Sample records for lacustrine carbonate source

  1. The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates

    NASA Astrophysics Data System (ADS)

    Bristow, Thomas F.; Kennedy, Martin J.; Morrison, Keith D.; Mrofka, David D.

    2012-08-01

    The mineralogical, compositional and stable isotopic variability of lacustrine carbonates are frequently used as proxies for ancient paleoenvironmental change in continental settings, under the assumption that precipitated carbonates reflect conditions and chemistry of ancient lake waters. In some saline and alkaline lake systems, however, authigenic clay minerals, forming at or near the sediment water interface, are a major sedimentary component. Often these clays are rich in Mg, influencing the geochemical budget of lake waters, and are therefore expected to influence the properties of contemporaneous authigenic carbonate precipitates (which may also contain Mg). This paper documents evidence for a systematic feedback between clay mineral and carbonate authigenesis through multiple precessionally driven, m-scale sedimentary cycles in lacustrine oil-shale deposits of the Eocene Green River Formation from the Uinta Basin (NE Utah). In the studied section, authigenic, Mg-rich, trioctahedral smectite content varies cyclically between 9 and 39 wt.%. The highest concentrations occur in oil-shales and calcareous mudstones deposited during high lake level intervals that favored sedimentary condensation, lengthening the time available for clay diagenesis and reducing dilution by other siliciclastic phases. An inverse relation between dolomite percentage of carbonate and trioctahedral smectite abundance suggests the Mg uptake during clay authigenesis provides a first order control on carbonate mineralogy that better explains carbonate mineralogical trends than the possible alternative controls of (1) variable Mg/Ca ratios in lake water and (2) degree of microbial activity in sediments. We also observe that cyclical change in carbonate mineralogy, believed to be induced by clay authigenesis, also causes isotopic covariation between δ13CPDB and δ18OPDB of bulk sediments because of differences in the equilibrium fractionation factors of dolomite and calcite (˜2‰ and ˜2

  2. Reconstruction of a saline, lacustrine carbonate system (Priabonian, St-Chaptes Basin, SE France): Depositional models, paleogeographic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Lettéron, Alexandre; Hamon, Youri; Fournier, François; Séranne, Michel; Pellenard, Pierre; Joseph, Philippe

    2018-05-01

    A 220-m thick carbonate-dominated succession has been deposited in shallow-water, saline lake environments during the early to middle Priabonian (MP17A-MP18 mammal zones) in the Saint-Chaptes Basin (south-east France). The palaeoenvironmental, paleoclimatic and palaeogeographic significance of such saline lake carbonates has been deciphered on the basis of a multi-proxy analyses including: 1) depositional and diagenetic features; 2) biological components (molluscs, benthic foraminifera, characean gyrogonites, spores and pollens); 3) carbon and oxygen stable isotopes; 4) trace elements; and 5) clay mineralogy. Five stages of lacustrine system evolution have been identified: 1) fresh-water closed lake under dry climate (unit U1); 2) fresh to brackish water lacustrine deltaic system with a mixed carbonate-siliciclastic sedimentation under relatively wet climatic conditions (unit U2); 3) salt-water lacustrine carbonate system under humid climatic setting (unit U3); 4) evaporitic lake (unit U4); and 5) closed lake with shallow-water carbonate sedimentation under subtropical to Mediterranean climate with dry seasons (unit U5). Upper Eocene aridification is evidenced to have started as early as the earliest Priabonian (unit U1: MP17A mammal zone). A change from humid to dryer climatic conditions is recorded between units U3 and U4. The early to middle Priabonian saline lake is interpreted as an athalassic (inland) lake that have been transiently connected with neighboring salt lakes influenced by seawater and/or fed with sulfates deriving from recycling of evaporites. Maximum of connection with neighboring saline lakes (Mormoiron Basin, Camargue and Central grabens, Hérault Basin) likely occurred during unit U3 and at the base of unit U5. The most likely sources of salts of these adjacent basins are: 1) Triassic evaporites derived from salt-diapirs (Rhône valley) or from paleo-outcrops located east of the Durance fault or offshore in the Gulf of Lion; or 2) marine

  3. An isotopic study of a fluvial-lacustrine sequence: The Plio-Pleistocene koobi fora sequence, East Africa

    USGS Publications Warehouse

    Cerling, T.E.; Bowman, J.R.; O'Neil, J.R.

    1988-01-01

    Stable isotopic analyses of Plio-Pleistocene and modern sediments in the fluvial-lacustrine system occupying the Turkana Basin, East Africa provide constraints on the paleoenvironmental and diagenetic histories of the Pliocene through the Recent sediments in the basin. The ??13C values for carbonates in lacustrine sediments range from -15 to +22??? relative to PDB, depending on the varying proportions of CO2 from the atmospheric reservoir and from various metabolic sources. The ??18O values of carbonates in lacustrine sediments indicate that the isotopic composition of paleolake water varied by over 10??? from the Pliocene to the present. The ??13C values for pedogenic carbonates record paleoccologic variations and suggest that C4 plants did not become well established in the preserved depositional parts of the basin until about 1.8 myr ago. The ??18O values pedogenic carbonates suggest a range of over 10??? for the isotopic composition of soil water during this interval. They also suggest a period of major climatic instability from about 3.4 to 3.1 myr and at about 1.8 myr. Together, the ??13C and ??18O values of pedogenic carbonates indicate that the present conditions are as arid and hot as any that had prevailed during deposition of these Plio-Pleistocene sediments. ?? 1988.

  4. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  5. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  6. Carbon Cycle Dynamics through the Early Eocene Climatic Optimum: Orbital Couplings to Lacustrine Cycling

    NASA Astrophysics Data System (ADS)

    Rosengard, S. Z.; Grogan, D. S.; Whiteside, J. H.; van Keuren, M.; Musher, D.

    2010-12-01

    The early Eocene represents the most recent hothouse climate state of Earth history, a period during which Earth’s surface temperatures warmed and reached a steady peak at the Early Eocene Climatic Optimum (EECO), 53.5-50 Ma. Interspersed through the primary warming interval were several hyperthermals, or rapid peaks in surface temperature and pulses of carbon dioxide into the atmosphere, followed by rapid declines, lasting 10^4 to 10^5 years. Various hypotheses have been offered to explain the climatic triggers during the hothouse interval, including changes in ocean circulation, methane release from hydrates, volcanism, and turnover of terrestrial organic matter, implicating various couplings and feedbacks in the global carbon cycle. The present study investigates the prevailing changes in carbon cycle dynamics that occurred during a specific subinterval of the Early Eocene Climatic Optimum. We sampled a carbon-rich 300-ft ( 1100 kyr) section of lacustrine Green River Formation sediments from the TOSCO core in the Uinta Basin at a one-foot resolution for organic carbon content and δ^{13}C. The compiled data comprise a high-resolution profile of total organic carbon and isotopic organic carbon composition through the section, showing cyclic patterns that we hypothesize reflect orbital signals. Bulk isotopic carbon and shale oil measurements from an earlier Fischer Assay across TOSCO’s entire 1030-ft core were then filtered using the expected frequency of a 23-kyr precession cycle. The overlaid cycles reveal δ^{13}C and oil content to be anti-phase through the 300-ft section, except for an interval of 50 feet (180 kyr) from the Mahogany Zone to the B-groove of the core, where the two measurements are in-phase. Given that shale oil, a proxy for lake primary productivity and carbon burial, and δ^{13}C typically correlate inversely, this short, 180-kyr interval of in-phase variation suggests a significant alteration in the local carbon cycle. These preliminary

  7. Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA

    USGS Publications Warehouse

    Dunagan, S.P.; Turner, C.E.

    2004-01-01

    During deposition of the Upper Jurassic Morrison Formation, water that originated as precipitation in uplands to the west of the Western Interior depositional basin infiltrated regional aquifers that underlay the basin. This regional groundwater system delivered water into the otherwise dry continental interior basin where it discharged to form two major wetland/lacustrine successions. A freshwater carbonate wetland/lacustrine succession formed in the distal reaches of the basin, where regional groundwater discharged into the Denver-Julesburg Basin, which was a smaller structural basin within the more extensive Western Interior depositional basin. An alkaline-saline wetland/lacustrine complex (Lake T'oo'dichi') formed farther upstream, where shallower aquifers discharged into the San Juan/Paradox Basin, which was another small structural basin in the Western Interior depositional basin. These were both wetlands in the sense that groundwater was the major source of water. Input from surface and meteoric water was limited. In both basins, lacustrine conditions developed during episodes of increased input of surface water. Inclusion of wetlands in our interpretation of what had previously been considered largely lacustrine systems has important implications for paleohydrology and paleoclimatology. The distal carbonate wetland/lacustrine deposits are well developed in the Morrison Formation of east-central Colorado, occupying a stratigraphic interval that is equivalent to the "lower" Morrison but extends into the "upper" Morrison Formation. Sedimentologic, paleontologic, and isotopic evidence indicate that regional groundwater discharge maintained shallow, hydrologically open, well oxygenated, perennial carbonate wetlands and lakes despite the semi-arid climate. Wetland deposits include charophyte-rich wackestone and green mudstone. Lacustrine episodes, in which surface water input was significant, were times of carbonate and siliciclastic deposition in scarce deltaic

  8. Sources and proxy potential of long chain alkyl diols in lacustrine environments

    NASA Astrophysics Data System (ADS)

    Rampen, Sebastiaan W.; Datema, Mariska; Rodrigo-Gámiz, Marta; Schouten, Stefan; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.

    2014-11-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) composition of cultures of ten eustigmatophyte species, with three species from different families grown at various temperatures, to identify the effect of species composition and growth temperature on the LCD distribution. The results were compared with the LCD distribution of sixty-two lake surface sediments, and with previously reported LCD distributions from marine environments. The different families within the Eustigmatophyceae show distinct LCD patterns, with the freshwater family Eustigmataceae most closely resembling LCD distributions in both marine and lake environments. Unlike the other two eustigmatophyte families analyzed (Monodopsidaceae and Goniochloridaceae), C28 and C30 1,13-alkyl diols and C30 and C32 1,15-alkyl diols are all relatively abundant in the family Eustigmataceae, while the mono-unsaturated C32 1,15-alkyl diol was below detection limit. In contrast to the marine environment, LCD distributions in lakes did not show a clear relationship with temperature. The Long chain Diol Index (LDI), a proxy previously proposed for sea surface temperature reconstruction, showed a relatively weak correlation (R2 = 0.33) with mean annual air temperature used as an approximation for annual mean surface temperature of the lakes. A much-improved correlation (R2 = 0.74, p-value <0.001) was observed applying a multiple linear regression analysis between LCD distributions and lake temperatures reconstructed using branched tetraether lipid distributions. The obtained regression model provides good estimates of temperatures for cultures of the family Eustigmataceae, suggesting that algae belonging to this family have an important role as a source for LCDs in lacustrine

  9. Geochemical characteristics of Holocene laminated sapropel (unit II) and underlying lacustrine unit III in the Black Sea

    USGS Publications Warehouse

    Dean, Walter E.; Arthur, Michael A.

    2011-01-01

    eg 1 of the 1988 R/V Knorr expeditions to the Black Sea recovered 90 gravity and box cores. The longest recovery by gravity cores was about 3 meters, with an average of about 2.5 meters, recovering all of the Holocene and upper Pleistocene sections in the Black Sea. During the latest Pleistocene glaciation, sea level dropped below the 35-meters-deep Bosporus outlet sill of the Black Sea. Therefore throughout most of its history the Black Sea was a lake, and most of its sediments are lacustrine. The oldest sediments recovered (older than 8,000 calendar years) consist of massive to coarsely banded lacustrine calcareous clay designated as lithologic Unit III, generally containing less than 1 percent organic carbon (OC). The base of overlying Unit II marks the first incursion of Mediterranean seawater into the Black Sea, and the onset of bottom-water anoxia about 7,900 calendar years. Unit II contains as much as 15 percent OC in cores from the deepest part of the Black Sea (2,200 meters). The calcium carbonate (CaCO3) remains of the coccolith Emiliania huxleyi form the distinctive white laminae of overlying Unit I. The composition of Unit III and Unit II sediments are quite different, reflecting different terrigenous clastic sources and increased contributions from hydrogenous and biogenic components in anoxic Unit II sapropel. In Unit II, positive covariance between OC and three trace elements commonly concentrated in OC-rich sediments where sulfate reduction has occurred (molybdenum, nickel, and vanadium) and a nutrient (phosphorus) suggest a large marine source for these elements although nickel and vanadium also have a large terrigenous clastic source. The marine sources may be biogenic or hydrogenous. A large biogenic source is also suggested for copper and cobalt. Because abundant pyrite forms in the water column and sediments of the Black Sea, we expected to find a large hydrogenous iron component, but a strong covariance of iron with aluminum suggests that the

  10. Mineral Trends in Early Hesperian Lacustrine Mudstone at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Grotzinger, J. P.; Morris, R. V.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Morrison, S. M.; Yen, A. S.; Chipera, S. J.; hide

    2017-01-01

    The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to study the layered sediments of lower Aeolis Mons (i.e., Mount Sharp), which have signatures of phyllosilicates, hydrated sulfates, and iron oxides in orbital visible/near-infrared observations. The observed mineralogy within the stratigraphy, from phyllosilicates in lower units to sulfates in higher units, suggests an evolution in the environments in which these secondary phases formed. Curiosity is currently investigating the sedimentary structures, geochemistry, and mineralogy of the Murray formation, the lowest exposed unit of Mount Sharp. The Murray formation is dominated by laminated lacustrine mudstone and is approx.200 m thick. Curiosity previously investigated lacustrine mudstone early in the mission at Yellowknife Bay, which represents the lowest studied stratigraphic unit. Here, we present the minerals identified in lacus-trine mudstone from Yellowknife Bay and the Murray formation. We discuss trends in mineralogy within the stratigraphy and the implications for ancient lacustrine environments, diagenesis, and sediment sources.

  11. Hydrocarbon potential of Early Cretaceous lacustrine sediments from Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Insight from organic geochemistry and petrology

    NASA Astrophysics Data System (ADS)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Adegoke, Adebanji Kayode; Maigari, A. S.; Haruna, A. I.; Yaro, Usman Y.

    2017-05-01

    The Early Cretaceous lacustrine sediments from Bima Formation in the Yola Sub-basin, Northern Benue Trough, northeastern Nigeria were studied based on organic geochemistry and petrology. This is in other to provide information on hydrocarbon generation potential; organic matter type (quality), richness (quantity), origin/source inputs, redox conditions (preservation) and thermal maturation in relation to thermal effect of Tertiary volcanics. The total organic carbon (TOC) contents ranges from 0.38 to 0.86 wt % with extractable organic matter (EOM) below 1000 ppm and pyrolysis S2 yield values from 0.16 to 0.68 mg/g, suggesting poor to fair source rock richness. Based on kerogen pyrolysis and microscopy coupled with biomarker parameters, the organic matters contain Type I (lacustrine algae), Type III (terrestrially derived land-plants) and Type IV kerogens deposited in a mixed lacustrine-terrestrial environment under suboxic to relatively anoxic conditions. This suggest potential occurrence of Early Cretaceous lacustrine sediments (perhaps Lower Cretaceous petroleum system) in Yola Sub-basin of the Northern Benue Trough as present in the neighbouring basins of Chad, Niger and Sudan Republics that have both oil and gas generation potential within the same rift trend (WCARS). Vitrinite reflectance (%Ro) and Tmax values of the lacustrine shales ranges from 1.12 to 2.32 VRo% and 448-501 °C, respectively, indicating peak-late to post-maturity stage. This is supported by the presence of dark brown palynomorphs, amorphous organic matter and phytoclasts as well as inertinite macerals. Consequently, the organic matters in the lacustrine shales of Bima Formation in the Yola Sub-basin appeared as a source of oil (most likely even waxy) and gas prone at a relatively deeper part of the basin. However, the high thermal maturity enhanced the organic matters and most of the hydrocarbons that formed in the course of thermal maturation were likely expelled to the reservoir rock units

  12. Trace fossil analysis of lacustrine facies and basins

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.

    1998-01-01

    Two ichnofacies are typical of lacustrine depositional systems. The Scoyenia ichnofacies characterizes transitional terrestrial/nonmarine aquatic substrates, periodically inundated or desiccated, and therefore is commonly present in lake margin facies. The Mermia ichnofacies is associated with well oxygenated, permanent subaqueous, fine-grained substrates of hydrologically open, perennial lakes. Bathymetric zonations within the Mermia ichnofacies are complicated by the wide variability of lacustrine systems. Detected proximal-distal trends are useful within particular lake basins, but commonly difficult to extrapolate to other lakes. Other potential ichnofacies include the typically marine Skolithos ichnofacies for high-energy zones of lakes and substrate-controlled, still unnamed ichnofacies, associated to lake margin deposits. Trace fossils are useful for sedimentologic analysis of event beds. Lacustrine turbidites are characterized by low-diversity suites, reflecting colonization by opportunistic organisms after the turbidite event. Underflow current beds record animal activity contemporaneous with nearly continuous sedimentation. Ichnologic studies may also help to distinguish between marine and lacustrine turbidites. Deep-marine turbidites host the Nereites ichnofacies that consists of high diversity of ornate grazing traces and graphoglyptids, recording highly specialized feeding strategies developed to solve the problem of the scarcity of food in the deep sea. Deep lacustrine environments contain the Mermia ichnofacies, which is dominated by unspecialized grazing and feeding traces probably related to the abundance and accessibility of food in lacustrine systems. The lower diversity of lacustrine ichnofaunas in comparison with deep-sea assemblages more likely reflects lower species diversity as a consequence of less stable conditions. Increase of depth and extent of bioturbation through geologic time produced a clear signature in the ichnofabric record of

  13. Transformation of marine sediment to paddy soil: Primary marine, lacustrine, and land plant lipids

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Cao, Zhihong; Schwark, Lorenz

    2010-05-01

    More than fifty percent of the world's population feeds on rice. The continuous population increase and urban sprawl leads to an ever-increasing demand for new rice cultivation area, in particular China. For centuries suitable coastal areas in China have been exploited for land reclamation, i.e. conversion of coastal marine and lacustrine marshlands into rice paddy fields. Flooded rice paddies are considered one of the major biogenic sources of methane into the atmospheric. Methane is thought to be about 30 times more efficient as greenhouse gas, when compared to carbon dioxide. Overall, rice fields are assumed to contribute app. 10-25% to global CH4 production. It is thus paramount importance to study the effects of increasing rice cultivation and land reclamation in China. For global carbon cycle investigation, it is crucial whether paddy soils, due to their large extent and higher carbon turnover, serve as carbon (CO2) sinks or sources. Here we present results from a chronosequence study of paddy soils with different and well known starting dates of cultivation, in the Zhejiang province (Yangtze River delta) by land reclamation through the building of protective dikes over the past 2000 years. Two end members of natural sediments subjected to land reclamation, a marine tidal mudflat in the Yangtze delta and a coastal lake, represent the substrate on which the paddy soil evolution started. Dike systems were constructed 2000, 1000, 700, 300, 100, and 50 years before present. We are thus able to follow the evolution of rice paddy soils developed on marine sediments using eight well defined tie-points. This chronosequence is then used for assessing the relative proportion of primary marine or lacustrine organic matter preserved in present day soils and to identify the amount and composition of organic matter added since cultivation started. Paddy soil management introduces rice plants debris and exudates as well as rice-associated microbial biomass (covered in a

  14. The relationship between carbonate facies, volcanic rocks and plant remains in a late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina)

    NASA Astrophysics Data System (ADS)

    Busquets, P.; Méndez-Bedia, I.; Gallastegui, G.; Colombo, F.; Cardó, R.; Limarino, O.; Heredia, N.; Césari, S. N.

    2013-07-01

    The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the

  15. Evaluating Late Cretaceous OAEs and the influence of marine incursions on organic carbon burial in an expansive East Asian paleo-lake

    NASA Astrophysics Data System (ADS)

    Jones, Matthew M.; Ibarra, Daniel E.; Gao, Yuan; Sageman, Bradley B.; Selby, David; Chamberlain, C. Page; Graham, Stephan A.

    2018-02-01

    Expansive Late Cretaceous lacustrine deposits of East Asia offer unique stratigraphic records to better understand regional responses to global climate events, such as oceanic anoxic events (OAEs), and terrestrial organic carbon burial dynamics. This study presents bulk organic carbon isotopes (δ13Corg), elemental concentrations (XRF), and initial osmium ratios (187Os/188Os, Osi) from the Turonian-Coniacian Qingshankou Formation, a ∼5 Ma lacustrine mudstone succession in the Songliao Basin of northeast China. A notable δ13Corg excursion (∼ + 2.5‰) in organic carbon-lean Qingshankou Members 2-3 correlates to OAE3 in the Western Interior Basin (WIB) of North America within temporal uncertainty of high-precision age models. Decreases in carbon isotopic fractionation (Δ13C) through OAE3 in the WIB and Songliao Basin, suggest that significantly elevated global rates of organic carbon burial drew down pCO2, likely cooling climate. Despite this, Osi chemostratigraphy demonstrates no major changes in global volcanism or weathering trends through OAE3. Identification of OAE3 in a lake system is consistent with lacustrine records of other OAEs (e.g., Toarcian OAE), and underscores that terrestrial environments were sensitive to climate perturbations associated with OAEs. Additionally, the relatively radiogenic Osi chemostratigraphy and XRF data confirm that the Qingshankou Formation was deposited in a non-marine setting. Organic carbon-rich intervals preserve no compelling Osi evidence for marine incursions, an existing hypothesis for generating Member 1's prolific petroleum source rocks. Based on our results, we present a model for water column stratification and source rock deposition independent of marine incursions, detailing dominant biogeochemical cycles and lacustrine organic carbon burial mechanisms.

  16. Microbially mediated carbon cycling at the Cenomanian-Turonian transition in lacustrine environments

    NASA Astrophysics Data System (ADS)

    Wu, H.; Zhang, S.; Jiang, G.; Underwood, M.; Wan, X.

    2009-12-01

    The Late Cretaceous Cenomanian-Turonian (C-T) transition records a major ocean anoxic event (OAE2) and a positive carbon isotope excursion. These events have been documented mostly from marine successions and their expression in terrestrial environments is highly desirable. Here we report a high-resolution organic carbon isotope record across the C-T boundary from the Qingshankou Formation (K2qn) of the terrestrial Songliao Basin (SLB) in northeastern China. Samples were collected from the drilled core (SK-1) and cover the bottom 60 m of the K2qn that has been correlated to the C-T transition using the astronomical time scale. The results show a long-term negative δ13Corg excursion superimposed on short-term δ13Corg cycles. Most δ13Corg cycles have a reverse relationship with total organic carbon (TOC) concentration, except at the beginning and the end of the long-term δ13Corg excursion. Spectral analysis of the δ13Corg, TOC and Gamma Ray Logging curves (GR) reveals three distinct cycle bands with the thickness of 14.5-9.0m, 5.8-3.4m and 2.2-1.5m, which were interpreted as the short eccentricity, obliquity, and precession cycles, respectively. The investigated section recorded about 7 short eccentricity and 39 precession cycles. The reverse relationship between TOC and δ13Corg is inconsistent with the general TOC-δ13Corg pattern seen in most lacustrine environments, in which increasing primary productivity (and thus TOC) in the epilimnion results in higher δ13Corg values. In combination with existing biomarker data from K2qn, the TOC-δ13Corg pattern in SLB is better explained by microbially mediated carbon cycling that is astronomically controlled by the precession cycles. During precession minima (summer insolation maxima) periods, intensified precipitation and increased chemical weathering may have led to sustained eutrophication in SLB and the bloom of chemoautotrophic and methanotrophic organisms in the basin. Significant biomass contribution from

  17. Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured?

    PubMed

    Scott, J Thad; Doyle, Robert D; Prochnow, Shane J; White, Joseph D

    2008-04-01

    N2 fixation can be an important source of N to limnetic ecosystems and can influence the structure of phytoplankton communities. However, watershed-scale conditions that favor N2 fixation in lakes and reservoirs have not been well studied. We measured N2 fixation and lacustrine variables monthly over a 19-month period in Waco Reservoir, Texas, USA, and linked these data with nutrient-loading estimates from a physically based watershed model. Readily available topographic, soil, land cover, effluent discharge, and climate data were used in the Soil and Water Assessment Tool (SWAT) to derive watershed nutrient-loading estimates. Categorical and regression tree (CART) analysis revealed that lacustrine and watershed correlates of N2 fixation were hierarchically structured. Lacustrine conditions showed greater predictive capability temporally. For instance, low NO3(-) concentration (<25 microg N/L) and high water temperatures (>27 degrees C) in the reservoir were correlated with the initiation of N2 fixation seasonally. When lacustrine conditions were favorable for N2 fixation, watershed conditions appeared to influence spatial patterns of N2 fixation within the reservoir. For example, spatially explicit patterns of N2 fixation were correlated with the ratio of N:P in nutrient loadings and the N loading rate, which were driven by anthropogenic activity in the watershed and periods of low stream flow, respectively. Although N2 fixation contributed <5% of the annual N load to the reservoir, 37% of the N load was derived from atmospheric N2 fixation during summertime when stream flow in the watershed was low. This study provides evidence that watershed anthropogenic activity can exert control on planktonic N2 fixation, but that temporality is controlled by lacustrine conditions. Furthermore, this study also supports suggestions that reduced inflows may increase the propensity of N2-fixing cyanobacterial blooms in receiving waters of anthropogenically modified landscapes.

  18. Sterols of a contemporary lacustrine sediment. [in English postglacial lake

    NASA Technical Reports Server (NTRS)

    Gaskell, S. J.; Eglinton, G.

    1976-01-01

    Results are reported for detailed sterol analyses of several depths (corresponding to between zero and about 150 yr in age) in a contemporary lacustrine sediment from a freshwater lake of postglacial origin in England. Delta 5-, delta 22-, and delta 5,22-sterols are identified along with 5 alpha- and 5 beta-stanols as well as a C26 stanol with a C7 side chain. Solvent extraction yields carbon number distributions for the 5 alpha- and 5 beta-stanol sediment constituents that parallel the corresponding delta 5-sterol distributions. The amounts of 5 alpha-stanols are found to exceed those of 5 beta-stanols in the sediment, and variations in the ratio of 5 alpha- to 5 beta-stanol between sediment samples from similar depths are shown to suggest an inhomogeneity of the sediment. It is found that the sterol composition of sediment cores varies markedly with depth, reflecting both the effects of a sterol hydrogenation process and a changing input to the sediment. It is concluded that C29 sterols, of probable higher-plant origin, predominate at lower sediment depths while C27 sterols, possibly derived from autochthonous sources, are more abundant in the surface sediment.

  19. Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain)

    USGS Publications Warehouse

    Rodriguez-Pascua, M. A.; Bischoff, J.; Garduno-Monroy, Victor H.; Pérez-López, R.; Giner-Robles, J.L.; Israde-Alcántara, I.; Calvo, J.P.; Williams, Ross W.

    2009-01-01

    The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. ?? 2009 Elsevier B.V.

  20. Dating lacustrine episodes in the eastern Sahara by the epimerization of isoleucine in ostrich eggshells

    USGS Publications Warehouse

    Miller, G.H.; Wendorf, F.; Ernst, R.; Schild, R.; Close, A.E.; Friedman, I.; Schwarcz, H.P.

    1991-01-01

    The eggshell of the African ostrich, Struthio camelus, closely approximates a closed system for the retention of indigenous proteinaceous residues. Epimerization of the protein amino acid isoleucine follows linear first-order kinetics in laboratory simulations nearly to racemic equilibrium, and the variation in D/L ratio within a single fragment, or between fragments of the same age, is significantly less than in other carbonate systems. These observations suggest that the extent of isoleucine epimerization (aIle/Ile ratio) in ostrich eggshell offers the potential for high-resolution geochronology of Quaternary deposits. From the simulation experiments, and dated early Holocene samples for which we have in situ mean annual sediment temperature measurements, Arrhenius parameters have been calculated; the activation energy is 30.33 kcal mol-1, similar to that of other carbonate systems. We have measured the aIle/Ile ratio in ostrich eggshell associated with lacustrine episodes at Bir Tarfawi and Bir Sahara East, two depressions in what is currently the hyperarid eastern Sahara. The ratios can be used directly to indicate qualitatively the time represented by each series of lake sediment, and to correlate disjunct lacustrine deposits within and between the basins. Uranium-series disequilibrium dating of algal mats contained within some of the lake beds indicate that a major wet interval occurred about 130 ka ago. Using the U-series date for calibration, the amino acid ratios are used to date the most recent lacustrine interval to about 100 ka B.P., and two older intervals, one about 200 ?? 25 ka B.P., and an older interval that occurred prior to 250 ka ago. ?? 1991.

  1. Origin of lacustrine carbonate-dominated clinoforms in the lower- Permian Lucaogou low-order cycle, southern Bogda Mountains, NW China

    NASA Astrophysics Data System (ADS)

    Lu, Yiran

    Lacustrine carbonate clinoforms deposit can reflect ancient lake condition like paleoclimate and lake type. Complex lithofacies of a carbonate-dominated clinoform package in lower Permian Lucaogou low order cycle, Bogda Mountains, NW China, provide clues on clinoform-forming processes in a half-graben lake. The clinoform package is 5.2 m thick, prograding from S to N for 200 m with a maximum 15o dip angle, and spans 4 km laterally. A clinoform consists of a lower siliciclastic-rich and an upper carbonate-rich beds, forming a clinoform cycle. Results of petrographic study of 30 thin sections suggest that the clinoform package is composed of mixed siliciclasticcarbonate rocks. Carbonate-rich bed is composed of diagenetically-altered lithic packstone and wackestone, and siliciclastic-rich clinoform of micritic sandstone. The foundation rock is mainly microbial boundstone, indicating a shallow littoral environment. The carbonate-rich beds mainly consist of coarse peloids, rip-up intraclasts, aggregate grains, and volcanic lithics. The siliciclastic-rich clinoform is rich in coarse volcanic lithics. Both types of clinoforms contain abundant current laminations, indicating frequent strong current activities. The lack of evidence of unidirectional current flow suggests that the carbonate-dominated clinoform package was probably primarily formed by wave and longshore current processes. Unlike grains in wave-built terrace in the Glenns Ferry Formation (Swirydczuk et al., 1979, 1980), few ooids were observed in the studied strata, which do not have local sediments as nucleus and are often broken. This indicates that the wave was not facing the lake margin directly but was more oblique to the lake margin. The carbonate-dominated clinoform package is thus interpreted as a bar or spit, controlled primarily by lake shoreline morphology and strong wave and current activities. The shift between carbonate and siliciclastic rich clinoform beds within a clinoform cycle suggests high

  2. Mineralogy of Mudstone at Gale Crater, Mars: Evidence for Dynamic Lacustrine Environments

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Grotzinger, J. P.; Morris, R. V.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Yen, A. S.; Chipera, S. J.; Morrison, S. M.; hide

    2016-01-01

    The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to assess the habitability of sedimentary deposits that show orbital evidence for diverse ancient aqueous environments. Gale crater contains a 5 km high mound of layered sedimentary rocks in its center, informally named Mount Sharp. The lowermost rocks of Mount Sharp contain minerals that are consistent with a dramatic climate change during Mars' early history. During the rover's traverse across the Gale crater plains to the base of Mount Sharp, Curiosity discovered sedimentary rocks consistent with a fluviolacustrine sequence. Curiosity studied ancient lacustrine deposits at Yellowknife Bay on the plains of Gale crater and continues to study ancient lacustrine deposits in the Murray formation, the lowermost unit of Mount Sharp. These investigations include drilling into the mudstone and delivering the sieved less than 150 micrometers fraction to the CheMin XRD/XRF instrument inside the rover. Rietveld refinement of XRD patterns measured by CheMin generates mineral abundances with a detection limit of 1-2 wt.% and refined unit-cell parameters of minerals present in abundances greater than approximately 5 wt.%. FULLPAT analyses of CheMin XRD patterns provide the abundance of X-ray amorphous materials and constrain the identity of these phases (e.g., opal-A vs. opal-CT). At the time of writing, CheMin has analyzed 14 samples, seven of which were drilled from lacustrine deposits. The mineralogy from CheMin, combined with in-situ geochemical measurements and sedimentological observations, suggest an evolution in the lake waters through time, including changes in pH and salinity and transitions between oxic and anoxic conditions. In addition to a geochemically dynamic lake environment, the igneous minerals discovered in the lake sediments indicate changes in source region through time, with input from mafic and silicic igneous sources. The Murray formation is predominantly comprised of

  3. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; hide

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and

  4. Lacustrine deposits in rifted deep basins of Yellow Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, J.H.

    1985-02-01

    The central Yellow Sea is a typical intracratonic rifted basin that consists of 4 major depressions bounded by aligned listric faults along horst blocks of uplifted basement (Kunsan, West Kunsan, Yellow Sea sub-basins, and Central Trough). The depressions are half grabens caused by pull-apart extensional stresses. Core analysis and micropaleotologic study indicate that more than 5 km of lacustrine sediments were accumulated in the central part of the West Kunsan basin. Two distinctive sedimentary successions are recognized in the core descriptions: alternation of reddish-brown siltstones and sandstones containing evaporites and marlstones, and an overlying progradational sequence including minor limestone bedsmore » in the lower part of the sequence. The progradational sequence is interpreted as lacustrine deltaic deposits. Abundant palynofloral occurrence of freshwater green algae, Pediastrum, and absence of marine fauna such as dinoflagellates are also supporting evidence for a lacustrine environment. The lithofacies and tectonic framework of the Yellow Sea are very similar to those of Cretaceous lacustrine sediments of the Korea Peninsula onshore and Pohai coastal basin in China.« less

  5. Oligocene lacustrine tuff facies, Abu Treifeya, Cairo-Suez Road, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Motelib, Ali; Kabesh, Mona; El Manawi, Abdel Hamid; Said, Amir

    2015-02-01

    Field investigations in the Abu Treifeya area, Cairo-Suez District, revealed the presence of Oligocene lacustrine volcaniclastic deposits of lacustrine sequences associated with an Oligocene rift regime. The present study represents a new record of lacustrine zeolite deposits associated with saponite clay minerals contained within reworked clastic vitric tuffs. The different lithofacies associations of these clastic sequences are identified and described: volcaniclastic sedimentary facies represent episodic volcaniclastic reworking, redistribution and redeposition in a lacustrine environment and these deposits are subdivided into proximal and medial facies. Zeolite and smectite minerals are mainly found as authigenic crystals formed in vugs or crusts due to the reaction of volcanic glasses with saline-alkaline water or as alteration products of feldspars. The presence of abundant smectite (saponite) may be attributed to a warm climate, with alternating humid and dry conditions characterised by the existence of kaolinite. Reddish iron-rich paleosols record periods of non-deposition intercalated with the volcaniclastic tuff sequence.

  6. The Upper Jurassic Stanleyville Group of the eastern Congo Basin: An example of perennial lacustrine system

    NASA Astrophysics Data System (ADS)

    Caillaud, Alexis; Blanpied, Christian; Delvaux, Damien

    2017-08-01

    The intracratonic Congo Basin, located in the Democratic Republic of Congo (DRC), is the largest sedimentary basin of Africa. The Jurassic strata outcrop along its eastern margin, south of Kisangani (formerly Stanleyville). In the last century, the Upper Jurassic Stanleyville Group was described as a lacustrine series containing a thin basal marine limestone designed as the ;Lime Fine; beds. Since the proposal of this early model, the depositional environment of the Stanleyville Group, and especially the possible marine incursion, has been debated, but without re-examining the existing cores, outcrop samples and historical fossils from the type location near Kisangani that are available at the Royal Museum for Central Africa (MRAC/KMMA, Tervuren, Belgium). In order to refine the former sedimentology, a series of nine exploration cores drilled in the Kisangani sub-basin have been described. This study aims at integrating sedimentary facies in existing sedimentary models and to discuss the hypothesis of the presence of Kimmeridgian marine deposits along the Congo River near Kisangani, a region which lies in the middle of the African continent. Eight facies have been identified, which permit a reinterpretation of the depositional environment and paleogeography of the Stanleyville Group. The base of the Stanleyville Group is interpreted to represent a conglomeratic fluvial succession, which filled an inherited Triassic paleotopography. Above these conglomerates, a transition to a typically lacustrine system is interpreted, which includes: (1) a basal profundal, sublittoral (brown to dark fine-grained siltstones with microbial carbonates, i.e., the ;Lime Fine; beds) and littoral lacustrine series; covered by (2) a sublittoral to profundal interval (brown to dark organic-rich, fine-grained siltstones), which corresponds to the maximum extent of the paleo-lake; and, finally (3) a shallow lacustrine series (greenish calcareous siltstones and sandstones with red siltstones

  7. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Grotzinger, J. P.; Sumner, D. Y.; Kah, L. C.; Stack, K.; Gupta, S.; Edgar, L.; Rubin, D.; Lewis, K.; Schieber, J.; Mangold, N.; hide

    2013-01-01

    The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.

  8. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars.

    PubMed

    Grotzinger, J P; Sumner, D Y; Kah, L C; Stack, K; Gupta, S; Edgar, L; Rubin, D; Lewis, K; Schieber, J; Mangold, N; Milliken, R; Conrad, P G; DesMarais, D; Farmer, J; Siebach, K; Calef, F; Hurowitz, J; McLennan, S M; Ming, D; Vaniman, D; Crisp, J; Vasavada, A; Edgett, K S; Malin, M; Blake, D; Gellert, R; Mahaffy, P; Wiens, R C; Maurice, S; Grant, J A; Wilson, S; Anderson, R C; Beegle, L; Arvidson, R; Hallet, B; Sletten, R S; Rice, M; Bell, J; Griffes, J; Ehlmann, B; Anderson, R B; Bristow, T F; Dietrich, W E; Dromart, G; Eigenbrode, J; Fraeman, A; Hardgrove, C; Herkenhoff, K; Jandura, L; Kocurek, G; Lee, S; Leshin, L A; Leveille, R; Limonadi, D; Maki, J; McCloskey, S; Meyer, M; Minitti, M; Newsom, H; Oehler, D; Okon, A; Palucis, M; Parker, T; Rowland, S; Schmidt, M; Squyres, S; Steele, A; Stolper, E; Summons, R; Treiman, A; Williams, R; Yingst, A

    2014-01-24

    The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.

  9. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments

    NASA Astrophysics Data System (ADS)

    Cumming, Vivien M.; Selby, David; Lillis, Paul G.; Lewan, Michael D.

    2014-08-01

    Rhenium-osmium (Re-Os) geochronology of marine petroleum systems has allowed the determination of the depositional age of source rocks as well as the timing of petroleum generation. In addition, Os isotopes have been applied as a fingerprinting tool to correlate oil to its source unit. To date, only classic marine petroleum systems have been studied. Here we present Re-Os geochronology and Os isotope fingerprinting of different petroleum phases (oils, tar sands and gilsonite) derived from the lacustrine Green River petroleum system in the Uinta Basin, USA. In addition we use an experimental approach, hydrous pyrolysis experiments, to compare to the Re-Os data of naturally generated petroleum in order to further understand the mechanisms of Re and Os transfer to petroleum. The Re-Os geochronology of petroleum from the lacustrine Green River petroleum system (19 ± 14 Ma - all petroleum phases) broadly agrees with previous petroleum generation basin models (∼25 Ma) suggesting that Re-Os geochronology of variable petroleum phases derived from lacustrine Type I kerogen has similar systematics to Type II kerogen (e.g., Selby and Creaser, 2005a,b; Finlay et al., 2010). However, the large uncertainties (over 100% in some cases) produced for the petroleum Re-Os geochronology are a result of multiple generation events occurring through a ∼3000-m thick source unit that creates a mixture of initial Os isotope compositions in the produced petroleum phases. The 187Os/188Os values for the petroleum and source rocks at the time of oil generation vary from 1.4 to 1.9, with the mode at ∼1.6. Oil-to-source correlation using Os isotopes is consistent with previous correlation studies in the Green River petroleum system, and illustrates the potential utility of Os isotopes to characterize the spatial variations within a petroleum system. Hydrous pyrolysis experiments on the Green River Formation source rocks show that Re and Os transfer are mimicking the natural system. This

  10. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments

    USGS Publications Warehouse

    Cumming, Vivien M.; Selby, David; Lillis, Paul G.; Lewan, Michael D.

    2014-01-01

    Rhenium–osmium (Re–Os) geochronology of marine petroleum systems has allowed the determination of the depositional age of source rocks as well as the timing of petroleum generation. In addition, Os isotopes have been applied as a fingerprinting tool to correlate oil to its source unit. To date, only classic marine petroleum systems have been studied. Here we present Re–Os geochronology and Os isotope fingerprinting of different petroleum phases (oils, tar sands and gilsonite) derived from the lacustrine Green River petroleum system in the Uinta Basin, USA. In addition we use an experimental approach, hydrous pyrolysis experiments, to compare to the Re–Os data of naturally generated petroleum in order to further understand the mechanisms of Re and Os transfer to petroleum. The Re–Os geochronology of petroleum from the lacustrine Green River petroleum system (19 ± 14 Ma – all petroleum phases) broadly agrees with previous petroleum generation basin models (∼25 Ma) suggesting that Re–Os geochronology of variable petroleum phases derived from lacustrine Type I kerogen has similar systematics to Type II kerogen (e.g., Selby and Creaser, 2005a, Selby and Creaser, 2005b and Finlay et al., 2010). However, the large uncertainties (over 100% in some cases) produced for the petroleum Re–Os geochronology are a result of multiple generation events occurring through a ∼3000-m thick source unit that creates a mixture of initial Os isotope compositions in the produced petroleum phases. The 187Os/188Os values for the petroleum and source rocks at the time of oil generation vary from 1.4 to 1.9, with the mode at ∼1.6. Oil-to-source correlation using Os isotopes is consistent with previous correlation studies in the Green River petroleum system, and illustrates the potential utility of Os isotopes to characterize the spatial variations within a petroleum system. Hydrous pyrolysis experiments on the Green River Formation source rocks show that Re and Os transfer

  11. Palaeogeographic, palaeoclimatic, palaeohydrological and chemical/biochemical controls on accumulation of late Eocene coastal lacustrine-palustrine limestones, Southern England

    NASA Astrophysics Data System (ADS)

    Armenteros, Ildefonso; Edwards, Nicholas

    2012-12-01

    relatively heavy tendency within published spectra for Tertiary lacustrine carbonates. The δ18O isotope results agree with published subtropical surface-water palaeotemperatures for this succession. The total characteristics of the Member therefore suggest a shallow-lacustrine to palustrine depositional environment. Pedogenic overprinting and mechanical reworking displayed by the limestones are attributable to seasonal fluctuations of water level during lake highstands, but in this marine-influenced setting, major long-term lake lowstands, resulting in deep erosion and palaeokarsting of the limestones, may be attributable to falls in relative sea-level. The biocalcilutites and humic muds accumulated during the ensuing lake transgressions.

  12. Molecular biomarkers for sources of organic matter in lacustrine sediments in a subtropical lake in China.

    PubMed

    Wang, Yan-Hua; Yang, Hao; Chen, Xia; Zhang, Ji-Xiang; Ou, Jie; Xie, Biao; Huang, Chang-Chun

    2013-05-01

    N-alkanes distributions and stable isotopic compositions (δ(13)C and δ(15)N) in the lacustrine sediments of Shijiu lake were measured to assess whether biological source information was recorded in the molecular biomarker. Results showed regular unimodal n-alkanes distribution in range of C16-C33 with strong predominance of odd-numbered n-alkanes, maximizing at C29. The δ(15)N for SON were uniformly low, ranging from -6.7‰ to 3.8‰ and C/N ratios ranged from 6.6 to 10.0, suggesting that most of organic matter was influenced by terrestrial characteristics of the watershed. The δ(13)C for C27 to C31n-alkanes and for SOC varied from -32.9‰ to -26.6‰ and -23.4‰ to -21.6‰, respectively, falling within the range of corresponding n-alkanes in leaves mainly from C3 land plants. The values of C/N, CPI, OEP, ACL and C27/C31 exhibit similar temporal changes with the primary production, showing enhanced eutrophication resulted from increased anthropogenic activities in Shijiu lake from 1852 to 2010. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Chapter D: With or Without Salt-a Comparison of Marine and Continental-Lacustrine Diatomite Deposits

    USGS Publications Warehouse

    Moyle, Phillip R.; Dolley, Thomas P.

    2003-01-01

    Diatoms in sedimentary deposits of marine and continental, especially lacustrine, origin have similar nutrient (for example, phosphate, nitrate, and silica) and light requirements; however, their geologic ranges and physiographic environments vary. Marine diatoms range in age from Early Cretaceous to Holocene, and continental diatoms range in age from Eocene to Holocene; however, most commercial diatomites, both marine and lacustrine, were deposited during the Miocene. Marine deposits of commercial value generally accumulated along continental margins with submerged coastal basins and shelves where wind-driven boundary currents provided the nutrient-rich upwelling conditions capable of supporting a productive diatom habitat. Commercial freshwater diatomite deposits occur in volcanic terrains associated with events that formed sediment-starved drainage basins, such as the Basin and Range Province, particularly in Nevada. Marine habitats generally are characterized by stable conditions of temperature, salinity, pH, nutrients, and water currents, in contrast to lacustrine habitats, which are characterized by wide variations in these conditions. Marine deposits generally are of higher quality and contain larger resources, owing to their greater areal extent and thickness, whereas most of the world's known diatomites are of lacustrine origin. Both types of deposit are commonly mined by open-pit methods and subjected to processing designed to remove organic matter, CO2, pore water, and inorganic contaminants in order to produce purified products. The highest quality diatomites, predominantly from marine sources, are used in filtration, although both types of deposit produce filter grades, and additional end uses include fillers, additives, absorbents, and abrasives.

  14. Evaluation of clumped isotope paleotemperatures across carbon isotope excursions from lacustrine strata of the Aptian Xiagou Formation, China

    NASA Astrophysics Data System (ADS)

    Suarez, M. B.; Gonzalez, L. A.; Ludvigson, G. A.; You, H.

    2014-12-01

    Carbon cycle perturbations associated with Ocean Anoxic Event 1a have been implicated in global climate and environmental changes in the Early Aptian, in particular evidence for high sea surface temperatures (SST) and carbonate platform drowning. Records of environmental changes in the terrestrial realm remain sparse. This study provides additional data on clumped isotope derived temperatures (T(Δ47)) from lacustrine carbonates of the Xiagou Formation, Gansu Province, China. In addition, Vitrinite reflectance and the Rock-Eval parameter Tmax were used to evaluate the potential for 13C-18O bonds in the carbonates to have experienced reordering. Clumped isotope derived temperatures range from 28.8 °C to 45.9°C. Vitrinite reflectance values range from 0.67 to 0.72 and Tmax ranges from 429 °C to 443 °C. The warmest temperature, derived from a very fine-grained calcareous sandstone, is at the upper limit of known modern Earth surface temperatures, and prompts concern that the T(Δ47) may be shifted to warmer temperatures as a result of burial diagenesis. Vitrinite reflectance and Tmax values indicate the samples have reached early maturity for oil generation (oil window from 60 °C to 150°C), so may have reached the lower end of temperatures for bond reordering to have occurred (~100 °C for ~100 million years). Despite this, the T(Δ47) are consistent with summer temperatures in a warm Cretaceous. In addition, temperature variations are similar to TEX86 records, especially from SST of the tropical Pacific. Two temperature increases and decreases occur, with the first peak in temperature occurring at the negative carbon isotope excursion (C3) associated with the initiation of the Selli Event (OAE1a). This study provides evidence that climate variations occurring during the Selli Event were experienced in terrestrial environments, and provides maximum summer temperatures for this part of the Asian continent during the Cretaceous. While it was intended that thermal

  15. Sedimentology and geochemistry of lacustrine sequences of the upper Pleistocene and holocene in intertropical area (Lake Magadi and Green crater lake): paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Damnati, B.

    1993-05-01

    Sedimentological and geochemical analyses have been carried out on lacustrine deposits of East Africa, at Lake Magadi (2°S, 36°E, Kenya) and at Green Crater Lake (0°S, 36°E, Kenya), to determine the parameters controlling climatic and environmental dynamics during late Pleistocene and Holocene. These sedimentary sequences were collected with a stationary piston corer. At Lake Magadi (Fig. 1), sedimentary and geochemical control show three phases of lake level variation which corresponds to climatic change occurring during the last 40 thousand years. These phases were defined by three lithostratigraphic units. Laminated deposits of Lake Magadi were formed during a wet period. Analysis of these laminae define two microfacies: a dark lamina, characterised by lacustrine organic matter and a light lamina enriched in detritus, carbonates (CaCO 3) and magadiite (NaSi 7O 13(OH) 3, 3H 2O). The formation and preservation of each couplet was favoured by climatic contrast, lake stratification and various origin of the sediments (autochthon and allochthon) in the drainage basin. Therefore a relative chronology can be derived from laminae counting and the duration of deposition of each couplet. Spectral analysis applied on variation of the laminae thickness, shows the existence of three main periods, 4-7 years, 8-14 years and 18-30 years, respectively (Fig. 2). These cyclicites of the lacustrine environment precise former determinations established on more recent lacustrine sequences from East Africa. They are related to the global climatic cycle (quasi-biannual oscillations, El Nino Southern Oscillations and the sun spot cycles). At Green Crater Lake, the study of the sedimentary sequence was completed by physico-chemical analysis of the waters and interface sediments which demonstrate the carbonate, sodium, bicarbonate composition and the thermal and chemical stratification of the modern lake. The sedimentary sequence is characterized by volcanic deposits overlain by

  16. Metal complexation capacity of Antarctic lacustrine sediments.

    PubMed

    Alberti, Giancarla; Mussi, Matteo; Quattrini, Federico; Pesavento, Maria; Biesuz, Raffaela

    2018-04-01

    The purpose of this study is to implement a work that is a part of a project funded by the Italian National Antarctic Research Program (PNRA, Piano Nazionale di Ricerche in Antartide) within the main thematic focus "Chemical Contamination-Global Change". This research was devoted to detect and characterize micro and nano components with strong complexing capability towards metal ions at trace level in sea water, lakes and lacustrine sediments, sampled during the XXII expedition of PNRA. In particular, in the present work, the sorption complexation capacity of an Antarctic lacustrine sediments toward Cu(II) and Pb(II) is described. The characterization of the sorption was undertaken, studying kinetics and isotherm profiles. The lake here considered is Tarn Flat in the area of Terra Nova Bay. The sorption equilibria of Cu(II) and Pb(II) on the lacustrine sediments were reached in about 10 h, and they were best modelled by the Langmuir equation. Preliminary, to establish if the data here obtained were consistent with those reported for the same area in other expeditions, a common multivariate techniques, namely the principal component analysis (PCA), was applied and finally the consistency of the data has been confirmed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Fluvial/lacustrine diagenesis: Significance for hydrocarbon production and entrapment in the carboniferous Albert Fm, Moncton basin, NB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.P.A.; Chowdhury, A.H.; Yu, H.

    1996-12-31

    The Carboniferous Horton Group Albert Formation sediments include lacustrine source-rock oil shales and fluvial porous reservoir sandstones. The petrography, stable isotopes, fluid inclusions, cathodoluminescence and mirror/trace element chemistry of these sandstones are used to establish the diagenetic history and controlling factors. Early diagenetic calcite, quartz and albite cements with minor chlorite and kaolinite are variably present and related to depositional mineralogy and lake levels winch controlled the porewater chemistry. Antitaxial veins occurring preferentially in shales are shown, from heavy {delta}C{sup 13} values and fluid inclusions, to be related to methanogenesis in overpressured zones at shallow depths. Later burial calcite andmore » extensive albitisation are related to mineral reactions during the phase of rapid subsidence at temperatures of 80{degrees} to 150{degrees} in the deepest segment of the basin, together with significant dissolution of carbonates and feldspars related mainly to organic acids generated by organic maturation processes. Mass balance calculations indicate that not enough organic matter was present to account for all the estimated secondary porosity and some evidence suggests that reactions between kaolinite and calcite/ankerite to produce chlorite, and mixed layer illite-smectite ordering reactions, produced significant secondary porosity. Burial history reconstructions and thermal modelling of the Albert Fm. sediments using Arrhenius type maturity models and reflectance and rock-eval data suggest locally variable maturation and reservoir production related to the locally different fault tectonic histories characteristic of strike-slip lacustrine segmented basins. The Horton depositional cycle was followed by major dextral transpression with local faulting and inversion and vein cementation.« less

  18. Fluvial/lacustrine diagenesis: Significance for hydrocarbon production and entrapment in the carboniferous Albert Fm, Moncton basin, NB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.P.A.; Chowdhury, A.H.; Yu, H.

    1996-01-01

    The Carboniferous Horton Group Albert Formation sediments include lacustrine source-rock oil shales and fluvial porous reservoir sandstones. The petrography, stable isotopes, fluid inclusions, cathodoluminescence and mirror/trace element chemistry of these sandstones are used to establish the diagenetic history and controlling factors. Early diagenetic calcite, quartz and albite cements with minor chlorite and kaolinite are variably present and related to depositional mineralogy and lake levels winch controlled the porewater chemistry. Antitaxial veins occurring preferentially in shales are shown, from heavy [delta]C[sup 13] values and fluid inclusions, to be related to methanogenesis in overpressured zones at shallow depths. Later burial calcite andmore » extensive albitisation are related to mineral reactions during the phase of rapid subsidence at temperatures of 80[degrees] to 150[degrees] in the deepest segment of the basin, together with significant dissolution of carbonates and feldspars related mainly to organic acids generated by organic maturation processes. Mass balance calculations indicate that not enough organic matter was present to account for all the estimated secondary porosity and some evidence suggests that reactions between kaolinite and calcite/ankerite to produce chlorite, and mixed layer illite-smectite ordering reactions, produced significant secondary porosity. Burial history reconstructions and thermal modelling of the Albert Fm. sediments using Arrhenius type maturity models and reflectance and rock-eval data suggest locally variable maturation and reservoir production related to the locally different fault tectonic histories characteristic of strike-slip lacustrine segmented basins. The Horton depositional cycle was followed by major dextral transpression with local faulting and inversion and vein cementation.« less

  19. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared.

  20. Re–Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re–Os systematics and paleocontinental weathering

    USGS Publications Warehouse

    Cumming, Vivien M.; Selby, David; Lillis, Paul G.

    2012-01-01

    Lacustrine sedimentary successions provide exceptionally high-resolution records of continental geological processes, responding to tectonic, climatic and magmatic influences. These successions are therefore essential for correlating geological and climatic phenomena across continents and furthermore the globe. Producing accurate geochronological frameworks within lacustrine strata is challenging because the stratigraphy is often bereft of biostratigraphy and directly dateable tuff horizons. The rhenium–osmium (Re–Os) geochronometer is a well-established tool for determining precise and accurate depositional ages of marine organic-rich rocks. Lake systems with stratified water columns are predisposed to the preservation of organic-rich rocks and thus should permit direct Re–Os geochronology of lacustrine strata. We present Re–Os systematics from one of the world's best documented lacustrine systems, the Eocene Green River Formation, providing accurate Re–Os depositional dates that are supported by Ar–Ar and U–Pb ages of intercalated tuff horizons. Precision of the Green River Formation Re–Os dates is controlled by the variation in initial 187Os/188Os and the range of 187Re/188Os ratios, as also documented in marine systems. Controls on uptake and fractionation of Re and Os are considered to relate mainly to depositional setting and the type of organic matter deposited, with the need to further understand the chelating precursors of Re and Os in organic matter highlighted. In addition to geochronology, the Re–Os data records the 187Os/188Os composition of lake water (1.41–1.54) at the time of deposition, giving an insight into continental runoff derived from weathering of the geological hinterland of the Green River Formation. Such insights enable us to evaluate fluctuations in continental climatic, tectonic and magmatic processes and provide the ability for chemostratigraphic correlation combined with direct depositional dates. Furthermore

  1. Organic sedimentation in modern lacustrine systems: A case study from Lake Malawi, East Africa

    USGS Publications Warehouse

    Ellis, Geoffrey S.; Barry J. Katz,; Christopher A. Scholz,; Peter K. Swart,

    2015-01-01

    This study examines the relationship between depositional environment and sedimentary organic geochemistry in Lake Malawi, East Africa, and evaluates the relative significance of the various processes that control sedimentary organic matter (OM) in lacustrine systems. Total organic carbon (TOC) concentrations in recent sediments from Lake Malawi range from 0.01 to 8.80 wt% and average 2.83 wt% for surface sediments and 2.35 wt% for shallow core sediments. Hydrogen index (HI) values as determined by Rock-Eval pyrolysis range from 0 to 756 mg HC g−1 TOC and average 205 mg HC g−1 TOC for surface sediments and 228 mg HC g−1 TOC for shallow core samples. On average, variations in primary productivity throughout the lake may account for ~33% of the TOC content in Lake Malawi sediments (as much as 1 wt% TOC), and have little or no impact on sedimentary HI values. Similarly, ~33% to 66% of the variation in TOC content in Lake Malawi sediments appears to be controlled by anoxic preservation of OM (~1–2 wt% TOC), although some component of the water depth–TOC relationship may be due to physical sediment transport processes. Furthermore, anoxic preservation has a minimal effect on HI values in Lake Malawi sediments. Dilution of OM by inorganic sediment may account for ~16% of variability in TOC content in Lake Malawi sediments (~0.5 wt% TOC). The effect of inputs of terrestrial sediment on the organic character of surface sediments in these lakes is highly variable, and appears to be more closely related to the local depositional environment than the regional flux of terrestrial OM. Total nitrogen and TOC content in surface sediments collected throughout the lake are found to be highly correlated (r2 = 0.95), indicating a well-homogenized source of OM to the lake bottom. The recurring suspension and deposition of terrestrial sediment may account for significant amounts of OM deposited in offshore regions of the lake. This process effectively separates denser

  2. New PHA products using unrelated carbon sources

    PubMed Central

    Matias, Fernanda; de Andrade Rodrigues, Maria Filomena

    2011-01-01

    Polyhydroxyalkanoates (PHA) are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc) or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA), especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA) depending on the carbon source used. PMID:24031764

  3. Palaeoenvironmental implications of a Holocene sequence of lacustrine-peat sediments from the desert-loess transitional zone in Northern China

    NASA Astrophysics Data System (ADS)

    Jia, Feifei; Lu, Ruijie; Liu, Xiaokang; Zhao, Chao; Lv, Zhiqiang; Gao, Shangyu

    2018-05-01

    A high-resolution lacustrine-peat record from the desert-loess transitional zone in Northern China was obtained to reconstruct Holocene environmental change in the region. AMS 14C dates are used to provide a chronology. The results indicate that the site was a desert environment before 12.2 cal kyr BP, and was then occupied by a paleolake which started to shrink, with a wetland occurring from 6.2 to 3.0 cal kyr BP. Subsequently, the site became a seasonally water-filled depression. Based on the lithology and measurements of grain size and total organic carbon content, the climate changed from arid to humid at 12.2 cal kyr BP, and became more humid after 8.3 cal kyr BP. From 6.2 to 3.0 cal kyr BP, precipitation decreased but the climate remained at an optimum. After 3.0 cal kyr BP, the climate was dry overall but with several humid intervals. A comparison of paleoclimatic records from lacustrine and aeolian deposits from the region reveals a discrepancy about the nature of the early Holocene climate, and we conclude that this is because lacustrine sediments responded more sensitively to precipitation than aeolian deposits when the temperature was low. The environmental evolution of the region was synchronous with changes in the Asian summer monsoon (ASM), but temperature also played a key role in the early Holocene.

  4. A lacustrine carbonate record of Holocene seasonality and climate

    USGS Publications Warehouse

    Wittkop, Chad A.; Teranes, Jane L.; Dean, Walter E.; Guilderson, Thomas P.

    2009-01-01

    Annually laminated (varved) Holocene sediments from Derby Lake, Michigan, display variations in endogenic calcite abundance reflecting a long-(millennial-scale) decrease in burial punctuated with frequent short- (decadal-scale) oscillations due to carbonate dissolution. Since 6000 cal yr B.P., sediment carbonate abundance has followed a decreasing trend while organic-carbon abundance has increased. The correlation between organic-carbon abundance and the sum of March-April-October-November insolation has an r2 value of 0.58. We interpret these trends to represent a precession-driven lengthening of the Holocene growing season that has reduced calcite burial by enhancing net annual organic-matter production and associated calcite dissolution. Correlations with regional paleoclimate records suggest that changes in temperature and moisture balance have impacted the distribution of short- oscillations in carbonate and organic-matter abundance superimposed on the precession-driven trends.

  5. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  6. Discovery of silicified lacustrine micro-fossils and stromatolites: Triassic-Jurassic Fundy Group, Nova Scotia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, B.

    A unique assemblage of silicified invertebrate and algal fresh-water lake fossils has been discovered in the Scots Bay Formation at the top of the Triassic-Jurassic Fundy Group of the Fundy Basin in Nova Scotia. This is important because the basins of the eastern North American Triassic-Jurassic rift system have not yielded many invertebrate and algal fossils. These new finds will contribute significantly to evolutionary, paleoecological and biostratigraphic studies of fresh-water Mesozoic deposits. Silicified fossils have been extracted from chert-bearing, mixed carbonate and siliciclastic lithologies. They include ostracodes, gastropods, rare bivalves, charaphytes (algae), stromatolites, and chert nodules cored with well-preserved woodymore » tissues of tree trunks. Possible algal filaments occur in the silicified stromatolites. This association of charaphytes, ostracodes, microscopic gastropods and stromatolites is found in carbonate lakes today. The Scots Bay Formation is probably a near-shore carbonate facies of the more widespread silicilastic lacustrine McCoy Brook Formation. The gastropods and ostracodes, studied by SEM, indicate a Jurassic age for the Scots bay Formation, confirming speculations based on other data.« less

  7. The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system

    USGS Publications Warehouse

    Hart, W.S.; Quade, Jay; Madsen, D.B.; Kaufman, D.S.; Oviatt, Charles G.

    2004-01-01

    Lakes in the Bonneville basin have fluctuated dramatically in response to changes in rainfall, temperature, and drainage diversion during the Quaternary. We analyzed tufas and shells from shorelines of known ages in order to develop a relation between 87Sr/86Sr ratio of carbonates and lake level, which then can be used as a basis for constraining lake level from similar analyses on carbonates in cores. Carbonates from the late Quaternary shorelines yield the following average 87Sr/86Sr ratios: 0.71173 for the Stansbury shoreline (22-20 14C ka; 1350 m), 0.71153 for the Bonneville shoreline (15.5-14.5 14C ka; 1550 m), 0.71175 for the Provo shoreline (14.4-14.0 14C ka; 1450 m), 0.71244 for the Gilbert shoreline (???10.3-10.9 14C ka; 1300 m), and 0.71469 for the modern Great Salt Lake (1280 m). These analyses show that the 87Sr/86Sr ratio of lacustrine carbonates changes substantially at low- to mid-lake levels but is invariant at mid- to high-lake levels. Sr-isotope mixing models of Great Salt Lake and the Bonneville paleolake system were constructed to explain these variations in 87Sr/86Sr ratios with change in lake level. Our model of the Bonneville system produced a 87Sr/86Sr ratio of 0.71193, very close to the observed ratios from high-shoreline tufa and shell. The model verifies that the integration of the southern Sevier and Beaver rivers with the Bear and others rivers in the north is responsible for the lower 87Sr/86Sr ratios in Lake Bonneville compared to the modern Great Salt Lake. We also modeled the 87Sr/86Sr ratio of Lake Bonneville with the upper Bear River diverted into the Snake River basin and obtained an 87Sr/86Sr ratio of 0.71414. Coincidentally, this ratio is close to the observed ratio for Great Salt Lake of 0.71469. This means that 87Sr/86Sr ratios of >0.714 for carbonate can be produced by climatically induced low-lake conditions or by diversion of the upper Bear River out of the Bonneville basin. This model result also demonstrates that the

  8. Tephras in lacustrine sediments of the Sarliève marsh (French Massif Central): age and preservation

    NASA Astrophysics Data System (ADS)

    Fourmont, Agathe; Macaire, Jean-Jacques; Bréhéret, Jean-Gabriel; Argant, Jacqueline; Prat, Béatrice; Vernet, Gérard

    2006-12-01

    The Sarliève marsh sediments (Massif Central, France) contain two tephras. The first tephra [ 13.7±0.4ka(2δ), ca. 12 000 BP], regionally well known, enables to date the beginning of lacustrine infill to the Lateglacial. The second tephra, the 'tephra de Sarliève', the emitting volcano of which is unknown, would be dated to around the Early Subboreal from pollen data. This occurrence, after the discovery of the 'tephra de Beaunit', emphasizes that volcanic eruption(s) occurred in the 'Chaîne des Puys' or in the volcanic Cézallier more than 1000 years after the last known eruption (Pavin) in the 'Chaîne des Puys' at around 6.6/6.7 ka (5800/5900 BP). In the Sarliève piles, these tephras, well preserved in thick and more silicated deposits of deltas, were not observed in carbonated basin sediments where they were altered. The abundance of authigenic zeolites formed during the Lateglacial in restricted depocentre lacustrine waters allows us to detect initial CF1 tephra occurrence. To cite this article: A. Fourmont et al., C. R. Geoscience 338 (2006).

  9. A great volcanic eruption around AD 1300 recorded in lacustrine sediment from Dongdao Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Yang, Zhongkang; Long, Nanye; Wang, Yuhong; Zhou, Xin; Liu, Yi; Sun, Liguang

    2017-02-01

    The contents of Ti, Al and Fe 2 O 3 in a lacustrine sediment core (DY6) collected from Dongdao Island, South China Sea (SCS), were determined to be much higher than those in the three major sediment end-members (coral sand, guano and plants), and their likely sources include terrigenous dust and volcanic ash. At 61 cm (˜AD 1300), the contents of Ti, Al and Fe 2 O 3 have an abnormally high spike, which cannot be explained by terrigenous dust. The Sr and Nd isotope compositions at 61 cm are in excellent agreement with those in volcanic materials, but they are significantly different from those in terrigenous dust, implying a possible material input from historical volcanic eruptions in the lacustrine sediment DY6. The documented great Samalas volcanic eruption at AD 1257 in Indonesia is likely the candidate for this volcanic eruption.

  10. Deep mantle: Enriched carbon source detected

    NASA Astrophysics Data System (ADS)

    Barry, Peter H.

    2017-09-01

    Estimates of carbon in the deep mantle vary by more than an order of magnitude. Coupled volcanic CO2 emission data and magma supply rates reveal a carbon-rich mantle plume source region beneath Hawai'i with 40% more carbon than previous estimates.

  11. Sulfur Geochemistry of a Lacustrine Record from Taiwan Reveals Enhanced Marine Aerosol Input during the Early Holocene

    PubMed Central

    Ding, Xiaodong; Li, Dawei; Zheng, Liwei; Bao, Hongyan; Chen, Huei-Fen; Kao, Shuh-Ji

    2016-01-01

    Lacustrine record of marine aerosol input has rarely been documented. Here, we present the sulfur geochemistry during the last deglaciation and early Holocene of a sediment core retrieved from the Dongyuan Lake in southern Taiwan. An unusually high sulfur peak accompanying pyrite presence is observed at 10.5 ka BP. Such high sulfur content in lacustrine record is unusual. The δ34S of sulfur varied from +9.5 to + 17.1‰ with two significant positive shifts at 10.5 and 9.4 ka BP. The sources of sulfur and potential processes involving the sulfur isotope variation including bacterial sulfate reduction, volcanic emissions, in-catchment sulfide oxidation and marine aerosol input are discussed. Enhanced marine aerosol input is the most likely explanation for such sulfur peaks and δ34S shifts. The positive δ34S shifts appeared concurrently with the maximum landslide events over Taiwan resulted from enhanced typhoon activities. The synchronicity among records suggests that increased typhoon activities promoted sea spray, and consequently enhanced the marine aerosol input with 34S-enriched sulfate. Our sulfur geochemistry data revealed sea spray history and marine influence onto terrestrial environment at coastal regions. Wider coverage of spatial-temporal lacustrine sulfur geochemistry record is needed to validate the applicability of sulfur proxy in paleoenvironmental research. PMID:27941864

  12. Denitrification-Efficiencies of Alternate Carbon Sources

    DTIC Science & Technology

    1984-07-01

    carbon source evaluated, while sweet whey, corn steep liquor , acid whey and soluble potato solids followed in order of decreasing efficiency. Three of...denitrification and total organic carbon removal with ’I. sweet whey 11 3. Percent denitrification and total organic carbon removal with corn steep liquor ...and total organic carbon removal with hydrolyzed sludge 18 10. Percent denitrification and total organic carbon removal with fish stick 19 11

  13. Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain

    USGS Publications Warehouse

    Lenz, Josefine; Jones, Benjamin M.; Wetterich, Sebastian; Tjallingii, Rik; Fritz, Michael; Arp, Christopher D.; Rudaya, Natalia; Grosse, Guido

    2016-01-01

    Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation, and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological, and geochemical proxies. Radiocarbon and 210Pb/137Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~1400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the “alder high” that occurred in the region ~4000 cal yr BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were, therefore, archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.

  14. Deformation of ``Villafranchian'' lacustrine sediments in the Chisone Valley (Western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Collo, Giovanni; Giardino, Marco

    1997-09-01

    The Chisone Valley is located in the internal NW Alps, in the Pinerolese District, an area characterized by present low to medium seismicity. Fine-grained sediments (sand, silt and clay with interbedded gravel) crop out in the lower Chisone Valley: they were first interpreted as glaciolacustrine deposits, and then as a lacustrine infilling of the valley floor probably due to differential uplifting of the valley mouth. Review of this data, together with new field and palynological observations, lead us to refer the lacustrine deposits to approximately the Lower Pleistocene (Villafranchian). In many outcrops, the lacustrine deposits show strong soft-sediment deformation such as convolute laminations, water-escape structures and disrupted beds, some of them associated with folds and faults (cm to dm in size); only two sites show metric to decametric folds and faults trending E-W and N-S. Detailed structural analysis conducted along a recently exposed section (Rio Gran Dubbione site) shows several soft-sediment deformation features on the limbs of mesoscale folds. Because of their intimate structural association, the origin of these minor structures seems to be connected to synsedimentary activity on reverse and normal faults (m to dm in size) affecting the lacustrine deposits in the same locality. Soft-sediment deformation features can be interpreted as possible paleoseismites. If so, the present seismicity of the Pinerolese District, which is the major area of such activity in NW Italy, cannot be considered an isolated episode in the geological evolution of the region; even if there is no supporting evidence for continuous seismicity, the deformations in the lacustrine sediments of the Chisone Valley testify to Early Pleistocene seismic activity, probably related to the recent tectonic evolution of the internal side of the NW Alps.

  15. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, P.J.; Wakefield, L.L.

    1988-01-01

    The analysis of the sterane data of a large set of crude oils (414) derived from marine carbonate (27) and siliciclastic source rocks (14) where influences of terrestrial or lacustrine derived organic matter can reasonably be excluded, shows that there are increases in the relative content of C/sub 28/ steranes and decreases in the relative content of C/sub 29/ steranes through geological time. There are no consistent variations in the relative content of C/sub 27/ steranes through time. With one major exception (a Proterozoic oil from Oman), Paleozoic and older crude oils are thus generally characterized by strong predominances ofmore » C/sub 29/ steranes and low relative concentrations of C/sub 28/ steranes. Significantly higher proportions of C/sub 28/ steranes and lower proportions of C/sub 29/ steranes occur in oils derived from Jurassic and Upper Cretaceous source rocks. These changes through time do not appear to reflect the chemical evolution of the sterols of one particular variety of marine organism: the increase in C/sub 28/ steranes may be related to the increased diversification of phytoplantonic assemblages in the Jurassic and Cretaceous. Possible sources of the C/sub 28/ sterols necessary for the observed changes in crude oil steranes includes diatoms, coccolithophores and dinoflagellates. Although the technique does not give an accurate means of determining the age of the source rock of a crude oil it is possible to distinguish younger crudes derived from the Upper Cretaceous and Tertiary from Palaeozoic and older crudes.« less

  16. Sedimentary and tectonic evolution of Plio Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy)

    NASA Astrophysics Data System (ADS)

    Cavinato, Gian Paolo; Carusi, Claudio; Dall'Asta, Massimo; Miccadei, Enrico; Piacentini, Tommaso

    2002-04-01

    The Fucino Basin was the greatest lake of the central Italy, which was completely drained at the end of 19th century. The basin is an intramontane half-graben filled by Plio-Quaternary alluvial and lacustrine deposits located in the central part of the Apennines chain, which was formed in Upper Pliocene and in Quaternary time by the extensional tectonic activity. The analysis of the geological surface data allows the definition of several stratigraphic units grouped in Lower Units and Upper Units. The Lower Units (Upper Pliocene) are exposed along the northern and north-eastern basin margins. They consist of open to marginal lacustrine deposits, breccia deposits and fluvial deposits. The Upper Units (Lower Pliocene-Holocene) consist of interbedded marginal lacustrine deposits and fluvial deposits; thick coarse-grained fan-delta deposits are interfingered at the foot of the main relief with fluvial-lacustrine deposits. Most of the thickness of the lacustrine sequences (more than 1000-m thick) is buried below the central part of the Fucino Plain. The basin is bounded by E-W, WSW-ENE and NW-SE fault systems: Velino-Magnola Fault (E-W) and Tremonti-Celano-Aielli Fault (WSW-ENE) and S. Potito-Celano Fault (NW-SE) in the north; the Trasacco Fault, the Pescina-Celano Fault and the Serrone Fault (NW-SE) in the south-east. The geometry and kinematic indicators of these faults indicate normal or oblique movements. The study of industrial seismic profiles across the Fucino Basin gives a clear picture of the subsurface basin geometry; the basin shows triangular-shaped basin-fill geometry, with the maximum deposits thickness toward the main east boundary fault zones that dip south-westward (Serrone Fault, Trasacco Fault, Pescina-Celano Fault). On the basis of geological surface data, borehole stratigraphy and seismic data analysis, it is possible to recognize and to correlate sedimentary and seismic facies. The bottom of the basin is well recognized in the seismic lines

  17. Prokaryotic Community in Lacustrine Sediments of Byers Peninsula (Livingston Island, Maritime Antarctica).

    PubMed

    Gugliandolo, Concetta; Michaud, Luigi; Lo Giudice, Angelina; Lentini, Valeria; Rochera, Carlos; Camacho, Antonio; Maugeri, Teresa Luciana

    2016-02-01

    . Ilumatobacter (Actinobacteria), Gp16 (Acidobacteria), and Gemmatimonas (Gemmatimonadetes) were recovered as dominant genera in both inland and coastal lakes, but not in the estuarine sample, indicating that they may be useful markers of Antarctic lakes. The proximity to the sea, the different lake depths and the external or internal origin of the nutrient sources shape the bacterial communities composition in lacustrine sediments of Byers Peninsula.

  18. Abiotically-formed, primary dolomite in the mid-Eocene lacustrine succession at Gebel El-Goza El-Hamra, NE Egypt: An approach to the role of smectitic clays

    NASA Astrophysics Data System (ADS)

    Wanas, H. A.; Sallam, E.

    2016-08-01

    This study discusses the role of smectitic clays in the formation of an abiotic (physio-chemical) primary dolomite within an evaporative alkaline-saline marginal lake system, in the absence of carbonate precursor and microbes. The present work has been achieved in terms of textural, mineralogical, and geochemical characteristics of dolostones in the Mid-Eocene (Bartonian) lacustrine succession cropping out at Gebel El-Goza El-Hamra (Shabrawet area, NE Egypt). This lacustrine succession is 15-16 m thick, and made up of alternating horizontal beds of dolostone, marlstone and mudrock that show some pedogenic and subaerial exposure features. The dolostones are composed mainly of dolomite (60-90%), smectite (20-30%) and quartz grains (5-10%). The dolomite comprises fine-crystalline rhombs to micro-spherical crystals with no obvious relics of microbial activity and/or carbonate precursor. It is, ordered, nearly stoichiometric (with 46-50% mole of MgCO3) and has δ18O and δ13C values ranging from + 0.44 to + 2.96 VPDB ‰, and 0.93 to - 8.95 VPDB ‰, respectively. The smectite occurs as thin mats that are commonly intergrown and associated with dolomite. Mineralogical, textural and stable isotopic results of the dolomite indicated that the dolomite was formed as an abiotic primary precipitate in alkaline saline lacustrine systems. In this respect, the gel-like highly viscous smectitic medium plus progressive CO2 degassing, elevated evaporation, low sedimentation rate, low sulphates level and alkaline soil solution lowered the kinetic barriers of dolomite precipitation from solution and promoted the incorporation of Mg2 + in the structure of dolomite. Consequently, the presence of smectitic clays in evaporative saline lakes is significant for dolomite formation because they can generate a gel-like highly viscous medium and provide Mg2 + that can facilitate the physcio-chemical precipitation of primary dolomite from solution at ambient temperatures. However, more work is

  19. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Downs, Drew

    2016-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures including: 1) breadcrusted juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ± 81 Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicate either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  20. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Downs, Drew T.

    2016-11-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures include: 1) prismatically jointed juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ka Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicates either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  1. Land Use Affects Carbon Sources to the Pelagic Food Web in a Small Boreal Lake

    PubMed Central

    Rinta, Päivi; van Hardenbroek, Maarten; Jones, Roger I.; Kankaala, Paula; Rey, Fabian; Szidat, Sönke; Wooller, Matthew J.; Heiri, Oliver

    2016-01-01

    Small humic forest lakes often have high contributions of methane-derived carbon in their food webs but little is known about the temporal stability of this carbon pathway and how it responds to environmental changes on longer time scales. We reconstructed past variations in the contribution of methanogenic carbon in the pelagic food web of a small boreal lake in Finland by analyzing the stable carbon isotopic composition (δ13C values) of chitinous fossils of planktivorous invertebrates in sediments from the lake. The δ13C values of zooplankton remains show several marked shifts (approx. 10 ‰), consistent with changes in the proportional contribution of carbon from methane-oxidizing bacteria in zooplankton diets. The results indicate that the lake only recently (1950s) obtained its present state with a high contribution of methanogenic carbon to the pelagic food web. A comparison with historical and palaeobotanical evidence indicates that this most recent shift coincided with agricultural land-use changes and forestation of the lake catchment and implies that earlier shifts may also have been related to changes in forest and land use. Our study demonstrates the sensitivity of the carbon cycle in small forest lakes to external forcing and that the effects of past changes in local land use on lacustrine carbon cycling have to be taken into account when defining environmental and ecological reference conditions in boreal headwater lakes. PMID:27487044

  2. Effects of iron and calcium carbonate on the variation and cycling of carbon source in integrated wastewater treatments.

    PubMed

    Zhimiao, Zhao; Xinshan, Song; Yufeng, Zhao; Yanping, Xiao; Yuhui, Wang; Junfeng, Wang; Denghua, Yan

    2017-02-01

    Iron and calcium carbonate were added in wastewater treatments as the adjusting agents to improve the contaminant removal performance and regulate the variation of carbon source in integrated treatments. At different temperatures, the addition of the adjusting agents obviously improved the nitrogen and phosphorous removals. TN and TP removals were respectively increased by 29.41% and 23.83% in AC-100 treatment under 1-day HRT. Carbon source from dead algae was supplied as green microbial carbon source and Fe 2+ was supplied as carbon source surrogate. COD concentration was increased to 30mg/L and above, so the problem of the shortage of carbon source was solved. Dead algae and Fe 2+ as carbon source supplement or surrogate played significant role, which was proved by microbial community analysis. According to the denitrification performance in the treatments, dead algae as green microbial carbon source combined with iron and calcium carbonate was the optimal supplement carbon source in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Formation of lacustrine plains in west-central Alaska as a result of permafrost degradation and aggradation

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M. Z.; Jorgenson, M. T.; Shur, Y.; O'Donnell, J.; Harden, J. W.; Fortier, D.

    2012-12-01

    Perennially frozen lacustrine sediments containing a large amount of ground ice comprise a significant part of the upper permafrost of the lowlands of west-central Alaska, including Koyukuk Flats and Innoko Flats. Study sites are located in the discontinuous permafrost zone, where permafrost was encountered mainly within uplifted peat plateaus. The upper part of studied sections is formed by frozen peat up to 3 m thick underlain by lacustrine silt, which is mostly ice-rich. Cryogenic structure of lacustrine sediments at different sites has common features: (1) prevalence of layered, braided, and reticulate cryostructures; (2) high variability in the ice content of sediments; (3) high density and low water content of soil aggregates separated by ice lenses. Volume of visible ice in silt reaches at places 40% and more. The thickness of ice lenses generally varies from 1 to 5 cm and occasionally reaches 10 cm. Remnants of peat plateaus are surrounded by unfrozen bogs and fens, formed as a result of thawing and settling of ice-rich lacustrine silt. Modern thermokarst scars initially form at places where ice-rich silt is not protected by a thick layer of organic material. Further development of thermokarst bogs includes lateral enlargement of thaw bulbs and collapsing of the margins of peat plateaus. Lacustrine silt within taliks is covered by woody peat accumulated under forests during the stage of permafrost plateau formation and then by aquatic sphagnum peat accumulated in taliks after collapse. We relate the formation of ice-rich lacustrine sediments to development of lake thermokarst, which affected ice-rich silty yedoma deposits during the transition from Pleistocene to Holocene. Terrain development in lacustrine lowlands of west-central Alaska includes five stages related to permafrost aggradation and degradation from the late Pleistocene to the present time: 1) formation of the ice-rich syngenetic permafrost (yedoma) during the late Pleistocene; 2) yedoma

  4. Climatic and lacustrine morphometric controls of diatom paleoproductivity in a tropical Andean lake

    NASA Astrophysics Data System (ADS)

    Bao, R.; Hernández, A.; Sáez, A.; Giralt, S.; Prego, R.; Pueyo, J. J.; Moreno, A.; Valero-Garcés, B. L.

    2015-12-01

    The coupling of lake dynamics with catchment biogeochemistry is considered the key element controlling primary production in mountain lakes at time scales of a few decades to millennia, yet little is known on the impacts of the morphometry of lakes throughout their ontogeny. As Lake Chungará (Central Andean Altiplano, northern Chile) experienced long-term lake-level fluctuations that strongly modified its area:volume ratio, it is an ideal system for exploring the relative roles that long-term climatic shifts and lake morphometry play on biosiliceous lacustrine productivity. In this paper, we review previous data on the percent contents of total organic carbon, total inorganic carbon, total nitrogen, total biogenic silica, isotopic composition of organic matter, carbonates, and diatom frustules, as well as data on the abundance of the chlorophycean Botryococcus braunii in this lake for the period 12,400-1300 cal yr BP. We also include new data on organic carbon and biogenic silica mass accumulation rates and the diatom assemblage composition of an offshore core dated using 14C and U/Th. Biosiliceous productivity in Lake Chungará was influenced by shifts in allochthonous nutrient inputs related to variability in precipitation. Humid phases dated at approx. 12,400 to 10,000 and 9600 to 7400 cal yr BP coincide with periods of elevated productivity, whereas decreases in productivity were recorded during arid phases dated at approx. 10,000 to 9600 and 7400 to 3550 cal yr BP (Andean mid-Holocene Aridity Period). However, morphometry-related in-lake controls led to a lack of a linear response of productivity to precipitation variability. During the late Glacial to early Holocene, lowstands facilitated complete water column mixing, prompting episodic massive blooms of a large centric diatom, Cyclostephanos cf. andinus. Thus, moderate productivity could be maintained, regardless of aridity, by this phenomenon of morphometric eutrophy during the early history of the lake

  5. Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale

    NASA Astrophysics Data System (ADS)

    Lin, Senhu

    2017-04-01

    Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.

  6. Contribution of bacterial cells to lacustrine organic matter based on amino sugars and D-amino acids

    NASA Astrophysics Data System (ADS)

    Carstens, Dörte; Köllner, Krista E.; Bürgmann, Helmut; Wehrli, Bernhard; Schubert, Carsten J.

    2012-07-01

    Amino sugars (ASs), D-amino acids (D-AAs), and bacterial cell counts were measured in two Swiss lakes to study the contribution of bacterial cells to organic matter (OM) and the fate of ASs and bacterial amino biomarkers during OM degradation. Concentrations of individual ASs (glucosamine, galactosamine, muramic acid, and mannosamine) in the particulate and total OM pools were analyzed in water-column profiles of Lake Brienz (oligotrophic and oxic throughout the entire water column) and Lake Zug (eutrophic, stratified, and permanently anoxic below 170 m) in spring and in fall. Generally, carbon-normalized AS concentrations decreased with water depth, indicating the preferential decomposition of ASs. For Lake Brienz the relative loss of particulate ASs was higher than in Lake Zug, suggesting enhanced AS turnover in an oligotrophic environment. AS ratio changes in the water column revealed a replacement of plankton biomass with OM from heterotrophic microorganisms with increasing water depth. Similar to the ASs, highest carbon normalized D-AA concentrations were found in the upper water column with decreasing concentrations with depth and an increase close to the sediments. In Lake Zug, an increase in the percentage of D-AAs also showed the involvement of bacteria in OM degradation. Estimations of OM derived from bacterial cells using cell counts and the bacterial biomarkers muramic acid and D-AAs gave similar results. For Lake Brienz 0.2-14% of the organic carbon pool originated from bacterial cells, compared to only 0.1-5% in Lake Zug. Based on our estimates, muramic acid appeared primarily associated with bacterial biomass and not with refractory bacterial necromass. Our study underscores that bacteria are not only important drivers of OM degradation in lacustrine systems, they also represent a significant source of OM themselves, especially in oligotrophic lakes.

  7. Constraining the sources and cycling of dissolved organic carbon in a large oligotrophic lake using radiocarbon analyses

    NASA Astrophysics Data System (ADS)

    Zigah, Prosper K.; Minor, Elizabeth C.; McNichol, Ann P.; Xu, Li; Werne, Josef P.

    2017-07-01

    We measured the concentrations and isotopic compositions of solid phase extracted (SPE) dissolved organic carbon (DOC) and high molecular weight (HMW) DOC and their constituent organic components in order to better constrain the sources and cycling of DOC in a large oligotrophic lacustrine system (Lake Superior, North America). SPE DOC constituted a significant proportion (41-71%) of the lake DOC relative to HMW DOC (10-13%). Substantial contribution of 14C-depleted components to both SPE DOC (Δ14C = 25-43‰) and HMW DOC (Δ14C = 22-32‰) was evident during spring mixing, and depressed their radiocarbon values relative to the lake dissolved inorganic carbon (DIC; Δ14C ∼ 59‰). There was preferential removal of 14C-depleted (older) and thermally recalcitrant components from HMW DOC and SPE DOC in the summer. Contemporary photoautotrophic addition to HMW DOC was observed during summer stratification in contrast to SPE DOC, which decreased in concentration during stratification. Serial thermal oxidation radiocarbon analysis revealed a diversity of sources (both contemporary and older) within the SPE DOC, and also showed distinct components within the HMW DOC. The thermally labile components of HMW DOC were 14C-enriched and are attributed to heteropolysaccharides (HPS), peptides/amide and amino sugars (AMS) relative to the thermally recalcitrant components reflecting the presence of older material, perhaps carboxylic-rich alicyclic molecules (CRAM). The solvent extractable lipid-like fraction of HMW DOC was very 14C-depleted (as old as 1270-2320 14C years) relative to the carbohydrate-like and protein-like substances isolated by acid hydrolysis of HMW DOC. Our data constrain relative influences of contemporary DOC and old DOC, and DOC cycling in a modern freshwater ecosystem.

  8. An atomic carbon source for high temperature molecular beam epitaxy of graphene.

    PubMed

    Albar, J D; Summerfield, A; Cheng, T S; Davies, A; Smith, E F; Khlobystov, A N; Mellor, C J; Taniguchi, T; Watanabe, K; Foxon, C T; Eaves, L; Beton, P H; Novikov, S V

    2017-07-26

    We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.

  9. Geomorphic Drainage Capture Recorded by Oxygen Isotopes of Green River Formation Lacustrine Mudstone, Eocene, Wyoming

    NASA Astrophysics Data System (ADS)

    Doebbert, A. C.; Booth, A. L.; Carroll, A.; Chamberlain, C.; Rhodes, M.

    2005-12-01

    The isotopic composition of cement and other meteoric precipitates are increasingly being used to interpret orogenic uplift histories, based on the relationship between altitude and rainwater δ18O. However, other variables such as changing regional drainage patterns may also affect the downstream composition of surface waters, especially when multiple drainages commingle in a lake. The Green River Formation contains some of the best documented lacustrine deposits in the world, making it ideal for examining such issues. Carbonate mudstone in balanced-fill facies of the lower LaClede Bed averages 3.41‰ (PDB), and records a deep, saline to brackish lake that fluctuated near its sill. In contrast, overfilled facies of the upper LaClede Bed record a freshwater lake, and δ18O reaches values as low as -9.72‰. This transition occurred shortly after deposition of the Analcite Tuff at 48.94 ± 0.12 Ma (Smith et al., 2003), and was geologically abrupt. Based on 40Ar/39Ar-calibrated sediment accumulation rates it required no more than 200-300 ky. An almost identical transition occurs in two cores separated by about 30 km, making local diagenesis an unlikely cause. The magnitude of δ18O change is similar to that in some uplift studies, but its rapidity virtually excludes uplift as a controlling mechanism. Instead, we propose that both the change in sedimentation and the sharp decrease in δ18O are the result of a drainage capture event. The addition of a new drainage to the basin may have adjusted isotopic values in two ways: by introducing runoff with relatively low δ18O, and by decreasing residence time (and therefore evaporation) of lake water. Decreasing 87Sr/86Sr across the same transition suggests that the newly added waters may have been sourced from rising volcanic topography to the north in the Absaroka province. Although this rising topography allows for the possibility of some uplift component, the rate of change in lacustrine δ18O is consistent with

  10. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation

    NASA Astrophysics Data System (ADS)

    Liang, Chao; Cao, Yingchang; Liu, Keyu; Jiang, Zaixing; Wu, Jing; Hao, Fang

    2018-05-01

    Lacustrine carbonate-rich shales are well developed within the Mesozoic-Cenozoic strata of the Bohai Bay Basin (BBB) of eastern China and across southeast Asia. Developing an understanding of the diagenesis of these shales is essential to research on mass balance, diagenetic fluid transport and exchange, and organic-inorganic interactions in black shales. This study investigates the origin and distribution of authigenic minerals and their diagenetic characteristics, processes, and pathways at the scale of lacustrine laminae within the Es4s-Es3x shale sequence of the BBB. The research presented in this study is based on thin sections, field emission scanning electron microscope (FESEM) and SEM-catholuminescence (CL) observations of well core samples combined with the use of X-ray diffraction (XRD), energy dispersive spectroscopy, electron microprobe analysis, and carbon and oxygen isotope analyses performed using a laser microprobe mass spectrometer. The dominant lithofacies within the Es4s-Es3x sequence are a laminated calcareous shale (LCS-1) and a laminated clay shale (LCS-2). The results of this study show that calcite recrystallization1 is the overarching diagenetic process affecting the LCS-1, related to acid generation from organic matter (OM) thermal evolution. This evolutionary transition is the key factor driving the diagenesis of this lithofacies, while the transformation of clay minerals is the main diagenetic attribute of the LCS-2. Diagenetic differences occur within different laminae and at variable locations within the same lamina level, controlled by variations in mineral composition and the properties of laminae interfaces. The diagenetic fluid migration scale is vertical and responses (dissolution and replacement) are limited to individual laminae, between zero and 100 μm in width. In contrast, the dominant migration pathway for diagenetic fluid is lateral, along the abrupt interfaces between laminae boundaries, which leads to the vertical

  11. Source facies and oil families of the Malay Basin, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creaney, S.; Hussein, A.H.; Curry, D.J.

    1994-07-01

    The Malay Basin consists of a number of separate petroleum systems, driven exclusively by nonmarine source rocks. These systems range from lower Oligocene to middle Miocene and show a progression from lacustrine-dominated source facies in the lower Oligocene to lower Miocene section to coastal plain/delta plain coal-related sources in the lower to middle Miocene section. Two lacustrine sources are recognized in the older section, and multiple source/reservoir pairs are recognized in the younger coaly section. The lacustrine sources can be recognized using well-log analysis combined with detailed core and sidewall core sampling. Chemically, they are characterized by low pristane/phytane ratios,more » low oleanane contents, and a general absence of resin-derived terpanes. These sources have TOCs in the 1.0-4.0% range and hydrogen indices of up to 750. In contrast, the coal-related sources are chemically distinct with pristane/phytane ratios of up to 8, very high oleanane contents, and often abundant resinous compounds. All these sources are generally overmature in the basin center and immature toward the basin margin. The oils sourced from all sources in the Malay Basin are generally low in sulfur and of very high economic value. Detailed biomarker analysis of the oils in the Malay Basin has allowed the recognition of families associated with the above sources and demonstrated that oil migration has been largely strata parallel with little cross-stratal mixing of families.« less

  12. The Nature, Origin, and Importance of Carbonate-Bearing Samples at the Final Three Candidate Mars 2020 Landing Sites

    NASA Astrophysics Data System (ADS)

    Horgan, B.; Anderson, R. B.; Ruff, S. W.

    2018-04-01

    All three candidate Mars 2020 landing sites contain similar regional olivine/carbonate units, and a carbonate unit of possible lacustrine origin is also present at Jezero. Carbonates are critical for Mars Sample Return as records of climate and biosignatures.

  13. Morphology and Fractal Characterization of Multiscale Pore Structures for Organic-Rich Lacustrine Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wu, Caifang; Zhu, Yanming; Chen, Shangbin; Liu, Shimin; Zhang, Rui

    Lacustrine shale gas has received considerable attention and has been playing an important role in unconventional natural gas production in China. In this study, multiple techniques, including total organic carbon (TOC) analysis, X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), helium pycnometry and low-pressure N2 adsorption have been applied to characterize the pore structure of lacustrine shale of Upper Triassic Yanchang Formation from the Ordos Basin. The results show that organic matter (OM) pores are the most important type dominating the pore system, while interparticle (interP) pores, intraparticle (intraP) and microfractures are also usually observed between or within different minerals. The shapes of OM pores are less complex compared with the other two pore types based on the Image-Pro Plus software analysis. In addition, the specific surface area ranges from 2.76m2/g to 10.26m2/g and the pore volume varies between 0.52m3/100g and 1.31m3/100g. Two fractal dimensions D1 and D2 were calculated using Frenkel-Halsey-Hill (FHH) method, with D1 varying between 2.510 and 2.632, and D2 varying between 2.617 and 2.814. Further investigation indicates that the fractal dimensions exhibit positive correlations with TOC contents, whereas there is no definite relationship observed between fractal dimensions and clay minerals. Meanwhile, the fractal dimensions increase with the increase in specific surface area, and is negatively correlated with the pore size.

  14. Growth of graphene films from non-gaseous carbon sources

    DOEpatents

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  15. Carbon source in the future chemical industries

    NASA Astrophysics Data System (ADS)

    Hofmann, Peter; Heinrich Krauch, Carl

    1982-11-01

    Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.

  16. Holocene environmental changes in northern Lebanon as inferred from a multiproxy study on lacustrine-palustrine sediment

    NASA Astrophysics Data System (ADS)

    Vidal, Laurence; Jenna, Hage-Hassen; Demory, François; Develle, Anne-Lise; van Campo, Elise; Elias, Ata

    2016-04-01

    The reconstruction of the Levantine post-glacial environmental evolution is essential to understand the interactions between variability of regional water cycle, dynamics of the global climate, and cultural evolution. We present a paleolacustrine record from the karstic Yammouneh basin (34.06N-34.09N; 36.0E-36.03E, 1360 m a.s.l.), located on the eastern flank of Mount Lebanon (northern Levant). Holocene sediments (retrieved from gully and a trenbch) (1.5 to 3.6 m thick) consist of pale lacustrine chalk interrupted by an ash layer and remarkable centimetric beds of ocher to dark brown silty clays used, in addition to 14C ages, as stratigraphical markers. Lacustrine biogenic remains are diversified and abundant (ostracods, gastropods, charophytes, chlorophyceae, plant debris…) all reflecting a freswater, generally shallow waterbody. We analysed the sediment mineralogy and geochemistry, TOM contents, magnetic properties, pollen and calcite oxygen isotope composition derived from ostracod shells. These sequences are compared to former data from 2 trenches and 1 core collected in different points of the basin (Daeron et al., 2007; Develle et al., 2009, 2010). A total of 42 AMS 14C dating (partly carbonized wood) provide a solid chronology from the YD to present. Results reveal the following main features : 1- intervals dominated by authigenic calcite suggest that the major water supply was the karstic springs, which still deliver Ca-rich water and low surface runoff; 2- the lake oxygen isotope composition has been impacted by the source isotope composition throughout the Holocene and by increased inland rainfall during the early Holocene; 3- a decideous oak forest, implying much more soil water availability than today, was developed around the lake from ca. 11.5 to 9.5 kyr (the very bad pollen preservation after 8.3 kyr reflects oxidation or frequent oscillations of the water level); 4- four paleosols evidenced from lithofacies and magnetic properties are identified

  17. Carbon utilization profiles of river bacterial strains facing sole carbon sources suggest metabolic interactions.

    PubMed

    Goetghebuer, Lise; Servais, Pierre; George, Isabelle F

    2017-05-01

    Microbial communities play a key role in water self-purification. They are primary drivers of biogenic element cycles and ecosystem processes. However, these communities remain largely uncharacterized. In order to understand the diversity-heterotrophic activity relationship facing sole carbon sources, we assembled a synthetic community composed of 20 'typical' freshwater bacterial species mainly isolated from the Zenne River (Belgium). The carbon source utilization profiles of each individual strain and of the mixed community were measured in Biolog Phenotype MicroArrays PM1 and PM2A microplates that allowed testing 190 different carbon sources. Our results strongly suggest interactions occurring between our planktonic strains as our synthetic community showed metabolic properties that were not displayed by its single components. Finally, the catabolic performances of the synthetic community and a natural community from the same sampling site were compared. The synthetic community behaved like the natural one and was therefore representative of the latter in regard to carbon source consumption. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Magnetostratigraphy of The Astronomically-forced Alluvial Fan To Lacustrine Sequences of The Teruel Basin (late Miocene, Spain)

    NASA Astrophysics Data System (ADS)

    van Dam, J.; Aziz, H. Abdul; Hilgen, F. J.; Krijgsman, W.

    During the last years, more and more examples of allocyclic, astronomical forced variations in the continental record have been documented. Sedimentary hiatuses, tra- ditionally regarded as the primary reason for the absence of clear patterns of orbital signature in the terrestrial domain, may be absent or short, given the appropriate set- ting. Spanish endoreic basins, for instance, form a ideal setting for the registration of orbital-forced climate change, as has been demonstrated for the Middle Miocene distal-alluvial fan-floodplain to lacustrine deposits of the Calatayud Basin. Astronom- ical forcing of sedimentary cycles has also been demonstrated in the Late Miocene distal alluvial fan to lacustrine sequences of the Teruel Basin. The early Late Miocene Cascante and Cañizar sections South of the town of Teruel show distinct cyclic bed- ding of red and/or green mottled mudstones alternating with white carbonate beds, whereby the alternation is mainly controlled by precession and eccentricity. The car- bonate beds are interpreted as (shallow) lake highstands, which occur in response to submergence of the alluvial fan distal plain. Small mammal teeth have been recov- ered from organic-richer layers at the base of the carbonate cycles in the Cascante and Cañizar sections. The recovery of mammal remains in terrestrial Milankovitch forced settings is crucial for several reasons: 1) it provides a first approximate age estimation for the sequence, thereby constraining other sources of temporal information such as magnetostratigraphy; 2) it infers very accurate ages of the mammal localities after as- tronomical tuning of the cyclic patterns; 3) it formulates hypotheses on the climatic regime and its variability using precise correlations to the insolation curve and in- terpretation of phase relations; and 4) it confronts the astronomically-based climatic reconstruction with the paleoecological reconstructions and faunal changes observed in the mammals themselves

  19. Greigite formed in early Pleistocene lacustrine sediments from the Heqing Basin, southwest China, and its paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Qiang, Xiaoke; Xu, Xinwen; Zhao, Hui; Fu, Chaofeng

    2018-05-01

    The ferrimagnetic iron sulfide greigite (Fe3S4) occurs widely in sulfidic lacustrine and marine sedimentary environments. Knowledge of its formation and persistence is important for both magnetostratigraphic and paleoenvironmental studies. Although the formation mechanism of greigite has been widely demonstrated, the sedimentary environments associated with greigite formation in lakes, especially on relatively long timescales, are poorly understood. A long and continuous sequence of Pleistocene lacustrine sediments was recovered in the Heqing drill core from southwestern China, which provides an outstanding record of continental climate and environment. Integrated magnetic, geochemical, and paleoclimatic analysis of the lacustrine sequence provides an opportunity to improve our understanding of the environmental controls on greigite formation. Rock magnetic and scanning electron microscope analyses of selected samples from the core reveal that greigite is present in the lower part of the core (part 1, 665.8-372.5 m). Greigite occurs throughout this interval and is the dominant magnetic mineral, irrespective of the climatic state. The magnetic susceptibility (χ) record, which is mainly controlled by the concentration of greigite, matches well with variations in the Indian Summer Monsoon (ISM) index and total organic carbon (TOC) content, with no significant time lag. This indicates that the greigite formed during early diagenesis. In greigite-bearing intervals, with the χ increase, Bc value increase and tends to be stable at about 50 mT. Therefore, we suggest that χ values could estimate the variation of greigite concentration approximately in the Heqing core. Greigite favored more abundant in terrigenous-rich and organic-poor layers associated with weak summer monsoon which are characterized by high χ values, high Fe content, high Rb/Sr ratio and low TOC content. Greigite enhancement can be explained by variations in terrigenous inputs. Our studies demonstrate

  20. Spawning migration of lacustrine-adfluvial bull trout in a natural area

    USGS Publications Warehouse

    Brenkman, Samuel J.; Larson, Gary L.; Gresswell, Robert E.

    2001-01-01

    We investigated the spawning migration of lacustrine-adfluvial bull trout Salvelinus confluentus in the North Fork Skokomish River in Olympic National Park (Washington State) during 1996. Day-snorkeling and electrofishing were conducted to determine timing and duration of the migration and the distribution and abundance of bull trout. The primary spawning migration began in early October and was waning by December. Bull trout migrated 6 km or less up the river from Lake Cushman. Increased river discharge and decreased water temperature appeared to be the primary environmental variables corresponding to the initiation of the migration. Mean length of migratory bull trout increased from June to December. Comparisons with other lacustrine-adfluvial bull trout populations in Oregon, Montana, Idaho, and British Columbia suggested that these populations exhibit specific migratory strategies related to local environmental conditions.

  1. Coupling of carbon and silicon geochemical cycles in rivers and lakes

    PubMed Central

    Wang, Baoli; Liu, Cong-Qiang; Maberly, Stephen C.; Wang, Fushun; Hartmann, Jens

    2016-01-01

    Carbon (C) and silicon (Si) biogeochemical cycles are important factors in the regulation of atmospheric CO2 concentrations and hence climate change. Theoretically, these elements are linked by chemical weathering and organism stoichiometry, but this coupling has not been investigated in freshwaters. Here we compiled data from global rivers and lakes in the United States of America and the United Kingdom, in order to characterize the stoichiometry between the biogeochemical cycles of C and Si. In rivers this coupling is confirmed by a significant relationship between HCO3−/Na+ and DSi/Na+, and DSi:HCO3− ratio can reflect the mineral source of chemical weathering. In lakes, however, these characteristic ratios of chemical weathering are altered by algal activity. The lacustrine Si:C atomic ratio is negative feedback regulation by phytoplankton, which may result in this ratio in algal assemblages similar to that in water column. And this regulation suggests lacustrine photosynthetic C fixation in this equilibrium state is quantitative and depends on the DSi concentration. These findings provide new insights into the role of freshwaters in global C and Si biogeochemical cycles. PMID:27775007

  2. Utilization of carbon sources by clinical isolates of Aeromonas.

    PubMed

    Prediger, Karoline C; Surek, Monica; Dallagassa, Cibelle B; Assis, Flávia E A; Piantavini, Mario S; Souza, Emanuel M; Pedrosa, Fábio O; Farah, Sônia M S S; Alberton, Dayane; Fadel-Picheth, Cyntia M T

    2017-04-01

    Bacteria in the genus Aeromonas are primarily aquatic organisms; however, some species can cause diseases in humans, ranging from wound infections to septicemia, of which diarrhea is the most common condition. The ability to use a variety of carbon substrates is advantageous for pathogenic bacteria. Therefore, we used Biolog GN2 microplates to analyze the ability of 103 clinical, predominantly diarrheal, isolates of Aeromonas to use various carbon sources, and we verified whether, among the substrates metabolized by these strains, there were some endogenous to the human intestine. The results indicate that Aeromonas present great diversity in the utilization of carbon sources, and that they preferentially use carbohydrates and amino acids as carbon sources. Among the carbon sources metabolized by Aeromonas in vitro, some were found to be components of intestinal mucin, including aspartic acid, glutamic acid, l-serine, galactose, N-acetyl-glucosamine, and glucose, which were used by all strains tested. Additionally, mannose, d-serine, proline, threonine, and N-acetyl-galactosamine were used by several strains. The potential to metabolize substrates endogenous to the intestine may contribute to Aeromonas' capacity to grow in and colonize the intestine. We speculate that this may help explain the ability of Aeromonas to cause diarrhea.

  3. The lacustrine carbon cycle as illuminated by the waters and sediments of two hydrologically distinct headwater lakes in North-Central Minnesota, U.S.A

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2002-01-01

    The accumulation rates of CaCO3 and organic carbon (OC) in lake sediments are delicately balanced between production in the epilimnion and destruction in the hypolimnion. The cycling of these two forms of carbon makes a "carbon pump" that greatly affects the biogeochemical cycles of other elements. To further understand these biogeochemical dynamics, the lakes, streams, and wetlands of the Shingobee River headwater area of north-central Minnesota have been subjected to intensive hydrologic and biogeochemical studies. Williams Lake, situated close to the highest point in the regional flow system, is hydrologically closed, with no surface inlet or outlet, and ground water and precipitation as the only sources of water. Shingobee Lake, situated at the lowest point in the regional flow system, has the Shingobee River as an inlet and outlet. The surface waters of both lakes are oversaturated, and the bottom waters undersaturated, with respect to CaCO3 during the summer. The small amount of CaCO3 that is precipitated in the epilimnion of Williams Lake during the summer is dissolved in the undersaturated hypolimnion and sediments with the result that no CaCO3 is incorporated into the profundal surface sediments. Because of the high phytoplankton productivity of Shingobee Lake, sufficient CaCO3 is produced in the epilimnion that large amounts survive the corrosive hypolimnion and sediments, and an average of 46 wt. % accumulates in surface sediments. Another consequence of higher phytoplankton productivity in Shingobee Lake is that the hypolimnion becomes oxygen deficient within a month after overturn in both the spring and fall. Because of reducing conditions that develop in the hypolimnion of Shingobee Lake, high concentrations of dissolved Fe and Mn accumulate there during summer stratification. Precipitation of Fe and Mn oxyhydroxides during periods of fall and spring overturn results in high concentrations of Fe and Mn in surface sediments. In Williams Lake, high

  4. Microbial community composition along a 50 000-year lacustrine sediment sequence

    PubMed Central

    Ariztegui, Daniel; Horn, Fabian; Kallmeyer, Jens; Orsi, William D

    2018-01-01

    Abstract For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth. PMID:29471361

  5. Clumped isotope calibration data for lacustrine carbonates: A progress report

    NASA Astrophysics Data System (ADS)

    Tripati, A.

    2015-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of reconstructions of past climates. Lake sediments provide important archives of terrestrial climate change, and represent an important tool for reconstructing paleohydrology, paleoclimate, paleoenvironment, and paleoaltimetry. Unfortunately, while multiple methods for constraining marine temperature exist, quantitative terrestrial proxies are scarcer - tree rings, speleothems, and leaf margin analyses have all been used with varying degrees of accuracy. Clumped isotope thermometry has the potential to be a useful instrument for determining terrestrial climates: multiple studies have shown the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed. We have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of carbonate minerals in phosphoric acid in modern lake samples and comparing results to independently known estimates of lake water temperature. Here we discuss an extensive calibration dataset comprised of 132 analyses of 97 samples from 44 localities, including microbialites, tufas, and micrites endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  6. Lacustrine Environment Reservoir Properties on Sandstone Minerals and Hydrocarbon Content: A Case Study on Doba Basin, Southern Chad

    NASA Astrophysics Data System (ADS)

    Sumery, N. F. Mohd; Lo, S. Z.; Salim, A. M. A.

    2017-10-01

    The contribution of lacustrine environment as the hydrocarbon reservoir has been widely known. However, despite its growing importance, the lacustrine petroleum geology has received far less attention than marine due to its sedimentological complexity. This study therefore aims in developing an understanding of the unique aspects of lacustrine reservoirs which eventually impacts the future exploration decisions. Hydrocarbon production in Doba Basin, particularly the northern boundary, for instance, has not yet succeeded due to the unawareness of its depositional environment. The drilling results show that the problems were due to the: radioactive sand and waxy oil/formation damage, which all are related to the lacustrine depositional environment. Detailed study of geological and petrophysical integration on wireline logs and petrographic thin sections analysis of this environment helps in distinguishing reservoir and non-reservoir areas and determining the possible mechanism causing the failed DST results. The interpretations show that the correlation of all types> of logs and rho matrix analysis are capable in identifying sand and shale bed despite of the radioactive sand present. The failure of DST results were due to the presence of arkose in sand and waxy oil in reservoir bed. This had been confirmed by the petrographic thin section analysis where the arkose has mineral twinning effect indicate feldspar and waxy oil showing bright colour under fluorescent light. Understanding these special lacustrine environment characteristics and features will lead to a better interpretation of hydrocarbon prospectivity for future exploration.

  7. Different carbon sources affect PCB accumulation by marine bivalves.

    PubMed

    Laitano, M V; Silva Barni, M F; Costa, P G; Cledón, M; Fillmann, G; Miglioranza, K S B; Panarello, H O

    2016-02-01

    Pampean creeks were evaluated in the present study as potential land-based sources of PCB marine contamination. Different carbon and nitrogen sources from such creeks were analysed as boosters of PCB bioaccumulation by the filter feeder bivalve Brachidontes rodriguezii and grazer limpet Siphonaria lessoni. Carbon of different source than marine and anthropogenic nitrogen assimilated by organisms were estimated through their C and N isotopic composition. PCB concentration in surface sediments and mollusc samples ranged from 2.68 to 6.46 ng g(-1) (wet weight) and from 1074 to 4583 ng g(-1) lipid, respectively, reflecting a punctual source of PCB contamination related to a landfill area. Thus, despite the low flow of creeks, they should not be underestimated as contamination vectors to the marine environment. On the other hand, mussels PCB bioaccumulation was related with the carbon source uptake which highlights the importance to consider this factor when studying PCB distribution in organisms of coastal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Late Holocene monsoon climate as evidenced by proxy records from a lacustrine sediment sequence in western Guangdong, South China

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Cao, jiayuan; Xue, Jibin; Ouyang, Jun; Tang, Xiaohong; Yin, Huanling; Liao, Congyun; Long, Kun

    2014-02-01

    The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (˜3300-3000 cal yr BP, ˜2600-1600 cal yr BP, and ˜900-600 cal yr BP), and three weakened ASM intervals (˜4000-3300 cal yr BP, ˜3000-2600 cal yr BP, and ˜1600-900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ˜1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic-atmospheric circulation probably have influenced the late Holocene climate variability in the study region.

  9. Deciphering the Paleochemistry and Holocene Environmental Variability in Central New York: Different Perspectives from the Stable Carbon Isotopes of Organic Matter and Carbonates.

    NASA Astrophysics Data System (ADS)

    Finkelstein, D. B.; Colcord, D. E.; Curtin, T.

    2014-12-01

    This study investigates environmental variability recorded in lacustrine and wetland sediments of Seneca Lake. Sediments display a range of stable isotopic and elemental chemistries suggesting there are changes in lake level, climate, or both during the Holocene in central New York. A ~13.5 m sediment core collected from the Catharine Creek wetland located south of Watkins Glen, NY at the southern tip of Seneca Lake was analyzed for total nitrogen (% TN), total organic carbon (% TOC), C/N ratios, δ13C of bulk organic matter (δ13Corg) and δ13Ccc and δ18Occ of carbonate. There is little change in TOC with the exception of an organic-rich interval (~20% TOC) between 5.5 and 4.3 m. Between 13.5 and 6 m, the C/N ratios decrease gradually upcore, from ~40 to ~10 - 20 and is paralleled by an increase in δ13Corg values from ~ -27‰ to ~ -24‰. Between 6-5.5 m, δ13C becomes significantly more negative (~ -30‰). The δ13Corg increases (to -26‰) upcore from 5.5 to 2.4 m. High C/N values (ranging from 60 to 20) from 15.5 to 11.8 m are consistent with input of land plants. The C/N values from 11.8 to 2.6 m range from 10 - 20 and represents a mixed signal of both algal and land plant derived organic matter. Throughout the Holocene, there has been a steady shift from negative δ13Corg values to more positive values of organic matter, which is consistent with an increase in the abundance of C4 plants in the watershed. Shifts in C/N over the length of the core suggest changes in lake level. In contrast, carbonate isotopic values (δ13Ccc and δ18Occ) do not covary and trends are consistent with a fresh-water, over-filled lake. In most lacustrine carbonate studies, calculated paleo-water temperatures from δ18Occ are commonly used prima facie to reflect environmental variability and constrain temperatures. In this study, wide variations in the calculated paleo-water temperatures reflect multiple carbonate sources / fractionations invalidating their use as a first order

  10. Small-scale lacustrine drifts in Lake Champlain, Vermont

    USGS Publications Warehouse

    Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas

    2012-01-01

    High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.

  11. Volcanic recycling of carbonates on Mars

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1993-01-01

    Thermal erosion of carbonate deposits by turbulently-flowing lava is investigated as a means of recycling carbon dioxide back into the atmosphere of Mars. Erosion rates of several meters/day are found, implying that up to hundreds of meters of carbonate could be removed over the lifetime of a flow. A large fraction of the northern plains and other parts of Mars were covered by lava during the Hesperian, and may have released the carbon dioxide trapped in carbonate deposits. This period of time, several times 10 exp 8 yrs, is comparable to that for the redeposition of such carbonate deposits. Therefore, there could have existed a relatively dense atmosphere, and enhanced weathering and erosion, after the Noachian era. This may help explain the apparent observational evidence for late fluvial and lacustrine activity on Mars.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cregg, A.K.

    Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustaticmore » sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.« less

  13. Holocene environmental changes in northern Lebanon as inferred from a multiproxy study on lacustrine-palustrine sediment

    NASA Astrophysics Data System (ADS)

    Vidal, L.; Hage-Hassan, J.; Gasse, F. A.; Demory, F.; van Campo, E.; Develle, A.; Elias, A.

    2013-12-01

    The reconstruction of the Levantine post-glacial environmental evolution is essential to understand the interactions between variability of regional water cycle, dynamics of the global climate, and cultural evolution. Here, we present an Holocene record from the karstic Yammouneh basin (34.06N-34.09N; 36.0E-36.03E, 1360 m a.s.l.), located on the eastern flank of Mount Lebanon (northern Levant). Two new sedimentary profiles (from 1 gully and 1 trench) complement former data from 2 trenches and 1 core collected in different points of the basin (Daeron et al., 2007; Develle et al., 2009, 2010). A total of 42 AMS 14C dating (partly carbonized wood) provide a solid chronology from the YD to present. Holocene sediments (1.5 to 3.6 m thick) consist of pale lacustrine chalk interrupted by an ash layer and remarkable centimetric beds of ocher to dark brown silty clays used, in addition to 14C ages, as stratigraphical markers. Lacustrine biogenic remains are diversified and abundant (ostracods, gastropods, charophytes, chlorophyceae, plant debris...) all reflecting a freswater, generally shallow waterbody. We analysed the sediment mineralogy, TOM contents, magnetic properties (magnetic susceptibility and its frequency dependence), pollen and calcite oxygen isotope composition derived from ostracod shells. Results reveal the following main features : 1- intervals dominated by authigenic calcite suggest that the major water supply was the karstic springs, which still deliver Ca-rich water and low surface runoff; 2- the lake oxygen isotope composition has been impacted by the source isotope composition throughout the Holocene and by increased inland rainfall during the early Holocene; 3- a decideous oak forest, implying much more soil water availability than today, was developed around the lake from ca. 11.5 to 9.5 kyr (the very bad pollen preservation after 8.3 kyr reflects oxidation or frequent oscillations of the water level); 4- four paleosols evidenced from lithofacies and

  14. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads

  15. Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars

    PubMed Central

    Cousins, Claire

    2015-01-01

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing. PMID:25692905

  16. Volcanogenic fluvial-lacustrine environments in iceland and their utility for identifying past habitability on Mars.

    PubMed

    Cousins, Claire

    2015-02-16

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing.

  17. Carbon-14 in methane sources and in atmospheric methane - The contribution from fossil carbon

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J.

    1989-01-01

    Measurements of carbon-14 in small samples of methane from major biogenic sources, from biomass burning, and in clean air samples from both the Northern and Southern hemispheres reveal that methane from ruminants contains contemporary carbon, whereas that from wetlands, peat bogs, rice fields, and tundra, is somewhat depleted in carbon-14. Atmospheric (C-14)H4 seems to have increased from 1986 to 1987, and levels at the end of 1987 were 123.3 + or - 0.8 percent modern carbon in the Northern Hemisphere and 120.0 + or - 0.7 percent modern carbon in the Southern Hemisphere.

  18. Sources and Fate of Reactive Carbon over North America

    NASA Astrophysics Data System (ADS)

    Chen, X.; Millet, D. B.; Singh, H. B.; Wisthaler, A.

    2016-12-01

    We apply a high-resolution chemical transport model (GEOS-Chem CTM at 0.25°×0.3125°) to generate, a comprehensive gas-phase reactive carbon budget over North America. Based on state-of-science source inventories and known chemistry, we find in the model that biogenic sources dominate the overall reactive carbon budget, with 49, 15, 4, and 39 TgC, respectively, introduced to the North American atmosphere from the biosphere, anthropogenic sources, fires, and from methane oxidation in 2013. Biogenic and anthropogenic non-methane volatile organic compounds contribute 60% and 10%, respectively, to the total OH reactivity over the Southeast US, along with other contributions from methane and inorganics. Oxidation to CO and CO2 then represents the overwhelming fate of that reactive carbon, with 65, 15, 7 and 5 TgC, respectively, oxidized to produce CO/CO2, dry deposited, wet deposited and transported (net) out of North America. We confront this simulation with an ensemble of recent airborne measurements over North America (SEAC4RS, SENEX, DISCOVER-AQ, DC3) and interpret the model-measurement comparisons in terms of their implications for current understanding of atmospheric reactive carbon and the processes driving its distribution.

  19. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  20. Shunting arc plasma source for pure carbon ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koguchi, H.; Sakakita, H.; Kiyama, S.

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  1. Implication of using different carbon sources for denitrification in wastewater treatments.

    PubMed

    Cherchi, Carla; Onnis-Hayden, Annalisa; El-Shawabkeh, Ibrahim; Gu, April Z

    2009-08-01

    Application of external carbon sources for denitrification becomes necessary for wastewater treatment plants that have to meet very stringent effluent nitrogen limits (e.g., 3 to 5 mgTN/L). In this study, we evaluated and compared three carbon sources--MicroC (Environmental Operating Solutions, Bourne, Massachusetts), methanol, and acetate-in terms of their denitrification rates and kinetics, effect on overall nitrogen removal performance, and microbial community structure of carbon-specific denitrifying enrichments. Denitrification rates and kinetics were determined with both acclimated and non-acclimated biomass, obtained from laboratory-scale sequencing batch reactor systems or full-scale plants. The results demonstrate the feasibility of the use of MicroC for denitrification processes, with maximum denitrification rates (k(dmax)) of 6.4 mgN/gVSSh and an observed yield of 0.36 mgVSS/mgCOD. Comparable maximum nitrate uptake rates were found with methanol, while acetate showed a maximum denitrification rate nearly twice as high as the others. The maximum growth rates measured at 20 degrees C for MicroC and methanol were 3.7 and 1.2 day(-1), respectively. The implications resulting from the differences in the denitrification rates and kinetics of different carbon sources on the full-scale nitrogen removal performance, under various configurations and operational conditions, were assessed using Biowin (EnviroSim Associates, Ltd., Flamborough, Ontario, Canada) simulations for both pre- and post-denitrification systems. Examination of microbial population structures using Automated Ribosomal Intergenic Spacer Analysis (ARISA) throughout the study period showed dynamic temporal changes and distinct microbial community structures of different carbon-specific denitrifying cultures. The ability of a specific carbon-acclimated denitrifying population to instantly use other carbon source also was investigated, and the chemical-structure-associated behavior patterns observed

  2. Hydrological responses of the Chihuahua Desert of Mexico to possible Heinrich Stadials: A study inferred from geochemistry and stable isotopes of lacustrine sediments

    NASA Astrophysics Data System (ADS)

    Quiroz-Jiménez, J. D.; Roy, P. D.; Lozano-SantaCruz, R.; López Balbiaux, N.; Girón-García, P.

    2016-12-01

    The Heinrich Stadials (H6-H1) were cooler intervals of different duration characterized by massive discharge of icebergs from the Laurentide Ice Sheet mainly through the Hudson Straight into the Atlantic Ocean. In this paper, we present a proxy record to infer hydrological responses of the Chihuahua Desert of Mexico to all the Heinrich Stadials (HS) from element ratios, CO3 abundance, and oxygen and carbon isotope compositions of lacustrine calcite of the sediments deposited between depths of 560-78 cm ( 66-8 ka) of a new core collected from the Santiaguillo Basin. Sediments deposited during different HS were identified by radiocarbon dating up to 27.3 ka, extrapolation of an average sediment rate and tuning the CO3 abundance record with insolation in rest of the sequence, and oxygen isotope composition of authigenic CO3. Proxies suggest that hydroclimate of the Chihuahua Desert of Mexico responded differently to different HS. The overall runoff and hence precipitation remained below average during H6, H4, H2 and H1. Both of them were above average during H5 and H3. Similarly, runoff during H4 showed the least variability and it was the most variable during H5. Except for H2, negative excursions in δ18O values suggest cooler conditions during all other HS. In general, dissolved HCO3- was mainly sourced from the atmospheric CO2 during arid intervals. Both the lake productivity and atmospheric CO2 influenced the carbon isotope composition of dissolved HCO3- during humid intervals. During the H2, δ13C values indicate dominant influence of lacustrine productivity. Similar to Chihuahua Desert of Mexico, speleothem records from Fort Stanton and Cave of the Bells (Asmerom et al., 2010; Wagner et al., 2010) showed that hydroclimate of southwest USA also experienced millennial-scale variability and some intervals were more homogeneous compared to others. We did not observe concurrency in proxy records of the Chihuahua Desert of Mexico and southwest USA. Instead, we

  3. Dual-Carbon sources fuel the OCS deep-reef Community, a stable isotope investigation

    USGS Publications Warehouse

    Sulak, Kenneth J.; Berg, J.; Randall, Michael T.; Dennis, George D.; Brooks, R.A.

    2008-01-01

    The hypothesis that phytoplankton is the sole carbon source for the OCS deep-reef community (>60 m) was tested. Trophic structure for NE Gulf of Mexico deep reefs was analyzed via carbon and nitrogen stable isotopes. Carbon signatures for 114 entities (carbon sources, sediment, fishes, and invertebrates) supported surface phytoplankton as the primary fuel for the deep reef. However, a second carbon source, the macroalga Sargassum, with its epiphytic macroalgal associate, Cladophora liniformis, was also identified. Macroalgal carbon signatures were detected among 23 consumer entities. Most notably, macroalgae contributed 45 % of total carbon to the 13C isotopic spectrum of the particulate-feeding reef-crest gorgonian Nicella. The discontinuous spatial distribution of some sessile deep-reef invertebrates utilizing pelagic macroalgal carbon may be trophically tied to the contagious distribution of Sargassum biomass along major ocean surface features.

  4. Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms.

    PubMed

    Yan, S; Tyagi, R D; Surampalli, R Y

    2006-01-01

    Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.

  5. Differences in carbon source utilization of Salmonella Oranienburg and Saintpaul isolated from river water.

    PubMed

    Medrano-Félix, Andrés; Estrada-Acosta, Mitzi; Peraza-Garay, Felipe; Castro-Del Campo, Nohelia; Martínez-Urtaza, Jaime; Chaidez, Cristóbal

    2017-08-01

    Long-term exposure to river water by non-indigenous micro-organisms such as Salmonella may affect metabolic adaptation to carbon sources. This study was conducted to determine differences in carbon source utilization of Salmonella Oranienburg and Salmonella Saintpaul (isolated from tropical river water) as well as the control strain Salmonella Typhimurium exposed to laboratory, river water, and host cells (Hep-2 cell line) growth conditions. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed better ability for carbon source utilization under the three growth conditions evaluated; however, S. Oranienburg showed the fastest and highest utilization on different carbon sources, including D-Glucosaminic acid, N-acetyl-D-Glucosamine, Glucose-1-phosphate, and D-Galactonic acid, while Salmonella Saintpaul and S. Typhimurium showed a limited utilization of carbon sources. In conclusion, this study suggests that environmental Salmonella strains show better survival and preconditioning abilities to external environments than the control strain based on their plasticity on diverse carbon sources use.

  6. New Insights into Early Cenozoic Carbon Cycling: Continental Ecosystem Response to Orbital Forcing in the Lacustrine Green River Formation (Western US) at the Conclusion of the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Musher, D.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    A series of extreme warming events, known as hyperthermals, interrupted the equable climate conditions predominant during the early Cenozoic hothouse. In marine sediments, these hyperthermals are marked by prominent negative carbon isotope excursions, indicative of dramatic and abrupt changes in the global exogenic carbon pool, as well as carbonate dissolution horizons and benthic foraminiferal extinctions. Hyperthermals are well documented in the marine record, but it is less clear how patterns of global carbon cycling manifested in early Cenozoic terrestrial environments, although some studies have documented amplified excursions relative to that of the marine record. The lacustrine Eocene Green River Formation of Utah is an excellent system for studying the continental environmental context of global carbon cycle dynamics during this time. These sediments span a ~15 Myr time interval, including the entire Early Eocene Climatic Optimum (EECO) and the transition to the long-term Cenozoic cooling trend. To investigate the relationship between the continental carbon record and global carbon cycling, climate, and orbital forcing, we studied a detailed section from the P-4 core drilled in the Uinta Basin bracketing the famous “Mahogany Bed”, a petroliferous layer of oil shale recording a period of enhanced productivity and carbon burial near the end of the EECO. Our carbon isotope measurements of high molecular weight n-alkanes across this boundary suggest a stable global carbon cycle and climate regime persisting ~400 kyr at the terminal EECO. Frequency spectra of published oil yield and gamma ray data from this section reveal concentrated power at Milankovitch frequencies, permitting the assembly of a robust age model. In concert with radioisotopic age control, our orbital chronology allows for comparison of our carbon cycle record to early Eocene astronomical solutions. We show that the Mahogany Bed corresponds to strong minima in short and long eccentricity

  7. A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing Probes and Bioimaging Agents.

    PubMed

    Qiao, Yiqiang; Luo, Dan; Yu, Min; Zhang, Ting; Cao, Xuanping; Zhou, Yanheng; Liu, Yan

    2018-02-09

    A broad range of carbon sources have been used to fabricate varieties of carbon quantum dots (CQDs). However, the majority of these studies concern the influence of primary structures and chemical compositions of precursors on the CQDs; it is still unclear whether or not the superstructures of carbon sources have effects on the physiochemical properties of the synthetic CQDs. In this work, the concept of molecular assembly is first introduced into the design of a new carbon source. Compared with the tropocollagen molecules, the hierarchically assembled collagen scaffolds, as a new carbon source, immobilize functional groups of the precursors through hydrogen bonds, electrostatic attraction, and hydrophobic forces. Moreover, the accumulation of functional groups in collagen self-assembly further promotes the covalent bond formation in the obtained CQDs through a hydrothermal process. Both of these two chemical superiorities give rise to high quality CQDs with enhanced emission. The assembled collagen scaffold-based CQDs with heteroatom doping exhibit superior stability, and could be further applied as effective fluorescent probes for Fe 3+ detection and cellular cytosol imaging. These findings open a wealth of possibilities to explore more nanocarbons from precursors with assembled superstructures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carbon footprint of urban source separation for nutrient recovery.

    PubMed

    Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å

    2017-07-15

    Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Fluorescent Source NDIR Carbon Monoxide Analyzer

    NASA Technical Reports Server (NTRS)

    Link, W. T.; McClatchie, E. A.; Watson, D. A.; Compher, A. B.

    1971-01-01

    This paper describes a new technique for measuring trace quantities of carbon monoxide by the nondispersive infrared (NDIR) methods. The technique uses the property of infrared fluorescence in a gas to generate a specific source of radiation which is an exact match of the absorption spectrum of the fundamental band of carbon monoxide. This results in an instrument with high sensitivity and specificity for CO. A novel method of referencing using an isotopic species of CO confers great stability on the instrument.

  10. A note on coarse-grained gravity-flow deposits within proterozoic lacustrine sedimentary rocks, Transvaal sequence, South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.

    A widely developed, thin, coarse-matrix conglomerate occurs within early Proterozoic lacustrine mudrocks in the Transvaal Sequence, South Africa. The poorly sorted tabular chert clasts, alternation of a planar clast fabric with disorientated zones, plus normal and inverse grading in the former rock type suggest deposition by density-modified grain-flow and high density turbidity currents. The lower fan-delta slope palæenvironment inferred for the conglomerate is consistent with the lacustrine interpretation for the enclosing mudrock facies. This intracratonic setting contrasts with the marine environment generally associated with density-modified grain-flow deposits.

  11. [Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition].

    PubMed

    Liu, Wei; Wei, Nan-Nan; Wang, Guang-Hua; Yao, Jian; Zeng, You-Shi; Fan, Xue-Bo; Geng, Yan-Hong; Li, Yan

    2012-04-01

    To effectively reduce urban carbon emissions and verify the effectiveness of currently project for urban carbon emission reduction, quantitative estimation sources of urban atmospheric CO2 correctly is necessary. Since little fractionation of carbon isotope exists in the transportation from pollution sources to the receptor, the carbon isotope composition can be used for source apportionment. In the present study, a method was established to quantitatively estimate the source of urban atmospheric CO2 by the carbon isotope composition. Both diurnal and height variations of concentrations of CO2 derived from biomass, vehicle exhaust and coal burning were further determined for atmospheric CO2 in Jiading district of Shanghai. Biomass-derived CO2 accounts for the largest portion of atmospheric CO2. The concentrations of CO2 derived from the coal burning are larger in the night-time (00:00, 04:00 and 20:00) than in the daytime (08:00, 12:00 and 16:00), and increase with the increase of height. Those derived from the vehicle exhaust decrease with the height increase. The diurnal and height variations of sources reflect the emission and transport characteristics of atmospheric CO2 in Jiading district of Shanghai.

  12. Prehistoric earthquake history revealed by lacustrine slump deposits

    NASA Astrophysics Data System (ADS)

    Schnellmann, Michael; Anselmetti, Flavio S.; Giardini, Domenico; McKenzie, Judith A.; Ward, Steven N.

    2002-12-01

    Five strong paleoseismic events were recorded in the past 15 k.y. in a series of slump deposits in the subsurface of Lake Lucerne, central Switzerland, revealing for the first time the paleoseismic history of one of the most seismically active areas in central Europe. Although many slump deposits in marine and lacustrine environments were previously attributed to historic earthquakes, the lack of detailed three-dimensional stratigraphic correlation in combination with accurate dating hampered the use of multiple slump deposits as paleoseismic indicators. This study investigated the fingerprint of the well-described A.D. 1601 earthquake (I = VII VIII, Mw ˜ 6.2) in the sediments of Lake Lucerne. The earthquake triggered numerous synchronous slumps and megaturbidites within different subbasins of the lake, producing a characteristic pattern that can be used to assign a seismic triggering mechanism to prehistoric slump events. For each seismic event horizon, the slump synchronicity was established by seismic-stratigraphic correlation between individual slump deposits through a quasi-three-dimensional high-resolution seismic survey grid. Four prehistoric events, dated by accelerator mass spectrometry, 14C measurements, and tephrochronology on a series of long gravity cores, occurred at 2420, 9770, 13,910, and 14,560 calendar yr ago. These recurrence times are essential factors for assessing seismic hazard in the area. The seismic hazard for lakeshore communities is additionally amplified by slump-induced tsunami and seiche waves. Numerical modeling of such tsunami waves revealed wave heights to 3 m, indicating tsunami risk in lacustrine environments.

  13. Geochemistry of Precambrian carbonates: 3-shelf seas and non-marine environments of the Archean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veizer, J.; Clayton, R.N.; Hinton, R.W.

    1990-10-01

    A comprehensive whole-rock study of mineralogical, chemical, and isotopic attributes of Archean carbonates suggests that their lithologies and facies have been controlled by tectonic setting. In the first two papers of this series they have shown that the dominant lithology of sedimentary carbonates in greenstone belt settings is limestone. In this paper the authors suggest that the Archean shelf sequences are mostly dolostone, and the contemporaneous lacustrine playa lakes are characterized by limestone facies. The present study is of the shelf environments of the Archean, represented by the Pongola Supergroup of South Africa and the Hamersley Group of Australia. Themore » lacustrine playa examples have been sampled from the Ventersdorp Supergroup of South Africa and the Fortescue Group of Australia. Geological, trace element, and oxygen isotope considerations of the shelf carbonates suggest that their original mineralogy may have been aragonite and that the Pongola dolostones probably represent a direct dolomitization product of this precursor. In contrast, the stabilization of the Hamersley carbonates may have involved an additional step of transformation of a metastable precursor into limestone prior to dolomitization.« less

  14. Paleogeographic implications of Late Miocene lacustrine and nonmarine evaporite deposits in the Lake Mead region: Immediate precursors to the Colorado River

    USGS Publications Warehouse

    Faulds, James E.; Schreiber, Charlotte; Langenheim, Victoria; Hinz, Nicholas H.; Shaw, Tom; Heizler, Matthew T.; Perkins, Michael E; El Tabakh, Mohammed; Kunk, Michael J.

    2016-01-01

    Thick late Miocene nonmarine evaporite (mainly halite and gypsum) and related lacustrine limestone deposits compose the upper basin fill in half grabens within the Lake Mead region of the Basin and Range Province directly west of the Colorado Plateau in southern Nevada and northwestern Arizona. Regional relations and geochronologic data indicate that these deposits are late synextensional to postextensional (ca. 12–5 Ma), with major extension bracketed between ca. 16 and 9 Ma and the abrupt western margin of the Colorado Plateau established by ca. 9 Ma. Significant accommodation space in the half grabens allowed for deposition of late Miocene lacustrine and evaporite sediments. Concurrently, waning extension promoted integration of initially isolated basins, progressive enlargement of drainage nets, and development of broad, low gradient plains and shallow water bodies with extensive clastic, carbonate, and/or evaporite sedimentation. The continued subsidence of basins under restricted conditions also allowed for the preservation of particularly thick, localized evaporite sequences prior to development of the through-going Colorado River.The spatial and temporal patterns of deposition indicate increasing amounts of freshwater input during the late Miocene (ca. 12–6 Ma) immediately preceding arrival of the Colorado River between ca. 5.6 and 4.9 Ma. In axial basins along and proximal to the present course of the Colorado River, evaporite deposition (mainly gypsum) transitioned to lacustrine limestone progressively from east to west, beginning ca. 12–11 Ma in the Grand Wash Trough in the east and shortly after ca. 5.6 Ma in the western Lake Mead region. In several satellite basins to both the north and south of the axial basins, evaporite deposition was more extensive, with thick halite (>200 m to 2.5 km thick) accumulating in the Hualapai, Overton Arm, and northern Detrital basins. Gravity and magnetic lows suggest that thick halite may also lie within the

  15. Fluvial and Lacustrine Processes in Meridiani Planum and the Origin of the Hematite by Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Barber, C. A.; Schelble, R. T.; Hare, T. M.; Feldman, W. C.; Sutherland, V.; Livingston, A.; Lewis, K.

    2003-01-01

    The prime MER landing site in Meridiani Planum is located on layered materials, including hematite, whose origin as lacustrine or aeolian sediments, or volcanic materials is uncertain. Our detailed mapping of the region provides important constraints on the history of the region. Our mapping of the location of fluvial and lacustrine land forms in the region relative to the layered deposits provides new evidence of a long history of erosion and deposition as has long been noted . In addition, our detailed mapping of the southern boundary of the hematite deposit strongly supports an association between longlived fluvial channels and lacustrine basins and the strongest hematite signatures. This evidence supports an origin of the hematite deposits by interaction with water under ambient conditions in contrast to suggestions of hydrothermal processes due to volcanic or impact crater processes. An important part of the story is the evidence for the localization of the layered deposits due to topographic control induce by the presence of a large early basin we have identified that extends to the north-east of the landing site. Distribution of current channel networks, drainages,

  16. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    NASA Astrophysics Data System (ADS)

    Nowak, Martin E.; Schwab, Valérie F.; Lazar, Cassandre S.; Behrendt, Thomas; Kohlhepp, Bernd; Totsche, Kai Uwe; Küsel, Kirsten; Trumbore, Susan E.

    2017-08-01

    Isotopes of dissolved inorganic carbon (DIC) are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria) and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE), a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less), DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU) were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL). Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells). Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water-rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings demonstrate the large

  17. Microbial production of rhamnolipids using sugars as carbon sources.

    PubMed

    Tan, Yun Nian; Li, Qingxin

    2018-06-08

    Rhamnolipids are a class of biosurfactants with effective surface-active properties. The high cost of microbial production of rhamnolipids largely affects their commercial applications. To reduce the production post, research has been carried out in screening more powerful strains, engineering microbes with higher biosurfactant yields and exploring cheaper substrates to reduce the production cost. Extensive refining is required for biosurfactant production using oils and oil-containing wastes, necessitating the use of complex and expensive biosurfactant recovery methods such as extraction with solvents or acid precipitation. As raw materials normally can account for 10-30% of the overall production cost, sugars have been proven to be an alternative carbon source for microbial production of rhamnolipids due to its lower costs and straightforward processing techniques. Studies have thus been focused on using tropical agroindustrial crop residues as renewable substrates. Herein, we reviewed studies that are using sugar-containing substrates as carbon sources for producing rhamnolipids. We speculate that sugars derived from agricultural wastes rich in cellulose and sugar-containing wastes are potential carbon sources in fermentation while challenges still remain in large scales.

  18. Review: role of carbon sources for in vitro plant growth and development.

    PubMed

    Yaseen, Mehwish; Ahmad, Touqeer; Sablok, Gaurav; Standardi, Alvaro; Hafiz, Ishfaq Ahmad

    2013-04-01

    In vitro plant cells, tissues and organ cultures are not fully autotrophic establishing a need for carbohydrates in culture media to maintain the osmotic potential, as well as to serve as energy and carbon sources for developmental processes including shoot proliferation, root induction as well as emission, embryogenesis and organogenesis, which are highly energy demanding developmental processes in plant biology. A variety of carbon sources (both reducing and non-reducing) are used in culture media depending upon genotypes and specific stages of growth. However, sucrose is most widely used as a major transport-sugar in the phloem sap of many plants. In micropropagation systems, morphogenetic potential of plant tissues can greatly be manipulated by varying type and concentration of carbon sources. The present article reviews the past and current findings on carbon sources and their sustainable utilization for in vitro plant tissue culture to achieve better growth rate and development.

  19. The extraction of negative carbon ions from a volume cusp ion source

    NASA Astrophysics Data System (ADS)

    Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli

    2017-08-01

    Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.

  20. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  1. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  2. The Alleret Maar lacustrine sequence (French Massif Central): a 150 ka long early-middle Pleistocene continental paleoenvironmental record.

    NASA Astrophysics Data System (ADS)

    Nomade, S.; Pastre, J.; Guillou, H.; Gauthier, A.; Scaillet, S.

    2008-12-01

    Lacustrine maar sequences of the French Massif Central are of great interest for paleoclimatic and paleoenvironmental reconstructions of mid-latitudes Quaternary continental environments. In particular, the western Velay region yields exceptional sequences spanning the last 450 ka (Reille et al., J. Quat. Sci. 2000). However, older sequences remain largely unknown despite the presence of interbedded alkaline tephras allowing precise absolute radiochronological control of many lacustrine squences. The Alleret maar is a 1500 m wide phreatomagmatic crater that provides a long lacustrine sequence (41 m). The upper part of this sequence (AL2 core, 14.6 m) was studied between 2005 and 2006 (Pastre et al., C. R. Acad Sci, 2007). A 39Ar/40Ar date (557 ± 5ka) obtained from an interbedded tephra layer located at 7m as well as the associated pollen data attribute the beginning of this sequence to the MIS 15. Thanks to the AL3 core recovered in 2005 (40.6 m, CNRS Meudon) several new tephra layers were discovered in the bottom part of this lacustrine sequence. Three new 39Ar/40Ar ages (single crystal analyses) from trachytic tephra layers were obtained at the LSCE Argon Laboratory (France). These layers are located at -30.2, -36.2 and -39.2m. Ages obtained relative to the ACR-2 flux standard (1,201Ma, Kuiper et al., Science, 2008) range from 692 ± 6 ka (MSWD: 2.3, n=18) for the youngest (-30.2m) to 726 ± 9Ka Ka (MSWD: 2.2, n=12) for the lowest tephra located at -39.2m. These new dates indicate a relatively homogeneous deposition rate of 3.5cm/ka and that the last 10 meters cover the MIS 17-MIS18 period. According to these current radiochronological data the complete lacustrine sequence last more than 150ka. Ongoing sedimentary and pollen studies will allow to extend the paleoenvironmental and paleoclimatic records of the French Massif Central towards the beginning of the early middle Pleistocene.

  3. Sources of core and intact branched tetraether membrane lipids in the lacustrine environment: Anatomy of Lake Challa and its catchment, equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Buckles, Laura K.; Weijers, Johan W. H.; Verschuren, Dirk; Sinninghe Damsté, Jaap S.

    2014-09-01

    The MBT/CBT palaeotemperature proxy uses the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs), membrane lipids that are supposed to derive from soil bacteria, to reconstruct mean annual air temperature (MAAT). Applied successfully in coastal marine sediments, its extension to lake-sediment records with potentially high time resolution would greatly expand its utility. Over the last years, however, studies have indicated the presence of additional sources of brGDGTs within lake systems. To constrain the factors influencing the MBT/CBT palaeotemperature proxy in lakes, detailed investigation of brGDGT fluxes in a modern lake system is necessary to identify their potential sources. This study concentrates on Lake Challa, a permanently stratified crater lake in equatorial East Africa with limited catchment area. An almost 3-year time series of approximately monthly samples of settling particles, supplemented with a depth profile of suspended particulate matter (SPM) and sets of profundal surface-sediment and catchment soil samples, were analysed for both the 'living' intact polar lipids (IPLs) and 'fossil' core lipids (CLs) of GDGTs. We found that brGDGTs are produced in oxic, suboxic and anoxic zones of the water column, and in substantial amounts compared to influxes from catchment soils. Additional in situ production within the lake sediments is most probable, but cannot be definitely confirmed at this time. These lacustrine brGDGTs display a different response to temperature variation than soil-derived brGDGTs, signifying either a different physiological adaptation to changing conditions within the water column and/or a different composition of the respective bacterial communities. Using this specific relationship with temperature, a local calibration based on brGDGT distributions in SPM generates relatively accurate water temperature estimates from settling particles but fails for surface sediments.

  4. [Postspawning survival in lacustrine sock-eyed salmon Oncorhynchus nerka Walb].

    PubMed

    Markevich, G N; Ivashkin, E G; Pavlov, E D

    2011-01-01

    The state of gonads, age, structure of scales, and size of specimens of the resident lacustrine form of sock-eyed salmon--kokanee Onchorhynchus nerka--are analyzed. In stocked, previously fishless, lakes, there are specimens that have survived spawning and have remained active for a year or several years. No evidence was found of the possibility of repeated spawning. Thus, such fish do not belong to the spawning stock of the population, and their ecological function is not clear.

  5. Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei

    2017-04-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.

  6. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    NASA Astrophysics Data System (ADS)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  7. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Hopke, Philip K.; Edgerton, Eric S.

    Daily integrated PM 2.5 (particulate matter ⩽2.5 μm in aerodynamic diameter) composition data including eight individual carbon fractions collected at the Jefferson Street monitoring site in Atlanta were analyzed with positive matrix factorization (PMF). Particulate carbon was analyzed using the thermal optical reflectance method that divides carbon into four organic carbon (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. A total of 529 samples and 28 variables were measured between August 1998 and August 2000. PMF identified 11 sources in this study: sulfate-rich secondary aerosol I (50%), on-road diesel emissions (11%), nitrate-rich secondary aerosol (9%), wood smoke (7%), gasoline vehicle (6%), sulfate-rich secondary aerosol II (6%), metal processing (3%), airborne soil (3%), railroad traffic (3%), cement kiln/carbon-rich (2%), and bus maintenance facility/highway traffic (2%). Differences from previous studies using only the traditional OC and EC data (J. Air Waste Manag. Assoc. 53(2003a)731; Atmos Environ. (2003b)) include four traffic-related combustion sources (gasoline vehicle, on-road diesel, railroad, and bus maintenance facility) containing carbon fractions whose abundances were different between the various sources. This study indicates that the temperature resolved fractional carbon data can be utilized to enhance source apportionment study, especially with respect to the separation of diesel emissions from gasoline vehicle sources. Conditional probability functions using surface wind data and identified source contributions aid the identifications of local point sources.

  8. Random field theory to interpret the spatial variability of lacustrine soils

    NASA Astrophysics Data System (ADS)

    Russo, Savino; Vessia, Giovanna

    2015-04-01

    The lacustrine soils are quaternary soils, dated from Pleistocene to Holocene periods, generated in low-energy depositional environments and characterized by soil mixture of clays, sands and silts with alternations of finer and coarser grain size layers. They are often met at shallow depth filling several tens of meters of tectonic or erosive basins typically placed in internal Appenine areas. The lacustrine deposits are often locally interbedded by detritic soils resulting from the failure of surrounding reliefs. Their heterogeneous lithology is associated with high spatial variability of physical and mechanical properties both along horizontal and vertical directions. The deterministic approach is still commonly adopted to accomplish the mechanical characterization of these heterogeneous soils where undisturbed sampling is practically not feasible (if the incoherent fraction is prevalent) or not spatially representative (if the cohesive fraction prevails). The deterministic approach consists on performing in situ tests, like Standard Penetration Tests (SPT) or Cone Penetration Tests (CPT) and deriving design parameters through "expert judgment" interpretation of the measure profiles. These readings of tip and lateral resistances (Rp and RL respectively) are almost continuous but highly variable in soil classification according to Schmertmann (1978). Thus, neglecting the spatial variability cannot be the best strategy to estimated spatial representative values of physical and mechanical parameters of lacustrine soils to be used for engineering applications. Hereafter, a method to draw the spatial variability structure of the aforementioned measure profiles is presented. It is based on the theory of the Random Fields (Vanmarcke 1984) applied to vertical readings of Rp measures from mechanical CPTs. The proposed method relies on the application of the regression analysis, by which the spatial mean trend and fluctuations about this trend are derived. Moreover, the

  9. δ 13C and δD identification of sources of lipid biomarkers in sediments of Lake Haruna (Japan)

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Naraoka, Hiroshi

    2005-07-01

    Organic materials in lacustrine sediments are from multiple terrestrial and aquatic sources. In this study, carbon (δ 13C) and hydrogen isotopic compositions (δD) of phytol, various sterols, and major n-fatty acids in sediments at Lake Haruna, Japan, were determined in their solvent-extractable (free) and saponification-released forms (bound). The δ 13C-δD distributions of these lipid molecules in sediments are compared with those of terrestrial C3 and C4 plants, aquatic C3 plants, and plankton to evaluate their relative contributions. δ 13C-δD of free phytol in sediments is very close to that of phytol in plankton samples, whereas δ 13C-δD of bound phytol in sediments is on a mixing line between terrestrial C3 plant and plankton material. Unlike phytol, no significant δ 13C-δD difference between free and bound forms was found in sterols and n-fatty acids. δ 13C-δD values of algal sterols such as 24-methylcholesta-5,22-dien-3β-ol in sediments are close to those of plankton, whereas δ 13C-δD of multiple-source sterols such as 24-ethylcholest-5-en-3β-ol and of major n-fatty acids such as n-hexadecanoic acid in sediments are between those of terrestrial C3 plants and plankton samples. Thus, δ 13C-δD distributions clearly indicate the specific source contributions of biomarkers preserved in a lacustrine environment. Free phytol and algal sterols can be attributed to phytoplankton, and bound phytol, multiple source sterols, and major n-fatty acids are contributed by both terrestrial C3 plants and phytoplankton.

  10. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    PubMed

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  11. Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process.

    PubMed

    Zhu, Weiqiang; Zhang, Peiyu; Dong, Huiyu; Li, Jin

    2017-04-01

    Anaerobic ammonium oxidation (anammox) has been regarded as an efficient process to treat high-strength wastewater without organic carbon source. To investigate nitrogen removal performance of anammox in presence of organic carbon source can broaden its application on organic wastewater treatment. In this work, effect of carbon source on anammox process was explored. Operating temperature was set at 35 ± 1°C. Influent pH and hydraulic retention time were 7.5 and 6 h, respectively. Effluent [Formula: see text] was affected little with COD no more than 480 mg/L. Independent of carbon source content, nitrite removal rate was around 99%. The variation of [Formula: see text] lagged behind [Formula: see text] at high COD content, and pH could be used as an indicator for [Formula: see text] removal. Specific anammox activity dropped from 0.39 to 0.19  [Formula: see text] at COD=720 mg/L. The remodified logistic model was quite appropriate for describing the nitrogen removal kinetics and predicting the performance of anammox process in presence of carbon source. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    NASA Astrophysics Data System (ADS)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  13. A microbial role in the construction of Mono Lake carbonate chimneys?

    PubMed

    Brasier, Alexander; Wacey, David; Rogerson, Mike; Guagliardo, Paul; Saunders, Martin; Kellner, Siri; Mercedes-Martin, Ramon; Prior, Tim; Taylor, Colin; Matthews, Anna; Reijmer, John

    2018-06-09

    Lacustrine carbonate chimneys are striking, metre-scale constructions. If these were bioinfluenced constructions, they could be priority targets in the search for early and extraterrestrial microbial life. However, there are questions over whether such chimneys are built on a geobiological framework or are solely abiotic geomorphological features produced by mixing of lake and spring waters. Here, we use correlative microscopy to show that microbes were living around Pleistocene Mono Lake carbonate chimneys during their growth. A plausible interpretation, in line with some recent works by others on other lacustrine carbonates, is that benthic cyanobacteria and their associated extracellular organic material (EOM) formed tubular biofilms around rising sublacustrine spring vent waters, binding calcium ions and trapping and binding detrital silicate sediment. Decay of these biofilms would locally have increased calcium and carbonate ion activity, inducing calcite precipitation on and around the biofilms. Early manganese carbonate mineralisation was directly associated with cell walls, potentially related to microbial activity though the precise mechanism remains to be elucidated. Much of the calcite crystal growth was likely abiotic, and no strong evidence for either authigenic silicate growth or a clay mineral precursor framework was observed. Nevertheless, it seems likely that the biofilms provided initial sites for calcite nucleation and encouraged the primary organised crystal growth. We suggest that the nano-, micro- and macroscale fabrics of these Pleistocene Mono Lake chimneys were affected by the presence of centimetre-thick tubular and vertically stacked calcifying microbial mats. Such carbonate chimneys represent a promising macroscale target in the exploration for ancient or extraterrestrial life. © 2018 John Wiley & Sons Ltd.

  14. Seismic Triggers of Lacustrine Subaqueous Landslides in Lake Champlain, USA

    NASA Astrophysics Data System (ADS)

    Manley, P.; Manley, T.; Ghosh, S. J.; Rosales-Underbrink, P.; Silverhart, P.

    2017-12-01

    Lacustrine slumps and debris flows (landslides) have been identified in Lake Champlain via Multibeam and CHIRP (compressed high intensity radar pulse) seismic profile data. Numerous large landslides studied by Ghosh (2012), Rosales-Underbrink (2015), and Silverhart (2016) have shown that many of these landslides are coeval. All landslides failed on a specific interface between marine Champlain Sea and modern lacustrine Lake Champlain sediments. Utilizing radionuclide dating on sediment from the unfailed slopes or undisturbed sediment above failed deposits, sedimentation rates were determined and used to calculate the approximate failure ages for each of the landslides studied. The northernmost failure, south of the Bouquet River, occurred about 950-1200 cal yr BP and is the first mass wasting event of this age to be recorded on Lake Champlain. The remaining landslides failed about 4500-5200 cal yr BP and agree with nearby Western Quebec Seismic Zone (WQSZ) with clusters of terrestrial landslides occurring at 1000 and 5000 cal yr BP triggered by large earthquakes (Brooks, 2015) along the same interface. The 5000 cal yr BP event has been attributed to a M 6.4 or greater earthquake within the WQSZ. The coeval landslides observed in Lake Champlain were likely triggered by this same earthquake. Lake tsunami models show that these simultaneous landslide failures can generate surface waves wave that can impact the Lake Champlain shoreline within 3-10 minutes after the earthquake.

  15. Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress.

    PubMed

    Jardine, Kolby; Chambers, Jeffrey; Alves, Eliane G; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D; Nielsen, Lars K; Torn, Margaret S; Vickers, Claudia E

    2014-12-01

    The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. © 2014 American Society of Plant Biologists. All Rights Reserved.

  16. Lacustrine records of Holocene climate and environmental change from the Lofoten Islands, Norway

    NASA Astrophysics Data System (ADS)

    Balascio, Nicholas L.

    Lakes sediments from the Lofoten Islands, Norway, can be used to generate well resolved records of past climate and environmental change. This dissertation presents three lacustrine paleoenvironmental reconstructions that show evidence for Holocene climate changes associated with North Atlantic climate dynamics and relative sea-level variations driven by glacio-isostatic adjustment. This study also uses distal tephra deposits (cryptotephra) from Icelandic volcanic eruptions to improve the chronologies of these reconstructions and explores new approaches to crypto-tephrochronology. Past and present conditions at Vikjordvatnet, Fiskebolvatnet, and Heimerdalsvatnet were studied during four field seasons conducted from 2007--2010. Initially, each lake was characterized by measuring water column chemistry, logging annual temperature fluctuations, and conducting bathymetric and seismic surveys. Sediment cores were then collected and analyzed using multiple techniques, including: sediment density, magnetic susceptibility, loss-on-ignition, total carbon and nitrogen, delta13C and delta 15N of organic matter, and elemental compositions acquired by scanning X-ray fluorescence. Chronologies were established using radiocarbon dating and tephrochronology. A 13.8 cal ka BP record from Vikjordvatnet provides evidence for glacial activity during the Younger Dryas cold interval and exhibits trends in Ti, Fe, and organic content during the Holocene that correlate with regional millennial-scale climate trends and provide evidence for more rapid events. A 9.7 cal ka BP record from Fiskebolvatnet shows a strong signal of sediment inwashing likely driven by local geomorphic conditions, although there is evidence that increased inwashing at the onset of the Neoglacial could have been associated with increased precipitation. Heimerdalsvatnet provides a record of relative sea-level change. A 7.8 cal ka BP sedimentary record reflects changes in salinity and water column conditions as the

  17. Methane and carbon at equilibrium in source rocks

    PubMed Central

    2013-01-01

    Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized. PMID:24330266

  18. IMPROVING SOURCE PROFILES AND APPORTIONMENT OF COMBUSTION SOURCES USING THERMAL CARBON FRACTIONS IN MULTIVARIATE RECEPTOR MODELS

    EPA Science Inventory

    The purpose of this study was to improve combustion source profiles and apportionment of a PM2.5 urban aerosol by using 7 individual organic and elemental carbon thermal fractions in place of total organic and elemental carbon. This study used 3 years (96-99) of speciated data...

  19. Elucidation of riverine and lacustrine dissolved organic matter (DOM) composition using comprehensive GC×GC time-of-flight mass spectrometry (GC×GC-TOF-MS)

    NASA Astrophysics Data System (ADS)

    Ball, G. I.; Goldberg, S. J.; Aluwihare, L. I.

    2012-12-01

    Rivers and streams play a key role in mediating the transfer of organic carbon (both particulate and dissolved) from terrestrial to aquatic settings. Dissolved organic carbon represents the majority of the carbon pool in low alkalinity riverine and lacustrine waters, and its composition plays important roles, including affecting water clarity and stimulating heterotrophic productivity, which influences its rate of reconversion to CO2. Yet, the chemical complexity and heterogeneity of this reservoir have limited structural elucidation to primarily describing common bulk-level characteristics. Seasonal SPE-DOM samples from the Upper Truckee River, Lake Tahoe, and two surrounding lakes, as well as SPE-DOM isolated from two dissimilar California rivers, were first characterized using δ13C, δ15N, 1H-NMR, and then subjected to CuO oxidation followed by TMS derivatization and were analyzed using comprehensive GC×GC time-of-flight mass spectrometry (GC×GC-TOF-MS). Thousands of peaks were identified per sample. Simultaneous, orthogonal separation of components in two dimensions (on the basis of volatility and polarity) allowed for the identification of oxidation mixture components by both their MS spectra and, when MS spectra alone were insufficient for structural assignment and standards were absent, by the observed trajectories of homologues compound series assumed in 2-D retention-time space. Several homologous compound series were observed, including mid-to-long chain fatty acids, keto (ω-1) fatty acids, (α, ω)-dioic acids, and the resolution and identification of closely related isomers, such as the benzene di-, and tricarboxylic acids, were also facilitated by this method. Furthermore, in mixed samples containing two or more end-members, such as in lake DOM samples characterized by mixed terrestrial and algal OM sources, the intensity of the phenolic elution space, which includes the lignin phenols and lignin phenolic dimers, correlates with ancillary

  20. The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism.

    PubMed

    Ries, Laure Nicolas Annick; de Assis, Leandro José; Rodrigues, Fernando José Santos; Caldana, Camila; Rocha, Marina Campos; Malavazi, Iran; Bayram, Özgür; Goldman, Gustavo H

    2018-05-24

    The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilisation in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilisation in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localised to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilisation, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilisation of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Copyright © 2018, G3: Genes, Genomes, Genetics.

  1. Preservation of primary lake signatures in alkaline earth carbonates of the Eocene Green River Wilkins Peak-Laney Member transition zone

    NASA Astrophysics Data System (ADS)

    Murphy, John T.; Lowenstein, Tim K.; Pietras, Jeffrey T.

    2014-12-01

    Significant changes in carbonate mineralogy, texture, and stable isotope composition occur at the transition from the Wilkins Peak Member to the Laney Member in the Eocene Green River Formation, Bridger Basin, Wyoming, which reflect evolution of inflow waters, lake waters, and paleoenvironments. The top of the Wilkins Peak Member contains heterogeneous laminae of calcite and dolomite. Evaporites associated with these layers suggest deposition in hypersaline lakes. Diagenetic carbonate mineral textures include euhedral cement overgrowths and interlocking mosaics of calcite and dolomite crystals, 20-70 μm in size. Electron microprobe analyses indicate diagenetic overgrowth of Fe-rich dolomite on cloudy Fe-poor cores. δ18O values of carbonate laminae in the upper Wilkins Peak Member vary by ~ 6‰ with no depth dependent or mineralogic trends, which also suggests diagenetic overprinting. Alternating organic-rich and primary aragonite, calcite, and dolomite laminae were identified from the lower Laney Member. Primary lacustrine aragonite consists of well sorted, prismatic crystals 5-10 μm in length, with micro-lamination defined by crystal size variation. Primary precipitated calcite and dolomite laminae are monominerallic, with well sorted polyhedral crystals, ~ 10 μm in size. Primary mineralogy of the lower Laney Member changes from calcite to aragonite and dolomite stratigraphically upward. Along the same 15 m thick stratigraphic interval, δ18O values decrease upward by ~ 3‰, all of which suggests (1) lake waters underwent evaporative concentration, which together with calcite precipitation increased the lake water Mg/Ca ratios and led to formation of aragonite and dolomite, (2) source waters became lower in δ18O, possibly as inflow changed to higher altitude foreland rivers. The results from this study show that understanding the primary lacustrine versus diagenetic origin of Green River carbonate minerals is essential for paleoenvironmental and

  2. A review of carbon monoxide sources, sinks, and concentrations in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Bortner, M. H.; Kummler, R. H.; Jaffe, L. S.

    1972-01-01

    Carbon monoxide is a toxic pollutant which is continually introduced into the earth's atmosphere in significant quantities. There are apparently some mechanisms operating which destroy most of the CO in the atmosphere, i.e., a carbon monoxide sink. These mechanisms have not as yet been established in a quantitative sense. This report discusses the various possible removal mechanisms which warrant serious consideration. Particular emphasis is given to chemical reactions (especially that with OH), soil bacteria and other biological action, and transport effects. The sources of carbon monoxide, both natural and anthropogenic, are reviewed and it is noted that there is quite possibly a significant undefined natural source. Atmospheric CO concentrations are discussed and their implications on carbon monoxide lifetime, sinks and sources are considered.

  3. A Novel Airborne Carbon Isotope Analyzer for Methane and Carbon Dioxide Source Fingerprinting

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Owano, T. G.; Leifer, I.

    2014-12-01

    Recent field studies on major sources of the important greenhouse gas methane (CH4) indicate significant underestimation of methane release from fossil fuel industrial (FFI) and animal husbandry sources, among others. In addition, uncertainties still exist with respect to carbon dioxide (CO2) measurements, especially source fingerprinting. CO2 isotopic analysis provides a valuable in situ measurement approach to fingerprint CH4 and CO2as associated with combustion sources, leakage from geologic reservoirs, or biogenic sources. As a result, these measurements can characterize strong combustion source plumes, such as power plant emissions, and discriminate these emissions from other sources. As part of the COMEX (CO2 and MEthane eXperiment) campaign, a novel CO2 isotopic analyzer was installed and collected data aboard the CIRPAS Twin Otter aircraft. Developing methods to derive CH4 and CO2 budgets from remote sensing data is the goal of the summer 2014 COMEX campaign, which combines hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages the synergy between high spatial resolution HSI and moderate spatial resolution NIS. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (100-3000 ppm). The laboratory accuracy is ±1.2 ppm (1σ) in CO2 from 370-1000 ppm, with a long-term (1000 s) precision of ±0.012 ppm. The long-term precision for both δ13C and δ18O is 0.04 ‰, and for δ17O is 0.06 ‰. The analyzer was field-tested as part of the COWGAS campaign, a pre-cursor campaign to COMEX in March 2014, where it successfully discriminated plumes related to combustion processes associated with

  4. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates.

    PubMed

    Schmidt, Olaf; Dyckmans, Jens; Schrader, Stefan

    2016-01-01

    We tested experimentally if photoautotrophic microorganisms are a carbon source for invertebrates in temperate soils. We exposed forest or arable soils to a (13)CO2-enriched atmosphere and quantified (13)C assimilation by three common animal groups: earthworms (Oligochaeta), springtails (Hexapoda) and slugs (Gastropoda). Endogeic earthworms (Allolobophora chlorotica) and hemiedaphic springtails (Ceratophysella denticulata) were highly (13)C enriched when incubated under light, deriving up to 3.0 and 17.0%, respectively, of their body carbon from the microbial source in 7 days. Earthworms assimilated more (13)C in undisturbed soil than when the microbial material was mixed into the soil, presumably reflecting selective surface grazing. By contrast, neither adult nor newly hatched terrestrial slugs (Deroceras reticulatum) grazed on algal mats. Non-photosynthetic (13)CO2 fixation in the dark was negligible. We conclude from these preliminary laboratory experiments that, in addition to litter and root-derived carbon from vascular plants, photoautotrophic soil surface microorganisms (cyanobacteria, algae) may be an ecologically important carbon input route for temperate soil animals that are traditionally assigned to the decomposer channel in soil food web models and carbon cycling studies. © 2016 The Author(s).

  5. Characterizing and sourcing ambient PM2.5 over key emission regions in China III: Carbon isotope based source apportionment of black carbon

    NASA Astrophysics Data System (ADS)

    Yu, Kuangyou; Xing, Zhenyu; Huang, Xiaofeng; Deng, Junjun; Andersson, August; Fang, Wenzheng; Gustafsson, Örjan; Zhou, Jiabin; Du, Ke

    2018-03-01

    Regional haze over China has severe implications for air quality and regional climate. To effectively combat these effects the high uncertainties regarding the emissions from different sources needs to be reduced. In this paper, which is the third in a series on the sources of PM2.5 in pollution hotspot regions of China, we focus on the sources of black carbon aerosols (BC), using carbon isotope signatures. Four-season samples were collected at two key locations: Beijing-Tianjin-Hebei (BTH, part of Northern China plain), and the Pearl River Delta (PRD). We find that that fossil fuel combustion was the predominant source of BC in both BTH and PRD regions, accounting for 75 ± 5%. However, the contributions of what fossil fuel components were dominating differed significantly between BTH and PRD, and varied dramatically with seasons. Coal combustion is overall the all-important BC source in BTH, accounting for 46 ± 12% of the BC in BTH, with the maximum value (62%) found in winter. In contrast for the PRD region, liquid fossil fuel combustion (e.g., oil, diesel, and gasoline) is the dominant source of BC, with an annual mean value of 41 ± 15% and the maximum value of 55% found in winter. Region- and season-specific source apportionments are recommended to both accurately assess the climate impact of carbonaceous aerosol emissions and to effectively mitigate deteriorating air quality caused by carbonaceous aerosols.

  6. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  7. The roles of inoculants' carbon source use in the biocontrol of potato scab disease.

    PubMed

    Sun, Pingping; Zhao, Xinbei; Shangguan, Nini; Chang, Dongwei; Ma, Qing

    2015-04-01

    Despite the application of multiple strains in the biocontrol of plant diseases, multistrain inoculation is still constrained by its inconsistency in the field. Nutrients, especially carbons, play an important role in the biocontrol processes. However, little work has been done on the systematic estimation of inoculants' carbon source use on biocontrol efficacies in vivo. In the present study, 7 nonpathogenic Streptomyces strains alone and in different combinations were inoculated as biocontrol agents against the potato scab disease, under field conditions and greenhouse treatments. The influence of the inoculants' carbon source use properties on biocontrol efficacies was investigated. The results showed that increasing the number of inoculated strains did not necessarily result in greater biocontrol efficacy in vivo. However, single strains with higher growth rates or multiple strains with less carbon source competition had positive effects on the biocontrol efficacies. These findings may shed light on optimizing the consistent biocontrol of plant disease with the consideration of inoculants' carbon source use properties.

  8. Agenda and Meeting Summary from Final Workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency, Battelle Memorial Institute and WWF-Russia organized the final workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources on November 5, 2014 in Murmansk, Russia.

  9. Incorporation of 3H-thymidine by different prokaryotic groups in relation to temperature and nutrients in a lacustrine ecosystem.

    PubMed

    Boucher, Delphine; Richardot, Mathilde; Thénot, Aurélie; Debroas, Didier

    2006-10-01

    The incorporation of [3H-methyl] thymidine (3H-TdR) by Eubacteria, bacterial groups (alpha- and beta-Proteobacteria, Cytophaga-Flavobacter), and Archaea was measured according to temperature (7 and 17 degrees C) and nutrient levels (nitrogen, phosphorus, and carbon) in a lacustrine system (Sep, France). Short-term incubation was performed using a combination of microautoradiography and fluorescent in situ hybridization. Irrespective of the temperatures and nutrients studied, all the major phylogenetic bacterial groups assimilated 3H-TdR, and in most of the treatments studied, the proportion of beta-Proteobacteria taking up 3H-TdR was higher than those in the other bacterial groups. The proportion of Bacteria and different bacterial groups studied incorporating 3H-TdR were significantly increased, approximately 1.5-fold, by temperature except for alpha-Proteobacteria (7.6-fold). The nutrient effect was not the same for the different bacterial groups according to the temperatures studied. The proportions of alpha-Proteobacteria (at both temperatures) and Cytophaga-Flavobacter (at 7 degrees C) taking up 3H-TdR were significantly decreased and increased by adding N and P, respectively. Also, adding N, P, and C increased and decreased the percentage of beta-Proteobacteria incorporating 3H-TdR at 7 and 17 degrees C, respectively. The archaeal community showed a similar proportion of active cells (i.e., 3H-TdR) to the bacterial community, and uptake of 3H-TdR by Archaea was significantly increased (P < 0.05) by both temperature and nutrients. Thus, the assimilation of 3H-TdR by bacterial groups and Archaea in lacustrine system is significantly controlled by both temperature and nutrients.

  10. Russia's black carbon emissions: focus on diesel sources

    NASA Astrophysics Data System (ADS)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  11. The influence of various carbon and nitrogen sources on oil production by Fusarium oxysporum.

    PubMed

    Joshi, S; Mathur, J M

    1987-01-01

    The oil-synthesizing capacity of Fusarium oxysporum, cultivated on basal nutrient medium, was evaluated using different carbon and nitrogen sources. In one of the media, molasses was also used as a principal carbon source. Media containing glucose and ammonium nitrate were found to be most efficient for oil production. Fatty acid profile of the fungal oil indicated the presence of a wide range of fatty acids ranging from C8 to C24. Fatty acid composition largely depends on the type of carbon and nitrogen sources.

  12. Important fossil source contribution to brown carbon in Beijing during winter

    NASA Astrophysics Data System (ADS)

    Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan

    2017-03-01

    Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources.

  13. Important fossil source contribution to brown carbon in Beijing during winter

    PubMed Central

    Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan

    2017-01-01

    Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources. PMID:28266611

  14. Mesozoic lacustrine system in the Parnaíba Basin, northeastern Brazil: Paleogeographic implications for west Gondwana

    NASA Astrophysics Data System (ADS)

    Cardoso, Alexandre Ribeiro; Nogueira, Afonso César Rodrigues; Abrantes, Francisco Romério; Rabelo, Cleber Eduardo Neri

    2017-03-01

    The fragmentation of the West Gondwana during Early Triassic to Cretaceous was marked by intense climatic changes, concomitant with the establishment of extensive desertic/lacustrine systems. These deposits succeeded the emplacement and extrusion of lava flows, related to the pre-rift phase and initial opening of the Equatorial Atlantic Ocean. The thermal phase is recorded in the Upper Jurassic-Lower Cretaceous Pastos Bons Formation, exposed mainly in southeast parts of the Parnaíba Basin, Northeastern Brazil. The sedimentary facies of this unit were grouped in two facies associations (FA), representative of a shallow lacustrine system, influenced by episodic hyperpycnal and oscillatory flows. Central lake facies association (FA1) is composed by laminated mudstone (Ml), sandstone/mudstone rhythmite (S/Mr) and sandstone with even-parallel lamination (Sel). Flysch-like delta front (FA2) consists in sandstones with wave structures (Sw), sandstones with even-parallel stratification (Ses), massive sandstones (Sm), sandstones with soft-sediment deformation structures (Sd) and laminated mudstones (Ml). FA1 was deposited in the deepest portions of the lake, characterized by low energy, episodically disturbed by siliciclastic influx. FA2 presents sandy deposits generated by unconfined flow, probably fed by ephemeral stream flows that generated thickening upward of tabular sandstone beds. The progressive filling of the lake resulted in recurrent shoaling up of the water level and reworking by wave action. The installation of Pastos Bons lakes was controlled by thermal subsidence, mainly in restricted depocenters. The siliciclastic fluvial inflow can be related to the adjacent humid desertic facies, formed under climatic attenuation, typical of post-Triassic period, with reduced biological activity. Smectite and abundant feldspars, in lacustrine facies, corroborate an arid climate, with incipient chemical weathering. The new facies and stratigraphic data present in this

  15. Mechanosensory based orienting behaviors in fluvial and lacustrine populations of mottled sculpin (Cottus bairdi)

    Treesearch

    Sheryl Coombs; Gary D. Grossman

    2006-01-01

    We compared prey-orienting and rheotactic behaviors in a fluvial (Coweeta Creek) and lacustrine (Lake Michigan) population of mottled sculpin. Blinded sculpin from both populations exhibited unconditioned, mechanosensory based rheotaxis to low velocity flows. Whereas Lake Michigan sculpin generally showed increasing levels of positive rheotaxis to increasing velocities...

  16. Laboratory Evaluation of Selected Ways for Determining Black Carbon Source Emissions

    EPA Science Inventory

    A number of studies have been conducted which compare various methods for the determination of black carbon in the atmosphere. Relatively little attention has been paid, however, to similar measurements of black carbon from different types of emission sources. Of particular int...

  17. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayorga, E; Aufdenkampe, A K; Masiello, C A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C andmore » {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.« less

  18. Mangroves, a major source of dissolved organic carbon to the oceans

    NASA Astrophysics Data System (ADS)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  19. Evaluation of natural materials as exogenous carbon sources for biological treatment of low carbon-to-nitrogen wastewater.

    PubMed

    Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel; Vázquez-Rodríguez, Gabriela

    2015-01-01

    In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4 (+), NO2 (-), and NO3 (-), and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents.

  20. Evaluation of Natural Materials as Exogenous Carbon Sources for Biological Treatment of Low Carbon-to-Nitrogen Wastewater

    PubMed Central

    Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel

    2015-01-01

    In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4 +, NO2 −, and NO3 −, and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents. PMID:26495313

  1. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    NASA Astrophysics Data System (ADS)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  2. Variations in sedimentological properties in Lake Challa, East Africa: Understanding the source to sink processes

    NASA Astrophysics Data System (ADS)

    Meyer, Inka; Eloy, Jonas; Verschuren, Dirk; De Batist, Marc

    2016-04-01

    The clastic mineral fraction of lacustrine sediments has been proven to provide valuable information about sedimentation dynamics within a lake, and it can be used to define distinct terrestrial source areas and transport mechanisms from source to sink. Down-core variation in the properties of the clastic mineral fraction yields indications for changes in terrestrial sediment sources over time. However, in order to use terrestrial proxies in palaeo-environmental reconstruction, we have to understand and quantify the modern conditions of sediment provenance and deposition at the study site. In this study we present data on grain-size distribution, mineralogy and particle shape of the clastic mineral component of lacustrine sediments from Lake Challa, a small freshwater lake of volcanic origin, located on the eastern slope of Mt. Kilimanjaro. Situated close to the equator, it contains a uniquely long and continuous sediment sequence allowing the study of inter-hemispheric climate dynamics. The finely laminated profundal sediments of Lake Challa are characterized by a fine-grained texture and are mainly composed of organic matter, biogenic silica and authigenic carbonate, with a relatively minor component of detrital mineral that can either originate from erosion of the steep volcanic crater walls or was mobilized by wind from unvegetated areas of the surrounding scrub savannah landscape. In order to distinguish between these two sources of terrestrial sediment input (i.e., local run-off versus distant aeolian) into Lake Challa, and to map out differences in sediment properties, samples were investigated from profundal surface sediments and short cores, as well as on-shore soils from several locations around the lake and from beyond the crater catchment. Variation in grain-size distribution and mineralogy can be linked to distinct terrestrial sources, whereas the shape of single particles gives additional information about transport dynamics. In future, the results

  3. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    PubMed Central

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-01-01

    Carbon captured by marine organisms helps sequester atmospheric CO2, especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air–sea CO2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10–30. Phytoplankton-derived POC dominated the water column POC (65–95%) within this salinity range; however, it was minor in the sediments (3–29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49–78% and 19–36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15–30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters

  4. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata.

    PubMed

    Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke

    2011-05-27

    The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on

  5. Elucidating carbon sources driving microbial metabolism during oil sands reclamation.

    PubMed

    Bradford, Lauren M; Ziolkowski, Lori A; Goad, Corey; Warren, Lesley A; Slater, Gregory F

    2017-03-01

    Microbial communities play key roles in remediation and reclamation of contaminated environments via biogeochemical cycling of organic and inorganic components. Understanding the trends in in situ microbial community abundance, metabolism and carbon sources is therefore a crucial component of effective site management. The focus of this study was to use radiocarbon analysis to elucidate the carbon sources driving microbial metabolism within the first pilot wetland reclamation project in the Alberta oil sands region where the observation of H 2 S had indicated the occurrence of microbial sulphate reduction. The reclamation project involved construction of a three compartment system consisting of a freshwater wetland on top of a sand cap overlying a composite tailings (CT) deposit. Radiocarbon analysis demonstrated that both dissolved and sediment associated organic carbon associated with the deepest compartments (the CT and sand cap) was primarily fossil (Δ 14 C = -769 to -955‰) while organic carbon in the overlying peat was hundreds to thousands of years old (Δ 14 C = -250 to -350‰). Radiocarbon contents of sediment associated microbial phospholipid fatty acids (PLFA) were consistent with the sediment bulk organic carbon pools (Peat: Δ 14 C PLFA  = -257‰; Sand cap Δ 14 C PLFA  = -805‰) indicating that these microbes were using sediment associated carbon. In contrast, microbial PLFA grown on biofilm units installed in wells within the deepest compartments contained much more modern carbon that the associated bulk carbon pools. This implied that the transfer of relatively more modern carbon was stimulating the microbial community at depth within the system. Correlation between cellular abundance estimates based on PLFA concentrations and the Δ 14 C PLFA indicated that the utilization of this more modern carbon was stimulating the microbial community at depth. These results highlight the importance of understanding the occurrence and potential

  6. Agenda and Meeting Summary from Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    From April 15-19, 2013, EPA's partners hosted the Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources in Murmansk, Russia. Over the course of this event, participants:

  7. Russia's black carbon emissions: focus on diesel sources

    DOE PAGES

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-12

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  8. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  9. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30% of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputermore » Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  10. Organic carbon export from the Greenland Ice Sheet: sources, sinks and downstream fluxes

    NASA Astrophysics Data System (ADS)

    Wadham, J. L.; Lawson, E.; Tranter, M.; Stibal, M.; Telling, J.; Lis, G. P.; Nienow, P. W.; Anesio, A. M.; Butler, C. E.

    2012-12-01

    Runoff from small glacier systems has been shown to contain dissolved organic carbon (DOC) rich in low molecular weight (LMW), and hence more labile forms, designating glaciers as an important source of carbon for downstream heterotrophic activity. Here we assess glacier surfaces as potential sources of labile DOC to downstream ecosystems, presenting data from a wide range of glacier systems to determine sources and sinks of DOC in glacial and proglacial systems. We subsequently focus upon the Greenland Ice Sheet (GrIS) which is the largest source of glacial runoff at present (400 km3 yr-1), with predicted increases in future decades. We report high fluxes of particulate organic carbon (POC), DOC and LMW labile fractions from a large GrIS catchment during two contrasting melt seasons. POC dominates OC export, is sourced from the ice sheet bed and contains a significant bioreactive component (~10% carbohydrates). The LMW-DOC "labile" fraction derives almost entirely from microbial activity on the ice sheet surface, which is supported by data from glacier systems also presented here. Annual fluxes of DOC, POC and labile components were lower in 2010 than 2009, despite a ~2 fold increase in runoff fluxes in 2010, suggesting production-limited DOC/POC sources. Scaled to the entire ice sheet, combined DOC and POC fluxes are of a similar order of magnitude to other large Arctic river systems and may represent an important source of organic carbon to the North Atlantic, Greenland and Labrador Seas.

  11. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate.

    PubMed

    Miao, Lei; Wang, Shuying; Li, Baikun; Cao, Tianhao; Zhang, Fangzhai; Wang, Zhong; Peng, Yongzhen

    2016-09-01

    Glycogen accumulating organisms (GAOs) capable of storing organic compounds as polyhydroxyalkanoate (PHA) have been used for endogenous denitritation (ED), but the effect of carbon sources type on nitrogen removal performance of GAOs treating landfill leachate is unclear. In this study, a successful ED system treating landfill leachate (COD/NH4(+)-N (C/N): 4) without external carbon source addition was applied. The mature leachate with C/N of 1 was used as the feeding base solution, with acetate, propionate, and glucose examined as the carbon sources, and their effects on yields and compositions of PHA produced by GAOs were determined and associated with nitrogen removal performance. In the case of sole carbon source, acetate was much easier to be stored than propionate and glucose, which led to a higher nitrogen removal efficiency. Glucose had the lowest amount of PHA storage and led to the lowest performance. In the case of composite carbon sources (two scenarios: acetate + propionate; acetate + propionate + glucose), GAOs stored sufficient PHA and exhibited similar nitrogen removal efficiencies. Moreover, type of carbon source influenced the compositions of PHA. The polyhydroxybutyrate (PHB) fraction in PHA was far more than polyhydroxyvalerate (PHV) in all tests. PHV was synthesized only when acetate existed in carbon source. The microbial diversity analysis revealed that Proteobacteria was the most abundant phylum. Among the 108 genera detected in this ED system, the genera responsible for denitritation were Thauera, Paracoccus, Ottowia and Comamonadaceae_unclassified, accounting for 46.21% of total bacteria. Especially, Paracoccus and Comamonadaceae_unclassified transformed the carbon source into PHA for denitritation, and carried out endogenous denitritation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.

    PubMed

    Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D

    2014-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A short review of paleoenvironments for Lower Beaufort (Upper Permian) Karoo sequences from southern to central Africa: A major Gondwana Lacustrine episode

    NASA Astrophysics Data System (ADS)

    Yemane, K.; Kelts, K.

    This paper compares Karoo deposits within the Lower Beaufort (Late Permian) time interval from southern to central Africa. Facies aspects are summarized for selected sequences and depositional environments assessed in connection with the palaeogeography. The comparison shows that thickness of Lower Beaufort sequences varies greatly; sequences are over a kilometre thick at the southern tip, but decrease drastically to the north, northwest and northeast, and is commonly absent from the western part of the subcontinent. Depositional environments are continental except for small estuarine intervals from a sequence in Tanzania. The commonest lithologies comprise mudstones, siltstones, arkoses and carbonates. In spite of the dominance of fluvial facies, the records preserved by intervals of lacustrine sequences suggest that large lakes were major features of the palaeogeography, and that lacustrine environments may have been dominant deposition environments. The Lower Beaufort landscape is generally interpreted as an expansive cratonic lowland with meandering rivers and streams crossing vast floodplains, which were indented by concomitant shallow lakes of various sizes. The lakes from the Karoo tectono-sedimentary terrain were often ephemeral and closely linked with fluvial processes, but large, anoxic lakers are also documented. On the other hand, giant, freshwater lakes, covered large areas of the Zambezian tectono-sedimentary terrain and may have been locally connected. Evidence from abundant freshwater fossil assemblages, particularly from the Zambezian tectono-sedimentary terrain suggest that in spite of the generally semi-arid global climate of the Upper Permian, seasonal precipitation (monsoonal?) supplied enough moisture to sustain large perennial lakes. Because of the unique nature of the Permian cotinental configuration and palaeogeography, however, modern analogues of large systems are lacking. The general lithological and palaeontological correlability of

  14. Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir

    NASA Astrophysics Data System (ADS)

    Chafetz, Henry; Barth, Jennifer; Cook, Megan; Guo, Xuan; Zhou, Jie

    2018-03-01

    Spherulites, spherical to elliptical allochems composed of crystals radiating from a common core, investigated from a variety of depositional settings, e.g., hot springs, ambient water temperature geyser, tufa, and caliche, are all composed of a fine-grained nucleus made-up of carbonate encrusted bacterial bodies, biofilms, and/or EPS and surrounded by a cortex of radiating crystals of either aragonite or calcite. The microbes and their by-products in the nucleus induced the precipitation of carbonate, overcoming the inhibition to initiate crystal formation. The enveloping radiating crystals comprising aragonitic cortices tended to grow abiotically producing well-formed euhedral crystals with a paucity of included bacterial fossils. Whereas those cortical crystals made-up of calcite commonly contained bacterial fossils, indicating that the bacterial colonies contributed to the calcitic cortical crystal precipitation. Similar spherulites form a thick, widespread accumulation in the Aptian Pre-Salt lacustrine deposits in the Campos Basin, offshore Brazil. As with the travertine, tufa, and caliche spherulites, the Pre-Salt spherulites most likely initiated carbonate precipitation around bacterial colonies and/or their bioproducts, probably while afloat in a lacustrine water column before settling to the water-sediment interface. Absence of inter-spherulite sediment and the spherulite-to-spherulite compaction indicate that cortical crystal growth continued while the spherulites were at the sediment-water interface rather than displacively within a sediment.

  15. Carbon source-sink limitations differ between two species with contrasting growth strategies.

    PubMed

    Burnett, Angela C; Rogers, Alistair; Rees, Mark; Osborne, Colin P

    2016-11-01

    Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2 ] indicating that source strength was near maximal at current [CO 2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2 ]. © 2016 John Wiley & Sons Ltd.

  16. Petrographic and geochemical evidence for the formation of primary, bacterially induced lacustrine dolomite: La Roda 'white earth' (Pliocene, Central Spain)

    USGS Publications Warehouse

    Garcia, Del; Cura, M.A.; Calvo, J.P.; Ordonez, S.; Jones, B.F.; Canaveras, J.C.

    2001-01-01

    Upper Pliocene dolomites ('white earth') from La Roda, Spain, offer a good opportunity to evaluate the process of dolomite formation in lakes. The relatively young nature of the deposits could allow a link between dolomites precipitated in modern lake systems and those present in older lacustrine formations. The La Roda Mg-carbonates (dolomite unit) occur as a 3??5- to 4-m- thick package of poorly indurated, white, massive dolomite beds with interbedded thin deposits of porous carbonate displaying root and desiccation traces as well as local lenticular gypsum moulds. The massive dolomite beds consist mainly of loosely packed 1- to 2-??m-sized aggregates of dolomite crystals exhibiting poorly developed faces, which usually results in a subrounded morphology of the crystals. Minute rhombs of dolomite are sparse within the aggregates. Both knobbly textures and clumps of spherical bodies covering the crystal surfaces indicate that bacteria were involved in the formation of the dolomites. In addition, aggregates of euhedral dolomite crystals are usually present in some more clayey (sepiolite) interbeds. The thin porous carbonate (mostly dolomite) beds exhibit both euhedral and subrounded, bacterially induced dolomite crystals. The carbonate is mainly Ca-dolomite (51-54 mol% CaCO3), showing a low degree of ordering (degree of ordering ranges from 0??27 to 0??48). Calcite is present as a subordinate mineral in some samples. Sr, Mn and Fe contents show very low correlation coefficients with Mg/Ca ratios, whereas SiO2 and K contents are highly correlated. ??18O- and ??13C-values in dolomites range from -3??07??? to 5??40??? PDB (mean = 0??06, ?? = 1??75) and from -6??34??? to -0??39??? PDB (mean = -3??55, ?? = 1??33) respectively. Samples containing significant amounts of both dolomite and calcite do not in general show significant enrichment or depletion in 18O and 13C between the two minerals. The correlation coefficient between ??18O and ??13C for dolomite is extremely

  17. Lacustrine-fluvial interactions in Australia's Riverine Plains

    NASA Astrophysics Data System (ADS)

    Kemp, Justine; Pietsch, Timothy; Gontz, Allen; Olley, Jon

    2017-06-01

    Climatic forcing of fluvial systems has been a pre-occupation of geomorphological studies in Australia since the 1940s. In the Riverine Plain, southeastern Australia, the stable tectonic setting and absence of glaciation have combined to produce sediment loads that are amongst the lowest in the world. Surficial sediments and landforms exceed 140,000 yr in age, and geomorphological change recorded in the fluvial, fluvio-lacustrine and aeolian features have provided a well-studied record of Quaternary environmental change over the last glacial cycle. The region includes the Willandra Lakes, whose distinctive lunette lakes preserve a history of water-level variations and ecological change that is the cornerstone of Australian Quaternary chronostratigraphy. The lunette sediments also contain an ancient record of human occupation that includes the earliest human fossils yet found on the Australian continent. To date, the lake-level and palaeochannel records in the Lachlan-Willandra system have not been fully integrated, making it difficult to establish the regional significance of hydrological change. Here, we compare the Willandra Lakes environmental record with the morphology and location of fluvial systems in the lower Lachlan. An ancient channel belt of the Lachlan, Willandra Creek, acted as the main feeder channel to Willandra Lakes before channel avulsion caused the lakes to dry out in the late Pleistocene. Electromagnetic surveys, geomorphological and sedimentary evidence are used to reconstruct the evolution of the first new channel belt following the avulsion. Single grain optical dating of floodplain sediments indicates that sedimentation in the new Middle Billabong Palaeochannel had commenced before 18.4 ± 1.1 ka. A second avulsion shifted its upper reaches to the location of the present Lachlan River by 16.2 ± 0.9 ka. The timing of these events is consistent with palaeohydrological records reconstructed from Willandra Lakes and with the record of

  18. Cultivation of Chlorella vulgaris using different sources of carbon and its impact on lipid production

    NASA Astrophysics Data System (ADS)

    Fransiscus, Yunus; Purwanto, Edy

    2017-05-01

    A cultivation process of Chlorella vulgaris has been done in different treatment to investigate the optimum condition for lipid production. Firstly, autotroph and heterotroph condition have been applied to test the significance impact of carbon availability to the growth and lipid production of Chlorella vulgaris. And for the same purpose, heterotroph condition using glucose, fructose and sucrose as carbon sources was independently implemented. The growth rate of Chlorella vulgaris in autotroph condition was much slower than those in heterotroph. The different sources of carbon gave no significant different in the growth pattern, but in term of lipid production it was presented a considerable result. At lower concentration (3 and 6 gr/L) of carbon sources there was only slight different in lipid production level. At higher concentration (12 gr/L) glucose as a carbon source produced the highest result, 60.18% (w/w) compared to fructose and sucrose that produced 27.34% (w/w) and 18.19% (w/w) respectively.

  19. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    USGS Publications Warehouse

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  20. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.

    PubMed

    Gupta, Prabuddha L; Choi, Hee-Jeong; Pawar, Radheshyam R; Jung, Sokhee P; Lee, Seung-Mok

    2016-12-15

    The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A mobile light source for carbon/nitrogen cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  2. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Wang, Yun; Dai, Xiao

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  3. From submarine to lacustrine groundwater discharge

    USGS Publications Warehouse

    Lewandowski, Jörg; Meinikmann, Karin; Pöschke, Franziska; Nützmann, Gunnar; Rosenberry, Donald O.

    2017-01-01

    Submarine groundwater discharge (SGD) and its role in marine nutrient cycling are well known since the last decade. The freshwater equivalent, lacustrine groundwater discharge (LGD), is often still disregarded, although first reports of LGD are more than 50 years old. We identify nine different reasons why groundwater has long been disregarded in both freshwater and marine environments such as invisibility of groundwater discharge, the size of the interface and its difficult accessibility. Although there are some fundamental differences in the hydrology of SGD and LGD, caused primarily by seawater recirculation that occurs only in cases of SGD, there are also a lot of similarities such as a focusing of discharge to near-shore areas. Nutrient concentrations in groundwater near the groundwater–surface water interface might be anthropogenically enriched. Due to spatial heterogeneity of aquifer characteristics and biogeochemical processes, the quantification of groundwater-borne nutrient loads is challenging. Both nitrogen and phosphorus might be mobile in near-shore aquifers and in a lot of case studies large groundwater-borne nutrient loads have been reported.

  4. Improved Nitrogen Removal Effect In Continuous Flow A2/O Process Using Typical Extra Carbon Source

    NASA Astrophysics Data System (ADS)

    Wu, Haiyan; Gao, Junyan; Yang, Dianhai; Zhou, Qi; Cai, Bijing

    2010-11-01

    In order to provide a basis for optimal selection of carbon source, three typical external carbon sources (i.e. methanol, sodium acetate and leachate) were applied to examine nitrogen removal efficiency of continuous flow A2/O system with the influent from the effluent of grit chamber in the second Kunming wastewater treatment plant. The best dosage was determined, and the specific nitrogen removal rate and carbon consumption rate were calculated with regard to individual external carbon source in A2/O system. Economy and technology analysis was also conducted to select the suitable carbon source with a low operation cost. Experimental results showed that the external typical carbon source caused a remarkable enhancement of system nitrate degradation ability. In comparison with the blank test, the average TN and NH3-N removal efficiency of system with different dosing quantities of external carbon source was improved by 15.2% and 34.2%, respectively. The optimal dosage of methanol, sodium acetate and leachate was respectively up to 30 mg/L, 40 mg/L and 100 mg COD/L in terms of a high nitrogen degradation effect. The highest removal efficiency of COD, TN and NH3-N reached respectively 92.3%, 73.9% and 100% with methanol with a dosage of 30 mg/L. The kinetic analysis and calculation revealed that the greatest denitrification rate was 0.0107 mg TN/mg MLVSSṡd with sodium acetate of 60 mg/L. As to carbon consumption rate, however, the highest value occurred in the blank test with a rate of 0.1955 mg COD/mg MLVSSṡd. Also, further economic analysis proved leachate to be pragmatic external carbon source whose cost was far cheaper than methanol.

  5. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    ERIC Educational Resources Information Center

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  6. Constraining the subsoil carbon source to cave-air CO2 and speleothem calcite in central Texas

    NASA Astrophysics Data System (ADS)

    Bergel, Shelly J.; Carlson, Peter E.; Larson, Toti E.; Wood, Chris T.; Johnson, Kathleen R.; Banner, Jay L.; Breecker, Daniel O.

    2017-11-01

    Canonical models for speleothem formation and the subsurface carbon cycle invoke soil respiration as the dominant carbon source. However, evidence from some karst regions suggests that belowground CO2 originates from a deeper, older source. We therefore investigated the carbon sources to central Texas caves. Drip-water chemistry of two caves in central Texas implies equilibration with calcite at CO2 concentrations (PCO2_sat) higher than the maximum CO2 concentrations observed in overlying soils. This observation suggests that CO2 is added to waters after they percolate through the soils, which requires a subsoil carbon source. We directly evaluate the carbon isotope composition of the subsoil carbon source using δ13C measurements on cave-air CO2, which we independently demonstrate has little to no contribution from host rock carbon. We do so using the oxidative ratio, OR, defined as the number of moles of O2 consumed per mole of CO2 produced during respiration. However, additional belowground processes that affect O2 and CO2 concentrations, such as gas-water exchange and/or diffusion, may also influence the measured oxidative ratio, yielding an apparent OR (ORapparent). Cave air in Natural Bridge South Cavern has ORapparent values (1.09 ± 0.06) indistinguishable from those expected for respiration alone (1.08 ± 0.06). Pore space gases from soils above the cave have lower values (ORapparent = 0.67 ± 0.05) consistent with respiration and gas transport by diffusion. The simplest explanation for these observations is that cave air in NB South is influenced by respiration in open-system bedrock fractures such that neither diffusion nor exchange with water influence the composition of the cave air. The radiocarbon activities of NB South cave-air CO2 suggest the subsoil carbon source is hundreds of years old. The calculated δ13C values of the subsoil carbon source are consistent with tree-sourced carbon (perhaps decomposing root matter), the δ13C values of which

  7. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    PubMed

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  8. Carbonate replacement of lacustrine gypsum deposits in two Neogene continental basins, eastern Spain

    NASA Astrophysics Data System (ADS)

    Anadón, P.; Rosell, L.; Talbot, M. R.

    1992-07-01

    Bedded nonmarine gypsum deposits in the Miocene Teruel and Cabriel basins, eastern Spain, are partly replaced by carbonate. The Libros gypsum (Teruel Graben) is associated with fossiliferous carbonate wackestones and finely laminated, organic matter-rich mudstones which accumulated under anoxic conditions in a meromictic, permanent lake. The gypsum is locally pseudomorphed by aragonite or, less commonly, replaced by calcite. Low δ 13C values indicate that sulphate replacement resulted from bacterial sulphate reduction processes that were favoured by anacrobic conditions and abundant labile organic matter in the sediments. Petrographic evidence and oxygen isotopic composition suggest that gypsum replacement by aragonite occurred soon after deposition. A subsequent return to oxidising conditions caused some aragonite to be replaced by diagenetic gypsum. Native sulphur is associated with some of these secondary gypsum occurrences. The Los Ruices sulphate deposits (Cabriel Basin) contain beds of clastic and selenitic gypsum which are associated with limestones and red beds indicating accumulation in a shallow lake. Calcite is the principal replacement mineral. Bacterial sulphate reduction was insignificant in this basin because of a scarcity of organic matter. Stable isotope composition of diagenetic carbonate indicates that gypsum replacement occurred at shallow burial depths due to contact with dilute groundwaters of meteoric origin. Depositional environment evidently has a major influence upon the diagenetic history of primary sulphate deposits. The quantity of preserved organic matter degradable by sulphate-reducing bacteria is of particular importance and, along with groundwater composition, is the main factor controlling the mechanism of gypsum replacement by carbonate.

  9. Kupier prize lecture: Sources of solar-system carbon

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Zinner, Ernst

    1994-01-01

    We have tried to deconvolve Solar-System carbon into its sources, on the basis of C-12/C-13 ratios (equivalent to R). Interstellar SiC in meteorites, representing greater than 4.6-Ga-old stardust from carbon stars, is isotopically heavier (bar R = 38 +/- 2) than Solar-System carbon (89), implying that the latter contains an additional, light component. A likely source are massive stars, mainly Type II supernovae and Wolf-Rayet stars, which, being O-rich, eject their C largely as CO rather than carbonaceous dust. The fraction of such light C in the Solar System depends on R(sub light) in the source. For R(sub light) = 180-1025 (as in 'Group 4' meteoritic graphite spherules, which apparently came from massive stars greater than 4.6 Ga ago), the fraction of light C is 0.79-0.61. Similar results are obtained for present-day data on red giants and interstellar gas. Although both have become enriched in C-13 due to galactic evolution (to bar-R = 20 and 57), the fraction of the light component in interstellar gas again is near 0.7. (Here bar R represents the mean of a mixture calculated via atom fractions; it is not identical to the arithmetic mean R). Interstellar graphite, unlike SiC, shows a large peak at R approximately equal 90, near the solar value. Although some of the grains may be of local origin, others show anomalies in other elements and hence are exotic. Microdiamonds, with R = 93, also are exotic on the basis of their Xe and N. Apparently R approximately 90 was a fairly common composition 4.6 Ga ago, of stars as well as the ISM.

  10. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  11. Stratigraphic architecture of a fluvial-lacustrine basin-fill succession at Desolation Canyon, Uinta Basin, Utah: Reference to Walthers’ Law and implications for the petroleum industry

    USGS Publications Warehouse

    Ford, Grace L.; David R. Pyles,; Dechesne, Marieke

    2016-01-01

    Two large-scale (member-scale) upward patterns are noted: Waltherian, and non-Waltherian. The upward successions in Waltherian progressions record progradation or retrogradation of a linked fluvial-lacustrine system across the area; whereas the upward successions in non-Waltherian progressions record large-scale changes in the depositional system that are not related to progradation or retrogradation of the ancient lacustrine shoreline. Four Waltherian progressions are noted: 1) the Flagstaff Limestone to lower Wasatch Formation member records the upward transition from lacustrine to fluvial—or shallowing-upward succession; 2) the upper Wasatch to Uteland Butte records the upward transition from fluvial to lacustrine—or a deepening upward succession; 3) the Uteland Butte to Renegade Tongue records the upward transition from lacustrine to fluvial—a shallowing-upward succession; and 4) the Renegade Tongue to Mahogany oil shale interval records the upward transition from fluvial to lacustrine—a deepening upward succession. The two non-Waltherian progressions in the study area are: 1) the lower to middle Wasatch, which records the abrupt shift from low to high net-sand content fluvial system, and 2) the middle to upper Wasatch, which records the abrupt shift from high to intermediate net-sand content fluvial system.

  12. Seasonal variations in elemental carbon aerosol, carbon monoxide and sulfur dioxide: Implications for sources

    NASA Astrophysics Data System (ADS)

    Antony Chen, L.-W.; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Mueller, Peter K.; Quinn, John; Butler, William A.

    As part of Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, measurements of 24-hr average elemental carbon (EC) aerosol concentration were made at Fort Meade, Maryland, USA, a suburban site within the Baltimore-Washington corridor during July 1999, October 1999, January 2000, April 2000 and July 2000. Carbon monoxide (CO) and sulfur dioxide (SO2) were also measured nearly continuously over the period. Tight correlation between EC and CO in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope varies in different seasons and generally increases with ambient temperature. The temperature dependence of EC/CO ratios suggests that EC source strength peaks in summer. By using the well established emission inventory for CO, and EC/CO ratio found in this study, EC emission over North America is estimated at 0.31±0.12 Tg yr-1, on the low end but in reasonable agreement with prior inventories based on emission factors and fuel consumption.

  13. Seasonal variations in elemental carbon aerosol, carbon monoxide and sulfur dioxide: Implications for sources

    NASA Astrophysics Data System (ADS)

    Chen, L.-W. Antony; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Mueller, Peter K.; Quinn, John; Butler, William A.

    2001-05-01

    As part of Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, measurements of 24-hr average elemental carbon (EC) aerosol concentration were made at Fort Meade, Maryland, USA, a suburban site within the Baltimore-Washington corridor during July 1999, October 1999, January 2000, April 2000 and July 2000. Carbon monoxide (CO) and sulfur dioxide (SO2) were also measured nearly continuously over the period. Tight correlation between EC and CO in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope varies in different seasons and generally increases with ambient temperature. The temperature dependence of EC/CO ratios suggests that EC source strength peaks in summer. By using the well established emission inventory for CO, and EC/CO ratio found in this study, EC emission over North America is estimated at 0.31+/-0.12Tgyr-1, on the low end but in reasonable agreement with prior inventories based on emission factors and fuel consumption.

  14. Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of Peatland

    USGS Publications Warehouse

    Elder, J.F.; Rybicki, N.B.; Carter, V.; Weintraub, V.

    2000-01-01

    In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg l-1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m-2 y-1 DOC and 5.5 g m-2 y-1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel

  15. Utilization of carbon sources in a northern Brazilian mangrove ecosystem

    NASA Astrophysics Data System (ADS)

    Giarrizzo, Tommaso; Schwamborn, Ralf; Saint-Paul, Ulrich

    2011-12-01

    Carbon and nitrogen stable isotope ratios ( 13C and 15N) and trophic level (TL) estimates based on stomach content analysis and published data were used to assess the contribution of autotrophic sources to 55 consumers in an intertidal mangrove creek of the Curuçá estuary, northern Brazil. Primary producers showed δ 13C signatures ranging between -29.2 and -19.5‰ and δ 15N from 3.0 to 6.3‰. The wide range of the isotopic composition of carbon of consumers (-28.6 to -17.1‰) indicated that different autotrophic sources are important in the intertidal mangrove food webs. Food web segregation structures the ecosystem into three relatively distinct food webs: (i) mangrove food web, where vascular plants contribute directly or indirectly via POM to the most 13C-depleted consumers (e.g. Ucides cordatus and zooplanktivorous food chains); (ii) algal food web, where benthic algae are eaten directly by consumers (e.g. Uca maracoani, mullets, polychaetes, several fishes); (iii) mixed food web where the consumers use the carbon from different primary sources (mainly benthivorous fishes). An IsoError mixing model was used to determine the contributions of primary sources to consumers, based on δ 13C values. Model outputs were very sensitive to the magnitude of trophic isotope fractionation and to the variability in 13C data. Nevertheless, the simplification of the system by a priori aggregation of primary producers allowed interpretable results for several taxa, revealing the segregation into different food webs.

  16. Plant Wax n-Alkane and n-Alkanoic Acid Signatures Overprinted by Microbial Contributions and Old Carbon in Meromictic Lake Sediments

    NASA Astrophysics Data System (ADS)

    Makou, Matthew; Eglinton, Timothy; McIntyre, Cameron; Montluçon, Daniel; Antheaume, Ingrid; Grossi, Vincent

    2018-01-01

    Specific n-alkanes and n-alkanoic acids are commonly used as biomarkers in paleoenvironmental reconstruction, yet any individual homologue may originate from multiple biological sources. Here we improve source and age controls for these compounds in meromictic systems by measuring the radiocarbon (14C) ages of specific homologues preserved in twentieth century Lake Pavin (France) sediments. In contrast to many studies, 14C ages generally decreased with increasing carbon chain length, from 7.3 to 2.6 ka for the C14-C30 n-alkanoic acids and from 9.2 to 0.3 ka for the C21-C33 n-alkanes. Given a known hard water effect, these values suggest that aquatic microbial sources predominate and contributed to most of the homologues measured. Only the longest chain n-alkanes exclusively represent inputs of higher plant waxes, which were previously sequestered in soils over centennial to millennial timescales prior to transport and deposition. These findings suggest that biomarker source and age should be carefully established for lacustrine settings.

  17. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.

    PubMed

    Li, Mai-He; Xiao, Wen-Fa; Shi, Peili; Wang, San-Gen; Zhong, Yong-De; Liu, Xing-Liang; Wang, Xiao-Dan; Cai, Xiao-Hu; Shi, Zuo-Min

    2008-10-01

    No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.

  18. Regional prediction of carbon isotopes in soil carbonates for Asian dust source tracer

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Cui, Xinjuan; Wang, Yaqiang

    2016-10-01

    Dust particles emitted from deserts and semi-arid lands in northern China cause particulate pollution that increases the burden of disease particularly for urban population in East Asia. The stable carbon isotopes (δ13C) of carbonates in soils and dust aerosols in northern China were investigated. We found that the δ13C of carbonates in surface soils in northern China showed clearly the negative correlation (R2 = 0.73) with Normalized Difference Vegetation Index (NDVI). Using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived NDVI, we predicted the regional distribution of δ13C of soil carbonates in deserts, sandy lands, and steppe areas. The predictions show the mean δ13C of -0.4 ± 0.7‰ in soil carbonates in Taklimakan Desert and Gobi Deserts, and the isotope values decrease to -3.3 ± 1.1‰ in sandy lands. The increase in vegetation coverage depletes 13C in soil carbonates, thus the steppe areas are predicted by the lowest δ13C levels (-8.1 ± 1.7‰). The measurements of atmospheric dust samples at eight sites showed that the Asian dust sources were well assigned by the 13C mapping in surface soils. Predicting 13C in large geographical areas with fine resolution offers a cost-effective tracer to monitor dust emissions from sandy lands and steppe areas which show an increasing role in Asian dust loading driven by climate change and human activities.

  19. Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review

    USGS Publications Warehouse

    Douglas, Thomas A.; Jones, Miriam C.; Hiemstra, Christopher A.

    2014-01-01

    Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in this area for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape process changes over the next 20 to 50 years. This provides a major challenge for predicting how the interplay between land management activities and impacts of climate warming will affect carbon sources and sinks in Interior Alaska. To assist land managers in adapting and managing for potential changes in the Interior Alaska carbon cycle we developed this review paper incorporating an overview of the climate, ecosystem processes, vegetation types, and soil regimes in Interior Alaska with a focus on ramifications for the carbon cycle. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to support policy and land management decisions on how to best manage carbon sources and sinks in Interior Alaska. To support this we have surveyed relevant peer reviewed estimates of carbon stocks in aboveground and belowground biomass for Interior Alaska boreal ecosystems. We have also summarized methane and carbon dioxide fluxes from the same ecosystems. These data have been converted into the same units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance including how compounding disturbances can affect the boreal system. Finally, we provide

  20. Development of a stationary carbon emission inventory for Shanghai using pollution source census data

    NASA Astrophysics Data System (ADS)

    Li, Xianzhe; Jiang, Ping; Zhang, Yan; Ma, Weichun

    2016-12-01

    This study utilizes 521,631 activity data points from the 2007 Shanghai Pollution Source Census to compile a stationary carbon emission inventory for Shanghai. The inventory generated from our dataset shows that a large portion of Shanghai's total energy use consists of coal-oriented energy consumption. The electricity and heat production industries, iron and steel mills, and the petroleum refining industry are the main carbon emitters. In addition, most of these industries are located in Baoshan District, which is Shanghai's largest contributor of carbon emissions. Policy makers can use the enterpriselevel carbon emission inventory and the method designed in this study to construct sound carbon emission reduction policies. The carbon trading scheme to be established in Shanghai based on the developed carbon inventory is also introduced in this paper with the aim of promoting the monitoring, reporting and verification of carbon trading. Moreover, we believe that it might be useful to consider the participation of industries, such as those for food processing, beverage, and tobacco, in Shanghai's carbon trading scheme. Based on the results contained herein, we recommend establishing a comprehensive carbon emission inventory by inputting data from the pollution source census used in this study.

  1. Role of metabolite transporters in source-sink carbon allocation

    PubMed Central

    Ludewig, Frank; Flügge, Ulf-Ingo

    2013-01-01

    Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or – in combination with nitrogen – as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters. PMID:23847636

  2. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization.

    PubMed

    Abad, Sergi; Turon, Xavier

    2015-12-05

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10-0.12 h(-1)), biomass (0.7-0.8 g cells/g Substrate) and product (0.14-0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.

  3. Carbon allocation, source-sink relations and plant growth: do we need to revise our carbon centric concepts?

    NASA Astrophysics Data System (ADS)

    Körner, Christian

    2014-05-01

    Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers

  4. Dynamic Balancing of Isoprene Carbon Sources Reflects Photosynthetic and Photorespiratory Responses to Temperature Stress1[W][OPEN

    PubMed Central

    Chambers, Jeffrey; Alves, Eliane G.; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D.; Nielsen, Lars K.; Torn, Margaret S.; Vickers, Claudia E.

    2014-01-01

    The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-13C]glycine (a photorespiratory intermediate) stimulated emissions of [13C1–5]isoprene and 13CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. PMID:25318937

  5. Lithium storage in structurally tunable carbon anode derived from sustainable source

    DOE PAGES

    Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...

    2017-09-01

    Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less

  6. Organic carbon sources and sinks in San Francisco Bay: variability induced by river flow

    USGS Publications Warehouse

    Jassby, Alan D.; Powell, T.M.; Cloern, James E.

    1993-01-01

    Sources and sinks of organic carbon for San Francisco Bay (California, USA) were estimated for 1980. Sources for the southern reach were dominated by phytoplankton and benthic microalgal production. River loading of organic matter was an additional important factor in the northern reach. Tidal marsh export and point sources played a secondary role. Autochthonous production in San Francisco Bay appears to be less than the mean for temperate-zone estuaries, primarily because turbidity limits microalgal production and the development of seagrass beds. Exchange between the Bay and Pacific Ocean plays an unknown but potentially important role in the organic carbon balance. Interannual variability in the organic carbon supply was assessed for Suisun Bay, a northern reach subembayment that provides habitat for important fish species (delta smelt Hypomesus transpacificus and larval striped bass Morone saxatilus). The total supply fluctuated by an order of magnitude; depending on the year, either autochthonous sources (phytoplankton production) or allochthonous sources (riverine loading) could be dominant. The primary cause of the year-to-year change was variability of freshwater inflows from the Sacramento and San Joaquin rivers, and its magnitude was much larger than long-term changes arising from marsh destruction and point source decreases. Although interannual variability of the total organic carbon supply could not be assessed for the southern reach, year-to-year changes in phytoplankton production were much smaller than in Suisun Bay, reflecting a relative lack of river influence.

  7. New Potential Sources for Black Onaping Carbon

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, L.; Schultz, P. H.; Wolbach, W. S.

    1997-01-01

    One intriguing and important issue of the Sudbury Structure concerns the source of the relatively large amount of C in the Onaping Formation Black member. This dilemma was recently addressed, and the conclusion was reached that an impactor could not have delivered all of the requisite C. Becker et al. have suggested that much of the C came from the impactor and reported the presence of interstellar He "caged" inside some fullerenes that may have survived the impact. So, conceivably, the C inventory in the Sudbury Structure comes from both target and impactor materials, although the known target rocks have little C. We discuss here the possibility of two terrestrial sources for at least some of the C: (1) impact evaporation/dissociation of C from carbonate target rocks and (2) the presence of heretofore-unrecognized C-rich (up to 26 wt%) siliceous "shale," fragments, which are found in the upper, reworked Black member. Experimental: Hypervelocity impact of a 0.635-diameter Al projectile into dolomite at 5.03 km/s (performed at the Ames Research Center vertical gun range) produced a thin, black layer (= 0.05 mm thick) that partially lined the crater and coated impactor remnants. Scanning electronic microscope (SEM) imagery shows this layer to be spongelike on a submicron scale and Auger spectroscopic analyses yield: 33% C, 22% Mg, 19% 0, and 9% Al (from the projectile). Elemental mapping shows that all of the available 0 is combined with Ca and Mg, Al is not oxidized, and C is in elemental form. Dissociation efficiency of C from CO2 is estimated to be <10% of crater volume. Raman spectroscopy indicates that the C is highly disorganized graphite. Another impact experiment [4] also produced highly disordered graphite from a limestone target (reducing collector), in addition to small amounts of diamond/lonsdaleite/chaoite (oxidizing collector). These experiments confirm the reduction of C from carbonates in impact vapor plumes. Observational: SEM observations and

  8. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    PubMed

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-02

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources.

  9. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  10. Origin of petroporphyrins. 2. Evidence from stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Boreham, C. J.; Fookes, C. J.; Popp, B. N.; Hayes, J. M.

    1990-01-01

    Compared with the carbon-13 isotopic composition of the ubiquitous C32DPEP (DPEP, deoxophylloerythroetioporphyrin) the heavy but equivalent carbon-13 isotopic composition for the porphyrin structures 15(2)-methyl-15,17-ethano-17-nor-H-C30DPEP and 15,17-butano-, 13,15-ethano-13(2),17-propano-, and 13(1)-methyl-13,15-ethano-13(2),17-propanoporphyrin suggests a common precursor, presumably chlorophyll c, for these petroporphyrins isolated from the marine Julia Creek oil shale and the lacustrine Condor oil shale. Similarly, the heavy but variable carbon-13 isotopic composition of 7-nor-H-C31DPEP compared with C32DPEP is consistent with an origin from both chlorophyll b and chlorophyll c3. The equivalent carbon-13 isotopic composition for 13(2)-methyl-C33DPEP compared with C32DPEP suggests a common origin resulting from a weighted average of chlorophyll inputs.

  11. Characterization of Arctic elemental carbon in Barrow, AK using radiocarbon source apportionment

    NASA Astrophysics Data System (ADS)

    Barrett, T. E.; Usenko, S.; Robinson, E. M.; Sheesley, R. J.

    2013-12-01

    Currently, the Arctic is one of the fastest warming regions on earth with surface temperatures increasing at a rate nearly double the global mean over recent decades. Despite the fact that atmospheric concentrations of elemental carbon (EC) are lower in the Arctic than in lower latitudes, deposition of EC on snow and ice may exacerbate regional warming by simultaneously decreasing albedo and increasing melt rates. Due to the intensifying Arctic oil exploration in areas such as the Beaufort and Chukchi seas, the impact of new emission sources such as heavy fuel and heavy diesel combustion on regional carbon needs to be assessed. The first step in developing mitigation strategies for reducing current and future EC emissions in the Arctic is to determine emission source contributions. This study aims to determine the relative contributions of fossil fuel and biomass combustion and to identify major source regions of EC to the Arctic. Radiocarbon analysis of both total organic carbon (TOC) and EC combined with organic tracer and back trajectory analysis has been applied to a set of wintertime coarse particulate matter (PM10) samples from Barrow, AK. Preliminary apportionment for January 2013 indicates roughly half of TOC is from biogenic/biomass burning emissions and one third of EC is due to biomass burning emissions. The radiocarbon results will be combined with organic tracer analysis (polycyclic aromatic hydrocarbons, petroleum biomarkers and normal alkanes), increasing the specificity of the relative contribution of both the fossil and modern (biogenic/biomass burning) carbon emission sources. This research represents the first reported radiocarbon values for Arctic EC, providing highly conclusive source apportionment prior to the influence of increased drilling operations and ship traffic in the Beaufort and Chukchi seas.

  12. Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield

    NASA Astrophysics Data System (ADS)

    Sheesley, Rebecca J.; Nallathamby, Punith Dev; Surratt, Jason D.; Lee, Anita; Lewandowski, Michael; Offenberg, John H.; Jaoui, Mohammed; Kleindienst, Tadeusz E.

    2017-10-01

    The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography - mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (14C) measurements of the total organic carbon were also made to determine the split between the modern and fossil carbon and thereby constrain unknown sources of OC not accounted for by either tracer-based attribution technique. From the analysis, OC contributions from four primary sources and four secondary sources were determined, which comprised three sources of modern carbon and five sources of fossil carbon. The major primary sources of OC were from vegetative detritus (9.8%), diesel (2.3%), gasoline (<1.0%), and lubricating oil impacted motor vehicle exhaust (30%); measured secondary sources resulted from isoprene (1.5%), α-pinene (<1.0%), toluene (<1.0%), and naphthalene (<1.0%, as an upper limit) contributions. The average observed organic carbon (OC) was 6.42 ± 2.33 μgC m-3. The 14C derived apportionment indicated that modern and fossil components were nearly equivalent on average; however, the fossil contribution ranged from 32 to 66% over the five week campaign. With the fossil primary and secondary sources aggregated, only 25% of the fossil organic carbon could not be attributed. Whereas, nearly 80% of the modern carbon could not be attributed to primary and secondary sources accessible to this analysis, which included tracers of biomass burning, vegetative

  13. Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield

    PubMed Central

    Sheesley, Rebecca J.; Nallathamby, Punith Dev; Surratt, Jason D.; Lee, Anita; Lewandowski, Michael; Offenberg, John H.; Jaoui, Mohammed; Kleindienst, Tadeusz E.

    2018-01-01

    The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography – mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (14C) measurements of the total organic carbon were also made to determine the split between the modern and fossil carbon and thereby constrain unknown sources of OC not accounted for by either tracer-based attribution technique. From the analysis, OC contributions from four primary sources and four secondary sources were determined, which comprised three sources of modern carbon and five sources of fossil carbon. The major primary sources of OC were from vegetative detritus (9.8%), diesel (2.3%), gasoline (<1.0%), and lubricating oil impacted motor vehicle exhaust (30%); measured secondary sources resulted from isoprene (1.5%), α-pinene (<1.0%), toluene (<1.0%), and naphthalene (<1.0%, as an upper limit) contributions. The average observed organic carbon (OC) was 6.42 ± 2.33 μgC m−3. The 14C derived apportionment indicated that modern and fossil components were nearly equivalent on average; however, the fossil contribution ranged from 32-66% over the five week campaign. With the fossil primary and secondary sources aggregated, only 25% of the fossil organic carbon could not be attributed. Whereas, nearly 80% of the modern carbon could not be attributed to primary and secondary sources accessible to this analysis, which included tracers of biomass burning, vegetative

  14. Carbon Sources Influence Fumonisin Production in Fusarium proliferatum.

    PubMed

    Li, Taotao; Gong, Liang; Jiang, Guoxiang; Wang, Yong; Gupta, Vijai Kumar; Qu, Hongxia; Duan, Xuewu; Wang, Jiasheng; Jiang, Yueming

    2017-10-01

    Fusarium proliferatum is a worldwide fungal pathogen that produces fumonisins which are harmful to animal and human health. However, environmental factors affecting fumonisin biosynthesis in F. proliferatum are not well understood. Based on our preliminary results, in this study, we investigated the effect of sucrose or mannose as the sole carbon source on fumonisin B (FB) production by F. proliferatum and studied their underlying mechanisms via proteome and gene expression analysis. Our results showed that mannose, used as the sole carbon source, significantly blocked fumonisin B 1 and B 2 production by F. proliferatum as compared with the use of sucrose. Fifty-seven differentially expressed proteins were successfully identified. The downregulated proteins in the mannose-cultured strain were mainly involved in carbon metabolism, response to stress, and methionine metabolism, as compared with the sucrose-cultured strain. Moreover, quantitative real-time PCR analysis indicated that expression of several key genes involved in FB biosynthetic pathway and in transcription regulation were significantly downregulated in the mannose-cultured F. proliferatum, whereas expression of histone deacetylation-related genes were significantly upregulated. These results suggested that the blockage of FB biosynthesis by mannose was associated with the decreases in conversion of acetyl-CoA to polyketide, methionine biosynthesis, and NADPH regeneration. More importantly, milder oxidative stress, downregulated expression of genes involved in biosynthetic pathway and transcription regulation, and upregulated expression of genes with histone deacetylation possibly were responsible for the blockage of FB biosynthesis in F. proliferatum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    PubMed Central

    Abad, Sergi; Turon, Xavier

    2015-01-01

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1), biomass (0.7–0.8 g cells/g Substrate) and product (0.14–0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct. PMID:26690180

  16. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea

    NASA Astrophysics Data System (ADS)

    Keskitalo, Kirsi; Tesi, Tommaso; Bröder, Lisa; Andersson, August; Pearce, Christof; Sköld, Martin; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Örjan

    2017-09-01

    Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long-term storage to the marine environment. PF-C can be then be buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records during past natural climate changes can help us to understand the response of permafrost to current climate warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial organic carbon sources, composition and degradation during the past ˜ 9500 cal yrs BP. CuO-derived lignin and cutin products (i.e., compounds solely biosynthesised in terrestrial plants) combined with δ13C suggest that there was a higher input of terrestrial organic carbon to the East Siberian Sea between ˜ 9500 and 8200 cal yrs BP than in all later periods. This high input was likely caused by marine transgression and permafrost destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-carbon isotope (Δ14C, δ13C) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a significant source of organic matter translocated to the East Siberian Sea during the Holocene.

  17. Biomass Burning Emissions of Black Carbon from African Sources

    NASA Astrophysics Data System (ADS)

    Aiken, A. C.; Leone, O.; Nitschke, K. L.; Dubey, M. K.; Carrico, C.; Springston, S. R.; Sedlacek, A. J., III; Watson, T. B.; Kuang, C.; Uin, J.; McMeeking, G. R.; DeMott, P. J.; Kreidenweis, S. M.; Robinson, A. L.; Yokelson, R. J.; Zuidema, P.

    2016-12-01

    Biomass burning (BB) emissions are a large source of carbon to the atmosphere via particles and gas phase species. Carbonaceous aerosols are emitted along with gas-phase carbon monoxide (CO) and carbon dioxide (CO2) that can be used to determine particulate emission ratios and modified combustion efficiencies. Black carbon (BC) aerosols are potentially underestimated in global models and are considered to be one of the most important global warming factors behind CO2. Half or more BC in the atmosphere is from BB, estimated at 6-9 Tg/yr (IPCC, 5AR) and contributing up to 0.6 W/m2 atmospheric warming (Bond et al., 2013). With a potential rise in drought and extreme events in the future due to climate change, these numbers are expected to increase. For this reason, we focus on BC and organic carbon aerosol species that are emitted from forest fires and compare their emission ratios, physical and optical properties to those from controlled laboratory studies of single-source BB fuels to understand BB carbonaceous aerosols in the atmosphere. We investigate BC in concentrated BB plumes as sampled from the new U.S. DOE ARM Program campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC). The ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS) are currently located on Ascension Island in the South Atlantic Ocean, located midway between Angola and Brazil. The location was chosen for sampling maximum aerosol outflow from Africa. The far-field aged BC from LASIC is compared to BC from indoor generation from single-source fuels, e.g. African grass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). BC is measured with a single-particle soot photometer (SP2) alongside numerous supporting instrumentation, e.g. particle counters, CO and CO2 detectors, aerosol scattering and absorption measurements, etc. FLAME-IV includes both direct emissions and well-mixed aerosol samples that have undergone dilution, cooling, and condensation. BC

  18. Metabolic analyses of the improved ε-poly-L-lysine productivity using a glucose-glycerol mixed carbon source in chemostat cultures.

    PubMed

    Zhang, Jian-Hua; Zeng, Xin; Chen, Xu-Sheng; Mao, Zhong-Gui

    2018-04-21

    The glucose-glycerol mixed carbon source remarkably reduced the batch fermentation time of ε-poly-L-lysine (ε-PL) production, leading to higher productivity of both biomass and ε-PL, which was of great significance in industrial microbial fermentation. Our previous study confirmed the positive influence of fast cell growth on the ε-PL biosynthesis, while the direct influence of mixed carbon source on ε-PL production was still unknown. In this work, chemostat culture was employed to study the capacity of ε-PL biosynthesis in different carbon sources at a same dilution rate of 0.05 h -1 . The results indicated that the mixed carbon source could enhance the ε-PL productivity besides the rapid cell growth. Analysis of key enzymes demonstrated that the activities of phosphoenolpyruvate carboxylase, citrate synthase, aspartokinase and ε-PL synthetase were all increased in chemostat culture with the mixed carbon source. In addition, the carbon fluxes were also improved in the mixed carbon source in terms of tricarboxylic acid cycle, anaplerotic and diaminopimelate pathway. Moreover, the mixed carbon source also accelerated the energy metabolism, leading to higher levels of energy charge and NADH/NAD + ratio. The overall improvements of primary metabolism in chemostat culture with glucose-glycerol combination provided sufficient carbon skeletons and ATP for ε-PL biosynthesis. Therefore, the significantly higher ε-PL productivity in the mixed carbon source was a combined effect of both superior substrate group and rapid cell growth.

  19. Shahejie-Shahejie/Guantao/Wumishan and Carboniferous/Permian Coal-Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey)

    USGS Publications Warehouse

    Ryder, Robert T.; Qiang, Jin; McCabe, Peter J.; Nuccio, Vito F.; Persits, Felix

    2012-01-01

    This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie&ndashShahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.

  20. Luminescence dating of the lacustrine record of Vršac (Carpathian Basin, Serbia) - implications for a palaeoenvironmetal reconstruction

    NASA Astrophysics Data System (ADS)

    Klasen, N.; Zeeden, C.; Markovic, S.; Fischer, P.; Lehmkuhl, F.; Schulte, P.; Bösken, J.; Hambach, U.; Vött, A.

    2017-12-01

    The Carpathian Basin is one of the key areas to investigate the influence of the continental, Mediterranean and Atlantic climate interaction over Europe. The available Upper Pleistocene and Holocene geoarchives in the region are mainly loess-paleosol records. Long lacustrine records are sparse and do not always span the whole last glacial cycle. In the area around Vršac, we drilled a 10 m core to contribute to the palaeoenvironmental reconstruction of the Carpathian Basin. Electrical Resistivity Tomography (ERT) was used to find the best-suited drilling location. We applied luminescence and radiocarbon dating, because a robust chronology is important for the interpretation of the sedimentary record. Pulsed OSL measurements were carried out to identify the best sampling positions. We expect runoff from the catchment being the main source of the lacustrine sediments, because coarse fluvial input is absent. Knowledge about the depositional conditions is important in luminescence dating to evaluate partial bleaching prior to deposition, which may cause age overestimation. Therefore, we compared infrared stimulated luminescence (IRSL) signals with post infrared infrared stimulated luminescence (pIRIR) signals, which bleach at different rates. Estimation of a representative water content has major influence on the age estimate, but remains challenging in luminescence dating. We measured the present day water content as well as the saturation water content, to account for variations over time. Luminescence and radiocarbon ages differ greatly from each other. According to the laboratory experiments, luminescence dating was reliable and we conclude that radiocarbon ages were underestimated because of an intrusion of younger organic material. The initial results demonstrated the potential of the drill core. Integrating more proxy data will be useful to enhance the importance of the geoarchive at Vršac for a better understanding of the last glacial cycle in the Carpathian

  1. The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review.

    PubMed

    Heal, Mathew R

    2014-01-01

    Organic carbon (OC) and elemental carbon (EC) together constitute a substantial proportion of airborne particulate matter (PM). Insight into the sources of this major contributor to PM is important for policies to mitigate the impact of PM on human health and climate change. In recent years measurement of the abundance of the radioisotope of carbon ((14)C) in samples of PM by accelerator mass spectrometry has been used to help quantify the relative contributions from sources of fossil carbon and contemporary carbon. This review provides an introduction to the different sources of carbon within PM and the role of (14)C measurements, a description of the preparation of PM samples and of the instrumentation used to quantify (14)C, and a summary of the results and source apportionment methods reported in published studies since 2004. All studies report a sizable fraction of the carbonaceous PM as of non-fossil origin. Even for PM collected in urban locations, the proportions of non-fossil carbon generally exceed 30%; typically the proportion in urban background locations is around 40-60% depending on the local influence of biomass burning. Where values have been measured directly, proportions of non-fossil carbon in EC are lower than in OC, reflecting the greater contribution of fossil-fuel combustion to EC and the generally small sources of contemporary EC. Detailed source apportionment studies point to important contributions from biogenic-derived secondary OC, consistent with other evidence of a ubiquitous presence of heavily oxidized background secondary OC. The review concludes with some comments on current issues and future prospects, including progress towards compound-class and individual-compound-specific (14)C analyses.

  2. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from Δ14C and δ13C isotopes

    NASA Astrophysics Data System (ADS)

    Feng, D.; Peckmann, J.; Peng, Y.; Liang, Q.; Roberts, H. H.; Chen, D.

    2017-12-01

    Sulfate-driven anaerobic oxidation of methane (AOM) limits the release of methane from marine sediments and promotes the formation of carbonates close to the seafloor along continental margins. It has been established that hydrocarbon seeps are a source of dissolved inorganic and organic carbon to marine environments. However, questions remain about the contribution of deep sourced carbon from hydrocarbon seeps to the sedimentary organic carbon pool. For a number of hydrocarbon seeps from the South China Sea and the Gulf of Mexico, the portion of modern carbon was determined based on natural radiocarbon abundances (Δ14C) and stable carbon isotope (δ13Corganic carbon) compositions of the non-carbonate fractions extracted from authigenic carbonates. Samples from both areas show a mixing trend between ideal planktonic organic carbon (δ13C = -22‰ VPDB and 90% modern carbon) and the ambient methane. The δ13Corganic carbon values of non-carbonate fractions from three ancient seep deposits (northern Italy, Miocene; western Washington State, USA, Eocene to Oligocene) confirm that the proxy can be used to constrain the record of sulfate-driven AOM through most of Earth history by measuring the δ13C values of organic carbon. This study reveals the potential of using δ13C values of organic carbon to discern seep and non-seep environments. This new approach is particularly promising when authigenic carbonate is not present in ancient sedimentary environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support of the deep-sea dives. Funding was provided by the NSF of China (Grants: 41422602 and 41373085).

  3. Geochemistry of Precambrian carbonates - 3-shelf seas and non-marine environments of the Archean

    NASA Technical Reports Server (NTRS)

    Veizer, Jan; Clayton, R. N.; Hinton, R. W.; Von Brunn, Victor; Mason, T. R.

    1990-01-01

    Samples from the Pangola and Ventersdorp Supergroups (Kaapvaal Craton, South Africa) and from the Fortescue and Hamersley Groups (Pilbara Block, Australia) were analyzed, using XRF, AAS, and isotope-analysis techniques to investigate the mineralogical, chemical, and isotopic features of these representatives of contemporary shelf carbonates (Pangola and Hamersley samples) and nonmarine carbonates (the Ventersdorp and Fortescue samples). Results show that, mineralogically, the shelf carbonates are almost exclusively dolostones, while the lacustrine facies are predominantly limestones. Geological, trace-element, and oxygen-isotope results of the shelf carbonates suggest that their original mineralogy may have been aragonite, and that the Pangola dolostones may represent a direct dolomitization product of this precursor. By contrast, the stabilization of the Hamersley carbonates may have involved an additional step of transformation of a metastable precursor into limestone.

  4. Hydroecology of Amazonian lacustrine Arcellinida (testate amoebae): A case study from Lake Quistococha, Peru.

    PubMed

    Patterson, R Timothy; Huckerby, Gail; Kelly, Thomas J; Swindles, Graeme T; Nasser, Nawaf A

    2015-10-01

    Organic rich sediments were obtained from seven core tops taken in Lake Quistococha, near the city of Iquitos in the Peruvian Amazon. Subsamples from 0 to 4cm depth in each core were analyzed under dissecting light microscopy to carry out the first investigation of Arcellinida (testate lobose amoebae) from a lacustrine environment in this ecologically important region. The fauna was characterized by a low diversity, low abundance community dominated by centropyxids. This fauna is similar to 'stressed' assemblages reported from temperate latitudes, except that test concentrations were two orders of magnitude lower than typical in temperate lakes. Principle arcellinidan stressors in Lake Quistococha likely include the low pH 4 conditions in the lake, and a general lack of suitable minerogenic material to construct tests in the organic rich lake substrate. The low pH conditions are the result of runoff and seepage of water high in dissolved organic carbon from the adjacent similarly low pH 4 terrestrial peatland. The dearth of minerogenic material is the result of the lake being isolated from riverine input for the past ∼2000 years, even during flooding events. Other limiting factors contributing to depressed arcellinidan populations may include nutrient supply, predation pressure, competition, and post-mortem taphonomic factors. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Constraining Sources of Subducted and Recycled Carbon Along the Sunda Arc

    NASA Astrophysics Data System (ADS)

    House, B. M.; Bebout, G. E.; Hilton, D. R.; Rodriguez, B.; Plank, T. A.

    2014-12-01

    From sediment subduction rates and C contents at ODP/DSDP sites 765 and 211, we estimate the rate of C subduction along ~2000 km of the East Sunda Arc to be ~0.4 Tg C yr-1, representing a significant source of subducted volatiles [1]. However volatile recycling efficiency and the provenance of recycled volatiles in this region remain poorly understood. With new δ13C measurements of both carbonate and organic carbon from sites 211 and 765, we present the most detailed study yet of the spatial variability of subducted C and recycled CO2 provenance along the strike of the arc. Furthermore we demonstrate the importance of oceanic crustal carbonate as a C source in a subduction zone that is otherwise carbonate starved. Carbonate content throughout the sediment column decreases dramatically between site 765, approximately 250 km from the Australian continental margin, and site 211, approximately 300 km southwest of the trench and outboard of the Sunda Strait between Sumatra and Java. Continental and shelf carbonate input from the Australian margin dominates shallow deposits at site 765, but underlying pelagic sediments are thought to contribute the majority of inorganic C to the arc. The paucity of carbonate in sediments at site 211 suggests that along this segment essentially all carbonate subducted is derived from altered ocean crust, presenting an opportunity to study the effects of crustal carbonate input. While previous C provenance studies relied on globally-averaged δ13C values for organic and inorganic C in subducted sediments, we present new estimates based on measured δ13CVPDB of carbonate (average of ~2‰ in subducted sediments) and organic carbon (-22.5 to -23‰ average) along with previously published efflux data [2]. These estimates suggest that the arc-averaged ratio of carbonate to organic C subducted along the East Sunda Arc is nearly identical to the inorganic to organic C ratio represented in volcanic and hydrothermal CO2 output, suggesting that

  6. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae

    PubMed Central

    Paulo, Joao A.; O’Connell, Jeremy D.; Gaun, Aleksandr; Gygi, Steven P.

    2015-01-01

    The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry–based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid–related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production. PMID:26399295

  7. SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S.

    2009-12-01

    Global transport of nitrogen (N), carbon (C), and phosphorus (P) in river ecosystems has been dramatically altered due to urbanization. We examined the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform carbon, nitrogen, and phosphorus inputs from the world’s largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected along longitudinal transects of the Potomac River seasonally and compared to long-term interannual records of carbon, nitrogen, and phosphorus. Water samples from seasonal longitudinal transects were analyzed for dissolved organic and inorganic nitrogen and phosphorus, total organic carbon, and particulate carbon, nitrogen, and phosphorus. The source and quality of organic matter was characterized using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Sources of nitrate were tracked using stable isotopes of nitrogen and oxygen. Along the river network stoichiometric ratios of C, N, and P were determined across sites and related to changes in flow conditions. Land use data and historical water chemistry data were also compared to assess the relative importance of non-point sources from land-use change versus point-sources of carbon, nitrogen, and phosphorus. Preliminary data from EEMs suggested that more humic-like organic matter was important above the wastewater treatment plant, but more protein-like organic matter was present below the treatment plant. Levels of nitrate and ammonia showed increases within the vicinity of the wastewater treatment outfall, but decreased rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Phosphate levels decreased gradually along the river with a small increase near the wastewater treatment plant and a larger increase and decrease further downstream near the high salinity zone. Total organic carbon levels show a small decrease

  8. Hydrothermal activity and its paleoecological implications in the latest Miocene to Middle Pleistocene lacustrine environments of the Baza Basin (Betic Cordillera, SE Spain)

    NASA Astrophysics Data System (ADS)

    García-Aguilar, José Manuel; Guerra-Merchán, Antonio; Serrano, Francisco; Palmqvist, Paul; Flores-Moya, Antonio; Martínez-Navarro, Bienvenido

    2014-07-01

    The continental sedimentary record of the Baza Basin (Guadix-Baza Depression, Betic Cordillera, SE Spain) shows six sedimentary units of lacustrine origin deposited from the latest Miocene to the Middle Pleistocene. Depending on the interval considered, the lacustrine deposits are mainly composed of marls, carbonates or gypsiferous evaporites, showing lithological, mineralogical and geochemical features (i.e., magnesium, strontium and sulfur contents, celestine deposits and travertine growths) that are evidence of intense, tectonically-induced hydrothermal activity. According to the high concentrations of strontium and sulfur as well as the abundance of travertines and magnesium clays, the supply of hot waters was greater during the Zanclean, the Gelasian and the Calabrian, as a result of tectonic activity. Hydrothermal activity has continued until the present time and is responsible of the hot springs that are nowadays active in the Guadix-Baza Depression. The paleoenvironmental consequences of these sublacustrine hot springs were that during some intervals the lakes maintained a relatively permanent water table, not subject to periodic desiccations in the dry season, and warmer temperatures throughout the year. This resulted in a high level of organic productivity, especially for the Calabrian, which allowed the development of a rich and well diversified mammalian community, similar to those of modern African savannas with tree patches. In this mild environment, the permanent water sheet favored the presence of drought intolerant megaherbivores such as the giant extinct hippo Hippopotamus antiquus. The high standing crop biomass of ungulates resulted in the availability of abundant carcasses for scavengers such as hyenas and hominins, which explains the very high densities of skeletal remains preserved in the sediments distributed along the lake surroundings.

  9. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources.

    PubMed

    Povolo, Silvana; Romanelli, Maria Giovanna; Basaglia, Marina; Ilieva, Vassilka Ivanova; Corti, Andrea; Morelli, Andrea; Chiellini, Emo; Casella, Sergio

    2013-09-25

    In the present paper we report the exclusive microbial preparation of polyhydroxyalkanoates (PHA) containing 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB) as comonomers through the use of unexpensive carbon sources such as whey from dairy industry. Polymers were produced by growing H. pseudoflava DSM 1034 in minimal medium supplemented with sucrose, lactose or whey without any co-substrate added. The chemical and physical properties of the polymers were fully characterized by GPC, DSC, TGA analyses and the composition by GC and (1)H NMR examinations to especially confirm the content of different monomeric units. The presence of 4HB units into PHA samples is particularly aimed in thermoplastic applications where greater flexibility is required and conventional rigid PHAs tend to fail. Usually the insertion of 4HB into chain backbone consisting of 3-hydroxyalkanoates requires expensive carbon sources mostly of petrochemical origin. According to our study the production of P(3HB-co-3HV-co-4HB) terpolymer can be obtained directly by the use of lactose or waste raw materials such as cheese whey as carbon sources. Although the amount of 4HB in the produced terpolymers was usually low and not exceeding 10% of the total molar composition, a PHA containing 18.4% of 4HB units was produced in 1 step fermentation process from this structurally unrelated carbon sources. The crystallinity of the terpolymer is basically to be markedly affected with respect to that of conventional PHAs, thus obtaining a comparatively less rigid material and easier to be processed. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere

    NASA Technical Reports Server (NTRS)

    Box, Elgene O.

    1988-01-01

    The estimation of the seasonal dynamics of biospheric-carbon sources and sinks to be used as an input to global atmospheric CO2 studies and models is discussed. An ecological biosphere model is given and the advantages of the model are examined. Monthly maps of estimated biospheric carbon source and sink regions and estimates of total carbon fluxes are presented for an equilibrium terrestrial biosphere. The results are compared with those from other models. It is suggested that, despite maximum variations of atmospheric CO2 in boreal latitudes, the enormous contributions of tropical wet-dry regions to global atmospheric CO2 seasonality can not be ignored.

  11. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    PubMed

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  12. Tropical forests are a net carbon source based on aboveground measurements of gain and loss

    NASA Astrophysics Data System (ADS)

    Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.

    2017-10-01

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year-1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year-1 and gains of 436.5 ± 31.0 Tg C year-1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

  13. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance.

    PubMed

    Yang, Hong; Xing, Yangping; Xie, Ping; Ni, Leyi; Rong, Kewen

    2008-02-01

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO(2) and CH(4) causing a net release of CO(2) and CH(4) to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO(2) and CH(4)) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange.

  14. Paleontological analysis of a lacustrine carbonaceous uranium deposit at the Anderson mine, Date Creek basin, west-central Arizona (U.S.A.)

    USGS Publications Warehouse

    Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.

    1990-01-01

    The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.

  15. Carbonate Formation And Diagenesis In Pastos Grandes Laguna (Bolivia): Modern Analog For The South Atlantic Cretaceous Presalt Travertinoid Deposits

    NASA Astrophysics Data System (ADS)

    Muller, E.; Ader, M.; Gérard, E.; Virgone, A.; Gaucher, E.; Bougeault, C.; Durlet, C.; Moreira, M. A.; Virgile, R.; Vennin, E.; Agogué, H.; Hugoni, M.

    2017-12-01

    The Cretaceous Presalt travertinoid deposits of the South Atlantic are usually considered as "strange deposits" having poor equivalents in modern environments. Pastos Grandes Laguna, which is located in a 2.9 Ma caldera on the andean-bolivian Altiplano (at 4450 m), is intersected by active faults with hydrothermal fluids and presents a spherulitic plateform with similar sedimentological facies to the Presalt: halite and bedded evaporites, shrub-shaped calcites, ooids, pisolites and various stromatolites. Pastos Grandes Laguna is certainly one of the best modern analog of the Presalt for investigating the on going processes of carbonate deposition and diagenesis and the influence of biology. During two expeditions, we recovered samples of gas, water and microbial mats from the hydrothermal sources to the evaporating zones on the spherulitic plateform. These samples are being analyzed to determine 1) the influence of the gases emitted at the hydrothermal sources (chemical and isotopic composition) on the chemistry of the Laguna and the mineralogy of its sediments and 2) the role of ecosystems that develop in this environment on carbonate formation. Preliminary results on gas composition, corrected for the atmospheric contribution, indicates a magmatic source of CO2 partly mantellic associated with a small crustal contribution. Other initial results have so far indicated that CO2 gas emissions, evaporation, as well as photosynthesis and respiration play a role on water chemistry and carbonate precipitation. This study will contribute to the overall understanding of the role of organisms in sedimentation and the predictive diagenetic evolution of hydrothermal and lacustrine deposits.

  16. Differences in carbon source utilisation by orchid mycorrhizal fungi from common and endangered species of Caladenia (Orchidaceae).

    PubMed

    Mehra, S; Morrison, P D; Coates, F; Lawrie, A C

    2017-02-01

    Terrestrial orchids depend on orchid mycorrhizal fungi (OMF) as symbionts for their survival, growth and nutrition. The ability of OMF from endangered orchid species to compete for available resources with OMF from common species may affect the distribution, abundance and therefore conservation status of their orchid hosts. Eight symbiotically effective OMF from endangered and more common Caladenia species were tested for their ability to utilise complex insoluble and simple soluble carbon sources produced during litter degradation by growth with different carbon sources in liquid medium to measure the degree of OMF variation with host conservation status or taxonomy. On simple carbon sources, fungal growth was assessed by biomass. On insoluble substrates, ergosterol content was assessed using ultra-performance liquid chromatography (UPLC). The OMF grew on all natural materials and complex carbon sources, but produced the greatest biomass on xylan and starch and the least on bark and chitin. On simple carbon sources, the greatest OMF biomass was measured on most hexoses and disaccharides and the least on galactose and arabinose. Only some OMF used sucrose, the most common sugar in green plants, with possible implications for symbiosis. OMF from common orchids produced more ergosterol and biomass than those from endangered orchids in the Dilatata and Reticulata groups but not in the Patersonii and Finger orchids. This suggests that differences in carbon source utilisation may contribute to differences in the distribution of some orchids, if these differences are retained on site.

  17. Late Holocene Lacustrine Records of Climate and Vegetation Change From Southernmost South America

    NASA Astrophysics Data System (ADS)

    Moy, C. M.; Dunbar, R. B.; Francois, J.; Moreno, P. I.; Villa Martínez, R.

    2006-12-01

    The westerly wind field is one of the most prominent atmospheric circulation features in the Southern Hemisphere and has a major impact on the climate of southern South America as well as Southern Ocean hydrography. Southernmost South America is well-located to investigate past changes in the westerly winds because regional precipitation variability is controlled by the location and intensity of the wind field and it is the only landmass to extend within the core of the westerlies. Here we present late Holocene lacustrine records of climate change related to the westerlies from southern Patagonia, Chile. We focus on Lago Guanaco, a small hydrologically closed-basin lake in Southern Patagonia, and use stable isotope and pollen data from this site and three additional lakes in order to reconstruct changes in moisture balance related to the westerlies. Lago Guanaco (51°S, 72°W) is located close to the Nothofagus forest-Patagonian Steppe transition in the eastern region of Parque Nacional Torres del Paine. The location and composition of this important biological discontinuity is highly sensitive to the W-E precipitation gradient throughout Patagonia. The 4.75 m sediment core we obtained from the center of the lake has high concentrations of organic mater in addition to ostracodes and bivalves, which are relatively rare in Chilean Patagonia. Eleven AMS radiocarbon dates on organic and carbonate fractions indicate that the record spans the last ~14,400 cal yr BP and modern dates from core tops suggest little influence by old carbon sources. Changes in moisture balance and forest density/proximity are reflected in downcore variations in δ18Obivalve and δ18Oostracode, the Nothofagus/Poaceae paleovegetation index, and the C/N ratio of bulk decalcified organic matter. Combined, these variables document changes in the isotopic composition of the lake water, which largely reflect the isotopic composition of precipitation and the influence of evaporation, as well as shifts

  18. The pre-spawning migratory behaviour of Atlantic salmon Salmo salar in a large lacustrine catchment.

    PubMed

    Kennedy, R J; Allen, M

    2016-09-01

    The movements of adult Atlantic salmon Salmo salar were determined as they migrated to spawning habitats in a large lacustrine catchment, Lough Neagh, in Northern Ireland. The minimum average ground speed of S. salar through the lake was 2·1 km day(-1) and the mean residence time was 11 days. Tagged S. salar tended to actively migrate through the lake which represented a transitory habitat for adult S. salar. Migration time from the release site, through the lake, to a spawning tributary decreased during the migratory period. During the 4 year study period between 20·5 and 41·6% of tagged S. salar which entered the lake each year, explored at least one other channel before ascending the final spawning tributary. Exploratory behaviour was more likely in S. salar which spawned in the tributaries furthest from the sea. Exploratory behaviour was also more likely to occur during periods of reduced discharge in the natal stream. The fishery management implications of complex pre-spawning behaviour in a mixed stock lacustrine system, are discussed. © 2016 The Fisheries Society of the British Isles.

  19. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen

    PubMed Central

    Ene, Iuliana V; Adya, Ashok K; Wehmeier, Silvia; Brand, Alexandra C; MacCallum, Donna M; Gow, Neil A R; Brown, Alistair J P

    2012-01-01

    The survival of all microbes depends upon their ability to respond to environmental challenges. To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose-grown cells, leaving the effects of alternative carbon sources upon stress resistance largely unexplored. We have shown that growth on alternative carbon sources, such as lactate, strongly influence the resistance of C. albicans to antifungal drugs, osmotic and cell wall stresses. Similar trends were observed in clinical isolates and other pathogenic Candida species. The increased stress resistance of C. albicans was not dependent on key stress (Hog1) and cell integrity (Mkc1) signalling pathways. Instead, increased stress resistance was promoted by major changes in the architecture and biophysical properties of the cell wall. Glucose- and lactate-grown cells displayed significant differences in cell wall mass, ultrastructure, elasticity and adhesion. Changes in carbon source also altered the virulence of C. albicans in models of systemic candidiasis and vaginitis, confirming the importance of alternative carbon sources within host niches during C. albicans infections. PMID:22587014

  20. Source contributions to black carbon mass fractions in aerosol particles over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Koga, Seizi; Maeda, Takahisa; Kaneyasu, Naoki

    Aerosol particle number size distributions above 0.3 μm in diameter and black carbon mass concentrations in aerosols were observed on Chichi-jima of the Ogasawara Islands in the northwestern Pacific from January 2000 to December 2002. Chichi-jima is suitable to observe polluted air masses from East Asia in winter and clean air masses over the western North Pacific in summer. In winter, aerosols over Chichi-jima were strongly affected by anthropogenic emissions in East Asia. The form of energy consumption in East Asia varies in various regions. Hence, each source region is expected to be characterized by an individual black carbon mass fraction. A three-dimensional Eulerian transport model was used to estimate contribution rates to air pollutants from each source region in East Asia. Because the Miyake-jima eruption began at the end of June 2000, the influence of smokes from Miyake-jima was also considered in the model calculation. The results of model calculations represent what must be noticed about smokes from volcanoes including Miyake-jima to interpret temporal variations of sulfur compounds over the northwestern Pacific. To evaluate black carbon mass fractions in anthropogenic aerosols as a function of source region, the relationships between the volume concentration of aerosol particles and the black carbon mass concentration in the winter were classified under each source region in East Asia. Consequently, the black carbon mass fractions in aerosols from China, Japan and the Korean Peninsula, and other regions were estimated to be 9-13%, 5-7%, and 4-5%, respectively.

  1. Experimental Evidence that Abrasion of Carbonate Sand is a Significant Source of Carbonate Mud

    NASA Astrophysics Data System (ADS)

    Trower, L.; Kivrak, L.; Lamb, M. P.; Fischer, W. W.

    2017-12-01

    aragonite needles 1-3 µm in length identical to those described in carbonate mud from a range of modern environments. Our results suggest that abrasion during bed load and suspended load transport of carbonate sand, even over small areas, is likely a significant potential source of carbonate mud in both modern and ancient carbonate environments.

  2. The Effects of Different External Carbon Sources on Nitrous Oxide Emissions during Denitrification in Biological Nutrient Removal Processes

    NASA Astrophysics Data System (ADS)

    Hu, Xiang; Zhang, Jing; Hou, Hongxun

    2018-01-01

    The aim of this study was to investigate the effects of two different external carbon sources (acetate and ethanol) on the nitrous oxide (N2O) emissions during denitrification in biological nutrient removal processes. Results showed that external carbon source significantly influenced N2O emissions during the denitrification process. When acetate served as the external carbon source, 0.49 mg N/L and 0.85 mg N/L of N2O was produced during the denitrificaiton processes in anoxic and anaerobic/anoxic experiments, giving a ratio of N2O-N production to TN removal of 2.37% and 4.96%, respectively. Compared with acetate, the amount of N2O production is negligible when ethanol used as external carbon addition. This suggested that ethanol is a potential alternative external carbon source for acetate from the point of view of N2O emissions.

  3. Tracing carbonaceous sources by using particulate carbon and sulfate in precipitation in Calgary, Alberta Canada

    NASA Astrophysics Data System (ADS)

    Ge, C.; Stenhouse, K. J.; Du, K.; Xing, Z.; Norman, A. L.

    2016-12-01

    Carbonaceous matter is often the dominant contributor to Particulate Matter (PM) which has a significant influence on climate, air quality and human health. The measurement of particulate carbon in rainfall in Calgary, Alberta has not been studied. This study reports the sulfate and the first concentrations of particulate carbon (PC) in rainfall in Calgary. It traces seasonal carbonaceous sources for the purpose of understanding sources for air quality control. Precipitation samples are collected twice a day at the University of Calgary. Thermo-optical methods are used to analyze concentrations of PC, including elemental carbon (EC), primary organic carbon (POC) and secondary organic carbon (SOC). Sulfate concentrations are measured using ion chromatography. In this study, sources from long range transport and local emissions are examined. We emphasized the apportionment of OC/EC in oil and gas emissions and diurnal variations in transportation emissions. Weekly average data for dry deposition were calculated to estimate the scavenging ratio of EC/POC/SOC and ions in precipitation. The results of this study will be presented with an emphasis on the relationship of carbonaceous material and sulfate. A range of apportionment methods have been applied to examine limitations in quantifying SOC in fall.

  4. DISCOVERY OF THE SECOND WARM CARBON-CHAIN-CHEMISTRY SOURCE, IRAS15398 - 3359 IN LUPUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Nami; Yamamoto, Satoshi; Sakai, Takeshi

    2009-05-20

    We have conducted a search for carbon-chain molecules toward 16 protostars with the Mopra 22 m and Nobeyama 45 m telescopes, and have detected high excitation lines from several species, such as C{sub 4}H (N = 9-8), C{sub 4}H{sub 2}(J = 10{sub 0,10}-9{sub 0,9}), CH{sub 3}CCH(J = 5-4, K = 2), and HC{sub 5}N(J = 32-31), toward the low-mass protostar, IRAS15398 - 3359 in Lupus. The C{sub 4}H line is as bright as 2.4 K measured with the Nobeyama 45 m telescope. The kinetic temperature is derived to be 12.6 {+-} 1.5 K from the K = 1 and Kmore » = 2 lines of CH{sub 3}CCH. These results indicate that the carbon-chain molecules exist in a region of warm and dense gas near the protostar. The observed features are similar to those found toward IRAS04368+2557 in L1527, which shows warm carbon-chain chemistry (WCCC). In WCCC, carbon-chain molecules are produced efficiently by the evaporation of CH{sub 4} from the grain mantles in a lukewarm region near the protostar. Our data clearly indicate that WCCC is no longer specific to L1527, but occurs in IRAS15398 - 3359. In addition, we draw attention to a remarkable contrast between WCCC and hot corino chemistry in low-mass star-forming regions. Carbon-chain molecules are deficient in hot corino sources like NGC1333 IRAS4B, whereas complex organic molecules seem to be less abundant in the WCCC sources. A possible origin for such source-to-source chemical variations is suggested to arise from the timescale of the starless-core phase in each source. If this is the case, the chemical composition provides an important clue to explore the variation of star formation processes between sources and/or molecular clouds.« less

  5. Utilisation of Carbon Sources by Pythium, Phytophthora and Fusarium Species as Determined by Biolog® Microplate Assay

    PubMed Central

    Khalil, Sammar; Alsanius, Beatrix W

    2009-01-01

    This study examined the metabolic activity of pure cultures of five root pathogens commonly found in closed hydroponic cultivation systems (Phytophthora cryptogea (PC), Phytophthora capsici (PCP), Pythium aphanidermatum (PA), Fusarium oxysporum f.sp. radicis-lycopersici (FORL) and Fusarium solani (FS)) using sole carbon source utilisation in order to develop effective biocontrol strategies against these pathogens. Aliquots of 150 µL of the mycelial suspension were inoculated in each well of GN2 microtitre plates. On the basis of average well colour development and number of positive wells, the pathogens were divided into two groups, (i) PA and FORL and (ii) PC, PCP and FS. Group (i) was characterised by a short lag-phase, a rapid exponential phase involving almost all carbon sources offered and a long stationary phase, while group (ii) had a more extended lag-phase and a slower utilisation rate of the carbon sources offered. The three isolates in group (ii) differed significantly during their exponential phase. The lowest utilisation rate of carbon sources and number of sources utilised was found for PCP. Of the major group of carbon sources, six carbohydrates, three carboxylic acids and four amino acids were rapidly used by all isolates tested at an early stage. The carbon sources gentibiose, α-D-glucose, maltose, sucrose, D-trehalose, L-aspartic acid, L-glutamic acid, L-proline persisted to the end of the exponential phase.Moreover, similarities between the metabolic profiles of the tested pathogen and the those of the resident microflora could also be found. These findings are of great importance as regards the role of the resident microflora in the biocontrol. PMID:19294012

  6. New carbon-isotope evidence from the Polish Basin for a major carbon-cycle perturbation at the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Pointer, Robyn; Hesselbo, Stephen; Littler, Kate; Pieńkowski, Grzegorz; Hodbod, Marta

    2016-04-01

    Carbon-isotope analysis of fossil plant material from a Polish core provides new evidence of a perturbation to the atmospheric carbon-cycle at the Triassic-Jurassic boundary (~201 Ma). The Triassic-Jurassic boundary was a time of extreme climate change which also coincided with the end-Triassic mass extinction. The new data will allow us to identify climatic changes in the Polish Basin across the Triassic-Jurassic boundary and evaluate these changes on a broader scale by comparison to data from other sites located around the world. The Niekłan borehole core, located in the southern Polish Basin, provides a ~200 metre-long terrestrial record spanning the Rhaetian and Hettangian, including the Triassic-Jurassic boundary (~208-199 Ma). The Niekłan core consists of interbedded fluvial and lacustrine sediments containing preserved plant material and thus provides an excellent opportunity to study both terrestrial palaeoenvironmental changes in the Polish Basin and perturbations in the carbon-cycle more broadly. Carbon-isotope analysis of macrofossil plant material and microscopic woody phytoclasts from the Niekłan core reveals a negative carbon-isotope excursion (CIE) of ~-3‰ at the end of the Rhaetian, before a gradual return to more positive values thereafter. The negative CIE suggests an injection of isotopically-light carbon into the atmosphere occurred just before the Triassic-Jurassic boundary. Likely sources of this carbon include volcanogenic gases, methane released from gas hydrates, or a combination of the two. The negative CIE seen in plant material at Niekłan is also recorded in a variety of geological materials from contemporaneous sites world-wide. These time-equivalent, but geographically separated, records indicate that the negative CIE recorded in the Niekłan plant material is the result of a regional or global carbon-cycle perturbation and is not merely a local signal. Future work will focus on using a range of palaeoenvironmental proxies in

  7. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  8. Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources.

    PubMed

    Wang, Ping; Zhang, Geng; Li, Zhichen; Sheng, Wangjian; Zhang, Yichi; Gu, Jiangjiang; Zheng, Xinsheng; Cao, Feifei

    2016-10-03

    Polybenzoxazine is used as a novel carbon and nitrogen source for coating LiFePO 4 to obtain LiFePO 4 @nitrogen-doped carbon (LFP@NC) nanocomposites. The nitrogen-doped graphene-like carbon that is in situ coated on nanometer-sized LiFePO 4 particles can effectively enhance the electrical conductivity and provide fast Li + transport paths. When used as a cathode material for lithium-ion batteries, the LFP@NC nanocomposite (88.4 wt % of LiFePO 4 ) exhibits a favorable rate performance and stable cycling performance.

  9. Optimization of VFAs and ethanol production with waste sludge used as the denitrification carbon source.

    PubMed

    Guo, Liang; Zhang, Jiawen; Yin, Li; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2015-01-01

    An acidification metabolite such as volatile fatty acids (VFAs) and ethanol could be used as denitrification carbon sources for solving the difficult problem of carbon source shortages and low nitrogen removal efficiency. A proper control of environmental factors could be essential for obtaining the optimal contents of VFAs and ethanol. In this study, suspended solids (SS), oxidation reduction potential (ORP) and shaking rate were chosen to investigate the interactive effects on VFAs and ethanol production with waste sludge. It was indicated that T-VFA yield could be enhanced at lower ORP and shaking rate. Changing the SS, ORP and shaking rate could influence the distribution of acetic, propionic, butyric, valeric acids and ethanol. The optimal conditions for VFAs and ethanol production used as a denitrification carbon source were predicted by analyzing response surface methodology (RSM).

  10. Impacts of the Central Atlantic Magmatic Province on the Terrestrial Carbon Cycle in Western Pangea

    NASA Astrophysics Data System (ADS)

    Knobbe, T.; Suarez, C. A.

    2014-12-01

    Carbon isotope analysis of bulk organic and inorganic carbon preserved in the lacustrine deposits of the late Triassic to Jurassic Moenave Formation were analyzed to construct a carbon isotope chemostratigraphic profile of western Pangea. Negative carbon isotope excursions (NCIE) are characteristic of the Late Triassic and are attributed to the effects of the Central Atlantic Magmatic Province (CAMP) on climate and the global C-cycle. The aerial extent of the CAMP basalts is the largest in Earth's history spanning four continents with an area of ~ 7 x 106 km2 and a volume of 3 to 11 x 106 km3. Carbon isotope and paleontological evidence has shown that the end Triassic extinction is near synchronous to the CAMP and likely spurred on the extinction event as well as an increase in global temperatures of 2 - 2.5°C. Global correlations of NCIEs between marine and terrestrial strata provide a connection between the CAMP basalts and the end-Triassic extinction. Preliminary data collected at Potter Canyon, Arizona reveal a 5.5 ‰ decrease in δ13Corganic and a 2.75‰ decrease in δ13Ccarbonate in the lower portion of the Whitmore Point Member. These NCIEs indicate the global carbon cycle perturbation caused by the CAMP is recorded in lacustrine sediments of the Whitmore Point Member in southern Utah and northern Arizona. Additional samples collected at high sampling frequencies at other locations in the Whitmore Point Member will corroborate the terrestrial impacts of the CAMP perturbation at these locations across the region. Correlation of NCIES associated with the CAMP and any identified microfossils of the Whitmore Point Member will also illustrate the global effects of increased atmospheric CO2 on the terrestrial environment and biota.

  11. Analyzing sources to sedimentary organic carbon in the Gulf of Urabá, southern Caribbean, using carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Rúa, Alex; Liebezeit, Gerd; Grajales, Heazel; Palacio, Jaime

    2017-10-01

    Carbon stable isotopes analysis serve reconstruction of the origin of organic matter (OM) deposited onto sediments. They also allow tracing vegetation change at different time scales. This study weighs the contribution of both marine and terrestrial sources to sedimentary organic carbon (OC) from a southwestern Caribbean Gulf partly surrounded by large Musa acuminata (banana) croplands. The δ13C values in three sediment cores from the gulf have slightly decreased over 1000 yrs BP, indicating enhanced terrestrial input of detrital carbon owing to river discharge. A two-end mixing model fed with these δ13C values showed that averaged terrestrial contribution of OC to sediment was 52.0% at prodelta, 76.4% at delta front, and 64.2% at Colombia Bay. This agrees well with sediment dynamics. The main source of sedimentary OC within the gulf was terrestrial instead of marine. In fact, a distorted trend in δ13C values for one of the coring sites could be the result of banana crop expansion through the 20th century.

  12. The formation of lacustrine dolomites: an example from the Tortonian-Messinian sequence at the East Mediterranean margins (northern Israel)

    NASA Astrophysics Data System (ADS)

    Shaked Gelband, Dotan; Starinsky, Abraham; Stein, Mordechai

    2017-04-01

    Lacustrine water bodies that filled the tectonic depressions in the Lower Galilee area of Israel during the Tortonian-Messinian periods deposited Bira and Gesher Formations, which comprise marly limestones and dolomites, basalts, and varying amounts of mollusc fossils. Most fossils are gastropods of fresh to brackish water origin, while marine representation is minor and comprise monospecific assemblages of euryhaline bivalves. During the deposition of the Tortonian Bira formation the lakes were mostly influenced by meteoric waters while during the deposition of the Messinian Gesher Formation they became more swampy. Here, we set to establish the deposition conditions of the dolomites in the lacustrine formations. The following petrographic characteristics indicate dolomitization of precursor carbonate sediment during early diagenesis stage: (1) Dolomitized fossils with similar texture as the surrounding dolomite matrix; (2) Common euhedral inner zone crystals, representing original growth in solution or plastic environment; (3) Subhedral outer shape derived from neighboring crystals collisions. More information is given by the δ18O and δ13C values of the dolomites. The δ18O of the inter-layered limestones and dolomites fluctuates between -3‰ to -4‰ (VPDB) in the limestones and +5‰ to -1.5‰ (VPDB) in the adjacent dolomites. These fluctuations are prominent in the Bira formation and become smaller along the sequence with the decrease in the dolomite values. δ13C values of both limestones and dolomites gradually decrease along the stratigraphic section, from -3.5‰ to -10‰ (VPDB) in the limestones, and from 0‰ to -8‰ (VPDB) in the dolomites. The data suggest a dolomitization process controlled by the following events: 1. Evaporation of fresh lake waters originated from the surrounding environment as runoff. It should be emphasized that significant evaporation could take place only in terminal lakes, during periods of relatively dry climate with low

  13. Ecological state of the Romanian Black Sea littoral lacustrine ecosystems

    NASA Astrophysics Data System (ADS)

    Gomoiu, M.-T.

    2009-04-01

    The author uses the results of his own researches as well as data from specialty literature to assess the ecological state of some typical lacustrine ecosystems considered, about 50 years ago, of major importance by their functions, services and researches, for the human populations in the settlements nearby. Based on this assessment the author recommends a few criteria which can be taken into account when programs of integrated management of these coastal ecosystems are initiated. The paper focuses on the study cases regarding the following major ecosystems: 1. Razelm-Sinoie Lagoon Complex - tightly linked to the Danube River and Delta systems, 2. Taşaul Lake - interfered in the last two decades by a branch of the DanubeRiver - Black Sea Canal and 3. Techirghiol Lake - for a long time under the sea level, a hyperhaline lake with therapeutic, sapropelic mud, disturbed by huge quantities of freshwaters infiltrated from the irrigation system. At present, the state of the lacustrine ecosystems at the Romanian Black Sea Coast can be characterized, mainly, by the following aspects: · Increase in the quantities of nutrients and chemical toxicants; · Rise in the level and frequency of eutrophication and pollution phenomena; · Drastic reduction of specific diversity; · Simplification of communities' structure - biocoenosis homogeneity; · Decrease in numerical abundance and biomass of benthic populations and consequently, low biofilter power by the decrease of the filter-feeder populations; · Worsening of the qualitative and the quantitative state of the biological benthic resources; · Thriving opportunistic forms (e.g. the worms causing sediment bioturbation); · Invasion by some exotic species, with harmful, unexpected consequences; · All populations undergo quantitative fluctuations; · Decrease in the fish population and in the use values of lacustrine assets, with strong impact on the welfare of the human society. Almost all pressure forms associated with the

  14. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE PAGES

    Evans, M.; Kholod, N.; Malyshev, V.; ...

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  15. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, M.; Kholod, N.; Malyshev, V.

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  16. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Zhang, Siyu; Xu, Min; Song, Jiamei

    2018-03-01

    The toxic carbon source can cause higher residual effluent dissolved organic carbon than easily biodegraded carbon source in activated sludge process. In this study, an integrated activated sludge model is developed as the tool to understand the mechanism of toxic carbon source (phenol) on the reaction, regarding the carbon flows during the aeration period in the batch reactor. To estimate the toxic function of phenol, the microbial cells death rate (k death ) is introduced into the model. The integrated model was calibrated and validated by the experimental data and it was found the model simulations matched the all experimental measurements. In the steady state, the toxicity of phenol can result in higher microbial cells death rate (0.1637 h -1 vs 0.0028 h -1 ) and decay rate coefficient of biomass (0.0115 h -1 vs 0.0107 h -1 ) than acetate. In addition, the utilization-associated products (UAP) and extracellular polymeric substances (EPS) formation coefficients of phenol are higher than that of acetate, indicating that more carbon flows into the extracellular components, such as soluble microbial products (SMP), when degrading toxic organics. In the non-steady state of feeding phenol, the yield coefficient for growth and maximum specific growth rate are very low in the first few days (1-10 d), while the decay rate coefficient of biomass and microbial cells death rate are relatively high. The model provides insights into the difference of the dynamic reaction with different carbon sources in the batch reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of CO2 on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism.

    PubMed

    Wan, Rui; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Huang, Haining

    2018-06-15

    The potential effect of CO 2 on environmental microbes has drawn much attention recently. As an important section of the nitrogen cycle, biological denitrification requires electron donor to reduce nitrogen oxide. Nicotinamide adenine dinucleotide (NADH), which is formed during carbon source metabolism, is a widely reported electron donor for denitrification. Here we studied the effect of CO 2 on NADH production and carbon source utilization in the denitrifying microbe Paracoccus denitrificans. We observed that NADH level was decreased by 45.5% with the increase of CO 2 concentration from 0 to 30,000ppm, which was attributed to the significantly decreased utilization of carbon source (i.e., acetate). Further study showed that CO 2 inhibited carbon source utilization because of multiple negative influences: (1) suppressing the growth and viability of denitrifier cells, (2) weakening the driving force for carbon source transport by decreasing bacterial membrane potential, and (3) downregulating the expression of genes encoding key enzymes involved in intracellular carbon metabolism, such as citrate synthase, aconitate hydratase, isocitrate dehydrogenase, succinate dehydrogenase, and fumarate reductase. This study suggests that the inhibitory effect of CO 2 on NADH production in denitrifiers might deteriorate the denitrification performance in an elevated CO 2 climate scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. North America carbon dioxide sources and sinks: magnitude, attribution, and uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Anthony W.; Hayes, Daniel J.; Huntzinger, Deborah N.

    2012-12-01

    North America is both a source and sink of atmospheric CO2. Sources, predominately fossil-fuel combustion in the United States along with contributions from deforestation in Mexico, add CO2 to the atmosphere. Most North America ecosystems, particularly regrowing forests in the United States, are sinks for atmospheric CO2. CO2 is removed from the atmosphere in photosynthesis, converted into biomass and stored as carbon in vegetation, soil and wood products. Fossil-fuel emissions dominate the North American source-sink balance. North America is a net source of atmospheric CO2 with ecosystem sinks balancing approximately 35% of fossil-fuel CO2 emissions from North America.

  19. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species

    PubMed Central

    Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria

    2014-01-01

    Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hanaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima Schwanniomyces occidentalis and Wickerhamomyces ciferii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals. PMID:24818698

  20. Selective enhancement and verification of woody biomass digestibility as a denitrification carbon source.

    PubMed

    Hu, Rongting; Zheng, Xilai; Xin, Jia; Sun, Zhaoyue; Zheng, Tianyuan

    2017-11-01

    The denitrification efficiency of woody biomass as carbon source is low because of its poor carbon availability. In this study, representative poplar sawdust was pretreated with lime and peracetic acid to enhance the biomass digestibility to different degrees; sawdust was then mixed with soil to investigate its denitrification efficiency. Under controllable conditions (25-95°C, 12-24h, varying dosages), sawdust digestibility (characterized by reducing sugar yield) was selectively enhanced 1.0-21.8 times over that of the raw sawdust (28.8mgeq.glucoseg -1 dry biomass). This increase was mainly attributed to the removal of lignin from the biomass. As a carbon source, the sawdust (digestibility enhanced by 5.4 times) increased the nitrate removal rate by 4.7 times, without N 2 O emission. However, the sawdust with high digestibility (12.6 or 18.0 times), despite releasing more dissolved organic carbon (DOC), did not exhibit further increase in denitrification efficiency, and emitted N 2 O. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Geochemistry of Precambrian carbonates. V - Late Paleoproterozoic seawater

    NASA Technical Reports Server (NTRS)

    Veizer, Jan; Plumb, K. A.; Clayton, R. N.; Hinton, R. W.; Grotzinger, J. P.

    1992-01-01

    A study of mineralogy, chemistry, and isotopic composition of the Coronation Supergroup (about 1.9 Ga, NWT), Canada, and the McArthur Group (about 1.65 NT), Australia, is reported in order to obtain better constrained data for the first- and second-order variations in the isotopic composition of late Paleoproterozoic (1.9 +/- 0.2 Ga) seawater. Petrologically, both carbonate sequences are mostly dolostones. The McArthur population contains more abundant textural features that attest to the former presence of sulfates and halite, and the facies investigated represent ancient equivalents of modern evaporitic sabkhas and lacustrine playa lakes. It is suggested that dolomitization was an early diagenetic event and that the O-18 depletion of the Archean to late Paleoproterozoic carbonates is not an artifact of postdepositional alteration.

  2. Effect of carbon source on the morphology and electrochemical performances of LiFePO4/C nanocomposites.

    PubMed

    Liu, Shuxin; Wang, Haibin; Yin, Hengbo; Wang, Hong; He, Jichuan

    2014-03-01

    The carbon coated LiFePO4 (LiFePO4/C) nanocomposites materials were successfully synthesized by sol-gel method. The microstructure and morphology of LiFePO4/C nanocomposites were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results showed that the carbon layers decomposed by different dispersant and carbon source had different graphitization degree, and the sugar could decompose to form more graphite-like structure carbon. The carbon source and heat-treatment temperature had some effect on the particle size and morphology, the sample LFP-S700 synthesized by adding sugar as carbon source at 700 degrees C had smaller particle size, uniform size distribution and spherical shape. The electrochemical behavior of LiFePO4/C nanocomposites was analyzed using galvanostatic measurements and cyclic voltammetry (CV). The results showed that the sample LFP-S700 had higher discharge specific capacities, higher apparent lithium ion diffusion coefficient and lower charge transfer resistance. The excellent electrochemical performance of sample LFP-S700 could be attributed to its high graphitization degree of carbon, smaller particle size and uniform size distribution.

  3. The use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation.

    PubMed

    Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng

    2016-11-01

    Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Bosch, Carme; Kang, Shichang; Andersson, August; Chen, Pengfei; Zhang, Qianggong; Cong, Zhiyuan; Chen, Bing; Qin, Dahe; Gustafsson, Örjan

    2016-08-01

    Combustion-derived black carbon (BC) aerosols accelerate glacier melting in the Himalayas and in Tibet (the Third Pole (TP)), thereby limiting the sustainable freshwater supplies for billions of people. However, the sources of BC reaching the TP remain uncertain, hindering both process understanding and efficient mitigation. Here we present the source-diagnostic Δ14C/δ13C compositions of BC isolated from aerosol and snowpit samples in the TP. For the Himalayas, we found equal contributions from fossil fuel (46+/-11%) and biomass (54+/-11%) combustion, consistent with BC source fingerprints from the Indo-Gangetic Plain, whereas BC in the remote northern TP predominantly derives from fossil fuel combustion (66+/-16%), consistent with Chinese sources. The fossil fuel contributions to BC in the snowpits of the inner TP are lower (30+/-10%), implying contributions from internal Tibetan sources (for example, yak dung combustion). Constraints on BC sources facilitate improved modelling of climatic patterns, hydrological effects and provide guidance for effective mitigation actions.

  5. Architecture and reservoir quality of low-permeable Eocene lacustrine turbidite sandstone from the Dongying Depression, East China

    NASA Astrophysics Data System (ADS)

    Munawar, Muhammad Jawad; Lin, Chengyan; Chunmei, Dong; Zhang, Xianguo; Zhao, Haiyan; Xiao, Shuming; Azeem, Tahir; Zahid, Muhammad Aleem; Ma, Cunfei

    2018-05-01

    The architecture and quality of lacustrine turbidites that act as petroleum reservoirs are less well documented. Reservoir architecture and multiscale heterogeneity in turbidites represent serious challenges to production performance. Additionally, establishing a hierarchy profile to delineate heterogeneity is a challenging task in lacustrine turbidite deposits. Here, we report on the turbidites in the middle third member of the Eocene Shahejie Formation (Es3), which was deposited during extensive Middle to Late Eocene rifting in the Dongying Depression. Seismic records, wireline log responses, and core observations were integrated to describe the reservoir heterogeneity by delineating the architectural elements, sequence stratigraphic framework and lithofacies assemblage. A petrographic approach was adopted to constrain microscopic heterogeneity using an optical microscope, routine core analyses and X-ray diffraction (XRD) analyses. The Es3m member is interpreted as a sequence set composed of four composite sequences: CS1, CS2, CS3 and CS4. A total of forty-five sequences were identified within these four composite sequences. Sand bodies were mainly deposited as channels, levees, overbank splays, lobes and lobe fringes. The combination of fining-upward and coarsening-upward lithofacies patterns in the architectural elements produces highly complex composite flow units. Microscopic heterogeneity is produced by diagenetic alteration processes (i.e., feldspar dissolution, authigenic clay formation and quartz cementation). The widespread kaolinization of feldspar and mobilization of materials enhanced the quality of the reservoir by producing secondary enlarged pores. In contrast, the formation of pore-filling authigenic illite and illite/smectite clays reduced its permeability. Recovery rates are higher in the axial areas and smaller in the marginal areas of architectural elements. This study represents a significant insight into the reservoir architecture and

  6. [Effects of carbon sources changes on the property and morphology of 2,4-D degraded aerobic sludge granules].

    PubMed

    Ma, Jing-Yun; Quan, Xian-Chun; Xiong, Wei-Cong

    2010-11-01

    This study investigated the changes of the morphology, structure, and capability of removing the target contamination of the aerobic granules pre-cultured with mixed substrates of glucose and 2,4-dichlorophenoxyacetic acid (2,4-D) in a long-time running sequence batch reactor (SBR), when the carbon source transformed into the sole carbon source of 2,4-D. Results showed that when the substrate turned to the sole carbon source of 2,4-D, the aerobic granules still maintained a strong degradation ability to the target contamination; a 2,4-D removal percentage of 99.2% -100% and an average COD removal rate of 85.6% were achieved at the initial 2,4-D concentration of 361-564 mg/L. Carbon source transformation caused certain damages to the original aerobic granule structure, made some parts of granules disintegrated, and led to granule size decline from 513 microm to 302 microm. However, those granules maintained the main body, re-aggregated and grew after a period of adaptation due to their strong resistance to toxicity. Aerobic granules capable of utilizing 2,4-D as the sole carbon source with a good settling ability (SYI 20-40 mL/g) and a mean diameter of 489 microm were finally obtained in this study. Scanning electron microscope (SEM) observation showed that the diversity of granule microbial species was declined when turned to the sole carbon source.

  7. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    DOE PAGES

    Campbell, J. E.; Whelan, Mary; Seibt, U.; ...

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a currentmore » anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.« less

  8. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazurek, M.A.; Hildemann, L.M.; Cass, G.R.

    1990-04-01

    Extractable organic compounds having between 6 to 40 carbon atoms comprise an important mass fraction of the fine particulate matter samples from major urban emission sources. Depending on the emission source type, this solvent-soluble fraction accounts for <20% to 100% of the total organic aerosol mass, as measured by quantitative high-resolution has chromatography (HRGC) with flame ionization detection. In addition to total extract quantitation, HRGC can be applied to further analyses of the mass distributions of elutable organics present in the complex aerosol extract mixtures, thus generating profiles that serve as fingerprints'' for the sources of interest. This HRGC analyticalmore » method is applied to emission source samples that contain between 7 to 12,000 {mu}g/filter organic carbon. It is shown to be a sensitive technique for analysis of carbonaceous aerosol extract mixtures having diverse mass loadings and species distributions. This study describes the analytical chemical methods that have been applied to: the construction of chemical mass balances based on the mass of fine organic aerosol emitted for major urban sources of particulate carbon; and the generation of discrete emission source chemical profiles derived from chromatographic characteristics of the organic aerosol components. 21 refs., 1 fig., 2 tabs.« less

  9. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.

    PubMed

    Baccini, A; Walker, W; Carvalho, L; Farina, M; Sulla-Menashe, D; Houghton, R A

    2017-10-13

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year -1 ). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year -1 and gains of 436.5 ± 31.0 Tg C year -1 Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Carbon source-sink limitations differ between two species with contrasting growth strategies: Source-sink limitations vary with growth strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Angela C.; Rogers, A.; Rees, M.

    When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less

  11. Carbon source-sink limitations differ between two species with contrasting growth strategies: Source-sink limitations vary with growth strategy

    DOE PAGES

    Burnett, Angela C.; Rogers, A.; Rees, M.; ...

    2016-09-22

    When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less

  12. Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation

    NASA Astrophysics Data System (ADS)

    Tutolo, Benjamin M.; Tosca, Nicholas J.

    2018-03-01

    Despite their clear economic significance, Cretaceous presalt carbonates of the South Atlantic continental margins are not well-described by published facies models. This knowledge gap arises, in part, because the chemical processes that generate distinctive sedimentary products in alkaline, non-marine environments are poorly understood. Here, we use constraints inferred from reported mineralogical and geochemical features of presalt carbonate rocks to design and perform a suite of laboratory experiments to quantify the processes of alkaline chemical sedimentation. Using real-time observations of in-situ fluid chemistry, post-experiment analysis of precipitated solids, and geochemical modeling tools, we illustrate that spherulitic carbonates and Mg-silicate clays observed in presalt carbonates were likely precipitated from elevated pH (∼10-10.5) waters with high concentrations of silica and alkali cations typical of intermediate to felsic rocks, such as Na+ and K+. Charge balance constraints require that these cations were not counterbalanced to any significant degree by anions typical of seawater, such as Cl- and SO4-, which implies minimal seawater involvement in presalt deposition. Experimental data suggest that, at this alkaline pH, only modest concentrations (i.e., ∼0.5-1 mmol/kg) of Ca++ would have been required to precipitate spheroidal CaCO3. Given the rapid rates of CaCO3 nucleation and growth under such conditions, it is unlikely that Ca++ concentrations in lake waters ever exceeded these values, and sustained chemical fluxes are therefore required for extensive sediment accumulation. Moreover, our experiments indicate that the original mineralogy of presalt CaCO3 could have been calcite or aragonite, but the differing time scales of precipitation between CaCO3 and Mg-silicates would have tended to skew the Mg/Ca ratio in solution towards elevated values which favor aragonite. Mg-silicate nucleation and growth rates measured during our experiments

  13. Lacustrine flow (divers, side scan sonar, hydrogeology, water penetrating radar) used to understand the location of a drowned person

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair

    2014-05-01

    An unusual application of hydrological understanding to a police search is described. The lacustrine search for a missing person provided reports of bottom-water currents in the lake and contradictory indications from cadaver dogs. A hydrological model of the area was developed using pre-existing information from side scan sonar, a desktop hydrogeological study and deployment of water penetrating radar (WPR). These provided a hydrological theory for the initial search involving subaqueous groundwater flow, focused on an area of bedrock surrounded by sediment, on the lake floor. The work shows the value a hydrological explanation has to a police search operation (equally to search and rescue). With hindsight, the desktop study should have preceded the search, allowing better understanding of water conditions. The ultimate reason for lacustrine flow in this location is still not proven, but the hydrological model explained the problems encountered in the initial search.

  14. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically ;heavy; compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  15. Effect of geological carbon sources on eddy covariance measurements: analysis and possible correction approaches

    NASA Astrophysics Data System (ADS)

    Papale, D.; Rey, A.; Belelli-Marchesini, L.; Etiope, G.; Pegoraro, E.

    2013-12-01

    A recent set of studies carried out in the SE of Spain highlighted the need to consider geological carbon sources when estimating the net ecosystem carbon balance (NECB) of terrestrial ecosystems located in areas potentially affected by geofluid circulation. In this study we present the mechanisms and propose a new methodology using physical parameters of the atmospheric boundary layer to quantify the CO2 coming from deep origin. To test our approach, we compare NECB estimates with seasonal patterns of soil CO2 efflux and vegetation activity measured by satellite images (NDVI) over two-year period at this site (2007/2008). According with the eddy covariance measurements the alpha grass ecosystem was a net carbon source (93.7 and 145.0 g C m-2, for the years 2007 and 2008, respectively) particularly as a result of large amounts of carbon released over the dry period. This relevant CO2 emission (reaching up to 15 umol m-2 s-1) was however not related to ecosystem activities as confirmed by measurements of soil CO2 efflux using chambers (ca. 0.5 umol m-2 s-1) and plant productivity that was minimal during this period. A simple correction based on a linear relationship between NECB and wind speed for different stability conditions and wind sectors has been used to estimate the geological flux FGEO and subtracted it from the NECB to obtain the biological flux FBIO. We then partitioned FBIO into gross primary productivity and ecosystem respiration and proved that, after removing FGEO, ecosystem and soil respiration followed similar temporal patterns. The annual contribution of the geological component to NECB was 49.6 and 46.7 % for the year 2007 and 2008, respectively. Therefore, potential contribution of geological carbon sources should be tested and quantified in those ecosystems located in areas with potential natural emission of geologic gases to the surface. References: REY A., BELELLI MARCHESINI L., WERE A., SERRANO ORTIZ P., ETIOPE G., PAPALE D, DOMINGO F

  16. Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Wei; Cao, Bing-Yang

    2013-12-01

    The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.

  17. Qualitative and quantitative analysis of Dibenzofuran, Alkyldibenzofurans, and Benzo[b]naphthofurans in crude oils and source rock extracts

    USGS Publications Warehouse

    Meijun Li,; Ellis, Geoffrey S.

    2015-01-01

    Dibenzofuran (DBF), its alkylated homologues, and benzo[b]naphthofurans (BNFs) are common oxygen-heterocyclic aromatic compounds in crude oils and source rock extracts. A series of positional isomers of alkyldibenzofuran and benzo[b]naphthofuran were identified in mass chromatograms by comparison with internal standards and standard retention indices. The response factors of dibenzofuran in relation to internal standards were obtained by gas chromatography-mass spectrometry analyses of a set of mixed solutions with different concentration ratios. Perdeuterated dibenzofuran and dibenzothiophene are optimal internal standards for quantitative analyses of furan compounds in crude oils and source rock extracts. The average concentration of the total DBFs in oils derived from siliciclastic lacustrine rock extracts from the Beibuwan Basin, South China Sea, was 518 μg/g, which is about 5 times that observed in the oils from carbonate source rocks in the Tarim Basin, Northwest China. The BNFs occur ubiquitously in source rock extracts and related oils of various origins. The results of this work suggest that the relative abundance of benzo[b]naphthofuran isomers, that is, the benzo[b]naphtho[2,1-d]furan/{benzo[b]naphtho[2,1-d]furan + benzo[b]naphtho[1,2-d]furan} ratio, may be a potential molecular geochemical parameter to indicate oil migration pathways and distances.

  18. Methane-derived authigenic carbonates along the North Anatolian fault system in the Sea of Marmara (Turkey)

    NASA Astrophysics Data System (ADS)

    Crémière, Antoine; Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Zitter, Tiphaine; Çağatay, M. Namik; Henry, Pierre

    2012-08-01

    The Marnaut cruise (May-June 2007) investigated the submerged part of the North Anatolian fault system, an active tectonic area in the Sea of Marmara. Already known and new fluid venting sites along the fault system were visited by submersible diving. Cold seeps present a considerable diversity of geochemical background associated with occurrences of authigenic carbonate crusts outcropping at the seafloor. Buried carbonate concretions were also recovered by coring within the sediments of the Tekirdağ Basin and of the Western-High ridge that separates the Tekirdağ and Central Basins. Interestingly, numerous of these early diagenetic carbonates were found within the transitional sediments from lacustrine to marine environment deposited after the late glacial maximum. The authigenic carbonates are mainly composed of aragonite, Mg-calcite and minor amounts of dolomite, and are often associated with pyrite and barite. The carbon isotopic compositions of carbonates present a wide range of values from -50.6‰ to +14.2‰ V-PDB indicating different diagenetic settings and complex mixtures of dissolved inorganic carbon from different sources. The low δ13C values of the seafloor crusts and of most buried concretions indicate that the carbon source was a mixture of microbial and thermogenic methane and possibly other hydrocarbons that were oxidized by anaerobic microbial processes. The positive δ13C values of a few buried concretions from the Western-High ridge reflect the mineralization of heavy CO2, which is thought to represent the residual by-product of oil biodegradation in a subsurface petroleum reservoir that migrated up with brines. Most of the oxygen isotopic compositions of seafloor carbonates are close to the isotopic equilibrium with the present-day bottom water conditions but a few values as low as -1.9‰ V-PDB indicate precipitation from brackish waters. In buried carbonate concretions, δ18O values as high as +4.9‰ V-PDB reflect the contribution of

  19. The effect of various carbon sources on the growth of single-celled cyanophyta

    NASA Technical Reports Server (NTRS)

    Avilov, I. A.; Sidorenkova, E. S.

    1983-01-01

    In 19 strains of unicellular blue-green algae, belonging to general Synechococcus, Synechocystis, Aphanocapsa and Aphanothece, the capacity of growth under mixotrophic conditions in mineral media with organic carbon sources (carbohydrates, polyols) was investigated. At moderate light intensity (1200 lx) and 0.5% of carbon source there was revealed: (1) Stimulation of growth; (2) Partial or complete inhibition of growth; (3) No influence of carbohydrate and polyols on the growth of some algae strains. Three physiological groups for the investigated strains have been outlined on the basis of data obtained. The possibility of using the differences revealed in classification of unicellular blue-green algae is discussed.

  20. Differences in carbon source usage by dental plaque in children with and without early childhood caries

    PubMed Central

    Zhao, Yan; Zhong, Wen-Jie; Xun, Zhe; Zhang, Qian; Song, Ye-Qing; Liu, Yun-Song; Chen, Feng

    2017-01-01

    Early childhood caries (ECC) is a considerable pediatric and public health problem worldwide. Preceding studies have focused primarily on bacterial diversity at the taxonomic level. Although these studies have provided significant information regarding the connection between dental caries and oral microbiomes, further comprehension of this microbial community’s ecological relevance is limited. This study identified the carbon source metabolic differences in dental plaque between children with and without ECC. We compared the microbial community functional diversity in 18 caries-free subjects with 18 severe ECC patients based on sole carbon source usage using a Biolog assay. The anaerobic microbial community in the ECC patients displayed greater metabolic activity than that of the control group. Specific carbon source metabolism differed significantly between the two groups. Subjects from the two groups were well distinguished by cluster and principal component analyses based on discriminative carbon sources. Our results implied that the microbial functional diversity between the ECC patients and healthy subjects differed significantly. In addition, the Biolog assay furthered our understanding of oral microbiomes as a composite of functional abilities, thus enabling us to identify the ecologically relevant functional differences among oral microbial communities.

  1. [Carbon Source Utilization Characteristics of Soil Microbial Community for Apple Orchard with Interplanting Herbage].

    PubMed

    Du, Yi-fei; Fang, Kai-kai; Wang, Zhi-kang; Li, Hui-ke; Mao, Peng-juan; Zhang, Xiang-xu; Wang, Jing

    2015-11-01

    As soil fertility in apple orchard with clean tillage is declined continuously, interplanting herbage in orchard, which is a new orchard management model, plays an important role in improving orchard soil conditions. By using biolog micro-plate technique, this paper studied the functional diversity of soil microbial community under four species of management model in apple orchards, including clear tillage model, interplanting white clover model, interplanting small crown flower model and interplanting cocksfoot model, and the carbon source utilization characteristics of microbial community were explored, which could provide a reference for revealing driving mechanism of ecological process of orchard soil. The results showed that the functional diversity of microbial community had a significant difference among different treatments and in the order of white clover > small crown flower > cocksfoot > clear tillage. The correlation analysis showed that the average well color development (AWCD), Shannon index, Richness index and McIntosh index were all highly significantly positively correlated with soil organic carbon, total nitrogen, microbial biomass carbon, and Shannon index was significantly positively correlated with soil pH. The principal component analysis and the fingerprints of the physiological carbon metabolism of the microbial community demonstrated that grass treatments improved carbon source metabolic ability of soil microbial community, and the soil microbes with perennial legumes (White Clover and small crown flower) had a significantly higher utilization rate in carbohydrates (N-Acetyl-D-Glucosamine, D-Mannitol, β-Methyl-D-Glucoside), amino acids (Glycyl-L-Glutamic acid, L-Serine, L-Threonine) and polymers (Tween 40, Glycogen) than the soil microbes with clear tillage. It was considered that different treatments had the unique microbial community structure and peculiar carbon source utilization characteristics.

  2. Use of food waste-recycling wastewater as an alternative carbon source for denitrification process: A full-scale study.

    PubMed

    Kim, Eunji; Shin, Seung Gu; Jannat, Md Abu Hanifa; Tongco, Jovale Vincent; Hwang, Seokhwan

    2017-12-01

    Using organic wastes as an alternative to commercial carbon sources could be beneficial by reducing costs and environmental impacts. In this study, food waste-recycling wastewater (FRW) was evaluated as an alternative carbon source for biological denitrification over a period of seven months in a full-scale sewage wastewater treatment plant. The denitrification performance was stable with a mean nitrate removal efficiency of 97.2%. Propionate was initially the most persistent volatile fatty acid, but was completely utilized after 19days. Eubacteriacea, Saprospiraceae, Rhodocyclaceae and Comamonadaceae were the major bacterial families during FRW treatment and were regarded as responsible for hydrolysis (former two) and nitrate removal (latter two) of FRW. These results demonstrate that FRW can be an effective external carbon source; process stabilization was linked to the acclimation and function of bacterial populations to the change of carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Geochemistry and diagenesis of Miocene lacustrine siliceous sedimentary and pyroclastic rocks, Mytilinii basin, Samos Island, Greece

    USGS Publications Warehouse

    Stamatakis, M.G.; Hein, J.R.; Magganas, A.C.

    1989-01-01

    A Late Miocene non-marine stratigraphic sequence composed of limestone, opal-CT-bearing limestone, porcelanite, marlstone, diatomaceous marlstone, dolomite, and tuffite crops out on eastern Samos Island. This lacustrine sequence is subdivided into the Hora Beds and the underlying Pythagorion Formation. The Hora Beds is overlain by the clastic Mytilinii series which contains Turolian (Late Miocene) mammalian fossils. The lacustrine sequence contains volcanic glass and the silica polymorphs opal-A, opal-CT, and quartz. Volcanic glass predominantly occurs in tuffaceous rocks from the lower and upper parts of the lacustrine sequence. Opal-A (diatom frustules) is confined to layers in the upper part of the Hora Beds. Beds rich in opal-CT underlie those containing opal-A. The occurrence of opal-CT is extensive, encompassing the lower Hora Beds and the sedimentary rocks and tuffs of the Pythagorion Formation. A transition zone between the opal-A and opal-CT zones is identified by X-ray diffraction patterns that are intermediate between those of opal-CT and opal-A, perhaps due to a mixture of the two polymorphs. Diagenesis was not advanced enough for opal-CT to transform to quartz or for volcanic glass to transform to opal-C. Based on geochemical and mineralogical data, we suggest that the rate of diagenetic transformation of opal-A to opal-CT was mainly controlled by the chemistry of pore fluids. Pore fluids were characterized by high salinity, moderately high alkalinity, and high magnesium ion activity. These pore fluid characteristics are indicated by the presence of evaporitic salts (halite, sylvite, niter), high boron content in biogenic silica, and by dolomite in both the opal-A and opal-CT-bearing beds. The absence of authigenic K-feldspar, borosilicates, and zeolites also support these pore fluid characteristics. Additional factors that influenced the rate of silica diagenesis were host rock lithology and the relatively high heat flow in the Aegean region from

  4. Disentangling natural and anthropogenic signals in lacustrine records: An example from the Ilan Plain, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Jyh-Jaan; Huh, Chih-An; Wei, Kuo-Yen; Löwemark, Ludvig; Lin, Shu-Fen; Liao, Wen-Hsuan; Yang, Tien-Nan; Song, Sheng-Rong; Lee, Meng-Yang; Su, Chih-Chieh; Lee, Teh-Quei

    2016-11-01

    The impact of human activities has been increasing to a degree where humans now outcompete many natural processes. When interpreting environmental and climatic changes recorded in natural archives on historical time scales, it is therefore important to be able to disentangle the relative contribution of natural and anthropogenic processes. Lake Meihua on the Ilan Plain in northeastern Taiwan offers a particularly suitable opportunity to test how human activities known from historical records can be recorded in lacustrine sediment. For this purpose, three cores from Lake Meihua have been studied by a multiproxy approach, providing the first decadal-resolution lacustrine records covering the past 150 years in Taiwan. Profiles of excess 210Pb, 137Cs and 239,240Pu from two short cores (MHL-09-01 and MHL-11-02) allowed a precise chronology to be established. The presence of a yellow, earthy layer with lower levels of organic material coincide with the record of land development associated with the construction of the San-Chin-Gong Temple during AD 1970-1982. Furthermore, in the lower part of the cores, the upwards increasing trend of inc/coh, TOC, TOC/TN, and grain size, coupled with the palynological data (increase of Alnus, Mallotus, Trema and herbs) from the nearby core MHL-5A with radiocarbon chronology, suggest that the area surrounding the lake has been significantly affected by agricultural activities since the arrival of Chinese settlers around AD 1874. In sum, this study demonstrates that this suite of lacustrine sediments in northeastern Taiwan has recorded human activities in agreement with historical documents, and that different human activities will leave distinct sedimentological, geochemical, and palynological signatures in the sedimentary archives. Therefore, multiproxy reconstructions are important to capture the complex nature of human-environmental interactions. A better understanding of the weathering and erosion response to human activities can

  5. The relationship between humans and climate across the North Atlantic: what can lacustrine biomarkers tell us?

    NASA Astrophysics Data System (ADS)

    de Wet, G.; Castañeda, I. S.; Bradley, R. S.; Small, G.; Barrasso, T.

    2016-12-01

    While climate change has been implicated in the colonization/population dynamics of the North Atlantic region, researchers in many cases are forced to compare archaeological data with distant paleoclimate records, making these linkages tenuous. Our research utilizes novel organic biomarkers in lacustrine sediments to produce paired paleoclimate and human occupancy reconstructions to better address questions surrounding human migration and climate change. Here we present preliminary results from two prominent locations in the history of the European colonization of the North Atlantic. The first, carried out on the Norse "Eastern Settlement" in Southern Greenland, attempts to answer the long-standing question of whether climate change caused the demise of the colony in the 1400s C.E. Second, we use similar techniques to search for evidence of the first peopling of the Faroe Islands, a highly debated topic. The use of lacustrine biomarkers allows for numerous aspects of both paleoclimate and human presence in a catchment to be reconstructed. We reconstruct paleotemperatures using branched glycerol dialkyl glycerol tetraethers (brGDGTs) and alkenones (the UK37 Index), when present. Additionally, will analyze the difference in the hydrogen isotopic composition of long and short-chain plant leaf waxes as a proxy for lake water balance. Human occupancy in the region is investigated using fecal sterols and stanols, primarily created by the breakdown of cholesterol. Some of these compounds, such as coprostanol (the dominant sterol in human waste), provide strong evidence of human settlements and have been identified in some of our lake records. Our preliminary results suggest that temperatures were increasing in SW Greenland during the period when the Norse are thought to have died out, potentially challenging the long-standing view of climate deterioration being the primary cause of their demise. Primary productivity biomarkers from lake Eidisvatnet, in the Faroe Islands

  6. Marine and Lacustrine Organic-rich Sedimentary Unit Time Markers: Implications from Rhenium-Osmium Geochronology

    NASA Astrophysics Data System (ADS)

    Selby, D.

    2011-12-01

    Geochronology is fundamental to understand the age, rates and durations of Earth processes. This concerned Arthur Holmes who, for much of his career, attempted to define a geological time scale. This is a topic still important to Earth Scientists today, specifically the chronostratigraphy of sedimentary rocks. Here I explore the Re-Os geochronology of marine and lacustrine sedimentary rocks and its application to yield absolute time constraints for stratigraphy. The past decade has seen the pioneering research of Re-Os organic-rich sedimentary rock geochronology blossom into a tool that can now to be used to accurately and precisely determine depositional ages of organic-rich rock units that have experienced up to low grade greenschist metamorphism. This direct dating of sedimentary rocks is critical where volcanic horizons are absent. As a result, this tool has been applied to timescale calibration, basin correlation, formation duration and the timing of key Earth events (e.g., Neoproterozoic glaciations). The application of Re-Os chronometer to the Devonian-Mississippian boundary contained within the Exshaw Formation, Canada, determined an age of 361.3 ± 2.4 Ma. This age is in accord with U-Pb dates of interbedded tuff horizons and also U-Pb zircon date for the type Devonian-Mississippian Hasselbachtal section, Germany. The agreement of the biostratigraphic and U-Pb constraints of the Exshaw Formation with the Re-Os date illustrated the potential of the Re-Os chronometer to yield age determinations for sedimentary packages, especially in the absence of interbedd tuff horizons and biozones. A Re-Os date for the proposed type section of the Oxfordian-Kimmeridgian boundary, Staffin Bay, Isle of Skye, U.K., gave an age of 154.1 ± 2.2 Ma. This Re-Os age presents a 45 % (1.8 Ma) improvement in precision for the basal Kimmeridgian. It also demonstrated that the duration of the Kimmeridgian is nominally 3.3 Ma and thus is 1.6 Ma shorter than previously indicated. In

  7. Culturing of the first 37:4 predominant lacustrine haptophyte: Geochemical, biochemical, and genetic implications

    NASA Astrophysics Data System (ADS)

    Toney, Jaime L.; Theroux, Susanna; Andersen, Robert A.; Coleman, Annette; Amaral-Zettler, Linda; Huang, Yongsong

    2012-02-01

    Long chain alkenones (LCAs) are potential biomarkers for quantitative paleotemperature reconstructions from lacustrine environments. However, progress in this area has been hindered, because the conditions necessary for the growth of haptophytes responsible for alkenone distributions in lake sediments: the predominance of C 37:4 LCA are not known. Here we report the first enrichment culturing of a novel haptophyte phylotype (Hap-A) from Lake George, ND that produces predominantly C 37:4-LCA. Hap-A was enriched from its resting phase collected from deep sediments rather than from water column samples. In contrast, enrichments from near surface water yielded a different haptophyte phylotype (Hap-B), closely related to Chrysotila lamellosa and Pseudoisochrysis paradoxa, which does not display C 37:4-LCA predominance (similar enrichments have been reported previously). The LCA profile in sediments resembles that of enrichments containing Hap-A, suggesting that Hap-A is the dominant alkenone producer of the sedimentary LCAs. In enrichments, increased lighting appeared to be crucial for triggering alkenone production. Both U37K and U38K indices show a promising, positive relationship with temperature for Hap-A in enrichments, but the offset from the environmental calibration suggests that other factors (e.g., the growth stage or nutrients) may influence the absolute U37K value. Based on 18S rRNA gene analyses, several lakes from the Northern Great Plains, as well as Pyramid Lake, NV and Tso Ur, Tibetan Plateau, China contain the same two haptophyte phylotypes. Analysis of surface sediment from the Great Plains lakes show the Hap-A-type LCA distribution, whereas Pyramid and Tso Ur show the Hap-B type distribution. Waters of the Great Plain lakes are dominated by sulfate ions, whereas those Pyramid and Tso Ur are dominated by carbonate ions, suggesting that the sulfate to carbonate ratio may be a determining factor for the dominance of the Hap-A and Hap-B phylotypes in

  8. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    NASA Astrophysics Data System (ADS)

    Kruit, P.; Bezuijen, M.; Barth, J. E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.

  9. Influence of carbon source amendment on effectiveness of anaerobic soil disinfestation

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD; also termed biological soil disinfestation or soil reductive sterilization) is a non-chemical soil disinfestation process which includes 1) soil incorporation of a labile carbon (C) source, 2) mulching with a polyethylene film to limit gas exchange, and 3) drip ir...

  10. The potential of carbon and nitrogen isotopes to conservatively discriminate between subsoil sediment sources

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Olley, Jon

    2013-04-01

    Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the

  11. High-resolution δ13C record of fossil wood and bulk organic matter from a deep Oligocene lacustrine succession, Bach Long Vi Island, Vietnam

    NASA Astrophysics Data System (ADS)

    Rizzi, M.; Schovsbo, N. H.; Fyhn, M. B. W.; Korte, C.

    2017-12-01

    We present a high-resolution stable isotope record based on bulk organic matter (δ13Corg) and fossil wood (δ13Cwood) originating from Oligocene deep lacustrine sediments cored on the Bach Long Vi Island, northern Gulf of Tonkin, offshore Vietnam. The sediments are exceptionally well preserved. They are thus excellently suited for a detailed stratigraphical analysis of the stable isotope record and as proxy for environmental and climatic changes within this period. The sediments were deposited in rapid subsiding, narrow and elongated fault-bound graben (Fyhn and Phach, 2015) and are represented by deep pelagic lacustrine organic-rich mud interrupted by numerous density-flow deposits (Hovikoski et al., 2016). The density-flow deposits contain abundant fragments of fossil wood. Therefore it was possible to obtain 262 coalified wood fragments together with 1063 bulk organic samples throughout the span of the core. This allowed to establish a high resolution stable C isotope record (δ13Corg and δ13Cwood). In addition 2464 handheld XRF determinations were carried out to further characterize the depositional environment (Rizzi et al., 2017). The organic carbon isotope trend from the 500 m core succession provides insight into the palaeoenvironmental changes of the lake during the Oligocene. Both, global and local factors control the δ13C variations. The aim of the study is to obtain pure global δ13Corg and δ13Cwood signals that would allow comparison of the studied sediments with coeval syn-rift successions in the South China Sea region and other parts of the world. [1] Fyhn and Phach (2015) Tectonics, 34(2): 290-312. [2] Hovikoski et al. (2016) Journal of Sedimentary Research, 86(8): 982-1007. [3] Rizzi et al. (2017) EGU General Assembly Abstract EGU 2017-17584.

  12. Sampling Singular and Aggregate Point Sources of Carbon Dioxide from Space Using OCO-2

    NASA Astrophysics Data System (ADS)

    Schwandner, F. M.; Gunson, M. R.; Eldering, A.; Miller, C. E.; Nguyen, H.; Osterman, G. B.; Taylor, T.; O'Dell, C.; Carn, S. A.; Kahn, B. H.; Verhulst, K. R.; Crisp, D.; Pieri, D. C.; Linick, J.; Yuen, K.; Sanchez, R. M.; Ashok, M.

    2016-12-01

    Anthropogenic carbon dioxide (CO2) sources increasingly tip the natural balance between natural carbon sources and sinks. Space-borne measurements offer opportunities to detect and analyze point source emission signals anywhere on Earth. Singular continuous point source plumes from power plants or volcanoes turbulently mix into their proximal background fields. In contrast, plumes of aggregate point sources such as cities, and transportation or fossil fuel distribution networks, mix into each other and may therefore result in broader and more persistent excess signals of total column averaged CO2 (XCO2). NASA's first satellite dedicated to atmospheric CO2observation, the Orbiting Carbon Observatory-2 (OCO-2), launched in July 2014 and now leads the afternoon constellation of satellites (A-Train). While continuously collecting measurements in eight footprints across a narrow ( < 10 km) wide swath it occasionally cross-cuts coincident emission plumes. For singular point sources like volcanoes and coal fired power plants, we have developed OCO-2 data discovery tools and a proxy detection method for plumes using SO2-sensitive TIR imaging data (ASTER). This approach offers a path toward automating plume detections with subsequent matching and mining of OCO-2 data. We found several distinct singular source CO2signals. For aggregate point sources, we investigated whether OCO-2's multi-sounding swath observing geometry can reveal intra-urban spatial emission structures in the observed variability of XCO2 data. OCO-2 data demonstrate that we can detect localized excess XCO2 signals of 2 to 6 ppm against suburban and rural backgrounds. Compared to single-shot GOSAT soundings which detected urban/rural XCO2differences in megacities (Kort et al., 2012), the OCO-2 swath geometry opens up the path to future capabilities enabling urban characterization of greenhouse gases using hundreds of soundings over a city at each satellite overpass. California Institute of Technology

  13. Sedimentological reservoir characteristics of the Paleocene fluvial/lacustrine Yabus Sandstone, Melut Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Mahgoub, M. I.; Padmanabhan, E.; Abdullatif, O. M.

    2016-11-01

    Melut Basin in Sudan is regionally linked to the Mesozoic-Cenozoic Central and Western African Rift System (CWARS). The Paleocene Yabus Formation is the main oil producing reservoir in the basin. It is dominated by channel sandstone and shales deposited in fluvial/lacustrine environment during the third phase of rifting in the basin. Different scales of sedimentological heterogeneities influenced reservoir quality and architecture. The cores and well logs analyses revealed seven lithofacies representing fluvial, deltaic and lacustrine depositional environments. The sandstone is medium to coarse-grained, poorly to moderately-sorted and sub-angular to sub-rounded, arkosic-subarkosic to sublitharenite. On the basin scale, the Yabus Formation showed variation in sandstone bodies, thickness, geometry and architecture. On macro-scale, reservoir quality varies vertically and laterally within Yabus Sandstone where it shows progressive fining upward tendencies with different degrees of connectivity. The lower part of the reservoir showed well-connected and amalgamated sandstone bodies, the middle to the upper parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenetic changes such as compaction, cementation, alteration, dissolution and kaolinite clays pore fill and coat all have significantly reduced the reservoir porosity and permeability. The estimated porosity in Yabus Formation ranges from 2 to 20% with an average of 12%; while permeability varies from 200 to 500 mD and up to 1 Darcy. The understanding of different scales of sedimentological reservoir heterogeneities might contribute to better reservoir quality prediction, architecture, consequently enhancing development and productivity.

  14. Advances in carbonate exploration and reservoir analysis

    USGS Publications Warehouse

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  15. Evaluating Carbon Isotope Signature of Bulk Organic Matter and Plant Wax Derived n-alkanes from Lacustrine Sediments as Climate Proxies along the Western Side of the Andes

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Werne, J. P.; Araneda, A.; Conejero, C. A.

    2015-12-01

    Sedimentary carbon isotope values (δ13C) of bulk organic matter and long chain (C25 to C35) n-alkanes are among the most long-lived and widely utilized proxies of organic matter and vegetation source. The carbon distribution (e.g. average carbon chain length, ACL) and isotope signature from long chain n-alkanes had been intensively used on paleoclimate studies because they are less influenced by diagenesis, differential preservation of compound classes, and changes in the sources of organic matter than bulk δ13C values. Recently, studies of modern plant n-alkanes have challenged the use of carbon distribution and carbon isotope signature from sedimentary n-alkanes as reliable indicators of vegetation and climate change. The climate in central-south western South America (SA) is projected to become significantly warmer and drier over the next several decades to centuries in response to anthropogenically driven warming. Paleolimnological studies along western SA are critical to obtain more realistic and reliable regional reconstructions of past climate and environments, including vegetation and water budget variability. Here we discuss bulk δ13C, distribution and δ13C in long chain n-alkanes from a suite of ~40 lake surface sediment (core-top) samples spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest. Data are compared to the latitudinal and orographic climatic trends of the Andes based on the climatology (e.g. precipitation and temperature) of the locations of all lakes involved in this study, using monthly gridded reanalysis products of the Climate Forecast System Reanalysis (CFSR), based on the NCEP global forecast model and meteorological stations available in the region, from January 1979 to December 2010 with a 0.5° horizontal resolution.

  16. Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113

    NASA Astrophysics Data System (ADS)

    Gavrailov, Simeon; Ivanova, Viara

    2016-03-01

    The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.

  17. Storm and tide influenced depositional architecture of the Pliocene-Pleistocene Chad Formation, Chad Basin (Bornu Sub-basin) NE Nigeria: A mixed fluvial, deltaic, shoreface and lacustrine complex

    NASA Astrophysics Data System (ADS)

    Shettima, Bukar; Kyari, Aji Maina; Aji, Mallam Musa; Adams, Fatimoh Dupe

    2018-07-01

    Lithofacies analyses of the upper part of the Chad Formation (Bama Ridge Complex) in the Bornu Sub-basin of the Chad Basin indicated four facies associations; fluvial, deltaic, shoreface and lacustrine sequences. The fluvial sequences are composed of fining upward cycles with successive occurrence of planar crossbedded sandstone facies displaying unimodal paleocurrent system and rare mudstone facies typical of braided river system. The deltaic succession consists of both fining and coarsening upwards cycles with the former depicting fluvial setting of an upper delta plain while the later suggestive of mouth-bar sequences. The setting displays a polymodal current system of fluvial, waves, storms and tides that were primarily induced by complex interactions of seiches and lunar tides. Similar current systems devoid of fluvial patterns were reflected in the coarsening upward packages of the shoreface sequences. Lacustrine succession composed of thick bioturbated mudstone facies generally defines the base of these coarsening upward profiles, giving a fluvio-lacustrine geomorphic relief where complex interaction developed the deltaic and shoreface facies along its shorelines. Clay mineral fractions of the formation are dominantly kaolinitic, indicating a predominantly humid tropical-subtropical climatic condition during their deposition. This climatic regime falls within the African humid period of the early-mid Holocene that led to the third lacustrine transgression of the Lake Mega-Chad, whereas the subordinate smectite mineralization points to aridification that characterizes most of the post humid period to recent.

  18. Volcanic influence of Mt. Fuji on the watershed of Lake Motosu and its impact on the lacustrine sedimentary record

    NASA Astrophysics Data System (ADS)

    Lamair, Laura; Hubert-Ferrari, Aurélia; Yamamoto, Shinya; El Ouahabi, Meriam; Vander Auwera, Jacqueline; Obrochta, Stephen; Boes, Evelien; Nakamura, Atsunori; Fujiwara, Osamu; Shishikura, Masanobu; Schmidt, Sabine; Siani, Giuseppe; Miyairi, Yosuke; Yokoyama, Yusuke; De Batist, Marc; Heyvaert, Vanessa M. A.; QuakeRecNankai Team

    2018-01-01

    Lacustrine sediments are particularly sensitive to modifications within the lake catchment. In a volcanic area, sedimentation rates are directly affected by the history of the volcano and its eruptions. Here, we investigate the impact of Mt. Fuji Volcano (Japan) on Lake Motosu and its watershed. The lacustrine infill is studied by combining seismic reflection profiles and sediment cores. We show evidence of changes in sedimentation patterns during the depositional history of Lake Motosu. The frequency of large mass-transport deposits recorded within the lake decreases over the Holocene. Before 8000 cal yr BP, large sublacustrine landslides and turbidites were filling the lacustrine depression. After 8000 cal yr BP, only one large sublacustrine landslide was recorded. The change in sedimentation pattern coincides with a change in sediment accumulation rate. Over the last 8000 cal yr BP, the sediment accumulation rate was not sufficient enough to produce large sublacustrine slope failures. Consequently, the frequency of large mass-transport deposits decreased and only turbidites resulting from surficial slope reworking occurred. These constitute the main sedimentary infill of the deep basin. We link the change in sediment accumulation rate with (i) climate and vegetation changes; and (ii) the Mt. Fuji eruptions which affected the Lake Motosu watershed by reducing its size and strongly modified its topography. Moreover, this study highlights that the deposition of turbidites in the deep basin of Lake Motosu is mainly controlled by the paleobathymetry of the lakefloor. Two large mass-transport deposits, occurring around 8000 cal yr BP and 2000 cal yr BP respectively, modified the paleobathymetry of the lakefloor and therefore changed the turbidite depositional pattern of Lake Motosu.

  19. Mapping lacustrine syn-rift reservoir distribution using spectral attributes: A case study of the Pematang Brownshale Central Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Yustiawan, R.; Riyanto, A.; Ramadian, R.

    2017-07-01

    Pematang Brownshale is the lake sediment, which is proven as the main source rock in Malacca Strait Area. So far Brownshale is only considered as source rock, but the well data show intercalated sand layers encountered within the Pematang Brownshale, where several downhole tests proved this series as a potential hydrocarbon reservoir. Pematang formation is a syn-rift sequent deposited in Malacca Strait following the opening of central Sumatra basin during a late cretaceous to early Oligocene, which is proven as potential source rock and reservoir. The aim of the study is to identify the distribution of sandstone reservoir in Pematang Brownshale using spectral attributes. These works were carried out by integrating log data analysis and frequency maps extracted from spectral attributes Continuous Wavelet Transform (CWT). All these data are used to delineate reservoir distribution in Pematang Brownshale. Based on CWT analysis the anomalies are only visible on the frequency of I5 and I0 Hz maps, which are categorized as low frequencies. Low-frequency shadow anomaly is commonly used as an indication of the presence of hydrocarbons. The distribution of these anomalies is covering an area of approximately 3840.66 acres or equal to I554.25 sq. km, where the low-frequency pattern is interpreted as a deltaic lacustrine feature. By considering the Pematang Brown Shale of Malacca Strait area as a potential reservoir, it would open new play to another basin that has similar characteristics.

  20. Influence of Three Contrasting Detrital Carbon Sources on Planktonic Bacterial Metabolism in a Mesotrophic Lake.

    PubMed

    Wehr; Petersen; Findlay

    1999-01-01

    Abstract Lakes receive organic carbon from a diversity of sources which vary in their contribution to planktonic microbial food webs. We conducted a mesocosm study to test the effects of three different detrital carbon sources (algae, aquatic macrophytes, terrestrial leaves) on several measures of microbial metabolism in a small meso-eutrophic lake (DOC approximately 5 mg/L). Small DOC additions (DeltaC < 1 mg/L) affected bacterial numbers, growth, and pathways of carbon acquisition. Macrophyte and leaf detritus significantly increased TDP and color, but bacterial densities initially (+12 h) were unaffected. After 168 h, densities in systems amended with terrestrial detritus were 60% less than in controls, while production rates in mesocosms with macrophyte detritus were 4-fold greater. Detritus treatments resulted in greater per-cell production rates either through stable cell numbers and greater growth rates (macrophyte-C) or lower densities with stable production rates (terrestrial-C). After only 12 h, rates of leucine aminopeptidase (LAPase) activity were 2.5x greater in macrophyte-C systems than in controls, but LAPase and beta-N-acetylglucosamindase activities in systems amended with terrestrial-C were only 50% of rates in controls. After 168 h, beta-xylosidase rates were significantly greater in communities with terrestrial and phytoplankton detritus. Microbial utilization of >20% of 102 carbon sources tested were affected by at least one detritus addition. Macrophyte-C had positive (6% of substrates) and negative (14%) effects on substrate use; terrestrial detritus had mainly positive effects. An ordination based on carbon-use profiles (+12 h) revealed a cluster of macrophyte-amended communities with greater use of psicose, lactulose, and succinamic acid; controls and algal-detritus systems were more effective in metabolizing two common sugars and cellobiose. After 168 h, communities receiving terrestrial detritus were most tightly clustered, exhibiting

  1. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  2. A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis.

    PubMed

    Meyer, Hanna; Weidmann, Hendrikje; Mäder, Ulrike; Hecker, Michael; Völker, Uwe; Lalk, Michael

    2014-07-01

    In its natural environment, the soil, the Gram-positive model bacterium Bacillus subtilis frequently encounters nutrient limitation and other stress factors. Efficient adaptation mechanisms are necessary to cope with this wide range of environmental challenges. The ability to utilize diverse carbon sources represents a key adaptation process that allows B. subtilis to thrive in its natural habitat. To gain a comprehensive insight into the metabolism of B. subtilis, global metabolite analyses were performed during growth with glucose alone or glucose with either malate, fumarate or citrate as carbon/energy sources. Furthermore, to achieve a comprehensive coverage of a wide range of chemically different metabolites, complementary GC-MS, LC-MS and (1)H-NMR analyses were applied. This study reveals that the availability of different carbon sources results in different extracellular metabolite profiles whereas a regulated intracellular metabolite equilibrium was observed. In addition, the typical energy-starvation induced activation of the general stress sigma factor σ(B) was only observed upon entry into the stationary phase with glucose or glucose and malate as carbon sources.

  3. Lacustrine Records of Holocene Mountain Glacier Fluctuations from Western Greenland

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A.; Briner, J. P.; Bennike, O.

    2014-12-01

    Recent studies have focused on documenting fluctuations of the Greenland Ice Sheet margin throughout the Holocene but few data exist that constrain past changes of local glaciers independent of the ice sheet. Our research combines proglacial lake sediment analysis with cosmogenic 10Be dating of Holocene moraines and radiocarbon dating of ice-cap-killed vegetation with an overall objective to use this multi-proxy approach to generate a detailed record of the coupled climate-glacier system through the Holocene. Here, we present lacustrine records of mountain glacier variability from continuous pro-glacial lake sediment sequences recovered from two glaciated catchments in northeastern Nuussuaq, western Greenland. We use radiocarbon-dated sediments from Sikuiui and Pauiaivik lakes to reconstruct the timing of advance and retreat of local glaciers. Sediments were characterized with magnetic susceptibility (MS), gamma density, Itrax XRF and visible reflectance spectroscopy at 0.2 cm intervals and sediment organic matter at 0.5 cm intervals. Basal radiocarbon ages provide minimum-age constraints on deglaciation from Sikuiui and Pauiaivik lakes of ~9.6 and 8.7 ka, respectively. Organic-rich gyttja from deglaciation until ~5.0 ka in Pauiaivik Lake suggests minimal glacial extent there while slightly elevated MS values from ~9.0 - 7.0 ka in Sikuiui Lake may reflect early Holocene glacial advances. Minerogenic sediment input gradually increases starting at ~5.0 ka in Pauiaivik Lake, which we interpret as the onset of Neoglaciation in the catchment. Furthermore, a distinct episode of enhanced glacial activity from ~4.0 - 2.2 ka in Sikuiui Lake may be correlative to a period of persistent snowline lowering evidenced by radiocarbon dates of ice-killed vegetation from nearby ice cap margins. Results from these lacustrine records and our ice-killed vegetation dataset suggest a middle Holocene onset of Neoglaciation ~5.0 - 4.0 ka in this region. We are supplementing these records

  4. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was supported

  5. South Sumatra Basin Province, Indonesia; the Lahat/Talang Akar-Cenozoic total petroleum system

    USGS Publications Warehouse

    Bishop, Michele G.

    2000-01-01

    Oil and gas are produced from the onshore South Sumatra Basin Province. The province consists of Tertiary half-graben basins infilled with carbonate and clastic sedimentary rocks unconformably overlying pre-Tertiary metamorphic and igneous rocks. Eocene through lower Oligocene lacustrine shales and Oligocene through lower Miocene lacustrine and deltaic coaly shales are the mature source rocks. Reserves of 4.3 billion barrels of oil equivalent have been discovered in reservoirs that range from pre-Tertiary basement through upper Miocene sandstones and carbonates deposited as synrift strata and as marine shoreline, deltaic-fluvial, and deep-water strata. Carbonate and sandstone reservoirs produce oil and gas primarily from anticlinal traps of Plio-Pleistocene age. Stratigraphic trapping and faulting are important locally. Production is compartmentalized due to numerous intraformational seals. The regional marine shale seal, deposited by a maximum sea level highstand in early middle Miocene time, was faulted during post-depositional folding allowing migration of hydrocarbons to reservoirs above the seal. The province contains the Lahat/Talang Akar-Cenozoic total petroleum system with one assessment unit, South Sumatra.

  6. Efficient Utilization of Waste Carbon Source for Advanced Nitrogen Removal of Landfill Leachate

    PubMed Central

    Yin, Wenjun; Tan, Fengxun

    2017-01-01

    A modified single sequencing batch reactor (SBR) was developed to remove the nitrogen of the real landfill leachate in this study. To take the full advantage of the SBR, stir phase was added before and after aeration, respectively. The new mechanism in this experiment could improve the removal of nitrogen efficiently by the utilization of carbon source in the raw leachate. This experiment adopts the SBR process to dispose of the real leachate, in which the COD and ammonia nitrogen concentrations were about 3800 mg/L and 1000 mg/L, respectively. Results showed that the removal rates of COD and total nitrogen were above 85% and 95%, respectively, and the effluent COD and total nitrogen were less than 500 mg/L and 40 mg/L under the condition of not adding any carbon source. Also, the specific nitrogen removal rate was 1.48 mgN/(h·gvss). In this process, polyhydroxyalkanoate (PHA) as a critical factor for the highly efficient nitrogen removal (>95%) was approved to be the primary carbon source in the sludge. Because most of the organic matter in raw water was used for denitrification, in the duration of this 160-day experiment, zero discharge of sludge was realized when the effluent suspended solids were 30–50 mg/L. PMID:29435456

  7. Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus).

    PubMed

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; McKinney, Melissa A; Peacock, Elizabeth; Sonne, Christian

    2012-12-01

    In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n = 121) from 10 Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using δ(13) C in muscle tissue and fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and δ(13) C suggested that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and lipid sources in Bering-Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal trends of long-range transported trace elements. Copyright © 2012 SETAC.

  8. Tracing Carbon Sources through Aquatic and Terrestrial Food Webs Using Amino Acid Stable Isotope Fingerprinting

    PubMed Central

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O’Brien, Diane M.; Piatkowski, Uwe; McCarthy, Matthew D.

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ13C patterns among amino acids (δ13CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ13CAA patterns in contrast to bulk δ13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs. PMID:24069196

  9. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    PubMed

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O'Brien, Diane M; Piatkowski, Uwe; McCarthy, Matthew D

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13)C patterns among amino acids (δ(13)CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13)CAA patterns in contrast to bulk δ(13)C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13)CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13)C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13)C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  10. Elucidating the Role of Carbon Sources on Abiotic and Biotic Release of Arsenic into Cambodian Aquifers

    NASA Astrophysics Data System (ADS)

    Koeneke, M.

    2017-12-01

    Arsenic (As) is a naturally occurring contaminant in Cambodia that has been contaminating well-water sources of millions of people. Commonly, studies look into the biotic factors that cause the arsenic to be released from aquifer sediments to groundwater. However, abiotic release of As from sediments, though little studied, may also play key roles in As contamination of well water. The goal of this research is to quantitatively compare organic-carbon mediated abiotic and biotic release of arsenic from sediments to groundwater. Batch anaerobic incubation experiments under abiotic (sodium azide used to immobilize microbes) and biotic conditions were conducted using Cambodian aquifer sediments, four different organic carbon sources (sodium lactate, sodium citrate, sodium oxalate, and humic acid), and six different carbon concentrations (0, 1, 2.5, 5, 10, 25mg C/L). Dissolved arsenic, iron(Fe), and manganese(Mn) concentrations in the treatments were measured 112 days . In addition, sediment and solution carbon solution was measured . Collectively, these show how different carbon sources, different carbon concentrations, and how abiotic and biotic factors impact the release of arsenic from Cambodian sediments into aquifers. Overall, an introduction of organic carbon to the soil increases the amount of As released from the sediment. The biotic + abiotic and abiotic conditions seemed to play a minimal role in the amount of As released. Dissolved species analysis showed us that 100% of the As was As(V), Our ICP-MS results vary due to the heterogeneity of samples, but when high levels are Fe are seen in solution, we also see high levels of As. We also see higher As concentrations when there is a smaller amount of Mn in solution.

  11. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    PubMed

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Relationships among charcoal particles from modern lacustrine sediments and remotely sensed fire events

    NASA Astrophysics Data System (ADS)

    López-Pérez, M.; Correa-Metrio, A.

    2013-05-01

    Analysis of charcoal particles from lacustrine sediments is a useful tool to understand fire regimes through time, and their relationships with climate and vegetation. However, the extent of the relationship between charcoal particles and their origin in terms of the spatial and temporal extent of the fire events is poorly known in the tropics. Modern sediments were collected from lakes in the Yucatan Peninsula and Central Mexico, 51 and 22 lakes respectively, to analyze their charcoal concentration and its relationships with modern fire events. Number of modern fire events was derived from the public source Fire Information for Resource Management System (FIRMS) for concentric spatial rings that ranged from 1 to 30 km of radius. The association between charcoal and fires was evaluated through the construction of linear models to explain charcoal concentration as a function of the number of fires recorded. Additionally, charcoal particles were stratified according to size to determine the association between fire distance and charcoal size classes. The relationship between total charcoal concentration and fire events was stronger for central Mexico than for the Yucatan Peninsula, which is probably the result of differences in vegetation cover. The highest determination coefficients were obtained for charcoal particle sizes ranging between 0.2 and 0.8 mm2, and for fire event distances of between 0 and 15 km from the lake. Overall, the analyses presented here offer useful tools to quantitatively and spatially reconstruct past regional fire dynamics in Central Mexico and the Yucatan Peninsula.

  13. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    NASA Astrophysics Data System (ADS)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the

  14. Carbon Storages in Plantation Ecosystems in Sand Source Areas of North Beijing, China

    PubMed Central

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management. PMID:24349223

  15. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    PubMed Central

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-01-01

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204

  16. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE PAGES

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; ...

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  17. Coupling experimental and field-based approaches to decipher carbon sources in the shell of the great scallop, Pecten maximus (L.)

    NASA Astrophysics Data System (ADS)

    Marchais, V.; Richard, J.; Jolivet, A.; Flye-Sainte-Marie, J.; Thébault, J.; Jean, F.; Richard, P.; Paulet, Y.-M.; Clavier, J.; Chauvaud, L.

    2015-11-01

    This research investigated how the carbon isotopic composition of food source (δ13Cfood) and dissolved inorganic carbon (δ13CDIC) influences the carbon isotopic composition of Pecten maximus shells (δ13Cshell) under both experimental and natural conditions. The objectives are to better understand the relationship between P. maximus and its environment, and to specifically distinguish conditions under which calcification is influenced by respired CO2 derived from food sources versus conditions in which calcification uses inorganic carbon from seawater. Laboratory experiment investigated carbon incorporation into shell carbonates by maintaining scallops under conditions where the stable carbon isotopic composition of food sources was considerably depleted (-54‰), relative to values observed in the natural environment (-21‰). Laboratory experiment ran for 78 days under three temperature conditions, 15 °C, 21 °C and 25 °C. A survey of the environmental parameters and stable carbon isotopic composition into shell carbonate of natural population of P. maximus was also realized during the same year in the Bay of Brest, France. Data collected from both laboratory experiment and the natural environment confirmed that both δ13CDIC and δ13Cfood influence δ13Cshell values and that organic carbon incorporation (CM) averages about 10% (4.3-6.8% under experimental conditions and 1.9-16.6% in the natural environment). The shift in stable carbon isotopic composition from the uptake of depleted food sources under experimental conditions realized a marked divergence in the predicted equilibrium between calcium carbonate and ambient bicarbonate, relative to the natural environment. This offset was 1.7 ± 0.6‰ for scallops in their natural environment and 2.5 ± 0.5 and 3.2 ± 0.9‰ for scallops under experimental conditions at water temperatures of 15 °C and 21 °C, respectively. The offset of 3‰ for scallops subjected to laboratory experiment could not be explained

  18. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I)more » and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.« less

  19. FOREST HARVESTS AND WOOD PRODUCTS: SOURCES AND SINKS OF ATMOSPHERIC CARBON DIOXIDE

    EPA Science Inventory

    Changes in the net carbon(c)sink-source balance related to a country's forest harvesting and use of wood products is an important component in making country-level inventories of greenhouse gas emissions,a current activity within many signatory nations to the UN Framework Convent...

  20. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.

  1. Tracing the source of sedimentary organic carbon in the Loess Plateau of China: An integrated elemental ratio, stable carbon signatures, and radioactive isotopes approach.

    PubMed

    Liu, Chun; Dong, Yuting; Li, Zhongwu; Chang, Xiaofeng; Nie, Xiaodong; Liu, Lin; Xiao, Haibing; Bashir, Hassan

    2017-02-01

    Soil erosion, which will induce the redistribution of soil and associated soil organic carbon (SOC) on the Earth's surface, is of critically importance for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). This study used natural abundance levels of the stable isotope signature ( 13 C) and radioactive isotopes ( 137 Cs and 210 Pb ex ), along with elements ratio (C/N) based on a two end member mixing model to qualitatively and quantitatively identify the sources of sedimentary OC retained by check dam in the Qiaozigou small watershed in the Loess Plateau, China. Sediment profiles (0-200 cm) captured at natural depositional area of the basin was compared to possible source materials, which included: superficial Loess mineral soils (0-20 cm) from three land use types [i.e., grassland (Medicago sativa), forestland (Robinia pseudoacacia.), shrubland (Prunus sibirica), and gully land (Loess parent material.)]. The results demonstrated that SOC in sediments showed significantly negative correlation with pH (P < 0.01), and positive correlation with soil water content (SWC) (P < 0.05). The sedimentary OC was not derived from grasslands or gullies. Forestland and shrubland were two main sources of eroded organic carbon within the surface sediment (0-60 cm deep), except for that in the 20-40 cm soil layer. Radionuclides analyses also implied that the surface sediments retained by check-dams mainly originated from soils of forestland and shrubland. Results of the two end-member mixing model demonstrated that more than 50% SOC (mean probability estimate (MPE) 50.13% via 13 C and 60.53% via C/N) in surface sediment (0-20 cm deep) derived from forestland, whereas subsurface sedimentary SOC (20-200 cm) mainly resulted from shrubland (MPE > 50%). Although uncertainties on the sources of SOC in deep soils exist, the soil

  2. Factors influencing buyers' willingness to offer price premiums for carbon credits sourced from urban forests

    Treesearch

    N.C. Poudyal; J.M. Bowker; J.P. Siry

    2015-01-01

    Marketing carbon offset credits generated by urban forest projects could help cities and local governments achieve their financial self-sufficiency and environmental sustainability goals. Understanding the value of carbon credits sourced from urban forests, and the factors that determine buyers’ willingness to pay a premium for such credits could benefit cities in...

  3. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California

    USGS Publications Warehouse

    Smith, George I.

    2009-01-01

    Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. It is bounded on the east and northeast by the Slate Range, on the west by the Argus Range and Spangler Hills, and on the south by the Lava Mountains; Searles (dry) Lake occupies the north-central part of the valley. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated, is fully revealed by cores from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. The subsurface record is described elsewhere. This volume includes six geologic maps (scales: 1:50,000 and 1:10,000) and a text that describes the outcrop record, most of which represents sedimentation since 150 ka. Although this outcrop record is discontinuous, it provides evidence indicating the lake's water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Several rock units of Tertiary and early Quaternary ages crop out in Searles Valley. Siltstone and sandstone of Tertiary age, mostly lacustrine in nature and locally deformed to near-vertical dips, are exposed in the southern part of the valley, as is the younger(?) upper Miocene Bedrock Spring Formation. Unnamed, mostly mafic volcanic rocks of probable Miocene or Pliocene age are exposed along the north and south edges of the basin. Slightly deformed lacustrine sandstones are mapped in the central-southwestern and southern parts of the study area. The Christmas

  4. The Lacustrine Upper Brushy Basin Member of the Morrison Formation, Four Corners Region, Usa: a Lithological and Mineralogical Terrestrial Analog for Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Potter-McIntyre, S. L.; Chan, M. A.; McPherson, B. J.

    2013-12-01

    concretions are being sourced from diagenetic micorenvironments. Similar diagenetic microenvironments may be preserved at Gale Crater due to the fine-grained, volcaniclastic (reactive) rocks. The Brushy Basin Member is a valuable analog because comparative iron-and clay-rich compositions help to: 1) understand diagenetic processes in a non-acidic, saline lacustrine environment, 2) document specific sedimentary structures and lithofacies associations to interpret depositional environment, 3) document specific biomediated features (e.g., textures, morphologies, chemistries), and 4) demonstrate how these features might persist or respond to diagenesis over time.

  5. Production of bacterial cellulose using different carbon sources and culture media.

    PubMed

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-06

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Elevated carboxyhemoglobin: sources of carbon monoxide exposure.

    PubMed

    Buchelli Ramirez, Herminia; Fernández Alvarez, Ramón; Rubinos Cuadrado, Gemma; Martinez Gonzalez, Cristina; Rodriguez Jerez, Francisco; Casan Clara, Pere

    2014-11-01

    Inhalation of carbon monoxide (CO) can result in poisoning, with symptoms ranging from mild and nonspecific to severe, or even death. CO poisoning is often underdiagnosed because exposure to low concentrations goes unnoticed, and threshold values for normal carboxyhemoglobin vary according to different authors. The aim of our study was to analyze carboxyhemoglobin (COHb) levels in an unselected population and detect sources of CO exposure In a cross-sectional descriptive study, we analyzed consecutive arterial blood gas levels processed in our laboratory. We selected those with COHb≥2.5% in nonsmokers and ≥5% in smokers. In these cases a structured telephone interview was conducted. Elevated levels of COHb were found in 64 (20%) of 306 initial determinations. Of these, data from 51 subjects aged 65±12 years, 31 (60%) of which were men, were obtained. Mean COHb was 4.0%. Forty patients (78%) were non-smokers with mean COHb of 3.2%, and 11 were smokers with COHb of 6.7%. In 45 patients (88.2%) we detected exposure to at least one source of ambient CO other than cigarette smoke. A significant proportion of individuals from an unselected sample had elevated levels of COHb. The main sources of CO exposure were probably the home, so this possibility should be explored. The population should be warned about the risks and encouraged to take preventive measures. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  7. The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials.

    PubMed

    Xiao, Z; Camino, F E

    2009-04-01

    Sb(2)Te(3) and Bi(2)Te(2)Se semiconductor materials were used as the source and drain contact materials in the fabrication of carbon nanotube field-effect transistors (CNTFETs). Ultra-purified single-walled carbon nanotubes (SWCNTs) were ultrasonically dispersed in N-methyl pyrrolidone solvent. Dielectrophoresis was used to deposit and align SWCNTs for fabrication of CNTFETs. The Sb(2)Te(3)- and Bi(2)Te(2)Se-based CNTFETs demonstrate p-type metal-oxide-silicon-like I-V curves with high on/off drain-source current ratio at large drain-source voltages and good saturation of drain-source current with increasing drain-source voltage. The fabrication process developed is novel and has general meaning, and could be used for the fabrication of SWCNT-based integrated devices and systems with semiconductor contact materials.

  8. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains.

    PubMed

    Zaia Alves, Gustavo H; Hoeinghaus, David J; Manetta, Gislaine I; Benedito, Evanilde

    2017-01-01

    Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems.

  9. Lacustrine records of continental climate in northwest Greenland through the Holocene and Last Interglacial

    NASA Astrophysics Data System (ADS)

    McFarlin, J. M.; Axford, Y.; Osburn, M. R.; Lasher, G. E.; Francis, D. R.; Kelly, M. A.; Osterberg, E. C.

    2015-12-01

    Lake sediment records provide opportunities for high-resolution observations of paleoclimate that help to place modern climate change in geologic context. Here we present a terrestrial record of July air temperature for northwest Greenland (Nunatarssuaq, ~25 km east of the Thule Air Base) through the Holocene and a prior warm period, inferred from subfossil insect remains (Chironomidae) preserved in lacustrine sediments. In addition, we discuss ongoing work in characterizing the sources and isotopic composition of leaf waxes preserved in the same sediments. Multiple parallel sediment cores were collected in the summers of 2012 and 2014 from Wax Lips Lake (informal name), a non-glacial lake situated <2 km from the current margin of the Greenland Ice Sheet. Radiocarbon ages were obtained on aquatic mosses from intact laminae, and indicate that the record spans the Holocene, beginning at ~10.4 ka, as well as an interval beyond the range of 14C (>44 ka) and thus predates the Last Glacial Maximum (LGM). Our results demonstrate temperatures warmer than present through the early and mid Holocene followed by cooling in the late Holocene. Material that pre-dates the LGM contains insect assemblages indicating temperatures warmer than the warmest millennia of the Holocene. We interpret this material as most likely dating to the Last Interglacial Period (MIS 5). Along with assemblages of Chironomidae, we find subfossil Chaoboridae in one section of the pre-LGM sediments, suggesting exceptionally warm conditions based upon the distribution of modern-day Chaoborus. We find abundant n-alkanes and n-acids are preserved in the Holocene and pre-LGM sediments, allowing for complementary compound-specific δD analyses and identification of organic matter source in addition to chironomid derived temperature records.

  10. The role of iron-sulfides on cycling of organic carbon in the St Lawrence River system: Evidence of sulfur-promoted carbon sequestration?

    NASA Astrophysics Data System (ADS)

    Balind, K.; Barber, A.; Gélinas, Y.

    2017-12-01

    The biogeochemical cycle of sulfur is intimately linked with that of carbon, as well as with that of iron through the formation of iron-sulfur complexes. Iron-sulfide minerals such as mackinawite (FeS) and greigite (Fe3S4) form below the oxic/anoxic redox boundary in marine and lacustrine sediments and soils. Reactive iron species, abundant in surface sediments, can undergo reductive dissolution leading to the formation of soluble Fe(II) which can then precipitate in the form of iron sulfur species. While sedimentary iron-oxides have been thoroughly explored in terms of their ability to sorb and sequester organic carbon (OC) (Lalonde et al.; 2012), the role of FeS in the long-term preservation of OC remains undefined. In this study, we present depth profiles for carbon, iron, and sulfur in the aqueous-phase, along with data from sequential extractions of sulfur speciation in the solid-phase collected from sediment cores from the St Lawrence River and estuarine system, demonstrating the transition from fresh to saltwater sediments. Additionally, we present synthetic iron sulfur sorption experiments using both model and natural organic molecules in order to assess the importance of FeS in sedimentary carbon storage.

  11. Research on denitrification efficiency of three types of solid carbon source

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Zhang, J. D.; Li, F.; Cao, Y. X.; Zhu, L. Y.; Xiao, M. S.

    2018-01-01

    C/N rates can greatly influence efficiency of denitrification. It is difficult for current treated effluent to reach GB18918-2002 primary effluent standard because of its low C/N rate. To improve the efficiency of denitrification, the quality of effluent, and realize the waste recycling, this article selected magnolia leaves, loofah and degradable meal box as the solid carbon source and set different solid-liquid ratio of magnolia leaves for periodic denitrification stage to study the change of NO3 --N, TN, COD, NO2 --N, NH4 +, PO4 3- and color. The results showed that in the condition of influent nitrate concentration of 40 mg/L, carbon dosage of 10 g, the reaction temperature of 25°C, the nitrate removal rates of magnolia leaves and loofah reached 89.0% and 96.8% respectively, rather higher than degradable meal box (56.3%). The TN removal rates of magnolia leaves (91.7%) and loofah (77.7%) were both higher than degradable meal box (53.9%), and the effluent TN concentration of loofah and degradable meal box reached 25.4 mg/L and 21.1 mg/L respectively, which couldn’t be discharged according to the primary effluent concentration standard of GB18918-2002. The released concentration of ammonia nitrogen and phosphate: loofah> magnolia> degradable meal box. The high solid-liquid ratio of magnolia leaves helped to improve the TN removal rate, which reached 75.0% (1:200) and 91.7% (1:100), but it caused higher released concentration of carbon, ammonia nitrogen and phosphate to effect system heavily. Under the integrated analysis, the low solid-liquid ratio (1:200) of magnolia leaves was more suitable to be the denitrification external carbon source.

  12. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source.

    PubMed

    Wadekar, S D; Kale, S B; Lali, A M; Bhowmick, D N; Pratap, A P

    2012-01-01

    Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10-30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-MS), and (1)H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source.

  13. Investigating the effect of carbon source on rabies virus glycoprotein production in Pichia pastoris by a transcriptomic approach.

    PubMed

    Ben Azoun, Safa; Kallel, Héla

    2017-08-01

    Several factors affect protein expression in Pichia pastoris, one among them is the carbon source. In this work, we studied the effect of this factor on the expression level of rabies virus glycoprotein (RABV-G) in two recombinant clones harboring seven copies of the gene of interest. The expression was driven either by the constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter or the inducible alcohol oxidase1 (AOX1) promoter. Clones were compared in terms of cell physiology and carbon source metabolism. The transcription levels of 16 key genes involved in the central metabolic pathway, the methanol catabolism, and the oxidative stress were investigated in both clones. Cell size, as a parameter reflecting cell physiological changes, was also monitored. Our results showed that when glucose was used as the sole carbon source, large cells were obtained. Transcript levels of the genes of the central metabolic pathway were also upregulated, whereas antioxidative gene transcript levels were low. By contrast, the use of methanol as a carbon source generated small cells and a shift in carbon metabolism toward the dissimilatory pathway by the upregulation of formaldehyde dehydrogenase gene and the downregulation of those of the central metabolic. These observations are in favor of the use of glucose to enhance the expression of RABV-G in P. pastoris. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Sedimentology and palaeontology of the Upper Jurassic Puesto Almada Member (Cañadón Asfalto Formation, Fossati sub-basin), Patagonia Argentina: Palaeoenvironmental and climatic significance

    NASA Astrophysics Data System (ADS)

    Cabaleri, Nora G.; Benavente, Cecilia A.; Monferran, Mateo D.; Narváez, Paula L.; Volkheimer, Wolfgang; Gallego, Oscar F.; Do Campo, Margarita D.

    2013-10-01

    Six facies associations are described for the Puesto Almada Member at the Cerro Bandera locality (Fossati sub-basin). They correspond to lacustrine, palustrine, and pedogenic deposits (limestones); and subordinated alluvial fan, fluvial, aeolian, and pyroclastic deposits. The lacustrine-palustrine depositional setting consisted of carbonate alkaline shallow lakes surrounded by flooded areas in a low-lying topography. The facies associations constitute four shallowing upward successions defined by local exposure surfaces: 1) a Lacustrine-Palustrine-pedogenic facies association with a 'conchostracan'-ostracod association; 2) a Palustrine facies association representing a wetland subenvironment, and yielding 'conchostracans', body remains of insects, fish scales, ichnofossils, and palynomorphs (cheirolepidiacean species and ferns growing around water bodies, and other gymnosperms in more elevated areas); 3) an Alluvial fan facies association indicating the source of sediment supply; and 4) a Lacustrine facies association representing a second wetland episode, and yielding 'conchostracans', insect ichnofossils, and a palynoflora mainly consisting of planktonic green algae associated with hygrophile elements. The invertebrate fossil assemblage found contains the first record of fossil insect bodies (Insecta-Hemiptera and Coleoptera) for the Cañadón Asfalto Formation. The succession reflects a mainly climatic control over sedimentation. The sedimentary features of the Puesto Almada Member are in accordance with an arid climatic scenario across the Upper Jurassic, and they reflect a strong seasonality with periods of higher humidity represented by wetlands and lacustrine sediments.

  15. Identification and analysis of low-molecular-weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography

    NASA Astrophysics Data System (ADS)

    O'Donnell, Emily C.; Wadham, Jemma L.; Lis, Grzegorz P.; Tranter, Martyn; Pickard, Amy E.; Stibal, Marek; Dewsbury, Paul; Fitzsimons, Sean

    2016-07-01

    Determining the concentration and composition of dissolved organic carbon (DOC) in glacial ecosystems is important for assessments of in situ microbial activity and contributions to wider biogeochemical cycles. Nonetheless, there is limited knowledge of the abundance and character of DOC in basal ice and the subglacial environment and a lack of quantitative data on low-molecular-weight (LMW) DOC components, which are believed to be highly bioavailable to microorganisms. We investigated the abundance and composition of DOC in basal ice via a molecular-level DOC analysis. Spectrofluorometry and a novel ion chromatographic method, which has been little utilized in glacial science for LMW-DOC determinations, were employed to identify and quantify the major LMW fractions (free amino acids, carbohydrates, and carboxylic acids) in basal ice from four glaciers, each with a different type of overridden material (i.e. the pre-entrainment sedimentary type such as lacustrine material or palaeosols). Basal ice from Joyce Glacier (Antarctica) was unique in that 98 % of the LMW-DOC was derived from the extremely diverse free amino acid (FAA) pool, comprising 14 FAAs. LMW-DOC concentrations in basal ice were dependent on the bioavailability of the overridden organic carbon (OC), which in turn was influenced by the type of overridden material. Mean LMW-DOC concentrations in basal ice from Russell Glacier (Greenland), Finsterwalderbreen (Svalbard), and Engabreen (Norway) were low (0-417 nM C), attributed to the relatively refractory nature of the OC in the overridden palaeosols and bedrock. In contrast, mean LMW-DOC concentrations were an order of magnitude higher (4430 nM C) in basal ice from Joyce Glacier, a reflection of the high bioavailability of the overridden lacustrine material (> 17 % of the sediment OC comprised extractable carbohydrates, a proxy for bioavailable OC). We find that the overridden material may act as a direct (via abiotic leaching) and indirect (via

  16. Carbon Nanotubes, Nanocrystal Forms, and Complex Nanoparticle Aggregates in common fuel-gas combustion sources and the ambient air

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Bang, J. J.; Esquivel, E. V.; Guerrero, P. A.; Lopez, D. A.

    2004-06-01

    Aggregated multiwall carbon nanotubes (with diameters ranging from ˜3 to 30nm) and related carbon nanocrystal forms ranging in size from 0.4 to 2 μm (average diameter) have been collected in the combustion streams for methane/air, natural gas/air, and propane gas/air flames using a thermal precipitator. Individual particle aggregates were collected on carbon/formvar-coated 3mm nickel grids and examined in a transmission electron microscope, utilizing bright-field imaging, selected-area electron diffraction analysis, and energy-dispersive X-ray spectrometry techniques. The natural gas and propane gas sources were domestic (kitchen) stoves, and similar particle aggregates collected in the outdoor air were correspondingly identified as carbon nanocrystal aggregates and sometimes more complex aggregates of silica nanocrystals intermixed with the carbon nanotubes and other carbon nanocrystals. Finally, and in light of the potential for methane-series gas burning as major sources of carbon nanocrystal aggregates in both the indoor and outdoor air, data for natural gas consumption and corresponding asthma deaths and incidence are examined with a degree of speculation regarding any significance in the correlations.

  17. Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, L. Santschi, P.H.

    2000-02-01

    Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in themore » water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.« less

  18. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  19. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains

    PubMed Central

    Hoeinghaus, David J.; Manetta, Gislaine I.; Benedito, Evanilde

    2017-01-01

    Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems. PMID:28358822

  20. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams

    EPA Science Inventory

    Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrific...

  1. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.

    PubMed

    Dou, Xinwei; Hasa, Ivana; Hekmatfar, Maral; Diemant, Thomas; Behm, R Jürgen; Buchholz, Daniel; Passerini, Stefano

    2017-06-22

    Hard carbons are currently the most widely used negative electrode materials in Na-ion batteries. This is due to their promising electrochemical performance with capacities of 200-300 mAh g -1 and stable long-term cycling. However, an abundant and cheap carbon source is necessary in order to comply with the low-cost philosophy of Na-ion technology. Many biological or waste materials have been used to synthesize hard carbons but the impact of the precursors on the final properties of the anode material is not fully understood. In this study the impact of the biomass source on the structural and electrochemical properties of hard carbons is unraveled by using different, representative types of biomass as examples. The systematic structural and electrochemical investigation of hard carbons derived from different sources-namely corncobs, peanut shells, and waste apples, which are representative of hemicellulose-, lignin- and pectin-rich biomass, respectively-enables understanding and interlinking of the structural and electrochemical properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stream restoration and sewers impact sources and fluxes of water,carbon, and nutrients in urban watersheds

    EPA Science Inventory

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P)...

  3. Lipid-based palaeotemperature reconstruction in lakes: New insights on the applicability of branched GDGTs in lacustrine sedimentary archives

    NASA Astrophysics Data System (ADS)

    Weber, Yuki; De Jonge, Cindy; Hopmans, Ellen C.; Sinninghe Damsté, Jaap S.; Gilli, Adrian; Lehmann, Moritz F.; Niemann, Helge

    2014-05-01

    MAAT (derived from the lapse rate model), possibly pointing to different source organisms in soils and lakes. Our results imply that in situ production of brGDGTs plays a mayor role. By further constraining the environmental controls on lake-derived brGDGTs, we aim to improve the future applicability of brGDGT-based proxies in lacustrine climate archives.

  4. Carbon source and irrigation evaluation for anaerobic soil disinfestation in southern California

    USDA-ARS?s Scientific Manuscript database

    Water use efficiency and utilization of feasible carbon sources have been important factors for successful implementation and adoption of ASD in California and are the focus of current research. In the 2014-15 study at Santa Paula, CA we compared ASD with 9 t of rice bran bed-incorporated with eith...

  5. Geochemical typing of crude oils from the Gulf of Thailand and the Natuna Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiefelbein, C.; Haven, H.L.T.

    The geochemical characteristics of approximately thirty oils from the Gulf of Thailand and Natuna Sea have been measured, viz., sulfur, vanadium and nickel content, density, [sup 13]C isotopes of the isolated aliphatic and aromatic hydrocarbon fractions, capillary gas chromatography of the whole oil, and gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis included the classical monitoring of specific ions (SIM mode) as well as sophisticated multiple reaction monitoring (MRM) measurements (MRM mode). These latter analyses are of key importance for the detection of 24-propylsteranes, a prerequisite for the discrimination between lacustrine/deltaic oils vs. marine crude oils. Classification of the different typesmore » of oil families encountered in this region was based on visual inspection of the data, supported by multivariate statistical analysis. In the Gulf of Thailand, which includes oils from the Pattani trough and the northern part of the Malay basin, essentially three different types are recognized, generated by lacustrine, resinous, and carbonate source rocks. The situation encountered in the Natuna sea, including oils from the southern part of the Malay basin (Indonesia), the Penyu basin, and the west and east Natuna basins is almost similar to the same suite of different oil types. Although the geochemical characteristics of the resinous-derived oils are more or less similar in all basins, the lacustrine-derived oils exhibit large variations especially expressed in their isotopic signature. Interestingly, the carbonate-sourced oils from the east Natuna basin show characteristics that resemble those of the main oil family found offshore northwest Palawan.« less

  6. Application of biogenic carbon dioxide produced by yeast with different carbon sources for attraction of mosquitoes towards adult mosquito traps.

    PubMed

    Sukumaran, D; Ponmariappan, S; Sharma, Atul K; Jha, Hemendra K; Wasu, Yogesh H; Sharma, Ajay K

    2016-04-01

    Surveillance is a prime requisite for controlling arthropod vectors like mosquitoes that transmit diseases such as malaria, dengue and chikungunya. Carbon dioxide (CO2) is one of the main cues from vertebrate breath that attracts mosquitoes towards the host. Hence, CO2 is used as an attractant during surveillance of mosquitoes either from commercial cylinders or dry ice for mosquito traps. In the present study, the biogenic carbon dioxide production was optimized with different carbon sources such as glucose, simple sugar and jaggery with and without yeast peptone dextrose (YPD) media using commercial baker's yeast. The results showed that yeast produced more biogenic CO2 with simple sugar as compared to other carbon sources. Further substrate concentration was optimized for the continuous production of biogenic CO2 for a minimum of 12 h by using 10 g of baker's yeast with 50 g of simple sugar added to 1.5 l distilled water (without YPD media) in a 2-l plastic bottle. This setup was applied in field condition along with two different mosquito traps namely Mosquito Killing System (MKS) and Biogents Sentinel (BGS) trap. Biogenic CO2 from this setup has increased the trapping efficiency of MKS by 6.48-fold for Culex quinquefasciatus, 2.62-fold for Aedes albopictus and 1.5-fold for Anopheles stephensi. In the case of BGS, the efficiency was found to be increased by 3.54-fold for Ae. albopictus, 4.33-fold for An. stephensi and 1.3-fold for Armigeres subalbatus mosquitoes. On the whole, plastic bottle setup releasing biogenic CO2 from sugar and yeast has increased the efficiency of MKS traps by 6.38-fold and 2.74-fold for BGS traps as compared to traps without biogenic CO2. The present study reveals that, among different carbon sources used, simple sugar as a substance (which is economical and readily available across the world) yielded maximum biogenic CO2 with yeast. This setup can be used as an alternative to CO2 cylinder and dry ice in any adult mosquito traps to

  7. Constraining carbon sources and cycling of endolithic microbial communities in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Ziolkowski, L. A.; Slater, G. F.; Davila, A.; Wierzchos, J.

    2010-12-01

    The Atacama Desert, one of the driest places on Earth, is considered a suitable analog for the extremely arid, oxidizing conditions on the surface of Mars. Recent observations suggest the presence of evaporitic deposits on the surface of Mars, such as those found in the Atacama. Halites in the Atacama have been shown to be hygroscopic and are colonized by photosynthetic microbes. While there is considerable evidence for the decrease in abundance and diversity of microbes closer to the hyper-arid core of the Atacama, experimental studies have thus far have yet to estimate the sources of carbon to these communities and the rate at which they cycle. To address these questions, we characterized the isotopic composition (13C and 14C) microbial community biomarkers from four distinct sites in the Atacama. Sites ranged from halites in the hyper-arid core (Yungay, Salar Grande) to volcanic rock and gypsum near the Monturaqui Crater. Our analysis of the phospholipids fatty acids (PLFA) and glycolipid fatty acid (GLFA) methyl esters of the endoliths agreed with previous studies: the abundance and diversity of microbes decreases approaching the hyper-arid core. The total PLFA and GLFA concentrations were lower at Yungay than Salar Grande and higher in the gypsum and volcanic rock samples. Changes in the mole percentage distribution of the PLFA and GLFA illustrated that the endolithic communities inhabiting the volcanic rock and gypsum were more complex than those inhabiting the halites. ∂13C of both PLFA and GLFA showed that non-halite lipids were less depleted in 13C than halite-lipids. This suggested a difference in carbon source or cycling. The 14C content of PLFA and GLFA varied by up to 250 per mil. Endolith PLFA and GLFA from the gypsum had radiocarbon signatures comparable to the modern atmosphere, which suggests that the predominant source of carbon to the system is the modern atmosphere and that lipids are cycling rapidly in this system. However, at the other three

  8. Palaeoenvironments during MIS 3 and MIS 2 inferred from lacustrine intercalations in the loess-palaeosol sequence at Bobingen (southern Germany)

    NASA Astrophysics Data System (ADS)

    Mayr, Christoph; Matzke-Karasz, Renate; Stojakowits, Philipp; Lowick, Sally E.; Zolitschka, Bernd; Heigl, Tanja; Mollath, Richard; Theuerkauf, Marian; Weckend, Marc-Oliver; Bäumler, Rupert; Gregor, Hans-Joachim

    2017-12-01

    Recently exposed loess-palaeosol sequences in the northern Alpine foreland close to Bobingen (southern Germany) were investigated with a multi-proxy approach combining isotopic, geochemical, lithological, and micropalaeontological methods. Luminescence ages date the sections into the Middle and Upper Würmian periods corresponding to Marine Isotope Stages 3 and 2. A gleyic soil horizon at the base was dated to 45 ka and provided a palynoflora dominated by Poaceae, Cyperaceae, and Pinus, as well as frequent aquatic taxa. Lacustrine conditions prevailed after the gley formation until 30 ka, providing a comparatively diverse lacustrine fauna dominated by aquatic gastropods and the ostracod species Candona candida. At the transition to the Upper Würm, climatic conditions became harsh, indicated by accelerated deposition of more coarse-grained loess, organic geochemical indicators, and scarceness of biotic remains. Two tundra-gley horizons in the Upper Würm point to short phases of climatic amelioration with higher humidity also evidenced by reoccurrence of ostracod and aquatic gastropod remains. We propose that these climatic ameliorations were coincident with the Greenland interstadials 4 and 2.

  9. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  10. Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation.

    PubMed

    Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Mounir, Majid; Thonart, Philippe; Delvigne, Frank

    2017-05-01

    Much research has been conducted about different types of fermentation at high temperature, but only a few of them have studied cell viability changes during high-temperature fermentation. In this study, Acetobacter senegalensis, a thermo-tolerant strain, was used for gluconic acid production at 38 °C. The influences of different carbon sources and physicochemical conditions on cell viability and the resuscitation of viable but nonculturable (VBNC) cells formed during fermentation were studied. Based on the obtained results, A. senegalensis could oxidize 95 g l - 1 glucose to gluconate at 38 °C (pH 5.5, yield 83%). However, despite the availability of carbon and nitrogen sources, the specific rates of glucose consumption (q s ) and gluconate production (q p ) reduced progressively. Interestingly, gradual q s and q p reduction coincided with gradual decrease in cellular dehydrogenase activity, cell envelope integrity, and cell culturability as well as with the formation of VBNC cells. Entry of cells into VBNC state during stationary phase partly stemmed from high fermentation temperature and long-term oxidation of glucose, because just about 48% of VBNC cells formed during stationary phase were resuscitated by supplementing the culture medium with an alternative favorite carbon source (low concentration of ethanol) and/or reducing incubation temperature to 30 °C. This indicates that ethanol, as a favorable carbon source, supports the repair of stressed cells. Since formation of VBNC cells is often inevitable during high-temperature fermentation, using an alternative carbon source together with changing physicochemical conditions may enable the resuscitation of VBNC cells and their use for several production cycles.

  11. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions

    PubMed Central

    Bouyssou, Guillaume; Allmann, Stefan; Kiema, Tiila-Riikka; Biran, Marc; Plazolles, Nicolas; Dittrich-Domergue, Franziska; Crouzols, Aline; Wierenga, Rik K.; Rotureau, Brice; Moreau, Patrick

    2018-01-01

    De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by

  12. Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources

    NASA Astrophysics Data System (ADS)

    Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.

    2009-12-01

    We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).

  13. Paleofacies of Eocene Lower Ngimbang Source Rocks in Cepu Area, East Java Basin based on Biomarkers and Carbon-13 Isotopes

    NASA Astrophysics Data System (ADS)

    Devi, Elok A.; Rachman, Faisal; Satyana, Awang H.; Fahrudin; Setyawan, Reddy

    2018-02-01

    The Eocene Lower Ngimbang carbonaceous shales are geochemically proven hydrocarbon source rocks in the East Java Basin. Sedimentary facies of source rock is important for the source evaluation that can be examined by using biomarkers and carbon-13 isotopes data. Furthermore, paleogeography of the source sedimentation can be reconstructed. The case study was conducted on rock samples of Lower Ngimbang from two exploration wells drilled in Cepu area, East Java Basin, Kujung-1 and Ngimbang-1 wells. The biomarker data include GC and GC-MS data of normal alkanes, isoprenoids, triterpanes, and steranes. Carbon-13 isotope data include saturate and aromatic fractions. Various crossplots of biomarker and carbon-13 isotope data of the Lower Ngimbang source samples from the two wells show that the source facies of Lower Ngimbang shales changed from transitional/deltaic setting at Kujung-1 well location to marginal marine setting at Ngimbang-1 well location. This reveals that the Eocene paleogeography of the Cepu area was composed of land area in the north and marine setting to the south. Biomarkers and carbon-13 isotopes are powerful data for reconstructing paleogeography and paleofacies. In the absence of fossils in some sedimentary facies, these geochemical data are good alternatives.

  14. Sources and turnover of organic carbon and methane in fjord and shelf sediments off northern Norway

    NASA Astrophysics Data System (ADS)

    Sauer, Simone; Hong, Wei-Li; Knies, Jochen; Lepland, Aivo; Forwick, Matthias; Klug, Martin; Eichinger, Florian; Baranwal, Soma; Crémière, Antoine; Chand, Shyam; Schubert, Carsten J.

    2016-10-01

    To better understand the present and past carbon cycling and transformation processes in methane-influenced fjord and shelf areas of northern Norway, we compared two sediment cores from the Hola trough and from Ullsfjorden. We investigated (1) the organic matter composition and sedimentological characteristics to study the sources of organic carbon (Corg) and the factors influencing Corg burial, (2) pore water geochemistry to determine the contribution of organoclastic sulfate reduction and methanogenesis to total organic carbon turnover, and (3) the carbon isotopic signature of hydrocarbons to identify the carbon transformation processes and gas sources. High sedimentation and Corg accumulation rates in Ullsfjorden support the notion that fjords are important Corg sinks. The depth of the sulfate-methane-transition (SMT) in the fjord is controlled by the supply of predominantly marine organic matter to the sediment. Organoclastic sulfate reduction accounts for 60% of the total depth-integrated sulfate reduction in the fjord. In spite of the presence of ethane, propane, and butane, we suggest a purely microbial origin of light hydrocarbons in the sediments based on their low δ13C values. In the Hola trough, sedimentation and Corg accumulation rates changed during the deglacial-to-post-glacial transition from approximately 80 cm ka-1 to erosion at present. Thus, Corg burial in this part of the shelf is presently absent. Low organic matter content in the sediment and low rates of organoclastic sulfate reduction (only 3% of total depth-integrated sulfate reduction) entail that the shallow depth of the SMT is controlled mostly by ascending thermogenic methane from deeper sources.

  15. [Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil].

    PubMed

    Sun, Feng-xia; Zhang, Wei-hua; Xu, Ming-gang; Zhang, Wen-ju; Li, Zhao-qiang; Zhang, Jing-ye

    2010-11-01

    In order to explore the effects of long-term fertilization on the microbiological characters of red soil, soil samples were collected from a 19-year long-term experimental field in Qiyang of Hunan, with their microbial biomass carbon (MBC) and nitrogen (MBN) and microbial utilization ratio of carbon sources analyzed. The results showed that after 19-year fertilization, the soil MBC and MBN under the application of organic manure and of organic manure plus inorganic fertilizers were 231 and 81 mg x kg(-1) soil, and 148 and 73 mg x kg(-1) soil, respectively, being significantly higher than those under non-fertilization, inorganic fertilization, and inorganic fertilization plus straw incorporation. The ratio of soil MBN to total N under the application of organic manure and of organic manure plus inorganic fertilizers was averagely 6.0%, significantly higher than that under non-fertilization and inorganic fertilization. Biolog-ECO analysis showed that the average well color development (AWCD) value was in the order of applying organic manure plus inorganic fertilizers = applying organic manure > non-fertilization > inorganic fertilization = inorganic fertilization plus straw incorporation. Under the application of organic manure or of organic manure plus inorganic fertilizers, the microbial utilization rate of carbon sources, including carbohydrates, carboxylic acids, amino acids, polymers, phenols, and amines increased; while under inorganic fertilization plus straw incorporation, the utilization rate of polymers was the highest, and that of carbohydrates was the lowest. Our results suggested that long-term application of organic manure could increase the red soil MBC, MBN, and microbial utilization rate of carbon sources, improve soil fertility, and maintain a better crop productivity.

  16. Evaluating North Sea carbon sources using radiogenic (224Ra and 228Ra) and stable carbon isotope (DI13C) tracers

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Paetsch, Johannes; Clargo, Nikki

    2015-04-01

    In the North Sea, much uncertainty still exists regarding the role of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) in the overall biogeochemical cycling of the system. The stable carbon isotope signature of dissolved inorganic carbon (δ13C-DIC) is a common tool for following transformations of carbon in the water column and identifying carbon sources and sinks. Here, analyses of the first basin-wide observations of δ13C-DIC reveal that a balance between biological production and respiration, as well as a freshwater input near the European continental coast, predominantly control surface distributions in the North Sea. A strong relationship between the biological component of DIC (DICbio) and δ13C-DIC is then used to quantify the metabolic DIC flux associated with changes in the carbon isotopic signature. Correlations are also found between δ13C-DIC and naturally-occurring Radium isotopes (224Ra and 228Ra), which have well-identified sources from the seafloor and coastal boundaries. The relationship between δ13C-DIC and the longer-lived 228Ra isotope (half-life = 5.8 years) is used to derive a metabolic DIC flux from the European continental coastline. 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (TA) compared to the more conventional use of salinity as a tracer. Coastal alkalinity inputs are calculated using relationships with 228Ra, and ratios of DIC and TA suggest denitrification as the main metabolic pathway for the formation of these coastal inputs. Finally, coastal TA inputs are translated into inputs of protons to quantify their impact on the buffering capacity of the Southern North Sea.

  17. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants.

    PubMed

    Lehmann, Marco M; Rinne, Katja T; Blessing, Carola; Siegwolf, Rolf T W; Buchmann, Nina; Werner, Roland A

    2015-09-01

    Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ (13) C R ) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this (13)C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ(13)C of putative leaf respiratory carbon sources (δ (13) C RS ) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ (13) C R with an in-tube incubation technique and δ (13) C RS with compound-specific isotope analysis during a daily cycle. The highest δ (13) C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ (13) C R (up to 5.2‰) and compared to δ (13) C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ (13) C R and δ (13) C RS among different putative carbon sources were strongest for malate during daytime (r(2)=0.69, P≤0.001) and nighttime (r(2)=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ (13) C RS of malate as the most important carbon source influencing δ (13) C R . Thus, our results strongly indicate malate as a key carbon source of (13)C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants

    PubMed Central

    Lehmann, Marco M.; Rinne, Katja T.; Blessing, Carola; Siegwolf, Rolf T. W.; Buchmann, Nina; Werner, Roland A.

    2015-01-01

    Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ 13 C R) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this 13C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ13C of putative leaf respiratory carbon sources (δ 13 C RS) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ 13 C R with an in-tube incubation technique and δ 13 C RS with compound-specific isotope analysis during a daily cycle. The highest δ 13 C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ 13 C R (up to 5.2‰) and compared to δ 13 C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ 13 C R and δ 13 C RS among different putative carbon sources were strongest for malate during daytime (r2=0.69, P≤0.001) and nighttime (r2=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ 13 C RS of malate as the most important carbon source influencing δ 13 C R. Thus, our results strongly indicate malate as a key carbon source of 13C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle. PMID:26139821

  19. Sources of organic carbon for Rimicaris hybisae: Tracing individual fatty acids at two hydrothermal vent fields in the Mid-Cayman rise

    NASA Astrophysics Data System (ADS)

    Streit, Kathrin; Bennett, Sarah A.; Van Dover, Cindy L.; Coleman, Max

    2015-06-01

    Hydrothermal vents harbor ecosystems mostly decoupled from organic carbon synthesized with the energy of sunlight (photosynthetic carbon source) but fueled instead by oxidation of reduced compounds to generate a chemosynthetic carbon source. Our study aimed to disentangle photosynthetic and chemosynthetic organic carbon sources for the shrimp species Rimicaris hybisae, a primary consumer presumed to obtain its organic carbon mainly from ectosymbiotic chemoautotrophic bacteria living on its gill cover membrane. To provide ectosymbionts with ideal conditions for chemosynthesis, these shrimp live in dense clusters around vent chimneys; they are, however, also found sparsely distributed adjacent to diffuse vent flows, where they might depend on alternative food sources. Densely and sparsely distributed shrimp were sampled and dissected into abdominal tissue and gill cover membrane, covered with ectosymbiotic bacteria, at two hydrothermal vent fields in the Mid-Cayman rise that differ in vent chemistry. Fatty acids (FA) were extracted from shrimp tissues and their carbon isotopic compositions assessed. The FA data indicate that adult R. hybisae predominantly rely on bacteria for their organic carbon needs. Their FA composition is dominated by common bacterial FA of the n7 family (~41%). Bacterial FA of the n4 FA family are also abundant and found to constitute good biomarkers for gill ectosymbionts. Sparsely distributed shrimp contain fractions of n4 FA in gill cover membranes ~4% lower than densely packed ones (~18%) and much higher fractions of photosynthetic FA in abdominal tissues, ~4% more (compared with 1.6%), suggesting replacement of ectosymbionts along with exoskeletons (molt), while they take up alternative diets of partly photosynthetic organic carbon. Abdominal tissues also contain photosynthetic FA from a second source taken up presumably during an early dispersal phase and still present to c. 3% in adult shrimp. The contribution of photosynthetic carbon to

  20. New CO and HCN sources associated with IRAS carbon stars

    NASA Technical Reports Server (NTRS)

    NGUYEN-Q-RIEU; Epchtein, N.; TRUONG-BACH; Cohen, M.

    1987-01-01

    Emission of CO and HCN was detected in 22 out of a sample of 53 IRAS sources classified as unidentified carbon-rich objects. The sample was selected according to the presence of the silicon carbide feature as revealed by low-resolution spectra. The molecular line widths indicate that the CO and HCN emission arises from the circumstellar envelopes of very highly evolved stars undergoing mass loss. The visible stars tend to be deficient in CO as compared with unidentified sources. Most the detected CO and HCN IRAS stars are distinct and thick-shelled objects, but their infrared and CO luminosities are similar to those of IRC + 102156 AFGL and IRC-CO evolved stars. The 12 micron flux seems to be a good indicator of the distance, hence a guide for molecular searches.

  1. Using radiocarbon to constrain black and organic carbon aerosol sources in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Mouteva, Gergana O.; Randerson, James T.; Fahrni, Simon M.; Bush, Susan E.; Ehleringer, James R.; Xu, Xiaomei; Santos, Guaciara M.; Kuprov, Roman; Schichtel, Bret A.; Czimczik, Claudia I.

    2017-09-01

    Black carbon (BC) and organic carbon (OC) aerosols are important components of fine particulate matter (PM2.5) in polluted urban environments. Quantifying the contribution of fossil fuel and biomass combustion to BC and OC concentrations is critical for developing and validating effective air quality control measures and climate change mitigation policy. We used radiocarbon (14C) to measure fossil and contemporary biomass contributions to BC and OC at three locations in Salt Lake City, Utah, USA, during 2012-2014, including during winter inversion events. Aerosol filters were analyzed with the Swiss_4S thermal-optical protocol to isolate BC. We measured fraction modern (fM) of BC and total carbon in PM2.5 with accelerator mass spectrometry and derived the fM of OC using isotope mass balance. Combined with 14C information of end-member composition, our data set of 31 14C aerosol measurements provided a baseline of the fossil and contemporary biomass components of carbonaceous aerosol. We show that fossil fuels were the dominant source of carbonaceous aerosol during winter, contributing 88% (80-98%) of BC and 58% (48-69%) of OC. While the concentration of both BC and OC increased during inversion events, the relative source contributions did not change. The sources of BC also did not vary throughout the year, while OC had a considerably higher contemporary biomass component in summer at 62% (49-76%) and was more variable. Our results suggest that in order to reduce PM2.5 levels in Salt Lake City to meet national standards, a more stringent policy targeting mobile fossil fuel sources may be necessary.

  2. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; Torsvik, Trond H.

    2017-05-01

    Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ΔεHf coupled with > + 5 ‰ δ7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to - 2.4 ‰ δ13C for carbonatites versus -5.7 to - 3.6 ‰ δ13C for kimberlites) require open-system fractionation at magmatic temperatures. Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of 'pure' carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly

  3. Denitrifying sulfur conversion-associated EBPR: Effects of temperature and carbon source on anaerobic metabolism and performance.

    PubMed

    Guo, Gang; Wu, Di; Ekama, George A; Hao, Tianwei; Mackey, Hamish Robert; Chen, Guanghao

    2018-04-16

    The recently developed Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) process has demonstrated simultaneous removal of organics, nitrogen and phosphorus with minimal sludge production in the treatment of saline/brackish wastewater. Its performance, however, is sensitive to operating and environmental conditions. In this study, the effects of temperature (20, 25, 30 and 35 °C) and the ratio of influent acetate to propionate (100-0, 75-25, 50-50, 25-75 and 0-100%) on anaerobic metabolism were investigated, and their optimal values/controls for performance optimization were identified. A mature DS-EBPR sludge enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB) was used in this study. The anaerobic stoichiometry of this process was insensitive to temperature or changes in the carbon source. However, an increase in temperature from 20 to 35 °C accelerated the kinetic reactions of the functional bacteria (i.e. SRB and SOB) and raised the energy requirement for their anaerobic maintenance, while a moderate temperature (25-30 °C) resulted in better P removal (≥93%, 18.6 mg P/L removal from total 20 mg P/L in the influent) with a maximum sulfur conversion of approximately 16 mg S/L. These results indicate that the functional bacteria are likely to be mesophilic. When a mixed carbon source (75-25 and 50-50% acetate to propionate ratios) was supplied, DS-EBPR achieved a stable P removal (≥89%, 17.8 mg P/L for 400 mg COD/L in the influent) with sulfur conversions at around 23 mg S/L, suggesting the functional bacteria could effectively adapt to changes in acetate or propionate as the carbon source. The optimal temperatures or carbon source conditions maximized the functional bacteria competition against glycogen-accumulating organisms by favoring their activity and synergy. Therefore, the DS-EBPR process can be optimized by setting the temperature

  4. Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis

    PubMed Central

    Molina-Ramírez, Carlos; Castro, Margarita; Osorio, Marlon; Torres-Taborda, Mabel; Gómez, Beatriz; Zuluaga, Robin; Gómez, Catalina; Gañán, Piedad; Rojas, Orlando J.; Castro, Cristina

    2017-01-01

    Bacterial cellulose (BC) is a polymer obtained by fermentation with microorganism of different genera. Recently, new producer species have been discovered, which require identification of the most important variables affecting cellulose production. In this work, the influence of different carbon sources in BC production by a novel low pH-resistant strain Komagataeibacter medellinensis was established. The Hestrin-Schramm culture medium was used as a reference and was compared to other media comprising glucose, fructose, and sucrose, used as carbon sources at three concentrations (1, 2, and 3% w/v). The BC yield and dynamics of carbon consumption were determined at given fermentation times during cellulose production. While the carbon source did not influence the BC structural characteristics, different production levels were determined: glucose > sucrose > fructose. These results highlight considerations to improve BC industrial production and to establish the BC property space for applications in different fields. PMID:28773001

  5. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes

    Treesearch

    Emma P. McCorkle; Asmeret Asefaw Berhe; Carolyn T. Hunsaker; Dale W. Johnson; Karis J. McFarlane; Marilyn L. Fogel; Stephen C. Hart

    2016-01-01

    Soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance...

  6. Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods.

    PubMed

    Al-Naiema, Ibrahim M; Yoon, Subin; Wang, Yu-Qin; Zhang, Yuan-Xun; Sheesley, Rebecca J; Stone, Elizabeth A

    2018-09-01

    Chemical mass balance (CMB) modeling and radiocarbon measurements were combined to evaluate the sources of carbonaceous fine particulate matter (PM 2.5 ) in Shenzhen, China during and after the 2011 summer Universiade games when air pollution control measurements were implemented to achieve air quality targets. Ambient PM 2.5 filter samples were collected daily at two sampling sites (Peking University Shenzhen campus and Longgang) over 24 consecutive days, covering the controlled and uncontrolled periods. During the controlled period, the average PM 2.5 concentration was less than half of what it was after the controls were lifted. Organic carbon (OC), organic molecular markers (e.g., levoglucosan, hopanes, polycyclic aromatic hydrocarbons), and secondary organic carbon (SOC) tracers were all significantly lower during the controlled period. After pollution controls ended, at Peking University, OC source contributions included gasoline and diesel engines (24%), coal combustion (6%), biomass burning (12.2%), vegetative detritus (2%), biogenic SOC (from isoprene, α-pinene, and β-caryophyllene; 7.1%), aromatic SOC (23%), and other sources not included in the model (25%). At Longgang after the controls ended, similar source contributions were observed: gasoline and diesel engines (23%), coal combustion (7%), biomass burning (17.7%), vegetative detritus (1%), biogenic SOC (from isoprene, α-pinene, and β-caryophyllene; 5.3%), aromatic SOC (13%), and other sources (33%). The contributions of the following sources were smaller during the pollution controls: biogenic SOC (by a factor of 10-16), aromatic SOC (4-12), coal combustion (1.5-6.8), and biomass burning (2.3-4.9). CMB model results and radiocarbon measurements both indicated that fossil carbon dominated over modern carbon, regardless of pollution controls. However, the CMB model needs further improvement to apportion contemporary carbon (i.e. biomass burning, biogenic SOC) in this region. This work defines the

  7. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  8. Predictions and Tests of the "Late Noachian Icy Highlands" Climate Model: Can Evidence for Fluvial/Lacustrine Systems Be Reconciled?

    NASA Astrophysics Data System (ADS)

    Head, J. W., III

    2016-12-01

    Improved 3D global simulations (GCMs) of the early martian climate have found that for atmospheric pressures greater than a fraction of a bar, atmospheric-surface thermal coupling occurs and the adiabatic cooling effect (ACE) causes temperatures in the southern uplands to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of obliquities. Conditions are too cold (MAT 225 K) to permit the presence of long-term surface liquid water, including streams, lakes and oceans. The LNIH equilibrium state predicts: 1) a global permafrost layer, 2) a horizontally stratified hydrological cycle/system, 3) thick ice deposits in the southern uplands, 4) an extended water ice cap on the southern pole, and 5) no rainfall, streams lakes or oceans. The majority of these predictions are in direct conflict with the observed fluvial/lacustrine geologic record. Can non-equilibrium conditions in a LNIH scenario explain these conflicts by transient heating and melting of the LNIH? As steps in the comprehensive testing of this "Late Noachian Icy Highlands" (LNIH) model we explore the predictions for geologic settings and processes in both equilibrium and non-equilibrium climate states. We assess the following sources of disequilibrium: 1) Top-down heating and melting: a) impact cratering, b) extrusive/explosive volcanism, and c) short-term emission of greenhouse gases. 2) Bottom up heating and melting: a) enhanced regional-global geothermal gradients, and b) thick ice accumulation to cause/sustain basal melting, wet-based glaciation and runoff. We assess these disequilibrium mechanisms in terms of: 1) the altitude dependence of melting, 2) melting duration, 3) volumes of meltwater produced, 4) predicted locations of meltwater production, and 6) comparison to the distribution of fluvial/lacustrine features. We find that the Late Noachian Icy

  9. Hydrocarbon generation and expulsion in shale Vs. carbonate source rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leythaeuser, D.; Krooss, B.; Hillebrand, T.

    1993-09-01

    For a number of commercially important source rocks of shale and of carbonate lithologies, which were studied by geochemical, microscopical, and petrophysical techniques, a systematic comparison was made of the processes on how hydrocarbon generation and migration proceed with maturity progress. In this way, several fundamental differences between both types of source rocks were recognized, which are related to differences of sedimentary facies and, more importantly, of diagenetic processes responsible for lithification. Whereas siliciclastic sediments lithify mainly by mechanical compaction, carbonate muds get converted into lithified rocks predominantly by chemical diagenesis. With respect to their role as hydrocarbon source rocks,more » pressure solution processes appear to be key elements. During modest burial stages and prior to the onset of hydrocarbon generation reactions by thermal decomposition of kerogen, pressure solution seams and stylolites. These offer favorable conditions for hydrocarbon generation and expulsion-a three-dimensional kerogen network and high organic-matter concentrations that lead to effective saturation of the internal pore fluid system once hydrocarbon generation has started. As a consequence, within such zones pore fluids get overpressured, leading ultimately to fracturing. Petroleum expulsion can then occur at high efficiencies and in an explosive fashion, whereby clay minerals and residual kerogen particles are squeezed in a toothpaste-like fashion into newly created fractures. In order to elucidate several of the above outlined steps of hydrocarbon generation and migration processes, open-system hydrous pyrolysis experiments were performed. This approach permits one to monitor changes in yield and composition of hydrocarbon products generated and expelled at 10[degrees]C temperature increments over temperature range, which mimics in the laboratory the conditions prevailing in nature over the entire liquid window interval.« less

  10. Stable bioemulsifiers are produced by Acinetobacter bouvetii UAM25 growing in different carbon sources.

    PubMed

    Ortega-de la Rosa, Nestor D; Vázquez-Vázquez, Jose L; Huerta-Ochoa, Sergio; Gimeno, Miquel; Gutiérrez-Rojas, Mariano

    2018-06-01

    Acinetobacter species are identified as producing surface-active and emulsifying molecules known as bioemulsifiers. Production, characterization and stability of bioemulsifiers produced by Acinetobacter bouvetii UAM25 were studied. A. bouvetii UAM25 grew in three different carbon and energy sources: ethanol, a glycerol-hexadecane mixture and waste cooking oil in an airlift bioreactor, showing that bioemulsifier production was growth associated. The three purified bioemulsifiers were lipo-heteropolysaccharides of high molecular weight (4866 ± 533 and 462 ± 101 kDa). The best carbon source and energy for bioemulsifier production was wasted cooking oil, with a highest emulsifying capacity (76.2 ± 3.5 EU mg -1 ) as compared with ethanol (46.6 ± 7.1 EU mg -1 ) and the glycerol-hexadecane mixture (49.5 ± 4.2 EU mg -1 ). The three bioemulsifiers in our study displayed similar macromolecular structures, regardless of the nature (hydrophobic or hydrophilic) of the carbon and energy source. Bioemulsifiers did not decrease surface tension, but the emulsifying capacity of all of them was retained under extreme variation in salinity (0-50 g NaCl L -1 ), pH (3-10) and temperature (25-121 °C), indicative of remarkable stability. These findings contribute to understanding of the relationship between: production, physical properties, chemical composition and stability of bioemulsifiers for their potential applications in biotechnology, such as bioremediation of hydrocarbon-contaminated soil and water.

  11. Stable carbon isotopes and levoglucosan for PM2.5 elemental carbon source apportionments in the largest city of Northwest China

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuzi; Cao, Junji; Zhang, Ting; Shen, Zhenxing; Ni, Haiyan; Tian, Jie; Wang, Qiyuan; Liu, Suixin; Zhou, Jiamao; Gu, Jian; Shen, Ganzhou

    2018-07-01

    Stable carbon isotopes provide information on aerosol sources, but no extensive long-term studies of these isotopes have been conducted in China, and they have mainly been used for qualitative rather than quantitative purposes. Here, 24 h PM2.5 samples (n = 58) were collected from July 2008 to June 2009 at Xi'an, China. The concentrations of organic and elemental carbon (OC and EC), water-soluble OC, and the stable carbon isotope abundances of OC and EC were determined. In spring, summer, autumn and winter, the mean stable carbon isotope in OC (δ13COC) were -26.4 ± 0.6, -25.8 ± 0.7, -25.0 ± 0.6 and -24.4 ± 0.8‰, respectively, and the corresponding δ13CEC values were -25.5 ± 0.4, -25.5 ± 0.8, -25.2 ± 0.7 and -23.7 ± 0.6‰. Large δ13CEC and δ13COC values in winter can be linked to the burning coal for residential heating. Less biomass is burned during spring and summer than winter or fall (manifested in the levels of levoglucosan, i.e., 178, 85, 370, 935 ng m-3 in spring, summer, autumn, and winter), and the more negative δ13COC in the warmer months can be explained by the formation of secondary organic aerosols. A levoglucosan tracer method combined with an isotope mass balance analysis indicated that biomass burning accounted for 1.6-29.0% of the EC, and the mean value in winter (14.9 ± 7.5%) was 7 times higher than summer (2.1 ± 0.4%), with intermediate values of 6.1 ± 5.6 and 4.5 ± 2.4% in autumn and spring. Coal combustion accounted for 45.9 ± 23.1% of the EC overall, and the percentages were 63.0, 37.2, 36.7, and 33.7% in winter, autumn, summer and spring respectively. Motor vehicles accounted for 46.6 ± 26.5% of the annual EC, and these contributed over half (56.7-61.8%) of the EC in all seasons except winter. Correlations between motor vehicle-EC and coal combustion-EC with established source indicators (B(ghi)P and As) support the source apportionment results. This paper describes a simple and accurate method for apportioning the

  12. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as theirmore » stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  13. Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy.

    PubMed

    Coolen, Marco J L; Talbot, Helen M; Abbas, Ben A; Ward, Christopher; Schouten, Stefan; Volkman, John K; Damsté, Jaap S Sinninghe

    2008-07-01

    Bacteriohopanoids are widespread lipid biomarkers in the sedimentary record. Many aerobic and anaerobic bacteria are potential sources of these lipids which sometimes complicates the use of these biomarkers as proxies for ecological and environmental changes. Therefore, we applied preserved 16S ribosomal RNA genes to identify likely Holocene biological sources of bacteriohopanepolyols (BHPs) in the sulfidic sediments of the permanently stratified postglacial Ace Lake, Antarctica. A suite of intact BHPs were identified, which revealed a variety of structural forms whose composition differed through the sediment core reflecting changes in bacterial populations induced by large changes in lake salinity. Stable isotopic compositions of the hopanols formed from periodic acid-cleaved BHPs, showed that some were substantially depleted in (13)C, indicative of their methanotrophic origin. Using sensitive molecular tools, we found that Type I and II methanotrophic bacteria (respectively Methylomonas and Methylocystis) were unique to the oldest lacustrine sediments (> 9400 years BP), but quantification of fossil DNA revealed that the Type I methanotrophs, including methanotrophs related to methanotrophic gill symbionts of deep-sea cold-seep mussels, were the main precursors of the 35-amino BHPs (i.e. aminopentol, -tetrol and -triols). After isolation of the lake approximately 3000 years ago, one Type I methanotroph of the 'methanotrophic gill symbionts cluster' remained the most obvious source of aminotetrol and -triol. We, furthermore, identified a Synechococcus phylotype related to pelagic freshwater strains in the oldest lacustrine sediments as a putative source of 2-methylbacteriohopanetetrol (2-Me BHT). This combined application of advanced geochemical and paleogenomical tools further refined our knowledge about Holocene biogeochemical processes in Ace Lake.

  14. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86

    PubMed Central

    Mohan, Karishma

    2017-01-01

    ABSTRACT Pseudomonas putida CSV86 degrades lignin-derived metabolic intermediates, viz., veratryl alcohol, ferulic acid, vanillin, and vanillic acid, as the sole sources of carbon and energy. Strain CSV86 also degraded lignin sulfonate. Cell respiration, enzyme activity, biotransformation, and high-pressure liquid chromatography (HPLC) analyses suggest that veratryl alcohol and ferulic acid are metabolized to vanillic acid by two distinct carbon source-dependent inducible pathways. Vanillic acid was further metabolized to protocatechuic acid and entered the central carbon pathway via the β-ketoadipate route after ortho ring cleavage. Genes encoding putative enzymes involved in the degradation were found to be present at fer, ver, and van loci. The transcriptional analysis suggests a carbon source-dependent cotranscription of these loci, substantiating the metabolic studies. Biochemical and quantitative real-time (qRT)-PCR studies revealed the presence of two distinct O-demethylases, viz., VerAB and VanAB, involved in the oxidative demethylation of veratric acid and vanillic acid, respectively. This report describes the various steps involved in metabolizing lignin-derived aromatic compounds at the biochemical level and identifies the genes involved in degrading veratric acid and the arrangement of phenylpropanoid metabolic genes as three distinct inducible transcription units/operons. This study provides insight into the bacterial degradation of lignin-derived aromatics and the potential of P. putida CSV86 as a suitable candidate for producing valuable products. IMPORTANCE Pseudomonas putida CSV86 metabolizes lignin and its metabolic intermediates as a carbon source. Strain CSV86 displays a unique property of preferential utilization of aromatics, including for phenylpropanoids over glucose. This report unravels veratryl alcohol metabolism and genes encoding veratric acid O-demethylase, hitherto unknown in pseudomonads, thereby providing new insight into the

  15. Siberian Arctic black carbon sources constrained by model and observation

    PubMed Central

    Andersson, August; Eckhardt, Sabine; Stohl, Andreas; Semiletov, Igor P.; Dudarev, Oleg V.; Charkin, Alexander; Shakhova, Natalia; Klimont, Zbigniew; Heyes, Chris; Gustafsson, Örjan

    2017-01-01

    Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng⋅m−3 to 302 ng⋅m−3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth. PMID:28137854

  16. Assessing global carbon burial during Oceanic Anoxic Event 2, Cenomanian-Turonian boundary event

    NASA Astrophysics Data System (ADS)

    Owens, J. D.; Lyons, T. W.; Lowery, C. M.

    2017-12-01

    Reconstructing the areal extent and total amount of organic carbon burial during ancient events remains elusive even for the best documented oceanic anoxic event (OAE) in Earth history, the Cenomanian-Turonian boundary event ( 93.9 Ma), or OAE 2. Reports from 150 OAE 2 localities provide a wide global distribution. However, despite the large number of sections, the majority are found within the proto-Atlantic and Tethyan oceans and interior seaways. Considering these gaps in spatial coverage, the pervasive increase in organic carbon (OC) burial during OAE2 that drove carbon isotope values more positive (average of 4‰) can provide additional insight. These isotope data allow us to estimate the total global burial of OC, even for unstudied portions of the global ocean. Thus, we can solve for any `missing' OC sinks by comparing our estimates from a forward carbon-isotope box model with the known, mapped distribution of OC for OAE 2 sediments. Using the known OC distribution and reasonably extrapolating to the surrounding regions of analogous depositional conditions accounts for only 13% of the total seafloor, mostly in marginal marine settings. This small geographic area accounts for more OC burial than the entire modern ocean, but significantly less than the amount necessary to produce the observed isotope record. Using modern and OAE 2 average OC rates we extrapolate further to appropriate depositional settings in the unknown portions of seafloor, mostly deep abyssal plains. This addition significantly increases the predicted amount buried but still does not account for total burial. Additional sources, including hydrocarbon migration, lacustrine, and coal also cannot account for the missing OC. This difference points to unknown portions of the open ocean with high TOC contents or exceptionally high TOC in productive marginal marine regions, which are underestimated in our extrapolations. This difference might be explained by highly productive margins within the

  17. Linking groundwater dissolved organic matter to sedimentary organic matter from a fluvio-lacustrine aquifer at Jianghan Plain, China by EEM-PARAFAC and hydrochemical analyses.

    PubMed

    Huang, Shuang-bing; Wang, Yan-xin; Ma, Teng; Tong, Lei; Wang, Yan-yan; Liu, Chang-rong; Zhao, Long

    2015-10-01

    The sources of dissolved organic matter (DOM) in groundwater are important to groundwater chemistry and quality. This study examined similarities in the nature of DOM and investigated the link between groundwater DOM (GDOM) and sedimentary organic matter (SOM) from a lacustrine-alluvial aquifer at Jianghan Plain. Sediment, groundwater and surface water samples were employed for SOM extraction, optical and/or chemical characterization, and subsequent fluorescence excitation-emission matrix (EEM) and parallel factor analyses (PARAFAC). Spectroscopic properties of bulk DOM pools showed that indices indicative of GDOM (e.g., biological source properties, humification level, aromaticity and molecule mobility) varied within the ranges of those of two extracted end-members of SOM: humic-like materials and microbe-associated materials. The coexistence of PARAFAC compositions and the sustaining internal relationship between GDOM and extracted SOM indicate a similar source. The results from principal component analyses with selected spectroscopic indices showed that GDOM exhibited a transition trend regarding its nature: from refractory high-humification DOM to intermediate humification DOM and then to microbe-associated DOM, with decreasing molecular weight. Correlations of spectroscopic indices with physicochemical parameters of the groundwater suggested that GDOM was released from SOM and was modified by microbial diagenetic processes. The current study demonstrated the associations of GDOM with SOM from a spectroscopic viewpoint and provided new evidence supporting SOM as the source of GDOM. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Production of microbial secondary metabolites: regulation by the carbon source.

    PubMed

    Ruiz, Beatriz; Chávez, Adán; Forero, Angela; García-Huante, Yolanda; Romero, Alba; Sánchez, Mauricio; Rocha, Diana; Sánchez, Brenda; Rodríguez-Sanoja, Romina; Sánchez, Sergio; Langley, Elizabeth

    2010-05-01

    Microbial secondary metabolites are low molecular mass products, not essential for growth of the producing cultures, but very important for human health. They include antibiotics, antitumor agents, cholesterol-lowering drugs, and others. They have unusual structures and are usually formed during the late growth phase of the producing microorganisms. Its synthesis can be influenced greatly by manipulating the type and concentration of the nutrients formulating the culture media. Among these nutrients, the effect of the carbon sources has been the subject of continuous studies for both, industry and research groups. Different mechanisms have been described in bacteria and fungi to explain the negative carbon catabolite effects on secondary metabolite production. Their knowledge and manipulation have been useful either for setting fermentation conditions or for strain improvement. During the last years, important advances have been reported on these mechanisms at the biochemical and molecular levels. The aim of the present review is to describe these advances, giving special emphasis to those reported for the genus Streptomyces.

  19. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    NASA Astrophysics Data System (ADS)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  20. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation

    PubMed Central

    Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin

    2016-01-01

    Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar, both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar. For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil. PMID:28066378

  1. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation.

    PubMed

    Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin

    2016-01-01

    Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar , both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar . For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil.

  2. Seasonal and spatial trends in the sources of fine particle organic carbon in Israel, Jordan, and Palestine

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, Erika; Zhou, Jiabin; Stone, Elizabeth A.; Schauer, James J.; Qasrawi, Radwan; Abdeen, Ziad; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M.; Sarnat, Jeremy A.

    2010-09-01

    A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM 2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM 2.5 mass. The lowest concentrations of PM 2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM 2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM 2.5 mass concentrations ranging from 21 to 25 ug m -3. These sites were also observed to have the highest OC to EC ratios (4.1-5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%-55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m -3 to 4.9 μgC m -3; 30%-74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.

  3. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  4. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source.

    PubMed

    Müller, Elisabeth; Schüssler, Walter; Horn, Harald; Lemmer, Hilde

    2013-08-01

    Potential aerobic biodegradation mechanisms of the widely used polar, low-adsorptive sulfonamide antibiotic sulfamethoxazole (SMX) were investigated in activated sludge at bench scale. The study focused on (i) SMX co-metabolism with acetate and ammonium nitrate and (ii) SMX utilization when present as the sole carbon and nitrogen source. With SMX adsorption being negligible, elimination was primarily based on biodegradation. Activated sludge was able to utilize SMX both as a carbon and/or nitrogen source. SMX biodegradation was enhanced when a readily degradable energy supply (acetate) was provided which fostered metabolic activity. Moreover, it was raised under nitrogen deficiency conditions. The mass balance for dissolved organic carbon showed an incomplete SMX mineralization with two scenarios: (i) with SMX as a co-substrate, 3-amino-5-methyl-isoxazole represented the main stable metabolite and (ii) SMX as sole carbon and nitrogen source possibly yielded hydroxyl-N-(5-methyl-1,2-oxazole-3-yl)benzene-1-sulfonamide as a further metabolite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Historical records of polycyclic aromatic hydrocarbon deposition in a shallow eutrophic lake: Impacts of sources and sedimentological conditions.

    PubMed

    Li, Chaocan; Huo, Shouliang; Yu, Zhiqiang; Guo, Wei; Xi, Beidou; He, Zhuoshi; Zeng, Xiangying; Wu, Fengchang

    2016-03-01

    Sediment core samples collected from Lake Chaohu were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) to assess the spatial and temporal distributions of the PAHs during lacustrine sedimentary processes and regional economic development. Assessing the PAH sedimentary records over an approximately 100-year time span, we identified two stages in the PAH inputs and sources (before the 1970s and after the 1970s) in the eastern lake region near a village, whereas three stages (before the 1950s, 1950s-1990s and after the 1990s) were identified in the western lake region near urban and industrial areas. Rapid increases in the PAH depositional fluxes occurred during the second stage due to increased human activities in the Lake Chaohu basin. The composition and isomeric ratios of the PAHs revealed that pyrolysis is the main source of PAHs in this lake. Strong positive relationships between PAH concentration and the total organic carbon concentration, sediment grain size (<4μm), as well as the local population and Gross Domestic Product indicated that the sedimentary conditions impact the depositional characteristics of the PAHs; simultaneously, socioeconomic activities, such as energy consumption and the levels of urban industrialization and civilization, affect both the composition and abundance of the PAHs. Copyright © 2015. Published by Elsevier B.V.

  6. Fossil and contemporary sources of organic and elemental carbon at a rural and an urban site in the Netherlands

    NASA Astrophysics Data System (ADS)

    Dusek, U.; Monaco, M.; Weijers, E.; Röckmann, T.

    2012-04-01

    Measurement of the radioactive carbon isotope 14C in aerosols can provide a direct estimate of the contribution of fossil fuel sources to aerosol carbon. In aerosol science, measurements of 14C/12C ratios are usually reported as fraction modern (fm), relative to an oxalic acid standard that, by definition, has fm=1. The radiocarbon signature gives a clear distinction between 'modern' carbon sources (fm around 1.1-1.2 for biomass burning and around 1.05 for biogenic secondary organic aerosol) and 'fossil' carbon sources (fm =0 for primary and secondary formation from fossil fuel combustion). High volume filter samples have been collected since February 2011 at Cabauw, a rural location in the Netherlands, and additionally in May and June at two suburban locations around Rotterdam. We report measurements of fm for total carbon (TC), organic carbon (OC), water insoluble OC (WIOC) and thermally refractory carbon (RC) as a proxy for elemental carbon. The carbon fractions are isolated by combusting TC at 650 °C, OC and WIOC at 360 °C. Refractory carbon is defined as the carbon remaining on the filter after water extraction, combustion at 360 °C for 15 min and at 450 °C for 2 minutes. The method has been tested with test substances and real aerosol filters and shows little charring for water-extracted filters. First results of 7 filter samples taken from February - Mai 2011 show fm(OC) generally larger than 0.86 at the rural site, except for one case, when a strongly polluted air mass originating in Eastern Europe reached the site. This indicates a strong contribution of natural sources to OC, even in the Netherlands, a very densely populated country with one of the highest levels of aerosol pollution in Western Europe. In particular, WSOC in the rural springtime aerosol seems to originate almost entirely from contemporary sources. Refractory carbon also showed relatively high fm, generally between 0.3-0.5, except in two cases, when marine air masses reached the site

  7. Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources.

    PubMed

    Martinez-Moya, Pilar; Niehaus, Karsten; Alcaíno, Jennifer; Baeza, Marcelo; Cifuentes, Víctor

    2015-04-12

    Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable). A total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis. Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions. The use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic

  8. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  9. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  10. Optimization of Carbon and Nitrogen Sources for Extracellular Polymeric Substances Production by Chryseobacterium indologenes MUT.2.

    PubMed

    Khani, Mojtaba; Bahrami, Ali; Chegeni, Asma; Ghafari, Mohammad Davoud; Mansouran Zadeh, ALi

    2016-06-01

    Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such as optimized culture conditions, and development of the strains with higher yield ( e.g . through genetic manipulation), or using low-cost substrates. In this work, the effects of carbon and nitrogen sources were studied in order to improve the EPS production by the submerged cultivation of Chryseobacterium indologenes MUT.2. The mesophilic microorganism Chryseobacterium indologenes MUT.2, was grown and maintained in the Luria Bertani agar. The initial basal medium contained: glucose (20 g.L -1 ), yeast extracts (5 g.L -1 ), K 2 HPO 4 (6 g.L -1 ), NaH 2 PO 4 (7 g.L -1 ), NH 4 CL (0.7 g.L -1 ), and MgSO 4 (0.5 g.L -1 ). For evaluating the carbon and nitrogen sources' effect on the fermentation performance, cultures were prepared in 500 mL flasks filled with 300 mL of the medium. The single-factor experiments based on statistics was employed to evaluate and optimize the carbon and nitrogen sources for EPS production in the liquid culture medium of Chryseobacterium indologenes MUT.2. The preferred carbon-sources, sucrose and glucose, commonly gave the highest EPS production of 8.32 and 6.37 g.L -1 , respectively, and the maximum EPS production of 8.87 g.L -1 was achieved when glutamic acid (5 g.L -1 ) was employed as the nitrogen source. In this work, the culture medium for production of EPS by Chryseobacterium indologenes MUT.2 was optimized. Compared to the basal culture medium in shake-flasks and stirred tank bioreactor, the use of optimized culture medium has resulted in a 53% and 73% increase in the EPS production, respectively.

  11. Microbial lime-mud production and its relation to climate change

    USGS Publications Warehouse

    Yates, K.K.; Robbins, L.L.; Gerhard, L.C.; Harrison, W.E.; Hanson, B.M.B.

    2001-01-01

    Microbial calcification has been identified as a significant source of carbonate sediment production in modern marine and lacustrine environments around the globe. This process has been linked to the production of modern whitings and large, micritic carbonate deposits throughout the geologic record. Furthermore, carbonate deposits believed to be the result of cyanobacterial and microalgal calcification suggest that the potential exists for long-term preservation of microbial precipitates and storage of carbon dioxide (CO2). Recent research has advanced our understanding of the microbial-calcification mechanism as a photosynthetically driven process. However, little is known of the effects of this process on inorganic carbon cycling or of the effects of changing climate on microbial-calcification mechanisms.Laboratory experiments on microbial cellular physiology demonstrate that cyanobacteria and green algae can utilize different carbon species for metabolism and calcification. Cyanobacterial calcification relies on bicarbonate (HCO3–)utilization while green algae use primarily CO2. Therefore, depending on which carbonate species (HCO3– or CO2) dominates in the ocean or lacustrine environments (a condition ultimately linked to atmospheric partial pressure PCO2), the origin of lime-mud production by cyanobacteria and/or algae may fluctuate through geologic time. Trends of cyanobacteria versus algal dominance in the rock record corroborate this conclusion. These results suggest that relative species abundances of calcareous cyanobacteria and algae in the Phanerozoic may serve as potential proxies for assessing paleoclimatic conditions, including fluctuations in atmospheric PCO2.

  12. Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events: examples of lacustrine varved sediments in Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Yoshiro; Sasaki, Yasunori; Sasaki, Hana; Onishi, Yuri

    2016-04-01

    Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events are frequently intercalated in lacustrine successions. When sediment gravity flow deposits are present in varved sediments, it is suggested that they provide valuable information about sediment gravity flows, because they can easily trace laterally and can give the magnitude of erosion and recurrence interval of events. In addition, because large sedimentary bodies of stacked sediment gravity flow deposits in varved sediments of a calm lake are not suggested, a relatively simple depositional environment is expected. In the present study, we analysed sedimentary facies of sediment gravity flow deposits in varved lacustrine diatomites in the Middle Pleistocene Hiruzenbara and Miyajima formations in Japan, and concluded a depositional model of the lacustrine sediment gravity flow deposits. Varved diatomites: The Hiruzenbara Fm., a dammed lake fill as foots of Hiruzen Volcanos, is deposited during an interglacial period during MIS12 to 15. Varves of ca. 8000 yr were measured in a 20 m intercalating flood and lake slope failure-induced sediment gravity flow deposits. The Miyajima Fm., distributed in a paleo-caldera lake in NE Japan, includes many sediment gravity flow deposits possibly originated from fandeltas around the lake. These formations have differences in their depositional setting; the Hiruzebara Fm. was deposited in a large lake basin, whereas the Miyajima Fm. was deposited in a relatively small basin. Because of the depositional setting, intercalation of volcaniclastics is dominant in the Miyajima Fm. Lacustrine sediment gravity flow deposits: Sediment gravity flow deposits in both formations can be classified into flood- and lake slope failure-induced types based on the sedimentary facies. Composites of the both types are also found. Flood-induced types comprise fine-grained silts dominated by carbonaceous fragments, whereas lake slope failure-induced types are

  13. Long-term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol.

    PubMed

    McDonald, Brian C; Goldstein, Allen H; Harley, Robert A

    2015-04-21

    A fuel-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC) and organic aerosol (OA, including both primary emissions and secondary formation). The main focus of this analysis is the Los Angeles Basin, where a long record of measurements is available to infer trends in ambient concentrations of BC and organic carbon (OC), with OC used here as a proxy for OA. Mobile source emissions and ambient concentrations have decreased similarly, reflecting the importance of on- and off-road engines as sources of BC and OA in urban areas. In 1970, the on-road sector accounted for ∼90% of total mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions have been controlled, the relative importance of off-road sources has grown. By 2010, off-road engines were estimated to account for 37 ± 20% and 45 ± 16% of total mobile source contributions to BC and OA, respectively, in the Los Angeles area. This study highlights both the success of efforts to control on-road emission sources, and the importance of considering off-road engine and other VOC source contributions when assessing long-term emission and ambient air quality trends.

  14. Isotopic Analysis of Sporocarp Protein and Structural Material Improves Resolution of Fungal Carbon Sources

    PubMed Central

    Chen, Janet; Hofmockel, Kirsten S.; Hobbie, Erik A.

    2016-01-01

    Fungal acquisition of resources is difficult to assess in the field. To determine whether fungi received carbon from recent plant photosynthate, litter or soil-derived organic (C:N bonded) nitrogen, we examined differences in δ13C among bulk tissue, structural carbon, and protein extracts of sporocarps of three fungal types: saprotrophic fungi, fungi with hydrophobic ectomycorrhizae, or fungi with hydrophilic ectomycorrhizae. Sporocarps were collected from experimental plots of the Duke Free-air CO2 enrichment experiment during and after CO2 enrichment. The differential 13C labeling of ecosystem pools in CO2 enrichment experiments was tracked into fungi and provided novel insights into organic nitrogen use. Specifically, sporocarp δ13C as well as δ15N of protein and structural material indicated that fungi with hydrophobic ectomycorrhizae used soil-derived organic nitrogen sources for protein carbon, fungi with hydrophilic ectomycorrhizae used recent plant photosynthates for protein carbon and both fungal groups used photosynthates for structural carbon. Saprotrophic fungi depended on litter produced during fumigation for both protein and structural material. PMID:28082951

  15. Quantifying Contemporary Terrestrial Carbon Sources and Sinks in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Liu, S.; Loveland, T.

    2003-12-01

    U.S. land likely accounts for a significant portion of the unidentified global carbon sink, although the magnitude is highly uncertain. The ultimate goal of this study is to quantify the contemporary temporal and spatial patterns of carbon sources and sinks in the conterminous United States from the early 1970s to 2000, and to explain the mechanisms that cause the variability and changes. Because of the difficulty and massive cost for developing land cover change databases for the conterminous United States, we adopt an ecoregion-based sampling approach. Carbon dynamics within thousands of 20 km by 20 km or 10 km by 10 km sampling blocks, stratified by Omernik Level III ecoregions, are simulated using the General Ensemble Biogeochemical Modeling System at the spatial resolution of 60 m by 60 m. The land use change data, providing unprecedented accuracy and consistency, are derived from Landsat imagery for five time points (nominally 1972, 1980, 1986, 1992, and 2000). Mechanisms have been implemented to assimilate data from key national benchmark databases (including the USDA Forest Service­_s Forest Inventory and Analysis data and the USDA­_s agricultural census data). The dynamics of carbon stocks in vegetation, soil, and harvested wood materials are quantified. Results from three ecoregions (i.e., Southeastern Plains, Piedmont, and Northern Piedmont) indicated that the carbon sink strength has been decreasing from the 1970s to 2000. The relative contribution of biomass accumulation to the sink decreased during this period, while those of soil organic carbon and harvested wood materials increased.

  16. Chapter F: Preliminary Bibliography of Lacustrine Diatomite Deposits in the Western United States and Related Topics

    USGS Publications Warehouse

    Bolm, Karen S.; Wallace, Alan R.; Moyle, Phillip R.; Bliss, James D.; Orris, Greta J.

    2003-01-01

    Introduction As part of the assessment of lacustrine diatomite resources in the Western United States (fig. 1), U.S. Geological Survey (USGS) project members conducted a review of literature relating to the formation, location, and nature of deposits in the study area. This preliminary bibliography consists of selected publications to identify, locate, and describe the deposits to be studied, to characterize common geologic factors about the deposits, and to better understand the factors that control their formation, preservation, or destruction. The bibliography also serves as a resource for other workers to research the topic. References included in the preliminary bibliography were gathered by searching existing bibliographic data bases and library collections. Project researchers also contributed references that they found during the course of their work. This bibliography should be considered a working document that will grow as research and literature searches continue. Clearly, many significant publications may be missing from this preliminary list; therefore, USGS staff members intend to issue a revised bibliography as project work progresses. To assure completeness, input from other researchers and industry is welcome. Although the focus of this bibliography is lacustrine diatomite deposits of the Western United States, additional references that provide a foundation of knowledge for the study of diatomites, diatoms, and diatom-related processes (ecology, geology, geochemistry) and for the uses and behavior of diatomite have also been included. An index of keywords has been added to this bibliography, designed to help the user locate reports by topic or by geographic location. The letter 'A' following a number indicates that the report referenced is an abstract.

  17. Application of enzyme-hydrolyzed cassava dregs as a carbon source in aquaculture.

    PubMed

    Shang, Qian; Tang, Haifang; Wang, Yinghui; Yu, Kefu; Wang, Liwei; Zhang, Ruijie; Wang, Shaopeng; Xue, Rui; Wei, Chaoshuai

    2018-02-15

    As a kind of tropical agricultural solid waste, cassava dregs had become a thorny nonpoint source pollution problem. This study investigated the feasibility of applying cassava dregs as a substitute for sucrose in biofloc technology (BFT) systems. Three types of biofloc systems (using three different carbon sources sucrose (BFT1), cassava dregs (BFT2) and enzyme-hydrolyzed cassava dregs (BFT3) respectively), and the control were constructed in this experiment in 200L tanks with a C/N ratio of 20/1. The comparison of the water quality indicators (The total ammonia nitrogen (TAN), nitrite (NO 2 - -N), nitrate (NO 3 - -N), chemical oxygen demand (COD)), biofloc for the above four groups was performed, and the results indicated that BFT3 showed greater potential to the formation of biofloc, which was beneficial for the water quality control. So the shrimp survival rate was the highest and the feed conversion rate was the lowest in BFT3. Besides, the high-throughput sequencing results showed that the relative abundance of heterotrophic bacteria in the top 30 dominant microbial communities in BFT3 was higher than those in BFT1 and BFT2 by 20.70% and 1.19%, respectively, which could decrease TAN to improve the water quality. Overall, the results had proved that the cassava dregs of enzymes hydrolysis could be used as an ideal and cheap carbon source in BFT. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Quantifying Sources and Fluxes of Aquatic Carbon in U.S. Streams and Reservoirs Using Spatially Referenced Regression Models

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2004-12-01

    Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on

  19. Unusual Holocene and late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA

    USGS Publications Warehouse

    Dean, W.; Rosenbaum, J.; Skipp, G.; Colman, S.; Forester, R.; Liu, A.; Simmons, K.; Bischoff, J.

    2006-01-01

    Bear Lake (Utah-Idaho, USA) has been producing large quantities of carbonate minerals of varying mineralogy for the past 17,000 years. The history of sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, percent organic carbon, percent CaCO3, X-ray diffraction mineralogy, HCl-leach inorganic geochemistry, and magnetic properties on samples from three piston cores. Historically, the Bear River, the main source of water for Great Salt Lake, did not enter Bear Lake until it was artificially diverted into the lake at the beginning of the 20th century. However, during the last glacial interval, the Bear River did enter Bear Lake depositing red, calcareous, silty clay. About 18,000 years ago, the Bear River became disconnected from Bear Lake. A combination of warmer water, increased evaporation, and increased organic productivity triggered the precipitation of calcium carbonate, first as calcite. As the salinity of the lake increased due to evaporation, aragonite began to precipitate about 11,000 years ago. Aragonite is the dominant mineral that accumulated in bottom sediments of the lake during the Holocene, comprising an average of about 70 wt.% of the sediments. Aragonite formation in a large, cold, oligotrophic, high latitude lake is highly unusual. Lacustrine aragonite usually is found in small, saline lakes in which the salinity varies considerably over time. However, Bear Lake contains endemic ostracodes and fish, which indicate that the chemistry of the lake has remained fairly constant for a long time. Stable isotope data from Holocene aragonite show that the salinity of Bear Lake increased throughout the Holocene, but never reached highly evolved values of ??18O in spite of an evaporation-dominated water balance. Bear Lake hydrology combined with evaporation created an unusual situation that produced large amounts of aragonite, but no evaporite minerals.

  20. Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source.

    PubMed

    Walker, Andy W; Keasling, Jay D

    2002-06-30

    Pseudomonas putida KT2442 was engineered to use the organophosphate pesticide parathion, a compound similar to other organophosphate pesticides and chemical warfare agents, as a source of carbon and energy. The initial step in the engineered degradation pathway was parathion hydrolysis by organophosphate hydrolase (OPH) to p-nitrophenol (PNP) and diethyl thiophosphate, compounds that cannot be metabolized by P. putida KT2442. The gene encoding the native OPH (opd), with and without the secretory leader sequence, was cloned into broad-host-range plasmids under the control of tac and taclac promoters. Expression of opd from the tac promoter resulted in high OPH activity, whereas expression from the taclac promoter resulted in low activity. A plasmid-harboring operons encoding enzymes for p-nitrophenol transformation to beta-ketoadipate was transformed into P. putida allowing the organism to use 0.5 mM PNP as a carbon and energy source. Transformation of P. putida with the plasmids harboring opd and the PNP operons allowed the organism to utilize 0.8 mM parathion as a source of carbon and energy. Degradation studies showed that parathion formed a separate dense, non-aqueous phase liquid phase but was still bioavailable. Copyright 2002 Wiley Periodicals, Inc.

  1. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt

  2. Variations in microbial carbon sources and cycling in the deep continental subsurface

    NASA Astrophysics Data System (ADS)

    Simkus, Danielle N.; Slater, Greg F.; Lollar, Barbara Sherwood; Wilkie, Kenna; Kieft, Thomas L.; Magnabosco, Cara; Lau, Maggie C. Y.; Pullin, Michael J.; Hendrickson, Sarah B.; Wommack, K. Eric; Sakowski, Eric G.; van Heerden, Esta; Kuloyo, Olukayode; Linage, Borja; Borgonie, Gaetan; Onstott, Tullis C.

    2016-01-01

    Deep continental subsurface fracture water systems, ranging from 1.1 to 3.3 km below land surface (kmbls), were investigated to characterize the indigenous microorganisms and elucidate microbial carbon sources and their cycling. Analysis of phospholipid fatty acid (PLFA) abundances and direct cell counts detected varying biomass that was not correlated with depth. Compound-specific carbon isotope analyses (δ13C and Δ14C) of the phospholipid fatty acids (PLFAs) and carbon substrates combined with genomic analyses did identify, however, distinct carbon sources and cycles between the two depth ranges studied. In the shallower boreholes at circa 1 kmbls, isotopic evidence indicated microbial incorporation of biogenic CH4 by the in situ microbial community. At the shallowest site, 1.05 kmbls in Driefontein mine, this process clearly dominated the isotopic signal. At slightly deeper depths, 1.34 kmbls in Beatrix mine, the isotopic data indicated the incorporation of both biogenic CH4 and dissolved inorganic carbon (DIC) derived from CH4 oxidation. In both of these cases, molecular genetic analysis indicated that methanogenic and methanotrophic organisms together comprised a small component (<5%) of the microbial community. Thus, it appears that a relatively minor component of the prokaryotic community is supporting a much larger overall bacterial community in these samples. In the samples collected from >3 kmbls in Tau Tona mine (TT107, TT109 Bh2), the CH4 had an isotopic signature suggesting a predominantly abiogenic origin with minor inputs from microbial methanogenesis. In these samples, the isotopic enrichments (δ13C and Δ14C) of the PLFAs relative to CH4 were consistent with little incorporation of CH4 into the biomass. The most 13C-enriched PLFAs were observed in TT107 where the dominant CO2-fixation pathway was the acetyl-CoA pathway by non-acetogenic bacteria. The differences in the δ13C of the PLFAs and the DIC and DOC for TT109 Bh2 were ∼-24‰ and 0

  3. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  4. Hydrologic controls on Congo River particulate organic carbon source and reservoir age

    NASA Astrophysics Data System (ADS)

    Hemingway, J. D.; Schefuß, E.; Spencer, R. G.; Dinga, B. J.; Eglinton, T. I.; McIntyre, C.; Galy, V.

    2016-12-01

    Tropical rivers are a major source of organic matter (OM) to the coastal ocean and play a large role in the global carbon cycle. As such, it is critical to understand the sources, sinks, and transformations of OM during fluvial transit over seasonal and inter-annual timescales. Here we present dissolved organic carbon (DOC) concentrations, particulate OM (POM) composition (δ13C, δ15N, Δ14C, N/C), and glycerol dialkyl glycerol tetraether (GDGT) biomarker distributions from a 34-month time-series near the mouth of the Congo River. An end-member mixing model based on δ13C and N/C indicates that exported POM is consistently dominated by C3 tropical rainforest soil inputs, with increasing contributions by C3 tropical plant vegetation and decreasing contributions by autochthonous phytoplankton at high discharge. Calculated Δ14C values of the C3-soil end member reveal significant and variable pre-aging prior to export, especially during the year 2011 when southern-hemisphere discharge reached record lows (mean = -176‰, standard deviation = 93‰). In contrast, Δ14C values were stable near -50‰ between January and June 2013 when southern-hemisphere discharge was highest. These results indicate that headwater POM is diluted and/or overprinted by pre-aged soils during transit through the Cuvette Congolaise swamp forest, while left-bank tributaries export significantly less pre-aged material. GDGT distributions are in agreement, as the methylation and cyclization of branched tetraethers and the GDGT-0/crenarchaeol ratio reflect a significant incorporation of compounds produced in permanently inundated Cuvette Congolaise swamp-forest soils when discharge through this region is high, especially in 2011. This study provides a mechanistic link between hydrology and carbon cycling in the world's second largest tropical river and suggests that, if recent observed decreases in springtime precipitation over the Congo basin persist, future hydrologic conditions will further

  5. BACTERIOPLANKTON DYNAMICS IN PENSACOLA BAY, FL, USA: ROLE OF PHYTOPLANKTON AND DETRIAL CARBON SOURCES

    EPA Science Inventory

    Bacterioplankton Dynamics in Pensacola Bay, FL, USA: Role of Phytoplankton and Detrital Carbon Sources (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ER...

  6. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE PAGES

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...

    2017-07-21

    Here, we report Mo isotopic data of 27 new presolar SiC grains, including 12 14N-rich AB ( 14N/ 15N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takesmore » place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show 13C and 14N excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. And because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  7. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    Here, we report Mo isotopic data of 27 new presolar SiC grains, including 12 14N-rich AB ( 14N/ 15N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takesmore » place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show 13C and 14N excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. And because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  8. Barrow Black Carbon Source and Impact Study Final Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 samplermore » operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.« less

  9. Role of carbon source in the shift from oxidative to hydrolytic wood decomposition by Postia placenta.

    PubMed

    Zhang, Jiwei; Schilling, Jonathan S

    2017-09-01

    Brown rot fungi initiate wood decay using oxidative pretreatments to improve access for cellulolytic enzymes. These pretreatments are incompatible with enzymes, and we recently showed that Postia placenta overcomes this issue by delaying glycoside hydrolase (GH) gene upregulation briefly (<48h) until expression of oxidoreductases (ORs) is repressed. This implies an inducible cellulase system rather than a constitutive system, as often reported, and it remains unclear what cues this transition. To address this, we grew P. placenta along wood wafers and spatially mapped expression (via quantitative PCR) of twelve ORs and GHs targeted using functional genomics analyses. By layering expression patterns over solubilized sugar data (via HPLC) from wood, we observed solubilization of wood glucose, cellobiose, mannose, and xylose coincident with the OR-GH transition. We then tested effects of these soluble sugars, plus polymeric carbon sources (spruce powder, cellulose), on P. placenta gene expression in liquid cultures. Expression of ORs was strictly (aox1, cro5) or progressively repressed over time (qrd1, lcc1) by all soluble sugars, including cellobiose, but not by polymeric sources. Simple sugars repressed hemicellulase gene expression over time, but these sugars did not repress cellulases. Cellulase genes were upregulated, however, along with hemicellulases in the presence of soluble cellobiose and in the presence of polymeric carbon sources, relative to starvation (carbon-free). This verifies an inducible cellulase system in P. placenta that lacks carbon catabolite repression (CCR), and it suggests that brown rot fungi use soluble sugars, particularly cellobiose, to cue a critical oxidative-hydrolytic transition. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production.

    PubMed

    Hu, Chengcheng; Choy, Sing-Ying; Giannis, Apostolos

    2018-05-01

    Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H 2 /mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.

  11. Optical properties and possible sources of brown carbon in PM2.5 over Xi'an, China

    NASA Astrophysics Data System (ADS)

    Shen, Zhenxing; Zhang, Qian; Cao, Junji; Zhang, Leiming; Lei, Yali; Huang, Yu; Huang, R.-J.; Gao, Jinjin; Zhao, Zhuzi; Zhu, Chongshu; Yin, Xiuli; Zheng, Chunli; Xu, Hongmei; Liu, Suixin

    2017-02-01

    To quantify optical and chemical properties of PM2.5 brown carbon (BrC) in Xi'an, 58 high-volume ambient PM2.5 samples were collected during 2 November 2009 to 13 October 2010. Mass concentrations of chemical components were determined, including water-soluble ions, water-soluble organic carbon, levoglucosan, organic carbon (OC), and element carbon (EC). BrC, as an unidentified and wavelength-dependent organic compound, was also measured from water-soluble carbon (WSOC) at 340 nm using UV-vis spectrometer. The wavelength-dependent absorption coefficient (babs) and mass absorption coefficient (MAC) were much abundant at 340 nm, and the high Absorption Ångström coefficient (AAC) values were observed around 5.4, corresponding to the existence of BrC in ambient PM2.5, especially in winter. Good correlations (R > 0.60) between babs and biomass burning markers, such as levoglucosan and K+, in winter indicated significant amounts of primary BrC from biomass burning emissions. Secondary organic carbon BrC (SOCsbnd BrC) was more abundant in winter than in summer. SOCsbnd BrC in winter was mainly fresh SOC formed from aqueous phase reactions while in summer, aged SOC from photo-chemical formation. Source profiles of BrC optical parameters were detected, which verified sources of BrC from biomass burning and coal burning emissions in areas surrounding Xi'an. The rapidly decreasing babs-340nm values from biomass burning smoldering to straw pellet burning suggested that burning straw pellet instead of burning straw directly is an effective measure for reducing BrC emissions.

  12. BLACK Carbon Emissions from Diesel Sources in the Largest Arctic City: Case Study of Murmansk

    NASA Astrophysics Data System (ADS)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2014-12-01

    Russia has very little data on its black carbon (BC) emissions. Because Russia makes up such a large share of the Arctic, understanding Russian emissions will improve our understanding of overall BC levels, BC in the Arctic and the link between BC and climate change. This paper provides a detailed, bottom-up inventory of BC emissions from diesel sources in Murmansk, Russia, along with uncertainty estimates associated with these emissions. The research team developed a detailed data collection methodology. The methodology involves assessing the vehicle fleet and activity in Murmansk using traffic, parking lot and driver surveys combined with an existing database from a vehicle inspection station and statistical data. The team also assessed the most appropriate emission factors, drawing from both Russian and international inventory methodologies. The researchers also compared fuel consumption using statistical data and bottom-up fuel calculations. They then calculated emissions for on-road transportation, off-road transportation (including mines), diesel generators, fishing and other sources. The article also provides a preliminary assessment of Russia-wide emissions of black carbon from diesel sources.

  13. Source of released carbon fibers

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1979-01-01

    The potential for the release of carbon fibers from aircraft crashes/fires is addressed. Simulation of the conditions of aircraft crash fires in order to predict the quantities and forms of fibrous materials which might be released from civilian aircraft crashes/fires is considered. Figures are presented which describe some typical fiber release test activities together with some very preliminary results of those activities. The state of the art of carbon fiber release is summarized as well as some of the uncertainties concerning accidental fiber release.

  14. Tracing the sources of organic carbon in freshwater systems

    NASA Astrophysics Data System (ADS)

    Glendell, Miriam; Meersmans, Jeroen; Barclay, Rachel; Yvon-Durocher, Gabriel; Barker, Sam; Jones, Richard; Hartley, Iain; Dungait, Jennifer; Quine, Timothy

    2016-04-01

    both terrestrial and aquatic sources as recorded in lake sediments to the measured rates of soil erosion and terrestrial & aquatic CO2 respiration rates, this study has paved a way towards a novel and cross-disciplinary approach to investigate and further improve current status of knowledge as regards C-cycling across the entire terrestrial-aquatic continuum. 137Cs was found to be useful to understand the dynamics and spatial pattern of lateral fluxes of sediment & C at the catchment scale, while tracing chemical composition of C using n-alkanes and stable isotopes (δ13C, δ15N) allowed distinguishing between the terrestrial vs. aquatic origin of C and determining main sources of particulate organic carbon in the aquatic environment within the two study catchments.

  15. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    USGS Publications Warehouse

    Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  17. Garage carbon monoxide levels from sources commonly used in intentional poisoning.

    PubMed

    Hampson, Neil B; Holm, James R; Courtney, Todd G

    2017-01-01

    The incidence of intentional carbon monoxide (CO) poisoning is believed to have declined due to strict federal CO emissions standards for motor vehicles and the uniform application of catalytic converters (CC). We sought to compare ambient CO levels produced by automobiles with and without catalytic converters in a residential garage, as well as from other CO sources commonly used for intentional poisoning. CO levels were measured inside a freestanding 73 m3 one-car garage. CO sources included a 1971 automobile without CC, 2003 automobile with CC, charcoal grill, electrical generator, lawn mower and leaf blower. After 20 minutes of operation, the CO level in the garage was 253 PPM for the car without a catalytic converter and 30 PPM for the car equipped withone. CO levels after operating or burning the other sources were: charcoal 200 PPM; generator >999 PPM; lawn mower 198 PPM; and leaf blower 580 PPM. While emissions controls on automobiles have reduced intentional CO poisonings, alternate sources may produce CO at levels of the same magnitude as vehicles manufactured prior to the use of catalytic converters. Those involved in the care of potentially suicidal individuals should be aware of this.

  18. Special role of corn flour as an ideal carbon source for aerobic denitrification with minimized nitrous oxide emission.

    PubMed

    Zhu, Shuangyue; Zheng, Maosheng; Li, Can; Gui, Mengyao; Chen, Qian; Ni, Jinren

    2015-06-01

    Much effort has been made for reducing nitrous oxide (N2O) emission in wastewater treatment processes. This paper presents an interesting way to minimize N2O in aerobic denitrification by strain Pseudomonas stutzeri PCN-1 with help of corn flour as cheaper additional carbon source. Experimental results showed that maximal N2O accumulation by strain PCN-1 was only 0.02% of removed nitrogen if corn flour was used as sole carbon source, which was significantly reduced by 52.07-99.81% comparing with others such as succinate, glucose, acetate and citrate. Sustained release of reducing sugar from starch and continuous expression of nosZ coding for N2O reductase contributed to the special role of corn flour as the ideal carbon source for strain PCN-1. Further experiments in sequencing batch reactors (SBRs) demonstrated similarly efficient nitrogen removal with much less N2O emission due to synergy of the novel strain and activated sludge, which was then confirmed by quantitative PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sources of greenhouse gases and carbon monoxide in central London (UK)

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Tremper, Anja; Zazzeri, Giulia; Barlow, Janet F.; Nemitz, Eiko

    2015-04-01

    Biosphere-atmosphere exchange of carbon dioxide (CO2) has been on the scientific agenda for several decades and new technology now also allows for high-precision, continuous monitoring of fluxes of methane (CH4) and nitrous oxide (N2O). Compared to the natural environment, flux measurements in the urban environment, which is home to over 50% of the population globally, are still rare despite high densities of anthropogenic sources of pollutants. We report on over three years of measurements atop a 192 m tower in central London (UK), Europe's largest city, which started in October 2011. Fluxes of methane, carbon monoxide (CO) and carbon dioxide are measured by eddy-covariance (EC) at the British Telecom tower (51° 31' 17.4' N 0° 8' 20.04' W). In addition to the long-term measurements, EC fluxes of nitrous oxide (N2O) were measured in February 2014. All four trace gases exhibit diurnal trends consistent with anthropogenic activities with minimum emissions at night and early afternoon maxima. Segregating emissions by wind direction reveals heterogeneous source distributions with temporal patterns and source strengths that differ between compounds. The lowest emissions for CO, CO2 and CH4 were recorded for NW winds. The highest emissions of methane were in the SE sector, in the NE for CO2 and in the W for CO. Fluxes of all 3 gases exhibited marked seasonal trends characterised by a decrease in emissions in summer (63% reduction for CO, 36% for CO2 and 22% for CH4). Monthly fluxes of CO and CO2 were linearly correlated to air temperature (R2 = 0.7 and 0.59 respectively); a weaker dependence upon temperature was also observed for CH4 (R2 = 0.31). Diurnal and seasonal emissions of CO and CO2 are mainly controlled by local fossil fuel combustion and vehicle cold starts are thought to account for 20-30% of additional emissions of CO during the winter. Fugitive emissions of CH4 from the natural gas distribution network are thought to be substantial, which is consistent

  20. Trace fossils from Jurassic lacustrine turbidites of the Anyao Formation (Central China) and their environmental and evolutionary significance

    USGS Publications Warehouse

    Buatois, Luis A.; Mángano, M. Gabriela; Wu, Xiantao; Zhang, Guocheng

    1996-01-01

    The Lower Jurassic Anyao Formation crops out near Jiyuan city, western Henan Province, central China. It is part of the infill of the nonmarine early Mesozoic Jiyuan‐Yima Basin. In the Jiyuan section, this unit is about 100 m thick and consists of laterally persistent, thin and thick‐bedded turbidite sandstones and mudstones displaying complete and base‐or top‐absent Bouma sequences, and thick‐bedded massive sandstones. The Anyao Formation records sedimentation within a lacustrine turbidite system developed in a pull‐apart basin. Processes involved include high and low density turbidity currents, sometimes affected by liquefaction or fluidization. Facies analysis suggests that this succession is formed by stacked aggradational turbidite lobes. The absence of thick mudstone packages indicates that background sedimentation was subordinate to high frequency turbidite deposition.The Anyao Formation hosts a moderately diverse ichnofauna preserved as hypichnial casts on the soles of thin‐bedded turbidite sandstones. The ichnofauna consists of Cochlichnus anguineus, Hel‐minthoidichnites tenuis, Helminthopsis abeli, H. hieroglyphica, Mono‐morphichnus lineatus, Paracanthorhaphe togwunia, Tuberculichnus vagans, Vagorichnus anyao, tiny grazing trails, and irregularly branching burrows. Vagorichnus anyao occurs not only as a discrete trace, but also as a compound ichnotaxon intergrading with Gordia marina and Tuberculichnus vagans. Both predepositional and post‐depositional traces are present on the soles of turbidites.This ichnofauna comprises both feeding and grazing traces produced by a deposit‐feeding lacustrine benthic biota. Crawling traces are rare. Although certain ichnofossils (e.g. V. anyao, P. togwunia) show overall similarities with deep‐sea agrichnia, they differ in reflecting remarkably less specialized feeding strategies, displaying overcrossing between specimens (and to a lesser extent, self‐crossing), and in the case of V

  1. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

    USGS Publications Warehouse

    Walter Anthony, K. M.; Zimov, S. A.; Grosse, G.; Jones, Miriam C.; Anthony, P.; Chapin, F. S.; Finlay, J. C.; Mack, M. C.; Davydov, S.; Frenzel, P.F.; Frolking, S.

    2014-01-01

    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47±10 grams of carbon per square metre per year; mean±standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7

  2. C:N and δ13C indicate aquatic carbon source for methanogenesis in peatland lakes

    NASA Astrophysics Data System (ADS)

    Horruitiner, C. D.; Palace, M. W.; Wik, M.; Johnson, J. E.; Varner, R.

    2017-12-01

    Emissions from high latitude lakes are a large source of atmospheric methane (CH4) and are thought to be controlled primarily by temperature and the availability of labile organic carbon (C). The sediment loading of organic carbon from aquatic versus terrestrial sources is not well understood, nor is its effect on methane dynamics or how this will change with a warming Arctic. In the summer of 2017, we studied the C loading of aquatic vegetation and its effects on methane dynamics across a system of lakes within Stordalen Mire, a thawing permafrost peatland, using an underwater camera to characterize bottom vegetation. Preliminary C:N elemental ratios were performed on both aquatic and terrestrial vegetation, indicating an aquatic C:N signature in sediments and little diagenetic alteration of C:N ratios with decomposition. Inclusion of δ13C of aquatic vegetation and sediment further validate the hypothesis of a highly aquatic signature in sediment carbon, meaning organic C in these lakes is predominantly autochthonous. Previous work indicates that the isotopic signature of the CH4 produced is within the range of hydrogenotrophic methanogenesis, via the reduction of CO2, as opposed to the fermentation of acetate. Pending acetate concentration analysis will validate this as the predominant methanogenic pathway. We suggest that in-situ aquatic vegetation can fuel much of the CH4 production in high latitude shallow lakes, a C source that may respond positively in a warming climate with CO2 fertilization and longer ice-free seasons.

  3. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    PubMed

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  4. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    PubMed Central

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  5. Carbon and Nitrogen Sources for Shrimp Postlarvae Fed Natural Diets from a Tropical Mangrove System

    NASA Astrophysics Data System (ADS)

    Dittel, A. I.; Epifanio, C. E.; Cifuentes, L. A.; Kirchman, D. L.

    1997-11-01

    Postlarvae ofPenaeus vannameiwere fed various diets in order to examine the importance of detritus and other possible prey items in supporting postlarval growth. Stable isotopes (C and N) were used to determine the carbon and nitrogen source of the prey in the various diets. The zooplankton diet contained mostly copepods. The subtidal detritus treatment consisted mostly of plant material whereas the diets from both intertidal sites contained a mixture of plant detritus and associated meiofauna. Postlarvae reared on zooplankton and detritus plus meiofauna diets more than tripled their weight during a 6-day period. In contrast, postlarvae fed the detritus diet barely doubled their weight. Based on isotopic composition, postlarvae appear to obtain their carbon and nitrogen from various food sources. Postlarvae were enriched by 0·4‰ in13C and 2·7‰ in15N relative to the zooplankton diet, which is consistent with isotopic fractionation between successive trophic levels. In turn, the isotopic signal of the zooplankton was consistent with phytoplankton being the initial source of organic matter. In contrast, mean δ13C values of the shrimp fed detritus plus meiofauna were significantly different from their respective diets. Isotopic ratios of the postlarvae fed the mixed diet from Chomes were two trophic levels above benthic algae suggesting that the shrimp preyed on organisms that derived their carbon and nitrogen from benthic algae and/or phytoplankton.

  6. Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.

    PubMed

    Yassine, Fatima; Bassil, Nathalie; Flouty, Roula; Chokr, Ali; Samrani, Antoine El; Boiteux, Gisèle; Tahchi, Mario El

    2016-08-01

    Gluconacetobacter genera are valued for bacterial cellulose (BC) and acetic acid production. BC is produced at optimal yields in classical microbiological media that are expensive for a large scale of production. In addition, BC usage for industrial purposes is limited due to low conversion rate into cellulose and to long incubation duration. In this paper, Gluconacetobacter isolated from apple vinegar was kinetically studied to evaluate cellulose production in presence of different carbon sources. Acetic and citric acid effect on Gluconacetobacter metabolism is clarified. It was shown that Gluconacetobacter uses glucose as a primary carbon source for cells growth and products formation. Acetic acid employment as a co-carbon source in Hestrin Schramm medium showed an increase of 17% in BC yield with a moderate decrease in the crystallite size of the resulting polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. COMBUSTION AREA SOURCES: DATA SOURCES

    EPA Science Inventory

    The report identifies, documents, and evaluates data sources for stationary area source emissions, including solid waste and agricultural burning. Area source emissions of particulate matter, sulfur dioxide, oxides of nitrogen, reactive volatile organic compounds, and carbon mon...

  8. Source Apportionment of Elemental Carbon in Beijing, China: Insights from Radiocarbon and Organic Marker Measurements.

    PubMed

    Zhang, Yan-Lin; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Zimmermann, Ralf; Zotter, Peter; Shen, Rong-rong; Schäfer, Klaus; Shao, Longyi; Prévôt, André S H; Szidat, Sönke

    2015-07-21

    Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon ((14)C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The (14)C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining (14)C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.

  9. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes

    NASA Technical Reports Server (NTRS)

    Drummond, C. N.; Patterson, W. P.; Walker, J. C.

    1995-01-01

    Carbon and oxygen stable isotopic compositions of lacustrine carbonate from a southeastern Michigan marl lake display linear covariance over a range of 4.0% Peedee belemnite (PDB) in oxygen and 3.9% (PDB) in carbon. Mechanisms of delta 13 C-delta 18 O coupling conventionally attributed to lake closure in arid-region basins are inapplicable to hydrologically open lake systems. Thus, an alternative explanation of isotopic covariance in temperate region dimictic marl lakes is required. We propose that isotopic covariance is a direct record of change in regional climate. In short-residence-time temperate-region lake basins, summer meteoric precipitation is enriched in 18O relative to winter values, and summer organic productivity enriches epilimnic dissolved inorganic carbon in 13C. Thus, climate change toward longer summers and/or shorter winters could result in greater proportions of warm-month meteoric precipitation, longer durations of warm-month productivity, and net long-term enrichment in carbonate 18O and 13C. Isotopic covariance observed in the Michigan marl lake cores is interpreted to reflect postglacial warming from 10 to 3 ka followed by cooler mean annual temperature, a shift toward greater proportions of seasonal summer precipitation, a shortening of the winter season, or some combination of these three factors.

  10. New Carbon Source From Microbial Degradation of Pre-Production Resin Pellets from the North Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Neal, A.; Mielke, R.; Stam, C. N.; Gonsior, M.; Tsapin, A. I.; Lee, G.; Leftwich, B.; Narayan, R.; Coleman, H.; Argyropoulos, N.; Sheavly, S. B.; Gorby, Y. A.

    2011-12-01

    Numerous pollutants are transported through the world's oceans that impact oceanic health. Diffuse sources include land-based runoff, atmospheric depositions, shipping industry wastes, and others. Synthetic polymer marine debris is a multi-faceted problem that includes interactions with environmental toxins, carbon cycling systems, ocean surface chemistry, fine minerals deposition, and nano-particles. The impact that synthetic polymer-microbe interactions have on carbon input into the open ocean is poorly understood. Here we demonstrate that both biotic and abiotic processes contribute to degradation of pre-production resin pellets (PRPs), in open ocean environments and new methodologies to determine carbon loss from this synthetic polymer debris. Our data shows that material degradation of environmental polyethylene PRPs can potentially deposit 13 mg/g to 65 mg/g of carbon per PRP into our marine environments. Environmental pre-production resin pellets were collected on the S/V Kaisei cruise in 2009 which covered over 3,000 nautical miles and sampled over 102,000 m3 of the first 15cm of the water column in the Subtropical Convergence Zone of the North Pacific Gyre. Environmental PRP degradation and the role microbial communities play in this was evaluated using a combination of Fourier transform infrared spectroscopy, environmental scanning electron microscopy, scanning transmission electron microscopy, X-ray microtomography, and ArcGIS mapping. More research is needed to understand the environmental impact of this new carbon source arising from synthetic polymers as they degrade in oceanic environments.

  11. Source potential of the Zairian onshore pre-salt subbasins of the West African Aptian salt basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swirydczuk, K.; Tshiband, D.; Nyimi, M.

    1996-08-01

    Three pre-salt subbasins are located onshore in Zaire in the Congo-Cabinda Basin. Production exists to the west, and extensive outcrops of Mavuma tar sands are located immediately to the east of these subbasins. Five pre-salt wells confirmed that thick Barremian lacustrine claystones of the Bucomazi Formation form the main source horizon in all the subbasins. Upper Bucomazi claystones average 4% and reach 12% TOC. Lower Bucomazi claystones average 2% (high of 6%). A mixed Type I/Type II algal oil-prone kerogen predominates. Up to 1% TOC is present in claystones in the underlying Lucula section. Dry pyrolysis shows significant differences inmore » kerogen kinetics from subbasin to subbasin. R{sub o} and T{sub max} were used to model heat flow through time. Ages were from biostratigraphic analyses and radiometric dating of thin volcanics within the Lucula and Bucomazi formations. Apatite fission track analyses provided control on uplift history. Pseudowells were used in maturation modelling to predict source rock maturity in the subbasins. The upper Bucomazi is immature except in the deeper parts of two of the subbasins. The Lower - Bucomazi and Upper Lucula are mature in all subbasins and in the deepest subbasins are overmature. Oil generation occurred shortly after deposition of the Loeme Salt. Analyses of Lindu oil support this early migration. Estimates of oil that may have been generated in the eastern-most subbasin suggest that extensive Mavuma tar sands, which have been typed to lacustrine source, could have been sourced from this subbasin.« less

  12. Current sources of carbon tetrachloride (CCl4) in our atmosphere

    NASA Astrophysics Data System (ADS)

    Sherry, David; McCulloch, Archie; Liang, Qing; Reimann, Stefan; Newman, Paul A.

    2018-02-01

    Carbon tetrachloride (CCl4 or CTC) is an ozone-depleting substance whose emissive uses are controlled and practically banned by the Montreal Protocol (MP). Nevertheless, previous work estimated ongoing emissions of 35 Gg year-1 of CCl4 into the atmosphere from observation-based methods, in stark contrast to emissions estimates of 3 (0-8) Gg year-1 from reported numbers to UNEP under the MP. Here we combine information on sources from industrial production processes and legacy emissions from contaminated sites to provide an updated bottom-up estimate on current CTC global emissions of 15-25 Gg year-1. We now propose 13 Gg year-1 of global emissions from unreported non-feedstock emissions from chloromethane and perchloroethylene plants as the most significant CCl4 source. Additionally, 2 Gg year-1 are estimated as fugitive emissions from the usage of CTC as feedstock and possibly up to 10 Gg year-1 from legacy emissions and chlor-alkali plants.

  13. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans

    PubMed Central

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-01-01

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568

  14. Carbon source recovery from excess sludge by mechanical disintegration for biological denitrification.

    PubMed

    Zubrowska-Sudol, M

    2018-04-01

    The goal of the study was to evaluate the possibility of carbon source recovery from excess sludge by mechanical disintegration for biological denitrification. The total efficiency of denitrification, unit demand for organic compounds for denitrification, unit volume of disintegrated sludge and unit cost of nitrogen removal as a function of energy density used for excess sludge disintegration (70, 140 and 210 kJ/L) were analyzed. In the study a full-scale disc disintegrator was used (motor power: 30 kWh, motor speed: 2,950 rpm). It was shown that the amounts of organic compounds released from the activated sludge flocs at all tested levels of energy density are high enough to be used to intensify the removal of nitrogen compounds from wastewater. It was also documented that the energy density provided during process of disintegration was an important factor determining the characteristics of organic compounds obtained under the disintegration for their use in order to intensify the process of denitrification. The highest value of total efficiency of denitrification (50.5 ± 3.1 mg N/L) was obtained for carbon source recovery from excess sludge at 70 kJ/L, but the lowest unit cost of nitrogen removal occurred for 140 kJ/L (0.0019 ± 0.0011 EUR/g N).

  15. From sink to source: Regional variation in U.S. forest carbon futures

    PubMed Central

    Wear, David N.; Coulston, John W.

    2015-01-01

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests’ current net sequestration of atmospheric C to be 173 Tg yr−1, offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr−1) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests’ role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength. PMID:26558439

  16. From sink to source: Regional variation in U.S. forest carbon futures.

    PubMed

    Wear, David N; Coulston, John W

    2015-11-12

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

  17. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle.

    PubMed

    Belshe, E F; Schuur, E A G; Bolker, B M

    2013-10-01

    Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon fluxes in response to climate change? These questions are of global importance because of the vast quantities of organic carbon stored in permafrost soils. In this meta-analysis, we compile 40 years of CO2 flux observations from 54 studies spanning 32 sites across northern high latitudes. Using time-series analysis, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences in mean annual temperature could help explain temporal changes in CO2 flux. Growing season net CO2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we estimate that tundra sites were annual CO2 sources from the mid-1980s until the 2000s, and data from the last 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis. © 2013 John Wiley & Sons Ltd/CNRS.

  18. Importance of seagrass as a carbon source for heterotrophic bacteria in a subtropical estuary (Florida Bay)

    NASA Astrophysics Data System (ADS)

    Williams, Clayton J.; Jaffé, Rudolf; Anderson, William T.; Jochem, Frank J.

    2009-11-01

    A stable carbon isotope approach was taken to identify potential organic matter sources incorporated into biomass by the heterotrophic bacterial community of Florida Bay, a subtropical estuary with a recent history of seagrass loss and phytoplankton blooms. To gain a more complete understanding of bacterial carbon cycling in seagrass estuaries, this study focused on the importance of seagrass-derived organic matter to pelagic, seagrass epiphytic, and sediment surface bacteria. Particulate organic matter (POM), seagrass epiphytic, seagrass ( Thalassia testudinum) leaf, and sediment surface samples were collected from four Florida Bay locations with historically different organic matter inputs, macrophyte densities, and primary productivities. Bulk (observed and those reported previously) and compound-specific bacterial fatty acid δ 13C values were used to determine important carbon sources to the estuary and benthic and pelagic heterotrophic bacteria. The δ 13C values of T. testudinum green leaves with epiphytes removed ranged from -9.9 to -6.9‰. Thalassia testudinum δ 13C values were significant more enriched in 13C than POM, epiphytic, and sediment samples, which ranged from -16.4 to -13.5, -16.2 to -9.6, and -16.7 to -11.0‰, respectively. Bacterial fatty acid δ 13C values (measured for br14:0, 15:0, i15:0, a15:0, br17:0, and 17:0) ranged from -25.5 to -8.2‰. Assuming a -3‰ carbon source fractionation from fatty acid to whole bacteria, pelagic, epiphytic, and sediment bacterial δ 13C values were generally more depleted in 13C than T. testudinum δ 13C values, more enriched in 13C than reported δ 13C values for mangroves, and similar to reported δ 13C values for algae. IsoSource mixing model results indicated that organic matter derived from T. testudinum was incorporated by both benthic and pelagic bacterial communities, where 13-67% of bacterial δ 13C values could arise from consumption of seagrass-derived organic matter. The IsoSource model

  19. An innovative wood-chip-framework substrate used as slow-release carbon source to treat high-strength nitrogen wastewater.

    PubMed

    Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng

    2017-01-01

    Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems. However, nitrogen removal efficiency is usually limited due to the low carbon/nitrogen (C/N) ratio. A common solution is to add external carbon sources, but amount of liquid is difficult to determine. Therefore, a combined wood-chip-framework substrate (with wood, slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem. Results show that the removal rate of ammonia nitrogen (NH 4 + -N), total nitrogen (TN) and chemical oxygen demand (COD) could reach 37.5%-85%, 57.4%-86%, 32.4%-78%, respectively, indicating the combined substrate could diffuse sufficient oxygen for the nitrification process (slag and gravel zone) and provide carbon source for denitrification process (wood-chip zone). The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip, respectively. Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process, while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process. This study provides a new idea for wetland treatment of high-strength nitrogen wastewater. Copyright © 2016. Published by Elsevier B.V.

  20. Optimization of Carbon and Nitrogen Sources for Extracellular Polymeric Substances Production by Chryseobacterium indologenes MUT.2

    PubMed Central

    Khani, Mojtaba; Bahrami, Ali; Chegeni, Asma; Ghafari, Mohammad Davoud; Mansouran Zadeh, ALi

    2016-01-01

    Background Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such as optimized culture conditions, and development of the strains with higher yield (e.g. through genetic manipulation), or using low-cost substrates. Objectives In this work, the effects of carbon and nitrogen sources were studied in order to improve the EPS production by the submerged cultivation of Chryseobacterium indologenes MUT.2. Materials and Methods The mesophilic microorganism Chryseobacterium indologenes MUT.2, was grown and maintained in the Luria Bertani agar. The initial basal medium contained: glucose (20 g.L-1), yeast extracts (5 g.L-1), K2HPO4 (6 g.L-1), NaH2PO4 (7 g.L-1), NH4CL (0.7 g.L-1), and MgSO4 (0.5 g.L-1). For evaluating the carbon and nitrogen sources’ effect on the fermentation performance, cultures were prepared in 500 mL flasks filled with 300 mL of the medium. The single-factor experiments based on statistics was employed to evaluate and optimize the carbon and nitrogen sources for EPS production in the liquid culture medium of Chryseobacterium indologenes MUT.2. Results The preferred carbon-sources, sucrose and glucose, commonly gave the highest EPS production of 8.32 and 6.37 g.L-1, respectively, and the maximum EPS production of 8.87 g.L-1 was achieved when glutamic acid (5 g.L-1) was employed as the nitrogen source. Conclusions In this work, the culture medium for production of EPS by Chryseobacterium indologenes MUT.2 was optimized. Compared to the basal culture medium in shake-flasks and stirred tank bioreactor, the use of optimized culture medium has resulted in a 53% and 73% increase in the EPS production, respectively. PMID:28959321

  1. Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Kiyofumi; Kuwano, Jun

    2017-06-01

    This paper describes a unique and innovative synthesis technique for carbon nanotubes (CNTs) by a one-step liquid-phase process under ambient pressure. Vertically aligned multi-walled CNT arrays with a maximum height of 100 µm are prepared on stainless steel substrates, which are submerged and electrically heated in straight-chain primary alcohols with n C = 1-4 (n C: number of C atoms in the molecule) containing an appropriate amount of cobalt-based organometallic complex as a catalyst precursor. Structural isomers of butanol were also used for the synthesis to examine the effects of structural factors on the morphology of the deposited products. Notably, 2-methyl-2-propanol, which is a tertiary alcohol, produced only a small amount of low-crystallinity carbonaceous deposits, whereas vertically aligned CNTs were grown from the other isomers of butanol. These results suggest that the presence or absence of β-hydrogen in the molecular structure is a key factor for understanding the dissociation behavior of the carbon source molecules on the catalyst.

  2. In-situ monitoring of deformation of clayey and volcanic sequences in the lacustrine plain of Iztapalapa, Mexico City

    NASA Astrophysics Data System (ADS)

    Carreon-Freyre, D.; Cerca, M.; Barrientos, B.; Gutierrez, R.; Blancas, D.

    2012-12-01

    Major cities of Central Mexico with lowering of land elevation problems are located in inter-volcanic and fault bounded basins within the central Trans-Mexican Volcanic Belt (TMVB). The most representative and studied case of ground deformation is Mexico City, where the Iztapalapa Municipality presents the highest population density. This area is located over the geological contact between the "Sierra de Santa Catarina" volcanic range and a lacustrine plain. Filling of lacustrine basins includes silty and clayey sediments as well as pyroclastic deposits (coarse and fine grained) and volcanic rocks layers. We used Ground Penetrating Radar (GPR) and MASW prospection to evaluate contrasts in the physical properties of fine grained soils and identify geometry of the deformational features and implemented a mechanical system for in situ monitoring in fractured sites. Deformational features in this basin reflect an interplay between the geological history (depositional conditions), load history, seismic activity, and faulting. Plastic mechanical behaviour predominates in these clayey sediments and differential deformation locally triggers brittle fracturing and/or subsidence of the surface. In this work we present the results of monitoring and characterization of ground deformation and fracturing in different sequences, our results show a dynamic interplay between the mechanisms of ground fracturing and the stress history of sedimentary sequences. Relating the mechanical behaviour of the studied sequences with variations of physical and geological properties should be taken into account to estimate land level lowering and risk of fracturing for urban development planning.

  3. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990

    NASA Astrophysics Data System (ADS)

    Miettinen, Jukka; Hooijer, Aljosja; Vernimmen, Ronald; Liew, Soo Chin; Page, Susan E.

    2017-02-01

    Tropical peatlands of the western part of insular Southeast Asia have experienced extensive land cover changes since 1990. Typically involving drainage, these land cover changes have resulted in increased peat oxidation in the upper peat profile. In this paper we provide current (2015) and cumulative carbon emissions estimates since 1990 from peat oxidation in Peninsular Malaysia, Sumatra and Borneo, utilizing newly published peatland land cover information and the recently agreed Intergovernmental Panel on Climate Change (IPCC) peat oxidation emission values for tropical peatland areas. Our results highlight the change of one of the Earth’s most efficient long-term carbon sinks to a short-term emission source, with cumulative carbon emissions since 1990 estimated to have been in the order of 2.5 Gt C. Current (2015) levels of emissions are estimated at around 146 Mt C yr-1, with a range of 132-159 Mt C yr-1 depending on the selection of emissions factors for different land cover types. 44% (or 64 Mt C yr-1) of the emissions come from industrial plantations (mainly oil palm and Acacia pulpwood), followed by 34% (49 Mt C yr-1) of emissions from small-holder areas. Thus, altogether 78% of current peat oxidation emissions come from managed land cover types. Although based on the latest information, these estimates may still include considerable, yet currently unquantifiable, uncertainties (e.g. due to uncertainties in the extent of peatlands and drainage networks) which need to be focused on in future research. In comparison, fire induced carbon dioxide emissions over the past ten years for the entire equatorial Southeast Asia region have been estimated to average 122 Mt C yr-1 (www.globalfiredata.org/_index.html). The results emphasise that whilst reducing emissions from peat fires is important, urgent efforts are also needed to mitigate the constantly high level of emissions arising from peat drainage, regardless of fire occurrence.

  4. J-type Carbon Stars: A Dominant Source of {sup 14}N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 {sup 14}N-rich AB ({sup 14}N/{sup 15}N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s -process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s -process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture processmore » ( i -process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show {sup 13}C and {sup 14}N excesses but no s -process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  5. Earthquake-induced soft-sediment deformation structures in Late Pleistocene lacustrine deposits of Issyk-Kul lake (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Gladkov, A. S.; Lobova, E. U.; Deev, E. V.; Korzhenkov, A. M.; Mazeika, J. V.; Abdieva, S. V.; Rogozhin, E. A.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.

    2016-10-01

    This paper discusses the composition and distribution of soft-sediment deformation structures induced by liquefaction in Late Pleistocene lacustrine terrace deposits on the southern shore of Issyk-Kul Lake in the northern Tien Shan mountains of Kyrgyzstan. The section contains seven deformed beds grouped in two intervals. Five deformed beds in the upper interval contain load structures (load casts and flame structures), convolute lamination, ball-and-pillow structures, folds and slumps. Deformation patterns indicate that a seismic trigger generated a multiple slump on a gentle slope. The dating of overlying subaerial deposits suggests correlation between the deformation features and strong earthquakes in the Late Pleistocene.

  6. Geology and radiometric dating of Quaternary monogenetic volcanism in the western Zacapu lacustrine basin (Michoacán, México): implications for archeology and future hazard evaluations

    NASA Astrophysics Data System (ADS)

    Reyes-Guzmán, Nanci; Siebe, Claus; Chevrel, Magdalena Oryaëlle; Guilbaud, Marie-Noëlle; Salinas, Sergio; Layer, Paul

    2018-02-01

    The Zacapu lacustrine basin is located in the north-central part of the Michoacán-Guanajuato volcanic field (MGVF), which constitutes the west-central segment of the Trans-Mexican Volcanic Belt. Geological mapping of a 395 km2 quadrangle encompassing the western margin of the basin, 40Ar/39Ar and 14C radiometric dating, whole-rock chemical and petrographic analyses of volcanic products provide information on the stratigraphy, erupted volumes, age, and composition of the volcanoes. Although volcanism in the MGVF initiated since at least 5 Ma ago, rocks in the western Zacapu lacustrine basin are all younger than 2.1 Ma. A total of 47 volcanoes were identified and include 19 viscous lava flows ( 40 vol.%), 17 scoria cones with associated lava flows ( 36 vol.%), seven lava shields ( 15 vol.%), three domes ( 6 vol.%), and one maar ( 2 vol.%). Erupted products are dominantly andesites with 42 km3 ( 86 vol.%) followed by 4 km3 of dacite ( 8 vol.%), 1.4 km3 of basaltic trachy-andesite ( 3 vol.%), 1 km3 of basaltic andesite ( 2 vol.%), and 0.14 km3 of rhyolite ( 0.3 vol.%). Eruptive centers are commonly aligned ENE-WSW following the direction of the regional Cuitzeo Fault System. Over time, the high frequency of eruptions and consequent accumulation of lavas and pyroclastic materials pushed the lake's shore stepwise toward the southeast. Eruptions appear to have clustered through time. One cluster occurred during the Late Pleistocene between 27,000 and 21,300 BC when four volcanoes erupted. A second cluster formed during the Late Holocene, between 1500 BC and AD 900, when four closely spaced monogenetic vents erupted forming thick viscous `a'a to blocky flows on the margin of the lacustrine flats. For still poorly understood reasons, these apparently inhospitable lava flows were attractive to human settlement and eventually became one of the most densely populated heartlands of the pre-Hispanic Tarascan civilization. With an average eruption recurrence interval of 900

  7. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  8. Microbial Metabolic Response to Carbon Sources in a Uranium Contaminated Floodplain

    NASA Astrophysics Data System (ADS)

    Barragan, L.; Boye, K.; Bargar, J.; Fendorf, S. E.

    2016-12-01

    In Riverton, Wyoming, uranium (U) from a former ore processing plant, contaminated the groundwater and accumulated in Naturally Reduced Zones (NRZs). The NRZs have now become a secondary source of U and are releasing U into the ground water due to seasonal water table fluctuations. Microorganisms that mediate the mobilization and retention of U are likely to reside in these zones enriched with organic matter that comprises their energy source of carbon (C) for respiration. In this study, we are measuring microbial respiration (basal and substrate induced) by the MicroRespTM system, which is a quick screening method for respiratory activity in natural samples. This can provide information about the microbial community composition at certain depths and insight into their metabolic pathways which may explain U behavior in the ground water. In addition, we are determining elemental composition in the sediments by X-ray fluorescence spectroscopy (XRF) and elemental analysis (EA). Water soluble cations, anions and organic C is determined by inductively coupled plasma (ICP), mass spectrometry, ion chromatography (IC) and non-purgeable organic carbon (NPOC) analyses, respectively. If the behavior of the microbial community in the NRZ environment (enriched in both U and C) differs from that in unsaturated sediments, this can provide crucial clues to understand what causes U to be retained or released from the NRZs. This information will be used to develop and improve models aimed at predicting U mobility in the floodplain groundwater systems.

  9. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained bymore » varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.« less

  10. Paleotopographic control of landslides in lacustrine deposits (Trièves plateau, French western Alps)

    NASA Astrophysics Data System (ADS)

    Bièvre, Grégory; Kniess, Ulrich; Jongmans, Denis; Pathier, Erwan; Schwartz, Stéphane; van Westen, Cees J.; Villemin, Thierry; Zumbo, Vilma

    2011-01-01

    Paleotopography in Quaternary sedimentary environments can be an important factor that controls landslide movement. This study investigates the relation between paleotopography and landslide activity in two adjacent landslides in glaciolacustrine sediments located in the Trièves area (French western Alps). Although both are in slopes underlain by the same lacustrine deposits, the Avignonet and Harmalière landslides exhibit major differences in morphology and displacement rates. Through a combination of geological mapping, airborne light detection and ranging (LiDAR) data, aerial photographs, global positioning system (GPS), and seismic noise measurements, a three-dimensional impression was made of both landslides. The analysis reveals that the difference in kinematics between the two mass movements can be traced back to at least 50 years ago. The results show that the Harmalière slide, which failed catastrophically in 1981, is still much more active than the Avignonet landslide. The fear was that the Avignonet landslide might develop in a similar catastrophic manner, threatening a number of houses constructed on the landslide. A geophysical survey based on ambient noise measurements allowed us to map the base of the lacustrine clays, and the results indicate the presence of a N-S ridge of hard sediments (Jurassic bedrock and/or compact alluvial layers) on the eastern side of the Avignonet landslide. This ridge disappears when approaching the Harmalière landslide and makes a place to what can be interpreted as a NW-SE oriented paleovalley of the river Drac. We proposed that the ridge acts as a buttress that could mechanically prevent the Avignonet landslide from evolving as fast as the Harmalière. Furthermore, the NW-SE paleovalley located under the Harmalière landslide corresponds to the motion direction of the slide. Therefore, the different behaviour of the two landslides is partly controlled by the paleotopographic setting of Lake Trièves during the last

  11. Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of Çaybağı Formation, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Koç Taşgin, Calibe; Türkmen, İbrahim

    2009-06-01

    During the Neogene, both strike-slip and extensional regimes coexisted in eastern Turkey and, a number of fault-bounded basins associated with the East Anatolian Fault System developed. The Çaybağı Formation (Late Miocene-Early Pliocene) deposited in one of these basins consists of fluvio-lacustrine deposits. Numerous soft-sediment deformation structures are encountered in this formation, particularly in conglomerates, medium- to coarse-grained tuffaceous sandstones and claystones: folded structures (slumps, convolute laminations, and simple recumbent folds), water-escape structures (intruded sands, internal cusps, interpenetrative cusps and sand volcanoes), and load structures (load casts, pseudonodules, flame structures, and pillow structures). These structures are produced by liquefaction and/or fluidization of the unconsolidated sediments during a seismic shock. Consequently, the existence of seismically-induced deformation structures in the Çaybağı Formation and the association with a Neogene intraformational unconformity, growth faults, and reverse faults in the Çaybağı basin attest to the tectonic activity in this area during the Late Miocene and Early Pliocene. The East Anatolian Fault System, in particular the Uluova fault zone, is the most probable seismogenic source. Earthquakes with a magnitude of over 5 in the Richter scale can be postulated.

  12. Gas-solid carbonation as a possible source of carbonates in cold planetary environments

    NASA Astrophysics Data System (ADS)

    Garenne, A.; Montes-Hernandez, G.; Beck, P.; Schmitt, B.; Brissaud, O.; Pommerol, A.

    2013-02-01

    Carbonates are abundant sedimentary minerals at the surface and sub-surface of the Earth and they have been proposed as tracers of liquid water in extraterrestrial environments. Their formation mechanism is since generally associated with aqueous alteration processes. Recently, carbonate minerals have been discovered on Mars' surface by different orbitals or rover missions. In particular, the phoenix mission has measured from 1% to 5% of calcium carbonate (calcite type) within the soil (Smith et al., 2009). These occurrences have been reported in area where the relative humidity is significantly high (Boynton et al., 2009). The small concentration of carbonates suggests an alternative process on mineral grain surfaces (as suggested by Shaheen et al., 2010) than carbonation in aqueous conditions. Such an observation could rather point toward a possible formation mechanism by dust-gas reaction under current Martian conditions. To understand the mechanism of carbonate formation under conditions relevant to current Martian atmosphere and surface, we designed an experimental setup consisting of an infrared microscope coupled to a cryogenic reaction cell (IR-CryoCell setup). Three different mineral precursors of carbonates (Ca and Mg hydroxides, and a hydrated Ca silicate formed from Ca2SiO4), low temperature (from -10 to +30 °C), and reduced CO2 pressure (from 100 to 2000 mbar) were utilized to investigate the mechanism of gas-solid carbonation at mineral surfaces. These mineral materials are crucial precursors to form Ca and Mg carbonates in humid environments (0%carbonation process for Ca hydroxide and hydrated Ca silicate. Conversely, only a moderate carbonation is observed for the Mg hydroxide. These results suggest that gas-solid carbonation process or carbonate formation at the dust-water ice-CO2 interfaces could be a currently active Mars' surface

  13. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Treesearch

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  14. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    USGS Publications Warehouse

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  15. Source apportionments of PM2.5 organic carbon using molecular marker Positive Matrix Factorization and comparison of results from different receptor models

    NASA Astrophysics Data System (ADS)

    Heo, Jongbae; Dulger, Muaz; Olson, Michael R.; McGinnis, Jerome E.; Shelton, Brandon R.; Matsunaga, Aiko; Sioutas, Constantinos; Schauer, James J.

    2013-07-01

    Four hundred fine particulate matter (PM2.5) samples collected over a 1-year period at two sites in the Los Angeles Basin were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and organic molecular markers. The results were used in a Positive Matrix Factorization (PMF) receptor model to obtain daily, monthly and annual average source contributions to PM2.5 OC. Results of the PMF model showed similar source categories with comparable year-long contributions to PM2.5 OC across the sites. Five source categories providing reasonably stable profiles were identified: mobile, wood smoke, primary biogenic, and two types of secondary organic carbon (SOC) (i.e., anthropogenic and biogenic emissions). Total primary emission factors and total SOC factors contributed approximately 60% and 40%, respectively, to the annual-average OC concentrations. Primary sources showed strong seasonal patterns with high winter peaks and low summer peaks, while SOC showed a reverse pattern with highs in the spring and summer in the region. Interestingly, smoke from forest fires which occurred episodically in California during the summer and fall of 2009 was identified and combined with the primary biogenic source as one distinct factor to the OC budget. The PMF resolved factors were further investigated and compared to a chemical mass balance (CMB) model and a second multi-variant receptor model (UNMIX) using molecular markers considered in the PMF. Good agreement between the source contribution from mobile sources and biomass burning for three models were obtained, providing additional weight of evidence that these source apportionment techniques are sufficiently accurate for policy development. However, the CMB model did not quantify primary biogenic emissions, which were included in other sources with the SOC. Both multivariate receptor models, the PMF and the UNMIX, were unable to separate source contributions from diesel and gasoline engines.

  16. Fluorescence spectroscopy reveals accompanying occurrence of ammonium with fulvic acid-like organic matter in a fluvio-lacustrine aquifer of Jianhan Plain.

    PubMed

    Huang, Shuangbing; Wang, Yanxin; Ma, Teng; Wang, Yanyan; Zhao, Long

    2016-05-01

    This study is the first to investigate the simultaneous presence of NH4 (+) and fluorescent organic matter components (FOCs) from a fluvio-lacustrine aquifer in Central Jianghan Plain. Sediment, groundwater, and surface water samples were collected for the sediment organic matter extraction, 3D fluorescence spectroscopy characterization, and/or hydrochemical analysis. NH4 (+) and dissolved organic carbon was ubiquitous in the groundwater. The fluorescence spectroscopy revealed good relationships between NH4 (+) and fulvic acid-like components (FALCs) in the groundwater and sediment-extracted organic matter (SEOM) solutions. NH4 (+) also exhibited significant positive correlation with protein-like component (PLC) (p < 0.001), with the stronger in the SEOM solutions than that in groundwater. Comparisons of spectroscopic indices [e.g., humification index (HIX), biological index (BIX), spectra slope (S275-295), and specific UV absorbance (SUVA254)] between the groundwater and SEOM solutions revealed more labile properties of SEOM. This result indicates that the decreasing NH4 (+)-FOCs correlations of groundwater relative to sediments may be attributed to microbial degradation. Factor analysis identifies important factors that cause NH4 (+) occurrence in the groundwater. The accompanying increase of FALC (C1) and NH4-N with the mole concentration of the normalized HCO3 (-)/(Ca(2+)+Mg(2+)) and [H(+)] suggests that couple effects of various biodegradations simultaneously occur in the aquifer, promoting the occurrence of NH4-DOMs.

  17. Influence of carbon source and inoculum type on anaerobic biomass adhesion on polyurethane foam in reactors fed with acid mine drainage.

    PubMed

    Rodriguez, Renata P; Zaiat, Marcelo

    2011-04-01

    This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The sources of atmospheric black carbon at a European gateway to the Arctic

    NASA Astrophysics Data System (ADS)

    Winiger, P.; Andersson, A.; Eckhardt, S.; Stohl, A.; Gustafsson, Ö.

    2016-09-01

    Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models--seeking to advise mitigation policy--are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, P<0.05) and source contributions (R2=0.77, P<0.05) are accurately mimicked and linked to predominantly European emissions. This improved model skill allows for more accurate assessment of sources and effects of BC in the Arctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic.

  19. The sources of atmospheric black carbon at a European gateway to the Arctic

    PubMed Central

    Winiger, P; Andersson, A; Eckhardt, S; Stohl, A; Gustafsson, Ö.

    2016-01-01

    Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models—seeking to advise mitigation policy—are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, P<0.05) and source contributions (R2=0.77, P<0.05) are accurately mimicked and linked to predominantly European emissions. This improved model skill allows for more accurate assessment of sources and effects of BC in the Arctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic. PMID:27627859

  20. Exploring cover crops as carbon sources for anaerobic soil disinfestation in a vegetable production system

    USDA-ARS?s Scientific Manuscript database

    In a raised-bed plasticulture vegetable production system utilizing anaerobic soil disinfestation (ASD) in Florida field trials, pathogen, weed, and parasitic nematode control was equivalent to or better than the methyl bromide control. Molasses was used as the labile carbon source to stimulate micr...

  1. Electrosynthesis of enaminones directly from methyl ketones and amines with nitromethane as a carbon source.

    PubMed

    Xu, Kun; Zhang, Zhenlei; Qian, Peng; Zha, Zhenggen; Wang, Zhiyong

    2015-07-14

    An efficient and mechanistically different method for the electrosynthesis of enaminone directly from methyl ketones, amines and nitromethane was developed. This transition-metal-free method proceeded at room temperature to give a wide array of enaminones in one step, utilizing nitromethane as the carbon source.

  2. Sources and Dynamics of Inorganic Carbon within the Upper Reaches of the Xi River Basin, Southwest China

    PubMed Central

    Zou, Junyu

    2016-01-01

    The carbon isotopic composition (δ13C) of dissolved and particulate inorganic carbon (DIC; PIC) was used to compare and analyze the origin, dynamics and evolution of inorganic carbon in two headwater tributaries of the Xi River, Southwest China. Carbonate dissolution and soil CO2 were regarded as the primary sources of DIC on the basis of δ13CDIC values which varied along the Nanpan and Beipan Rivers, from −13.9‰ to 8.1‰. Spatial trends in DIC differed between the two rivers (i.e., the tributaries), in part because factors controlling pCO2, which strongly affected carbonate dissolution, differed between the two river basins. Transport of soil CO2 and organic carbon through hydrologic conduits predominately controlled the levels of pCO2 in the Nanpan River. However, pCO2 along the upper reaches of the Nanpan River also was controlled by the extent of urbanization and industrialization relative to agriculture. DIC concentrations in the highly urbanized upper reaches of the Nanpan River were typical higher than in other carbonate-dominated areas of the upper Xi River. Within the Beipan River, the oxidation of organic carbon is the primary process that maintains pCO2 levels. The pCO2 within the Beipan River was more affected by sulfuric acid from coal industries, inputs from a scenic spot, and groundwater than along the Nanpan River. With regards to PIC, the contents and δ13C values in the Nanpan River were generally lower than those in the Beipan River, indicating that chemical and physical weathering contributes more marine carbonate detritus to the PIC along the Beipan River. The CO2 evasion flux from the Nanpan River was higher than that in the Beipan River, and generally higher than along the middle and lower reaches of the Xi River, demonstrating that the Nanpan River is an important net source of atmospheric CO2 in Southwest China. PMID:27513939

  3. Microwave assisted synthesis of cyclic carbonates from olefins with sodium bicarbonates as the C1 source.

    PubMed

    Yang, Xiaoqing; Wu, Jie; Mao, Xianwen; Jamison, Timothy F; Hatton, T Alan

    2014-03-25

    An effective transformation of alkenes into cyclic carbonates has been achieved using NaHCO3 as the C1 source in acetone-water under microwave heating, with selectivities and yields significantly surpassing those obtained using conventional heating.

  4. Late Cenozoic lacustrine and climatic environments at Tule Lake, northern Great Basin, USA

    USGS Publications Warehouse

    Platt, Bradbury J.

    1992-01-01

    Cores of lake sediment to a depth of 334 m in the town of Tulelake, Siskiyou County, northern California, document the late Cenozoic paleolimnologic and paleoclimatic history of the northwestern edge of the Great Basin. The cores have been dated by radiometric, tephrochronologic and paleomagnetic analyses. Lacustrine diatoms are abundant throughout the record and document a nearly continuous paleolimnologic history of the Tule Lake basin for the last 3 Myr. During most of this time, this basin (Tule Lake) was a relatively deep, extensive lake. Except for a drier (and cooler?) interval recorded by Fragilaria species about 2.4 Ma, the Pliocene is characterized by a dominance of planktonic Aulacoseira solida implying a warm monomictic lake under a climatic regime of low seasonality. Much of the Pleistocene is dominated by Stephanodiscus and Fragilaria species suggesting a cooler, often drier, and highly variable climate. Benthic diatoms typical of alkaline-enriched saline waters commonly appear after 1.0 Ma, and tephrochronology indicates slow deposition and possible hiatuses between about 0.6 and 0.2 Ma. The chronology of even-numbered oxygen isotope stages approximately matches fluctuations in the abundance of Fragilaria since 800 ka indicating that glacial periods were expressed as drier environments at Tule Lake. Glacial and interglacial environments since 150 ka were distinct from, and more variable than, those occurring earlier. The last full glacial period was very dry, but shortly thereafter Tule Lake became a deep, cool lacustrine system indicating a substantial increase in precipitation. Aulacoseira ambigua characterized the latest glacial and Holocene record of Tule Lake. Its distribution indicates that warmer and wetter climates began about 15 ka in this part of the Great Basin. Diatom concentration fluctuates at 41 000 year intervals between 3.0 and 2.5 Ma and at approximately 100 000 year intervals after 1.0 Ma. In the late Pliocene and early Pleistocene

  5. Effect of dissolved oxygen on biological denitrification using biodegradable plastic as the carbon source

    NASA Astrophysics Data System (ADS)

    Zhang, Xucai; Zhang, Jianmei

    2018-02-01

    Biological denitrification is currently a common approach to remove nitrate from wastewater. This study was conducted to evaluate the influence of dissolved oxygen on denitrification in wastewater treatment using biodegradable plastic as carbon source by designing the aerated, anoxic, and low-oxygen experimental treatment groups. The results showed that the removal rates of nitrate in anoxic and low-oxygen groups were 30.6 g NO3 --Nm-3 d-1 and 30.8 g NO3 --N m-3 d-1 at 83 h, respectively, both of which were higher than that of the aerated group. There was no significant difference between the anoxic and low-oxygen treatment groups for the nitrate removal. Additional, the nitrite accumulated during the experiments, and the nitrite concentrations in anoxic and aerated groups were lower than those in low-oxygen group. No nitrite was detected in all groups at the end of the experiments. These findings indicated that dissolved oxygen has important influence on denitrification, and anoxic and low-oxygen conditions can support completely denitrification when using BP as carbon source in nitrate-polluted wastewater treatment.

  6. Distinguishing megathrust from intraplate earthquakes using lacustrine turbidites (Laguna Lo Encañado, Central Chile)

    NASA Astrophysics Data System (ADS)

    Van Daele, Maarten; Araya-Cornejo, Cristian; Pille, Thomas; Meyer, Inka; Kempf, Philipp; Moernaut, Jasper; Cisternas, Marco

    2017-04-01

    One of the main challenges in seismically active regions is differentiating paleo-earthquakes resulting from different fault systems, such as the megathrust versus intraplate faults in subductions settings. Such differentiation is, however, key for hazard assessments based on paleoseismic records. Laguna Lo Encañado (33.7°S; 70.3°W; 2492 m a.s.l.) is located in the Central Chilean Andes, 50 km east of Santiago de Chile, a metropole with about 7,000,000 inhabitants. During the last century the study area experienced 3 large megathrust earthquakes (1906, 1985 and 2010) and 2 intraplate earthquakes (1945 and 1958) (Lomnitz, 1960). While the megathrust earthquakes cause Modified Mercalli Intensities (MMIs) of VI to VII at the lake (Van Daele et al., 2015), the intraplate earthquakes cause peak MMIs up to IX (Sepúlveda et al., 2008). Here we present a turbidite record of Laguna Lo Encañado going back to 1900 AD. While geophysical data (3.5 kHz subbottom seismic profiles and side-scan sonar data) provides a bathymetry and an overview of the sedimentary environment, we study 15 short cores in order to understand the depositional processes resulting in the encountered lacustrine turbidites. All mentioned earthquakes triggered turbidites in the lake, which are all linked to slumps in proximal areas, and are thus resulting from mass wasting of the subaquatic slopes. However, turbidites linked to the intraplate earthquakes are additionally covered by turbidites of a finer-grained, more clastic nature. We link the latter to post-seismic erosion of onshore landslides, which need higher MMIs to be triggered than subaquatic mass movements (Howarth et al., 2014). While intraplate earthquakes can cause MMIs up to IX and higher, megathrust earthquakes do not cause sufficiently high MMIs at the lake to trigger voluminous onshore landslides. Hence, the presence of these post-seismic turbidites allows to distinguish turbidites triggered by intraplate earthquakes from those

  7. Sources of methylmercury to a wetland-dominated lake in northern Wisconsin.

    PubMed

    Watras, C J; Morrison, K A; Kent, A; Price, N; Regnell, O; Eckley, C; Hintelmann, H; Hubacher, T

    2005-07-01

    Several lines of evidence suggest that wetlands may be a major source of methylmercury (MeHg) to receiving waters, perhaps explaining the strong correlation between concentrations of waterborne MeHg and dissolved organic carbon (DOC) in regions such as northern Wisconsin. We evaluated the relative importance of wetland export in the MeHg budget of a wetland-dominated lake in northern Wisconsin using mass balance. Channelized runoff from a large headwater wetland was the major source of water and total mercury (HgT) to the lake during the study period. The wetland also exported MeHg in high concentrations (0.2-0.8 ng L(-1)), resulting in an export rate similar to those reported for other northern wetlands (ca. 0.3 microg MeHg m(-2) y(-1)). Yet, based on intensive sampling during 2002, the mass of MeHg that accumulated in the lake during summer was an order of magnitude greater than the export of MeHg from the wetland to the lake. Hence, a large in-lake source of MeHg is inferred from the mass balance. Most of the accumulated MeHg built-up in anoxic hypolimnetic waters; and the build-up was roughly balanced by losses of inorganic Hg (Hg(II)) implying a chemical transformation within the anoxic water column. An abundance of sulfate-reducing bacteria (SRB) in hypolimnetic waters, established by DNA analysis of the pelagic microbial community, along with a previous report documenting high methylation rates in the hypolimnion of this lake (ca. 10% d(-1)), suggest that this transformation was microbially mediated. These findings indicate that the direct effect of wetland runoff may be outweighed by indirect effects on the lacustrine MeHg cycle, enhancing the load of Hg(II), the activity of SRB, and the retention of MeHg, especially in northern lakes with flushing times longer than six months.

  8. Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source.

    PubMed

    Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won

    2012-07-25

    Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior.

  9. Microbially mediated carbon mineralization: Geoengineering a carbon-neutral mine

    NASA Astrophysics Data System (ADS)

    Power, I. M.; McCutcheon, J.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2013-12-01

    Ultramafic and mafic mine tailings are a potentially valuable feedstock for carbon mineralization, affording the mining industry an opportunity to completely offset their carbon emissions. Passive carbon mineralization has previously been documented at the abandoned Clinton Creek asbestos mine, and the active Diavik diamond mine and Mount Keith nickel mine, yet the majority of tailings remain unreacted. Examples of microbe-carbonate interactions at each mine suggest that biological pathways could be harnessed to promote carbon mineralization. In suitable environmental conditions, microbes can mediate geochemical processes to accelerate mineral dissolution, increase the supply of carbon dioxide (CO2), and induce carbonate precipitation, all of which may accelerate carbon mineralization. Tailings mineralogy and the availability of a CO2 point source are key considerations in designing tailings storage facilities (TSF) for optimizing carbon mineralization. We evaluate the efficacy of acceleration strategies including bioleaching, biologically induced carbonate precipitation, and heterotrophic oxidation of waste organics, as well as abiotic strategies including enhancing passive carbonation through modifying tailings management practices and use of CO2 point sources (Fig. 1). With the aim of developing carbon-neutral mines, implementation of carbon mineralization strategies into TSF design will be driven by economic incentives and public pressure for environmental sustainability in the mining industry. Figure 1. Schematic illustrating geoengineered scenarios for carbon mineralization of ultramafic mine tailings. Scenarios A and B are based on non-point and point sources of CO2, respectively.

  10. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources.

    PubMed

    Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov; Wang, Jianlong; Angelidaki, Irini

    2017-10-01

    Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate production was examined. When substrate concentration was controlled at 100mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700mM, which inhibited the fermentation process. The highest caproate concentration of 8.42g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550mM total carbon). Results obtained in this study can pave the way towards efficient chain elongation from ethanol-rich wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fluid source inferred from strontium isotopes in pore fluid and carbonate recovered during Expedition 337 off Shimokita, Japan

    NASA Astrophysics Data System (ADS)

    Hong, W.; Moen, N.; Haley, B. A.

    2013-12-01

    IODP Expedition 337 was designed to understand the relationship between a deep-buried (2000 meters below seafloor) hydrocarbon reservoir off the Shimokita peninsula (Japan), and the microbial community that this carbon reservoir sustains at such depth. Understanding sources and pathways of flow of fluids that carry hydrocarbons, nutrients, and other reduced components is of particular interest to fulfilling the expedition objectives, since this migrating fluid supports microbial activity not only of the deep-seated communities but also to the shallow-dwelling organisms. To this aim, the concentration and isotopic signature of Sr can be valuable due to that it is relatively free from biogenic influence and pristine in terms of drill fluid contamination. From the pore water Sr profile, concentration gradually increases from 1500 to 2400 mbsf. The depth where highest Sr concentration is observed corresponds to the depths where couple layers of carbonate were observed. Such profile suggests an upward-migrating fluid carries Sr from those deep-seated carbonate layers (>2400 mbsf) to shallower sediments. To confirm this inference, pore water, in-situ formation fluid, and carbonate samples were analyzed for Sr isotopes to investigate the fluid source.

  12. Sources and atmospheric processing of size segregated aerosol particles revealed by stable carbon isotope ratios and chemical speciation.

    PubMed

    Masalaite, A; Holzinger, R; Ceburnis, D; Remeikis, V; Ulevičius, V; Röckmann, T; Dusek, U

    2018-05-07

    Size-segregated aerosol particles were collected during winter sampling campaigns at a coastal (55°37' N, 21°03'E) and an urban (54°64' N, 25°18' E) site. Organic compounds were thermally desorbed from the samples at different temperature steps ranging from 100 °C to 350 °C. The organic matter (OM) desorbed at each temperature step is analysed for stable carbon isotopes using an isotope ratio mass spectrometer (IRMS) and for individual organic compounds using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-MS). The OM desorbed at temperatures <200 °C was classified as less refractory carbon and the OM desorbed at temperatures between 200 °C and 350 °C was classified as more refractory carbon. At the coastal site, we identified two distinct time periods. The first period was more frequently influenced by marine air masses than the second time period, which was characterized by Easterly wind directions and continental air masses. During the first period OM contained a large fraction of hydrocarbons and had a carbon isotopic signature typical of liquid fossil fuels in the region. Organic mass spectra provide strong evidence that shipping emissions are a significant source of OM at this coastal site. The isotopic and chemical composition of OM during the second period at the coastal site was similar to the composition at the urban site. There was a clear distinction in source contribution between the less refractory OM and the more refractory OM at these sites. According to the source apportionment method used in this study, we were able to identify fossil fuel burning as predominant source of the less refractory OM in the smallest particles (D 50  < 0.18 μm), and biomass burning as predominant source of the more refractory OM in the larger size range (0.32 < D 50  < 1 μm). Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A Carbon Source Apportionment Shift in Mexico City Atmospheric Particles During 2003-2004 as Determined with Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Lopez-Veneroni, D. G.; Vega, E.

    2013-05-01

    The stable carbon isotope composition of atmospheric particles (PM2.5) was measured at La Merced (MER), a commercial site in the eastern sector, and at Xalostoc (XAL) an industrial site in the NE sector of Mexico City, during three sampling periods in autumn 2003, and spring and autumn 2004. At each site and sampling campaign particle samples were collected daily with minivol samplers during two week periods. Ancillary data included organic and elemental carbon, trace elements and ionic species. This data base was complement with air quality data from the RAMA (Automatic Atmospheric Monitoring Network). In general, particle concentrations, ionic species and some air quality species showed higher concentrations in autumn and lowest values in spring. Moreover, the concentrations of these chemical species were highest at XAL compared to MER. The stable carbon isotope composition of PM2.5 during autumn 2003 and spring 2004 had and average value of -26.04 (± 1.54) ‰ vs. PDB. Differences in the isotopic composition between the two sites were non significant. The average δ13C during these seasons were 1 ‰ lighter relative to data collected previously at these sites during 2000 and 2001, and is consistent with a predominant source of hydrocarbon combustion. In autumn 2004, however, average δ13C at XAL and MER increased to -22.8 (± 0.9) and -20.6 (± 3.1) ‰, respectively. Organic carbon concentrations during this period increased concomitantly at these sites. The shift in the isotopic composition in ambient particles suggests a predominance of soil-derived carbon during this period. The possible causes and implications of this are discussed.

  14. An audit of the global carbon budget: identifying and reducing sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.

    2012-12-01

    Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.

  15. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State

    NASA Technical Reports Server (NTRS)

    Fry, B.; Hayes, J. M. (Principal Investigator)

    1986-01-01

    The trophic importance of bacterioplankton as a source of carbon and sulfur nutrition for consumers in meromictic lakes was tested using stable carbon (delta 13C) and sulfur (delta 34S) isotopic measurements. Studies in three lakes near Syracuse, New York, showed that most consumers ultimately derive their C and S nutrition from a mixture of terrestrial detritus, phytoplankton, and littoral vegetation, rather than from bacterioplankton. Food webs in these meromictic lakes are thus similar to those in other lakes that lack dense populations of bacterioplankton.

  16. Long Carbon Chains in the Warm Carbon-chain-chemistry Source L1527: First Detection of C7H in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-09-01

    Long carbon-chain molecules were searched for toward the low-mass star-forming region L1527, which is a prototypical source of warm carbon-chain chemistry (WCCC), using the 100 m Green Bank Telescope. Long carbon-chain molecules, C7H (2Π1/2), C6H (2Π3/2 and 2Π1/2), CH3C4H, and C6H2 (cumulene carbene, CCCCCCH2), and cyclic species of C3H and C3H2O were detected. In particular, C7H was detected for the first time in molecular clouds. The column density of C7H is determined to be 6 × 1010 cm-2. The column densities of the carbon-chain molecules including CH3C4H and C6H in L1527 relative to those in the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) tend to be systematically lower for long carbon-chain lengths. However, the column densities of C7H and C6H2 do not follow this trend and are found to be relatively abundant in L1527. This result implies that these long carbon-chain molecules are remnants of the cold starless phase. The results—that both the remnants and WCCC products are observed toward L1527—are consistent with the suggestion that the protostar can also be born in the parent core at a relatively early stage in the chemical evolution.

  17. Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source.

    PubMed

    Krupiński, Mariusz; Janicki, Tomasz; Pałecz, Bartłomiej; Długoński, Jerzy

    2014-09-15

    4-n-Nonylphenol (4-n-NP) is an environmental pollutant with endocrine-disrupting activities that is formed during the degradation of nonylphenol polyethoxylates, which are widely used as surfactants. Utilization of 4-n-NP by the filamentous fungus Aspergillus versicolor as the sole carbon and energy source was investigated. By means of gas chromatography-mass spectrometry, we showed that in the absence of any carbon source other than 4-n-NP in the medium, A. versicolor completely removed the xenobiotic (100 mg L(-1)) after 3 d of cultivation. Moreover, mass spectrometric analysis of intracellular extracts led to the identification of eight intermediates. The mineralization of the xenobiotic in cultures supplemented with 4-n-NP [ring-(14)C(U)] as a growth substrate was also assessed. After 3 d of incubation, approximately 50% of the initially applied radioactivity was recovered in the form of (14)CO2, proving that this xenobiotic was completely metabolized and utilized by A. versicolor as a carbon source. Based on microscopic analysis, A. versicolor is capable of germinating spores under such conditions. To confirm these observations, a microcalorimetric method was used. The results show that even the highest amount of 4-n-NP initiates heat production in the fungal samples, proving that metabolic processes were affected by the use of 4-n-NP as an energetic substrate. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Using Novel Laboratory Incubations and Field Experiments to Identify the Source and Fate of Reactive Organic Carbon in an Arsenic-contaminated Aquifer System

    NASA Astrophysics Data System (ADS)

    Stahl, M.; Tarek, M. H.; Badruzzaman, B.; Harvey, C. F.

    2017-12-01

    Characterizing the sources and fate of organic matter (OM) within aquifer systems is key to our understanding of both the broader global carbon cycle as well as the quality of our groundwater resources. The linkage between the subsurface carbon cycle and groundwater quality is perhaps nowhere more apparent than in the aquifer systems of South and Southeast Asia, where the contamination of groundwater with geogenic arsenic (As) is widespread and threatens the health of millions of individuals. OM fuels the biogeochemical processes driving As mobilization within these aquifers, however the source (i.e., modern surface-derived or aged sedimentary OM) of the reactive OM is widely debated. To characterize the sources of OM driving aquifer redox processes we tracked DIC and DOC concentrations and isotopes (stable and radiocarbon) along groundwater flow-paths and beneath an instrumented study pond at a field site in Bangladesh. We also conducted a set of novel groundwater incubation experiments, where we carbon-dated the DOC at the start and end of a experiment in order to determine the age of the OM that was mineralized. Our carbon/isotope balance reveals that aquifer recharge introduces a large quantity of young (i.e. near modern) OM that is efficiently mineralized within the upper few meters of the aquifer, effectively limiting this pool of reactive surface-sourced OM from being transported deeper into the aquifer where significant As mobilization takes place. The OM mineralized past the upper few meters is an aged, sedimentary source. Consistent with our field data, our incubation experiments show that past the upper few meters of the aquifer the reactive DOC is significantly older than the bulk DOC and has an age consistent with sedimentary OM. Combining our novel set of incubation experiments and a carbon/isotope balance along groundwater flow-paths and beneath our study pond we have identified the sources of reactive OM across different aquifer depths in a

  19. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    PubMed

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.

  20. Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source.

    PubMed

    Dai, Yu; Yuan, Zhiguo; Jack, Kevin; Keller, Jurg

    2007-05-01

    One of the main limitations in bacterial polyhydroxyalkanoate (PHA) production with mixed cultures is the fact that primarily polyhydroxybutyrate (PHB) homopolymers are generated from acetate as the main carbon source, which is brittle and quite fragile. The incorporation of different 3-hydroxyalkanoate (HA) components into the polymers requires the addition of additional carbon sources, leading to extra costs and complexity. In this study, the production of poly(3-hydroxybutyrate (3HB)-co-3-hydroxyvalerate (3HV)-co-3-hydroxy-2-methylvalerate (3HMV)), with 7-35C-mol% of 3HV fractions from acetate as the only carbon source was achieved with the use of glycogen accumulating organisms (GAOs). An enriched GAO culture was obtained in a lab-scale reactor operated under alternating anaerobic and aerobic conditions with acetate fed at the beginning of the anaerobic period. The production of PHAs utilizing the enriched GAO culture was investigated under both aerobic and anaerobic conditions. A polymer content of 14-41% of dry cell weight was obtained. The PHA product accumulated by GAOs under anaerobic conditions contained a relatively constant proportion of non-3HB monomers (30+/-5C-mol%), irrespective of the amount of acetate assimilated. In contrast, under aerobic conditions, GAOs only produced 3HB monomers from acetate causing a gradually decreasing 3HV fraction during this aerobic feeding period. The PHAs were characterized by gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The data demonstrated that the copolymers possessed similar characteristics to those of commercially available poly(3HB-co-3HV) (PHBV) products. The PHAs produced under solely anaerobic conditions possessed lower melting points and crystallinity, higher molecular weights, and narrower molecular-weight distributions, compared to the aerobically produced polymers. This paper hence demonstrates the significant potential of GAOs to produce high quality polymers from a

  1. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations.

    PubMed

    Trowbridge, Amy M; Asensio, Dolores; Eller, Allyson S D; Way, Danielle A; Wilkinson, Michael J; Schnitzler, Jörg-Peter; Jackson, Robert B; Monson, Russell K

    2012-01-01

    Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13)CO(2)-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens) trees grown and measured at different atmospheric CO(2) concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO(2) concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41(+), which represents, in part, substrate derived from pyruvate, and M69(+), which represents the whole unlabeled isoprene molecule. We observed a trend of slower (13)C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO(2) (190 ppmv) had rates of isoprene emission and rates of labeling of M41(+) and M69(+) that were nearly twice those observed in trees grown under elevated CO(2) (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO(2) availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO(2).

  2. Contribution of Various Carbon Sources Toward Isoprene Biosynthesis in Poplar Leaves Mediated by Altered Atmospheric CO2 Concentrations

    PubMed Central

    Trowbridge, Amy M.; Asensio, Dolores; Eller, Allyson S. D.; Way, Danielle A.; Wilkinson, Michael J.; Schnitzler, Jörg-Peter; Jackson, Robert B.; Monson, Russell K.

    2012-01-01

    Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens) trees grown and measured at different atmospheric CO2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41+, which represents, in part, substrate derived from pyruvate, and M69+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower 13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO2 (190 ppmv) had rates of isoprene emission and rates of labeling of M41+ and M69+ that were nearly twice those observed in trees grown under elevated CO2 (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO2. PMID:22384238

  3. Diagnostic Evaluation of Carbon Sources in CMAQ

    EPA Science Inventory

    Traditional monitoring networks measure only total elemental carbon (EC) and organic carbon (OC) routinely. Diagnosing model biases with such limited information is difficult. Measurements of organic tracer compounds have recently become available and allow for more detailed di...

  4. Preparation and Physicochemical Evaluation of Controlled-release Carbon Source Tablet for Groundwater in situ Denitrification

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kang, J. H.; Yeum, Y.; Han, K. J.; Kim, D. W.; Park, C. W.

    2015-12-01

    Nitric nitrogen could be the one of typical pollution source such asNO3-through domestic sewage, livestock and agricultural wastewater. Resident microflorain aquifer has known to remove the nitric nitrogen spontaneously following the denitration process with the carbon source (CS) as reactant. However, it could be reacted very slowly with the rack of CS and there have been some studies for controlled addition of CS (Ref #1-3). The aim of this study was to prepare the controlled-release carbon source (CR-CS) tablet and to evaluate in vitro release profile for groundwater in situ denitrification. CR-CS tablet could be manufactured by direct compression method using hydraulic laboratory press (Caver® 3850) with 8 mm rounded concave punch/ die.Seven kinds of CR-CS tablet were prepared to determine the nature of the additives and their ratio such as sodium silicate, dicalcium phosphate, bentonite and sand#8.For each formulation, the LOD% and flowability of pre-mixed powders and the hardness of compressed tablets were analyzed. In vitro release study was performed to confirm the dissolution profiles following the USP Apparatus 2 method with Distilled water of 900mL, 20 °C. As a result, for each lubricated powders, they were compared in terms of ability to give an acceptable dry pre-mixed powder for tableting process. The hardness of the compressed tablets is acceptable whatever the formulations tested. After in vitro release study, it could confirm that the different formulations of CR-CS tablet have a various release rate patterns, which could release 100% at 3 hrs, 6 hrs and 12 hrs. The in vitro dissolution profiles were in good correlation of Higuchi release kinetic model. In conclusion, this study could be used as a background for development and evaluation of the controlled-release carbon source (CR-CS) tablet for the purification of groundwater following the in situ denitrification.

  5. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N. Thompson; Erik R. Coats; William A. Smith

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activatedmore » sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.« less

  6. Sources and Transformations of Carbon and Nitrogen in the Potomac River Estuary

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S.; Murthy, S.

    2011-12-01

    Urbanization has altered the transport of nitrogen (N) and carbon (C) in river ecosystems, making it important to understand how rivers are responding to these increased inputs of C and N. This study examines the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform N and C inputs from the world's largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected monthly for one year, along longitudinal transects of the Potomac River. Water samples were analyzed for the major dissolved and particulate forms of C and N. Nitrate stable isotopes were used to trace the fate of wastewater nitrate, as well as how other nitrate sources vary downriver. Sources of carbon downriver were traced using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Historical influent and effluent data on C and N levels were also compared with regional population growth data, climate change data, and long-term interannual records of C and N levels within downstream stations along the Potomac River. Improvements in treatment technology over the past two decades have shown significant decreases in effluent nitrogen levels, with corresponding decreases overtime of nutrients at downstream sampling stations. Levels of nitrate show increases within the vicinity of the wastewater treatment outfall, but decrease rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Total organic carbon levels show a smaller decrease downstream, resulting in an increase in the C:N ratio downstream. Longitudinal river chemistry data also show that dissolved inorganic nitrogen goes down while total organic nitrogen goes up with distance downriver, indicating biological transformations are taking place along the river. Preliminary data from fluorescence EEMs suggested that more humic-like organic matter is important above the wastewater treatment plant

  7. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves

    NASA Astrophysics Data System (ADS)

    Yang, Weifeng; Guo, Laodong

    2018-03-01

    Black carbon (BC) has been recognized as a climate forcing and a major component in the global carbon budget. However, studies on BC in the Arctic Ocean remain scarce. We report here variations in the abundance, sources and burial fluxes of sedimentary soot black carbon (soot-BC) in the western Arctic Ocean. The soot-BC contents averaged 1.6 ± 0.3, 0.46 ± 0.04 and 0.56 ± 0.10 mg-C g-1 on the Mackenzie, Chukchi and Bering Shelves, respectively, accounting for 16.6%, 10.2% and 10.4% of the total organic carbon in surface sediment. Temporally, contents of soot-BC remained fairly stable before 1910, but increased rapidly after the 1970s on the Mackenzie Shelf, indicating enhanced source input related to warming. Comparable δ13C signatures of soot-BC (- 24.95‰ to - 24.57‰) to C3 plants pointed to a major biomass source of soot-BC to the Beaufort Sea. Soot-BC showed similar temporal patterns with large fluctuations in the Chukchi/Bering shelf regions, implying the same source terms for soot-BC in these areas. Two events with elevated soot-BC corresponded to a simultaneous increase in biomass combustion and fossil fuel (coal and oil) consumption in Asia. The similar temporal variability in sedimentary soot-BC between the Arctic shelves and Asian lakes and the comparable δ13C values manifested that anthropogenic emission from East Asia was an important source of soot-BC in the western Arctic and subarctic regions. The burial fluxes of soot-BC, estimated from both 137Cs- and 210Pb-derived sedimentation rates, were 2.43 ± 0.42 g-C m-2 yr-1 on the Mackenzie Shelf, representing an efficient soot-BC sink. Soot-BC showed an increase in buried fluxes from 0.56 ± 0.02 g-C m-2 yr-1 during 1963-1986 to 0.88 ± 0.05 g-C m-2 yr-1 after 1986 on the Chukchi Shelf, and from 1.00 ± 0.18 g-C m-2 yr-1 to 2.58 ± 1.70 g-C m-2 yr-1 on the Bering Shelf, which were consistent with recent anthropogenically enhanced BC input observed especially in Asia. Overall, the three Arctic

  8. [Derepression of cellulase synthesis in Trichoderma lignorum during limitation of consumption of readily available carbon sources].

    PubMed

    Lobanok, A G; Pavlovskaia Zhi

    1975-01-01

    The synthesis of Cx-cellulase was de-repressed in Trichoderma lignorum growing on various easily metabolized carbon sources when their assimilation was limited. A reverse correlation has been established between the growth rate and the rate of the enzyme synthesis in the fungus.

  9. Fungal carbon sources in a pine forest: evidence from a 13C-labeled global change experiment

    Treesearch

    Erik A. Hobbie; Kirsten S. Hofmockel; Linda T.A. Van Diepen; Erik A. Lilleskov; Andrew P. Oiumette; Adrien C. Finzi

    2014-01-01

    We used natural abundance 13C:12C (δ13C) and 8 yr of labeling with 13C-depleted CO2 in a Pinus taeda Free Air CO2 Enrichment (FACE) experiment to investigate carbon sources of saprotrophic fungi, ectomycorrhizal...

  10. Empirical quantification of lacustrine groundwater discharge - different methods and their limitations

    NASA Astrophysics Data System (ADS)

    Meinikmann, K.; Nützmann, G.; Lewandowski, J.

    2015-03-01

    Groundwater discharge into lakes (lacustrine groundwater discharge, LGD) can be an important driver of lake eutrophication. Its quantification is difficult for several reasons, and thus often neglected in water and nutrient budgets of lakes. In the present case several methods were applied to determine the expansion of the subsurface catchment, to reveal areas of main LGD and to identify the variability of LGD intensity. Size and shape of the subsurface catchment served as a prerequisite in order to calculate long-term groundwater recharge and thus the overall amount of LGD. Isotopic composition of near-shore groundwater was investigated to validate the quality of catchment delineation in near-shore areas. Heat as a natural tracer for groundwater-surface water interactions was used to find spatial variations of LGD intensity. Via an analytical solution of the heat transport equation, LGD rates were calculated from temperature profiles of the lake bed. The method has some uncertainties, as can be found from the results of two measurement campaigns in different years. The present study reveals that a combination of several different methods is required for a reliable identification and quantification of LGD and groundwater-borne nutrient loads.

  11. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    PubMed Central

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  12. Sources of Below-Ground Respired Carbon in a Northern Minnesota Ombrotrophic Spruce Bog and the Influence of Heating Manipulations.

    NASA Astrophysics Data System (ADS)

    Guilderson, T. P.; McFarlane, K. J.; McNicol, G.; Hanson, P. J.; Chanton, J.; Wilson, R.; Bosworth, R.; Singleton, M. J.

    2015-12-01

    A significant uncertainty in future land-surface carbon budgets is the response of wetlands to climate change. A related question is the future net climate (radiative) forcing impact due to ecosystem and environmental change in wetlands. Active wetlands emit both CO2 and CH4 to the atmosphere. CH4 is, over a few decades, a much more potent greenhouse gas than CO2 whereas as a consequence of a much longer atmospheric lifetime, CO2 has a longer 'tail' to its influence. Whether wetlands are a net source or sink of atmospheric carbon under future climate change will depend on the response of the ecosystem to rising temperatures and elevated CO2. The largest uncertainty in future wetland budgets, and its climate forcing, is the stability of the large belowground carbon stocks, often in the form of peat, and the partitioning of CO2 and CH4released via ecosystem respiration. We have characterized the isotopic signatures (14,13C of CO2 and CH4, D-CH4) of the respired carbon used for the production of CO2 and CH4 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) site in the Marcell Experimental Forest, which contains replicated mesocosm manipulations including above/below ground warming and elevated CO2. Deep warming (1-2 m) was initiated in July of 2014 and above ground heating will be initiated in July 2015. Comparison of the respired CO2 and CH4with recently fixed photosynthate, below-ground peat (up to 11,000 years old), and dissolved organic carbon allow us to determine the primary substrates used by the microbial community. Control and pre-perturbed plots are characterized by the consumption and respiration of recently fixed photosynthate and recent (few years to 15 yr) carbon. Although CH4 fluxes have begun to respond to deep-heating, the source of carbon remains similar in the control and perturbed plots. Respired CO2 remains consistent with being sourced from carbon only a few years old. We will present additional data

  13. Source apportionment of PM2.5 organic carbon in the San Joaquin Valley using monthly and daily observations and meteorological clustering.

    PubMed

    Skiles, Matthew J; Lai, Alexandra M; Olson, Michael R; Schauer, James J; de Foy, Benjamin

    2018-06-01

    Two hundred sixty-three fine particulate matter (PM 2.5 ) samples collected on 3-day intervals over a 14-month period at two sites in the San Joaquin Valley (SJV) were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), and organic molecular markers. A unique source profile library was applied to a chemical mass balance (CMB) source apportionment model to develop monthly and seasonally averaged source apportionment results. Five major OC sources were identified: mobile sources, biomass burning, meat smoke, vegetative detritus, and secondary organic carbon (SOC), as inferred from OC not apportioned by CMB. The SOC factor was the largest source contributor at Fresno and Bakersfield, contributing 44% and 51% of PM mass, respectively. Biomass burning was the only source with a statistically different average mass contribution (95% CI) between the two sites. Wintertime peaks of biomass burning, meat smoke, and total OC were observed at both sites, with SOC peaking during the summer months. Exceptionally strong seasonal variation in apportioned meat smoke mass could potentially be explained by oxidation of cholesterol between source and receptor and trends in wind transport outlined in a Residence Time Analysis (RTA). Fast moving nighttime winds prevalent during warmer months caused local emissions to be replaced by air mass transported from the San Francisco Bay Area, consisting of mostly diluted, oxidized concentrations of molecular markers. Good agreement was observed between SOC derived from the CMB model and from non-biomass burning WSOC mass, suggesting the CMB model is sufficiently accurate to assist in policy development. In general, uncertainty in monthly mass values derived from daily CMB apportionments were lower than that of CMB results produced with monthly marker composites, further validating daily sampling methodologies. Strong seasonal trends were observed for biomass and meat smoke OC apportionment, and monthly

  14. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  15. Ethers as Oxygen Donor and Carbon Source in Non-hydrolytic Sol-Gel: One-Pot, Atom-Economic Synthesis of Mesoporous TiO2 -Carbon Nanocomposites.

    PubMed

    Escamilla-Pérez, Angel Manuel; Louvain, Nicolas; Boury, Bruno; Brun, Nicolas; Mutin, P Hubert

    2018-04-03

    Mesoporous TiO 2 -carbon nanocomposites were synthesized using an original non-hydrolytic sol-gel (NHSG) route, based on the reaction of simple ethers (diisopropyl ether or tetrahydrofuran) with titanium tetrachloride. In this atom-economic, solvent-free process, the ether acts not only as an oxygen donor but also as the sole carbon source. Increasing the reaction temperature to 180 °C leads to the decomposition of the alkyl chloride by-product and to the formation of hydrocarbon polymers, which are converted to carbon by pyrolysis under argon. The carbon-TiO 2 nanocomposites and their TiO 2 counterparts (obtained by calcination) were characterized by nitrogen physisorption, XRD, solid state 13 C NMR and Raman spectroscopies, SEM, and TEM. The nanocomposites are mesoporous with surface areas of up to 75 m 2  g -1 and pore sizes around 10 nm. They are composed of aggregated anatase nanocrystals coated by an amorphous carbon film. Playing on the nature of the ether and on the reaction temperature allows control over the carbon content in the nanocomposites. The nature of the ether also influences the size of the TiO 2 crystallites and the morphology of the nanocomposite. To further characterize the carbon coating, the behavior of the carbon-TiO 2 nanocomposites and bare TiO 2 samples toward lithium insertion-deinsertion was investigated in half-cells. This simple NHSG approach should provide a general method for the synthesis of a wide range of carbon-metal oxide nanocomposites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Identifying dissolved organic carbon sources at a gaged headwater catchment using FDOM sensors

    NASA Astrophysics Data System (ADS)

    Malzone, J. M.; Shanley, J. B.

    2014-12-01

    The United States Geological Survey's (USGS) W-9 gage at the headwaters of Sleepers River, Vermont has been monitored for dissolved organic carbon (DOC) concentration for more than 20 years. However, the sources of this DOC during base flow and hydrologic events remain unclear. The major objectives of this research were to identify sources of DOC during storm events and to explain the observed DOC-streamflow counterclockwise hysteresis during hydrologic events. Two main hypotheses to explain hysteresis during hydrologic events were tested: (1) distant headwater wetlands are the major DOC source, which lags behind peak flow due to travel time; and (2) the entire watershed contributes to the DOC at the gage, but the response of DOC lags behind the period when groundwater contributes most to streamflow. Sources of DOC were tracked using fluorescent dissolved organic matter (FDOM) sensors in surface water and groundwater wells. Wells were installed at four depths, 0.3, 0.6, 0.9, and 1.2 m, at four sites: a peaty low-gradient riparian area near the headwaters; a mid-hillslope area on a long hillslope mid-watershed; a near-stream area on a long hillslope mid-watershed; and a low-gradient tributary confluence area just above the gage. During storm events, FDOM and hydraulic head were measured at the nested groundwater wells. Samples for DOC analysis were also taken to determine the relationship between FDOM and DOC. Results suggest that both distant sources and the greater watershed played a role in the transport of DOC to the W-9 gage. Distant peaty sources dominated during large storms and contributed the highest surface water FDOM measurements. The peak FDOM at the gage was therefore best described as a result of transport. However, export from these distant sources terminated rapidly and did not explain continued elevated FDOM at the gage. Groundwater across the watershed exhibited hysteresis analogous to that in the stream itself, with FDOM peaking as head receded

  17. Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR.

    PubMed

    Yang, Xiao-Li; Jiang, Qi; Song, Hai-Liang; Gu, Tian-Tian; Xia, Ming-Qian

    2015-01-01

    This paper examined the feasibility of agricultural wastes used as solid carbon sources and the effect of determined agricultural wastes on improving denitrification. Eight agricultural wastes were evaluated in MBR tests to find out their carbon release capacity, denitrification potential, leaching elements and surface properties. The results showed that retinervus luffae fructus, wheat straw, corncob and rice straw had higher carbon release capacity with COD of 13.17-21.07 mg g(-1)day(-1), BOD5 of 3.33-7.33 mg g(-1)day(-1) and respirable carbon of 8.64-10.71 mg g(-1)day(-1). Correspondingly, they displayed a good denitrification potential of 105.3-140.1mg NO3(-)-Ng(-1). Rice straw, retinervus luffae fructus and corncob were then applied in MBRs. These three agricultural wastes were found to be effective in enhancing the denitrification process, where the TN removal increased from 43.44% (control MBR) to 82.34, 68.92 and 62.97%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli.

    PubMed

    Wang, Ning; Wang, Yiting; Guo, Tingting; Yang, Ting; Chen, Mingli; Wang, Jianhua

    2016-11-15

    A simple one-step hydrothermal green approach was reported for the preparation of carbon dots (CDs) without any further decoration or modification with papaya powder as natural carbon source. In this economical and eco-friendly system, deionized water or 90% ethanol was used as solvent to produce water-soluble or ethanol-soluble CDs, respectively, termed as W-CDs and E-CDs. The quantum yield (QY) for W-CDs was 18.98%, while that for E-CDs was 18.39%. The potentials of the prepared carbon dots toward diverse applications were thoroughly investigated. W-CDs and E-CDs provide promising probes for fluorescence detection of Fe(3+), offering limits of detection of 0.48μmolL(-1) and 0.29μmolL(-1), respectively. W-CDs was further demonstrated to be a promising probe for fluorescence sensing of Escherichia coli O157: H7, along with a limit of detection of 9.5×10(4)cfumL(-1). Meanwhile, both W-CDs and E-CDs exhibit favorable biocompatibility, and demonstrated to be efficient for Hela cell imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Stable carbon isotope ratios in atmospheric methane and some of its sources

    NASA Technical Reports Server (NTRS)

    Tyler, Stanley C.

    1986-01-01

    Ratios of C-13/C-12 have been measured in atmospheric methane and in methane collected from sites and biota that represent potentially large sources of atmospheric methane. These include temperate marshes (about -48 percent to about -54 percent), landfills (about -51 percent to about -55 percent), and the first reported values for any species of termite (-72.8 + or - 3.1 percent for Reticulitermes tibialis and -57.3 + or - 1.6 percent for Zootermopsis angusticollis). Numbers in parentheses are delta C-13 values with respect to PDB (Peedee belemnite) carbonate. Most methane sources reported thus far are depleted in C-13 with respect to atmospheric methane (-47.0 + or - 0.3 percent). Individual sources of methane should have C-13/C-12 ratios characteristic of mechanisms of CH4 formation and consumption prior to release to the atmosphere. The mass-weighted average isotopic composition of all sources should equal the mean C-13 of atmospheric methane, corrected for a kinetic isotope effect in the OH attack of CH4. Assuming the kinetic isotope effect to be small (about -3.0 percent correction to -47.0), as in the literature, the new values given here for termite methane do not help to explain the apparent discrepancy between C-13/C-12 ratios of the known CH4 sources and that of atmospheric CH4.

  20. Use of stable isotopes of carbon and nitrogen to identify sources of organic matter to bed sediments of the Tualatin River, Oregon

    USGS Publications Warehouse

    Bonn, Bernadine A.; Rounds, Stewart A.

    2010-01-01

    The potential sources of organic matter to bed sediment of the Tualatin River in northwestern Oregon were investigated by comparing the isotopic fractionation of carbon and nitrogen and the carbon/nitrogen ratios of potential sources and bed sediments. Samples of bed sediment, suspended sediment, and seston, as well as potential source materials, such as soil, plant litter, duckweed, and wastewater treatment facility effluent particulate were collected in 1998-2000. Based on the isotopic data, terrestrial plants and soils were determined to be the most likely sources of organic material to Tualatin River bed sediments. The delta 13C fractionation matched well, and although the delta 15N and carbon/nitrogen ratio of fresh plant litter did not match those of bed sediments, the changes expected with decomposition would result in a good match. The fact that the isotopic composition of decomposed terrestrial plant material closely resembled that of soils and bed sediments supports this conclusion. Phytoplankton probably was not a major source of organic matter to bed sediments. Compared to the values for bed sediments, the delta 13C values and carbon/nitrogen ratios of phytoplankton were too low and the delta 15N values were too high. Decomposition would only exacerbate these differences. Although phytoplankton cannot be considered a major source of organic material to bed sediment, a few bed sediment samples in the lower reach of the river showed a small influence from phytoplankton as evidenced by lower delta 13C values than in other bed sediment samples. Isotopic data and carbon/nitrogen ratios for bed sediments generally were similar throughout the basin, supporting the idea of a widespread source such as terrestrial material. The delta 15N was slightly lower in tributaries and in the upper reaches of the river. Higher rates of sediment oxygen demand have been measured in the tributaries in previous studies and coupled with the isotopic data may indicate the