treatment to oral rehydration therapy for gastroenteritis. Lactobacillus reuteri could also be considered. Probiotics may be considered for prevention of (with the indicated strains): antibiotic-associated diarrhea (LGG or Sb); Clostridium difficile -induced diarrhea (Sb); nosocomial diarrhea (LGG); infantile colic ( L reuteri ) and as adjunct treatment of Helicobacter pylori (Sb and others). Specific probiotics with a history of safe use in preterm and term infants may be considered in infants for prevention of necrotizing enterocolitis. There is insufficient evidence for recommendations in other conditions. Despite a diversity of epidemiological, socioeconomical and health system conditions, similar recommendations apply well to Asia pacific countries. These need to be validated with local randomized-controlled trials.

  15. Culture-independent quantification of physiologically-active microbial groups in fermented foods using rRNA-targeted oligonucleotide probes: application to pozol, a Mexican lactic acid fermented maize dough.

    PubMed

    Ampe, F; ben Omar, N; Guyot, J P

    1999-07-01

    Nine phylogenetic oligonucleotide probes were used to describe at the genus level the microbial community responsible for the spontaneous fermentation of maize, leading to the production of Mexican pozol. Ribosomal RNAs of specific groups and genera, in particular, lactic acid bacteria, were quantified using a culture-independent approach. In the early stage of the fermentation, Lactococcus and Leuconostoc appeared to be the dominant genera. A contrario, these represented minor genera at the end of the fermentation when Lactobacillus dominated the process. In addition, eukaryotes seemed to play a significant role throughout the fermentation and enterobacteria could be detected by this method.

  16. The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione

    PubMed Central

    Booty, Lee M.; King, Martin S.; Thangaratnarajah, Chancievan; Majd, Homa; James, Andrew M.; Kunji, Edmund R.S.; Murphy, Michael P.

    2015-01-01

    Glutathione carries out vital protective roles within mitochondria, but is synthesised in the cytosol. Previous studies have suggested that the mitochondrial dicarboxylate and 2-oxoglutarate carriers were responsible for glutathione uptake. We set out to characterise the putative glutathione transport by using fused membrane vesicles of Lactococcus lactis overexpressing the dicarboxylate and 2-oxoglutarate carriers. Although transport of the canonical substrates could be measured readily, an excess of glutathione did not compete for substrate uptake nor could transport of glutathione be measured directly. Thus these mitochondrial carriers do not transport glutathione and the identity of the mitochondrial glutathione transporter remains unknown. PMID:25637873

  17. Bacteriophages in dairy products: pros and cons.

    PubMed

    Mc Grath, Stephen; Fitzgerald, Gerald F; van Sinderen, Douwe

    2007-04-01

    Since the time bacteriophages were first identified as a major cause of fermentation failure in the dairy industry, researchers have been struggling to develop strategies to exclude them from the dairy environment. Over 70 years of research has led to huge improvements in the consistency and quality of fermented dairy products, while also facilitating an appreciation of the beneficial properties of bacteriophages with respect to dairy product development. With specific reference to Lactococcus lactis and cheese production, this review outlines some recently reported novel methods aimed at limiting the bacteriophage infection as well as highlighting some beneficial aspects of bacteriophage activity.

  18. The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance

    PubMed Central

    Gudeta, Dereje Dadi; Bortolaia, Valeria; Amos, Greg; Wellington, Elizabeth M. H.; Brandt, Kristian K.; Poirel, Laurent; Nielsen, Jesper Boye; Westh, Henrik

    2015-01-01

    The origin of carbapenem-hydrolyzing metallo-β-lactamases (MBLs) acquired by clinical bacteria is largely unknown. We investigated the frequency, host range, diversity, and functionality of MBLs in the soil microbiota. Twenty-five soil samples of different types and geographical origins were analyzed by antimicrobial selective culture, followed by phenotypic testing and expression of MBL-encoding genes in Escherichia coli, and whole-genome sequencing of MBL-producing strains was performed. Carbapenemase activity was detected in 29 bacterial isolates from 13 soil samples, leading to identification of seven new MBLs in presumptive Pedobacter roseus (PEDO-1), Pedobacter borealis (PEDO-2), Pedobacter kyungheensis (PEDO-3), Chryseobacterium piscium (CPS-1), Epilithonimonas tenax (ESP-1), Massilia oculi (MSI-1), and Sphingomonas sp. (SPG-1). Carbapenemase production was likely an intrinsic feature in Chryseobacterium and Epilithonimonas, as it occurred in reference strains of different species within these genera. The amino acid identity to MBLs described in clinical bacteria ranged between 40 and 69%. Remarkable features of the new MBLs included prophage integration of the encoding gene (PEDO-1), an unusual amino acid residue at a key position for MBL structure and catalysis (CPS-1), and overlap with a putative OXA β-lactamase (MSI-1). Heterologous expression of PEDO-1, CPS-1, and ESP-1in E. coli significantly increased the MICs of ampicillin, ceftazidime, cefpodoxime, cefoxitin, and meropenem. Our study shows that MBL producers are widespread in soil and include four genera that were previously not known to produce MBLs. The MBLs produced by these bacteria are distantly related to MBLs identified in clinical samples but constitute resistance determinants of clinical relevance if acquired by pathogenic bacteria. PMID:26482314

  19. Survey of parasites in threatened stocks of coho salmon (Oncorhynchus kisutch) in Oregon by examination of wet tissues and histology.

    PubMed

    Ferguson, Jayde A; St-Hilaire, Sophie; Peterson, Tracy S; Rodnick, Kenneth J; Kent, Michael L

    2011-12-01

    We are conducting studies on the impacts of parasites on Oregon coastal coho salmon (Oncorhynchus kistuch). An essential first step is documenting the geographic distribution of infections, which may be accomplished by using different methods for parasite detection. Thus, the objectives of the current study were to (1) identify parasite species infecting these stocks of coho salmon and document their prevalence, density, and geographic distribution; (2) assess the pathology of these infections; and (3) for the first time, determine the sensitivity and specificity of histology for detecting parasites compared with examining wet preparations for muscle and gill infections. We examined 576 fry, parr, and smolt coho salmon in total by histology. The muscle and gills of 219 of these fish also were examined by wet preparation. Fish were collected from 10 different locations in 2006-2007. We identified 21 different species of parasites in these fish. Some parasites, such as Nanophyetus salmincola and Myxobolus insidiosus, were common across all fish life stages from most basins. Other parasites, such as Apophallus sp., were more common in underyearling fish than smolts and had a more restricted geographic distribution. Additional parasites commonly observed were as follows: Sanguinicola sp., Trichodina truttae , Epistylis sp., Capriniana piscium, and unidentified metacercariae in gills; Myxobolus sp. in brain; Myxidium salvelini and Chloromyxum majori in kidney; Pseudocapillaria salvelini and adult digenean spp. in the intestine. Only a few parasites, such as the unidentified gill metacercariae, elicted overt pathologic changes. Histology had generally poor sensitivity for detecting parasites; however, it had relatively good specificity. We recommend using both methods for studies or monitoring programs requiring a comprehensive assessment of parasite identification, enumeration, and parasite-related pathology.

  20. Substrate recognition by the hetero-octameric ATP phosphoribosyltransferase from Lactococcus lactis†

    PubMed Central

    Champagne, Karen S.; Piscitelli, Elise; Francklyn, Christopher S.

    2008-01-01

    Two families of ATP phosphoribosyl transferases (ATP-PRT) join ATP and 5-phosphoribosyl-1 pyrophosphate (PRPP) in the first reaction of histidine biosynthesis. These consist of a homohexameric form found in all three kingdoms, and a hetero-octameric form largely restricted to bacteria. Hetero-octameric ATP-PRTs consist of four HisGS catalytic subunits related to periplasmic binding proteins, and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. To clarify the relationship between the two families of ATP-PRTs, and among phosphoribosyltransferases in general, we determined the steady state kinetics for the hetero-octameric form, and characterized the active site by mutagenesis. The Km PRPP (18.4 ± 3.5 μM) and kcat (2.7 ± 0.3 sec−1) values for the PRPP substrate are similar to those of hexameric ATP-PRTs, but the Km for ATP (2.7 ± 0.3 mM) is 4-fold higher, suggestive of tighter regulation by energy charge. Histidine and AMP were determined to be non-competitive (Ki = 81.1 μM) and competitive (Ki= 1.44 mM) inhibitors, respectively, with values that approximate their intracellular concentrations. Mutagenesis experiments investigating the side chains recognizing PRPP showed that 5′ phosphate contacts (T159A and T162A) had the largest (25- and 155-fold) decreases in kcat/Km, while smaller decreases were seen with mutants making cross subunit contacts (K50A and K8A) to the pyrophosphate moiety, or contacts to the 2′ OH. Despite their markedly different quaternary structures, hexameric and hetero-octameric ATRP-PRTs exhibit similar functional parameters, and employ mechanistic strategies reminiscent of the broader PRT superfamily. PMID:17154531

  1. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aminopeptidase enzyme preparation derived from... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101...

  2. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aminopeptidase enzyme preparation derived from...

  3. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aminopeptidase enzyme preparation derived from...

  4. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aminopeptidase enzyme preparation derived from...

  5. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aminopeptidase enzyme preparation derived from...

  6. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    PubMed

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product.

  7. Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing.

    PubMed

    Nielsen, Jeppe Lund; Nguyen, Hien; Meyer, Rikke Louise; Nielsen, Per Halkjær

    2012-07-01

    Microbiology in wastewater treatment has mainly been focused on problem-causing filamentous bacteria or bacteria directly involved in nitrogen and phosphorus removal, and to a lesser degree on flanking groups, such as hydrolysing and fermenting bacteria. However, these groups constitute important suppliers of readily degradable substrates for the overall processes in the plant. This study aimed to identify glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plant (WWTP), and to determine their abundance in similar WWTPs. Glucose-fermenting micro-organisms were identified by an in situ approach using RNA-based stable isotope probing. Activated sludge was incubated anaerobically with (13)C(6)-labelled glucose, and (13)C-enriched rRNA was subsequently reverse-transcribed and used to construct a 16S rRNA gene clone library. Phylogenetic analysis of the library revealed the presence of two major phylogenetic groups of gram-positive bacteria affiliating with the genera Tetrasphaera, Propionicimonas (Actinobacteria), and Lactococcus and Streptococcus (Firmicutes). Specific oligonucleotide probes were designed for fluorescence in situ hybridization (FISH) to specifically target the glucose-fermenting bacteria identified in this study. The combination of FISH with microautoradiography confirmed that Tetrasphaera, Propionicimonas and Streptococcus were the dominant glucose fermenters. The probe-defined fermenters were quantified in 10 full-scale EBPR plants and averaged 39 % of the total biovolume. Tetrasphaera and Propionicimonas were the most abundant glucose fermenters (average 33 and 4 %, respectively), while Streptococcus and Lactococcus were present only in some WWTPs (average 1 and 0.4 %, respectively). Thus the population of actively metabolizing glucose fermenters seems to occupy a relatively large component of the total biovolume.

  8. Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type.

    PubMed

    Zhong, Z; Hou, Q; Kwok, L; Yu, Z; Zheng, Y; Sun, Z; Menghe, B; Zhang, H

    2016-10-01

    Naturally fermented dairy products contain a rich microbial biodiversity. This study aimed to provide an overview on the bacterial microbiota biodiversity of 85 samples, previously collected across a wide region of China, Mongolia, and Russia. Data from these 85 samples, including 55 yogurts, 18 naturally fermented yak milks, 6 koumisses, and 6 cheeses, were retrieved and collectively analyzed. The most prevalent phyla shared across samples were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria, which together accounted for 99% of bacterial sequences. The predominant genera were Lactobacillus, Lactococcus, Streptococcus, Acetobacter, Acinetobacter, Leuconostoc, and Macrococcus, which together corresponded to 96.63% of bacterial sequences. Further multivariate statistical analyses revealed significant differences in the microbiota structure across sample geographic origin and type. First, on the principal coordinate score plot, samples representing the 3 main sample collection regions (Russia, Xinjiang, and Tibet) were mostly located respectively in the upper left, lower right, and lower left quadrants, although slight overlapping occurred. In contrast, samples from the minor sampling areas (Inner Mongolia, Mongolia, Gansu, and Sichuan) were predominantly distributed in the lower left quadrant. These results suggest a possible association between sample geographical origin and microbiota composition. Second, bacterial microbiota structure was stratified by sample type. In particular, the microbiota of cheese was largely distinct from the other sample types due to its high abundances of Lactococcus and Streptococcus. The fermented yak milk microbiota was most like that of the yogurts. Koumiss samples had the lowest microbial diversity and richness. In conclusion, both geographic origin and sample type shape the microbial diversity of naturally fermented milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights

  9. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum alleviates age-inflicted oxidative stress and improves expression of biomarkers of ageing in mice.

    PubMed

    Kaushal, Deepti; Kansal, Vinod K

    2012-02-01

    The potential benefiting effects of probiotic Dahi on age-inflicted accumulation of oxidation products, antioxidant enzymes and expression of biomarkers of ageing were evaluated in mice. Probiotic Dahi were prepared by co-culturing in buffalo milk (3% fat) Dahi bacteria (Lactococcus lactis ssp. cremoris NCDC-86 and Lactococcus lactis ssp. lactis biovar diacetylactis NCDC-60) along with selected strain of Lactobacillus acidophilus LaVK2 (La-Dahi) or combined L. acidophilus and Bifidobacterium bifidum BbVK3 (LaBb-Dahi). Four groups of 12 months old mice (6 each) were fed for 4 months supplements (5 g/day) of buffalo milk (3% fat), Dahi, La-Dahi and LaBb-Dahi, respectively, with basal diet. The activities of catalase (CAT) and glutathione peroxidase (GPx) declined and the contents of oxidation products, thiobarbituric acid reactive substances (TBARS) and protein carbonyls, increased in red blood corpuscles (RBCs), liver, kidney and heart tissues and superoxide dismutase (SOD) activity increased in RBCs and hepatic tissues during ageing of mice. Feeding ageing mice with La-Dahi or LaBb-Dahi increased CAT activity in all the four tissues, and GPx activity in RBCs and hepatic tissue, and a significant decline in TBARS in plasma, kidney and hepatic tissues and protein carbonyls in plasma. Feeding mice with probiotic Dahi also reversed age related decline in expression of biomarkers of ageing, peroxisome proliferators activated receptor-α, senescence marker protein-30 (SMP-30) and klotho in hepatic and kidney tissues. The present study suggests that probiotic Dahi containing selected strains of bacteria can be used as a potential nutraceutical intervention to combat oxidative stress and molecular alterations associated with ageing.

  10. Influence of the addition of Lactobacillus acidophilus La-05, Bifidobacterium animalis subsp. lactis Bb-12 and inulin on the technological, physicochemical, microbiological and sensory features of creamy goat cheese.

    PubMed

    Barbosa, Ilsa C; Oliveira, Maria E G; Madruga, Marta S; Gullón, Beatriz; Pacheco, Maria T B; Gomes, Ana M P; Batista, Ana S M; Pintado, Maria M E; Souza, Evandro L; Queiroga, Rita C R E

    2016-10-12

    The effects of the addition of Lactobacillus acidophilus LA-05, Bifidobacterium animalis subsp. lactis BB-12 and inulin on the quality characteristics of creamy goat cheese during refrigerated storage were evaluated. The manufactured cheeses included the addition of starter culture (Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris - R-704) (CC); starter culture, L. acidophilus LA-05 and inulin (CLA); starter culture, B. lactis BB-12 and inulin (CBB); or starter culture, L. acidophilus LA-05, B. lactis BB-12 and inulin (CLB). In the synbiotic cheeses (CLA, CBB and CLB), the counts of L. acidophilus LA-05 and B. lactis BB-12 were greater than 6log CFU g -1 , the amount of inulin was greater than 6 g per 100 g, and the firmness was reduced. The cheeses evaluated had high brightness values (L*), with a predominance of yellow (b*). CC had higher contents of proteins, lipids and minerals compared to the other cheeses. There was a decrease in the amount of short-chain fatty acids (SCFAs) and an increase of medium-chain (MCFAs) and long-chain fatty acids (LCFAs) in the synbiotic cheeses compared to CC. The amount of conjugated linoleic acid increased in CLA, CBB and CLB. The highest depth of proteolysis and the greatest changes in the release of free amino acids were found in CLB. The addition of inulin and probiotics, alone or in co-culture, did not affect the cheese acceptance. Inulin and probiotics can be used together for the production of creamy goat cheese without negatively affecting the general quality characteristics of the product, and to add value because of its synbiotic potential.

  11. Three-phase succession of autochthonous lactic acid bacteria to reach a stable ecosystem within 7 days of natural bamboo shoot fermentation as revealed by different molecular approaches.

    PubMed

    Romi, Wahengbam; Ahmed, Giasuddin; Jeyaram, Kumaraswamy

    2015-07-01

    Microbial community structure and population dynamics during spontaneous bamboo shoot fermentation for production of 'soidon' (indigenous fermented food) in North-east India were studied using cultivation-dependent and cultivation-independent molecular approaches. Cultivation-dependent analyses (PCR-amplified ribosomal DNA restriction analysis and rRNA gene sequencing) and cultivation-independent analyses (PCR-DGGE, qPCR and Illumina amplicon sequencing) were conducted on the time series samples collected from three independent indigenous soidon fermentation batches. The current findings revealed three-phase succession of autochthonous lactic acid bacteria to attain a stable ecosystem within 7 days natural fermentation of bamboo shoots. Weissella spp. (Weissella cibaria, uncultured Weissella ghanensis) and Lactococcus lactis subsp. cremoris predominated the early phase (1-2 days) which was joined by Leuconostoc citreum during the mid-phase (3 days), while Lactobacillus brevis and Lactobacillus plantarum emerged and became dominant in the late phase (5-7 days) with concurrent disappearance of W. cibaria and L. lactis subsp. cremoris. Lactococcus lactis subsp. lactis and uncultured Lactobacillus acetotolerans were predominantly present throughout the fermentation with no visible dynamics. The above identified dominant bacterial species along with their dynamics can be effectively utilized for designing a starter culture for industrialization of soidon production. Our results showed that a more realistic view on the microbial ecology of soidon fermentation could be obtained by cultivation-dependent studies complemented with cultivation-independent molecular approaches. Moreover, the critical issues to be considered for reducing methodological biases while studying the microbial ecology of traditional food fermentation were also highlighted with this soidon fermentation model. © 2015 John Wiley & Sons Ltd.

  12. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis

    PubMed Central

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality. PMID:12514026

  13. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis.

    PubMed

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and WEISSELLA: Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality.

  14. Antimicrobial susceptibility of microflora from ovine cheese.

    PubMed

    Kmeť, V; Drugdová, Z

    2012-07-01

    Strains identified in ovine cheese and bryndza by matrix-assisted laser desorption/ionization time-of-flight analysis belonged to ten species of non-enterococcal lactic acid bacteria and included Lactobacillus casei/Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Lactococcus lactis, Pediococcus pentosaceus and Pediococcus acidilactici. The susceptibility toward antibiotics was determined in lactobacilli, lactococci and pediococci and also in Escherichia coli for comparison. Analysis of L. fermentum and pediococci revealed the presence of non-wild-type epidemiological cut-offs in streptomycin, clindamycin or gentamicin. E. coli were resistant to ampicillin, tetracycline, enrofloxacin and florfenicol. No extended spectrum β-lactamases were detected.

  15. The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance.

    PubMed

    Gudeta, Dereje Dadi; Bortolaia, Valeria; Amos, Greg; Wellington, Elizabeth M H; Brandt, Kristian K; Poirel, Laurent; Nielsen, Jesper Boye; Westh, Henrik; Guardabassi, Luca

    2016-01-01

    The origin of carbapenem-hydrolyzing metallo-β-lactamases (MBLs) acquired by clinical bacteria is largely unknown. We investigated the frequency, host range, diversity, and functionality of MBLs in the soil microbiota. Twenty-five soil samples of different types and geographical origins were analyzed by antimicrobial selective culture, followed by phenotypic testing and expression of MBL-encoding genes in Escherichia coli, and whole-genome sequencing of MBL-producing strains was performed. Carbapenemase activity was detected in 29 bacterial isolates from 13 soil samples, leading to identification of seven new MBLs in presumptive Pedobacter roseus (PEDO-1), Pedobacter borealis (PEDO-2), Pedobacter kyungheensis (PEDO-3), Chryseobacterium piscium (CPS-1), Epilithonimonas tenax (ESP-1), Massilia oculi (MSI-1), and Sphingomonas sp. (SPG-1). Carbapenemase production was likely an intrinsic feature in Chryseobacterium and Epilithonimonas, as it occurred in reference strains of different species within these genera. The amino acid identity to MBLs described in clinical bacteria ranged between 40 and 69%. Remarkable features of the new MBLs included prophage integration of the encoding gene (PEDO-1), an unusual amino acid residue at a key position for MBL structure and catalysis (CPS-1), and overlap with a putative OXA β-lactamase (MSI-1). Heterologous expression of PEDO-1, CPS-1, and ESP-1in E. coli significantly increased the MICs of ampicillin, ceftazidime, cefpodoxime, cefoxitin, and meropenem. Our study shows that MBL producers are widespread in soil and include four genera that were previously not known to produce MBLs. The MBLs produced by these bacteria are distantly related to MBLs identified in clinical samples but constitute resistance determinants of clinical relevance if acquired by pathogenic bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Catechol-O-methyltransferase as a target for melanoma destruction?

    PubMed

    Smit, N P; Latter, A J; Naish-Byfield, S; Westerhof, W; Pavel, S; Riley, P A

    1994-08-17

    Catechols may interfere in melanogenesis by causing increased levels of toxic quinones. Several catechols and known inhibitors of the enzyme catechol-O-methyltransferase (COMT) were therefore tested for their toxicity towards a pigmented melanoma cell line, UCLA-SO-(M14). The inhibition of thymidine incorporation as a result of exposure to the compounds was measured. All agents were compared to 4-hydroxyanisole (4HA), a depigmenting agent extensively studied as an antimelanoma drug. The compounds were also tested on the epithelial cell line, CNCM-I-(221) in the presence and absence of tyrosinase. All the compounds were more effective than 4HA towards the M14-cells at either 10(-4) M or 10(-5) M. The toxicity of 4HA towards the 221-cells was shown to be completely dependent on the presence of tyrosinase. Effects of the test agents on the 221-cells were also observed in the absence of tyrosinase. Although some of them were shown to be good substrates for tyrosinase only small changes in toxicity were observed as a result of the presence of the enzyme in comparison with 4HA. No direct correlation of the toxicity of the agents and COMT inhibition was observed. The possible mode of action of the compounds through inhibition of COMT and interference in melanogenesis is discussed together with other possibilities and factors involved.

  17. Combined chemical and physical transformation method with RbCl and sepiolite for the transformation of various bacterial species.

    PubMed

    Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun

    2017-04-01

    DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.

  18. Antibacterial Activities of Nisin Z Encapsulated in Liposomes or Produced In Situ by Mixed Culture during Cheddar Cheese Ripening

    PubMed Central

    Benech, R.-O.; Kheadr, E. E.; Lacroix, C.; Fliss, I.

    2002-01-01

    This study investigated both the activity of nisin Z, either encapsulated in liposomes or produced in situ by a mixed starter, against Listeria innocua, Lactococcus spp., and Lactobacillus casei subsp. casei and the distribution of nisin Z in a Cheddar cheese matrix. Nisin Z molecules were visualized using gold-labeled anti-nisin Z monoclonal antibodies and transmission electron microscopy (immune-TEM). Experimental Cheddar cheeses were made using a nisinogenic mixed starter culture, containing Lactococcus lactis subsp. lactis biovar diacetylactis UL 719 as the nisin producer and two nisin-tolerant lactococcal strains and L. casei subsp. casei as secondary flora, and ripened at 7°C for 6 months. In some trials, L. innocua was added to cheese milk at 105 to 106 CFU/ml. In 6-month-old cheeses, 90% of the initial activity of encapsulated nisin (280 ± 14 IU/g) was recovered, in contrast to only 12% for initial nisin activity produced in situ by the nisinogenic starter (300 ± 15 IU/g). During ripening, immune-TEM observations showed that encapsulated nisin was located mainly at the fat/casein interface and/or embedded in whey pockets while nisin produced by biovar diacetylactis UL 719 was uniformly distributed in the fresh cheese matrix but concentrated in the fat area as the cheeses aged. Cell membrane in lactococci appeared to be the main nisin target, while in L. casei subsp. casei and L. innocua, nisin was more commonly observed in the cytoplasm. Cell wall disruption and digestion and lysis vesicle formation were common observations among strains exposed to nisin. Immune-TEM observations suggest several modes of action for nisin Z, which may be genus and/or species specific and may include intracellular target-specific activity. It was concluded that nisin-containing liposomes can provide a powerful tool to improve nisin stability and availability in the cheese matrix. PMID:12406756

  19. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    PubMed

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  20. Characterization of the bacterial biodiversity in Pico cheese (an artisanal Azorean food).

    PubMed

    Riquelme, Cristina; Câmara, Sandra; Dapkevicius, Maria de Lurdes N Enes; Vinuesa, Pablo; da Silva, Célia Costa Gomes; Malcata, F Xavier; Rego, Oldemiro A

    2015-01-02

    This work presents the first study on the bacterial communities in Pico cheese, a traditional cheese of the Azores (Portugal), made from raw cow's milk. Pyrosequencing of tagged amplicons of the V3-V4 regions of the 16S rDNA and Operational Taxonomic Unit-based (OTU-based) analysis were applied to obtain an overall idea of the microbiota in Pico cheese and to elucidate possible differences between cheese-makers (A, B and C) and maturation times. Pyrosequencing revealed a high bacterial diversity in Pico cheese. Four phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) and 54 genera were identified. The predominant genus was Lactococcus (77% of the sequences). Sequences belonging to major cheese-borne pathogens were not found. Staphylococcus accounted for 0.5% of the sequences. Significant differences in bacterial community composition were observed between cheese-maker B and the other two units that participated in the study. However, OTU analysis identified a set of taxa (Lactococcus, Streptococcus, Acinetobacter, Enterococcus, Lactobacillus, Staphylococcus, Rothia, Pantoea and unclassified genera belonging to the Enterobacteriaceae family) that would represent the core components of artisanal Pico cheese microbiota. A diverse bacterial community was present at early maturation, with an increase in the number of phylotypes up to 2 weeks, followed by a decrease at the end of ripening. The most remarkable trend in abundance patterns throughout ripening was an increase in the number of sequences belonging to the Lactobacillus genus, with a concomitant decrease in Acinetobacter, and Stenotrophomonas. Microbial rank abundance curves showed that Pico cheese's bacterial communities are characterized by a few dominant taxa and many low-abundance, highly diverse taxa that integrate the so-called "rare biosphere". Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Spontaneous bacteriocin resistance in Listeria monocytogenes as a susceptibility screen for identifying different mechanisms of resistance and modes of action by bacteriocins of lactic acid bacteria.

    PubMed

    Macwana, Sunita; Muriana, Peter M

    2012-01-01

    A practical system was devised for grouping bacteriocins of lactic acid bacteria (LAB) based on mode of action as determined by changes in inhibitory activity to spontaneously-acquired bacteriocin resistance (Bac(R)). Wild type Listeria monocytogenes 39-2 was sensitive to five bacteriocins produced by 3 genera of LAB: pediocin PA-1 and pediocin Bac3 (Pediococcus), lacticin FS97 and lacticin FS56 (Lactococcus), and curvaticin FS47 (Lactobacillus). A spontaneous Bac(R) derivative of L. monocytogenes 39-2 obtained by selective recovery against lacticin FS56 provided complete resistance to the bacteriocin made by Lactococcus lactis FS56. The lacticin FS56-resistant strain of L. monocyotgenes 39-2 was also cross-resistant to curvaticin FS47 and pediocin PA-1, but not to lacticin FS97 or pediocin Bac3. The same pattern of cross-resistance was also observed with Bac(R) isolates obtained with L. monocytogenes Scott A-2. A spontaneous mutation that renders a strain cross-resistant to different bacteriocins indicates that they share a common mechanism of resistance due to similar modes of action of the bacteriocins. Spontaneous resistance was acquired to other bacteriocins (in aggregate) by following the same procedure against which the Bac(R) strain was still sensitive. In subsequent challenge assays, mixtures of bacteriocins of different modes of action provided greater inhibition than mixtures of bacteriocins of the same mode of action (as determined by our screening method). This study identifies a methodical approach to classify bacteriocins into functional groups based on mechanism of resistance (i.e., mode of action) that could be used for identifying the best mixture of bacteriocins for use as biopreservatives. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Persistence of Escherichia coli O157:H7 in dairy fermentation systems.

    PubMed

    Dineen, S S; Takeuchi, K; Soudah, J E; Boor, K J

    1998-12-01

    We examined (i) the persistence of Escherichia coli O157:H7 as a postpasteurization contaminant in fermented dairy products; (ii) the ability of E. coli O157:H7 strains with and without the general stress regulatory protein, RpoS, to compete with commercial starter cultures in fermentation systems; and (iii) the survival of E. coli O157:H7 in the yogurt production process. In commercial products inoculated with 10(3) CFU/ml, E. coli O157:H7 was recovered for up to 12 days in yogurt (pH 4.0), 28 days in sour cream (pH 4.3), and at levels > 10(2) CFU/ml at 35 days in buttermilk (pH 4.1). For the starter culture competition trials, the relative inhibition of E. coli O157:H7 in the experimental fermentation systems was, in decreasing order, thermophilic culture mixture, Lactobacillus delbrueckii subsp. bulgaricus R110 alone, Lactococcus lactis subsp. lactis D280 alone, Lactococcus lactis subsp. cremoris D62 alone, and Streptococcus thermophilus C90 alone showing the least inhibition. Recovery of the rpoS mutant was lower than recovery of its wild-type parent by 72 h or earlier in the presence of individual starter cultures. No E. coli O157:H7 were recovered after the curd formation step in yogurt manufactured with milk inoculated with 10(5) CFU/ml. Our results show that (i) postprocessing entry of E. coli O157:H7 into fermented dairy products represents a potential health hazard; (ii) commercial starter cultures differ in their ability to reduce E. coli O157:H7 CFU numbers in fermentation systems; and (iii) the RpoS protein appears to most effectively contribute to bacterial survival in the presence of conditions that are moderately lethal to the cell.

  3. Characterization of the indigenous microflora in raw and pasteurized buffalo milk during storage at refrigeration temperature by high-throughput sequencing.

    PubMed

    Li, Ling; Renye, John A; Feng, Ling; Zeng, Qingkun; Tang, Yan; Huang, Li; Ren, Daxi; Yang, Pan

    2016-09-01

    The effect of refrigeration on bacterial communities within raw and pasteurized buffalo milk was studied using high-throughput sequencing. High-quality samples of raw buffalo milk were obtained from 3 dairy farms in the Guangxi province in southern China. Five liters of each milk sample were pasteurized (72°C; 15 s); and both raw and pasteurized milks were stored at refrigeration temperature (1-4°C) for various times with their microbial communities characterized using the Illumina Miseq platform (Novogene, Beijing, China). Results showed that both raw and pasteurized milks contained a diverse microbial population and that the populations changed over time during storage. In raw buffalo milk, Lactococcus and Streptococcus dominated the population within the first 24h; however, when stored for up to 72h the dominant bacteria were members of the Pseudomonas and Acinetobacter genera, totaling more than 60% of the community. In pasteurized buffalo milk, the microbial population shifted from a Lactococcus-dominated community (7d), to one containing more than 84% Paenibacillus by 21d of storage. To increase the shelf-life of buffalo milk and its products, raw milk needs to be refrigerated immediately after milking and throughout transport, and should be monitored for the presence of Paenibacillus. Results from this study suggest pasteurization should be performed within 24h of raw milk collection, when the number of psychrotrophic bacteria are low; however, as Paenibacillus spores are resistant to pasteurization, additional antimicrobial treatments may be required to extend shelf-life. The findings from this study are expected to aid in improving the quality and safety of raw and pasteurized buffalo milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Effect of cinnamon essential oil on bacterial diversity and shelf-life in vacuum-packaged common carp (Cyprinus carpio) during refrigerated storage.

    PubMed

    Zhang, Yuemei; Li, Dongping; Lv, Jian; Li, Qingzheng; Kong, Chunli; Luo, Yongkang

    2017-05-16

    The present study investigated the effect of cinnamon essential oil on the quality of vacuum-packaged common carp (Cyprinus carpio) fillets stored at 4±1°C in terms of sensory scores, physicochemical characteristics (total volatile basic nitrogen (TVB-N), biogenic amines, and color), and presence of spoilage microbiota. A total of 290,753 bacterial sequences and 162 different genera belonging to 14 phyla were observed by a high-throughput sequencing technique targeting the V3-V4 region of 16S rDNA, which showed a more comprehensive estimate of microbial diversity in carp samples compared with microbial enumeration. Before storage, Macrococcus and Aeromonas were the prevalent populations in the control samples, but cinnamon essential oil decreased the relative abundance of Macrococcus in the treated samples. Variability in the predominant microbiota in different samples during chilled storage was observed. Aeromonas followed by Lactococcus were the major contaminants in the spoiled control samples. Microbial enumeration also observed relatively higher counts of Aeromonas than other spoilage microorganisms. Compared with the control samples, cinnamon essential oil inhibited the growth of Aeromonas and Lactococcus were the predominant components in the treated samples on day 10; plate counts also revealed a relatively high level of lactic acid bacteria during refrigerated storage. However, there were no significant differences (P>0.05) in the composition of dominant microbiota between these two treatments at the end of the shelf-life. Furthermore, cinnamon essential oil treatment was more effective in inhibiting the increase of TVB-N and the accumulation of biogenic amines (especially for putrescine and cadaverine levels). Based primarily on sensory analysis, the use of cinnamon essential oil extended the shelf-life of vacuum-packaged common carp fillets by about 2days. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Survival of lactic acid bacteria from fermented milks in an in vitro digestion model exploiting sequential incubation in human gastric and duodenum juice.

    PubMed

    Faye, T; Tamburello, A; Vegarud, G E; Skeie, S

    2012-02-01

    In the present study, the survival of 9 lactic acid bacteria (5 Lactococcus strains, 3 Lactobacillus strains, and 1 strain of Enterococcus hirae), was investigated in vitro under conditions similar to human digestion using human gastric and duodenal juices. The tolerance of the bacteria was also tested with traditional methods using acidic conditions and bile salts. The strains were subjected to a model digestive system comprising sequential incubation in human gastric and duodenal juices, in a 2-step digestion assay at 37°C, simulating the human upper gastrointestinal tract with human gastric juices at pH 2.5 and human duodenal juices at pH 7. The bacterial strains were tested either as washed cells from culture media or in fermented milk. The initial in vitro testing in acid and bile salts showed that Lactobacillus strains and the E. hirae strain displayed a significantly higher acid tolerance than the lactococci. The lactobacilli and the Enterococcus numbers increased, whereas the lactococci decreased at least 1 log during the bile salt treatment. The Lactobacillus strains showed the highest survival rate in the model digestive system when washed bacterial cultures were used with a minor log reduction, whereas the lactococci numbers were reduced by at least log 4. However, when using fermented milks in the model digestion system it was demonstrated that the Enterococcus strain and 2 strains of Lactococcus lactis ssp. cremoris benefited significantly from the presence of the fermented milk as food matrix, with log numbers >log 7 and 5, respectively, after digestion of the fermented milk. The analyses reported comprise a comprehensive in vitro testing regimen suitable for evaluation of the survival of candidate probiotic bacteria in human digestion as an initial prescreen to clinical trials. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers.

    PubMed

    Kim, Dong-Hyeon; Kim, Hyunsook; Jeong, Dana; Kang, Il-Byeong; Chon, Jung-Whan; Kim, Hong-Seok; Song, Kwang-Young; Seo, Kun-Ho

    2017-06-01

    Kefir is a probiotic beverage containing over 50 species of lactic acid bacteria and yeast. In this study, the anti-obesity and anti-non-alcoholic fatty liver disease (NAFLD) effects of kefir were comprehensively addressed along with targeted and untargeted community analysis of the fecal microbiota in a high-fat diet (HFD)-induced obese mouse model. HFD-fed C57BL/6 mice were orally administrated either kefir or milk (control) once a day for 12 weeks, and body and organ weight, fecal microbiota and mycobiota, histopathology, blood cholesterol and cytokines and gene expressions were analyzed. Compared to the control, mice in the kefir group exhibited a significantly lower body weight (34.18 g vs. 40.24 g; p=0.00004) and histopathological liver lesion score (1.13 vs. 3.25; p=0.002). Remarkably, the kefir-fed mice also harbored more Lactobacillus/Lactococcus (7.01 vs. 6.32 log CFU/g), total yeast (6.07 vs. 5.01 log CFU/g) and Candida (5.56 vs. 3.88 log CFU/g). Kefir administration also up-regulated genes related to fatty acid oxidation, PPARα and AOX, in both the liver and adipose tissue (PPARα, 2.95- and 2.15-fold; AOX, 1.89- and 1.9-fold, respectively). The plasma concentration of IL-6, a proinflammatory marker, was significantly reduced following kefir consumption (50.39 pg/ml vs. 111.78 pg/ml; p=0.03). Strikingly, the populations of Lactobacillus/Lactococcus, total yeast and Candida were strongly correlated with PPARα gene expression in adipose and hepatic tissue (r=0.599, 0.580 and 0.562, respectively). These data suggest that kefir consumption modulates gut microbiota and mycobiota in HFD-fed mice, which prevents obesity and NAFLD via promoting fatty acid oxidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Growth inhibition of Listeria spp. on Camembert cheese by bacteria producing inhibitory substances.

    PubMed

    Sulzer, G; Busse, M

    1991-12-01

    Bacterial strains exhibiting antimicrobial activity towards other bacteria are quite common in nature. During the past few years several genera have been shown to exert inhibitory action against Listeria. spp. In the present work strains of Enterococcus, Lactobacillus and Lactococcus were tested for their influence on the development of Listeria spp. on Camembert cheese. Partial or complete inhibition of growth of Listeria spp. was observed using various inhibitory bacteria. Complete inhibition occurred when the inhibitory strain was used as a starter culture and there was a low level of contamination with Listeria spp. during the first stage of ripening. Very little inhibition occurred if the inhibitory strain was added together with the starter culture.

  8. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination?

    PubMed

    Trombert, A

    2015-01-01

    Lactic acid bacteria (LABs) are good candidates for the development of new oral vaccines and are attractive alternatives to attenuated pathogens. This review focuses on the use of wild-type and recombinant lactococci and lactobacilli with emphasis on their molecular design, immunomodulation and treatment of bacterial infections. The majority of studies related to recombinant LABs have focused on Lactococcus lactis, however, molecular tools have been successfully used for Lactobacillus spp. Recombinant lactobacilli and lactococci have several health benefits, such as immunomodulation, restoration of the microbiota, synthesis of antimicrobial substances and inhibition of virulence factors. In addition, protective immune responses that are well tolerated are induced by the expression of heterologous antigens from recombinant probiotics.

  9. The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione.

    PubMed

    Booty, Lee M; King, Martin S; Thangaratnarajah, Chancievan; Majd, Homa; James, Andrew M; Kunji, Edmund R S; Murphy, Michael P

    2015-02-27

    Glutathione carries out vital protective roles within mitochondria, but is synthesised in the cytosol. Previous studies have suggested that the mitochondrial dicarboxylate and 2-oxoglutarate carriers were responsible for glutathione uptake. We set out to characterise the putative glutathione transport by using fused membrane vesicles of Lactococcus lactis overexpressing the dicarboxylate and 2-oxoglutarate carriers. Although transport of the canonical substrates could be measured readily, an excess of glutathione did not compete for substrate uptake nor could transport of glutathione be measured directly. Thus these mitochondrial carriers do not transport glutathione and the identity of the mitochondrial glutathione transporter remains unknown. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Sequence analysis of the lactococcal plasmid pNP40: a mobile replicon for coping with environmental hazards.

    PubMed

    O'Driscoll, Jonathan; Glynn, Frances; Fitzgerald, Gerald F; van Sinderen, Douwe

    2006-09-01

    The conjugative lactococcal plasmid pNP40, identified in Lactococcus lactis subsp. diacetylactis DRC3, possesses a potent complement of bacteriophage resistance systems, which has stimulated its application as a fitness-improving, food-grade genetic element for industrial starter cultures. The complete sequence of this plasmid allowed the mapping of previously known functions including replication, conjugation, bacteriocin resistance, heavy metal tolerance, and bacteriophage resistance. In addition, functions for cold shock adaptation and DNA damage repair were identified, further confirming pNP40's contribution to environmental stress protection. A plasmid cointegration event appears to have been part of the evolution of pNP40, resulting in a "stockpiling" of bacteriophage resistance systems.

  11. Improvement and Optimization of Two Engineered Phage Resistance Mechanisms in Lactococcus lactis

    PubMed Central

    McGrath, Stephen; Fitzgerald, Gerald F.; van Sinderen, Douwe

    2001-01-01

    Homologous replication module genes were identified for four P335 type phages. DNA sequence analysis revealed that all four phages exhibited more than 90% DNA homology for at least two genes, designated rep2009 and orf17. One of these genes, rep2009, codes for a putative replisome organizer protein and contains an assumed origin of phage DNA replication (ori2009), which was identical for all four phages. DNA fragments representing the ori2009 sequence confer a phage-encoded resistance (Per) phenotype on lactococcal hosts when they are supplied on a high-copy-number vector. Furthermore, cloning multiple copies of the ori2009 sequence was found to increase the effectiveness of the Per phenotype conferred. A number of antisense plasmids targeting specific genes of the replication module were constructed. Two separate plasmids targeting rep2009 and orf17 were found to efficiently inhibit proliferation of all four phages by interfering with intracellular phage DNA replication. These results represent two highly effective strategies for inhibiting bacteriophage proliferation, and they also identify a novel gene, orf17, which appears to be important for phage DNA replication. Furthermore, these results indicate that although the actual mechanisms of DNA replication are very similar, if not identical, for all four phages, expression of the replication genes is significantly different in each case. PMID:11157223

  12. Construction and potential application of controlled autolytic systems for Lactobacillus casei in cheese manufacture.

    PubMed

    Xu, Yi; Kong, Jian

    2013-07-01

    The rapid release of intracellular enzymes into the curd by the autolysis of lactic acid bacteria starters is universally recognized as a critical biological process to accelerate cheese ripening. Lactobacillus casei is typically the dominant nonstarter lactic acid bacterium in the ripening cheese. In this study, two controlled autolytic systems were established in L. casei BL23, based on the exploitation of the autolysins sourced from Lactococcus lactis (AcmA) and Enterococcus faecalis (AtlA). The lysis abilities of the systems were demonstrated both in broth and a model cheese, in which a fivefold increase in lactate dehydrogenase activity was detected in the curd with sufficient viable starter cells being maintained, indicating that they could lead to the timely release of intracellular enzymes.

  13. Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuinier, R.; de Kruif, C. G.

    1999-05-01

    Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.

  14. Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis.

    PubMed

    Ercolini, D; Moschetti, G; Blaiotta, G; Coppola, S

    2001-03-01

    Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (DGGE) was tested as a tool for differentiation of lactic acid bacteria commonly isolated from food. Variable V3 regions of 21 reference strains and 34 wild strains referred to species belonging to the genera Pediococcus, Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, Weissella, and Streptococcus were analyzed. DGGE profiles obtained were species-specific for most of the cultures tested. Moreover, it was possible to group the remaining LAB reference strains according to the migration of their 16S V3 region in the denaturing gel. The results are discussed with reference to their potential in the analysis of LAB communities in food, besides shedding light on taxonomic aspects.

  15. Functional anatomy of the colonic bioreactor: Impact of antibiotics and Saccharomyces boulardii on bacterial composition in human fecal cylinders.

    PubMed

    Swidsinski, Alexander; Loening-Baucke, Vera; Schulz, Stefan; Manowsky, Julia; Verstraelen, Hans; Swidsinski, Sonja

    2016-02-01

    Sections of fecal cylinders were analyzed using fluorescence in situ hybridization targeting 180 bacterial groups. Samples were collected from three groups of women (N=20 each) treated for bacterial vaginosis with ciprofloxacin+metronidazole. Group A only received the combined antibiotic regimen, whereas the A/Sb group received concomitant Saccharomyces boulardii CNCM I-745 treatment, and the A_Sb group received S. boulardii prophylaxis following the 14-day antibiotic course. The number of stool cylinders analyzed was 188 out of 228 in group A, 170 out of 228 in group A/Sb, and 172 out of 216 in group A_Sb. The colonic biomass was organized into a separate mucus layer with no bacteria, a 10-30μm broad unstirred transitional layer enriched with bacteria, and a patchy fermentative area that mixed digestive leftovers with bacteria. The antibiotics suppressed bacteria mainly in the fermentative area, whereas abundant bacterial clades retreated to the transitional mucus and survived. As a result, the total concentration of bacteria decreased only by one order. These effects were lasting, since the overall recovery of the microbial mass, bacterial diversity and concentrations were still below pre-antibiotic values 4 months after the end of antibiotic treatment. Sb-prophylaxis markedly reduced antibiotic effects and improved the recovery rates. Since the colon is a sophisticated bioreactor, the study indicated that the spatial anatomy of its biomass was crucial for its function. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Statistical downscaling of sub-daily (6-hour) temperature in Romania, by means of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Birsan, Marius-Victor; Dumitrescu, Alexandru; Cǎrbunaru, Felicia

    2016-04-01

    The role of statistical downscaling is to model the relationship between large-scale atmospheric circulation and climatic variables on a regional and sub-regional scale, making use of the predictions of future circulation generated by General Circulation Models (GCMs) in order to capture the effects of climate change on smaller areas. The study presents a statistical downscaling model based on a neural network-based approach, by means of multi-layer perceptron networks. Sub-daily temperature data series from 81 meteorological stations over Romania, with full data records are used as predictands. As large-scale predictor, the NCEP/NCAD air temperature data at 850 hPa over the domain 20-30E / 40-50N was used, at a spatial resolution of 2.5×2.5 degrees. The period 1961-1990 was used for calibration, while the validation was realized over the 1991-2010 interval. Further, in order to estimate future changes in air temperature for 2021-2050 and 2071-2100, air temperature data at 850 hPa corresponding to the IPCC A1B scenario was extracted from the CNCM33 model (Meteo-France) and used as predictor. This work has been realized within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian Executive Agency for Higher Education Research, Development and Innovation Funding (UEFISCDI).

  17. Influence of in ovo prebiotic and synbiotic administration on meat quality of broiler chickens.

    PubMed

    Maiorano, G; Sobolewska, A; Cianciullo, D; Walasik, K; Elminowska-Wenda, G; Slawinska, A; Tavaniello, S; Zylinska, J; Bardowski, J; Bednarczyk, M

    2012-11-01

    A trial was conducted to evaluate the effect of in ovo injection of prebiotic and synbiotics on growth performance, meat quality traits (cholesterol content, intramuscular collagen properties, fiber measurements), and the presence of histopathological changes in the pectoral muscle (PS) of broiler chickens. On d 12 of incubation, 480 eggs were randomly divided into 5 experimental groups treated with different bioactives, in ovo injected: C, control with physiological saline; T1 with 1.9 mg of raffinose family oligosaccharides; T2 and T3 with 1.9 mg of raffinose family oligosaccharides enriched with different probiotic bacteria, specifically 1,000 cfu of Lactococcus lactis ssp. lactis SL1 and Lactococcus lactis ssp. cremoris IBB SC1, respectively; T4 with commercially available synbiotic Duolac, containing 500 cfu of both Lactobacillus acidophilus and Streptococcus faecium with the addition of lactose (0.001 mg/embryo). Among the hatched chickens, 60 males were randomly chosen (12 birds for each group) and were grown to 42 d in collective cages (n = 3 birds in each 4 cages: replications for experimental groups). Broilers were fed ad libitum commercial diets according to age. In ovo prebiotic and synbiotic administration had a low effect on investigated traits, but depend on the kind of bioactives administered. Commercial synbiotic treatment (T4) reduced carcass yield percentage, and the feed conversion ratio was higher in T3 and T4 groups compared with other groups. The abdominal fat, the ultimate pH, and cholesterol of the PS were not affected by treatment. Broiler chickens of the treated groups with both slightly greater PS and fiber diameter had a significantly lower amount of collagen. The greater thickness of muscle fibers (not significant) and the lower fiber density (statistically significant), observed in treated birds in comparison with those of the C group, are not associated with histopathological changes in the PS of broilers. The incidence of

  18. Probiotic bacteria inhibit the bovine respiratory pathogen Mannheimia haemolytica serotype 1 in vitro.

    PubMed

    Amat, S; Subramanian, S; Timsit, E; Alexander, T W

    2017-05-01

    This study evaluated the potential of probiotic bacteria to inhibit growth and cell adhesion of the bovine respiratory pathogen Mannheimia haemoltyica serotype 1. The inhibitory effects of nine probiotic strains (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis, Streptococcus thermophilus and two Paenibacillus polymyxa strains) against M. haemolytica were evaluated using a spot-on-lawn method. Probiotic strains were then tested for their adherence to bovine bronchial epithelial (BBE) cells and the ability to displace and compete against M. haemolytica on BBE. Except for S. thermophilus, all probiotic strains inhibited the growth of M. haemolytica, with zones of inhibition ranging between 12 and 19 mm. Lactobacillus strains and Lactococcus lactis displayed greater (P < 0·05) BBE adhesion compared with M. heamolytica (8·3%) and other probiotics (<2·2%). Strains of P. polymyxa and L. acidophilus caused the greatest reduction in M. haemolytica adherence, through both displacement and competition, compared with other probiotics. The results of this study suggest that probiotics may have the potential to colonize the bovine respiratory tract, and exert antagonistic effects against M. haemolytica serotype 1. A common method to control bovine respiratory disease (BRD) in feedlots is through mass medication with antibiotics upon cattle entry (i.e. metaphylaxis). Increasingly, antimicrobial resistance in BRD bacterial pathogens has been observed in feedlots, which may have important implications for cattle health. In this study, probiotic strains were shown to adhere to bovine respiratory cells and inhibit the BRD pathogen M. haemolytica serotype 1 through competition and displacement. Probiotics may therefore offer a mitigation strategy to reduce BRD bacterial pathogens, in place of metaphylactic antimicrobials. © 2017 Her Majesty the Queen in Right of Canada

  19. The dominant microbial community associated with fermentation of Obushera (sorghum and millet beverages) determined by culture-dependent and culture-independent methods.

    PubMed

    Mukisa, Ivan M; Porcellato, Davide; Byaruhanga, Yusuf B; Muyanja, Charles M B K; Rudi, Knut; Langsrud, Thor; Narvhus, Judith A

    2012-11-01

    Obushera includes four fermented cereal beverages from Uganda namely: Obutoko, Enturire, Ekitiribita and Obuteire, whose microbial diversity has not hitherto been fully investigated. Knowledge of the microbial diversity and dynamics in these products is crucial for understanding their safety and development of appropriate starter cultures for controlled industrial processing. Culture-dependent and culture-independent techniques including denaturating gradient gel electrophoresis (DGGE) and mixed DNA sequencing of polymerase chain reaction (PCR) amplified ribosomal RNA genes were used to study the bacteria and yeast diversity of Obushera. The pH dropped from 6.0-4.6 to 3.5-4.0 within 1-2 days for Obutoko, Enturire and Obuteire whereas that of Ekitiribita decreased to 4.4 after 4 days. Counts of lactic acid bacteria (LAB) increased from 5.0 to 11.0 log cfug(-1) and yeasts increased from 3.4 to 7.1 log cfug(-1) while coliform counts decreased from 2.0 to <1 log cfug(-1) during four days of fermentation. LAB and yeast isolates were identified by rRNA gene sequence analysis. LAB isolates included: Enterococcus spp., Lactobacillus (Lb.) plantarum, Lb. fermentum, Lb. delbrueckii, Lactococcus lactis, Leuconostoc lactis, Streptococcus (S.) infantarius subsp. infantarius, Pediococcus pentosaceus and Weisella (W.) confusa. DGGE indicated predominance of S. gallolyticus, S. infantarius subsp. infantarius, Lb. fermentum, Lb. delbrueckii, W. confusa, Lb. reuteri, Fructobacillus spp., L. lactis and L. lactis. Yeast isolates included Clavispora lusitaniae, Cyberlindnera fabianii, Issatchenkia orientalis and Saccharomyces cerevisiae. DGGE indicated predominance of S. cerevisiae in Obutoko, Enturire and Obuteire and also detected Pichia spp. and I. orientalis in Obutoko. Obushera produced in the laboratory was initially dominated by Enterobacteriaceae and later by Lactococcus spp. Enterobacteriaceae and Bacillus spp. were also detected in Ekitiribita. Development of starters for

  20. Two-Component Systems Involved in Susceptibility to Nisin A in Streptococcus pyogenes

    PubMed Central

    Kawada-Matsuo, Miki; Tatsuno, Ichiro; Arii, Kaoru; Zendo, Takeshi; Oogai, Yuichi; Noguchi, Kazuyuki; Hasegawa, Tadao; Sonomoto, Kenji

    2016-01-01

    ABSTRACT Two-component systems (TCSs) are regulatory systems in bacteria that play important roles in sensing and adapting to the environment. In this study, we systematically evaluated the roles of TCSs in the susceptibility of the group A Streptococcus (GAS; Streptococcus pyogenes) SF370 strain to several types of lantibiotics. Using individual TCS deletion mutants, we found that the deletion of srtRK (spy_1081–spy_1082) in SF370 increased the susceptibility to nisin A, which is produced by Lactococcus lactis ATCC 11454, but susceptibility to other types of lantibiotics (nukacin ISK-1, produced by Staphylococcus warneri, and staphylococcin C55, produced by Staphylococcus aureus) was not altered in the TCS mutants tested. The expression of srtFEG (spy_1085 to spy_1087), which is located downstream of srtRK and is homologous to ABC transporters, was increased in response to nisin A. However, srtEFG expression was not induced by nisin A in the srtRK mutant. The inactivation of srtFEG increased the susceptibility to nisin A. These results suggest that SrtRK controls SrtFEG expression to alter the susceptibility to nisin A. Further experiments showed that SrtRK is required for coexistence with L. lactis ATCC 11454, which produces nisin A. Our results elucidate the important roles of S. pyogenes TCSs in the interactions between different bacterial species, including bacteriocin-producing bacteria. IMPORTANCE In this study, we focused on the association of TCSs with susceptibility to bacteriocins in S. pyogenes SF370, which has no ability to produce bacteriocins, and reported two major new findings. We demonstrated that the SrtRK TCS is related to susceptibility to nisin A by controlling the ABC transporter SrtFEG. We also showed that S. pyogenes SrtRK is important for survival when the bacteria are cocultured with nisin A-producing Lactococcus lactis. This report highlights the roles of TCSs in the colocalization of bacteriocin-producing bacteria and non

  1. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria.

    PubMed

    Kimoto-Nira, H; Moriya, N; Hayakawa, S; Kuramasu, K; Ohmori, H; Yamasaki, S; Ogawa, M

    2017-07-01

    It has recently been reported that the rare sugar d-allulose has beneficial effects, including the suppression of postprandial blood glucose elevation in humans, and can be substituted for sucrose as a low-calorie food ingredient. To examine the applications of d-allulose in the dairy industry, we investigated the effects of d-allulose on the acid production of 8 strains of yogurt starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and 4 strains of lactococci, including potential probiotic candidates derived from dairy products. Acid production by 2 L. delbrueckii ssp. bulgaricus yogurt starter strains in milk was suppressed by d-allulose, but this phenomenon was also observed in some strains with another sugar (xylose), a sugar alcohol (sorbitol), or both. In contrast, among the dairy probiotic candidates, Lactococcus lactis H61, which has beneficial effects for human skin when drunk as part of fermented milk, was the only strain that showed suppression of acid production in the presence of d-allulose. Strain H61 did not metabolize d-allulose. We did not observe suppression of acid production by strain H61 with the addition of xylose or sorbitol, and xylose and sorbitol were not metabolized by strain H61. The acid production of strain H61 after culture in a constituted medium (tryptone-yeast extract-glucose broth) was also suppressed with the addition of d-allulose, but growth efficiency and sugar fermentation style were not altered. Probiotic activities-such as the angiotensin-converting enzyme inhibitory activity of H61-fermented milk and the superoxide dismutase activity of H61 cells grown in tryptone-yeast extract-glucose broth-were not affected by d-allulose. d-Allulose may suppress acid production in certain lactic acid bacteria without altering their probiotic activity. It may be useful for developing new probiotic dairy products from probiotic strains such as Lactococcus lactis H61. Copyright © 2017 American Dairy Science

  2. Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci

    PubMed Central

    Ke, Danbing; Boissinot, Maurice; Huletsky, Ann; Picard, François J.; Frenette, Johanne; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.

    2000-01-01

    The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus

  3. Antimicrobial Peptides Produced by Selective Pressure Incorporation of Non-canonical Amino Acids.

    PubMed

    Nickling, Jessica H; Baumann, Tobias; Schmitt, Franz-Josef; Bartholomae, Maike; Kuipers, Oscar P; Friedrich, Thomas; Budisa, Nediljko

    2018-05-04

    Nature has a variety of possibilities to create new protein functions by modifying the sequence of the individual amino acid building blocks. However, all variations are based on the 20 canonical amino acids (cAAs). As a way to introduce additional physicochemical properties into polypeptides, the incorporation of non-canonical amino acids (ncAAs) is increasingly used in protein engineering. Due to their relatively short length, the modification of ribosomally synthesized and post-translationally modified peptides by ncAAs is particularly attractive. New functionalities and chemical handles can be generated by specific modifications of individual residues. The selective pressure incorporation (SPI) method utilizes auxotrophic host strains that are deprived of an essential amino acid in chemically defined growth media. Several structurally and chemically similar amino acid analogs can then be activated by the corresponding aminoacyl-tRNA synthetase and provide residue-specific cAA(s) → ncAA(s) substitutions in the target peptide or protein sequence. Although, in the context of the SPI method, ncAAs are also incorporated into the host proteome during the phase of recombinant gene expression, the majority of the cell's resources are assigned to the expression of the target gene. This enables efficient residue-specific incorporation of ncAAs often accompanied with high amounts of modified target. The presented work describes the in vivo incorporation of six proline analogs into the antimicrobial peptide nisin, a lantibiotic naturally produced by Lactococcus lactis. Antimicrobial properties of nisin can be changed and further expanded during its fermentation and expression in auxotrophic Escherichia coli strains in defined growth media. Thereby, the effects of residue-specific replacement of cAAs with ncAAs can deliver changes in antimicrobial activity and specificity. Antimicrobial activity assays and fluorescence microscopy are used to test the new nisin variants

  4. A novel type of peptidoglycan-binding domain highly specific for amidated D-Asp cross-bridge, identified in Lactobacillus casei bacteriophage endolysins.

    PubMed

    Regulski, Krzysztof; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre

    2013-07-12

    Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-L-alanine amidase, whereas Lc-Lys-2 is a γ-D-glutamyl-L-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with D-Ala(4)→D-Asx-L-Lys(3) in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting D-Ala(4)→L-Ala-(L-Ala/L-Ser)-L-Lys(3); moreover, they do not lyse the L. lactis mutant containing only the nonamidated D-Asp cross-bridge, i.e. D-Ala(4)→D-Asp-L-Lys(3). In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 L-Lys(3)-D-Asn-L-Lys(3) bridges replacing the wild-type 4→3 D-Ala(4)-D-Asn-L-Lys(3) bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly D-Asn but not PG with only the nonamidated D-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the D-Asn interpeptide bridge of PG.

  5. Proteolysis in model Portuguese cheeses: Effects of rennet and starter culture.

    PubMed

    Pereira, Cláudia I; Gomes, Eliza O; Gomes, Ana M P; Malcata, F Xavier

    2008-06-01

    To shed further light onto the mechanisms of proteolysis that prevail throughout ripening of Portuguese cheeses, model cheeses were manufactured from bovine milk, following as much as possible traditional manufacture practices - using either animal or plant rennet. The individual role upon proteolysis of two (wild) strains of lactic acid bacteria - viz. Lactococcus lactis and Lactobacillus brevis, which are normally found to high viable numbers in said cheeses, was also considered, either as single or mixed cultures. Our experimental results confirmed the influence of rennet on the proteolysis extent, but not on proteolysis depth. On the other hand, the aforementioned strains clearly improved release of medium- and small-sized peptides, and contributed as well to the free amino acid pool in cheese. Copyright © 2007 Elsevier Ltd. All rights reserved.

  6. Reconstructing biochemical pathways from time course data.

    PubMed

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.

  7. Characterization of PepB, a group B streptococcal oligopeptidase.

    PubMed Central

    Lin, B; Averett, W F; Novak, J; Chatham, W W; Hollingshead, S K; Coligan, J E; Egan, M L; Pritchard, D G

    1996-01-01

    Group B streptococci were recently reported to possess a cell-associated collagenase. Although the enzyme hydrolyzed the synthetic collagen-like substrate N-(3-[2-furyl]acryloyl)-Leu-Gly-Pro-Ala, we found that neither the highly purified enzyme nor crude group B streptococcal cell lysate solubilized a film of reconstituted rat tail collagen, an activity regarded as obligatory for a true collagenase. We cloned and sequenced the gene for the enzyme (pepB). The deduced amino acid sequence showed 66.4% identity to the PepF oligopeptidase from Lactococcus lactis, a member of the M3 or thimet family of zinc metallopeptidases. The group B streptococcal enzyme also showed oligopeptidase activity and degraded a variety of small bioactive peptides, including bradykinin, neurotensin, and peptide fragments of substance P and adrenocorticotropin. PMID:8757883

  8. Fates of Acid-Resistant and Non-Acid-Resistant Shiga Toxin-Producing Escherichia coli Strains in Ruminant Digestive Contents in the Absence and Presence of Probiotics ▿

    PubMed Central

    Chaucheyras-Durand, Frédérique; Faqir, Fahima; Ameilbonne, Aurélie; Rozand, Christine; Martin, Christine

    2010-01-01

    Healthy ruminants are the main reservoir of Shiga toxin-producing Escherichia coli (STEC). During their transit through the ruminant gastrointestinal tract, STEC encounters a number of acidic environments. As all STEC strains are not equally resistant to acidic conditions, the purpose of this study was to investigate whether acid resistance confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. We found that acid-resistant STEC survived at higher rates during prolonged incubation in rumen fluid than acid-sensitive STEC and that they resisted the highly acidic conditions of the abomasum fluid, whereas acid-sensitive strains were killed. However, transit through the rumen contents allowed acid-sensitive strains to survive in the abomasum fluid at levels similar to those of acid-resistant STEC. The acid resistance status of the strains had little influence on STEC growth in jejunal and cecal contents. Supplementation with the probiotic Saccharomyces cerevisiae CNCM I-1077 or Lactobacillus acidophilus BT-1386 led to killing of all of the strains tested during prolonged incubation in the rumen contents, but it did not have any influence in the other digestive compartments. In addition, S. cerevisiae did not limit the induction of acid resistance in the rumen fluid. Our results indicate that the rumen compartment could be a relevant target for intervention strategies that could both limit STEC survival and eliminate induction of acid resistance mechanisms in order to decrease the number of viable STEC cells reaching the hindgut and thus STEC shedding and food contamination. PMID:19948865

  9. In Vitro Inhibition of Klebsiella pneumoniae by Lactobacillus delbrueckii Subsp. delbrueckii LDD01 (DSM 22106): An Innovative Strategy to Possibly Counteract Such Infections in Humans?

    PubMed

    Mogna, Luca; Deidda, Francesca; Nicola, Stefania; Amoruso, Angela; Del Piano, Mario; Mogna, Giovanni

    To determine the in vitro antimicrobial activity of selected Lactobacillus strains isolated from the feces of healthy humans against Klebsiella pneumoniae. Klebsiella is ubiquitous in nature and may colonize the skin, the pharynx, or the gastrointestinal tract of humans. Despite the widespread use of antibiotic molecules with a broad spectrum in hospitalized patients, an increased overall load of klebsiellae as well as the subsequent development of multidrug-resistant strains able to synthesize extended-spectrum beta-lactamase have been registered. These strains are particularly virulent, express capsular-type K55, and have a considerable ability to propagate. The 4 strains Lactobacillus paracasei LPC01 (CNCM I-1390), Lactobacillus rhamnosus LR04 (DSM 16605), Bifidobacterium longum B2274 (DSM 24707), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106) were tested. The analysis was performed using both a disc-diffusion assay and the broth-dilution procedure, also including an evaluation of the supernatants obtained from a fresh broth culture of each bacterium. L. delbrueckii subsp. delbrueckii LDD01 demonstrated the best inhibitory results among all the tested strains. The antibacterial activity of the supernatant was retained even after treatment with α-amylase and neutralization with NaOH 1N, thus suggesting the protein structure of the inhibitory molecule. In contrast, it was completely lost after treatment with proteinase K. Overall results suggest that the inhibitory effect of L. delbrueckii subsp. delbrueckii LDD01 should be attributed to the production of a bacteriocin. This strain may be prospectively useful for strengthening probiotic formulations and possibly counteract infections by K. pneumoniae in humans.

  10. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity.

    PubMed

    Cazorla, Silvia I; Maldonado-Galdeano, Carolina; Weill, Ricardo; De Paula, Juan; Perdigón, Gabriela D V

    2018-01-01

    The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP) that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431) and L. paracasei CNCM I-1518 (Lp 1518) to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus . Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old) to old age (180 days old). Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  11. Effect of the Probiotic Saccharomyces boulardii on Cholesterol and Lipoprotein Particles in Hypercholesterolemic Adults: A Single-Arm, Open-Label Pilot Study.

    PubMed

    Ryan, Jennifer Joan; Hanes, Douglas Allen; Schafer, Morgan Beth; Mikolai, Jeremy; Zwickey, Heather

    2015-05-01

    Elevated blood cholesterol levels are a major risk factor for coronary artery disease, the leading cause of death worldwide. Probiotics have been investigated as potential cholesterol-lowering therapies, but no previous studies have assessed the effect of the probiotic yeast Saccharomyces boulardii on cholesterol levels in human volunteers. The objective of this study was to examine the effect of S. boulardii on serum cholesterol and lipoprotein particles in hypercholesterolemic adults. This study was a single-arm, open-label pilot study. Twelve hypercholesterolemic participants were recruited into the study; one dropped out. Participants took 5.6×10(10) colony forming unit (CFU) encapsulated S. boulardii (Saccharomyces cerevisiae var. boulardii CNCM I-1079) twice daily for an 8-week period. Fasting concentrations of cholesterol (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], and triglycerides), lipoprotein particles (very-low-density lipoprotein-particle [VLDL-P], remnant lipoprotein particle [RLP-P], total LDL-P, LDL III-P, LDL IV-P, total HDL-P, and HDL 2b-P), and additional cardiovascular biomarkers (apo B-100, lipoprotein [a], high-sensitivity C-reactive protein, homocysteine, fibrinogen, and insulin) were measured at baseline, after 4 weeks, and after 8 weeks. Remnant lipoprotein particles decreased by 15.5% (p=0.03) over the 8-week period. The remaining outcome measures were not significantly altered. In this pilot study, 8 weeks of daily supplementation with S. boulardii lowered remnant lipoprotein, a predictive biomarker and potential therapeutic target in the treatment and prevention of coronary artery disease.

  12. Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides.

    PubMed

    Bzducha-Wróbel, Anna; Błażejak, Stanisław; Kieliszek, Marek; Pobiega, Katarzyna; Falana, Katarzyna; Janowicz, Monika

    2018-06-06

    Changes in cell wall structure of four strains of Sacccharomyces cerevisiae species (brewer's, baker's and probiotic yeast) after culturing on deproteinated potato juice water (DPJW) with diverse addition of glycerol and different pH were investigated. It allowed to select conditions intensifying biosynthesis of β(1,3)/(1,6)-glucan and mannoproteins of cell walls of tested strains. Yeast cell wall structural polysaccharides show biological activity and technological usability in food industry but also decide about therapeutic properties of yeast biomass. The highest increase in the thickness of walls (by about 100%) and β-glucan layer (by about 120%) was stated after cultivation of S. cerevisiae R9 brewer's yeast in DPJW supplemented with 5 and 10% (w/v) of glycerol and pH 7.0 while S. cerevisiae var. boulardi PAN yeast synthesized by ab. 70% thicker β-glucan layer when the pH of growth medium was equal to 5.0. The cells of brewer's yeast (S. cerevisiae R9), probiotic (S. cerevisiae CNCM 1-745) and baker's (S. cerevisiae 102) intensified the ratio of mannoproteins in the structure of cell walls cultivated in mediums supplemented with above 15% of glycerol what point out the protective action of glycoprotein's under osmotic stress conditions. The study confirms at the first time the possibility of using agro-industrial waste in biosynthesis of functional polysaccharides of S. cerevisiae cell wall. It could be an new advantage in production of yeast biomass with therapeutic properties or β-glucan preparation as a novel food ingredient. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Impact of climate change on water resources status: A case study for Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Koutroulis, Aristeidis G.; Tsanis, Ioannis K.; Daliakopoulos, Ioannis N.; Jacob, Daniela

    2013-02-01

    SummaryAn assessment of the impact of global climate change on the water resources status of the island of Crete, for a range of 24 different scenarios of projected hydro-climatological regime is presented. Three "state of the art" Global Climate Models (GCMs) and an ensemble of Regional Climate Models (RCMs) under emission scenarios B1, A2 and A1B provide future precipitation (P) and temperature (T) estimates that are bias adjusted against observations. The ensemble of RCMs for the A1B scenario project a higher P reduction compared to GCMs projections under A2 and B1 scenarios. Among GCMs model results, the ECHAM model projects a higher P reduction compared to IPSL and CNCM. Water availability for the whole island at basin scale until 2100 is estimated using the SAC-SMA rainfall-runoff model And a set of demand and infrastructure scenarios are adopted to simulate potential water use. While predicted reduction of water availability under the B1 emission scenario can be handled with water demand stabilized at present values and full implementation of planned infrastructure, other scenarios require additional measures and a robust signal of water insufficiency is projected. Despite inherent uncertainties, the quantitative impact of the projected changes on water availability indicates that climate change plays an important role to water use and management in controlling future water status in a Mediterranean island like Crete. The results of the study reinforce the necessity to improve and update local water management planning and adaptation strategies in order to attain future water security.

  14. Discovering Novel Bile Protection Systems in Bifidobacterium breve UCC2003 through Functional Genomics

    PubMed Central

    Ruiz, Lorena; Zomer, Aldert; O'Connell-Motherway, Mary; van Sinderen, Douwe

    2012-01-01

    Tolerance of gut commensals to bile salt exposure is an important feature for their survival in and colonization of the intestinal environment. A transcriptomic approach was employed to study the response of Bifidobacterium breve UCC2003 to bile, allowing the identification of a number of bile-induced genes with a range of predicted functions. The potential roles of a selection of these bile-inducible genes in bile protection were analyzed following heterologous expression in Lactococcus lactis. Genes encoding three transport systems belonging to the major facilitator superfamily (MFS), Bbr_0838, Bbr_0832, and Bbr_1756, and three ABC-type transporters, Bbr_0406-0407, Bbr_1804-1805, and Bbr_1826-1827, were thus investigated and shown to provide enhanced resistance and survival to bile exposure. This work significantly improves our understanding as to how bifidobacteria respond to and survive bile exposure. PMID:22156415

  15. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae*

    PubMed Central

    Rego, Sara; Heal, Timothy J.; Pidwill, Grace R.; Till, Marisa; Robson, Alice; Lamont, Richard J.; Sessions, Richard B.; Jenkinson, Howard F.; Race, Paul R.; Nobbs, Angela H.

    2016-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans. Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections. PMID:27311712

  16. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin.

    PubMed

    Xiao, Yi; Jiang, Wen; Zhang, Fuzhong

    2017-10-20

    Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.

  17. High-Throughput Sequencing for Detection of Subpopulations of Bacteria Not Previously Associated with Artisanal Cheeses

    PubMed Central

    Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P.; Ross, R. Paul; Fitzgerald, Gerald F.

    2012-01-01

    Here, high-throughput sequencing was employed to reveal the highly diverse bacterial populations present in 62 Irish artisanal cheeses and, in some cases, associated cheese rinds. Using this approach, we revealed the presence of several genera not previously associated with cheese, including Faecalibacterium, Prevotella, and Helcococcus and, for the first time, detected the presence of Arthrobacter and Brachybacterium in goats' milk cheese. Our analysis confirmed many previously observed patterns, such as the dominance of typical cheese bacteria, the fact that the microbiota of raw and pasteurized milk cheeses differ, and that the level of cheese maturation has a significant influence on Lactobacillus populations. It was also noted that cheeses containing adjunct ingredients had lower proportions of Lactococcus species. It is thus apparent that high-throughput sequencing-based investigations can provide valuable insights into the microbial populations of artisanal foods. PMID:22685131

  18. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses.

    PubMed

    Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; Cotter, Paul D

    2012-08-01

    Here, high-throughput sequencing was employed to reveal the highly diverse bacterial populations present in 62 Irish artisanal cheeses and, in some cases, associated cheese rinds. Using this approach, we revealed the presence of several genera not previously associated with cheese, including Faecalibacterium, Prevotella, and Helcococcus and, for the first time, detected the presence of Arthrobacter and Brachybacterium in goats' milk cheese. Our analysis confirmed many previously observed patterns, such as the dominance of typical cheese bacteria, the fact that the microbiota of raw and pasteurized milk cheeses differ, and that the level of cheese maturation has a significant influence on Lactobacillus populations. It was also noted that cheeses containing adjunct ingredients had lower proportions of Lactococcus species. It is thus apparent that high-throughput sequencing-based investigations can provide valuable insights into the microbial populations of artisanal foods.

  19. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium–host interactions

    PubMed Central

    Turroni, Francesca; Serafini, Fausta; Foroni, Elena; Duranti, Sabrina; O’Connell Motherway, Mary; Taverniti, Valentina; Mangifesta, Marta; Milani, Christian; Viappiani, Alice; Roversi, Tommaso; Sánchez, Borja; Santoni, Andrea; Gioiosa, Laura; Ferrarini, Alberto; Delledonne, Massimo; Margolles, Abelardo; Piazza, Laura; Palanza, Paola; Bolchi, Angelo; Guglielmetti, Simone; van Sinderen, Douwe; Ventura, Marco

    2013-01-01

    Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-α response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity. PMID:23776216

  20. Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens.

    PubMed

    Slawinska, Anna; Plowiec, Arkadiusz; Siwek, Maria; Jaroszewski, Marcin; Bednarczyk, Marek

    2016-01-01

    In ovo delivery of prebiotics and synbiotics in chickens allows for the development of intestinal microflora prior to hatching, which boosts their robustness. The goal of this study was to determine the transcriptomic profile of the spleen (S), cecal tonsils (CT), and large intestine (LI) of adult chickens injected with prebiotics and synbiotics in ovo. On day 12 of embryo development, incubating eggs were injected with prebiotics: inulin alone (P1) or in combination with Lactococcus lactis subsp. lactis IBB2955 (S1), galactooligosaccharides (GOS) alone (P2) or in combination with Lactococcus lactis subsp. cremoris IBB477 (S2); control group (C) was mock injected with physiological saline. Gene expression analysis was conducted using an Affymetrix Chicken Gene 1.1 ST Array Strip. Most of the differentially expressed genes (DEG) were detected in the cecal tonsils of P2 (378 DEG), and were assigned to gene ontology categories: lymphocyte proliferation, activation and differentiation, and cytokine production. Ingenuity pathway analysis of the DEG (CT of P2) indicated the inhibition of humoral and cellular immune responses, e.g., role of NFAT in regulation of immune responses, phagocytosis, production of nitric oxide, NF-κB, IL-8, and CXCR4 signaling. The DEG with the highest up-regulation from S1 and P2 were involved in gene expression (PAPOLA, RPL27A, RPLP1, and RPS29) from P1 and P2 in transport (BEST4, SLC9A3, and SLC13A2), metabolism (OGT, ALPP, CA4, and CA7), signaling (FGG, G3BP2, UBB, G3BP2, CACNA1G, and ATP6V0A4), and immune responses (MSMB, LGALS3, CABIN1, CXCR5, PAX5, and TNFRSF14). Two DEG influencing the complement system (SERPING1 and MIR1674) were down-regulated in P2 and S1. In conclusion, GOS injected in ovo provided the most potent stimulation of the host transcriptome. This is likely due to its strong bifidogenic effect, which triggers proliferation of indigenous embryonic microflora in ovo, and indirectly influences gene expression regulation in

  1. Effect of in ovo-delivered prebiotics and synbiotics on the morphology and specific immune cell composition in the gut-associated lymphoid tissue.

    PubMed

    Madej, J P; Bednarczyk, M

    2016-01-01

    The purpose of this study was to examine how pre- and synbiotic administration in ovo into the air chamber at d 12 of egg incubation influenced the specific immune cell composition and distribution in the ileum, cecal tonsils (CT) and bursa of Fabricius of broilers. The experiment was performed on 800 hatching eggs of the meat-type chickens (Ross 308). Hatching eggs were treated with: prebiotic, consisting of inulin (Pre1) or Bi(2)tos(®) (Pre2); symbiotic, composed of inulin and Lactococcus lactis subsp. lactis IBB SL1 (Syn1) or Bi(2)tos and Lactococcus lactis subsp. cremoris IBB SC1 (Syn2); or physiological saline as a control group. Seven chickens from each treatment group were randomly selected on , 1, 7, and 21 after hatch for tissue collection. Ileum, cecal tonsil and bursa of Fabricius samples were immunohistochemically stained and the proportions of Bu-1(+), CD3(+), CD4(+), CD8α(+) and TCRγδ(+) cells were estimated. It was indicated that the pre- and synbiotics do not adversely affect the development of the GALT of the chicken. The temporary decrease in B-cell number in bursa on d 7 after hatch suggested an increased colonization rate of the peripheral lymphoid organs by these cells after Pre1, Pre2, and Syn2 treatment. In CT at d 7 after hatch more potent colonization of the GALT by T cells was observed in all pre- and synbiotic treated groups and by B cells in both synbiotic-treated groups than those in respective controls. Then, on d 21 in both synbiotic-treated groups, an increase in T-cell number in ileum was also noticed with faster colonization of the CT by B cells. In 21-day-old chickens, both synbiotics exerted stronger stimulatory effect on the GALT colonization by T cells then prebiotics respectively. Similarly, the colonization by B cells was more pronounced in the Syn2 than in the Pre2 group. The data obtained in this study indicated that prebiotics and particularly synbiotics administrated in ovo stimulated GALT development after hatch.

  2. Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens

    PubMed Central

    Slawinska, Anna; Plowiec, Arkadiusz; Siwek, Maria; Jaroszewski, Marcin; Bednarczyk, Marek

    2016-01-01

    In ovo delivery of prebiotics and synbiotics in chickens allows for the development of intestinal microflora prior to hatching, which boosts their robustness. The goal of this study was to determine the transcriptomic profile of the spleen (S), cecal tonsils (CT), and large intestine (LI) of adult chickens injected with prebiotics and synbiotics in ovo. On day 12 of embryo development, incubating eggs were injected with prebiotics: inulin alone (P1) or in combination with Lactococcus lactis subsp. lactis IBB2955 (S1), galactooligosaccharides (GOS) alone (P2) or in combination with Lactococcus lactis subsp. cremoris IBB477 (S2); control group (C) was mock injected with physiological saline. Gene expression analysis was conducted using an Affymetrix Chicken Gene 1.1 ST Array Strip. Most of the differentially expressed genes (DEG) were detected in the cecal tonsils of P2 (378 DEG), and were assigned to gene ontology categories: lymphocyte proliferation, activation and differentiation, and cytokine production. Ingenuity pathway analysis of the DEG (CT of P2) indicated the inhibition of humoral and cellular immune responses, e.g., role of NFAT in regulation of immune responses, phagocytosis, production of nitric oxide, NF-κB, IL-8, and CXCR4 signaling. The DEG with the highest up-regulation from S1 and P2 were involved in gene expression (PAPOLA, RPL27A, RPLP1, and RPS29) from P1 and P2 in transport (BEST4, SLC9A3, and SLC13A2), metabolism (OGT, ALPP, CA4, and CA7), signaling (FGG, G3BP2, UBB, G3BP2, CACNA1G, and ATP6V0A4), and immune responses (MSMB, LGALS3, CABIN1, CXCR5, PAX5, and TNFRSF14). Two DEG influencing the complement system (SERPING1 and MIR1674) were down-regulated in P2 and S1. In conclusion, GOS injected in ovo provided the most potent stimulation of the host transcriptome. This is likely due to its strong bifidogenic effect, which triggers proliferation of indigenous embryonic microflora in ovo, and indirectly influences gene expression regulation in

  3. Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures.

    PubMed

    Muhammed, Musemma K; Kot, Witold; Neve, Horst; Mahony, Jennifer; Castro-Mejía, Josué L; Krych, Lukasz; Hansen, Lars H; Nielsen, Dennis S; Sørensen, Søren J; Heller, Knut J; van Sinderen, Douwe; Vogensen, Finn K

    2017-10-01

    Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus ), P335, c2 (now C2virus ) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales , family Siphoviridae ) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales , family Siphoviridae ) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge

  4. Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures

    PubMed Central

    Muhammed, Musemma K.; Kot, Witold; Neve, Horst; Mahony, Jennifer; Castro-Mejía, Josué L.; Krych, Lukasz; Hansen, Lars H.; Nielsen, Dennis S.; Sørensen, Søren J.; Heller, Knut J.; van Sinderen, Douwe

    2017-01-01

    ABSTRACT Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus), P335, c2 (now C2virus) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales, family Siphoviridae) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales, family Siphoviridae) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge

  5. Use of β-caryophyllene to combat bacterial dental plaque formation in dogs.

    PubMed

    Pieri, Fábio Alessandro; Souza, Marina Campos de Castro; Vermelho, Ligia Lobato Ramos; Vermelho, Marina Lobato Ramos; Perciano, Pedro Griffo; Vargas, Fabiano Souza; Borges, Andréa Pacheco Batista; da Veiga-Junior, Valdir Florêncio; Moreira, Maria Aparecida Scatamburlo

    2016-10-01

    Periodontal disease is a highly prevalent illness that affects many dogs, reaching up to 85 % prevalence in individuals over the age of 4 years. Currently the drug of choice for combating the formation of dental plaque in these animals, the etiologic agent of the disease, is chlorhexidine, which has several side effects reported. Thus, surveys are conducted throughout the world in order to identify potential substitutes for antimicrobial therapy and prevention of periodontal disease. The objective of the work was to evaluate the antimicrobial activity of β-caryophyllene against bacteria from dog's dental plaque in vitro and in vivo. The minimum inhibitory concentration was evaluated by agar microdilution assay, the induction or inhibition of bacterial adherence by sub-inhibitory concentrations in 96-well plates, and reduction of dental plaque formation in mongrel dogs subjected to topical solution with β-caryophyllene for 15 days. Results showed minimum inhibitory concentrations above 100 mg/mL for 25 % of the isolates, 100 mg/mL for 3 %, 50 mg/mL for 25 %, 25 mg/mL for 12 %, 12.5 mg/mL for 19 % and 6.25 mg/mL for 16 %. Bacterial adherences of three Enterococcus sp., one Streptococcus sp., one Haemophilus sp., one Aerococcus sp., one Bacillus sp. and one Lactococcus sp. isolates were inhibited by subinhibitory concentration. One Lactococcus sp., one Bacillus sp. and one Streptococcus sp. were stimulated to adhere by concentrations of 0.19, 1.56 and 0.78 mg/mL, respectively. In vivo assay showed reduction in dental plaque formation by β-caryophyllene, with final plaque coverage of 23.3 ± 2.6 % of the total area of the teeth, with significant difference compared with chlorhexidine group (37.5 ± 3.7 % - p < 0.05) and negative control group (65.5 ± 2.5 % - p < 0.001). The results showed that β-caryophyllene has antimicrobial activity against the proliferation of dog's dental plaque-forming bacteria representing a suitable

  6. Two-Component Systems Involved in Susceptibility to Nisin A in Streptococcus pyogenes.

    PubMed

    Kawada-Matsuo, Miki; Tatsuno, Ichiro; Arii, Kaoru; Zendo, Takeshi; Oogai, Yuichi; Noguchi, Kazuyuki; Hasegawa, Tadao; Sonomoto, Kenji; Komatsuzawa, Hitoshi

    2016-10-01

    Two-component systems (TCSs) are regulatory systems in bacteria that play important roles in sensing and adapting to the environment. In this study, we systematically evaluated the roles of TCSs in the susceptibility of the group A Streptococcus (GAS; Streptococcus pyogenes) SF370 strain to several types of lantibiotics. Using individual TCS deletion mutants, we found that the deletion of srtRK (spy_1081-spy_1082) in SF370 increased the susceptibility to nisin A, which is produced by Lactococcus lactis ATCC 11454, but susceptibility to other types of lantibiotics (nukacin ISK-1, produced by Staphylococcus warneri, and staphylococcin C55, produced by Staphylococcus aureus) was not altered in the TCS mutants tested. The expression of srtFEG (spy_1085 to spy_1087), which is located downstream of srtRK and is homologous to ABC transporters, was increased in response to nisin A. However, srtEFG expression was not induced by nisin A in the srtRK mutant. The inactivation of srtFEG increased the susceptibility to nisin A. These results suggest that SrtRK controls SrtFEG expression to alter the susceptibility to nisin A. Further experiments showed that SrtRK is required for coexistence with L. lactis ATCC 11454, which produces nisin A. Our results elucidate the important roles of S. pyogenes TCSs in the interactions between different bacterial species, including bacteriocin-producing bacteria. In this study, we focused on the association of TCSs with susceptibility to bacteriocins in S. pyogenes SF370, which has no ability to produce bacteriocins, and reported two major new findings. We demonstrated that the SrtRK TCS is related to susceptibility to nisin A by controlling the ABC transporter SrtFEG. We also showed that S. pyogenes SrtRK is important for survival when the bacteria are cocultured with nisin A-producing Lactococcus lactis This report highlights the roles of TCSs in the colocalization of bacteriocin-producing bacteria and non-bacteriocin-producing bacteria. Our

  7. Copper Import into the Mitochondrial Matrix in Saccharomyces cerevisiae Is Mediated by Pic2, a Mitochondrial Carrier Family Protein*

    PubMed Central

    Vest, Katherine E.; Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2013-01-01

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria. PMID:23846699

  8. Short communication: culture-independent detection of lactic Acid bacteria bacteriocin genes in two traditional slovenian raw milk cheeses and their microbial consortia.

    PubMed

    Trmcić, A; Obermajer, T; Rogelj, I; Bogovic Matijasić, B

    2008-12-01

    Two Slovenian traditional raw milk cheeses, Tolminc (from cows' milk) and Kraski (from ewes' milk), were examined for the presence of 19 lactic acid bacteria bacteriocin genes by PCR analysis of total DNA extracts from 9 cheeses and from consortia of strains isolated from these cheeses. Eleven bacteriocin genes were detected in at least one cheese or consortium, or from both. Different cheeses or consortia contained 3 to 9 bacteriocin determinants. Plantaricin A gene determinants were found in all cheese and consortia DNA extracts. Genes for enterocins A, B, P, L50A, and L50B, and the bacteriocin cytolysin were commonly detected, as were genes for nisin. These results indicate that bacteriocinogenic strains of Lactobacillus, Enterococcus, and Lactococcus genera with protective potential are common members of indigenous microbiota of raw milk cheeses, which can be a good source of new protective strains.

  9. Microplate Bioassay for Nisin in Foods, Based on Nisin-Induced Green Fluorescent Protein Fluorescence

    PubMed Central

    Reunanen, J.; Saris, P. E. J.

    2003-01-01

    A plasmid coding for the nisin two-component regulatory proteins, NisK and NisR, was constructed; in this plasmid a gfp gene (encoding the green fluorescent protein) was placed under control of the nisin-inducible nisF promoter. The plasmid was transformed into non-nisin-producing Lactococcus lactis strain MG1614. The new strain could sense extracellular nisin and transduce it to green fluorescent protein fluorescence. The amount of fluorescence was dependent on the nisin concentration, and it could be measured easily. By using this strain, an assay for quantification of nisin was developed. With this method it was possible to measure as little as 2.5 ng of pure nisin per ml in culture supernatant, 45 ng of nisin per ml in milk, 0.9 μg of nisin in cheese, and 1 μg of nisin per ml in salad dressings. PMID:12839802

  10. Genetic Characterization and Physiological Role of Endopeptidase O from Lactobacillus helveticus CNRZ32

    PubMed Central

    Chen, Yo-Shen; Steele, James L.

    1998-01-01

    A previously identified insert expressing an endopeptidase from a Lactobacillus helveticus CNRZ32 genomic library was characterized. Nucleotide sequence analysis revealed an open reading frame of 1,941 bp encoding a putative protein of 71.2 kDa which contained a zinc-protease motif. Protein homology searches revealed that this enzyme has 40% similarity with endopeptidase O (PepO) from Lactococcus lactis P8-2-47. Northern hybridization revealed that pepO is monocistronic and is expressed throughout the growth phase. CNRZ32 derivatives lacking PepO activity were constructed via gene replacement. Enzyme assays revealed that the PepO mutant had significantly reduced endopeptidase activity when compared to CNRZ32 with two of the three substrates examined. Growth studies indicated that PepO has no detectable effect on growth rate or acid production by Lactobacillus helveticus CNRZ32 in amino acid defined or skim milk medium. PMID:9726890

  11. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein.

    PubMed

    Vest, Katherine E; Leary, Scot C; Winge, Dennis R; Cobine, Paul A

    2013-08-16

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.

  12. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    PubMed

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Antimicrobial Peptide Production and Purification.

    PubMed

    Suda, Srinivas; Field, Des; Barron, Niall

    2017-01-01

    Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.

  14. Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology

    PubMed Central

    Richards, Gary P

    2014-01-01

    Bacteriophages have been proposed as an alternative to antibiotic usage and several studies on their application in aquaculture have been reported. This review highlights progress to date on phage therapies for the following fish and shellfish diseases and associated pathogens: hemorrhagic septicemia (Aeromonas hydrophila) in loaches, furunculosis (Aeromonas salmonicida) in trout and salmon, edwardsiellosis (Edwardsiella tarda) in eel, columnaris disease (Flavobacterium columnare) in catfish, rainbow trout fry syndrome or cold water disease (Flavobacterium psychrophilum) in trout and salmon, lactococcosis (Lactococcus spp.) in yellowtail, ulcerative skin lesions (Pseudomonas aeruginosa) in freshwater catfish, bacterial hemorrhagic ascites disease (Pseudomonas plecoglossicida) in ayu fish, streptococcosis (Streptococcus iniae) in flounder, and luminescent vibriosis (Vibrio harveyi) in shrimp. Information is reviewed on phage specificity, host resistance, routes of administration, and dosing of fish and shellfish. Limitations in phage research are described and recommended guidelines are provided for conducting future phage studies involving fish and shellfish. PMID:26713223

  15. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice

    PubMed Central

    Wang, Jingjing; Tang, Huang; Zhang, Chenhong; Zhao, Yufeng; Derrien, Muriel; Rocher, Emilie; van-Hylckama Vlieg, Johan ET; Strissel, Katherine; Zhao, Liping; Obin, Martin; Shen, Jian

    2015-01-01

    Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice. PMID:24936764

  16. Effect of a single dose of Saccharomyces cerevisiae var. boulardii on the occurrence of porcine neonatal diarrhoea.

    PubMed

    Hancox, L R; Le Bon, M; Richards, P J; Guillou, D; Dodd, C E R; Mellits, K H

    2015-11-01

    Piglet neonatal diarrhoea is an important issue in modern pig production and is linked to increased mortality and poor growth rates, affecting long-term pig health, increasing use of medication and cost of production. Saccharomyces cerevisiae var. boulardii (SB) is a probiotic yeast with documented clinical efficacy in the prevention and treatment of diarrhoeal diseases in humans. The objectives of the current study were to evaluate the effect of SB on occurrence and severity of neonatal diarrhoea in piglets, mortality and growth rate. Forty-six litters (606 piglets) were randomly allocated to a control or SB treatment (n=23 per treatment). Within 24 h of farrowing, piglets assigned to the SB treatment received a single oral dose of a paste containing 3.3×10(9) CFU of SB CNCM I-107(9). Piglets from the control litters received a placebo paste. Piglet weight, mortality and diarrhoea were recorded up to day 7 of age. It was shown that numbers of diarrhoea days were significantly correlated with increased mortality rate and reduced weight gain (P<0.05). SB treatment had no effect on growth or mortality in diarrhoeic litters. However, SB-supplemented litters had significantly lower faecal scores, indicating firmer faeces (P<0.01) and fewer numbers of diarrhoeic days (P<0.01) during the 1(st) week of life. Reduction in the number of diarrhoeic litters compared with the control group was observed following the probiotic administration (P<0.05). These results highlight the detrimental effects of neonatal diarrhoea on pre-weaning performance and suggest that SB, by reducing diarrhoea duration and severity, has the potential of improving enteric health in the early stages of life in pigs.

  17. The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets.

    PubMed

    Trckova, M; Faldyna, M; Alexa, P; Sramkova Zajacova, Z; Gopfert, E; Kumprechtova, D; Auclair, E; D'Inca, R

    2014-02-01

    The effects of live yeast Saccharomyces cerevisiae (strain CNCM I-4407, 10(10) cfu/g; Actisaf; Lesaffre Feed Additives, Marcq-en-Baroeul, France) on the severity of diarrhea, immune response, and growth performance in weaned piglets orally challenged with enterotoxigenic Escherichia coli (ETEC) strain O149:K88 were investigated. Live yeast was fed to sows and their piglets in the late gestation, suckling, and postweaning periods. Sows were fed a basal diet without (Control; n = 2) or with (Supplemented; n = 2) 1 g/kg of live yeast from d 94 of gestation and during lactation until weaning of the piglets (d 28). Suckling piglets of the supplemented sows were orally treated with 1 g of live yeast in porridge carrier 3 times a week until weaning. Weaned piglets were fed a basal starter diet without (Control; n = 19) or with (Supplemented; n = 15) 5 g of live yeast/kg feed for 2 wk. Significantly lower daily diarrhea scores (P < 0.05), duration of diarrhea (P < 0.01), and shedding of pathogenic ETEC bacteria (P < 0.05) in feces was detected in the supplemented piglets. Administration of live yeast significantly increased (P < 0.05) IgA levels in the serum of piglets. Evidence indicates that decreased infection-related stress and severity of diarrhea in yeast-fed weaned piglets positively affected their growth capacity in the postweaning period (P < 0.05). The results suggest that dietary supplementation with live yeast S. cerevisiae to sows and piglets in the late gestation, suckling, and postweaning periods can be useful in the reduction of the duration and severity of postweaning diarrhea caused by ETEC.

  18. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    PubMed Central

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  19. Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA.

    PubMed

    Sakamoto, K; Margolles, A; van Veen, H W; Konings, W N

    2001-09-01

    Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.

  20. Characterization of Microbial Communities in Chinese Rice Wine Collected at Yichang City and Suzhou City in China.

    PubMed

    Lü, Yucai; Gong, Yanli; Li, Yajie; Pan, Zejiang; Yao, Yi; Li, Ning; Guo, Jinling; Gong, Dachun; Tian, Yihong; Peng, Caiyun

    2017-08-28

    Two typical microbial communities from Chinese rice wine fermentation collected in Yichang city and Suzhou city in China were investigated. Both communities could ferment glutinous rice to rice wine in 2 days. The sugar and ethanol contents were 198.67 and 14.47 mg/g, respectively, for rice wine from Yichang city, and 292.50 and 12.31 mg/g, respectively, for rice wine from Suzhou city. Acetic acid and lactic acid were the most abundant organic acids. Abundant fungi and bacteria were detected in both communities by high-throughput sequencing. Saccharomycopsis fibuligera and Rhizopus oryzae were the dominant fungi in rice wine from Suzhou city, compared with R. oryzae , Wickerhamomyces anomalus, Saccharomyces cerevisiae, Mucor indicus , and Rhizopus microsporus in rice wine from Yichang city. Bacterial diversity was greater than fungal diversity in both communities. Citrobacter was the most abundant genus. Furthermore, Exiguobacterium, Aeromonas, Acinetobacter, Pseudomonas, Enterobacter, Bacillus , and Lactococcus were highly abundant in both communities.