Sample records for ladybird beetle abundance

  1. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians

    PubMed Central

    Sloggett, John J.

    2012-01-01

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups. PMID:26466621

  2. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians.

    PubMed

    Sloggett, John J

    2012-07-18

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups.

  3. Complete mitochondrial genome sequence of a phytophagous ladybird beetle, Henosepilachna pusillanima (Mulsant) (Coleoptera: Coccinellidae).

    PubMed

    Behere, G T; Firake, D M; Tay, W T; Azad Thakur, N S; Ngachan, S V

    2016-01-01

    Ladybird beetles are generally considered as agriculturally beneficial insects, but the ladybird beetles in the coleopteran subfamily Epilachninae are phytophagous and major plant feeding pest species which causes severe economic losses to cucurbitaceous and solanaceous crops. Henosepilachna pusillanima (Mulsant) is one of the important pest species of ladybird beetle. In this report, we sequenced and characterized the complete mitochondrial genome of H. pusillanima. For sequencing of the complete mitochondrial genome, we used the Ion Torrent sequencing platform. The complete circular mitochondrial genome of the H. pusillanima was determined to be 16,216 bp long. There were totally 13 protein coding genes, 22 transfer RNA, 2 ribosomal RNA and a control (A + T-rich) region estimated to be 1690 bp. The gene arrangement and orientations of assembled mitogenome were identical to the reported predatory ladybird beetle Coccinella septempunctata L. This is the first completely sequenced coleopteran mitochondrial genome from the beetle subfamily Epilachninae from India. Data generated in this study will benefit future comparative genomics studies for understanding the evolutionary relationships between predatory and phytophagous coccinellid beetles.

  4. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography.

    PubMed

    Saito, Kazuya; Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji

    2017-05-30

    Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: ( i ) the wing rigidity with relatively thick veins and ( ii ) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.

  5. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography

    PubMed Central

    Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji

    2017-01-01

    Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: (i) the wing rigidity with relatively thick veins and (ii) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure. PMID:28507159

  6. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.

    PubMed

    Tabata, Jun; De Moraes, Consuelo M; Mescher, Mark C

    2011-01-01

    Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical "moldy" odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.

  7. Olfactory Cues from Plants Infected by Powdery Mildew Guide Foraging by a Mycophagous Ladybird Beetle

    PubMed Central

    Tabata, Jun; De Moraes, Consuelo M.; Mescher, Mark C.

    2011-01-01

    Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical “moldy” odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms. PMID:21876772

  8. Effects of bioflavonoids on oviposition behavior in the pink-spotted ladybird beetle Coleomegilla maculata (Coleoptera: Coccinellidae)

    USDA-ARS?s Scientific Manuscript database

    One goal of our current research is to mass produce ladybird beetles for biological control of plant pests in greenhouses and other protective structures. Cost-effective mass production involves the use of alternative prey/foods or artificial diets (rather than natural prey, e.g., aphids). One chall...

  9. Incidence of Male-Killing Rickettsia spp. (α-Proteobacteria) in the Ten-Spot Ladybird Beetle Adalia decempunctata L. (Coleoptera: Coccinellidae)

    PubMed Central

    von der Schulenburg, J. Hinrich Graf; Habig, Michael; Sloggett, John J.; Webberley, K. Mary; Bertrand, Dominique; Hurst, Gregory D. D.; Majerus, Michael E. N.

    2001-01-01

    The diversity of endosymbiotic bacteria that kill male host offspring during embryogenesis and their frequencies in certain groups of host taxa suggest that the evolution of male killing and the subsequent spread of male-killing symbionts are primarily determined by host life history characteristics. We studied the 10-spot ladybird beetle, Adalia decempunctata L. (Coleoptera: Coccinellidae), in which male killing has not been recorded previously, to test this hypothesis, and we also assessed the evolution of the male killer identified by DNA sequence analysis. Our results show that A. decempunctata harbors male-killing Rickettsia (α-proteobacteria). Male-killing bacteria belonging to the genus Rickettsia have previously been reported only for the congeneric two-spot ladybird beetle, Adalia bipunctata L. Phylogenetic analysis of Rickettsia DNA sequences isolated from different populations of the two host species revealed a single origin of male killing in the genus Rickettsia. The data also indicated possible horizontal transfer of symbionts between host species. In addition, A. bipunctata is known to bear at least four different male-killing symbionts in its geographic range two of which coexist in the two locations from which A. decempunctata specimens were obtained for the present study. Since only a single male-killing taxon was found in A. decempunctata, we assume that the two closely related ladybird beetle species must differ in the number and/or geographic distribution of male killers. We discuss the importance of these findings to our understanding of the evolution and dynamics of symbiotic associations between male-killing bacteria and their insect hosts. PMID:11133455

  10. Estimating ladybird predation of aphids in the presence of foraging ants in lab bioassays

    USDA-ARS?s Scientific Manuscript database

    Foraging or tending ants often disrupt ladybird beetle predation of aphids on crop plants. In this study, we assessed the foraging behavior of the red imported fire ant (Solenopsis invicta) and tested the hypothesis that foraging ants disrupt ladybird predation. We setup experiments in the laborator...

  11. Ladybirds as Teaching Aids: 1 Collecting and Culturing.

    ERIC Educational Resources Information Center

    Majerus, M. E. N.; And Others

    1989-01-01

    Described are methods for locating, collecting and culturing ladybird beetles. Included are necessary equipment for feeding and breeding the insects and modifications for various species found in Great Britain. Overwintering spots of various species are also listed. (CW)

  12. Survival and behavioural responses of the predatory ladybird beetle, Eriopis connexa populations susceptible and resistant to a pyrethroid insecticide.

    PubMed

    Spíndola, A F; Silva-Torres, C S A; Rodrigues, A R S; Torres, J B

    2013-08-01

    The ladybird beetle, Eriopis connexa (Germar) (Coleoptera: Coccinellidae), is one of the commonest predators of aphids (Hemiptera: Aphididae) in the cotton agroecosystem and in many other row and fruit crops in Brazil, and has been introduced into other countries such as the USA for purposes of aphid control. In addition, the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the most serious cotton pest where it occurs, including Brazil. Controlling boll weevils and other pests such as cotton defoliators still tends to involve the intense application of insecticides to secure cotton production. The pyrethroid insecticide lambda-cyhalothrin (LCT) is commonly used, but this compound is not effective against aphids; hence, a desirable strategy would be to maintain E. connexa populations in cotton fields where LCT is applied. Using populations of E. connexa resistant (Res) and susceptible (Sus) to LCT, we compared behavioural responses on treated cotton plants and under confinement on partially and fully treated surfaces, and assessed the insects' survival on treated plants compared with that of the boll weevil. The E. connexa resistant population caged on treated plants with 15 and 75 g a.i. ha-1 exhibited ≫82% survival for both insecticide concentrations compared with ≪3% and ≪17% survival for susceptible E. connexa populations and boll weevils, respectively. The response of E. connexa Res and Sus populations when released, either on the soil or on the plant canopy, indicated avoidance towards treated plants, as measured by elapsed time to assess the plant. When compared with susceptible individuals, resistant ones took longer time to suffer insecticide knockdown, had a higher recovery rate after suffering knockdown, and spent more time in the plant canopy. Based on behavioural parameters evaluated in treated arenas, no ladybird beetles exhibited repellency. However, irritability was evident, with the susceptible population exhibiting

  13. Ladybirds as Teaching Aids: 2. Potential for Practical and Project Work.

    ERIC Educational Resources Information Center

    Majerus, M. E. N.; And Others

    1989-01-01

    Presented are several ideas for projects involving ladybird beetles. Discussed is background information about the insects; and projects involving life histories, intra-specific variation, taxonomy, genetics, behavior, ecology, habitat surveys, population biology, and overwintering biology. Lists 12 references. (CW)

  14. Do bioflavonoids in Juniperus virginiana heartwood stimulate oviposition in the ladybird Coleomegilla maculata?

    USDA-ARS?s Scientific Manuscript database

    Maximizing the reproductive potential of ladybird beetles fed factitious foods or artificial diets, in lieu of natural prey, is a major challenge to cost-effective mass-rearing for augmentative biological control. In this study, we tested the hypothesis that compounds in redcedar, Juniperus (J.) vir...

  15. Pallidus beetle, Delphastus pallidus LeConte (Insecta: Coleoptera: Coccinellidae), a native predatory beetle of whitefly species in Florida

    USDA-ARS?s Scientific Manuscript database

    Beetles in the genus Delphastus Casey are small whitefly-specific predatory ladybird beetles belonging to the coccinellid tribe Serangiini. They feed on all immature stages of whitefly and are reared and sold commercially all over the world for this purpose. They are compatible with the application ...

  16. Use of a pollen-based diet to expose the ladybird beetle Propylea japonica to insecticidal proteins.

    PubMed

    Zhang, Xiaojie; Li, Yunhe; Romeis, Jörg; Yin, Xinming; Wu, Kongming; Peng, Yufa

    2014-01-01

    A rape seed pollen-based diet was developed and found to be suitable for use in a dietary exposure assay for Propylea japonica. Using the diet, we established and validated a dietary exposure assay by using the protease inhibitor E-64 as positive control. Dose-dependent responses were documented for all observed life-table parameters of P. japonica including survival, pupation and eclosion rates, development time and adult weight. Results suggested that the dietary assay can detect the effects of insecticidal compounds on the survival and development of P. japonica. Using the established dietary assay, we subsequently tested the toxicity of Cry1Ab, Cry1Ac and Cry1F proteins that are expressed by transgenic maize, cotton or rice plants to P. japonica larvae. The diet containing E-64 was included as a positive control. Survival and development of P. japonica larvae were not adversely affected when the diet contained purified Cry1Ab, Cry1Ac, or Cry1F at 500 µg/g diet representing a worst-case exposure scenario. In contrast, P. japonica larvae were adversely affected when the diet contained E-64. The bioactivity and stability of the Cry proteins in the diet and Cry protein uptake by the ladybird larvae were confirmed by bioassay with a Cry-sensitive insect species and by ELISA. The current study describes a suitable experimental system for assessing the potential effects of gut-active insecticidal compounds on ladybird beetle larvae. The experiments with the Cry proteins demonstrate that P. japonica larvae are not sensitive to Cry1Ab, Cry1Ac and Cry1F.

  17. Characteristics and Drivers of High-Altitude Ladybird Flight: Insights from Vertical-Looking Entomological Radar

    PubMed Central

    Jeffries, Daniel L.; Chapman, Jason; Roy, Helen E.; Humphries, Stuart; Harrington, Richard; Brown, Peter M. J.; Handley, Lori-J. Lawson

    2013-01-01

    Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends) and drivers (aphid abundance, air temperature, wind speed and rainfall) of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis). These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ∼1100 m above ground level, where displacement speeds of up to ∼60 km/h were recorded, however most ladybirds were found between ∼150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a “typical” high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high

  18. Does a change from whole to powdered food (Artemia franciscana eggs) increase oviposition in the ladybird Coleomegilla maculata

    USDA-ARS?s Scientific Manuscript database

    The limited availability of alternative foods to replace natural prey hinders cost-effective mass production of ladybird beetles for augmentative biological control. We compared the effects of powdered versus whole Artemia franciscana (brine shrimp) eggs with or without a dietary supplement on devel...

  19. Do Bioflavonoids in Juniperus virginiana Heartwood Stimulate Oviposition in the Ladybird Coleomegilla maculata?

    PubMed Central

    Riddick, Eric W; Wu, Zhixin; Eller, Fred J; Berhow, Mark A

    2018-01-01

    Maximizing the reproductive potential of ladybird beetles fed factitious foods or artificial diets, in lieu of natural prey, is a major challenge to cost-effective mass rearing for augmentative biological control. In this study, we tested the hypothesis that compounds in redcedar, Juniperus virginiana, stimulate oviposition in the ladybird Coleomegilla maculata. We also tested the prediction that several bioflavonoids, identified in heartwood fractions, elicited this behavioral response. Phenolic compounds were extracted from J. virginiana heartwood sawdust, separated into several fractions, then presented to adult beetles, in a powdered, pure form, in the laboratory. Females preferentially oviposited within 1 to 2 cm of fractions B, C, D, and E, but not A or the unfractionated extract, at the base of test cages. Chemical analysis identified bioflavonoids in heartwood fractions and subsequent bioassays using several identified in fractions C, D, and E confirmed that quercetin, taxifolin, and naringenin (to a lesser extent) stimulated oviposition. All tested fractions and bioflavonoids readily adhered to the chorion of freshly laid eggs but did not reduce egg hatch. This study demonstrates that several bioflavonoids stimulate oviposition by C. maculata and could be useful for mass rearing programs. PMID:29531477

  20. Does the volatile hydrocarbon profile differ between the sexes: a case study on five aphidophagous ladybirds.

    PubMed

    Pattanayak, Rojalin; Mishra, Geetanjali; Omkar; Chanotiya, Chandan Singh; Rout, Prasant Kumar; Mohanty, Chandra Sekhar

    2014-11-01

    Insect hydrocarbons (HCs) primarily serve as a waterproofing cuticular layer and function extensively in chemical communication by facilitating species, sex, and colony recognition. In this study, headspace solid-phase microextraction is employed for investigating the sex-specific volatile HC profile of five ladybirds collected from Lucknow, India namely, Coccinella septempunctata (L.), Coccinella transversalis (Fabr.), Menochilus sexmaculatus (Fabr.), Propylea dissecta (Mulsant), and Anegleis cardoni (Weise) for the first time. Major compounds reported in C. septempunctata, C. transversalis, and A. cardoni are methyl-branched saturated HCs, whereas in M. sexmaculatus, and P. dissecta, they are unsaturated HCs. Other than A. cardoni, both the sexes of the other four ladybirds had similar compounds at highest peak but with statistically significant differences. However, in A. cardoni, which is a beetle with a narrow niche, the major compound in both male and female was different. The difference in volatile HC profile of the sexes of the five ladybirds indicates that gender-specific differences primarily exist due to quantitative differences in chemicals with only very few chemicals being unique to a gender. This variation in semiochemicals might have a role in behavioral or ecological aspects of the studied ladybirds. © 2014 Wiley Periodicals, Inc.

  1. Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini).

    PubMed

    Escalona, Hermes E; Zwick, Andreas; Li, Hao-Sen; Li, Jiahui; Wang, Xingmin; Pang, Hong; Hartley, Diana; Jermiin, Lars S; Nedvěd, Oldřich; Misof, Bernhard; Niehuis, Oliver; Ślipiński, Adam; Tomaszewska, Wioletta

    2017-06-26

    The tribe Coccinellini is a group of relatively large ladybird beetles that exhibits remarkable morphological and biological diversity. Many species are aphidophagous, feeding as larvae and adults on aphids, but some species also feed on other hemipterous insects (i.e., heteropterans, psyllids, whiteflies), beetle and moth larvae, pollen, fungal spores, and even plant tissue. Several species are biological control agents or widespread invasive species (e.g., Harmonia axyridis (Pallas)). Despite the ecological importance of this tribe, relatively little is known about the phylogenetic relationships within it. The generic concepts within the tribe Coccinellini are unstable and do not reflect a natural classification, being largely based on regional revisions. This impedes the phylogenetic study of important traits of Coccinellidae at a global scale (e.g. the evolution of food preferences and biogeography). We present the most comprehensive phylogenetic analysis of Coccinellini to date, based on three nuclear and one mitochondrial gene sequences of 38 taxa, which represent all major Coccinellini lineages. The phylogenetic reconstruction supports the monophyly of Coccinellini and its sister group relationship to Chilocorini. Within Coccinellini, three major clades were recovered that do not correspond to any previously recognised divisions, questioning the traditional differentiation between Halyziini, Discotomini, Tytthaspidini, and Singhikaliini. Ancestral state reconstructions of food preferences and morphological characters support the idea of aphidophagy being the ancestral state in Coccinellini. This indicates a transition from putative obligate scale feeders, as seen in the closely related Chilocorini, to more agile general predators. Our results suggest that the classification of Coccinellini has been misled by convergence in morphological traits. The evolutionary history of Coccinellini has been very dynamic in respect to changes in host preferences, involving

  2. Relative abundance of the southern pine beetle associates in East Texas

    Treesearch

    John C. Moser; R. C. Thatcher; L. S. Pickard

    1971-01-01

    More than 90 species of insects were identified in bolts taken from east Texas loblolly pines infested by the southern pine beetle, Dendroctonus frontalis Zimmermann and by Ips engraver beetles (Coleoptera: scolytidae). Seasonal abundance of the associates generally paralleled that of the southern pine beetle.

  3. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  4. Two Strains of Male-Killing Wolbachia in a Ladybird, Coccinella undecimpunctata, from a Hot Climate

    PubMed Central

    Elnagdy, Sherif; Messing, Susan

    2013-01-01

    Ladybirds are a hot-spot for the invasion of male-killing bacteria. These maternally inherited endosymbionts cause the death of male host embryos, to the benefit of female sibling hosts and the bacteria that they contain. Previous studies have shown that high temperatures can eradicate male-killers from ladybirds, leaving the host free from infection. Here we report the discovery of two maternally inherited sex ratio distorters in populations of a coccinellid, Coccinella undecimpunctata, from a hot lowland region of the Middle East. DNA sequence analysis indicates that the male killing is the result of infection by Wolbachia, that the trait is tetracycline sensitive, and that two distinct strains of Wolbachia co-occur within one beetle population. We discuss the implications of these findings for theories of male-killing and suggest avenues for future field-work on this system. PMID:23349831

  5. Two strains of male-killing Wolbachia in a ladybird, Coccinella undecimpunctata, from a hot climate.

    PubMed

    Elnagdy, Sherif; Messing, Susan; Majerus, Michael E N

    2013-01-01

    Ladybirds are a hot-spot for the invasion of male-killing bacteria. These maternally inherited endosymbionts cause the death of male host embryos, to the benefit of female sibling hosts and the bacteria that they contain. Previous studies have shown that high temperatures can eradicate male-killers from ladybirds, leaving the host free from infection. Here we report the discovery of two maternally inherited sex ratio distorters in populations of a coccinellid, Coccinella undecimpunctata, from a hot lowland region of the Middle East. DNA sequence analysis indicates that the male killing is the result of infection by Wolbachia, that the trait is tetracycline sensitive, and that two distinct strains of Wolbachia co-occur within one beetle population. We discuss the implications of these findings for theories of male-killing and suggest avenues for future field-work on this system.

  6. Eating chemically defended prey: alkaloid metabolism in an invasive ladybird predator of other ladybirds (Coleoptera: Coccinellidae).

    PubMed

    Sloggett, J J; Davis, A J

    2010-01-15

    By comparison with studies of herbivore physiological adaptation to plant allelochemicals, work on predator physiological adaptation to potentially toxic prey has been very limited. Such studies are important in understanding how evolution could shape predator diets. An interesting question is the specificity of predator adaptation to prey allelochemicals, given that many predators consume diverse prey with different chemical defences. The ladybird Harmonia axyridis, an invasive species in America, Europe and Africa, is considered a significant predatory threat to native invertebrates, particularly other aphid-eating ladybirds of which it is a strong intraguild predator. Although ladybirds possess species-specific alkaloid defences, H. axyridis exhibits high tolerance for allospecific ladybird prey alkaloids. Nonetheless, it performs poorly on species with novel alkaloids not commonly occurring within its natural range. We examined alkaloid fate in H. axyridis larvae after consumption of two other ladybird species, one containing an alkaloid historically occurring within the predator's native range (isopropyleine) and one containing a novel alkaloid that does not (adaline). Our results indicate that H. axyridis rapidly chemically modifies the alkaloid to which it has been historically exposed to render it less harmful: this probably occurs outside of the gut. The novel, more toxic alkaloid persists in the body unchanged for longer. Our results suggest metabolic alkaloid specialisation, in spite of the diversity of chemically defended prey that the predator consumes. Physiological adaptations appear to have made H. axyridis a successful predator of other ladybirds; however, limitations are imposed by its physiology when it eats prey with novel alkaloids.

  7. Seasonal abundance, arrival and emergence patterns of predaceous hister beetles (Coleoptera: Histeridae) associated with Ips engraver beetles (Coleoptera: Scolytidae) in Louisiana

    Treesearch

    William P. Shepherd; Richard A. Goyer

    2003-01-01

    The most common predaceious hister beetles (Coleoptera: Histeridae) found associated with Ips engraver beetles (Coleoptera: Scolytidae) in southern Louisiana were Platysoma attenuata LeConte, P. cylindrica (Paykull), P. parallelum (Say), and Plegaderus transversus (Say). The seasonal abundance of...

  8. Sexual dimorphism in the attachment ability of the ladybird beetle Coccinella septempunctata on soft substrates

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Petersen, Dennis S.; Tölle, Lisa; Wolff, Jonas O.; Gorb, Stanislav N.

    2017-01-01

    Many insects possess adhesive foot pads, which enable reliable attachment to diverse and unpredictable substrates. The function of these adhesive organs was shown to be affected by environmental conditions such as substrate roughness, chemistry, and ambient humidity. So far, the attachment ability of insects and also that of spiders and geckos has been tested on rigid substrates only. However, the natural habitats of climbing animals may provide a variety of substrate stiffness ranging from rigid rock surfaces to soft, biofilm covered substrates. In order to test the effect of different substrate stiffness on the attachment ability of insects, we have performed friction experiments with female and male ladybird beetles Coccinella septempunctata on smooth silicone elastomer substrates of different stiffness, using a centrifugal force tester. Whereas in females, the attachment ability was not affected by the substrate stiffness within the range of tested stiffness, males showed decreasing attachment ability with decreasing substrate stiffness. This sexual dimorphism in attachment ability is explained by the presence of a specialized, discoidal seta type in males, which is not present in females. It is argued that discoidal setae, when softer if compared to the substrate, may show an advantageous peak-free interfacial stress distribution when being pulled off the substrate. For such setae being stiffer if compared the substrate, they potentially show increased edge stress concentration. In this case, lower pull-off forces are expected, in agreement with the experimentally obtained results. With the present study, we demonstrate for the first time that the substrate stiffness may have an effect on the attachment ability of climbing animals, which may also be of relevance for technical and medical applications involving adhesion to soft substrates.

  9. Identification of Conditions for Successful Aphid Control by Ladybirds in Greenhouses

    PubMed Central

    Riddick, Eric W.

    2017-01-01

    As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usually did not correlate with aphid reduction. The ratio of aphid reduction/release rate was slightly less for larvae than adults in some studies, suggesting that larvae were less effective (than adults) in suppressing aphids. Some adult releases were inside cages, thereby limiting adult dispersion from plants. Overall, the ratio of aphid reduction/release rate was greatest for ladybird adults of the normal strain (several species combined), but least for adults of a flightless Harmonia axyridis strain. The combined action of ladybirds and hymenopteran parasitoids could have a net positive effect on aphid population suppression and, consequently, on host (crop) plants. However, ladybird encounters with aphid-tending or foraging ants must be reduced. Deploying ladybirds to help manage aphids in greenhouses and similar protective structures is encouraged. PMID:28350349

  10. Identification of conditions for successful aphid control by ladybirds in greenhouses

    USDA-ARS?s Scientific Manuscript database

    As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usual...

  11. Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis

    Treesearch

    D. L. Six; B. J. Bentz

    2007-01-01

    In this study, we report evidence that temperature plays a key role in determining the relative abundance of two mutualistic fungi associated with an economically and ecologically important bark beetle, Dendroctonus ponderosae. The symbiotic fungi possess different optimal temperature ranges. These differences determine which fungus is vectored by...

  12. Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles.

    PubMed

    Ferry, Natalie; Mulligan, Evan A; Majerus, Michael E N; Gatehouse, Angharad M R

    2007-12-01

    Insect-resistant transgenic plants have been suggested to have unpredictable effects on the biodiversity of the agro-ecosystem, including potential effects on insect natural enemies, beneficial in control of crop pests. Whilst carnivorous as adults, many of these predators may also consume plant tissues, in particular plant pollen and nectar. Coleoptera are important in terms of agro-ecological research not only because of the large number of species in this order, but also because of their role as biological control agents. Thus any detrimental impact on this group of insects would be highly undesirable. The effects of potato expressing the coleopteran-specific Bacillus thuringiensis delta-endotoxin Cry3A (Bt Cry3A) on the ladybird beetle Harmonia axyridis and the carabid beetle Nebria brevicollis were investigated via the bitrophic interaction of the adult ladybird with potato flowers and the tritrophic interaction of the carabid consuming a non-target potato pest. Immunoassays confirmed accumulation of the transgene product in potato leaves and floral tissues (at levels of up to 0.01% (pollen) and 0.0285% (anthers) of total soluble protein). Despite H. axyridis and N. brevicollis belonging to the targeted insect order, no significant effects upon survival or overall body mass change of either beetle were observed. Furthermore, Bt Cry3A had no detrimental effects on reproductive fitness of either beetle species, either in terms of fecundity or subsequent egg viability. Behavioural analysis revealed no significant impact of Bt Cry3A on beetle activity or locomoter behaviour. Ligand blots indicate that this is due to either the absence of Bt-binding sites in brush border membrane vesicles (BBMV) isolated from Nebria brevicollis, or in the case of Harmonia axyridis, the binding did not functionally lead to behavioural or physical effects.

  13. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    USGS Publications Warehouse

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  14. Effect of Tillage and Planting Date on Seasonal Abundance and Diversity of Predacious Ground Beetles in Cotton

    PubMed Central

    Shrestha, R. B.; Parajulee, M. N.

    2010-01-01

    A 2-year field study was conducted in the southern High Plains region of Texas to evaluate the effect of tillage system and cotton planting date window on seasonal abundance and activity patterns of predacious ground beetles. The experiment was deployed in a split-plot randomized block design with tillage as the main-plot factor and planting date as the subplot factor. There were two levels for each factor. The two tillage systems were conservation tillage (30% or more of the soil surface is covered with crop residue) and conventional tillage. The two cotton planting date window treatments were early May (normal planting) and early June (late planting). Five prevailing predacious ground beetles, Cicindela sexguttata F., Calosoma scrutator Drees, Pasimachus spp., Pterostichus spp., and Megacephala Carolina L. (Coleoptera: Carabidae), were monitored using pitfall traps at 2-week intervals from June 2002 to October 2003. The highest total number of ground beetles (6/trap) was observed on 9 July 2003. Cicindela sexguttata was the dominant ground dwelling predacious beetle among the five species. A significant difference between the two tillage systems was observed in the abundances of Pterostichus spp. and C. sexguttata. In 2002. significantly more Pterostichus spp. were recorded from conventional plots (0.27/trap) than were recorded from conservation tillage plots (0.05/trap). Significantly more C. sexguttata were recorded in 2003 from conservation plots (3.77/trap) than were recorded from conventional tillage plots (1.04/trap). There was a significant interaction between year and tillage treatments. However, there was no significant difference in the abundances of M. Carolina and Pasimachus spp. between the two tillage practices in either of the two years. M. Carolina numbers were significantly higher in late-planted cotton compared with those observed in normal-planted cotton. However, planting date window had no significant influence on the activity patterns of the

  15. Climatic, Edaphic Factors and Cropping History Help Predict Click Beetle (Coleoptera: Elateridae) (Agriotes spp.) Abundance.

    PubMed

    Kozina, A; Lemic, D; Bazok, R; Mikac, K M; Mclean, C M; Ivezić, M; Igrc Barčić, J

    2015-01-01

    It is assumed that the abundance of Agriotes wireworms (Coleoptera: Elateridae) is affected by agro-ecological factors such as climatic and edaphic factors and the crop/previous crop grown at the sites investigated. The aim of this study, conducted in three different geographic counties in Croatia from 2007 to 2009, was to determine the factors that influence the abundance of adult click beetle of the species Agriotes brevis Cand., Agriotes lineatus (L.), Agriotes obscurus (L.), Agriotes sputator (L.), and Agriotes ustulatus Schall. The mean annual air temperature, total rainfall, percentage of coarse and fine sand, coarse and fine silt and clay, the soil pH, and humus were investigated as potential factors that may influence abundance. Adult click beetle emergence was monitored using sex pheromone traps (YATLORf and VARb3). Exploratory data analysis was preformed via regression tree models and regional differences in Agriotes species' abundance were predicted based on the agro-ecological factors measured. It was found that the best overall predictor of A. brevis abundance was the previous crop grown. Conversely, the best predictor of A. lineatus abundance was the current crop being grown and the percentage of humus. The best predictor of A. obscurus abundance was soil pH in KCl. The best predictor of A. sputator abundance was rainfall. Finally, the best predictors of A. ustulatus abundance were soil pH in KCl and humus. These results may be useful in regional pest control programs or for predicting future outbreaks of these species. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  16. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    PubMed Central

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  17. Relative and seasonal abundance of Temnochila chlorodia (Mannerheim) (Coleoptera: Trogossitidae) collected in western pine beetle pheromone-baited traps in northern California

    Treesearch

    Christopher J. Fettig; Christopher P. Dabney

    2006-01-01

    Bark beetles (Coleoptera: Scolytidae) are commonly recognized as the most important mortality agent in western coniferous forests. In this study, we describe the abundance of bark beetle predators collected in multiple-funnel traps baited with exo-brevicomin, frontalin and myrcene in northern California during 2003 and 2004. A total of 32,903 Temnochila chlorodia (...

  18. Prey-driven control of predator assemblages: zooplankton abundance drives aquatic beetle colonization.

    PubMed

    Pintar, Matthew R; Resetarits, William J

    2017-08-01

    Trophic interactions are critical determinants of community structure and ecosystem function. In freshwater habitats, top predators are traditionally viewed as drivers of ecosystem structure, shaping populations of consumers and primary producers. The temporary nature of small water bodies makes them dependent on colonization by many organisms, particularly insects that form highly diverse predator assemblages. We conducted mesocosm experiments with naturally colonizing populations of aquatic beetles to assess how prey (zooplankton) abundances influenced colonization and assemblages of natural populations of aquatic beetles. We experimentally demonstrate that zooplankton populations can be proximate regulators of predator populations and assemblages via prey-density-dependent predator recruitment. Our results provide support for the importance of prey populations in structuring predator populations and the role of habitat selection in structuring communities. We indicate that traditional views of predators as drivers of ecosystem structure in many systems may not provide a comprehensive picture, particularly in the context of highly disturbed or ephemeral habitats. © 2017 by the Ecological Society of America.

  19. Influence of climatic conditions and elevation on the spatial distribution and abundance of Trypodendron ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in Alaska

    Treesearch

    Robin M. Reich; John E. Lundquist; Robert E. Acciavati

    2014-01-01

    The objective of this study was to model the influence of temperature and precipitation on the distribution and abundance of the ambrosia beetles in the genus Trypodendron. Although these beetles do not attack and kill healthy trees, their gallery holes and accompanying black and gray stain associated with symbiotic ambrosial fungi can cause significant economic losses...

  20. Does insecticide application in a winter oilseed rape field influence the abundance of pollen beetle Meligethes aeneus in nearby ornamental flowers and vegetables?

    PubMed

    Ahmed, Nur; Englund, Jan-Eric; Johansson, Eva; Åhman, Inger

    2013-11-01

    Pollen beetle is a pest that attacks oilseed rape as well as many other brassicaceous crops, garden vegetables and ornamental flowers. The present study was primarily carried out to investigate whether insecticide application in brassicaceous field crops might influence the abundance of pollen beetles in nearby private garden flowers and vegetables. At peak emergence of the new generation of pollen beetles, a significantly higher number of beetles were found in flowers, and in window traps, alongside untreated as opposed to alongside treated sections of the winter oilseed rape (WOSR) field. However, the type of flower played a role in the number of pollen beetles found in the flowers. The presence of pollen beetles in both ornamental and wild flowers was also significantly influenced by the direction of placement of the flowers. No pollen beetle, neither overwintering nor newly emerged, was observed in any of the brassicaceous vegetables placed along the field. The number of pollen beetles in the WOSR field strongly influenced the number of pollen beetles in nearby flowers of preference to the beetles, and insecticide treatment with Biscaya (thiacloprid) against pollen beetle in oilseed rape may thus help, indirectly, to protect nearby garden flowers from damage. © 2013 Society of Chemical Industry.

  1. Diversity and abundance of dung beetles (Coleoptera: Scaraebidae) at several different ecosystem functions in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah; Hazmi, Izfa Riza

    2015-09-01

    Dung beetles has known for its bioindicator characteristic. Sensitive towards forest disturbance, dung beetles population and diversity will be less in disturbed and modified area. The objective of this study is to evaluate the diversity and distribution of dung beetles in different type of ecosystems in Peninsular Malaysia. Fifteen baited pitfall traps aligned in three transects were used in this study. Samples were collected after 24 h and repeated three time collections and identified afterwards. Two ecosystem types were selected, which are forested and agricultural ecosystem (livestock and plantation). A total of 4249 individuals, 47 species, in 11 genera was successfully collected from all localities. The H' index for Fraser Hill, Langkawi, Bangi Reserve Forest, Selangor (HSB), Sungkai Reserve Forest, Perak (SRF), Chini Lake, Bera Lake, chicken farm, goat farm, Longan plantation, and palm oil plantation were 1.58, 1.74, 2.17, 2.63, 1.80, 1.52, 1.63, 0.46, 0.00 and 1.98 respectively.Forest ecosystem, SRF shows the highest abundance (1486 individuals) and diversity, while for agricultural ecosystem,palm oil plantation shows the highest with 273 individuals and 16 species. Based onDetrended Correspondence Analysis (DCA) shows two groups that separate forest ecosystem with the agricultural ecosystem, with palm oil is the nearest to the forest. Palm oil ecosystem can sustain a dung beetles population due to the area can provide the requirements for the dung beetles to survive, such as food which comes from local domestic cows, shade from sunlight provide by the palm oil trees, and ground cover from small plants and shrubs.Even though modified ecosystem should have lower diversity of dung beetles, but some factors must be measured as well in order to have a better point of view.

  2. Seasonal abundance and development of the Asian longhorned beetle and natural enemy prevalence in different forest types in China

    Treesearch

    Houping Liu; Leah S. Bauer; Tonghai Zhao; Ruitong Gao; Therese M. Poland

    2016-01-01

    Seasonal abundance and population development of the Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), and prevalence of its natural enemies were studied on Hankow willow (Salix matsudana Koidz.) at an urban forest site (Anci) and a rural forest site (Tangerli) in Hebei province...

  3. Japanese Interest in “Hotaru” (Fireflies) and “Kabuto-Mushi” (Japanese Rhinoceros Beetles) Corresponds with Seasonality in Visible Abundance

    PubMed Central

    Takada, Kenta

    2012-01-01

    Seasonal changes in the popularity of fireflies [usually Genji-fireflies (Luciola cruciata Motschulsky) in Japan] and Japanese rhinoceros beetles [Allomyrina dichotoma (Linne)] were investigated to examine whether contemporary Japanese are interested in visible emergence of these insects as seasonal events. The popularity of fireflies and Japanese rhinoceros beetles was assessed by the Google search volume of their Japanese names, “Hotaru” and “Kabuto-mushi” in Japanese Katakana script using Google Trends. The search volume index for fireflies and Japanese rhinoceros beetles was distributed across seasons with a clear peak in only particular times of each year from 2004 to 2011. In addition, the seasonal peak of popularity for fireflies occurred at the beginning of June, whereas that for Japanese rhinoceros beetles occurred from the middle of July to the beginning of August. Thus seasonal peak of each species coincided with the peak period of the emergence of each adult stage. These findings indicated that the Japanese are interested in these insects primarily during the time when the two species are most visibly abundant. Although untested, this could suggest that fireflies and Japanese rhinoceros beetles are perceived by the general public as indicators or symbols of summer in Japan. PMID:26466535

  4. Seven-spot ladybird optimization: a novel and efficient metaheuristic algorithm for numerical optimization.

    PubMed

    Wang, Peng; Zhu, Zhouquan; Huang, Shuai

    2013-01-01

    This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.

  5. Seven-Spot Ladybird Optimization: A Novel and Efficient Metaheuristic Algorithm for Numerical Optimization

    PubMed Central

    Zhu, Zhouquan

    2013-01-01

    This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879

  6. Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor.

    PubMed Central

    Davis, C A; Wyatt, G R

    1989-01-01

    The mealworm beetle, Tenebrio molitor, contains an unusually abundant and homogeneous satellite DNA which constitutes up to 60% of its genome. The satellite DNA is shown to be present in all of the chromosomes by in situ hybridization. 18 dimers of the repeat unit were cloned and sequenced. The consensus sequence is 142 nt long and lacks any internal repeat structure. Monomers of the sequence are very similar, showing on average a 2% divergence from the calculated consensus. Variant nucleotides are scattered randomly throughout the sequence although some variants are more common than others. Neighboring repeat units are no more alike than randomly chosen ones. The results suggest that some mechanism, perhaps gene conversion, is acting to maintain the homogeneity of the satellite DNA despite its abundance and distribution on all of the chromosomes. Images PMID:2762148

  7. Effects of an increase in population of sika deer on beetle communities in deciduous forests.

    PubMed

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2016-01-01

    The overabundance of large herbivores is now recognized as a serious ecological problem. However, the resulting ecological consequences remain poorly understood. The ecological effects of an increase in sika deer, Cervus nippon Temminck (Cervidae), on three insect groups of beetles was investigated: ground beetles (Carabidae), carrion beetles (Silphidae), and dung beetles (Scarabaeidae and Geotrupidae) on Nakanoshima Island, Hokkaido, northern Japan. We collected beetles on Nakanoshima Island (experimental site) and lakeshore areas (control site) and compared the species richness, abundance, diversity index, and community composition of beetles between the sites. Results showed that although both species diversity and abundance of carabid beetles were significantly higher at the lakeshore site, those of dung and carrion beetles were higher at the island site. It was additionally observed that abundance of larger carabid beetles was higher at the lakeshore site, whereas that of small-sized carabid beetles did not differ between the lakeshore and island sites. For dung beetles, abundance of smaller species was higher at the island site, whereas that of large species did not differ between the lakeshore and island sites. Abundance of two body sizes (small and large) of carrion beetles were both higher at the island site. Overall, the findings of this study demonstrated that an increase in deer population altered the insect assemblages at an island scale, suggesting further changes in ecosystem functions and services in this region.

  8. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia.

    PubMed

    Chung, A Y; Eggleton, P; Speight, M R; Hammond, P M; Chey, V K

    2000-12-01

    The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.

  9. Assessment of psyllid double-stranded Ribonucleic acid, RNA, off-target effects on a ladybird beetle predator

    USDA-ARS?s Scientific Manuscript database

    Development of Ribonucleic acid interference, RNAi against insect pests needs to show species target specificity so that beneficial insects remain unharmed, as many pest insects are a food source for predatory insects like lady beetles. We evaluated an RNAi product specific to Asian citrus psyllid f...

  10. Diversity abundance and seasonality of ambrosia beetles (Coleoptera: curculionida) in Southern Mississippi

    USDA-ARS?s Scientific Manuscript database

    A survey was undertaken in 2010 to assess the makeup of the ambrosia beetle (Coleoptera: Curculionidae) community at two research sites in South Mississippi. Inexpensive beetle traps were constructed and fitted with ethanol lures, with bi-weekly collections made from March through November. The gr...

  11. Spotlight on the positive effects of the ladybird Harmonia axyridis on agriculture

    USDA-ARS?s Scientific Manuscript database

    In the midst of considerable negativity surrounding the ladybird Harmonia axyridis (Pallas), this paper sheds some light on the positive effects that this predator has had on agriculture. Using resources available at the USDA, National Agricultural Library (DigiTop literature database, Navigator pla...

  12. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest

    PubMed Central

    de Novais, Samuel Matos Antunes; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; de Faria, Maurício Lopes; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969

  13. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    PubMed

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  14. Method for continuously rearing Coccinella lady beetles (Coleoptera: Coccinellidae)

    USDA-ARS?s Scientific Manuscript database

    Coccinella novemnotata L., the ninespotted lady beetle, and Coccinella transversoguttata richardsoni Brown, the transverse lady beetle, are predatory species whose abundance has declined significantly over the last few decades in North America. An ex situ system for continuously rearing these two b...

  15. Molecular and microscopic analysis of the gut contents of abundant rove beetle species (Coleoptera, Staphylinidae) in the boreal balsam fir forest of Quebec, Canada

    PubMed Central

    Klimaszewski, Jan; Morency, Marie-Josee; Labrie, Philippe; Séguin, Armand; Langor, David; Work, Timothy; Bourdon, Caroline; Thiffault, Evelyne; Paré, David; Newton, Alfred F.; Thayer, Margaret K.

    2013-01-01

    Abstract Experimental research on beetle responses to removal of logging residues following clearcut harvesting in the boreal balsam fir forest of Quebec revealed several abundant rove beetle (Staphylinidae) species potentially important for long-term monitoring. To understand the trophic affiliations of these species in forest ecosystems, it was necessary to analyze their gut contents. We used microscopic and molecular (DNA) methods to identify the gut contents of the following rove beetles: Atheta capsularis Klimaszewski, Atheta klagesi Bernhauer, Oxypoda grandipennis (Casey), Bryophacis smetanai Campbell, Ischnosoma longicorne (Mäklin), Mycetoporus montanus Luze, Tachinus frigidus Erichson, Tachinus fumipennis (Say), Tachinus quebecensis Robert, and Pseudopsis subulata Herman. We found no apparent arthropod fragments within the guts; however, a number of fungi were identified by DNA sequences, including filamentous fungi and budding yeasts [Ascomycota: Candida derodonti Suh & Blackwell (accession number FJ623605), Candida mesenterica (Geiger) Diddens & Lodder (accession number FM178362), Candida railenensis Ramirez and Gonzáles (accession number JX455763), Candida sophie-reginae Ramirez & González (accession number HQ652073), Candida sp. (accession number AY498864), Pichia delftensis Beech (accession number AY923246), Pichia membranifaciens Hansen (accession number JQ26345), Pichia misumaiensis Y. Sasaki and Tak. Yoshida ex Kurtzman 2000 (accession number U73581), Pichia sp. (accession number AM261630), Cladosporium sp. (accession number KF367501), Acremoniumpsammosporum W. Gams (accession number GU566287), Alternaria sp. (accession number GU584946), Aspergillus versicolor Bubak (accession number AJ937750), and Aspergillusamstelodami (L. Mangin) Thom and Church (accession number HQ728257)]. In addition, two species of bacteria [Bradyrhizobium japonicum (Kirchner) Jordan (accession number BA000040) and Serratia marcescens Bizio accession number CP003942] were

  16. Molecular and microscopic analysis of the gut contents of abundant rove beetle species (Coleoptera, Staphylinidae) in the boreal balsam fir forest of Quebec, Canada.

    PubMed

    Klimaszewski, Jan; Morency, Marie-Josee; Labrie, Philippe; Séguin, Armand; Langor, David; Work, Timothy; Bourdon, Caroline; Thiffault, Evelyne; Paré, David; Newton, Alfred F; Thayer, Margaret K

    2013-01-01

    Experimental research on beetle responses to removal of logging residues following clearcut harvesting in the boreal balsam fir forest of Quebec revealed several abundant rove beetle (Staphylinidae) species potentially important for long-term monitoring. To understand the trophic affiliations of these species in forest ecosystems, it was necessary to analyze their gut contents. We used microscopic and molecular (DNA) methods to identify the gut contents of the following rove beetles: Atheta capsularis Klimaszewski, Atheta klagesi Bernhauer, Oxypoda grandipennis (Casey), Bryophacis smetanai Campbell, Ischnosoma longicorne (Mäklin), Mycetoporus montanus Luze, Tachinus frigidus Erichson, Tachinus fumipennis (Say), Tachinus quebecensis Robert, and Pseudopsis subulata Herman. We found no apparent arthropod fragments within the guts; however, a number of fungi were identified by DNA sequences, including filamentous fungi and budding yeasts [Ascomycota: Candida derodonti Suh & Blackwell (accession number FJ623605), Candida mesenterica (Geiger) Diddens & Lodder (accession number FM178362), Candida railenensis Ramirez and Gonzáles (accession number JX455763), Candida sophie-reginae Ramirez & González (accession number HQ652073), Candida sp. (accession number AY498864), Pichia delftensis Beech (accession number AY923246), Pichia membranifaciens Hansen (accession number JQ26345), Pichia misumaiensis Y. Sasaki and Tak. Yoshida ex Kurtzman 2000 (accession number U73581), Pichia sp. (accession number AM261630), Cladosporium sp. (accession number KF367501), Acremoniumpsammosporum W. Gams (accession number GU566287), Alternaria sp. (accession number GU584946), Aspergillus versicolor Bubak (accession number AJ937750), and Aspergillusamstelodami (L. Mangin) Thom and Church (accession number HQ728257)]. In addition, two species of bacteria [Bradyrhizobium japonicum (Kirchner) Jordan (accession number BA000040) and Serratia marcescens Bizio accession number CP003942] were found in

  17. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    PubMed

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Differences in coprophilous beetle communities structure in Sierra de Minas (Uruguay): a mosaic landscape.

    PubMed

    González-Vainer, Patricia; Morelli, E; Defeo, O

    2012-10-01

    Coprophilous beetles represent an abundant and rich group with critical importance in the functioning of terrestrial ecosystems. Most coprophagous beetles have a stenotopic distribution in relation to vegetation types. Because of this, they are usually very sensitive to environmental changes and are considered well suited as bioindicator organisms. The aim of this study was to analyze variations in coprophilous beetle assemblages in natural and anthropogenic habitats. Coprophilous beetle communities were sampled monthly for 1 year using pitfall traps baited with cow dung, in native xeric upland forests, 15-years-old plantations of Pinus elliottii and pastures in Sierra de Minas, Lavalleja, Uruguay. A total of 7,436 beetles were caught and identified to species or morphospecies level. The most abundant families were Aphodiidae, Scarabaeidae, and Staphylinidae. Differences in species richness, abundance, Shannon index, evenness, and dominance were detected between habitats. Abundances of most frequent families were significantly higher in both kinds of forests. Species richness and diversity of Aphodiidae and Staphylinidae were higher in forests, while Scarabaeidae showed the highest richness and diversity in pine plantations. Species composition significantly differed between habitats. Uroxys terminalis Waterhouse and Ataenius perforatus Harold typified the assemblages in native forests and pine plantations and also discriminated both communities because of their differential pattern of abundance between habitats. Typifying species in pastures were Onthophagus hirculus, Ateuchus robustus (Harold), and Ataenius platensis Blanchard. Habitat type had a strong effect on the coprophilous beetle community structure and composition.

  19. Semiochemical-MediatedFlight Strategies of Two Invasive Elm Bark Beetles: A Potential Factor in Competitive Displacement

    USDA-ARS?s Scientific Manuscript database

    A recent seven-state survey revealed that the newly invasive banded elm bark beetle, Scolytus schevyrewi, was abundant in areas of Colorado and Wyoming, USA, whereas the long-established European elm bark beetle, S. multistriatus was not as abundant. Behavioral trials were conducted by hanging sm...

  20. The Influence of Exotic Lady Beetle (Coleoptera: Coccinellidae) Establishment on the Species Composition of the Native Lady Beetle Community in Missouri.

    PubMed

    Diepenbrock, Lauren M; Fothergill, Kent; Tindall, Kelly V; Losey, John E; Smyth, Rebecca R; Finke, Deborah L

    2016-08-01

    The diversity and abundance of native lady beetles (Coccinellidae) in North America has declined in recent decades. This decline is often correlated with the introduction and establishment of exotic lady beetle species, including Coccinella septempunctata L. and Harmonia axyridis Pallas, suggesting that exotic species precipitated the decline of native lady beetles. We examined species records of native coccinellids in Missouri over 118 yr and asked whether the species composition of the community experienced a shift following the establishment of the exotic species. We found that the contemporary native coccinellid community is different from the community that was present nearly a century ago. However, there was no evidence for a recent abrupt shift in composition triggered by the establishment of exotic species. Instead, our data suggest that the native lady beetle community has been undergoing consistent and gradual change over time, with some species decreasing in abundance and others increasing. While not excluding exotic species as a factor contributing to the decline of native lady beetle species, our findings suggest that other continuous factors, like land use change, may have played a more influential role in determining the composition of the native coccinellid communities within our region. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Longer-term effects of selective thinning on carabid beetles and spiders in the Cascade Mountains of southern Oregon

    USGS Publications Warehouse

    Peck, R.; Niwa, C.G.

    2005-01-01

    Within late-successional forests of the Cascade Mountains of southern Oregon, abundances of carabid beetles (Carabidae) and spiders (Araneae) from pitfall traps were compared between stands thinned 16-41 years prior and nearby unthinned stands. Species richness of both taxa were moderate for coniferous forests of this region, with 12 carabid beetle species and >120 spider species collected. No differences in total abundance or species richness were found between stand types for carabid beetles, although abundances of four of the six most common species differed significantly. Pterostichus setosus, the most abundant species collected, was significantly more abundant in unthinned stands, while Omus cazieri, P. lama, and Carabus taedatus were more numerous in thinned stands. In contrast, both total spider abundance and species richness were significantly higher in thinned stands. Hunting spiders within the families Lycosidae and Gnaphosidae, and the funnel web-building Dictynidae were captured more often in thinned stands while sheet web spiders within Linyphiidae and Hahniidae were more abundant in unthinned stands. The forest floor within unthinned stands was structurally more diverse than in thinned stands, but this did not lead to greater overall abundance or diversity of either carabid beetles or spiders.

  2. Influence of Trap Height and Bait Type on Abundance and Species Diversity of Cerambycid Beetles Captured in Forests of East-Central Illinois.

    PubMed

    Schmeelk, Thomas C; Millar, Jocelyn G; Hanks, Lawrence M

    2016-08-01

    We assessed how height of panel traps above the forest floor, and the type of trap bait used, influenced the abundance and diversity of cerambycid beetles caught in forested areas of east-central Illinois. Panel traps were suspended from branches of hardwood trees at three heights above the ground: understory (∼1.5 m), lower canopy (∼6 m), and midcanopy (∼12 m). Traps were baited with either a multispecies blend of synthesized cerambycid pheromones or a fermenting bait mixture. Traps captured a total of 848 beetles of 50 species in the cerambycid subfamilies Cerambycinae, Lamiinae, Lepturinae, and Parandrinae, and one species in the closely related family Disteniidae. The species caught in highest numbers was the cerambycine Anelaphus pumilus (Newman), represented by 349 specimens. The 17 most abundant species (mean ± 1 SD: 45 ± 80 specimens per species) included 12 cerambycine and five lamiine species. Of these most abundant species, 13 (77%) were attracted to traps baited with the pheromone blend. Only the cerambycine Eburia quadrigeminata (Say) was attracted by the fermenting bait. Three species were captured primarily in understory traps, and another five species primarily in midcanopy traps. Variation among cerambycid species in their vertical distribution in forests accounted for similar overall abundances and species richness across trap height treatments. These findings suggest that trapping surveys of native communities of cerambycids, and quarantine surveillance for newly introduced exotic species, would be optimized by including a variety of trap baits and distributing traps across vertical strata of forests. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The fossil record and macroevolutionary history of the beetles

    PubMed Central

    Smith, Dena M.; Marcot, Jonathan D.

    2015-01-01

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  4. Urban forests sustain diverse carrion beetle assemblages in the New York City metropolitan area

    PubMed Central

    Fusco, Nicole A.; Zhao, Anthony

    2017-01-01

    Urbanization is an increasingly pervasive form of land transformation that reduces biodiversity of many taxonomic groups. Beetles exhibit a broad range of responses to urbanization, likely due to the high functional diversity in this order. Carrion beetles (Order: Coleoptera, Family: Silphidae) provide an important ecosystem service by promoting decomposition of small-bodied carcasses, and have previously been found to decline due to forest fragmentation caused by urbanization. However, New York City (NYC) and many other cities have fairly large continuous forest patches that support dense populations of small mammals, and thus may harbor relatively robust carrion beetle communities in city parks. In this study, we investigated carrion beetle community composition, abundance and diversity in forest patches along an urban-to-rural gradient spanning the urban core (Central Park, NYC) to outlying rural areas. We conducted an additional study comparing the current carrion beetle community at a single suburban site in Westchester County, NY that was intensively surveyed in the early 1970’s. We collected a total of 2,170 carrion beetles from eight species at 13 sites along this gradient. We report little to no effect of urbanization on carrion beetle diversity, although two species were not detected in any urban parks. Nicrophorus tomentosus was the most abundant species at all sites and seemed to dominate the urban communities, potentially due to its generalist habits and shallower burying depth compared to the other beetles surveyed. Variation between species body size, habitat specialization, and % forest area surrounding the surveyed sites also did not influence carrion beetle communities. Lastly, we found few significant differences in relative abundance of 10 different carrion beetle species between 1974 and 2015 at a single site in Westchester County, NY, although two of the rare species in the early 1970’s were not detected in 2015. These results indicate

  5. Urban forests sustain diverse carrion beetle assemblages in the New York City metropolitan area.

    PubMed

    Fusco, Nicole A; Zhao, Anthony; Munshi-South, Jason

    2017-01-01

    Urbanization is an increasingly pervasive form of land transformation that reduces biodiversity of many taxonomic groups. Beetles exhibit a broad range of responses to urbanization, likely due to the high functional diversity in this order. Carrion beetles (Order: Coleoptera, Family: Silphidae) provide an important ecosystem service by promoting decomposition of small-bodied carcasses, and have previously been found to decline due to forest fragmentation caused by urbanization. However, New York City (NYC) and many other cities have fairly large continuous forest patches that support dense populations of small mammals, and thus may harbor relatively robust carrion beetle communities in city parks. In this study, we investigated carrion beetle community composition, abundance and diversity in forest patches along an urban-to-rural gradient spanning the urban core (Central Park, NYC) to outlying rural areas. We conducted an additional study comparing the current carrion beetle community at a single suburban site in Westchester County, NY that was intensively surveyed in the early 1970's. We collected a total of 2,170 carrion beetles from eight species at 13 sites along this gradient. We report little to no effect of urbanization on carrion beetle diversity, although two species were not detected in any urban parks. Nicrophorus tomentosus was the most abundant species at all sites and seemed to dominate the urban communities, potentially due to its generalist habits and shallower burying depth compared to the other beetles surveyed. Variation between species body size, habitat specialization, and % forest area surrounding the surveyed sites also did not influence carrion beetle communities. Lastly, we found few significant differences in relative abundance of 10 different carrion beetle species between 1974 and 2015 at a single site in Westchester County, NY, although two of the rare species in the early 1970's were not detected in 2015. These results indicate that

  6. Guild structure, diversity and succession of dung beetles associated with Indian elephant dung in South Western Ghats forests

    PubMed Central

    Sabu, Thomas K.; Vinod, K. V.; Vineesh, P. J.

    2006-01-01

    The diversity, guild structure and succession of dung beetles associated with Indian elephant dung is described in a deciduous forest site in Western Ghats, a hot spot of diversity in India. Dung beetles were collected using baited pitfall traps and from exposed dung pats in the forest at intervals of 1, 3, 5, 7, 15 and 21 days. Twenty-one dung beetle species belonging to the 3 major functional guilds were recorded. Abundance of dwellers was high compared to rollers deviating from earlier reports on the high abundance of rollers in the afrotropical regions. Dweller Drepanocerus setosus and tunneler Onthophagus bronzeus were the most abundant species. Dung pats aged 3–5 days attracted the highest abundance of dung beetles. Bray Curtis similarity index indicated low community similarity between different stages of succession. Species richness and abundance of tunnelers increased with dung age and decreasing moisture up to a threshold level, followed by a decrease. Rollers and dwellers did not show any significant relationship with dung moisture content. Further research is needed to estimate the dung beetle community associated with the dung pats of other mega herbivores as well as of elephant dung in other forests of the Western Ghats. PMID:19537983

  7. Semiochemical-mediated flight strategies of two invasive elm bark beetles: A potential factor in competitive displacement

    Treesearch

    Jana C. Lee; Shakeeb M. Hamud; Jose F. Negron; Jeffrey J. Witcosky; Steven J. Seybold

    2010-01-01

    A seven-state survey showed that the recently detected invasive Asian banded elm bark beetle, Scolytus schevyrewi Semenov, was abundant in areas of Colorado and Wyoming, whereas the long-established European elm bark beetle, S. multistriatus (Marsham), was not as abundant. In one of a series of studies to evaluate whether S. schevyrewi is competitively displacing S....

  8. Chemically mediated intraguild predator avoidance by aphid parasitoids: interspecific variability in sensitivity to semiochemical trails of ladybird predators.

    PubMed

    Nakashima, Yoshitaka; Birkett, Michael A; Pye, Barry J; Powell, Wilf

    2006-09-01

    The avoidance responses of aphid parasitoids with varying host ranges (Aphidius eadyi, Aphidius ervi, and Praon volucre) to chemical trails deposited by intraguild predatory ladybirds, Coccinella septempunctata and Adalia bipunctata, were investigated. Females of all three parasitoid species avoided leaves previously visited by C. septempunctata or A. bipunctata adults. The avoidance responses shown by the two Aphidius species were stronger to trails of C. septempunctata than to those of A. bipunctata. However, P. volucre avoided trails of both ladybird species to a similar degree. Dose responses of these three parasitoid species to the hydrocarbons n-tricosane (C23H48), n-pentacosane (C25H52), and n-heptacosane (C27H56), which are components of the trails of both C. septempunctata and A. bipunctata, were evaluated. Dual-choice bioassays indicated the following: (1) A. eadyi showed more sensitive avoidance responses to n-tricosane than did the other two parasitoid species, (2) all three species showed similar responses to n-pentacosane across a range of doses, and (3) only P. volucre showed avoidance responses to n-heptacosane. Quantitative analyses of each hydrocarbon in the trails of the two ladybird species showed that n-pentacosane and n-heptacosane occur in significantly greater amounts in C. septempunctata trails than in those of A. bipunctata. The trails of the two species also differ qualitatively in the other hydrocarbons present.

  9. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  10. Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity.

    PubMed

    Korasaki, Vanesca; Lopes, José; Gardner Brown, George; Louzada, Julio

    2013-06-01

    We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina, Paraná, Brazil. This study provides the first empirical evidence of the impact of urbanization on richness, abundance, composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest. We evaluated the community aspects (abundance, richness, composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat, rotten fish, pig dung and decaying banana). A total of 1 719 individuals were collected, belonging to 29 species from 11 genera and six Scarabaeinae tribes. The most urban-immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness. The beetle communities were distinct with respect to the fragments and feeding habits. Except for the dung beetle assemblage in the most urbanized forest fragment, all others exhibited contrasting differences in species composition attracted to each bait type. Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities, even small ones, can provide refuges for Scarabaeinae. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  11. Powder from cedar heartwood affects oviposition behavior in Coleomegilla maculata: a ladybird native to the Americas

    USDA-ARS?s Scientific Manuscript database

    Introduction: Coleomegilla maculata is a predatory ladybird inhabiting ecosystems in North, Central, and South America. The aim of our research is to discover efficient, low-cost materials that boost oviposition in mass-reared C. maculata fed non-natural foods. We tested the hypothesis that eastern ...

  12. Sap beetle species (Coleoptera: Nitidulidae) visiting fresh wounds on healthy oaks during spring in Minnesota

    Treesearch

    Jennifer Juzwik; Thomas C. Skalbeck; Marc F. Newman

    2004-01-01

    Many species of sap beetles have been implicated as vectors of the oak wilt pathogen, (Ceratocystis fagacearum), but the species responsible for most aboveground transmission of the fungus is unknown. The abundance of adult sap beetle species inhabiting

  13. Predators and parasitoids of the harlequin ladybird, Harmonia axyridis, in its native range and invaded areas

    USDA-ARS?s Scientific Manuscript database

    The harlequin ladybird Harmonia (H.) axyridis (Coleoptera:Coccinellidae) has rapidly spread in several continents over the past 30 years and is considered an invasive alien species. The success of H. axyridis as an invader is often attributed to weak control by natural enemies. In this paper, we pro...

  14. [Effects of different soil and water loss control measures on the dung beetle assemblages in Huangfuchuan watershed, Inner Mongolia of North China].

    PubMed

    Liu, Wei; Wang, Run-Run; Liu, Xin-Min

    2013-03-01

    By using pitfall trap method, and taking the croplands and natural grasslands under different soil and water loss control measures as sampling plots, an investigation was conducted on the dung beetle assemblages in the Huangfuchuan watershed of Inner Mongolia from September 2007 to September 2008, aimed to understand the effects of different soil and water loss control measures on the dung beetle assemblages in the watershed. A total of 6169 dung beetles were captured, belonging to 15 species, 5 genus, and 2 families. The dominant species were Aphodius rectus and Onthophagus gibbulus, accounting for 66. 54% and 13. 26% of the total captured beetles, respectively. A lack of the species suitable for living in woodland habitats was the basic feature of the dung beetle assemblages. As compared with the control, all test soil and water loss control measures did not cause an obvious increase of species richness, biomass, and abundance of the dung beetle assemblages. The biomass and species richness of the assemblages as well as the abundance of the functional groups II and III had a significant negative correlation with the average tree (grass) height. Under the effects of long-term agricultural cultivation and the lack of large herbivores, the species richness and abundance of the functional group I (larger paracoprids and telocoprids) were lower than those of the functional groups II (relatively smaller paracoprids) and II (endocoprids), the main components of the dung beetle assemblages in the watershed. The faeces of the residents and livestock in the study region provided abundant foods for the dung beetle assemblages, inducing the relatively high abundance and spices richness of the assemblages occurred in the croplands nearby the villages. Our results suggested that natural grasslands were the suitable habitats for the dung beetles in Huangfuchuan watershed. At regional scale, to popularize the successful experiences of comprehensive soil and water loss control

  15. Diversity of Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) Attracted to Avocado, Lychee, and Essential Oil Lures

    USDA-ARS?s Scientific Manuscript database

    Field trapping studies conducted in north-central Florida for the redbay ambrosia beetle (Xyleborus glabratus) captured numerous non-target ambrosia beetles, providing information on species diversity and relative abundance. Traps (Lindgren and sticky) baited with essential oil lures (manuka and p...

  16. Repellent properties of the host compound 4-allylanisole to the southern pine beetle

    Treesearch

    Jane Leslie Hayes; Brian L. Strom; Larry M. Roton; Leonard L. Ingram

    1994-01-01

    The phenylpropanoid 4-allylanisole is a compound produced by loblolly pines (Pinus taeda L.), an abundant species in southern pine forests and a preferred host of southern pine beetle (Dendroctonus frontalis Zimmermann).Repellency of individual beetles was demonstrated in laboratory behavioral assays of D. frontalis and other scolytids.Inhibition was...

  17. Evaluation of traps used to monitor southern pine beetle aerial populations and sex ratios

    Treesearch

    James T. Cronin; Jane L. Hayes; Peter Turchin

    2000-01-01

    Various kinds of traps have been employed to monitor and forecast population trends of the southern pine beetle (Dendroctonus frontalis Zimmermann; Coleoptera: Scolytidae), but their accuracy in assessing pine-beetle abundance and sex ratio in the field has not been evaluated directly.In trus study, we...

  18. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gapsmore » than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.« less

  19. Evaluation of funnel traps for characterizing the bark beetle (Coleoptera: Scolytidae) communities in ponderosa pine forests of north-central Arizona.

    PubMed

    Hayes, Christopher J; DeGomez, Tom E; Clancy, Karen M; Williams, Kelly K; McMillin, Joel D; Anhold, John A

    2008-08-01

    Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.

  20. Selected beetle assemblages captured in pitfall traps baited with deer dung or meat in balsam fir and sugar maple forests of central Quebec.

    PubMed

    Brousseau, Pierre-Marc; Cloutier, Conrad; Hébert, Christian

    2010-08-01

    Vertebrate dung and carrion are rich and strongly attractive resources for numerous beetles that are often closely linked to them. The presence and abundance of beetles exploiting such resources are influenced by various ecological factors including climate and forest cover vegetation. We studied selected assemblages of coprophilous and necrophagous beetles in Quebec along a 115-km north-south transect in three balsam fir (Abies balsamea (L.) Miller) forest sites and in a fourth forest site dominated by sugar maple (Acer saccharum Marshall), close to the southern fir site. Beetle abundance was estimated using a sampling design comprising replicated pitfall traps baited with red deer meat or dung in each site. A total of 8,511 beetles were caught and identified to family level, 95.7% of which belonged to families with known coprophilous or necrophagous behavior. Meat-baited pitfall traps caught nearly 15 times as many beetles as dung-baited traps. All Histeridae, Hydrophilidae, Scarabaeidae, and Silphidae were identified to species to examine specific diversity variation among sites. For the beetles caught in the meat-baited traps (majority of captures), decreases in abundance and species richness were observed from south to north along the fir forest transect, with evidence of decreasing specific diversity as measured by the Shannon index of diversity. Strong differences in species assemblages were also observed between the southern maple and fir forest sites. The Silphidae and Histeridae were more abundant in the maple forest, whereas the Hydrophilidae and Ptilidae were more abundant in the fir forest.

  1. Variegated tropical landscapes conserve diverse dung beetle communities.

    PubMed

    Costa, Cristiane; Oliveira, Victor Hugo F; Maciel, Rafaella; Beiroz, Wallace; Korasaki, Vanesca; Louzada, Julio

    2017-01-01

    Conserving biodiversity in tropical landscapes is a major challenge to scientists and conservationists. Current rates of deforestation, fragmentation, and land use intensification are producing variegated landscapes with undetermined values for the conservation of biological communities and ecosystem functioning. Here, we investigate the importance of tropical variegated landscapes to biodiversity conservation, using dung beetle as focal taxa. The study was carried out in 12 variegated landscapes where dung beetles were sampled using six pitfall traps, 30 m apart from each other, along a transect in each studied landscape use and cover classes-LUCC (forest fragment and corridor, coffee plantation, and pasture). We baited each pitfall trap with 30 g of human feces and left open for a 48 h period. We also measured three environmental variables reflecting structural differences among the studied classes: canopy cover, local vegetation heterogeneity and soil sand content. We collected 52 species and 2,695 individuals of dung beetles. We observed significant differences in the mean species richness, abundance and biomass among classes, with forest fragments presenting the highest values, forest corridors and coffee plantations presenting intermediate values, and pastures the lowest values. Regarding community structure, we also found significant differences among classes. Canopy cover was the only variable explaining variation in dung beetle species richness, abundance, biomass, and community structure. The relative importance of spatial turnover was greater than nestedness-resultant component in all studied landscapes. This study evaluated the ecological patterns of dung beetle communities in variegated tropical landscapes highlighting the importance of these landscapes for conservation of tropical biodiversity. However, we encourage variegation for the management of landscapes that have already been fragmented or as a complementary initiative of current conservation

  2. The beetle fauna (Insecta, Coleoptera) of the Rawdhat Khorim National Park, Central Saudi Arabia.

    PubMed

    Abdel-Dayem, Mahmoud S; Fad, Hassan H; El-Torkey, Ashraf M; Elgharbawy, Ali A; Aldryhim, Yousif N; Kondratieff, Boris C; Ansi, Amin N Al; Aldhafer, Hathal M

    2017-01-01

    This study was conducted as a part of a comprehensive baseline survey of insect biodiversity of Rawdhat Khorim National Park (RKNP), Central Kingdom of Saudi Arabia (KSA). During this study a total of 262 Coleoptera species belong to 182 genera in 35 families were identified, of which 247 are named at a species level. Fifteen species (6.0%) are apparently endemic to KSA. Thirty-eight species are new to the known beetle fauna of KSA, including 25 species reported from the Arabian Peninsula for the first time. The families Tenebrionidae (45 species), Scarabaeidae (34 species), and Carabidae (27 species) were the most species rich families. About 37% of the beetle abundance was represented by species of Scarabaeidae, especially Aphodius ictericus ghardimaouensis Balthasar. Karumia inaequalis Pic (Dascillidae) was also an abundant species. Approximately 43.5% of beetle species collected during this study are considered very rare taxa in RKNP. The RKNP beetle fauna shows more affinity to Sahro-Arabian (36.4%), Afrotropical-Sahro-Arabian (17.4%) and Palaearctic-Sahro-Arabian (10.5%). Twenty-three species (9.3%) are considered cosmopolitan or subcosmopolitan. The data on month of collection, method of collection, and abundance status within RKNP, together with the distribution within KSA and the general distribution (zoogeography) of each species are presented.

  3. The beetle fauna (Insecta, Coleoptera) of the Rawdhat Khorim National Park, Central Saudi Arabia

    PubMed Central

    Abdel-Dayem, Mahmoud S.; Fad, Hassan H.; El-Torkey, Ashraf M.; Elgharbawy, Ali A.; Aldryhim, Yousif N.; Kondratieff, Boris C.; Ansi, Amin N. Al; Aldhafer, Hathal M.

    2017-01-01

    Abstract This study was conducted as a part of a comprehensive baseline survey of insect biodiversity of Rawdhat Khorim National Park (RKNP), Central Kingdom of Saudi Arabia (KSA). During this study a total of 262 Coleoptera species belong to 182 genera in 35 families were identified, of which 247 are named at a species level. Fifteen species (6.0%) are apparently endemic to KSA. Thirty-eight species are new to the known beetle fauna of KSA, including 25 species reported from the Arabian Peninsula for the first time. The families Tenebrionidae (45 species), Scarabaeidae (34 species), and Carabidae (27 species) were the most species rich families. About 37% of the beetle abundance was represented by species of Scarabaeidae, especially Aphodius ictericus ghardimaouensis Balthasar. Karumia inaequalis Pic (Dascillidae) was also an abundant species. Approximately 43.5% of beetle species collected during this study are considered very rare taxa in RKNP. The RKNP beetle fauna shows more affinity to Sahro-Arabian (36.4%), Afrotropical-Sahro-Arabian (17.4%) and Palaearctic-Sahro-Arabian (10.5%). Twenty-three species (9.3%) are considered cosmopolitan or subcosmopolitan. The data on month of collection, method of collection, and abundance status within RKNP, together with the distribution within KSA and the general distribution (zoogeography) of each species are presented. PMID:28331393

  4. Potential utilization of Artemia franciscana eggs as food for Coleomegilla maculata

    USDA-ARS?s Scientific Manuscript database

    We tested the hypothesis that Artemia franciscana Kellogg (brine shrimp, Anostraca: Artemiidae) eggs are suitable factitious, i.e., alternative, food to support the life history of a predatory ladybird beetle, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). Using progeny from a stock colo...

  5. Teaching Basic Science Environmentally.

    ERIC Educational Resources Information Center

    Busch, Phylliss

    1987-01-01

    Discusses how, where, and when to capture indoor and outdoor insects for study: Grasshoppers, Cockroaches, Houseflies, Snowfleas, Stone Flies, Scorpian Flies, Crane Flies, Gypsy Moths, Tent Caterpillars, Bagworms, Praying Mantis, Oak Leaf Skeletonizers, Mourning Cloak Butterflies, Ladybird Beetles, Maple Leaf Cutters, Woolybears. Emphasizes…

  6. Host-plant effects on larval survival of a salicin-using leaf beetle Chrysomela aeneicollis Schaeffer (Coleoptera: Chrysomelidae).

    PubMed

    Rank, Nathan Egan

    1994-04-01

    Several species of willow leaf beetles use hostplant salicin to produce a defensive secretion that consists of salicylaldehyde. Generalist arthropod predators such as ants, ladybird beetles, and spiders are repelled by this secretion. The beetle larvae produce very little secretion when they feed on willows that lack salicylates, and salicin-using beetles prefer salicylate-rich willows over salicylate-poor ones. This preference may exist because the larvae are better defended against natural enemies on salicylate-rich willows. If this is true, the larvae should survive longer on those willows in nature. However, this prediction has not been tested. I determined the larval growth and survival of Chrysomela aeneicollis (Coleoptera: Chrysomelidae) on five willow species (Salix boothi, S. drummondiana, S. geyeriana, S. lutea, and S. orestera). These species differed in their salicylate chemistries and in leaf toughness but not in water content. The water content varied among the individual plants. Larval growth of C. aeneicollis did not differ among the five species in the laboratory, but it varied among the individual plants and it was related to the water content. In the field, C. aeneicollis larvae developed equally rapidly on the salicylate-poor S. lutea and on the salicylate-rich S. orestera. Larval survival was greater on S. orestera than on S. lutea in one year (1986), but there was no difference between them during three succeeding years. In another survivorship experiment, larval survival was low on the medium-salicylate S. geyeriana, but high on the salicylate-poor S. boothi and on S. orestera. Larval survival in the field was related to the larval growth and water content that had been previously measured in the laboratory. These results showed that the predicted relationship between the host plant chemistry and larval survival did not usually exist for C. aeneicollis. One possible reason for this was that the most important natural enemies were specialist

  7. Quantifying beetle-macrofungal associations in a temperate biodiversity hot spot.

    PubMed

    Epps, Mary Jane; Arnold, A Elizabeth

    2018-01-29

    Beetles (Coleoptera) are often among the most abundant and diverse insects that feed on sporocarps of macrofungi, but little is known regarding their relative specialism or generalism in most communities. We surveyed >9000 sporocarps in montane hardwood forest in the Appalachian Mountains (USA) to characterize associations of mycophagous beetles and macrofungi. We used traditional metrics and network analyses to quantify relationships between sporocarp traits (mass, age, persistence, and toughness) and assemblages of adult beetles, drawing from >50 000 beetles collected over two survey years. Strict-sense specificity was rare in these associations: most beetle species were found on multiple fungal genera, and most fungi hosted multiple beetle species. Sporocarp age and fresh mass were positively associated with beetle diversity in fungi with ephemeral sporocarps (here including 12 genera of Agaricales and Russulales), but sporocarp persistence was not. In Polyporales, beetle diversity was greater in softer sporocarps than in tough or woody sporocarps. The increase of beetle diversity in aging sporocarps could not be attributed to increases in sporocarp mass or sampling point in the growing season, suggesting that age-related changes in chemistry or structure may support increasingly diverse beetle communities. Interaction networks differed as a function of sporocarp age, revealing that community-wide measures of generalism (i.e., network connectance) and evenness (i.e., variance in normalized degree) change as sporocarps mature and senesce. Beetles observed on Agaricales and Russulales with more persistent sporocarps had narrower interaction breadth (i.e., were more host-specific) than those on less persistent sporocarps, and beetles on Polyporales with tougher sporocarps had narrower interaction breadth than those on soft sporocarps. In addition to providing a large-scale evaluation of sporocarp use by adult beetles in this temperate biodiversity hot spot, this

  8. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles.

    PubMed

    Scully, Erin D; Geib, Scott M; Carlson, John E; Tien, Ming; McKenna, Duane; Hoover, Kelli

    2014-12-12

    Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages. Through parallel transcriptome profiling of beetle- and microbial- derived mRNAs, we demonstrate that the midgut microbiome of the Asian longhorned beetle (Anoplophora glabripennis), a member of the beetle family Cerambycidae, is enriched in biosynthetic pathways for the synthesis of essential amino acids, vitamins, and sterols. Consequently, the midgut microbiome of A. glabripennis can provide essential nutrients that the beetle cannot obtain from its woody diet or synthesize itself. The beetle gut microbiota also produce their own suite of transcripts that can enhance lignin degradation, degrade hemicellulose, and ferment xylose and wood sugars. An abundance of cellulases from several glycoside hydrolase families are expressed endogenously by A. glabripennis, as well as transcripts that allow the beetle to convert microbe-synthesized essential amino acids into non-essential amino acids. A. glabripennis and its gut microbes likely collaborate to digest carbohydrates and convert released sugars and amino acid intermediates into essential nutrients otherwise lacking from their woody host plants. The nutritional provisioning capabilities of the A. glabripennis gut microbiome may contribute to the beetles' unusually broad host range. The presence of some of the same microbes in the guts of other Cerambycidae and other wood-feeding beetles suggests that partnerships with microbes may be a facilitator of evolutionary radiations in beetles, as in certain other groups of insects, allowing access to novel food sources through enhanced nutritional provisioning.

  9. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition

    PubMed Central

    Arnieri, Fabrizio; Caprio, Enrico; Nervo, Beatrice; Pelissetti, Simone; Palestrini, Claudia; Roslin, Tomas; Rolando, Antonio

    2017-01-01

    Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species), we ran six experimental treatments (four monospecific and two mixed) and two controls (one with dung but without beetles, and one with neither dung nor beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux–an effect potentially traceable to the species’ nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%). As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems. PMID:28700590

  10. Influences of the Tamarisk Leaf Beetle (Diorhabda carinulata) on the diet of insectivorous birds along the Dolores River in Southwestern Colorado

    USGS Publications Warehouse

    Puckett, Sarah L.; van Riper, Charles

    2014-01-01

    We examined the effects of a biologic control agent, the tamarisk leaf beetle (Diorhabda carinulata), on native avifauna in southwestern Colorado, specifically, addressing whether and to what degree birds eat tamarisk leaf beetles. In 2010, we documented avian foraging behavior, characterized the arthropod community, sampled bird diets, and undertook an experiment to determine whether tamarisk leaf beetles are palatable to birds. We observed that tamarisk leaf beetles compose 24.0 percent (95-percent-confidence interval, 19.9-27.4 percent) and 35.4 percent (95-percent-confidence interval, 32.4-45.1 percent) of arthropod abundance and biomass in the study area, respectively. Birds ate few tamarisk leaf beetles, despite a superabundance of D. carinulata in the environment. The frequency of occurrence of tamarisk leaf beetles in bird diets was 2.1 percent (95-percent-confidence interval, 1.3- 2.9 percent) by abundance and 3.4 percent (95-percent-confidence interval, 2.6-4.2 percent) by biomass. Thus, tamarisk leaf beetles probably do not contribute significantly to the diets of birds in areas where biologic control of tamarisk is being applied.

  11. Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Regional Dispersion and Relationship With Wheat Stand Denseness.

    PubMed

    Reisig, Dominic D; Bacheler, Jack S; Herbert, D Ames; Heiniger, Ron; Kuhar, Thomas; Malone, Sean; Philips, Chris; Tilley, M Scott

    2017-06-01

    Cereal leaf beetle, Oulema melanopus L., is a pest of small grains and the literature conflicts on whether it is more abundant in sparse or dense stands of wheat. Our objectives were to determine the impact of stand denseness on cereal leaf beetle abundance and to investigate the regional dispersion of cereal leaf beetles across North Carolina and Virginia. One-hundred twenty fields were sampled across North Carolina and Virginia during 2011 for stand denseness, and cereal leaf beetle eggs, larvae, and adults. Two small-plot wheat experiments were planted in North Carolina using a low and a high seeding rate. Main plots were split, with one receiving a single nitrogen application and one receiving two. Egg density, but not larva or adult density, was positively correlated with stand denseness in the regional survey. Furthermore, regional spatial patterns of aggregation were noted for both stand denseness and egg number. In the small-plot experiments, seeding rate influenced stand denseness, but not nitrogen application. In one experiment, egg densities per unit area were higher in denser wheat, while in the other experiment, egg densities per tiller were lower in denser wheat. Larvae were not influenced by any factor. Overall, there were more cereal leaf beetle eggs in denser wheat stands. Previous observations that sparse stands of wheat are more prone to cereal leaf beetle infestation can be attributed to the fact that sparser stands have fewer tillers, which increases the cereal leaf beetle to tiller ratio compared with denser stands. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Species Richness and Phenology of Cerambycid Beetles in Urban Forest Fragments of Northern Delaware

    Treesearch

    K. Handley; J. Hough-Goldstein; L.M. Hanks; J.G. Millar; V. D' amico

    2015-01-01

    Cerambycid beetles are abundant and diverse in forests, but much about their host relationships and adult behavior remains unknown. Generic blends of synthetic pheromones were used as lures in traps, to assess the species richness, and phenology of cerambycids in forest fragments in northern Delaware. More than 15,000 cerambycid beetles of 69 species were trapped over...

  13. Influences of Different Large Mammalian Fauna on Dung Beetle Diversity in Beech Forests

    PubMed Central

    Enari, Hiroto; Koike, Shinsuke; Sakamaki, Haruka

    2013-01-01

    This paper focuses on biological relationships between mammalian species richness and the community structure of dung beetles in cool-temperate forests in the northernmost part of mainland Japan. The composition of beetle assemblages was evaluated at 3 sites in undisturbed beech forests with different mammalian fauna. In spring and summer 2009, beetles were collected at each site using pitfall traps baited with feces from Japanese macaques, Macaca fuscata Blyth (Primates: Cercopithecidae); Asiatic black bears, Ursus thibetanus Cuvier (Carnivora: Ursidae); Japanese serows, Capricornis crispus Temminck (Artiodactyla: Bovidae); and cattle. In the present study, 1,862 dung beetles representing 14 species were collected, and most dung beetles possessed the ecological characteristic of selecting specific mammalian feces. The present findings indicated that although species diversity in dung beetle assemblages was not necessarily positively correlated with mammalian species richness in cool-temperate forests, the absence of the macaque population directly resulted in the marked reduction of the beetle abundance, with the loss of the most frequent species, Aphodius eccoptus Bates (Coleoptera: Scarabaeidae) during spring. PMID:23909510

  14. Blackmargined aphid (Monellia caryella (Fitch); Hemiptera: Aphididae) honeydew production in pecan (Carya illinoinesis (Koch)) and implications for managing the pecan aphid complex in Texas

    USDA-ARS?s Scientific Manuscript database

    Field studies of the blackmargined aphid, Monellia caryella (Fitch), were conducted on three cultivars, “Cheyenne,” “Kiowa,” and “Pawnee,” of pecan, Carya illinoinisis (Wang) K. Koch. Aphid and natural enemy (lacewings, ladybird beetles, and spiders) densities were determined twice weekly by direct...

  15. Influence of elevation on bark beetle (Coleoptera: Curculionidae, Scolytinae) community structure and flight periodicity in ponderosa pine forests of Arizona.

    PubMed

    Williams, Kelly K; McMillin, Joel D; DeGomez, Tom E; Clancy, Karen M; Miller, Andy

    2008-02-01

    We examined abundance and flight periodicity of five Ips and six Dendroctonus species (Coleoptera: Curculionidae, Scolytinae) among three different elevation bands in ponderosa pine (Pinus ponderosa Douglas ex. Lawson) forests of northcentral Arizona. Bark beetle populations were monitored at 10 sites in each of three elevation bands (low: 1,600-1,736 m; middle: 2,058-2,230 m; high: 2,505-2,651 m) for 3 yr (2004-2006) using pheromone-baited Lindgren funnel traps. Trap contents were collected weekly from March to December. We also studied temperature differences among the elevation bands and what role this may play in beetle flight behavior. Bark beetles, regardless of species, showed no consistent elevational trend in abundance among the three bands. The higher abundances of Ips lecontei Swaine, I. calligraphus ponderosae Swaine, Dendroctonus frontalis Zimmerman, and D. brevicomis LeConte at low and middle elevations offset the greater abundance of I. knausi Swaine, D. adjunctus Blandford, D. approximatus Dietz, and D. valens LeConte at high elevations. I. pini (Say) and I. latidens LeConte were found in similar numbers across the three bands. Flight periodicity of several species varied among elevation bands. In general, the flight period shortened as elevation increased; flight initiated later and terminated earlier in the year. The timing, number, and magnitude of peaks in flight activity also varied among the elevation bands. These results suggest that abundance and flight seasonality of several bark beetles are related to elevation and the associated temperature differences. The implications of these results are discussed in relation to bark beetle management and population dynamics.

  16. Associational Patterns of Scavenger Beetles to Decomposition Stages.

    PubMed

    Zanetti, Noelia I; Visciarelli, Elena C; Centeno, Nestor D

    2015-07-01

    Beetles associated with carrion play an important role in recycling organic matter in an ecosystem. Four experiments on decomposition, one per season, were conducted in a semirural area in Bahía Blanca, Argentina. Melyridae are reported for the first time of forensic interest. Apart from adults and larvae of Scarabaeidae, thirteen species and two genera of other coleopteran families are new forensic records in Argentina. Diversity, abundance, and species composition of beetles showed differences between stages and seasons. Our results differed from other studies conducted in temperate regions. Four guilds and succession patterns were established in relation to decomposition stages and seasons. Dermestidae (necrophages) predominated in winter during the decomposition process; Staphylinidae (necrophiles) in Fresh and Bloat stages during spring, summer, and autumn; and Histeridae (necrophiles) and Cleridae (omnivores) in the following stages during those seasons. Finally, coleopteran activity, diversity and abundance, and decomposition rate change with biogeoclimatic characteristics, which is of significance in forensics. © 2015 American Academy of Forensic Sciences.

  17. The banded elm bark beetle: A new threat to elms in North America

    Treesearch

    Jose F. Negron; Jeffrey J. Witcosky; Robert J. Cain; James R. LaBonte; Donald A. Duerr; Sally J. McElwey; Jana C. Lee; Steven J. Seybold

    2005-01-01

    An exotic bark beetle from Asia, the banded elm bark beetle, Scolytus schevyrewi, has been discovered in 21 states of the United States. Although its point of entry is not known, a survey of museum specimens suggests that it has been in the US for at least 10 years. It is most abundant in western states, attacks primarily American and Siberian elms, and carries spores...

  18. Impact of Stand Management Practices on Beetle Diversity

    Treesearch

    Stephen P. Cook

    2004-01-01

    Abstract - Insects are useful indicators of change within ecosystems because of their abundance, richness and functional importance. Stand management practices impact the insect community within a forest. Therefore, the objective of the project is to determine the impact of various stand management practices on the diversity of beetles within...

  19. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    PubMed Central

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges (<10 m) and interiors (> 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  20. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    PubMed

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges (<10 m) and interiors (> 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  1. The Relative Importance of Spatial and Local Environmental Factors in Determining Beetle Assemblages in the Inner Mongolia Grassland.

    PubMed

    Yu, Xiao-Dong; Lü, Liang; Wang, Feng-Yan; Luo, Tian-Hong; Zou, Si-Si; Wang, Cheng-Bin; Song, Ting-Ting; Zhou, Hong-Zhang

    2016-01-01

    The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae) along a geographic (longitudinal/precipitation) gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.

  2. Community composition and diversity of ground beetles (Coleoptera: Carabidae) in Yaoluoping National Nature Reserve

    PubMed Central

    Li, Wen-Bo; Liu, Nai-Yi; Wu, Yun-He; Zhang, Yu-Cai; Xu, Qin; Chu, Jun; Wang, Shu-Yan

    2017-01-01

    Abstract This study used pitfall trapping to examine community composition and diversity of ground beetles in five different habitats (coniferous, deciduous, mixed coniferous, farmland, and settlements) within Anhui Yaoluoping National Nature Reserve from May to September 2014. In total, 1,352 ground beetles were collected, belonging to 16 genera and 44 species. Of these, four dominant species Dolichus halensis, Harpalus pastor, Carabus casaleianus, and Pheropsophus jessoensis were identified, respectively, comprising 370, 177, 131, and 123 individuals. The deciduous forest showed greater diversity (3.78 according to Shannon–Weiner index), equitability (0.80 according to Pielou’s index), and dominance (9.52 according to Simpson’s index) when compared with farmland, but species richness in the deciduous forest (27) was lower than that in farmland (35). One-way analysis of variance showed that ground beetle species composition and abundance among different habitats varied significantly. Cluster analysis and principal coordinate analysis showed that farmland shared low community similarity with other habitat types, and coniferous and mixed coniferous forests shared similar community types. Our results indicate that species composition, abundance, and diversity of ground beetles are affected by different habitat types, with deciduous forest types being critical in maintaining the diversity of rare species. We recommend reducing cultivated farmland area and increasing the area of carefully planned deciduous forest in order to better protect ground beetle diversity in the region.

  3. Characterization of the pollen beetle, Brassicogethes aeneus, dispersal from woodlands to winter oilseed rape fields

    PubMed Central

    Barbu, Corentin Mario; Franck, Pierre; Roger-Estrade, Jean; Butier, Arnaud; Bazot, Mathieu; Valantin-Morison, Muriel

    2017-01-01

    Many crop pests rely on resources out of crop fields; understanding how they colonize the fields is an important factor to develop integrated pest management. In particular, the time of crop colonization and damage severity might be determined by pest movements between fields and non-crop areas. Notably, the pollen beetle, Brassicogethes aeneus, previously named Meligethes aeneus, one of the most important pests of winter oilseed rape, overwinters in woodlands. As a result, its abundance increases in oilseed rape fields near wooded areas. Here, we assessed the spatio-temporal patterns of the dispersal from woodlands to oilseed rape fields in diversified landscapes of a same region. We observed on four dates the abundance of pollen beetles in 24 fields spread in the Eure department, France. We modeled the abundance as a result of the dispersal from the neighboring woodlands. We compared the modalities of dispersal corresponding to different hypotheses on the dispersal origin, kernel shape and sources of variability. Within oilseed rape the distance to the edges of woodlands is not the main determinant of pollen beetle abundance. On the contrary, the variability of the abundance between fields is largely explained by the dispersal from neighboring woodlands but there is considerable variability between dates, sites and, to a lesser extent, between fields. The two dispersal kernels received similar support from the data and lead to similar conclusions. The mean dispersal distance is 1.2 km but seems to increase from a few hundred meters the first week to more than two kilometers the fourth, allowing the pollen beetles to reach more distant OSR fields. These results suggest that early varieties away from woodlands and late varieties close to the woodlands may limit attacks at the time when oilseed rape is the most sensitive. PMID:28841712

  4. Context-dependent colonization dynamics: Regional reward contagion drives local compression in aquatic beetles.

    PubMed

    Pintar, Matthew R; Resetarits, William J

    2017-09-01

    Habitat selection by colonizing organisms is an important factor in determining species abundance and community dynamics at multiple spatial scales. Many organisms select habitat patches based on intrinsic patch quality, but patches exist in complex landscapes linked by dispersal and colonization, forming metapopulations and metacommunities. Perceived patch quality can be influenced by neighbouring patches through spatial contagion, wherein perceived quality of one patch can extend beyond its borders and either increase or decrease the colonization of neighbouring patches and localities. These spatially explicit colonization dynamics can result in habitat compression, wherein more colonists occupy a patch or locality than in the absence of spatial context dependence. Previous work on contagion/compression focused primarily on the role of predators in driving colonization patterns. Our goal was to determine whether resource abundance can drive multi-scale colonization dynamics of aquatic beetles through the processes of contagion and compression in naturally colonized experimental pools. We established two levels (high/low quality) of within-patch resource abundances (leaf litter) using an experimental landscape of mesocosms, and assayed colonization by 35 species of aquatic beetles. Patches were arranged in localities (sets of two patches), which consisted of a combination of two patch-level resource levels in a 2 × 2 factorial design, allowing us to assay colonization at both locality and patch levels. We demonstrate that patterns of species abundance and richness of colonizing aquatic beetles are determined by patch quality and context-dependent processes at multiple spatial scales. Localities that consisted of at least one high-quality patch were colonized at equivalent rates that were higher than localities containing only low-quality patches, displaying regional reward contagion. In localities that consisted of one high- and one low-quality patch, reward

  5. Mountain Pine Beetle

    Treesearch

    Gene D. Amman; Mark D. McGregor; Robert E. Jr. Dolph

    1989-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a member of a group of beetles known as bark beetles: Except when adults emerge and attack new trees, the mountain pine beetle completes its life cycle under the bark. The beetle attacks and kills lodgepole, ponderosa, sugar, and western white pines. Outbreaks frequently develop in lodgepole pine stands that...

  6. Experimental Beetle Metapopulations Respond Positively to Dynamic Landscapes and Reduced Connectivity

    PubMed Central

    Govindan, Byju N.; Swihart, Robert K.

    2012-01-01

    Interactive effects of multiple environmental factors on metapopulation dynamics have received scant attention. We designed a laboratory study to test hypotheses regarding interactive effects of factors affecting the metapopulation dynamics of red flour beetle, Tribolium castaneum. Within a four-patch landscape we modified resource level (constant and diminishing), patch connectivity (high and low) and patch configuration (static and dynamic) to conduct a 23 factorial experiment, consisting of 8 metapopulations, each with 3 replicates. For comparison, two control populations consisting of isolated and static subpopulations were provided with resources at constant or diminishing levels. Longitudinal data from 22 tri-weekly counts of beetle abundance were analyzed using Bayesian Poisson generalized linear mixed models to estimate additive and interactive effects of factors affecting abundance. Constant resource levels, low connectivity and dynamic patches yielded greater levels of adult beetle abundance. For a given resource level, frequency of colonization exceeded extinction in landscapes with dynamic patches when connectivity was low, thereby promoting greater patch occupancy. Negative density dependence of pupae on adults occurred and was stronger in landscapes with low connectivity and constant resources; these metapopulations also demonstrated greatest stability. Metapopulations in control landscapes went extinct quickly, denoting lower persistence than comparable landscapes with low connectivity. When landscape carrying capacity was constant, habitat destruction coupled with low connectivity created asynchronous local dynamics and refugia within which cannibalism of pupae was reduced. Increasing connectivity may be counter-productive and habitat destruction/recreation may be beneficial to species in some contexts. PMID:22509314

  7. How Does Dung Beetle (Coleoptera: Scarabaeidae) Diversity Vary Along a Rainy Season in a Tropical Dry Forest?

    PubMed

    Novais, Samuel M A; Evangelista, Lucas A; Reis-Júnior, Ronaldo; Neves, Frederico S

    2016-01-01

    Dung beetle community dynamics are determined by regional rainfall patterns. However, little is known about the temporal dynamics of these communities in tropical dry forests (TDFs). This study was designed to test the following predictions: 1) Peak diversity of dung beetle species occurs early in the wet season, with a decrease in diversity (α and β) and abundance throughout the season; 2) Nestedness is the primary process determining β-diversity, with species sampled in the middle and the end of the wet season representing subsets of the early wet season community. Dung beetles were collected in a TDF in the northern Minas Gerais state, Brazil over three sampling events (December 2009, February and April 2010). We sampled 2,018 dung beetles belonging to 39 species and distributed among 15 genera. Scarabaeinae α-diversity and abundance were highest in December and equivalent between February and April, while β-diversity among plots increased along the wet season. The importance of nestedness and species turnover varies between pairs of sample periods as the main process of temporal β-diversity. Most species collected in the middle and end of the wet season were found in greater abundance in early wet season. Thus, the dung beetle community becomes more homogeneous at the beginning of the wet season, and as the season advances, higher resource scarcity limits population size, which likely results in a smaller foraging range, increasing β-diversity. Our results demonstrate high synchronism between the dung beetle life cycle and seasonality of environmental conditions throughout the wet season in a TDF, where the onset of rains determines adult emergence for most species. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  8. How Habitat Change and Rainfall Affect Dung Beetle Diversity in Caatinga, a Brazilian Semi-Arid Ecosystem

    PubMed Central

    Liberal, Carolina Nunes; de Farias, Ângela Maria Isidro; Meiado, Marcos Vinicius; Filgueiras, Bruno K. C.; Iannuzzi, Luciana

    2011-01-01

    The aim of the present study was to evaluate how dung beetle communities respond to both environment and rainfall in the Caatinga, a semi-arid ecosystem in northeastern Brazil. The communities were sampled monthly from May 2006 to April 2007 using pitfall traps baited with human feces in two environments denominated “land use area” and “undisturbed area.” Abundance and species richness were compared between the two environments and two seasons (dry and wet season) using a generalized linear model with a Poisson error distribution. Diversity was compared between the two environments (land use area and undisturbed area) and seasons (dry and wet) using the Two-Way ANOVA test. Non-metric multidimensional scaling was performed on the resemblance matrix of Bray-Curtis distances (with 1000 random restarts) to determine whether disturbance affected the abundance and species composition of the dung beetle communities. Spearman's correlation coefficient was used to determine whether rainfall was correlated with abundance and species richness. A total of 1097 specimens belonging to 13 species were collected. The most abundant and frequent species was Dichotomius geminatus Arrow (Coleoptera: Scarabaeidae). The environment exerted an influence over abundance. Abundance and diversity were affected by season, with an increase in abundance at the beginning of the wet season. The correlation coefficient values were high and significant for abundance and species richness, which were both correlated to rainfall. In conclusion, the restriction of species to some environments demonstrates the need to preserve these areas in order to avoid possible local extinction. Therefore, in extremely seasonable environments, such as the Caatinga, seasonal variation strongly affects dung beetle communities. PMID:22224924

  9. How habitat change and rainfall affect dung beetle diversity in Caatinga, a Brazilian semi-arid ecosystem.

    PubMed

    Liberal, Carolina Nunes; de Farias, Ângela Maria Isidro; Meiado, Marcos Vinicius; Filgueiras, Bruno K C; Iannuzzi, Luciana

    2011-01-01

    The aim of the present study was to evaluate how dung beetle communities respond to both environment and rainfall in the Caatinga, a semi-arid ecosystem in northeastern Brazil. The communities were sampled monthly from May 2006 to April 2007 using pitfall traps baited with human feces in two environments denominated "land use area" and "undisturbed area." Abundance and species richness were compared between the two environments and two seasons (dry and wet season) using a generalized linear model with a Poisson error distribution. Diversity was compared between the two environments (land use area and undisturbed area) and seasons (dry and wet) using the Two-Way ANOVA test. Non-metric multidimensional scaling was performed on the resemblance matrix of Bray-Curtis distances (with 1000 random restarts) to determine whether disturbance affected the abundance and species composition of the dung beetle communities. Spearman's correlation coefficient was used to determine whether rainfall was correlated with abundance and species richness. A total of 1097 specimens belonging to 13 species were collected. The most abundant and frequent species was Dichotomius geminatus Arrow (Coleoptera: Scarabaeidae). The environment exerted an influence over abundance. Abundance and diversity were affected by season, with an increase in abundance at the beginning of the wet season. The correlation coefficient values were high and significant for abundance and species richness, which were both correlated to rainfall. In conclusion, the restriction of species to some environments demonstrates the need to preserve these areas in order to avoid possible local extinction. Therefore, in extremely seasonable environments, such as the Caatinga, seasonal variation strongly affects dung beetle communities.

  10. Seasonal phenology of the cerambycid beetles of east-central Illinois

    PubMed Central

    Hanks, Lawrence M.; Reagel, Peter F.; Mitchell, Robert F.; Wong, Joseph C. H.; Meier, Linnea R.; Silliman, Christina A.; Graham, Elizabeth E.; Striman, Becca L.; Robinson, Kenneth P.; Mongold-Diers, Judith A.; Millar, Jocelyn G.

    2014-01-01

    We summarize field data on the species composition and seasonal phenology of the community of cerambycid beetles of east-central Illinois. Data were drawn from field bioassays conducted during 2009 – 2012 that tested attraction of adult beetles of diverse species to a variety of synthetic pheromones and host plant volatiles. A total of 34,086 beetles of 114 species were captured, including 48 species in the subfamily Cerambycinae, 41 species in the Lamiinae, 19 species in the Lepturinae, two species in the Spondylidinae, and one species each in the Necydalinae, Parandrinae, Prioninae, and the Disteniidae. Most of the best-represented species were attracted to pheromones that were included in field experiments, particularly species that use (R)-3-hydroxyhexan-2-one as a pheromone component. The species captured, and their patterns of abundance and seasonal phenology were similar to those in an earlier study conducted in Pennsylvania. The most abundant species identified in both studies included the cerambycines Elaphidion mucronatum (Say), Neoclytus a. acuminatus (F.), Neoclytus m. mucronatus (F.), and Xylotrechus colonus (F.). Cerambycine species became active in an orderly progression from early spring through late fall, whereas most lamiine species were active in summer and fall, and lepturine species were limited to summer. Potential cross attraction between some cerambycine species that shared pheromone components may have been averted by differences in seasonal activity period, and by minor pheromone components that acted as synergists for conspecifics and/or antagonists for heterospecifics. These results provide quantitative data on the abundance and seasonal phenology of a large number of species. PMID:24683267

  11. Population dynamics of the northern tamarisk beetle (Diorhabda carinulata) in the Colorado River Basin

    USGS Publications Warehouse

    Jamison, Levi R.; van Riper, Charles

    2018-05-01

    Throughout the Southwestern United States, riparian systems contain narrow belts of vegetation along streams and rivers. Although only a small percentage of the total land cover, this ecosystem is important for maintaining high species diversity and population densities of birds. Anthropogenic changes to Western riverine systems have enhanced their susceptibility to invasion by introduced plant species, in particular, ornamental plants from the genus Tamarix (or saltcedar), which can establish itself in dry, salty conditions and spread rapidly. Recently, the central Asian saltcedar leaf beetle (Diorhabda carinulata) was released as a biocontrol for tamarisk. Since its release on the Colorado Plateau, tamarisk beetle populations in Nevada, Utah, Colorado, and Wyoming have widely expanded, leading to widespread tamarisk defoliation, and concerns from land managers regarding the consequences of the environmental impact. Defoliation can also negatively impact avian communities in the short term by decreasing insect abundance and nesting success, owing to increased solar radiation or loss of camouflage. This report details two studies that examine the spread of the introduced tamarisk beetle over parts of the Southwestern United States. The first chapter documents plant phenology and beetle abundance and movement along the Dolores and San Juan Rivers, two major tributaries of the Colorado River. This study demonstrates that D. carinulata population-movement patterns can be highly influenced by the availability of beetle food resources and that local beetle “boom and bust” events are common. The second study demonstrates that the extent and timing of tamarisk defoliation are predictable on the basis of (1) abiotic cues for D. carinulata activity, (2) spatial distributions and abundances of D. carinulata across a site, and (3) movement of D. carinulata as a result of available tamarisk foliage. A significant positive correlation exists between the

  12. Ant diversity as a direct and indirect driver of pselaphine rove beetle (Coleoptera: Staphylinidae) functional diversity in tropical rainforests, Sabah, Malaysian Borneo.

    PubMed

    Psomas, Elizabeth; Holdsworth, Sholto; Eggleton, Paul

    2018-04-20

    Pselaphinae is a species-rich beetle subfamily found globally, with many exhibiting myrmecophily-a symbiotic association with ants. Pselaphine-ant associations vary from facultative to obligate, but direct behavioral observations still remain scarce. Pselaphines are speciose and ecologically abundant within tropical leaf litter invertebrate communities where ants dominate, implying a potentially important ecological role that may be affected by habitat disturbances that impact ants. In this study, we measured and analyzed putative functional traits of leaf litter pselaphines associated with myrmecophily through morphometric analysis. We calculated "myrmecophile functional diversity" of pselaphines at different sites and examined this measure's relationship with ant abundance, in both old growth and logged rainforest sites in Sabah, Borneo. We show that myrmecophile functional diversity of pselaphine beetles increases as ant abundance increases. Old growth rainforest sites support a high abundance of ants, which is associated with a high abundance of probable myrmecophilous pselaphines. These results suggest a potential link between adult morphological characters and the functional role these beetles play in rainforest litter as ecological interaction partners with ants. © 2018 Wiley Periodicals, Inc.

  13. Phoretic mites of three bark beetles (Pityokteines spp.) on silver fir

    Treesearch

    Milan Pernek; Boris Hrasovec; Dinka Matosevic; Ivan Pilas; Thomas Kirisits; John C. Moser

    2008-01-01

    The species composition and abundance of phoretic mites of the bark beetles Pityokteines curvidens P. spinidens, and P. vorontzowi on Silver fir (Abies alba) were investigated in 2003 at two locations (Trakoscan and Litoric) in Croatia. Stem sections and...

  14. Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle.

    PubMed

    Polsinelli, Gregory A; Singh, Sanjay K; Mishra, Rajesh K; Suranyi, Robert; Ragsdale, David W; Pang, Yuan-Ping; Brimijoin, Stephen

    2010-09-06

    Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Micro and macro-habitat associations in saproxylic beetles: implications for biodiversity management.

    PubMed

    Hjältén, Joakim; Stenbacka, Fredrik; Pettersson, Roger B; Gibb, Heloise; Johansson, Therese; Danell, Kjell; Ball, John P; Hilszczański, Jacek

    2012-01-01

    Restoration of habitats is critically important in preventing full realization of the extinction debt owed as a result of anthropogenic habitat destruction. Although much emphasis has been placed on macrohabitats, suitable microhabitats are also vital for the survival of most species. The aim of this large-scale field experiment was to evaluate the relative importance of manipulated microhabitats, i.e., dead wood substrates of spruce (snags, and logs that were burned, inoculated with wood fungi or shaded) and macrohabitats, i.e., stand types (clear-cuts, mature managed forests, and forest reserves) for species richness, abundance and assemblage composition of all saproxylic and red-listed saproxylic beetles. Beetles were collected in emergence traps in 30 forest stands in 2001, 2003, 2004 and 2006. More individuals emerged from snags and untreated logs than from burned and shaded logs, but species richness did not differ among substrates. Assemblage composition differed among substrates for both all saproxylics and red-listed saproxylic species, mainly attributed to different assemblage composition on snags. This suggests that the practise of leaving snags for conservation purposes should be complemented with log supplementation. Clear-cuts supported fewer species and different assemblages from mature managed forests and reserves. Neither abundance, nor species richness or assemblage composition differed between reserves and mature managed forests. This suggests that managed stands subjected to selective cutting, not clear-felling, maintain sufficient old growth characteristics and continuity to maintain more or less intact assemblages of saproxylic beetles. Thus, alternative management methods, e.g., continuity forestry should be considered for some of these stands to maintain continuity and conservation values. Furthermore, the significantly higher estimated abundance per ha of red-listed beetles in reserves underlines the importance of reserves for maintaining

  16. Quantitative assessment of the nematode fauna present on Geotrupes dung beetles reveals species-rich communities with a heterogeneous distribution.

    PubMed

    Weller, Andreas M; Mayer, Werner E; Rae, Robbie; Sommer, Ralf J

    2010-06-01

    Pristionchus spp. nematodes exhibit several traits that might serve as pre-adaptations to parasitism. Under harsh environmental conditions, these nematodes can arrest development and form dauer larvae. In addition, they have been shown to live in necromenic association with a range of beetles, including dung beetles ( Geotrupes stercorosus ) on which, for example, Pristionchus entomophagus is commonly found. It has been argued that the formation of dauer larvae and the association with invertebrates represent intermediate steps towards parasitism. To better understand necromenic associations, and to gain information on Pristionchus spp. abundance and the general species composition on dung beetles, we extracted all the nematode fauna present on 114 individuals of G. stercorosus. By direct sequencing using the 18S SSU, we provide a barcode for all nematodes isolated from the beetle samples. In total, 5,002 dauer-stage nematodes were sequenced, which included Pristionchus spp., Koerneria spp. (Diplogastridae), Pelodera spp. (Rhabditidae), and Strongyloidea as well as Spirurida. Intensities of infection varied from over 1,000 nematodes isolated from a single G. stercorosus to none, with Pelodera spp. being the most abundant group isolated. This study presents the first quantitative data on the Pristionchus spp. infection of beetles.

  17. Effects of Chitin and Contact Insecticide Complexes on Rove Beetles in Commercial Orchards

    PubMed Central

    Balog, A.; Ferencz, L.; Hartel, T.

    2011-01-01

    A five-year research project was performed to explore the potential effects of contact insecticide applications on the change of abundance and species richness of predatory rove beetles (Coleoptera: Staphylinidae) in conventionally managed orchards. Twelve blocks of nine orchards were used for this study in Central Europe. High sensitivity atomic force microscopic examination was carried out for chitin structure analyses as well as computer simulation for steric energy calculation between insecticides and chitin. The species richness of rove beetles in orchards was relatively high after insecticide application. Comparing the mean abundance before and after insecticide application, a higher value was observed before spraying with alphacypermethrin and lambda-cyhalothrin, and a lower value was observed in the cases of diflubenzuron, malathion, lufenuron, and phosalone. The species richness was higher only before chlorpyrifos-methyl application. There was a negative correlation between abundance and stability value of chitin-insecticides, persistence time, and soil absorption coefficients. Positive correlation was observed with lipo- and water solubility. PMID:21870981

  18. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    PubMed

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field.

  19. Using Malaise traps to sample ground beetles (Coleoptera: Carabidae)

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages...

  20. Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae).

    PubMed

    Izzo, Victor M; Chen, Yolanda H; Schoville, Sean D; Wang, Cong; Hawthorne, David J

    2018-04-02

    Colorado potato beetle (Leptinotarsa decemlineata Say [Coleoptera: Chrysomelidae]) is a pest of potato throughout the Northern Hemisphere, but little is known about the beetle's origins as a pest. We sampled the beetle from uncultivated Solanum host plants in Mexico, and from pest and non-pest populations in the United States and used mitochondrial DNA and nuclear loci to examine three hypotheses on the origin of the pest lineages: 1) the pest beetles originated from Mexican populations, 2) they descended from hybridization between previously divergent populations, or 3) they descended from populations that are native to the Plains states in the United States. Mitochondrial haplotypes of non-pest populations from Mexico and Arizona differed substantially from beetles collected from the southern plains and potato fields in the United States, indicating that beetles from Mexico and Arizona did not contribute to founding the pest lineages. Similar results were observed for AFLP and microsatellite data . In contrast, non-pest populations from the states of Colorado, Kansas, Nebraska, New Mexico, and Texas were genetically similar to U.S. pest populations, indicating that they contributed to the founding of the pest lineages. Most of the pest populations do not show a significant reduction in genetic diversity compared to the plains populations in the United States. We conclude that genetically heterogeneous beetle populations expanded onto potato from native Solanum hosts. This mode of host range expansion may have contributed to the abundant genetic diversity of contemporary populations, perhaps contributing to the rapid evolution of climate tolerance, host range, and insecticide resistance.

  1. Host acceptance and larval competition between the invasive banded and European elm bark beetles (Coleoptera: Scolytidae): Potential mechanisms for competitive displacement

    Treesearch

    J.C. Lee; S.J. Seybold

    2009-01-01

    A recent survey revealed that the newly invasive banded elm bark beetle, Scolytus schevyrewi, was much more abundant than the long-established European elm bark beetle, S. multistriatus, in areas of Colorado and Wyoming, USA. This study was initiated to determine whether competitive displacement of S. multistriatus...

  2. Distribution and abundance of Anoplophora glabripennis in stands of its native host in South Korea and China

    Treesearch

    David W. Williams; Hai-Poong Lee

    2003-01-01

    Following up on our discovery in 2000 that Acer mono is a native host of Anoplophora glabripennis, we spent eight weeks searching for the beetle in natural forest stands in South Korea and China. We wanted to assess the distribution and abundance of beetles in closed forest stands of native hosts.

  3. Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae)

    NASA Astrophysics Data System (ADS)

    Lusebrink, Inka; Dettner, Konrad; Seifert, Karlheinz

    2008-08-01

    Stenusine is well known as the alkaloid, discharged by the rove beetle, genus Stenus Latreille (Coleoptera, Staphylinidae). The Stenus beetles employ the alkaloid as an escape mechanism when on water surfaces. In the case of danger, they lower their abdomen and emit stenusine from their pygidial glands. Stenusine shows a low surface tension and therefore a high spreading pressure; these properties propel the beetle quickly over the water. Many Steninae do not live in habitats with open waters, but in detritus, leaf litter, mosses, etc. This raises the possibility that stenusine might also have another function, e.g., as antibiotic or fungicide. Stenus beetles show an intense grooming behaviour. With gas chromatography mass spectrometry analyses we could prove that they cover themselves with their secretion. To tests its antimicrobial properties we conducted agar diffusion tests with stenusine and norstenusine, another substance that is abundant in most Stenus species. Both compounds have an antimicrobial effect on entomopathogenic bacteria and fungi. Stenusine not only allows for an extraordinary method of locomotion on water surfaces, it also protects the Steninae from being infested with microorganisms.

  4. The impact of overgrazing on dung beetle diversity in the Italian Maritime Alps.

    PubMed

    Negro, Matteo; Rolando, Antonio; Palestrini, Claudia

    2011-10-01

    Dung beetles (Coleoptera: Scarabaeidae) are undoubtedly the most typical and ecologically relevant insects of grazed alpine habitats because they provide valuable ecological services such as biological pest control and soil fertilization. Despite the great ecological contribution of these insects to pasture ecosystem functioning, little is known about their direct or indirect relationships with pastoral activities. The main aim of the study was to assess whether dung beetle diversity was influenced by different intensities of cattle grazing. Dung beetle communities of two adjacent alpine valleys within the Maritime Alps Natural Park (north-western Italian Alps), representing overgrazed and ungrazed pastures, were studied by pitfall trapping. A hierarchical design (three levels: valleys, transects, and replicates) was established for additive partitioning of γ-diversity and Indicator Species Analysis. Evenness and Shannon diversity were significantly higher at the ungrazed than at the overgrazed site because abundances were much more evenly distributed at the former than at the latter site (where one species was dominant over all the others). Dung beetle abundance and species richness of the overgrazed graminaceous pasture vegetation types were in most cases significantly lower than those of the ungrazed nongraminaceous vegetation type. In the additive partitioning of γ -diversity analysis relative to the whole study area, the randomization procedure indicated that the contribution of β to γ-diversity was significantly different from that expected by chance, suggesting that one or more environmental factors has intervened to change the partition of total diversity in the system considered. The analysis of the preferences and fidelity of species (Indicator Species Analysis) showed that only one species chose overgrazed pastures; all the others positively selected the ungrazed site, or the only ungrazed pasture vegetation type (Rumicetum alpini Beger) occurring at

  5. Wood-boring beetles associated with Acacia xanthophloea in Nairobi and Machakos Counties, Kenya

    PubMed Central

    Kirubi Thungu, Duncan; Wangu, Lucy; Kimani, Rachael

    2018-01-01

    Naivasha thorn tree, Acacia xanthophloea, is grown for foliage, timber, shade and rehabilitation of soils in areas with high water tables in Kenya. Its production is threatened by insect pests, which cause major losses. Very little is documented on wood-boring beetles which cause considerable economic damage to lumber used in a variety of applications, and little is known about their natural enemies in Kenya. We conducted the study to evaluate the occurrence of wood-boring beetles on A. xanthophloea in two different regions of Kenya. Infested wood samples of A. xanthophloea with fresh exit holes were collected from three sites in Kenyatta University (KU), Nairobi and Mitaboni in Machakos, Kenya. The samples were placed in clear plastic buckets and kept at ambient temperatures 23±2°C, 65±10% relative humidity and 12L: 12D in a laboratory where they were observed daily for adult emergence. Adult beetles were collected every three days for identification and data recording. The experiment was replicated four times and data collected twice a week for 6 months. Data on abundance was subjected to analysis of variance using SAS software. A total of 5,850 and 4,691 beetles were collected where 2,187 and 3,097 were Bostrichidae, accounting for 37% and 66% in KU and Mitaboni, respectively. A total of 12 bostrichid species was identified, including Sinoxylon ruficorne, S. doliolum, Xylion adustus, Xyloperthodes nitidipennis, Xyloperthella picea, Xylopsocus castanoptera, Lyctus brunneus, Heterbostrychus brunneus, Xylopsocus sp., and Dinoderus gabonicus. The most abundant species in KU was Xylion adustus with 1,915 beetles accounting for 88.4%, and Sinoxylon ruficorne in Mitaboni with 1,050 beetles accounting for 33.9% of the total. Sinoxylon ruficorne was only recorded in Mitaboni while only 2 specimens of D. gabonicus were found in KU. The mean number of exit holes on A. xanthophloea differed significantly between sites, which corresponded approximately to the amount of

  6. Wood-boring beetles associated with Acacia xanthophloea in Nairobi and Machakos Counties, Kenya.

    PubMed

    Kahuthia-Gathu, Ruth; Kirubi Thungu, Duncan; Wangu, Lucy; Kimani, Rachael

    2018-01-01

    Naivasha thorn tree, Acacia xanthophloea, is grown for foliage, timber, shade and rehabilitation of soils in areas with high water tables in Kenya. Its production is threatened by insect pests, which cause major losses. Very little is documented on wood-boring beetles which cause considerable economic damage to lumber used in a variety of applications, and little is known about their natural enemies in Kenya. We conducted the study to evaluate the occurrence of wood-boring beetles on A. xanthophloea in two different regions of Kenya. Infested wood samples of A. xanthophloea with fresh exit holes were collected from three sites in Kenyatta University (KU), Nairobi and Mitaboni in Machakos, Kenya. The samples were placed in clear plastic buckets and kept at ambient temperatures 23±2°C, 65±10% relative humidity and 12L: 12D in a laboratory where they were observed daily for adult emergence. Adult beetles were collected every three days for identification and data recording. The experiment was replicated four times and data collected twice a week for 6 months. Data on abundance was subjected to analysis of variance using SAS software. A total of 5,850 and 4,691 beetles were collected where 2,187 and 3,097 were Bostrichidae, accounting for 37% and 66% in KU and Mitaboni, respectively. A total of 12 bostrichid species was identified, including Sinoxylon ruficorne, S. doliolum, Xylion adustus, Xyloperthodes nitidipennis, Xyloperthella picea, Xylopsocus castanoptera, Lyctus brunneus, Heterbostrychus brunneus, Xylopsocus sp., and Dinoderus gabonicus. The most abundant species in KU was Xylion adustus with 1,915 beetles accounting for 88.4%, and Sinoxylon ruficorne in Mitaboni with 1,050 beetles accounting for 33.9% of the total. Sinoxylon ruficorne was only recorded in Mitaboni while only 2 specimens of D. gabonicus were found in KU. The mean number of exit holes on A. xanthophloea differed significantly between sites, which corresponded approximately to the amount of

  7. Evaluation of funnel traps for characterizing the bark beetle (Coleoptera: Scolytidae) communities in ponderosa pine forests of North-Central Arizona

    Treesearch

    Christopher J. Hayes; Tom E. DeGomez; Karen M. Clancy; Kelly K. Williams; Joel D. McMillin; John A. Anhold

    2008-01-01

    Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study...

  8. Uneven-aged silviculture can enhance within stand heterogeneity and beetle diversity.

    PubMed

    Joelsson, Klara; Hjältén, Joakim; Work, Timothy

    2018-01-01

    Uneven-aged silviculture may better maintain species assemblages associated with old-growth forests than clear felling in part due to habitat heterogeneity created by maintaining standing retention strips adjacent to harvest trails. Retention strips and harvest trails created at the time of tree removal will likely have different microclimate and may harbor different assemblages. In some cases, the resultant stand heterogeneity associated with uneven-aged silviculture may be similar to natural small-scale disturbances. For beetles, increased light and temperature as well as potential access to young vegetation and deadwood substrates present in harvset trails may harbor beetle assemblages similar to those found in natural gaps. We sampled saproxylic beetles using flight intercept traps placed in harvest corridors and retention strips in 9 replicated uneven-aged spruce stands in central Sweden. We compared abundance, species richness and composition between harvest corridors and retention strips using generalized linear models, rarefaction, permutational multivariate analysis of variance and indicator species analysis. Canopy openness doubled, mean temperature and variability in daily temperature increased and humidity decreased on harvest trails. Beetle richness and abundance were greater in harvests trails than in retention strips and the beetle species composition differed significantly between habitats. Twenty-five species were associated with harvest trails, including three old-growth specialists such as Agathidium discoideum (Erichson), currently red-listed. We observed only one species, Xylechinus pilosus (Ratzeburg) that strongly favored retention strips. Harvest trails foster both open habitat species and old-growth species while retention strips harbored forest interior specialists. The combination of closed canopy, stratified forest in the retention strips and gap-like conditions on the harvest trails thus increases overall species richness and maintains

  9. Pastoral Practices to Reverse Shrub Encroachment of Sub-Alpine Grasslands: Dung Beetles (Coleoptera, Scarabaeoidea) Respond More Quickly Than Vegetation

    PubMed Central

    Tocco, Claudia; Probo, Massimiliano; Lonati, Michele; Lombardi, Giampiero; Negro, Matteo; Nervo, Beatrice; Rolando, Antonio; Palestrini, Claudia

    2013-01-01

    In recent decades, pastoral abandonment has produced profound ecological changes in the Alps. In particular, the reduction in grazing has led to extensive shrub encroachment of semi-natural grasslands, which may represent a threat to open habitat biodiversity. To reverse shrub encroachment, we assessed short-term effects of two different pastoral practices on vegetation and dung beetles (Coleoptera, Scarabaeoidea). Strategic placement of mineral mix supplements (MMS) and arrangement of temporary night camp areas (TNCA) for cattle were carried out during summer 2011 in the Val Troncea Natural Park, north-western Italian Alps. In 2012, one year after treatment, a reduction in shrub cover and an increase in bare ground cover around MMS sites was detected. A more intense effect was detected within TNCA through increases in forage pastoral value, and in the cover and height of the herbaceous layer. Immediately after treatment, changes in dung beetle diversity (total abundance, species richness, Shannon diversity, taxonomic and functional diversity) showed a limited disturbance effect caused by high cattle density. In contrast, dung beetle diversity significantly increased one year later both at MMS and TNCA sites, with a stronger effect within TNCA. Multivariate Regression Trees and associated Indicator Value analyses showed that some ecologically relevant dung beetle species preferred areas deprived of shrub vegetation. Our main conclusions are: i) TNCA are more effective than MMS in terms of changes to vegetation and dung beetles, ii) dung beetles respond more quickly than vegetation to pastoral practices, and iii) the main driver of the rapid response by dung beetles is the removal of shrubs. The resulting increase in dung beetle abundance and diversity, which are largely responsible for grassland ecosystem functioning, may have a positive effect on meso-eutrophic grassland restoration. Shrub encroachment in the Alps may therefore be reversed, and restoration of

  10. Pastoral practices to reverse shrub encroachment of sub-alpine grasslands: dung beetles (coleoptera, scarabaeoidea) respond more quickly than vegetation.

    PubMed

    Tocco, Claudia; Probo, Massimiliano; Lonati, Michele; Lombardi, Giampiero; Negro, Matteo; Nervo, Beatrice; Rolando, Antonio; Palestrini, Claudia

    2013-01-01

    In recent decades, pastoral abandonment has produced profound ecological changes in the Alps. In particular, the reduction in grazing has led to extensive shrub encroachment of semi-natural grasslands, which may represent a threat to open habitat biodiversity. To reverse shrub encroachment, we assessed short-term effects of two different pastoral practices on vegetation and dung beetles (Coleoptera, Scarabaeoidea). Strategic placement of mineral mix supplements (MMS) and arrangement of temporary night camp areas (TNCA) for cattle were carried out during summer 2011 in the Val Troncea Natural Park, north-western Italian Alps. In 2012, one year after treatment, a reduction in shrub cover and an increase in bare ground cover around MMS sites was detected. A more intense effect was detected within TNCA through increases in forage pastoral value, and in the cover and height of the herbaceous layer. Immediately after treatment, changes in dung beetle diversity (total abundance, species richness, Shannon diversity, taxonomic and functional diversity) showed a limited disturbance effect caused by high cattle density. In contrast, dung beetle diversity significantly increased one year later both at MMS and TNCA sites, with a stronger effect within TNCA. Multivariate Regression Trees and associated Indicator Value analyses showed that some ecologically relevant dung beetle species preferred areas deprived of shrub vegetation. Our main conclusions are: i) TNCA are more effective than MMS in terms of changes to vegetation and dung beetles, ii) dung beetles respond more quickly than vegetation to pastoral practices, and iii) the main driver of the rapid response by dung beetles is the removal of shrubs. The resulting increase in dung beetle abundance and diversity, which are largely responsible for grassland ecosystem functioning, may have a positive effect on meso-eutrophic grassland restoration. Shrub encroachment in the Alps may therefore be reversed, and restoration of

  11. Bark and Ambrosia Beetle (Curculionidae: Scolytinae) Diversity Found in Agricultural and Fragmented Forests in Piracicaba-SP, Brazil.

    PubMed

    Sandoval Rodríguez, Carla; Cognato, Anthony I; Righi, Ciro Abbud

    2017-12-08

    Land use changes and forest fragmentation result in biodiversity loss and displacement, with insects among the most affected groups. Among these, bark beetles (Curculionidae: Scolytinae) occupy a prominent position due to their close ties to food resources, i.e., trees, and importance as primary decomposers in forest ecosystems. Therefore, our study aimed to document scolytine biodiversity associated with landscape components that vary based on their physical or botanical composition. Bark beetle diversity was sampled monthly for 12 mo in an Atlantic forest remnant and five adjacent vegetation plots (mixed Agroforestry System-AFS, of native trees and fruit species; AFS of rubber trees and coffee plants; coffee monoculture; rubber monoculture; and pasture). In total, 1,833 individuals were sampled from 38 species of which 24 (63%) were detected in very low abundance. The remaining 14 species were more abundant and widespread almost in all areas. Hypothenemus hampei (Westwood), Premnobius cavipennis (Eichhoff), Hypothenemus sp1., and Xyleborus volvulus (Fabricius) were the most abundant. The greatest abundance and richness of bark beetles were found in the dry and cold season. The varied microclimatic conditions of the vegetation plots greatly affected the diversity of the Scolytinae. Solar radiation presented a significant negative effect on abundance in almost all the studied areas. The greatest scolytine diversity was found in anthropic areas with tree canopy structure. Open areas (pasture and coffee monocrop) had a lower species diversity. Similarly, a lower abundance and species richness were found for the Atlantic forest remnant. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Discovery and identification of a male-killing agent in the Japanese ladybird Propylea japonica (Coleoptera: Coccinellidae)

    PubMed Central

    2010-01-01

    Background Endosymbionts that manipulate the reproduction of their hosts have been reported widely in invertebrates. One such group of endosymbionts is the male-killers. To date all male-killers reported are bacterial in nature, but comprise a diverse group. Ladybirds have been described as a model system for the study of male-killing, which has been reported in multiple species from widespread geographic locations. Whilst criteria of low egg hatch-rate and female-biased progenic sex ratio have been used to identify female hosts of male-killers, variation in vertical transmission efficiency and host genetic factors may result in variation in these phenotypic indicators of male-killer presence. Molecular identification of bacteria and screening for bacterial presence provide us with a more accurate method than breeding data alone to link the presence of the bacteria to the male-killing phenotype. In addition, by identifying the bacteria responsible we may find evidence for horizontal transfer between endosymbiont hosts and can gain insight into the evolutionary origins of male-killing. Phylogenetic placement of male-killing bacteria will allow us to address the question of whether male-killing is a potential strategy for only some, or all, maternally inherited bacteria. Together, phenotypic and molecular characterisation of male-killers will allow a deeper insight into the interactions between host and endosymbiont, which ultimately may lead to an understanding of how male-killers identify and kill male-hosts. Results A male-killer was detected in the Japanese coccinellid, Propylea japonica (Thunberg) a species not previously known to harbour male-killers. Families produced by female P. japonica showed significantly female-biased sex ratios. One female produced only daughters. This male-killer trait was maternally inherited and antibiotic treatment produced a full, heritable cure. Molecular analysis identified Rickettsia to be associated with the trait in this

  13. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    PubMed Central

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  14. Short-Term Responses of Ground Beetles to Forest Changes Caused by Early Stages of Emerald Ash Borer (Coleoptera: Buprestidae)-Induced Ash Mortality.

    PubMed

    Perry, Kayla I; Herms, Daniel A

    2016-04-22

    Emerald ash borer (Agrilus planipennis Fairmaire), an invasive wood-boring beetle native to Asia, has killed hundreds of millions of ash trees since its accidental introduction into North America, resulting in widespread formation of canopy gaps and accumulations of coarse woody debris (CWD) in forests. The objective was to quantify effects of canopy gaps and CWD caused by early stages of emerald ash borer-induced ash mortality, and their interaction on ground beetle assemblages. The impact of canopy gaps and CWD varied, as gaps affected beetle assemblages in 2011, while effects of CWD were only observed in 2012. Gaps decreased beetle activity-abundance, and marginally decreased richness, driving changes in species composition, but evenness and diversity were unaffected. Effects of the CWD treatment alone were minimal, but CWD interacted with the canopy treatment, resulting in an increase in activity-abundance of ground beetles in canopy gaps without CWD, and a marginal increase in species richness in canopy gaps with CWD. Although there were some initial changes in species composition, these were ephemeral, suggesting that ground beetle assemblages may be resilient to disturbance caused by emerald ash borer. This study contributes to our understanding of the cascading ecological impacts of biological invasions on forest ecosystems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong

    PubMed Central

    Ortega-Iturriaga, Adrián; del-Val, Ek

    2017-01-01

    The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird (Harmonia axyridis) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing “Harmonia axyridis” to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata, native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services. PMID:28533958

  16. From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong.

    PubMed

    Camacho-Cervantes, Morelia; Ortega-Iturriaga, Adrián; Del-Val, Ek

    2017-01-01

    The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird ( Harmonia axyridis ) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing " Harmonia axyridis " to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata , native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services.

  17. Southern Pine Beetle Competitors

    Treesearch

    Fred M. Stephen

    2011-01-01

    When southern pine beetles mass attack a living pine tree, if colonization is successful the tree dies and its phloem becomes immediately available to a complex of other bark beetles and long-horned beetles, all of which, in order to reproduce, compete for the new resource. In southern pines the phloem-inhabiting guild is composed of the southern pine beetle...

  18. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated araceae.

    PubMed

    Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard

    2012-12-01

    Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.

  19. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments

    PubMed Central

    Davis, Doreen E.

    2018-01-01

    Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. Methods We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k-means clustering. Results Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or

  20. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments.

    PubMed

    Davis, Doreen E; Gagné, Sara A

    2018-01-01

    Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k -means clustering. Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. We

  1. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission.

    PubMed

    Vucetic, Andja; Dahlin, Iris; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben; Ninkovic, Velemir

    2014-01-01

    Volatile interactions between unattacked plants can lead to changes in their volatile emissions. Exposure of potato plants to onion plant volatiles results in increased emission of 2 terpenoids, (E)-nerolidol and TMTT. We investigated whether this is detectable by the ladybird Coccinella septempunctata. The odor of onion-exposed potato was significantly more attractive to ladybirds than that of unexposed potato. Further, a synthetic blend mimicking the volatile profile of onion-exposed potato was more attractive than a blend mimicking that of unexposed potato. When presented individually, TMTT was attractive to ladybirds whereas (E)-nerolidol was repellent. Volatile exchange between unattacked plants and consequent increased attractiveness for ladybirds may be a mechanism that contributes to the increased abundance of natural enemies in complex plant habitats.

  2. Jeffrey Pine Beetle

    Treesearch

    Richard H. Smith

    1971-01-01

    The Jeffrey pine beetle (Dendroctonus jeffreyi Hopk.), one of the bark beetles that kill trees by mining between the bark and the wood, is the principal insect enemy of Jeffrey pine. The beetle is of economic importance chiefly in California, where most of the Jeffrey pine grows, and is most destructive in old-growth stands in the timber-producing areas of northeastern...

  3. Monitoring Aethina tumida (Coleoptera: Nitidulidae) with baited bottom board traps: occurrence and seasonal abundance in honey bee colonies in Kenya.

    PubMed

    Torto, Baldwyn; Fombong, Ayuka T; Arbogast, Richard T; Teal, Peter E A

    2010-12-01

    The population dynamics of the honey bee pest Aethina tumida Murray (small hive beetle) have been studied in the United States with flight and Langstroth hive bottom board traps baited with pollen dough inoculated with a yeast Kodamaea ohmeri associated with the beetle. However, little is known about the population dynamics of the beetle in its native host range. Similarly baited Langstroth hive bottom board traps were used to monitor the occurrence and seasonal abundance of the beetle in honey bee colonies at two beekeeping locations in Kenya. Trap captures indicated that the beetle was present in honey bee colonies in low numbers all year round, but it was most abundant during the rainy season, with over 80% trapped during this period. The survival of larvae was tested in field releases under dry and wet soil conditions, and predators of larvae were identified. The actvity and survival of the beetle were strongly influenced by a combination of abiotic and biotic factors. Larval survival was higher during wet (28%) than dry (1.1%) conditions, with pupation occurring mostly at 0-15 cm and 11-20 cm, respectively, beneath the surface soil during these periods. The ant Pheidole megacephala was identified as a key predator of larvae at this site, and more active during the dry than wet seasons. These observations imply that intensive trapping during the rainy season could reduce the population of beetles infesting hives in subsequent seasons especially in places where the beetle is a serious pest. © 2010 Entomological Society of America

  4. A comparison of the beetle (Coleoptera) fauna captured at two heights above the ground in a North American temperate deciduous forest

    Treesearch

    Michael D. Ulyshen; James L. Hanula

    2007-01-01

    We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...

  5. A comparison of the Beetle (Coleoptera) Fauna Captured at two heights above the ground in a North American temperate deciduous forest

    Treesearch

    Michael Ulyshen; James Hanula

    2007-01-01

    We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...

  6. Reproduction in Risky Environments: The Role of Invasive Egg Predators in Ladybird Laying Strategies

    PubMed Central

    Paul, Sarah C.; Pell, Judith K.; Blount, Jonathan D.

    2015-01-01

    Reproductive environments are variable and the resources available for reproduction are finite. If reliable cues about the environment exist, mothers can alter offspring phenotype in a way that increases both offspring and maternal fitness (‘anticipatory maternal effects’—AMEs). Strategic use of AMEs is likely to be important in chemically defended species, where the risk of offspring predation may be modulated by maternal investment in offspring toxin level, albeit at some cost to mothers. Whether mothers adjust offspring toxin levels in response to variation in predation risk is, however, unknown, but is likely to be important when assessing the response of chemically defended species to the recent and pervasive changes in the global predator landscape, driven by the spread of invasive species. Using the chemically defended two-spot ladybird, Adalia bipunctata, we investigated reproductive investment, including egg toxin level, under conditions that varied in the degree of simulated offspring predation risk from larval harlequin ladybirds, Harmonia axyridis. H. axyridis is a highly voracious alien invasive species in the UK and a significant intraguild predator of A. bipunctata. Females laid fewer, larger egg clusters, under conditions of simulated predation risk (P+) than when predator cues were absent (P-), but there was no difference in toxin level between the two treatments. Among P- females, when mean cluster size increased there were concomitant increases in both the mass and toxin concentration of eggs, however when P+ females increased cluster size there was no corresponding increase in egg toxin level. We conclude that, in the face of offspring predation risk, females either withheld toxins or were physiologically constrained, leading to a trade-off between cluster size and egg toxin level. Our results provide the first demonstration that the risk of offspring predation by a novel invasive predator can influence maternal investment in toxins within

  7. The Classroom Animal: Flour Beetles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1988-01-01

    Describes the flour beetle, "Tribolium confusum," and its life cycle, habitat, culturing requirements, and some possible uses of this beetle as a classroom animal. Discusses what children could learn from flour beetles. Explains how to get rid of beetles found in foods at home. (CW)

  8. Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing.

    PubMed

    Zhang, Yuhong; Wu, Hongsheng; Xie, Jiaqin; Jiang, Ruixin; Deng, Congshuang; Pang, Hong

    2015-11-19

    Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect's ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses. Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect's response to heat- and cold-stress. These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.

  9. Arthropods associated with fungal galls: do large galls support more abundant and diverse inhabitants?

    NASA Astrophysics Data System (ADS)

    Funamoto, Daichi; Sugiura, Shinji

    2017-02-01

    Fungus-induced galls can attract spore-feeding arthropods as well as gall-feeding ones, resulting in diverse communities. Do large fungal galls support more abundant and diverse arthropod communities than small fungal galls? To address this question, we investigated the structure of the arthropod community associated with bud galls induced by the fungus Melanopsichium onumae on the tree species Cinnamomum yabunikkei (Lauraceae) in central Japan. Thirteen species of arthropods were associated with M. onumae galls. Dominant arthropod species were represented by the larvae of a salpingid beetle (a spore feeder), a nitidulid beetle (a spore feeder), a cosmopterigid moth (a spore feeder), an unidentified moth (a gall tissue feeder), and a drosophilid species (a gall tissue feeder). Arthropod abundance and species richness were positively correlated with gall diameter. The majority of the most abundant species were more frequently found in large galls than in small ones, indicating that large fungal galls, which have more food and/or space for arthropods, could support a more abundant and diverse arthropod community.

  10. Host Acceptance and Larval Competition between the Invasive Banded and European Elm Bark Beetles, Scolytus schevyrewi and S. multistriatus (Coleoptera: Scolytidae): Potential Mechanisms for Competitive Displacement

    USDA-ARS?s Scientific Manuscript database

    A recent survey revealed that the newly invasive banded elm bark beetle, Scolytus schevyrewi, was much more abundant than the long-established European elm bark beetle, S. multistriatus, in areas of Colorado and Wyoming, USA. This study sought to determine whether competitive displacement of S. mul...

  11. Intraguild predation and native lady beetle decline.

    PubMed

    Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild

  12. Structure of dung beetle communities in an altitudinal gradient of neotropical dry forest.

    PubMed

    Domínguez, D; Marín-Armijos, D; Ruiz, C

    2015-02-01

    To understand the effects of global warming in tropical insect communities, it is necessary to comprehend how such communities respond to different abiotic factors that covariate with altitude. In this study, we partially answer this question applied to dung beetle communities distributed along an altitudinal gradient. The sampling was conducted in seven stations 100 m apart each in altitude in a dry mountain scrub in southern Ecuador. A total of 7422 individuals belonging to six species were captured. Canthon balteatus Boheman was the most abundant with 6502 individuals, and Onoreidium ohausi (Arrow) was the least abundant with 20 individuals. We found significant changes in the structure of the dung beetle communities with altitude. Two abiotic factors showed a relationship with the abundance pattern for all species (altitude, Z = 0.011, p < 0.01, and temperature, Z = 0.859, p < 0.01). Canthon balteatus Boheman showed a positive relationship with altitude (Z = 1.422, p < 0.001) and temperature (Z = 1.121, p < 0.001), Dichotomius problematicus (Lüederwaldt) a positive relationship with precipitation (Z = 0.113, p < 0.001), and Malagoniella cupreicollis (Waterhouse) a positive relationship with temperature (Z = 0.668, p < 0.001) and negative with precipitation (Z = -0.189, p < 0.001). Phanaeus achilles Boheman, Onthophagus sp., and O. ohausi (Arrow) did not show any relationship with the studied variables, nor was the richness correlated with the studied variables. These results suggest that the effects of global warming over dung beetle communities will be difficult to predict because of species-specific responses to global warming.

  13. Disruption by conophthorin of the kairomonal response of sawyer beetles to bark beetle pheromones.

    PubMed

    Morewood, W D; Simmonds, K E; Gries, R; Allison, J D; Borden, J H

    2003-09-01

    Antennally active nonhost angiosperm bark volatiles were tested for their ability to reduce the response of three common species of coniferophagous wood-boring Cerambycidae to attractant-baited multiple funnel traps in the southern interior of British Columbia. Of the nonhost volatiles tested, only conophthorin was behaviorally active, disrupting the attraction of sawyer beetles, Monochamus spp., to traps baited with the host volatiles alpha-pinene and ethanol and the bark beetle pheromones ipsenol and ipsdienol. Conophthorin did not affect the attraction of sawyer beetles to the host kairomones alpha-pinene and ethanol in the absence of bark beetle pheromones, nor did it have any behavioral effect on adults of Xylotrechus longitarsis, which were not attracted to bark beetle pheromones. These results indicate that conophthorin does not act as a general repellent for coniferophagous Cerambycidae, as it seems to do for many species of Scolytidae, but has the specific activity of disrupting the kairomonal response of sawyer beetles to bark beetle pheromones.

  14. The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia.

    PubMed

    Ramle, M; Wahid, M B; Norman, K; Glare, T R; Jackson, T A

    2005-05-01

    The rhinoceros beetle, Oryctes rhinoceros, has emerged as a serious pest of oil palm since the prohibition of burning as a method for maintaining estate hygiene in the 1990s. The abundance of beetles is surprising given that the Malay peninsula was the site of first discovery of the Oryctes virus, which has been used to effect good as a biological control agent in other regions. A survey of adult beetles was carried out throughout Malaysia using pheromone traps. Captured beetles were examined for presence of virus using both visual/microscopic examination and PCR detection methods. The survey indicated that Oryctes virus was common in Malaysia among the adult beetles. Viral DNA analysis was carried out after restriction with HindIII enzyme and indicated at least three distinct viral genotypes. Bioassays were used to compare the viral strains and demonstrate that one strain (type B) is the most virulent against both larvae and adults of the beetle. Virus type B has been cultured and released into healthy populations where another strain (type A) forms the natural background. Capture and examination of beetles from the release site and surrounding area has shown that the spread and persistence of the applied virus strain is accompanied by a reduction in palm frond damage.

  15. Attraction of bark beetle predator, Thanasimus undatulus (Coleoptera: Cleridae), to pheromones of the spruce beetle and two secondary bark beetles (Coleoptera: Scolytidae)

    Treesearch

    Therese M. Poland; John H. Borden

    1997-01-01

    The bark beetle predator Thanasimus undatulus Say was captured in statistically significant numbers (total catch = 470, 713, and 137) in three field experiments using multiple-funnel traps baited with various combinations of pheromones for the spruce beetle, Dendroctonus rufipennis Kirby, and the secondary bark beetles ...

  16. Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): diversity, core members and co-evolutionary patterns.

    PubMed

    Hernández-García, Juan Alfredo; Briones-Roblero, Carlos Iván; Rivera-Orduña, Flor N; Zúñiga, Gerardo

    2017-10-24

    Dendroctonus bark beetles comprise 20 taxonomically recognized species, which are one of the most destructive pine forest pests in North and Central America, and Eurasia. The aims of this study were to characterize the gut bacterial diversity, to determine the core bacteriome and to explore the ecological association between these bacteria and bark beetles. A total of five bacterial phyla were identified in the gut of 13 Dendroctonus species; Proteobacteria was the most abundant, followed by Firmicutes, Fusobacteria, Actinobacteria and Deinococcus-Thermus. The α-diversity was low as demonstrated in previous studies and significant differences in β-diversity were observed. The core bacteriome was composed of Enterobacter, Pantoea, Pseudomonas, Rahnella, Raoultella, and Serratia. The tanglegram between bacteria and bark beetles suggests that members of bacterial community are acquired from the environment, possibly from the host tree. These findings improve the knowledge about the bacterial community composition, and provide the bases to study the metabolic functions of these bacteria, as well as their interaction with these bark beetles.

  17. Ground beetle communities in a mountain river subjected to restoration: The Raba River, Polish Carpathians.

    PubMed

    Bednarska, Agnieszka J; Wyżga, Bartłomiej; Mikuś, Paweł; Kędzior, Renata

    2018-01-01

    Effects of passive restoration of mountain rivers on the organisms inhabiting exposed riverine sediments are considerably less understood than those concerning aquatic biota. Thus, the effects of a recovery of the Raba River after abandonment of maintenance of its channelization scheme on ground beetle (Coleoptera: Carabidae) communities were investigated by comparing 6 unmanaged cross-sections and 6 cross-sections from adjacent channelized reaches. In each cross-section, ground beetles were collected from 12 sampling sites in spring, summer, and autumn, and 8 habitat parameters characterizing the cross-sections and sampling sites were determined. Within a few years after abandonment of the Raba River channelization scheme, the width of this gravel-bed river increased up to three times and its multi-thread pattern became re-established. Consequently, unmanaged river cross-sections had significantly larger channel width and more low-flow channels and eroding cutbanks than channelized cross-sections. Moreover, sampling sites in the unmanaged cross-sections were typified by significantly steeper average surface slope and larger average distance from low-flow channels than the sites in channelized cross-sections. In total, 3992 individuals from 78 taxa were collected during the study. The ground beetle assemblages were significantly more abundant and richer in species in the unmanaged than in the channelized cross-sections but no significant differences in carabid diversity indices between the two cross-section types were recorded. Redundancy Analysis indicated active river zone width as the only variable explaining differences in abundance and species richness among the cross-sections. Multiple regression analysis indicated species diversity to predominantly depend on the degree of plant cover and substrate grain size. The study showed that increased availability of exposed sediments in the widened river reaches allowed ground beetles to increase their abundance and

  18. A gene associated with social immunity in the burying beetle Nicrophorus vespilloides

    PubMed Central

    Palmer, William J.; Duarte, Ana; Schrader, Matthew; Day, Jonathan P.; Kilner, Rebecca; Jiggins, Francis M.

    2016-01-01

    Some group-living species exhibit social immunity, where the immune response of one individual can protect others in the group from infection. In burying beetles, this is part of parental care. Larvae feed on vertebrate carcasses which their parents smear with exudates that inhibit microbial growth. We have sequenced the transcriptome of the burying beetle Nicrophorus vespilloides and identified six genes that encode lysozymes—a type of antimicrobial enzyme that has previously been implicated in social immunity in burying beetles. When females start breeding and producing antimicrobial anal exudates, we found that the expression of one of these genes was increased by approximately 1000 times to become one of the most abundant transcripts in the transcriptome. Females varied considerably in the antimicrobial properties of their anal exudates, and this was strongly correlated with the expression of this lysozyme. We conclude that we have likely identified a gene encoding a key effector molecule in social immunity and that it was recruited during evolution from a function in personal immunity. PMID:26817769

  19. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    USGS Publications Warehouse

    Paxton, Eben H.; Theimer, Tad C.; Sogge, Mark K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a well-studied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment.

  20. Relations Between the Structure of Benthic Macro-Invertebrates and the Composition of Adult Water Beetle Diets from the Dytiscidae Family.

    PubMed

    Frelik, Anna; Pakulnicka, Joanna

    2015-10-01

    This paper investigates the relations between the diet structure of predaceous adult water beetles from the Dytiscidae family and the structure of macrofauna inhabiting the same environments. The field studies were carried out from April until September in 2012 and 2013 in 1-mo intervals. In total, >1,000 water beetles and 5,115 benthic macro-invertebrates were collected during the whole period of the study. Subsequently, 784 specimens of adult water beetles (70.6% out of the total sampled) with benthic macro-invertebrates found in their proventriculi, were subject to analysis. The predators were divided into three categories depending on their body size: small beetles (2.3-5.0 mm), medium-sized beetles (13-15 mm), and large beetles (27-37 mm). All adult Dytiscidae consumed primarily Ephemeroptera and Chironomidae larvae. Although Asellidae were numerically dominant inhabitants of the sites, the adult water beetles did not feed on them. The analysis of feeding relations between predators and their prey revealed that abundance of Ephemeroptera, Chironomidae, and larval Dytiscidae between the environment and the diet of adult Dytiscidae were strongly correlated. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Dispersal of the spruce beetle, Dendroctonus rufipennis, and the engraver beetle, Ips perturbatus, in Alaska.

    Treesearch

    Richard A. Werner; Edward H. Holsten

    1997-01-01

    Mark-release-recapture experiments were performed with spruce beetles (Dendroctonus rufipennis (Kirby)) and Ips engraver beetles (Ips perturbatus (Eichhoff)) to determine distance and direction of dispersal. The recapture rate of beetles marked with fluorescent powder was extremely low. Most I. perturbatus...

  2. Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize.

    PubMed

    Svobodová, Z; Skoková Habuštová, O; Boháč, J; Sehnal, F

    2016-08-01

    Staphylinid beetles are recommended bioindicators for the pre-market environmental risk assessment of genetically modified (GM) insect protected maize expressing the Cry3Bb1 toxin. Our multiannual study is a unique European analysis of a staphylinid community within a 14 ha maize field. GM maize, its near-isogenic hybrid (with or without insecticide treatment), and two other reference hybrids were each grown in five 0.5 ha plots. The opportunity for exposure to Cry toxin from plant residues ploughed into the soil was shown by the presence of saprophagous dipteran larvae that are common prey of predatory staphylinid species and hosts of the parasitoid species. 2587 individuals belonging to 77 staphylinid species were sampled using pitfall traps. Lesteva longoelytrata (31%), Oxypoda acuminata (12%), Aloconota sulcifrons (8%) and Anotylus rugosus (7%) were the most abundant beetles in the field. Bionomics, food specialization, temperature requirements and size group were assigned for 25 most common species. These traits determine the occurrence of staphylinid beetles in the field, the food sources they could utilize and thus also their likely contact with the Cry3Bb1 toxin. Statistical analysis of activity abundance, Rao indices and multivariate analysis of distribution of particular categories of functional traits in the field showed negligible effects of the experimental treatments, including the GM maize, upon the staphylinid community. Staphylinid beetles represent a considerably diverse part of epigeic field fauna with wide food specialization; these features render them suitable for the assessment of environmental safety of GM insect protected maize. However, the availability of prey and the presence of particular staphylinid species and their abundance are highly variable; this complicates the interpretation of the results.

  3. Decline of Ecological Functions Performed by Dung Beetles in Areas of Atlantic Forest and Contribution of Rollers and Tunnellers in Organic Matter Removal.

    PubMed

    Batilani-Filho, M; Hernandez, M I M

    2017-08-01

    The feeding behavior of the Scarabaeinae subfamily has positive implications on ecosystem functioning. We characterize the necrophagous and coprophagous dung beetle assemblages, and we quantify the removal of swine carrion and domestic dog dung in two areas with different degrees of environmental disturbance in an Atlantic Forest remnant located in Florianopolis, SC, Brazil. The experiment was setup at eight sampling points in each area, by installing one control and two collection and removal assessment arenas for collecting necrophagous dung beetles while simultaneously evaluating the removal of carrion (50 g of rotting pork for 48 h). We used the same sample design with 50 g of domestic dog dung for evaluating the coprophagous dung beetle assemblage and dung removal. Our results indicated that necrophagous dung beetles were more sensitive to environmental disturbance owing to a lower richness and changes in species dominance, which resulted in a lower removal in the areas with greater disturbance and lower environmental quality (39.6% carrion removal) in relation to less disturbed areas (75.1% carrion removal). The dung beetle assemblages were similar in structure and removal rates between areas (80% of dung was removed). In assessing the influence of richness, abundance, and biomass of dung beetles on resource removal both for the whole assemblage and for each separate functional guild, only the abundance and biomass of rollers contributed significantly to dung removal. These results highlight the implications of environmental disturbances on the functions of dung beetles, which respond differently according to the resource they use. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Beetle-to-beetle transmission and dispersal of Hymenolepis diminuta (Cestoda) eggs via the feces of Tenebrio molitor.

    PubMed

    Pappas, P W; Barley, A J

    1999-04-01

    When grain beetles (Tenebrio molitor) were fed eggs of Hymenolepis diminuta, many of the eggs passed intact through the beetles' intestines, and eggs were present in the beetles' feces for at least 48 hr after feeding. When uninfected T. molitor were fed beetle feces containing H. diminuta eggs, they became infected. Tenebrio molitor were fed on H. diminuta eggs and then placed in fresh bran for 48 hr. When uninfected T. molitor were placed in this bran, they became infected. Thus, feces from beetles that have ingested H. diminuta eggs serve as a source of eggs for other beetles, as well as a mechanism of egg dispersal.

  5. Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain

    PubMed Central

    Langhans, Simone D.; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity. PMID:25545280

  6. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    PubMed

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  7. Lady beetles of South Dakota

    USDA-ARS?s Scientific Manuscript database

    Lady beetles are one of the most familiar groups of beneficial insects. Farmers and gardeners appreciate them for devouring insect pests. Both adult lady beetles and caterpillar-like juveniles eat pests. Lady beetles are recognizable by their red and orange colors that contrast with black spots and...

  8. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce differentmore » results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.« less

  9. Dead ant walking: a myrmecophilous beetle predator uses parasitoid host location cues to selectively prey on parasitized ants

    PubMed Central

    2016-01-01

    Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe, which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant–myrmecophile interactions beyond just their pairwise context. PMID:27512148

  10. A tapeworm molecule manipulates vitellogenin expression in the beetle Tenebrio molitor

    PubMed Central

    Warr, E.; Meredith, J. M.; Nimmo, D. D.; Basu, S.; Hurd, H.; Eggleston, P.

    2006-01-01

    Metacestodes of Hymenolepis diminuta secrete a molecule that decreases vitellogenin (Vg) synthesis in the beetle host, Tenebrio molitor. The 5608 bp T. molitor Vg cDNA represents a single-copy gene encoding a single open reading frame of 1821 amino acids with a predicted molecular mass of 206 kDa. Northern blot analysis revealed detectable levels of transcripts only in adult females. In vivo, Vg mRNA abundance was significantly higher in fat bodies from infected females compared with control females at all but the earliest time point. In vitro, Vg mRNA abundance was significantly increased in fat bodies incubated with live stage I–II parasites. The apparent conflict between increased Vg mRNA abundance and decreased Vg protein in fat bodies from infected females is discussed. PMID:16907836

  11. Beetle succession and diversity between clothed sun-exposed and shaded pig carrion in a tropical dry forest landscape in Southern Mexico.

    PubMed

    Caballero, Ubaldo; León-Cortés, Jorge L

    2014-12-01

    Over a 31-day period, the decomposition process, beetle diversity and succession on clothed pig (Sus scrofa L.) carcasses were studied in open (agricultural land) and shaded habitat (secondary forest) in Southern Mexico. The decomposition process was categorised into five stages: fresh, bloated, active decay, advanced decay and remains. Except for the bloated stage, the elapsed time for each decomposition stage was similar between open and shaded habitats, all carcasses reached an advanced decay stage in seven days, and the fifth stage (remains) was not recorded in any carcass during the time of this study. A total of 6344 beetles, belonging to 130 species and 21 families, were collected during the entire decomposition process, and abundances increased from fresh to advanced decay stages. Staphylinidae, Scarabaeidae and Histeridae were taxonomically and numerically dominant, accounting for 61% of the species richness and 87% of the total abundance. Similar numbers of species (87 and 88 species for open and shaded habitats, respectively), levels of diversity and proportions (open 49%; shaded 48%) of exclusive species were recorded at each habitat. There were significantly distinct beetle communities between habitats and for each stage of decomposition. An indicator species analysis ("IndVal") identified six species associated to open habitats, 10 species to shaded habitats and eight species to advanced decay stages. In addition, 23 beetle species are cited for the first time in the forensic literature. These results showed that open and shaded habitats both provide suitable habitat conditions for the carrion beetle diversity with significant differences in community structure and identity of the species associated to each habitat. This research provides the first empirical evidence of beetle ecological succession and diversity on carrion in Mexican agro-pastoral landscapes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Mountain pine beetle

    Treesearch

    Ken Gibson; Sandy Kegley; Barbara Bentz

    2009-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) is a member of a group of insects known as bark beetles. Its entire life cycle is spent beneath the bark of host trees, except when adults emerge from brood trees and fly in search of new host trees.

  13. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    USGS Publications Warehouse

    Paxton, E.H.; Theimer, T.C.; Sogge, M.K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a wellstudied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment. ?? The Cooper Ornithological Society 2011.

  14. Southern Pine Bark Beetle Guild

    Treesearch

    T. Evan Nebeker

    2011-01-01

    Dendroctonus frontalis (southern pine beetle), D. terebrans (black turpentine beetle), Ips avulsus (small southern pine engraver or four-spined engraver), I. grandicollis (five-spined engraver), and I. calligraphus (six-spined engraver) comprise the southern pine bark beetle guild. Often they are found sharing the same hosts in the Southeastern United States. They...

  15. Infestation of grain fields and degree-day phenology of the cereal leaf beetle (Coleoptera: Chrysomelidae) in Utah: long-term patterns.

    PubMed

    Evans, Edward W; Carlile, Nolan R; Innes, Matthew B; Pitigala, Nadishan

    2014-02-01

    Scouting at key times in the seasonal development of insect pest populations, as guided by degree-day accumulation, is important for minimizing unwarranted insecticide application. Fields of small grains in northern Utah were censused weekly from 2001 to 2011, to assess infestation by the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), and develop degree-day guidelines for measuring cereal leaf beetle abundance at peak egg and larval densities in any given year. Even in years of high overall numbers of cereal leaf beetle, relatively few fields were heavily infested (with 20 or more cereal leaf beetle eggs + larvae per 0.09 m2) at either egg or larval peak density during the growing season. In individual fields, the number of immature cereal leaf beetle (eggs + larvae) at peak larval density was positively related to the number of immature cereal leaf beetles present earlier at peak egg density. Although there was large variation among years in when cereal leaf beetle egg and larval numbers peaked during the season as measured by degree-day accumulation from 1 January, much of this variation was accounted for by the warmth of the early spring before significant egg laying occurred. Hence, degree-day estimates that account for early spring warmth can guide growers in scouting grain fields at peak egg densities to identify fields at high risk of subsequent economic damage from cereal leaf beetle larval feeding. The relatively low incidence of fields heavily infested by cereal leaf beetle in northern Utah emphasizes the benefit that growers can gain by scouting early before applying insecticide treatments.

  16. Southern Pine Beetle

    Treesearch

    Robert C. Thatcher; Patrick J. Barry

    1982-01-01

    The southern pine beetle (Dendroctonus frontalis Zimmermann) is one of pine's most destructive insect enemies in the Southern United States, Mexico, and Central America. Because populations build rapidly to outbreak proportions and large numbers of trees are killed, this insect generates considerable concern among managers of southern pine forests. The beetle...

  17. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape?

    PubMed

    Grimbacher, Peter S; Stork, Nigel E

    2009-09-01

    There are surprisingly few studies documenting effects of tropical cyclones (including hurricanes and typhoons) on rainforest animals, and especially insects, considering that many tropical forests are frequently affected by cyclonic disturbance. Consequently, we sampled a beetle assemblage inhabiting 18 upland rainforest sites in a fragmented landscape in north-eastern Queensland, Australia, using a standardised sampling protocol in 2002 and again 12 months after the passage of Severe Tropical Cyclone Larry (March 2006). The spatial configuration of sites allowed us to test if the effects of a cyclone and those from fragmentation interact. From all insect samples we extracted 12,568 beetles of 382 species from ten families. Beetle species composition was significantly different pre-and post-cyclone although the magnitude of faunal change was not large with 205 species, representing 96% of all individuals, present in both sampling events. Sites with the greatest changes to structure had the greatest changes in species composition. At the site level, increases in woody debris and wood-feeding beetle (Scolytinae) counts were significantly correlated but changes in the percent of ground vegetation were not mirrored by changes in the abundance of foliage-feeding beetles (Chrysomelidae). The overall direction of beetle assemblage change was consistent with increasing aridity, presumably caused by the loss of canopy cover. Sites with the greatest canopy loss had the strongest changes in the proportion of species previously identified in the pre-cyclone study as preferring arid or moist rainforest environments. The magnitude of fragmentation effects was virtually unaltered by the passage of Cyclone Larry. We postulate that in the short-term the effects of cyclonic disturbance and forest fragmentation both reduce the extent of moist, interior habitat.

  18. Posteruption arthropod succession on the Mount St. Helens volcano: the ground-dwelling beetle fauna (Coleoptera).

    Treesearch

    R.R. Parmenter; C.M. Crisafulli; N. Korbe; G. Parsons; M. Edgar; J.A. MacMahon

    2005-01-01

    The 1980 eruptions of Mount St. Helens created a complex mosaic of disturbance types over a 600 km2 area. From 1980 through 2000 we monitored beetle species relative abundance and faunal composition of assemblages at undisturbed reference sites and in areas subjected to tephra-fall, blowdown, and pyroclastic flow volcanic disturbance. We...

  19. Southern Pine Beetle Handbook: Southern Pine Beetles Can Kill Your Ornamental Pine

    Treesearch

    Robert C. Thatcher; Jack E. Coster; Thomas L. Payne

    1974-01-01

    Southern pine beetles are compulsive eaters. Each year in the South from Texas to Virginia the voracious insects conduct a movable feast across thousands of acres of pine forests. Most trees die soon after the beetles sink their teeth into them.

  20. Influence of prescribed fire on carabid beetle (Carabidae) and spider (Araneae) assemblages in forest litter in southwestern Oregon.

    Treesearch

    Christine G. Niwa; Robert W. Peck

    2002-01-01

    The objective of this study was to determine if prescribed fire affects spider (Araneae) and carabid beetle (Carabidae) abundance, and whether the magnitude of this effect varies with time since fire. Within mixed conifer stands; nine understory fuels-reduction burns, ranging from

  1. Where Have All the Beetles Gone?

    Treesearch

    Richard A. Goyer; Kier D. Klepzig

    2002-01-01

    Without a doubt, bark beetles are the most destructive insect pests of Southern pines. Among these, the Southern pine beetle (SPB), Dendroctonus frontalis, isi the most notable and most noticed. During outbreak years, this small, but very aggresive, beetle can cause catastrophic losses.

  2. Dead ant walking: a myrmecophilous beetle predator uses parasitoid host location cues to selectively prey on parasitized ants.

    PubMed

    Mathis, Kaitlyn A; Tsutsui, Neil D

    2016-08-17

    Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe, which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant-myrmecophile interactions beyond just their pairwise context. © 2016 The Author(s).

  3. Zombie soldier beetles: Epizootics in the goldenrod soldier beetle, Chauliognathus pensylvanicus (Coleoptera: Cantharidae) caused by Eryniopsis lampyridarum (Entomophthoromycotina: Entomophthoraceae).

    PubMed

    Steinkraus, Donald C; Hajek, Ann E; Liebherr, Jim K

    2017-09-01

    Adult goldenrod soldier beetles, Chauliognathus pensylvanicus, were found infected by the fungus Eryniopsis lampyridarum (Entomophthoromycotina) in Arkansas during September - October (1996, 2001, 2015 and 2016). Living and dead infected beetles were found on flowering frost aster, Symphyotrichum pilosum, common boneset, Eupatorium perfoliatum, and Canada goldenrod, Solidago canadensis. Live and dead beetles (n=446) were collected in 1996 from S. pilosum flowers and held individually in the laboratory for determination of fungal prevalence. Of the beetles collected, 281 (63%) were males and 165 (37%) were females. A total of 90 beetles were infected with E. lampyridarum, an overall prevalence of 20.2%. Prevalence in males was 19.6% (n=55 infected/281 males total) and prevalence in females was 21.2% (n=35 infected /165 females total). Conidia were produced from 57% of the infected beetles, 23% of the infected beetles produced resting spores, and 20% contained the hyphal body stage. Infected beetles produced either conidia or resting spores but never both in the same host. Post-mortem morphological changes in the hosts due to E. lampyridarum were observed periodically for 24h. Shortly before death, by unknown mechanisms, dying infected beetles tightly clamped their mandibles into flower heads and ca. 15-22h later (between 2400 and 0700h) the fungus caused dead beetles to raise their elytra and expand their metathoracic wings. Copyright © 2017. Published by Elsevier Inc.

  4. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    USDA-ARS?s Scientific Manuscript database

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  5. Occurrence and field densities of Coleoptera in the maize herb layer: implications for Environmental Risk Assessment of genetically modified Bt-maize.

    PubMed

    Rauschen, Stefan; Schaarschmidt, Frank; Gathmann, Achim

    2010-10-01

    Beetles (Coleoptera) are a diverse and ecologically important group of insects in agricultural systems. The Environmental Risk Assessment (ERA) of genetically modified Bt-crop varieties with insect resistances thus needs to consider and assess the potential negative impacts on non-target organisms belonging to this group. We analysed data gathered during 6 years of field-release experiments on the impact of two genetically modified Bt-maize varieties (Ostrinia-resistant MON810 and Diabrotica-resistant MON88017) on the occurrence and field densities of Coleoptera, especially the two families Coccinellidae and Chrysomelidae. Based on a statistical analysis aimed at establishing whether Bt-maize varieties are equivalent to their near-isogenic counterparts, we discuss the limitations of using field experiments to assess the effects of Bt-maize on these two beetle families. The densities of most of the beetle families recorded in the herb layer were very low in all growing seasons. Coccinellidae and Chrysomelidae were comparatively abundant and diverse, but still low in numbers. Based on their role as biological control agents, Coccinellidae should be a focus in the ERA of Bt-plants, but given the large natural variability in ladybird densities in the field, most questions need to be addressed in low-tier laboratory tests. Chrysomelidae should play a negligible role in the ERA of Bt-plants, since they occur on-crop as secondary pests only. Species occurring off-crop, however, can be addressed in a similar fashion as non-target Lepidoptera in Cry1Ab expressing Bt-maize.

  6. Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles.

    PubMed

    Sequeira, A S; Normark, B B; Farrell, B D

    2000-12-07

    Several shifts from ancestral conifer feeding to angiosperm feeding have been implicated in the unparalleled diversification of beetle species. The single largest angiosperm-feeding beetle clade occurs in the weevils, and comprises the family Curculionidae and relatives. Most authorities confidently place the bark beetles (Scolytidae) within this radiation of angiosperm feeders. However, some clues indicate that the association between conifers and some scolytids, particularly in the tribe Tomicini, is a very ancient one. For instance, several fragments of Gondwanaland (South America, New Caledonia, Australia and New Guinea) harbour endemic Tomicini specialized on members of the formerly widespread and abundant conifer family Araucariaceae. As a first step towards resolving this seeming paradox, we present a phylogenetic analysis of the beetle family Scolytidae with particularly intensive sampling of conifer-feeding Tomicini and allies. We sequenced and analysed elongation factor 1alpha and nuclear rDNAs 18S and 28S for 45 taxa, using members of the weevil family Cossoninae as an out-group. Our results indicate that conifer feeding is the ancestral host association of scolytids, and that the most basal lineages of scolytids feed on Aramucaria. If scolytids are indeed nested within a great angiosperm-feeding clade, as many authorities have held, then a reversion to conifer feeding in ancestral scolytids appears to have occurred in the Mesozoic, when Araucaria still formed a major component of the woody flora.

  7. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  8. Charles Darwin, beetles and phylogenetics

    NASA Astrophysics Data System (ADS)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  9. The role of beetle marks and flower colour on visitation by monkey beetles (hopliini) in the greater cape floral region, South Africa.

    PubMed

    Van Kleunen, Mark; Nänni, Ingrid; Donaldson, John S; Manning, John C

    2007-12-01

    A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers.

  10. The Dung Beetle Dance: An Orientation Behaviour?

    PubMed Central

    Baird, Emily; Byrne, Marcus J.; Smolka, Jochen; Warrant, Eric J.; Dacke, Marie

    2012-01-01

    An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic “dance,” in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path. PMID:22279572

  11. Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection.

    PubMed

    Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir

    2016-09-01

    Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores.

  12. Predators of the Southern Pine Beetle

    Treesearch

    John D. Reeve

    2011-01-01

    This chapter of the Southern Pine Beetle II reviews the overall influence of predators on southern pine beetle (SPB) population dynamics, as well as recent research on specific predators such as the clerid beetle Thanasimus dubius. Several lines of evidence suggest that predators and other natural enemies generate significant SPB mortality that contributes to outbreak...

  13. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    USGS Publications Warehouse

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  14. Southern Pine Beetle Behavior and Semiochemistry

    Treesearch

    Brian T. Sullivan

    2011-01-01

    The southern pine beetle (SPB) feeds both as adults and larvae within the inner bark of pine trees, which invariably die as a result of colonization. Populations of the SPB erupt periodically and produce catastrophic losses of pines, while at other times the beetles persist almost undetectably in the environment. The southern pine beetle has evolved behaviors that...

  15. Southern Pine Beetle Information System (SPBIS)

    Treesearch

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  16. Densities of breeding birds and changes in vegetation in an alaskan boreal forest following a massive disturbance by spruce beetles

    USGS Publications Warehouse

    Matsuoka, S.M.; Handel, C.M.; Ruthrauff, D.R.

    2001-01-01

    We examined bird and plant communities among forest stands with different levels of spruce mortality following a large outbreak of spruce beetles (Dendroctonus rufipennis (Kirby)) in the Copper River Basin, Alaska. Spruce beetles avoided stands with black spruce (Picea mariana) and selectively killed larger diameter white spruce (Picea glauca), thereby altering forest structure and increasing the dominance of black spruce in the region. Alders (Alnus sp.) and crowberry (Empetrum nigrum) were more abundant in areas with heavy spruce mortality, possibly a response to the death of overstory spruce. Grasses and herbaceous plants did not proliferate as has been recorded following outbreaks in more coastal Alaskan forests. Two species closely tied to coniferous habitats, the tree-nesting Ruby-crowned Kinglet (Regulus calendula) and the red squirrel (Tamiasciurus hudsonicus), a major nest predator, were less abundant in forest stands with high spruce mortality than in low-mortality stands. Understory-nesting birds as a group were more abundant in forest stands with high levels of spruce mortality, although the response of individual bird species to tree mortality was variable. Birds breeding in stands with high spruce mortality likely benefited reproductively from lower squirrel densities and a greater abundance of shrubs to conceal nests from predators.

  17. Anemomenotatic orientation in beetles and scorpions

    NASA Technical Reports Server (NTRS)

    Linsenmair, K. E.

    1972-01-01

    Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli.

  18. Elevational Distribution of Flightless Ground Beetles in the Tropical Rainforests of North-Eastern Australia.

    PubMed

    Staunton, Kyran M; Nakamura, Akihiro; Burwell, Chris J; Robson, Simon K A; Williams, Stephen E

    2016-01-01

    Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of relatively distinct assemblages containing a high level of regional endemic species. Species richness was most strongly and positively associated with historical and current climatic stabilities and negatively associated with severity of recent disturbance (treefalls). Assemblage composition was associated with latitude and historical and current climatic conditions. Although the results need to be interpreted carefully due to inter-correlation between historical and current climatic variables, our study is in agreement with the hypothesis that upland refugia provided stable climatic conditions since the last glacial maximum, and supported a diverse fauna of flightless beetle species. These findings are important for conservation

  19. Elevational Distribution of Flightless Ground Beetles in the Tropical Rainforests of North-Eastern Australia

    PubMed Central

    Staunton, Kyran M.; Nakamura, Akihiro; Burwell, Chris J.; Robson, Simon K. A.; Williams, Stephen E.

    2016-01-01

    Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of relatively distinct assemblages containing a high level of regional endemic species. Species richness was most strongly and positively associated with historical and current climatic stabilities and negatively associated with severity of recent disturbance (treefalls). Assemblage composition was associated with latitude and historical and current climatic conditions. Although the results need to be interpreted carefully due to inter-correlation between historical and current climatic variables, our study is in agreement with the hypothesis that upland refugia provided stable climatic conditions since the last glacial maximum, and supported a diverse fauna of flightless beetle species. These findings are important for conservation

  20. Spatial displacement of a lure component can reduce catches of two nontarget species during spring monitoring of southern pine beetle

    Treesearch

    William P Shepherd; Brian T Sullivan

    2017-01-01

    Local outbreak risk for the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae),is forecast with a trapping survey conducted every spring throughout the southeastern United States. Traps baitedwith pine odors and components of the D. frontalis aggregation pheromone are used to obtain abundance estimates

  1. Community of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) in a Florida avocado grove with laurel wilt

    USDA-ARS?s Scientific Manuscript database

    A trapping study was conducted in Miami-Dade County to assess the diversity and relative abundance of bark and ambrosia beetles in an avocado grove affected by laurel wilt. In addition, four commercial traps were evaluated for efficacy of detecting these taxa. Traps included a white sticky panel, ...

  2. The Mexican bean beetle (Epilachna varivestis) regurgitome and insights into beetle-borne virus specificity

    PubMed Central

    Gedling, Cassidy R.; Smith, Charlotte M.; LeMoine, Christophe M. R.

    2018-01-01

    For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant’s defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle “regurgitome” and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions. PMID:29377955

  3. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  4. Field cage evaluations of the lady beetle Scymnus sinuanodulus for biological control of the hemlock woolly adelgid

    Treesearch

    Michael Montgomery; Carole A. S-J. Cheah; Christopher Asaro

    2007-01-01

    Biological control has been a major focus of efforts to reduce the impact of hemlock woolly adelgid (HWA) on hemlocks in the eastern United States. The lady beetle Scymnus sinuanodulus Yu et Yao, one of the most abundant predators of HWA in China, was first imported in 1996. Subsequently its biology and host range were evaluated in quarantine and...

  5. Influence of elevation on bark beetle (Coleoptera: Curculionidae, Scolytinae) community structure and flight periodicity in ponderosa pine forests of Arizona

    Treesearch

    Kelly K. Williams; Joel D. McMillin; Tom E. DeGomez; Karen M. Clancy; Andy Miller

    2008-01-01

    We examined abundance and flight periodicity of five Ips and six Dendroctonus species (Coleoptera: Curculionidae, Scolytinae) among three different elevation bands in ponderosa pine (Pinus ponderosa Douglas ex. Lawson) forests of northcentral Arizona. Bark beetle populations were monitored at 10 sites in each of three elevation...

  6. The effect of different trap height on the diversity of sap beetle (Coleoptera: Nitidulidae)

    NASA Astrophysics Data System (ADS)

    Rahim, Nor Atikah Abdul; Yaakop, Salmah

    2018-04-01

    This paper aim to measure the diversity and abundance of sap beetles in oil palm plantation in Malaysia on different heights, 1.5m and 2.5m above ground. A total 0f 20 baited traps were set up in Felda Lui Muda, Negeri Sembilan and located along three transects. The sap beetles collected weekly for a month and identified until species level and the diversity indexes were measured using Evenness Index (E), Shannon-Wiener Index (H'), Simpson's Index (D') and Margalef's Index (R'). All the diversity indexes indicated that the diversity on the lower height above the ground is higher than the upper height The result also shows that there are significant difference (p<0.05) when tested with t-test between the numbers of individuals on the different trap height although the number of species shows different results.

  7. A dynamical model for bark beetle outbreaks

    Treesearch

    Vlastimil Krivan; Mark Lewis; Barbara J. Bentz; Sharon Bewick; Suzanne M. Lenhart; Andrew Liebhold

    2016-01-01

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees...

  8. Toxicity of Monoterpene Structure, Diversity and Concentration to Mountain Pine Beetles, Dendroctonus ponderosae: Beetle Traits Matter More.

    PubMed

    Reid, Mary L; Sekhon, Jagdeep K; LaFramboise, Lanielle M

    2017-04-01

    A high diversity of plant defenses may be a response to herbivore diversity or may be collectively more toxic than single compounds, either of which may be important for understanding insect-plant associations. Monoterpenes in conifers are particularly diverse. We tested the fumigant toxicity of four monoterpenes, alone and in combination, to mountain pine beetles, Dendroctonus ponderosae, in the context of the beetles' individual body traits. Chemical structures of tested monoterpene hydrocarbons had modest effects on beetle survival, mass loss, water content and fat content, with (R)-(+)-limonene tending to be more toxic than (-)-α-pinene, (-)-β-pinene, and (+)-3-carene. Monoterpene diversity (all qualitative combinations of one to four monoterpenes) did not affect toxicity. Concentration (0 to 1200 ppm) of individual monoterpenes was a strong determinant of toxicity. Beetle body size and body condition index strongly and positively affected survival during monoterpene treatments. Larger beetles in better condition lost proportionally less mass during exposure, where proportion mass loss negatively affected survivorship. Toxicity was much more associated with water loss than with fat loss, suggesting that a main cost of detoxification is excretion, a process that has received little attention. These results provide insight into the determinants of beetle success in historic and novel hosts that differ in monoterpene composition and concentration. We also suggest that water availability will affect beetle success directly through their ability to tolerate detoxification as well as indirectly through host responses to drought.

  9. Common Pine Shoot Beetle

    Treesearch

    Robert A. Haack; Daniel Kucera; Steven Passoa

    1993-01-01

    The common (or larger) pine shoot beetle, Tomicus (=Blastophagus) piniperda (L.), was discovered near Cleveland, Ohio in July 1992. As of this writing, it is now in six states: Illinois, Indiana, Michigan, New York, Ohio, and Pennsylvania. Adults of the common pine shoot beetle are cylindrical and range from 3 to 5 mm in length (about the size of a match head). Their...

  10. Influence of Host Gender on Infection Rate, Density and Distribution of the Parasitic Fungus, Hesperomyces virescens, on the Multicolored Asian Lady Beetle, Harmonia axyridis

    PubMed Central

    Riddick, E. W.

    2006-01-01

    Hesperomyces virescens Thaxter (Laboulbeniales: Laboulbeniaceae) is a parasitic fungus that infects lady beetles (Coleoptera: Coccinellidae) via horizontal transmission between adults at overwintering and feeding sites. The differential behavior of male and female hosts could have profound effects on intensity of infection and positioning of fungus on the host's integument. The influence of host gender on infection rate, density and distribution of this parasite on the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), was determined at a feeding site. Adult H. axyridis were sampled from pecan, Carya illinoinensis (Wangenh.) K. Koch, trees in northern Mississippi, USA, during summer and early fall 2003–2004. Results indicated that the behavior of male or female beetles on pecan trees had only a limited effect on the intensity of infection. When averaged over the entire season, the percentage of H. axyridis infected with H. virescens was not influenced by host gender. In 2003, a seasonal average of 54 and 39% of males and females, respectively, were infected; whereas in 2004, 36 and 41% of male and female beetles, respectively, were infected. The percentage of males infected with H. virescens was correlated with the number of males captured at the site in 2003; infection rate decreased as male abundance increased. Infection rate did not correlate with female abundance in 2003 or male or female abundance in 2004. Host gender had a considerable effect on the density and distribution of the fungus. Hesperomyces virescens mature thalli were denser on male rather than female beetles. Also, thallus density was often greatest on the elytra, meso- and metathorax, and abdomen of males and elytra of females, than on other body parts, in 2003. In 2003 and 2004, approximately 59 and 97% and 67 and 96% of males and females, respectively, had mature thalli distributed on the elytra. Prevalence of H. virescens thalli on the dorsum of H

  11. Habitat associations of saproxylic beetles in the southeastern United States: A comparison of forest types, tree species and wood postures.

    Treesearch

    M.D. Ulyshen; J. L. Hanula

    2009-01-01

    Saproxylic beetles are highly sensitive to forest management practices that reduce the abundance and variety of dead wood. However, this diverse fauna continues to receive little attention in the southeastern United States even though this region supports some of the most diverse, productive and intensively managed forests in North...

  12. How tight are beetle hugs? Attachment in mating leaf beetles.

    PubMed

    Voigt, Dagmar; Tsipenyuk, Alexey; Varenberg, Michael

    2017-09-01

    Similar to other leaf beetles, rosemary beetles Chrysolina americana exhibit a distinct sexual dimorphism in tarsal attachment setae. Setal discoid terminals occur only in males, and they have been previously associated with a long-term attachment to the female's back (elytra) during copulation and mate guarding. For the first time, we studied living males and females holding to female's elytra. Pull-off force measurements with a custom-made tribometer featuring a self-aligning sample holder confirmed stronger attachment to female elytra compared with glass in both males and females; corresponding to 45 and 30 times the body weight, respectively. In line with previous studies, males generated significantly higher forces than females on convex elytra and flat glass, 1.2 times and 6.8 times, respectively. Convex substrates like elytra seem to improve the attachment ability of rosemary beetles, because they can hold more strongly due to favourable shear angles of legs, tarsi and adhesive setae. A self-aligning sample holder is found to be suitable for running force measurement tests with living biological samples.

  13. How tight are beetle hugs? Attachment in mating leaf beetles

    NASA Astrophysics Data System (ADS)

    Voigt, Dagmar; Tsipenyuk, Alexey; Varenberg, Michael

    2017-09-01

    Similar to other leaf beetles, rosemary beetles Chrysolina americana exhibit a distinct sexual dimorphism in tarsal attachment setae. Setal discoid terminals occur only in males, and they have been previously associated with a long-term attachment to the female's back (elytra) during copulation and mate guarding. For the first time, we studied living males and females holding to female's elytra. Pull-off force measurements with a custom-made tribometer featuring a self-aligning sample holder confirmed stronger attachment to female elytra compared with glass in both males and females; corresponding to 45 and 30 times the body weight, respectively. In line with previous studies, males generated significantly higher forces than females on convex elytra and flat glass, 1.2 times and 6.8 times, respectively. Convex substrates like elytra seem to improve the attachment ability of rosemary beetles, because they can hold more strongly due to favourable shear angles of legs, tarsi and adhesive setae. A self-aligning sample holder is found to be suitable for running force measurement tests with living biological samples.

  14. Mechanical Control of Southern Pine Beetle Infestations

    Treesearch

    Ronald F. Billings

    2011-01-01

    Periodic outbreaks of the southern pine beetle (SPB) may affect thousands of acres of commercial pine forests in the Southeastern United States, Mexico, and Central America. Accordingly, this species is the target of more aggressive and effective suppression programs than any other bark beetle pest in the world. The strategy for controlling the southern pine beetle...

  15. Predictors of southern pine beetle flight activity

    Treesearch

    John C. Moser; T.R. Dell

    1979-01-01

    An equation based on weather data explained differences in capture counts of pine bark beetles trapped twice weekly for an entire year at a single infestation and contributed to the udnerstanding of some aspects of beetle dynamics. The proportion of the beetles that reached the traps increased with maximum temperature and decreased with heavy rain. Production of adults...

  16. Numerical Responses of Saproxylic Beetles to Rapid Increases in Dead Wood Availability following Geometrid Moth Outbreaks in Sub-Arctic Mountain Birch Forest

    PubMed Central

    Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker

    2014-01-01

    Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak. PMID:24911056

  17. Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid moth outbreaks in sub-arctic mountain birch forest.

    PubMed

    Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker

    2014-01-01

    Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak.

  18. Asian longhorned beetle complicates the relationship ...

    EPA Pesticide Factsheets

    Urban foresters routinely emphasise the importance of taxonomic diversity to reduce the vulnerability of tree assemblages to invasive pests, but it is unclear to what extent diversity reduces vulnerability to polyphagous (i.e. generalist) pests. Drawing on field data from seven communities in metropolitan Cincinnati, Ohio, USA, we tested the hypothesis that communities with higher diversity would exhibit lower vulnerability to the polyphagous Asian longhorned beetle, which currently threatens the region. Based on street tree compositions and the beetle?s host preferences, Asian longhorned beetle threatened up to 35.6% of individual street trees and 47.5% of the total basal area across the study area, but we did not see clear connections between taxonomic diversity and beetle vulnerability among study communities. For example, the city of Fairfield was among the least diverse communities but had the lowest proportion of trees vulnerable to Asian longhorned beetle, whereas the city of Wyoming exhibited high diversity and high vulnerability. On the other hand, Forest Park aligned with our original hypothesis, as it was characterised by low diversity and high vulnerability. Our results demonstrate that relatively high taxonomic diversity in street tree assemblages does not necessarily lead to reduced vulnerability to a polyphagous pest. Considering the threats posed by polyphagous pests, selecting a set of relatively pest resistant trees known to perform well in urb

  19. Non-native lady beetles: a diversity of outcomes

    USDA-ARS?s Scientific Manuscript database

    Introduction: Various lady beetle species have expanded their geographic ranges following intentional or accidental introduction and subsequent establishment within new regions. In many cases, this has been accompanied by declines in native lady beetles. Long-term monitoring of lady beetle populat...

  20. Habitat associations of saproxylic beetles in the southeastern United States: A comparison of forest types, tree species and wood postures.

    Treesearch

    Michael Ulyshen; James Hanula

    2009-01-01

    Saproxylic beetles are highly sensitive to forest management practices that reduce the abundance and variety of dead wood. However, this diverse fauna continues to receive little attention in the southeastern United States even though this region supports some of the most diverse, productive and intensively managed forests in North America.

  1. Initial responses of rove and ground beetles (Coleoptera, Staphylinidae, Carabidae) to removal of logging residues following clearcut harvesting in the boreal forest of Quebec, Canada

    PubMed Central

    Work, Timothy T.; Klimaszewski, Jan; Thiffault, Evelyne; Bourdon, Caroline; Paré, David; Bousquet, Yves; Venier, Lisa; Titus, Brian

    2013-01-01

    Abstract Increased interest in biomass harvesting for bioenergetic applications has raised questions regarding the potential ecological consequences on forest biodiversity. Here we evaluate the initial changes in the abundance, species richness and community composition of rove (Staphylinidae) and ground beetles (Carabidae), immediately following 1) stem-only harvesting (SOH), in which logging debris (i.e., tree tops and branches) are retained on site, and 2) whole-tree harvesting (WTH), in which stems, tops and branches are removed in mature balsam fir stands in Quebec, Canada. Beetles were collected throughout the summer of 2011, one year following harvesting, using pitfall traps. Overall catch rates were greater in uncut forest (Control) than either stem-only or whole-tree harvested sites. Catch rates in WTH were greater than SOH sites. Uncut stands were characterized primarily by five species: Atheta capsularis, Atheta klagesi, Atheta strigosula, Tachinus fumipennis/frigidus complex (Staphylinidae) and to a lesser extent to Pterostichus punctatissimus (Carabidae). Increased catch rates in WTH sites, where post-harvest biomass was less, were attributable to increased catches of rove beetles Pseudopsis subulata, Quedius labradorensis and to a lesser extent Gabrius brevipennis. We were able to characterize differences in beetle assemblages between harvested and non-harvested plots as well as differences between whole tree (WTH) and stem only (SOH) harvested sites where logging residues had been removed or left following harvest. However, the overall assemblage response was largely a recapitulation of the responses of several abundant species. PMID:23653498

  2. Initial responses of rove and ground beetles (Coleoptera, Staphylinidae, Carabidae) to removal of logging residues following clearcut harvesting in the boreal forest of Quebec, Canada.

    PubMed

    Work, Timothy T; Klimaszewski, Jan; Thiffault, Evelyne; Bourdon, Caroline; Paré, David; Bousquet, Yves; Venier, Lisa; Titus, Brian

    2013-01-01

    Increased interest in biomass harvesting for bioenergetic applications has raised questions regarding the potential ecological consequences on forest biodiversity. Here we evaluate the initial changes in the abundance, species richness and community composition of rove (Staphylinidae) and ground beetles (Carabidae), immediately following 1) stem-only harvesting (SOH), in which logging debris (i.e., tree tops and branches) are retained on site, and 2) whole-tree harvesting (WTH), in which stems, tops and branches are removed in mature balsam fir stands in Quebec, Canada. Beetles were collected throughout the summer of 2011, one year following harvesting, using pitfall traps. Overall catch rates were greater in uncut forest (Control) than either stem-only or whole-tree harvested sites. Catch rates in WTH were greater than SOH sites. Uncut stands were characterized primarily by five species: Atheta capsularis, Atheta klagesi, Atheta strigosula, Tachinus fumipennis/frigidus complex (Staphylinidae) and to a lesser extent to Pterostichus punctatissimus(Carabidae). Increased catch rates in WTH sites, where post-harvest biomass was less, were attributable to increased catches of rove beetles Pseudopsis subulata, Quedius labradorensis and to a lesser extent Gabrius brevipennis. We were able to characterize differences in beetle assemblages between harvested and non-harvested plots as well as differences between whole tree (WTH) and stem only (SOH) harvested sites where logging residues had been removed or left following harvest. However, the overall assemblage response was largely a recapitulation of the responses of several abundant species.

  3. Beetles (Insecta, Coleoptera) associated with pig carcasses exposed in a Caatinga area, Northeastern Brazil.

    PubMed

    Santos, W E; Alves, A C F; Creão-Duarte, A J

    2014-08-01

    The species richness, abundance and seasonality of Coleoptera fauna associated with pig carcasses exposed in a Caatinga area were examined. Tray, pitfall and modified Shannon traps were settled together to collect these insects during two seasons (dry and rainy). 4,851 beetles were collected, belonging to 19 families and 88 species. Staphylinidae (2,184) and Histeridae (1,264) were the most abundant families and accounted for 71.1% of the specimens collected. Scarabaeidae (15) showed the highest species richness. The most abundant species were Atheta iheringi Bernhauer, 1908 (Staphylinidae) (1,685), Euspilotus sp. (Histeridae) (461), Stelidota geminata (Say, 1825) (Nitidulidae) (394), Xerosaprinus diptychus (Marseul, 1855) (Histeridae) (331) and Dermestes maculatus De Geer, 1774 (Dermestidae). Amongst these species, X. diptychus showed to be strongly influenced by seasonality, since 96.1% of the specimens were collected during the dry season.

  4. Influence of lethal and sublethal exposure to clothianidin on the seven-spotted lady beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae).

    PubMed

    Jiang, Jiangong; Zhang, Zhengqun; Yu, Xin; Ma, Dicheng; Yu, Caihong; Liu, Feng; Mu, Wei

    2018-06-06

    The seven-spotted ladybird beetle, Coccinella septempunctata L., as a dominant predator of aphids, has played a crucial role in integrated pest management (IPM) strategies in agricultural ecosystems. To study the risk of insecticides to C. septempunctata, the neonicotinoid clothianidin was selected for evaluation of its influence on C. septempunctata at lethal and sublethal doses. The LR 50 (application rate causing 50% mortality) in the exposed larvae decreased from 19.94 to 5.91 g a.i. ha -1 , and the daily HQ (hazard quotient) values increased from 3.00 to 10.15, indicating potential intoxication risks. We also determined NOERs (No Observed Effect application Rates) of clothianidin on the total developmental time (10 g a.i. ha -1 ), survival (2.5 g a.i. ha -1 ) and pupation (5 g a.i. ha -1 ). Moreover, clothianidin at a NOER of 2.5 g a.i. ha -1 did not profoundly affect adult emergence, fecundity or egg hatchability. The total effect (E) assessment also showed that clothianidin at 2.5 g a.i. ha -1 was slightly harmful to C. septempunctata. These results suggested that clothianidin would impair C. septempunctata when applied at over 2.5 g a.i. ha -1 in the field. Conservation of this biological control agent in agricultural ecosystems thus requires further measures to decrease the applied dosages of clothianidin. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Management of western North American bark beetles with semiochemicals

    Treesearch

    Steven J. Seybold; Barbara J. Bentz; Christopher J. Fettig; John E. Lundquist; Robert A. Progar; Nancy E. Gillette

    2018-01-01

    We summarize the status of semiochemical-based management of the major bark beetle species in western North America. The conifer forests of this region have a long history of profound impacts by phloem-feeding bark beetles, and species such as the mountain pine beetle (Dendroctonus ponderosae) and the spruce beetle (D. rufipennis) have recently undergone epic outbreaks...

  6. An elm EST database for identifying leaf beetle egg-induced defense genes

    PubMed Central

    2012-01-01

    Background Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Results Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i) untreated control elms, and elms treated with (ii) egg laying and feeding by elm leaf beetles, (iii) feeding, (iv) artificial transfer of egg clutches, and (v) methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs) were identified which clustered into 52,823 unique transcripts (Unitrans) and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant) database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and

  7. An elm EST database for identifying leaf beetle egg-induced defense genes.

    PubMed

    Büchel, Kerstin; McDowell, Eric; Nelson, Will; Descour, Anne; Gershenzon, Jonathan; Hilker, Monika; Soderlund, Carol; Gang, David R; Fenning, Trevor; Meiners, Torsten

    2012-06-15

    Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i) untreated control elms, and elms treated with (ii) egg laying and feeding by elm leaf beetles, (iii) feeding, (iv) artificial transfer of egg clutches, and (v) methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs) were identified which clustered into 52,823 unique transcripts (Unitrans) and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant) database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and primary metabolism

  8. Remote sensing and GIS studies on the spatial distribution and management of Japanese beetle adults and grubs

    NASA Astrophysics Data System (ADS)

    Hamilton, Randy M.

    Remote sensing and geographic information systems (GIS) are rapidly developing technologies that offer new opportunities and potentially more effective methods for detecting and monitoring insect pests, as well as understanding their spatial dynamics. These technologies (coupled with traditional trapping) were investigated for their use in managing Japanese beetle (Popillia japonica Newman) adults and grubs and studying their spatial distribution and dynamics. Japanese beetle grubs are important root-feeding pests of turfgrass in the Midwest and eastern United States. No non-invasive methods exist to detect grub infestations before unsightly damage has occurred. Studies were conducted to determine whether remote sensing could be used to detect the pre-visible symptoms of simulated and natural grub damage in turfgrass. Simulated grub damage was detected with surface temperature measurements (but not with spectrometer data) before significant visual differences were found. Plots infested with grubs were distinguished from uninfested plots using spectrometer data 10--16 days before significant differences in visual ratings were found. Results using multispectral imagery were mixed. Currently, Japanese beetles are not established in the western United States. There is great concern over their inadvertent transportation into Pacific costal states via cargo transport planes. Beetles may fly onboard cargo planes while they are loaded or unloaded and be accidentally transported to the western states. A study was initiated to evaluate trapping as a method to reliably detect Japanese beetle hotspots near cargo terminals at the Indianapolis International Airport and to assess the spatial variability of the population around the airport. The potential influence of land use on beetle abundance was also assessed, using a GIS. Baited Japanese beetle traps were placed around the perimeter of the airport and emptied daily. Location-dependent variation in trap catch was found

  9. National Trade can Drive Range Expansion of Bark- and Wood-Boring Beetles.

    PubMed

    Rassati, Davide; Haack, Robert A; Knížek, Miloš; Faccoli, Massimo

    2018-02-09

    Several native species of bark- and wood-boring beetles (Coleoptera) have expanded their range within their native biogeographic regions in the last years, but the role of human activity in driving this phenomenon has been underinvestigated. Here we analyze 3 yr of trapping records of native bark- and wood-boring beetles (Cerambycidae and Scolytinae) collected at 12 Italian ports and their surrounding forests to help elucidate the human role in the movement of native species within their native biogeographic region. We trapped several species that occurred either inside or outside their native distributional range within Italy. Species richness and abundance of those species found in the ports located within their native range were most strongly associated with the amount of forest cover in the surrounding landscape, suggesting that they could have arrived in the ports from the nearby forests. The abundance of the species found outside their native range was instead most strongly linked to the amount of national imports arriving at the port where trapping occurred, suggesting that they were likely introduced to the ports from other parts of Italy. This study demonstrates that national sea transportation can favor species range expansion within a country, and confirms that the forests that surround ports can serve as a source of species that can be potentially moved with exports. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles

    PubMed Central

    Gossner, Martin M.; Grass, Ingo; Arnstadt, Tobias; Hofrichter, Martin; Floren, Andreas; Linsenmair, Karl Eduard; Weisser, Wolfgang W.; Steffan-Dewenter, Ingolf

    2017-01-01

    The specialization of ecological networks provides important insights into possible consequences of biodiversity loss for ecosystem functioning. However, mostly mutualistic and antagonistic interactions of living organisms have been studied, whereas detritivore networks and their successional changes are largely unexplored. We studied the interactions of saproxylic (deadwood-dependent) beetles with their dead host trees. In a large-scale experiment, 764 logs of 13 tree species were exposed to analyse network structure of three trophic groups of saproxylic beetles over 3 successional years. We found remarkably high specialization of deadwood-feeding xylophages and lower specialization of fungivorous and predatory species. During deadwood succession, community composition, network specialization and network robustness changed differently for the functional groups. To reveal potential drivers of network specialization, we linked species' functional traits to their network roles, and tested for trait matching between plant (i.e. chemical compounds) and beetle (i.e. body size) traits. We found that both plant and animal traits are major drivers of species specialization, and that trait matching can be more important in explaining interactions than neutral processes reflecting species abundance distributions. High network specialization in the early successional stage and decreasing network robustness during succession indicate vulnerability of detritivore networks to reduced tree species diversity and beetle extinctions, with unknown consequences for wood decomposition and nutrient cycling. PMID:28469020

  11. Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae).

    PubMed

    Biedermann, Peter H W; Klepzig, Kier D; Taborsky, Michael; Six, Diana L

    2013-03-01

    Insect fungus gardens consist of a community of interacting microorganisms that can have either beneficial or detrimental effects to the farmers. In contrast to fungus-farming ants and termites, the fungal communities of ambrosia beetles and the effects of particular fungal species on the farmers are largely unknown. Here, we used a laboratory rearing technique for studying the filamentous fungal garden community of the ambrosia beetle, Xyleborinus saxesenii, which cultivates fungi in tunnels excavated within dead trees. Raffaelea sulfurea and Fusicolla acetilerea were transmitted in spore-carrying organs by gallery founding females and established first in new gardens. Raffaelea sulfurea had positive effects on egg-laying and larval numbers. Over time, four other fungal species emerged in the gardens. Prevalence of one of them, Paecilomyces variotii, correlated negatively with larval numbers and can be harmful to adults by forming biofilms on their bodies. It also comprised the main portion of garden material removed from galleries by adults. Our data suggest that two mutualistic, several commensalistic and one to two pathogenic filamentous fungi are associated with X. saxesenii. Fungal diversity in gardens of ambrosia beetles appears to be much lower than that in gardens of fungus-culturing ants, which seems to result from essential differences in substrates and behaviours. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Dung beetles (Coleoptera: Scarabaeidae) attracted to dung of the largest herbivorous rodent on earth: a comparison with human feces.

    PubMed

    Puker, Anderson; Correa, César M A; Korasaki, Vanesca; Ferreira, Kleyton R; Oliveira, Naiara G

    2013-12-01

    The capybara, Hydrochoerus hydrochaeris (L.) (Rodentia: Caviidae), is the largest herbivorous rodent on Earth and abundant in the Neotropical region, which can provide a stable food source of dung for dung beetle communities (Coleoptera: Scarabaeidae: Scarabaeinae). However, the use of capybara dung by dung beetles is poorly known. Here, we present data on the structure of the dung beetle community attracted to capybara dung and compare with the community attracted to human feces. Dung beetles were captured with pitfall traps baited with fresh capybara dung and human feces in pastures with exotic grass (Brachiaria spp.), patches of Brazilian savanna (Cerrado), and points of degraded riparian vegetation along the Aquidauana river in Anastácio and Aquidauana, Mato Grosso do Sul, Brazil. In traps baited with human feces, 13,809 individuals of 31 species were captured, and in those baited with capybara dung 1,027 individuals belonging to 26 species were captured. The average number of individuals and species captured by the traps baited with human feces was greater than for capybara dung in all habitats studied. Composition of the communities attracted to human feces and capybara dung formed distinct groups in all habitats. Despite the smaller number of species and individuals captured in capybara dung when compared with human feces, capybara dung was attractive to dung beetles. In Brazil, the legalization of hunting these rodents has been debated, which would potentially affect the community and consequently the ecological functions performed by dung beetles that use the feces of these animals as a resource. In addition, the knowledge of the communities associated with capybaras may be important in predicting the consequences of future management of their populations.

  13. Fire and bark beetle interactions

    Treesearch

    Ken Gibson; Jose F. Negron

    2009-01-01

    Bark beetle populations are at outbreak conditions in many parts of the western United States and causing extensive tree mortality. Bark beetles interact with other disturbance agents in forest ecosystems, one of the primary being fires. In order to implement appropriate post-fire management of fire-damaged ecosystems, we need a better understanding of...

  14. Forest health and bark beetles

    Treesearch

    C. J. Fettig

    2012-01-01

    In recent years, bark beetles have caused significant tree mortality in the Sierra Nevada, rivaling mortality caused by wildfire in some locations. This chapter addresses two important questions: How can managers prepare for and influence levels of bark beetle-caused tree mortality given current forest conditions and future climate uncertainties? and How would the...

  15. Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetle (Aphthona spp.) used as biological control agents

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.

    2004-01-01

    The goal of this study was to evaluate the biological control program of leafy spurge {Euphorbia esula) in a large natural area, Theodore Roosevelt National Park, western North Dakota, USA. Aphthona lacertosa and Aphthona nigriscutis have been released at more than 1800 points in the 18,600-ha South Unit of the park beginning in 1989; most releases have occurred since 1994. We established permanent vegetation plots throughout the infested area of the park and determined stem counts and biomass of leafy spurge and abundance of the two flea beetle species at these plots each year from 1999 to 2001. Both biomass and stem counts declined over the 3 years of the study. Both species of flea beetle are well established within the park and have expanded into areas where they were not released. A. nigriscutis was more abundant than A. lacertosa in the grassland areas we surveyed but in all other habitats abundances were similar. Using structural equation models, only A. lacertosa could be shown to have a significant effect on counts of mature stems of leafy spurge. A. nigriscutis numbers were positively correlated with stem counts of mature stems. Previous year's stem counts had the greatest influence on change in stem counts over each 2-year time step examined with structural equation models.

  16. Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetles (Aphthona spp.) used as biological control agents

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.

    2004-01-01

    The goal of this study was to evaluate the biological control program of leafy spurge (Euphorbia esula) in a large natural area, Theodore Roosevelt National Park, western North Dakota, USA. Aphthona lacertosa and Aphthona nigriscutis have been released at more than 1800 points in the 18,600-ha South Unit of the park beginning in 1989; most releases have occurred since 1994. We established permanent vegetation plots throughout the infested area of the park and determined stem counts and biomass of leafy spurge and abundance of the two flea beetle species at these plots each year from 1999 to 2001. Both biomass and stem counts declined over the 3 years of the study. Both species of flea beetle are well established within the park and have expanded into areas where they were not released. A. nigriscutis was more abundant than A. lacertosa in the grassland areas we surveyed, but in all other habitats abundances were similar. Using structural equation models, only A. lacertosa could be shown to have a significant effect on counts of mature stems of leafy spurge. A. nigriscutis numbers were positively correlated with stem counts of mature stems. Previous year's stem counts had the greatest influence on change in stem counts over each 2-year time step examined with structural equation models.

  17. Association of wildfire with tree health and numbers of pine bark beetles, reproduction weevils and their associates in Florida

    Treesearch

    James L. Hanula; James R. Meeker; Daniel R. Miller; Edward L. Barnard

    2002-01-01

    Wildfires burned over 200,000 ha of forests in Florida from April to July 1998. This unique disturbance event provided a valuable opportunity to study the interactions of summer wildfires with the activity of pine feeding insects and their associates in the southeastern United States. We compared tree mortality with abundance of bark and ambrosia beetles, reproduction...

  18. Comparison of ground beetle (Coleoptera: Carabidae) assemblages in Rocky Mountain savannas invaded and un-invaded by an exotic forb, spotted knapweed

    Treesearch

    Allison K. Hansen; Yvette K. Ortega; Diana L. Six

    2009-01-01

    We compared ground beetle (Carabidae) assemblages between spotted knapweed (Centaurea maculosa Lam.) -invaded (invaded) and un-invaded (native) habitats in Rocky Mountain savannas. Carabids play important roles in biotic communities and are known as a good indictor group of environmental change. Carabid species activity-abundance and diversity were estimated, and...

  19. Bridgehead Effect in the Worldwide Invasion of the Biocontrol Harlequin Ladybird

    PubMed Central

    Lombaert, Eric; Guillemaud, Thomas; Cornuet, Jean-Marie; Malausa, Thibaut; Facon, Benoît; Estoup, Arnaud

    2010-01-01

    Recent studies of the routes of worldwide introductions of alien organisms suggest that many widespread invasions could have stemmed not from the native range, but from a particularly successful invasive population, which serves as the source of colonists for remote new territories. We call here this phenomenon the invasive bridgehead effect. Evaluating the likelihood of such a scenario is heuristically challenging. We solved this problem by using approximate Bayesian computation methods to quantitatively compare complex invasion scenarios based on the analysis of population genetics (microsatellite variation) and historical (first observation dates) data. We applied this approach to the Harlequin ladybird Harmonia axyridis (HA), a coccinellid native to Asia that was repeatedly introduced as a biocontrol agent without becoming established for decades. We show that the recent burst of worldwide invasions of HA followed a bridgehead scenario, in which an invasive population in eastern North America acted as the source of the colonists that invaded the European, South American and African continents, with some admixture with a biocontrol strain in Europe. This demonstration of a mechanism of invasion via a bridgehead has important implications both for invasion theory (i.e., a single evolutionary shift in the bridgehead population versus multiple changes in case of introduced populations becoming invasive independently) and for ongoing efforts to manage invasions by alien organisms (i.e., heightened vigilance against invasive bridgeheads). PMID:20305822

  20. A Multiplex PCR Assay for Differentiating Coconut Rhinoceros Beetle (Coleoptera: Scarabaeidae) From Oriental Flower Beetle (Coleoptera: Scarabaeidae) in Early Life Stages and Excrement.

    PubMed

    Watanabe, S; Melzer, M J

    2017-04-01

    The coconut rhinoceros beetle, Oryctes rhinoceros (L.), is a major pest of coconut and other palm trees. An incipient coconut rhinoceros beetle population was recently discovered on the island of Oahu, Hawaii and is currently the target of a large, mutiagency eradication program. Confounding this program is the widespread presence of another scarab beetle on Oahu, the oriental flower beetle, Protaetia orientalis (Gory and Percheron 1833). Eggs, early life stages, and fecal excrement of coconut rhinoceros beetle and oriental flower beetle are morphologically indistinguishable, thereby creating uncertainty when such specimens are discovered in the field. Here, we report the development of a multiplex PCR assay targeting cytochrome oxidase I of coconut rhinoceros beetle and oriental flower beetle that can rapidly detect and distinguish between these insects. This assay also features an internal positive control to ensure DNA of sufficient quantity and quality is used in the assay, increasing its reliability and reducing the chances of false negative results. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Barbara Bentz

    2008-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is considered one of the most economically important insect species in coniferous forests of western North America. Adult beetles are capable of successfully reproducing in at least 12 North American species of Pinus (Pineacea) from southern British Columbia to northern Baja Mexico. Mountain pine beetle adults...

  2. Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity.

    PubMed

    Stenbacka, Fredrik; Hjältén, Joakim; Hilszczański, Jacek; Dynesius, Mats

    2010-12-01

    Current clear-cutting forestry practices affect many boreal organisms negatively, and those dependent on dead wood (saproxylics) are considered as particularly vulnerable. The succession of species assemblages in managed forest habitats regenerating after clear-cutting is, however, poorly known. We compared beetle assemblages in three successional stages of managed boreal spruce forests established after clear-cutting and two types of older spruce forests that had not been clear-cut. We also assessed whether saproxylic and non-saproxylic beetle assemblages show similar biodiversity patterns among these forest types. Beetles were collected in window traps in nine study areas, each encompassing a protected old-growth forest (mean forest age approximately 160 years, mean dead wood volume 34 m3/ha), an unprotected mature forest (approximately 120 years old, 15 m3/ha), a middle-aged commercially thinned forest (53 years old, 3 m3/ha), a young unthinned forest (30 years old, 4 m3/ha), and a clearcut (5-7 years after harvest, 11 m3/ha). Saproxylic beetles, in particular red-listed species, were more abundant and more species rich in older forest types, whereas no significant differences among forest types in these variables were detected for non-saproxylics. The saproxylic assemblages were clearly differentiated; with increasing forest age, assemblage compositions gradually became more similar to those of protected old-growth forests, but the assemblage composition in thinned forests could not be statistically distinguished from those of the two oldest forest types. Many saproxylic beetles adapted to late-successional stages were present in thinned middle-aged forests but absent from younger unthinned forests. In contrast, non-saproxylics were generally more evenly distributed among the five forest types, and the assemblages were mainly differentiated between clearcuts and forested habitats. The saproxylic beetle assemblages of unprotected mature forests were very similar

  3. Natural History of the Southern Pine Beetle

    Treesearch

    Fred P. Hain; Adrian J. Duehl; Micah J. Gardner; Thomas L. Payne

    2011-01-01

    The southern pine beetle (SPB) is a tree killer of southern yellow pines. All life stages—eggs, larvae, pupae, and adults—infest the inner bark or phloem tissue of the host tree. Adult beetles overcome the tree’s defenses through a mass-attack phenomenon. They are attracted to the tree by a pheromone system consisting of volatiles produced by the beetles and the host....

  4. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae)

    PubMed Central

    2013-01-01

    Background The European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families. Results Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets. Conclusions The protein families important for

  5. Assessment of beetle diversity, community composition and potential threats to forestry using kairomone-baited traps.

    PubMed

    Olivier-Espejel, S; Hurley, B P; Garnas, J

    2017-02-01

    Traps designed to capture insects during normal movement/dispersal, or via attraction to non-specific (plant) volatile lures, yield by-catch that carries valuable information about patterns of community diversity and composition. In order to identify potential native/introduced pests and detect predictors of colonization of non-native pines, we examined beetle assemblages captured in intercept panel traps baited with kairomone lures used during a national monitoring of the woodwasp, Sirex noctilio, in Southern Africa. We identified 50 families and 436 morphospecies of beetles from nine sites sampled in both 2008 and 2009 and six areas in 2007 (trap catch pooled by region) across a latitudinal and elevational gradient. The most diverse groups were mainly those strongly associated with trees, known to include damaging pests. While native species dominated the samples in terms of richness, the dominant species was the introduced bark beetle Orthotomicus erosus (Curculionidae: Scolytinae) (22 ± 34 individuals/site). Four Scolytinae species without previous records in South Africa, namely Coccotrypes niger, Hypocryphalus robustus (formerly Hypocryphalus mangiferae), Hypothenemus birmanus and Xyleborus perforans, were captured in low abundances. Communities showed temporal stability within sites and strong biogeographic patterns across the landscape. The strongest single predictors of community composition were potential evaporation, latitude and maximum relative humidity, while the strongest multifactor model contained elevation, potential evaporation and maximum relative humidity. Temperature, land use variables and distance to natural areas did not significantly correlate with community composition. Non-phytophagous beetles were also captured and were highly diverse (32 families) perhaps representing important beneficial insects.

  6. Targeting red-headed flea beetle larvae

    USDA-ARS?s Scientific Manuscript database

    Red-headed flea beetle (RHFB), Systena frontalis, is an emerging pest of cranberry that requires significant grower investment in monitoring and repeated applications of insecticides to reduce adult populations. The adult beetles are highly mobile and consume a broad range of host plants whereas t...

  7. Modelling spruce bark beetle infestation probability

    Treesearch

    Paulius Zolubas; Jose Negron; A. Steven Munson

    2009-01-01

    Spruce bark beetle (Ips typographus L.) risk model, based on pure Norway spruce (Picea abies Karst.) stand characteristics in experimental and control plots was developed using classification and regression tree statistical technique under endemic pest population density. The most significant variable in spruce bark beetle...

  8. Acoustic characteristics of rhinoceros beetle stridulations

    USDA-ARS?s Scientific Manuscript database

    Stridulation behavior has been reported for adults and larvae of many dynastids. This report describes acoustic recordings and analyses of stridulations by larvae of two Southeastern Asia rhinoceros beetle species and by adults of the coconut rhinoceros beetle. The behavioral context of the strid...

  9. Asian Longhorned Beetle - A New Introduction, Pest Alert

    Treesearch

    USDA Forest Service, State and Private Forestry, Northeastern Area; Animal and Plant Health Inspection Service

    2008-01-01

    The Asian longhorned beetle (ALB) has been discovered attacking trees in the United States. Tunneling by beetle larvae girdles tree stems and branches. Repeated attacks lead to dieback of the tree crown and, eventually, death of the tree. ALB probably traveled to the United States inside solid wood packing material from China. The beetle has been intercepted at ports...

  10. Competitive interactions among symbiotic fungi of the southern pine beetle

    Treesearch

    Kier D. Klepzig; Richard T. Wilkens

    1997-01-01

    The southern pine beetle, a damaging pest of conifers, is intimately linked to three symbiotic fungi.Two fungi, Ceratocystiopsis ranaculosus and Entomocorticium sp. A, are transported within specialized structures (mycangia) in the beetle exoskeleton and are mutualists of the beetle.A third fungus, Ophiostoma minus, is transported externally on the beetle exoskeleton (...

  11. Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi

    Treesearch

    Richard W. Hofstetter; John Moser; Stacy Blomquist

    2014-01-01

    The role that mites play in many ecosystems is often overlooked or ignored. Within bark beetle habitats, more than 100 mite species exist and they have important impacts on community dynamics, ecosystem processes, and biodiversity of bark beetle systems. Mites use bark beetles to access and disperse among beetle-infested trees and the associations may range from...

  12. Some ecological, economic, and social consequences of bark beetle infestations

    Treesearch

    Robert A. Progar; Adris Eglitis; John E. Lundquist

    2009-01-01

    Bark beetles are powerful agents of change in dynamic forest ecosystems. Most assessments of the effects of bark beetle outbreaks have been based on negative impacts on timber production. The positive effects of bark beetle activities are much less well understood. Bark beetles perform vital functions at all levels of scale in forest ecosystems. At the landscape...

  13. Biological Control of Southern Pine Beetle

    Treesearch

    Fred M. Stephen; C. Wayne Berisford

    2011-01-01

    Exotic invasive forest insects are frequently managed through classical biological control, which involves searching for, introducing, and establishing their exotic natural enemies. Biological control of native bark beetles, including the southern pine beetle (SPB), has been primarily attempted by conserving and manipulating their natural enemies. Knowledge of the role...

  14. Book review: Methods for catching beetles

    USDA-ARS?s Scientific Manuscript database

    Beetles are the most speciose animal group and found in virtually all habitats on Earth. Methods for Catching Beetles is a comprehensive general sourcebook about where and how to collect members of this diverse group. The book makes a compelling case in its Introduction about the value of scientif...

  15. Species traits modify the species-area relationship in ground-beetle (Coleoptera: Carabidae) assemblages on islands in a boreal lake

    PubMed Central

    Spence, John R.

    2017-01-01

    Life-history traits influence colonization, persistence, and extinction of species on islands and are important aspects of theories predicting the geographical distribution and evolution of species. We used data collected from a large freshwater lake (1,413 km2) in central Canada to test the effects of island area and isolation on species richness and abundance of carabid beetles as a function of body size, wing length, and breeding season. A total of 10,018 individual beetles from 37 species were collected during the frost-free period of 2013 using transects of pitfall traps on 30 forested islands ranging in area from 0.2 to 980.7 ha. Life-history traits improved the predictive ability and significantly modified the shape of species-area and abundance-area curves. Abundance and richness of small-bodied (< 13.9 mm), macropterous (winged), and spring-breeding species decreased with island area and increased with isolation. In contrast, richness and abundance of larger-bodied (> 14.0 mm) and flightless species increased with area, but not isolation. Body size of female Carabus taedatus Fabricius, the largest-bodied species, was positively related to island area, while body size on the adjacent mainland was most similar to that on smaller islands. Overall, species with large body size and low dispersal ability, as indicated by flightlessness, were most sensitive to reductions in area. We suggest that large-bodied, flightless species are rare on small islands because habitat is less suitable for them and immigration rates are lower because they depend on freshwater drift for dispersal to islands. PMID:29261805

  16. How Guilds Build Success; Aspects of Temporal Resource Partitioning in a Warm, Temperate Climate Assemblage of Dung Beetles (Coleoptera: Scarabaeidae).

    PubMed

    Sullivan, Gregory T; Ozman-Sullivan, Sebahat K; Lumaret, Jean-Pierre; Bourne, Anne; Zeybekoglu, Unal; Zalucki, Myron P; Baxter, Greg

    2017-10-01

    Succession in local dung beetle assemblages influences their delivery of ecological functions in natural and modified environments globally. Short-term changes in dung beetle (Coleoptera: Scarabaeidae) species richness, abundance, and biomass were investigated in standardized dung pads in northern, coastal Turkey. For mean tunneling guild abundance, dung deposition time, dung exposure period, and their interaction were significant, and for mean dung dwelling guild abundance, dung exposure period was significant, as was the interaction with dung deposition time, which collectively evidenced temporal resource partitioning, based principally on differences in diel activity. Succession was highly compressed, with maximum abundance at 12 h and maximum species richness at 24 h. A large ball roller and small- to medium-sized tunnelers dominated different periods in the first 24 h but were superseded by dwellers. Regression analysis demonstrated a significant, positive relationship between species richness and the evenness of abundance for both dung deposition times. Correlation analysis generally showed strong, positive correlations between tunneling species, low correlations between tunneling and dwelling species, and low correlations between dwelling species. Niche partitioning based on size difference appears to have acted on the environmental filtering of tunneling species along the temporal gradient of declining moisture, thereby limiting the number of abundant, concurrent species. The aggregation of tunneling species provided opportunities for the less competitive dwelling species to occupy less densely populated zones termed probability refuges. The network of strong, positive habitat' correlations between tunneling species may indicate that their collective functionality is vulnerable to loss of efficiency if species are lost. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For

  17. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009).

    PubMed

    Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro

    2014-04-01

    Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in 1980 in six stands below and above the treeline (1650-2250 m a.s.l.) with those sampled in the same sites almost 30 years later (2008/9). Quantitative data (species richness and abundance) have been compared by means of several diversity indexes and with a new index, the Index of Rank-abundance Change (IRC). Our work shows that species richness and abundance have changed after almost 30 years as a consequence of local extinctions, uphill increment of abundance and uphill shift of distribution range. The overall species number dropped from 36 to 27, while in the sites above the treeline, species richness and abundance changed more than in the forest sites. Two microtherm characteristic species of the pioneer cushion grass mats, Nebria germari and Trechus dolomitanus, became extinct or showed strong abundance reduction. In Nardetum pastures, several hygrophilic species disappeared, and xerophilic zoophytophagous elements raised their population density. In forest ecosystems, the precipitation reduction caused deep soil texture and watering changes, driving a transformation from Sphagnum-rich (peaty) to humus-rich soil, and as a consequence, soil invertebrate biomass strongly increased and thermophilic carabids enriched the species structure. In three decades, Carabid assemblages changed consistently with the hypothesis that climate change is one of the main factors triggering natural environment modifications. Furthermore, the level of human disturbance could enhance the

  18. Small hive beetles survive in honeybee prisons by behavioural mimicry

    NASA Astrophysics Data System (ADS)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  19. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks

    PubMed Central

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089

  20. Wood-boring beetles in homes

    Treesearch

    V.R. Lewis; S.J. Seybold

    2010-01-01

    Three groups of wood-boring beetles—powderpost, deathwatch, and false powderpost (Table 1)—invade and damage wood furniture as well as structural and decorative wood inside of buildings. The beetle larvae feed in and do most of the damage to wood, and when they reach the adult stage, they emerge through round exit holes, which they create by chewing through the wood...

  1. Bark beetles in a changing climate

    Treesearch

    John E. Lundquist; Barbara J. Bentz

    2009-01-01

    Over the past decade, native bark beetles (Coleoptera: Curculionidae) have killed billions of trees across millions of hectares of forest from Alaska to Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several current outbreaks occurring simultaneously across western North America are the largest and most...

  2. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.

    PubMed

    Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang

    2017-06-01

    Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.

  3. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    NASA Astrophysics Data System (ADS)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    Under natural conditions, river channels and floodplains are shaped by flow and sediment regime and are one of the most dynamic ecosystems. At present, European river floodplains are among the most endangered landscapes due to human modifications to river systems, including channel regulation and floodplain urbanization, and land use changes in the catchments. Situated in a transition zone between terrestrial and aquatic environments, exposed riverine sediments (ERS) play a key role in the functioning of riverine ecosystems. This study aimed to verify whether the bare granular substrate is the only factor responsible for sustaining the biota associated with ERS or the inundation frequency also plays a role, modifying the potential of particular species to colonize these habitats. Ground beetles (Col. Carabidae) were selected as the investigated group of organisms and the study was carried out in Porębianka, a Polish Carpathian stream flowing through both unconstrained channel sections and sections with varied channelization schemes (rapid hydraulic structures, concrete revetments or rip-rap of various age). In each of the distinguished channel types, four replicates of 10 pitfall traps were established in three rows varying in distance to the mean water level (at three different benches). Almost 7000 individuals belonging to 102 species were collected on 60 plots. Forward selection of redundancy analysis revealed four factors significantly describing the variation in ground beetle species data: bank modification, potential bankfull discharge, frequency of inundation and plant height. Most of the biggest species were ordered at the positive site of first axis having the highest values of periods between floods. Total biomass of ground beetles and mean biomass of individuals differed significantly between sites of various frequency of inundation, whereas the variation in abundance and species richness of ground beetles was independent of the river dynamics. The body

  4. The eastern larch beetle in Alaska.

    Treesearch

    Richard A. Werner

    1986-01-01

    The eastern larch beetle (Dendroctonus simplex LeConte) exists throughout the range of tamarack (Larix laricina (Du Roi) K. Koch) in interior Alaska where it has a 1-year life cycle. Beetles overwinter as adults in the bark of the trunk below snowline in infested trees. Tamarack trees that are slow growing because of repeated...

  5. Monitoring Asian longhorned beetles in Massachusetts

    Treesearch

    Maya Nehme; Melody Keena; Aijun Zhang; Alan Sawyer; Kelli. Hoover

    2011-01-01

    An operationally effective trap to monitor the Asian longhorned beetle (Anoplophora glabripennis or ALB) has been a goal of the ALB eradication program since the first beetle was found in New York in 1996. Ground surveying is only ~20 percent effective at identifying infested trees and, although tree climbing is more effective, it is also...

  6. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus.

    PubMed

    Vogel, H; Badapanda, C; Knorr, E; Vilcinskas, A

    2014-02-01

    The pollen beetle (Meligethes aeneus) is a major pest of oilseed rape (Brassica napus) and other cruciferous crops in Europe. Pesticide-resistant pollen beetle populations are emerging, increasing the economic impact of this species. We isolated total RNA from the larval and adult stages, the latter either naïve or immunized by injection with bacteria and yeast. High-throughput RNA sequencing (RNA-Seq) was carried out to establish a comprehensive transcriptome catalogue and to screen for developmental stage-specific and immunity-related transcripts. We assembled the transcriptome de novo by combining sequence tags from all developmental stages and treatments. Gene expression data based on normalized read counts revealed several functional gene categories that were differentially expressed between larvae and adults, particularly genes associated with digestion and detoxification that were induced in larvae, and genes associated with reproduction and environmental signalling that were induced in adults. We also identified many genes associated with microbe recognition, immunity-related signalling and defence effectors, such as antimicrobial peptides (AMPs) and lysozymes. Digital gene expression analysis revealed significant differences in the profile of AMPs expressed in larvae, naïve adults and immune-challenged adults, providing insight into the steady-state differences between developmental stages and the complex transcriptional remodelling that occurs following the induction of immunity. Our data provide insight into the adaptive mechanisms used by phytophagous insects and could lead to the development of more effective control strategies for insect pests. © 2013 The Royal Entomological Society.

  7. Bearing selection in ball-rolling dung beetles: is it constant?

    PubMed

    Baird, Emily; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J; Dacke, Marie

    2010-11-01

    Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.

  8. Ips Bark Beetles in the South

    Treesearch

    Michael D. Conner; Robert C. Wilkinson

    1983-01-01

    Ips beetles usually attack weakened, dying, or recently felled trees and fresh logging debris. Large numbers Ips may build up when natural events such as lightning storms, ice storms, tornadoes, wildfires, and droughts create large amounts of pine suitable for the breeding of these beetles. Ips populations may also build up following forestry activities, such as...

  9. Landscape dynamics of mountain pine beetles

    Treesearch

    John E. Lundquist; Robin M. Reich

    2014-01-01

    The magnitude and urgency of current mountain pine beetle outbreaks in the western United States and Canada have resulted in numerous studies of the dynamics and impacts of these insects in forested ecosystems. This paper reviews some of the aspects of the spatial dynamics and landscape ecology of this bark beetle. Landscape heterogeneity influences dispersal patterns...

  10. Removal rates of native and exotic dung by dung beetles (Scarabaeidae: Scarabaeinae) in a fragmented tropical rain forest.

    PubMed

    Amézquita, Sandra; Favila, Mario E

    2010-04-01

    Many studies have evaluated the effect of forest fragmentation on dung beetle assemblage structure. However, few have analyzed how forest fragmentation affects the processes carried out by these insects in tropical forests where their food sources consist mainly of dung produced by native herbivore mammals. With the conversion of forests to pastures, cattle dung has become an exotic alternative and abundant food for dung beetles. This study compares dung removal rates of native (monkey) and exotic (cow) dung in different-sized fragments of tropical rain forests, during the dry and rainy seasons at the Los Tuxtlas Biosphere Reserve. Dung removal rates were affected by season, dung type, and the interaction between resource type and season. During the dry season, the removal rates of monkey dung were somewhat similar than during the rainy season, whereas the removal rates of cow dung were much higher during the rainy season. Dung beetle biomass and species richness were almost three times greater in monkey dung than in cow dung. Monkey dung attracted species belonging to the dweller, roller, and tunneler guilds; cow dung attracted mostly tunnelers. Therefore, the use of exotic dung may result in a biased misconception of the rates of dung removal in tropical forest and an underestimation of dung beetle diversity. This study highlights the importance of working with natural tropical forest resources when attempting to identify realistic tendencies concerning processes in natural habitats and those modified by fragmentation and by other human activities.

  11. Functional diversity of non-lethal effects, chemical camouflage, and variation in fish avoidance in colonizing beetles.

    PubMed

    Resetarits, William J; Pintar, Matthew R

    2016-12-01

    Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional

  12. Green leaf volatiles disrupt responses by the spruce beetle, Dendroctonus rufipennis, and the western pine beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae) to attractant-baited traps

    Treesearch

    Therese M. Poland; J. H. Borden; A. J. Stock; L. J. Chong

    1998-01-01

    We tested the hypothesis that green leaf volatiles (GLVs) disrupt the response of spruce beetles, Dendroctonus rufipennis Kirby, and western pine beetles, Dendroctonus brevicomis LeConte, to attraetant-baited traps. Two green leaf aldehydes, hexanal and (E)-2-hexenal, reduced the number of spruce beetles captured...

  13. Ecosystem Nitrogen Retention Following Severe Bark Beetle and Salvage Logging Disturbance in Lodgepole Pine Forests: a 15N Enrichment Study

    NASA Astrophysics Data System (ADS)

    Avera, B.; Rhoades, C.; Paul, E. A.; Cotrufo, M. F.

    2017-12-01

    In recent decades, bark beetle outbreaks have caused high levels of tree mortality in lodgepole pine (Pinus contorta) dominated forests across western North America. Previous work has found increased soil mineral nitrogen (N) with tree mortality in beetle infested stands, but surprisingly little change in stream N export. These findings suggest an important role of residual live vegetation and altered soil microbial response for retaining surplus N and mitigating N losses from disturbed lodgepole forests. Post outbreak salvage of merchantable timber reduces fuel levels and promotes tree regeneration; however, the implications of the combined bark beetle and harvesting disturbances on ecosystem N retention and productivity are uncertain. To advance understanding of post-disturbance N retention we compare unlogged beetle-infested forests and salvage logged stands with post-harvest woody residue retention or removal. We applied 15N-labeled (2 atom%) and natural abundance ammonium sulfate to eight year old lodgepole pine seedlings in three replicate plots of the three forest management treatments. This approach allows us to quantify the relative contributions of N retention in soil, microbial biomass, and plant tissue. Our study targets gaps in understanding of the processes that regulate N utilization and transfer between soil and vegetation that result in effective N retention in lodgepole pine ecosystems. These findings will also help guide forest harvest and woody residue management practices in order to maintain soil productivity.

  14. Science You Can Use Bulletin: From death comes life: Recovery and revolution in the wake of epidemic outbreaks of mountain pine beetle

    Treesearch

    Karl Malcolm; Chuck Rhoades; Michael Battaglia; Paula Fornwalt; Rob Hubbard; Kelly Elder; Byron Collins

    2012-01-01

    Changing climatic conditions and an abundance of dense, mature pine forests have helped to spur an epidemic of mountain pine beetles larger than any in recorded history. Millions of forested acres have been heavily impacted and have experienced extreme rates of tree mortality. This has raised concerns among many people that the death, desiccation, and decomposition of...

  15. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    USDA-ARS?s Scientific Manuscript database

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  16. A catalogue of Lithuanian beetles (Insecta, Coleoptera)

    PubMed Central

    Tamutis, Vytautas; Tamutė, Brigita; Ferenca, Romas

    2011-01-01

    Abstract This paper presents the first complete and updated list of all 3597 species of beetles (Insecta: Coleoptera) belonging to 92 familiesfound and published in Lithuania until 2011, with comments also provided on the main systematic and nomenclatural changes since the last monographic treatment in two volumes (Pileckis and Monsevičius 1995, 1997). The introductory section provides a general overview of the main features of the territory of Lithuania, the origins and formation of the beetle fauna and their conservation, the faunistic investigations in Lithuania to date revealing the most important stages of the faunistic research process with reference to the most prominent scientists, an overview of their work, and their contribution to Lithuanian coleopteran faunal research. Species recorded in Lithuania by some authors without reliable evidence and requiring further confirmation with new data are presented in a separate list, consisting of 183 species. For the first time, analysis of errors in works of Lithuanian authors concerning data on coleopteran fauna has been conducted and these errors have been corrected. All available published and Internet sources on beetles found in Lithuania have been considered in the current study. Over 630 literature sources on species composition of beetles, their distribution in Lithuania and neighbouring countries, and taxonomic revisions and changes are reviewed and cited. An alphabetical list of these literature sources is presented. After revision of public beetle collections in Lithuania, the authors propose to remove 43 species from the beetle species list of the country on the grounds, that they have been wrongly identified or published by mistake. For reasons of clarity, 19 previously noted but later excluded species are included in the current checklist with comments. Based on faunal data from neighbouring countries, species expected to occur in Lithuania are matnioned. In total 1390 species are attributed to this

  17. Beetle Kill Wall at NREL

    ScienceCinema

    None

    2017-12-22

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  18. Male-specific sesquiterpenes from Phyllotreta flea beetles

    USDA-ARS?s Scientific Manuscript database

    Flea beetles in several genera are known to possess male-specific sesquiterpenes, at least some of which serve as aggregation pheromones that attract both sexes. In continuing research on the chemical ecology of Phyllotreta flea beetles, six new male-specific sesquiterpenes were identified, one fro...

  19. A Multi-omics Approach to Understand the Microbial Transformation of Lignocellulosic Materials in the Digestive System of the Wood-Feeding Beetle Odontotaenius disjunctus

    NASA Astrophysics Data System (ADS)

    Ceja Navarro, J. A.; Karaoz, U.; White, R. A., III; Lipton, M. S.; Adkins, J.; Mayali, X.; Blackwell, M.; Pett-Ridge, J.; Brodie, E.; Hao, Z.

    2015-12-01

    Odontotaenius disjuctus is a wood feeding beetle that processes large amounts of hardwoods and plays an important role in forest carbon cycling. In its gut, plant material is transformed into simple molecules by sequential processing during passage through the insect's digestive system. In this study, we used multiple 'omics approaches to analyze the distribution of microbial communities and their specific functions in lignocellulose deconstruction within the insect's gut. Fosmid clones were selected and sequenced from a pool of clones based on their expression of plant polymer degrading enzymes, allowing the identification of a wide range of carbohydrate degrading enzymes. Comparison of metagenomes of all gut regions demonstrated the distribution of genes across the beetle gut. Cellulose, starch, and xylan degradation genes were particularly abundant in the midgut and posterior hindgut. Genes involved in hydrogenotrophic production of methane and nitrogenases were more abundant in the anterior hindgut. Assembled contigs were binned into 127 putative genomes representing Bacteria, Archaea, Fungi and Nematodes. Eleven complete genomes were reconstructed allowing to identify linked functions/traits, including organisms with cellulosomes, and a combined potential for cellulose, xylan and starch hydrolysis and nitrogen fixation. A metaproteomic study was conducted to test the expression of the pathways identified in the metagenomic study. Preliminary analyses suggest enrichment of pathways related to hemicellulosic degradation. A complete xylan degradation pathway was reconstructed and GC-MS/MS based metabolomics identified xylobiose and xylose as major metabolite pools. To relate microbial identify to function in the beetle gut, Chip-SIP isotope tracing was conducted with RNA extracted from beetles fed 13C-cellulose. Multiple 13C enriched bacterial groups were detected, mainly in the midgut. Our multi-omics approach has allowed us to characterize the contribution of

  20. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?

    PubMed

    Parmain, G; Bouget, C; Müller, J; Horak, J; Gossner, M M; Lachat, T; Isacsson, G

    2015-02-01

    Monitoring saproxylic beetle diversity, though challenging, can help identifying relevant conservation sites or key drivers of forest biodiversity, and assessing the impact of forestry practices on biodiversity. Unfortunately, monitoring species assemblages is costly, mainly due to the time spent on identification. Excluding families which are rich in specimens and species but are difficult to identify is a frequent procedure used in ecological entomology to reduce the identification cost. The Staphylinidae (rove beetle) family is both one of the most frequently excluded and one of the most species-rich saproxylic beetle families. Using a large-scale beetle and environmental dataset from 238 beech stands across Europe, we evaluated the effects of staphylinid exclusion on results in ecological forest studies. Simplified staphylinid-excluded assemblages were found to be relevant surrogates for whole assemblages. The species richness and composition of saproxylic beetle assemblages both with and without staphylinids responded congruently to landscape, climatic and stand gradients, even when the assemblages included a high proportion of staphylinid species. At both local and regional scales, the species richness as well as the species composition of staphylinid-included and staphylinid-excluded assemblages were highly positively correlated. Ranking of sites according to their biodiversity level, which either included or excluded Staphylinidae in species richness, also gave congruent results. From our results, species assemblages omitting staphylinids can be taken as efficient surrogates for complete assemblages in large scale biodiversity monitoring studies.

  1. A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin.

    PubMed

    Park, Doo-Sang; Oh, Hyun-Woo; Jeong, Won-Jin; Kim, Hyangmi; Park, Ho-Yong; Bae, Kyung Sook

    2007-10-01

    In this study, bacterial communities within the guts of several longicorn beetles were investigated by a culture-dependent method. A total of 142 bacterial strains were isolated from nine species of longicorn beetle, including adults and larvae. A comparison of their partial 16S rRNA gene sequences showed that most of the bacteria constituting the gut communities can typically be found in soil, plants and the intestines of animals, and approximately 10% were proposed as unreported. Phylogenetic analysis demonstrated that the bacterial species comprised 7 phyla, and approximately half were Gammaproteobacteria. Actinobacteria were the second most populous group (19%), followed by Firmicutes (13%) and Alphaproteobacteria (11%). Betaproteobacteria, Flavobacteria, and Acidobacteria were minor constituents. The taxonomic compositions of the isolates were variable according to the species of longicorn beetle. Particularly, an abundance of Actinobacteria existed in Moechotypa diphysis and Mesosa hirsute, which eat broadleaf trees; however, no Actinobacteria were isolated from Corymbia rubra and Monochamus alternatus, which are needle-leaf eaters. Considerable proportions of xylanase and pectinase producing bacteria in the guts of the longicorn beetles implied that the bacteria may play an important role in the digestion of woody diets. Actinobacteria and Gammaproteobacteria were the dominant xylanase producers in the guts of the beetles.

  2. Impacts of silvicultural thinning treatments on beetle trap captures and tree attacks during low bark beetle populations in ponderosa pine forests of northern Arizona.

    PubMed

    Gaylord, M L; Hofstetter, R W; Wagner, M R

    2010-10-01

    Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.

  3. Low concentration of lindane plus induced attraction traps mountain pine beetle

    Treesearch

    Richard H. Smith

    1976-01-01

    Mountain pine beetles were induced to attack lodgepole pine sprayed with 0.2 percent or 0.3 percent lindane emulsion. Large numbers of beetles were killed and fell into traps at the base of the tree. The few successfully attacking beetles caused the sprayed trees to remain attractive to beetles for about two months. The incidence of attacked trees in the immediate area...

  4. Pyrearinus termitilluminans larval click beetle luciferase: active site properties, structure and function relationships and comparison with other beetle luciferases.

    PubMed

    Silva Neto, A J; Scorsato, V; Arnoldi, F G C; Viviani, V R

    2009-12-01

    Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, K(M) values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging.

  5. The Effects of Thinning on Beetles (Coleoptera: Carabidae, Cerambycidae) in Bottomland Hardwood Forests

    Treesearch

    Michael D. Warriner; T. Evan Nebeker; Theodor D. Leininger; James S. Meadows

    2002-01-01

    Abstract - The responses of two groups of beetles, ground beetles (Carabidae) and longhorned beetles (Cerambycidae), to a partial cutting technique (thinning) applied to major and minor stream bottom sites in Mississippi were examined. Species diversity of ground beetles and longhorned beetles was greater in thinned stands than unthinned stands two...

  6. Spectral information as an orientation cue in dung beetles.

    PubMed

    El Jundi, Basil; Foster, James J; Byrne, Marcus J; Baird, Emily; Dacke, Marie

    2015-11-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. © 2015 The Author(s).

  7. Interactions of Root Disease and Bark Beetles

    Treesearch

    George T. Ferrell; J. Richard Parmeter Jr.

    1989-01-01

    Associations between root diseases and bark beetles (Scolytidae) constitute some of the most serious pest complexes affecting forests in North America and elsewhere. The interactive functioning of these pests derives from the following relationships: 1) root diseases predispose trees to bark beetle infestation by lowering resistance, and perhaps...

  8. Aggregation pheromone of the cereal leaf beetle: field evaluation and emission from males in the laboratory.

    PubMed

    Rao, Sujaya; Cossé, Allard A; Zilkowski, Bruce W; Bartelt, Robert J

    2003-09-01

    The previously identified, male-specific compound of the cereal leaf beetle (CLB, Chrysomelidae; Oulema melanopus), (E)-8-hydroxy-6-methyl-6-octen-3-one, was studied further with respect to field activity and emission rate from male beetles. In a 5-week field experiment in Oregon, the compound was shown to function as an aggregation pheromone in attracting male and female CLBs migrating from overwintering sites in spring. Traps baited with the synthetic compound (500 microg per rubber septum) caught 3.3 times more CLBs than control traps. Lower doses of the pheromone (50 and 150 microg) were less attractive than the 500 microg dose. One relatively abundant, volatile compound from the host plant (oats), (Z)-3-hexenyl acetate, that elicited responses from beetle antennae was not attractive, either by itself or as a synergist of the pheromone. Both sexes were captured about equally for all treatments. We also measured daily pheromone emission by male beetles in the laboratory. Individual males feeding on oat seedlings under greenhouse conditions emitted as much as 6 microg per day, which is about 500 times higher than had been previously observed under incubator conditions. The pheromone emission rate was at least five times higher during the day than at night, and in one male, emission spanned a period of 28 d. The release rate of synthetic pheromone from the 500 microg septa was very similar to the maximum from single males; thus, future experiments should evaluate even higher doses. The field results indicate that the pheromone has potential as a monitoring tool for early detection of CLBs as they move from their overwintering sites into newly planted cereal crops in spring.

  9. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...

  10. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...

  11. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...

  12. Cantharidin poisoning due to "Blister beetle" ingestion.

    PubMed

    Tagwireyi, D; Ball, D E; Loga, P J; Moyo, S

    2000-12-01

    Cantharidin, the active ingredient of "Spanish Fly", is contained in a number of insects collectively called blister beetles and is a well known toxin and vesicant. We report on a case of ingestion of Mylabris dicincta ("Blister beetle") in Zimbabwe by a 4 year old girl. The ingested beetles were probably mistaken for the edible Eulepida mashona. She presented with many of the classic signs and symptoms of cantharidin poisoning including haematuria and abdominal pains. This was recognised only after consultation with the drug information centre. She was managed conservatively, recovered and was discharged after 9 days. A overview of the clinical effects of cantharidin toxicity and its treatment is presented.

  13. Quantifying sources of variation in the frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle-symbiont relationships.

    Treesearch

    Brian H. Aukema; Richard A. Werner; Kirsten E. Haberkern; Barbara L. Illman; Murray K. Clayton; Kenneth F. Raffa

    2005-01-01

    The spruce beetle, Dendroctonus rufipennis (Kirby), causes landscape level mortality to mature spruce (Picea spp.) throughout western and northern North America. As with other bark beetles, this beetle is associated with a variety of fungi, whose ecological functions are largely unknown. It has been proposed that the relative...

  14. On the origin and evolutionary diversification of beetle horns

    PubMed Central

    Emlen, Douglas J.; Corley Lavine, Laura; Ewen-Campen, Ben

    2007-01-01

    Many scarab beetles produce rigid projections from the body called horns. The exaggerated sizes of these structures and the staggering diversity of their forms have impressed biologists for centuries. Recent comparative studies using DNA sequence-based phylogenies have begun to reconstruct the historical patterns of beetle horn evolution. At the same time, developmental genetic experiments have begun to elucidate how beetle horns grow and how horn growth is modulated in response to environmental variables, such as nutrition. We bring together these two perspectives to show that they converge on very similar conclusions regarding beetle evolution. Horns do not appear to be difficult structures to gain or lose, and they can diverge both dramatically and rapidly in form. Although much of this work is still preliminary, we use available information to propose a conceptual developmental model for the major trajectories of beetle horn evolution. We illustrate putative mechanisms underlying the evolutionary origin of horns and the evolution of horn location, shape, allometry, and dimorphism. PMID:17494751

  15. Intermediate disturbance in experimental landscapes improves persistence of beetle metapopulations.

    PubMed

    Govindan, Byju N; Feng, Zhilan; DeWoody, Yssa D; Swihart, Robert K

    2015-03-01

    Human-dominated landscapes often feature patches that fluctuate in suitability through space and time, but there is little experimental evidence relating the consequences of dynamic patches for species persistence. We used a spatially and temporally dynamic metapopulation model to assess and compare metapopulation capacity and persistence for red flour beetles (Tribolium castaneum) in experimental landscapes differentiated by resource structure, patch dynamics (destruction and restoration), and connectivity. High connectivity increased the colonization rate of beetles, but this effect was less pronounced in heterogeneous relative to homogeneous landscapes. Higher connectivity and faster patch dynamics increased extinction rates in landscapes. Lower connectivity promoted density-dependent emigration. Heterogeneous landscapes containing patches of different carrying capacity enhanced landscape-level occupancy probability. The highest metapopulation capacity and persistence was observed in landscapes with heterogeneous patches, low connectivity, and slow patch dynamics. Control landscapes with no patch dynamics exhibited rapid declines in abundance and approached extinction due to increased adult mortality in the matrix, higher pupal cannibalism by adults, and extremely low rates of exchange between remaining habitable patches. Our results highlight the role of intermediate patch dynamics, intermediate connectivity, and the nature of density dependence of emigration for persistence of species in heterogeneous landscapes. Our results also demonstrate the importance of incorporating local dynamics into the estimation of metapopulation capacity for conservation planning.

  16. Experimental porcine cysticercosis using infected beetles with Taenia solium eggs.

    PubMed

    Gomez-Puerta, Luis A; Garcia, Hector H; Gonzalez, Armando E

    2018-07-01

    Beetles are intermediate hosts for human and animal parasites, and several beetle species have been shown to carry Taenia eggs. An experimental porcine cysticercosis infection model was developed using beetles (Ammophorus rubripes) infected with Taenia solium eggs and then using these beetles for oral pig challenge. A total of 18 three months-old Landrace pigs were divided in four groups. Pigs from groups 1, 2, and 3 (n = 6 pigs per group) were challenged with one, three, and six beetles infected with T. solium eggs, containing approximately 52, 156 or 312 eggs respectively. Pigs were necropsied 12 weeks after infection to assess the presence of T. solium metacestode. Porcine cysticercosis by T. solium was produced in 17 out of 18 pigs (94.4%) challenged with infected beetles, all infected pigs had viable cysts. Only one pig from group 1 was negative to the presence of cysts. The median number of metacestodes per pig in groups 1, 2, and 3 were 2 (range 0-71), 26 (range 5-33) and 40 cysts (range 4-111), respectively. Experimental porcine cysticercosis infection is consistently obtained using beetles as mechanical vectors for T. solium eggs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A continuous mass-rearing technique for the southern pine beetle (Coleoptera: Scolytidae)

    Treesearch

    J. Robert Bridges; John C. Moser

    1983-01-01

    Studying the southern pine beetle (SPB), Dendroctonus frontalis zimmermann, during endemic periods is difficult because beetle-infested trees are often hard to locate. This is especially true during the winter months. Studies that require a continuous supply of beetles are often jeopardized by a lack of beetles. During our studies of the...

  18. Phoretic symbionts of the mountain pine beetle (Dendroctonus ponderosae Hopkins)

    Treesearch

    Javier E. Mercado; Richard W. Hofstetter; Danielle M. Reboletti; Jose F. Negron

    2014-01-01

    During its life cycle, the tree-killing mountain pine beetle Dendroctonus ponderosae Hopkins interacts with phoretic organisms such as mites, nematodes, fungi, and bacteria. The types of associations these organisms establish with the mountain pine beetle (MPB) vary from mutualistic to antagonistic. The most studied of these interactions are those between beetle and...

  19. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    PubMed

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P < 0.05) affected the beetle and tree species diversity as well as the soil nutrients as shown by univariate (one-way analysis of variance (ANOVA), correlation and regression, diversity indices) and multivariate (cluster analysis, principal component analysis (PCA), detrended correspondence analysis (DCA), canonical variate analysis (CVA), permutational multivariate analysis of variance (PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern

  20. Cloning and characterization of luciferase from a Fijian luminous click beetle.

    PubMed

    Mitani, Yasuo; Futahashi, Ryo; Niwa, Kazuki; Ohba, Nobuyoshi; Ohmiya, Yoshihiro

    2013-01-01

    Luminous click beetle is distributed almost exclusively in Central and South America with a single genus in Melanesia. Among these click beetles, the description of Melanesian species has been fragmentary, and its luciferase gene and phylogenetic relation to other click beetles still remain uncertain. We collected a living luminous click beetle, Photophorus jansonii in Fiji. It emits green-yellow light from two spots on the pronotum and has no ventral luminous organ. Here, we cloned a luciferase gene from this insect by RT-PCR. The deduced amino acid sequence showed high identity of ~85% to the luciferases derived from other click beetle species. The luciferase of the Fijian click beetle was produced as a recombinant protein to characterize its biochemical properties. The Km for D-luciferin and ATP were 173 and 270 μm, respectively. The luciferase was pH-insensitive and the spectrum measured at pH 8.0 showed a peak at 559 nm, which was in the range of green-yellow light as seen in the luminous spot of the living Fijian click beetle. The Fijian click beetle luciferase was assigned to the Elateridae clade by a phylogenetic analysis, but it made a clearly different branch from Pyrophorus group examined in this study. © 2013 The American Society of Photobiology.

  1. Mountain pine beetle emergence from lodgepole pine at different elevations near Fraser, CO

    Treesearch

    J Tishmack; S.A. Mata; J.M. Schmid

    2005-01-01

    Mountain pine beetle emergence was studied at 8760 ft, 9200 ft, and 9900 ft near Fraser, CO. Beetles began emerging at 8760 ft between July 9 and July 14 while no beetles emerged at 9200 ft and only one beetle emerged at 9900 ft during the same period. Beetle emergence continued at relatively low but fluctuating rates for the next two to three weeks. Peak emergence...

  2. Guidelines for regenerating southern pine beetle spots

    Treesearch

    J.C.G. Goelz; B.L. Strom; J.P. Barnett; M.A. Sword Sayer

    2012-01-01

    Southern pine forests are of exceptional commercial and ecological importance to the United States, and the southern pine beetle is their most serious insect pest. The southern pine beetle generally kills overstory pines, causing spots of tree mortality that are unpredictable in time and space and frequently disruptive to management activities and goals. The canopy...

  3. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009)

    PubMed Central

    Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro

    2014-01-01

    Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in 1980 in six stands below and above the treeline (1650–2250 m a.s.l.) with those sampled in the same sites almost 30 years later (2008/9). Quantitative data (species richness and abundance) have been compared by means of several diversity indexes and with a new index, the Index of Rank-abundance Change (IRC). Our work shows that species richness and abundance have changed after almost 30 years as a consequence of local extinctions, uphill increment of abundance and uphill shift of distribution range. The overall species number dropped from 36 to 27, while in the sites above the treeline, species richness and abundance changed more than in the forest sites. Two microtherm characteristic species of the pioneer cushion grass mats, Nebria germari and Trechus dolomitanus, became extinct or showed strong abundance reduction. In Nardetum pastures, several hygrophilic species disappeared, and xerophilic zoophytophagous elements raised their population density. In forest ecosystems, the precipitation reduction caused deep soil texture and watering changes, driving a transformation from Sphagnum-rich (peaty) to humus-rich soil, and as a consequence, soil invertebrate biomass strongly increased and thermophilic carabids enriched the species structure. In three decades, Carabid assemblages changed consistently with the hypothesis that climate change is one of the main factors triggering natural environment modifications. Furthermore, the level of human disturbance could enhance the

  4. Chirality determines pheromone activity for flour beetles

    NASA Astrophysics Data System (ADS)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  5. Endocrine control of exaggerated traits in rhinoceros beetles

    USDA-ARS?s Scientific Manuscript database

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  6. Life table and predatory efficiency of Stethorus gilvifrons (Coleoptera: Coccinellidae), an important predator of the red spider mite, Oligonychus coffeae (Acari: Tetranychidae), infesting tea.

    PubMed

    Perumalsamy, Kandasamy; Selvasundaram, Rajagopal; Roobakkumar, Amsalingam; Rahman, Vattakandy Jasin; Muraleedharan, Narayanannair

    2010-02-01

    The ladybird beetle, Stethorus gilvifrons, is a major predator of the red spider mite, Oligonychus coffeae, infesting tea. Biology, life table and predatory efficiency of S. gilvifrons were studied under laboratory conditions. Its average developmental period from egg to adult emergence was 19.2 days. After a mean pre-oviposition period of 5.3 days, each female laid an average of 149.3 eggs. Adult females lived for 117.3 days and males for 41.5 days. The life table of the beetle was characterized by an intrinsic rate of increase (r) of 0.066 day(-1), net reproductive rate (R (0)) of 72.2 eggs/female, gross reproduction rate (Sigmam ( x )) of 82.3 eggs/female, generation time (T) of 64.9 days, doubling time of 10.5 days and finite rate of increase (lambda) of 1.07 day(-1). Population dynamics of S. gilvifrons and its prey, O. coffeae, was monitored by sampling 25 tea leaves from each experimental block grown under the prevailing field conditions. Populations of S. gilvifrons reached a peak during January to March and had low incidence during June to November. Peaks in the populations of S. gilvifrons coincided with the abundance of O. coffeae in tea fields. Weather factors such as low temperature, high humidity and heavy rainfall adversely affected the populations of S. gilvifrons. The predatory efficiency of S. gilvifrons increased during the growth of larval instars. An adult female consumed 205.0 eggs, 92.2 larvae, 81.8 nymphs and 52.4 adult mites per day.

  7. Population Structure of Mountain Pine Beetle Symbiont Leptographium longiclavatum and the Implication on the Multipartite Beetle-Fungi Relationships

    PubMed Central

    Tsui, Clement Kin-Ming; Farfan, Lina; Roe, Amanda D.; Rice, Adrianne V.; Cooke, Janice E. K.; El-Kassaby, Yousry A.; Hamelin, Richard C.

    2014-01-01

    Over 18 million ha of forests have been destroyed in the past decade in Canada by the mountain pine beetle (MPB) and its fungal symbionts. Understanding their population dynamics is critical to improving modeling of beetle epidemics and providing potential clues to predict population expansion. Leptographium longiclavatum and Grosmannia clavigera are fungal symbionts of MPB that aid the beetle to colonize and kill their pine hosts. We investigated the genetic structure and demographic expansion of L. longiclavatum in populations established within the historic distribution range and in the newly colonized regions. We identified three genetic clusters/populations that coincide with independent geographic locations. The genetic profiles of the recently established populations in northern British Columbia (BC) and Alberta suggest that they originated from central and southern BC. Approximate Bayesian Computation supports the scenario that this recent expansion represents an admixture of individuals originating from BC and the Rocky Mountains. Highly significant correlations were found among genetic distance matrices of L. longiclavatum, G. clavigera, and MPB. This highlights the concordance of demographic processes in these interacting organisms sharing a highly specialized niche and supports the hypothesis of long-term multipartite beetle-fungus co-evolutionary history and mutualistic relationships. PMID:25153489

  8. Abundance in Persea americana of the Redbay Ambrosia Beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), Vector of Laurel Wilt: A Case of Intra-guild Competition?

    USDA-ARS?s Scientific Manuscript database

    The redbay ambrosia beetle, Xyleborus glabratus is a pest of plant species in the Lauraceae, including Persea borbonia, P. pallustris, P. americana, and others. Xyleborus glabratus infestation levels in P. borbonia maintain a high proportion compared to other species, such as Xylosandrus crassiuscu...

  9. Dung beetles use the Milky Way for orientation.

    PubMed

    Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J

    2013-02-18

    When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Habitat differences in dung beetle assemblages in an African savanna-forest ecotone: implications for secondary seed dispersal.

    PubMed

    Kunz, Britta K; Krell, Frank-Thorsten

    2011-06-01

    The probability and pattern of secondary seed dispersal by dung beetles (Scarabaeinae) depend on their community structure and composition at the site of primary deposition, which, in turn, seem to be strongly determined by vegetation. Consequently, we expected pronounced differences in secondary seed dispersal between forest and savanna in the northern Ivory Coast, West Africa. We found 99 dung beetle species at experimentally exposed dung piles of the olive baboon (Papio anubis (Lesson, 1827)), an important primary seed disperser in West Africa. Seventy-six species belonged to the roller and tunneler guilds, which are relevant for secondary seed dispersal. Most species showed a clear habitat preference. Contrary to the Neotropics, species number and abundance were much higher in the savanna than in the forest. Rollers and tunnelers each accounted for approximately 50% of the individuals in the savanna, but in the forest rollers made up only 4%. Seeds deposited into the savanna by an omnivorous primary disperser generally have a higher overall probability of being more rapidly dispersed secondarily by dung beetles than seeds in the forest. Also, rollers disperse seeds over larger distances. In contrast to other studies, small rollers were active in dispersal of large seeds, which were seemingly mistaken for dung balls. Our results suggest that rollers can remove seeds from any plant dispersed in primate dung in this ecosystem. © 2011 ISZS, Blackwell Publishing and IOZ/CAS.

  11. Use of acoustics to deter bark beetles from entering tree material.

    PubMed

    Aflitto, Nicholas C; Hofstetter, Richard W

    2014-12-01

    Acoustic technology is a potential tool to protect wood materials and eventually live trees from colonization by bark beetles. Bark beetles such as the southern pine beetle Dendroctonus frontalis, western pine beetle D. brevicomis and pine engraver Ips pini (Coleoptera: Curculionidae) use chemical and acoustic cues to communicate and to locate potential mates and host trees. In this study, the efficacy of sound treatments on D. frontalis, D. brevicomis and I. pini entry into tree materials was tested. Acoustic treatments significantly influenced whether beetles entered pine logs in the laboratory. Playback of artificial sounds reduced D. brevicomis entry into logs, and playback of stress call sounds reduced D. frontalis entry into logs. Sound treatments had no effect on I. pini entry into logs. The reduction in bark beetle entry into logs using particular acoustic treatments indicates that sound could be used as a viable management tool. © 2013 Society of Chemical Industry.

  12. Interaction of Insecticide and Media Moisture on Ambrosia Beetle (Coleoptera: Curculionidae) Attacks on Selected Ornamental Trees.

    PubMed

    Frank, Steven D; Anderson, Amanda L; Ranger, Christopher M

    2017-12-08

    Exotic ambrosia beetles, particularly Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae) and Xylosandrus germanus (Blandford) (Coleoptera: Curculionidae: Scolytinae), are among the most damaging pests of ornamental trees in nurseries. Growers have had few tactics besides insecticide applications to reduce ambrosia beetle attacks but recent research has shown that attacks may be reduced by maintaining media moisture below a 50% threshold thereby reducing flood stress. We compared the efficacy of managing media moisture and insecticide applications for reducing ambrosia beetle attacks on three ornamental tree species in North Carolina. During trials in spring 2013 and 2015, flooded Cornus florida and Cornus kousa were heavily attacked despite sprays with permethrin, but nonflooded C. kousa or C. florida were not attacked. In spring 2015 trials, both nonflooded and flooded Styrax japonicus were heavily attacked regardless of permethrin applications. Although ethanol emissions were not measured, the apparently healthy nonflooded S. japonicus trees may have been exposed to an unknown physiological stress, such as low temperature injury, the previous winter, which predisposed them to beetle attack. However, ethanol levels within host tissues were not measured as part of the current study. X. crassiusculus (75%), Xyloborinus saxesenii Ratzburg (13%), and X. germanus (9%) were the most abundant species collected in ethanol baited traps deployed in 2015, while X. crassiusculus (63%) and X. germanus (36%) were the predominant species reared from attacked trees. Results indicate that managing media moisture levels at or below 50%, and maximizing tree health overall, may provide significant protection against Xylosandrus spp. attacks in flood intolerant tree species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response

    PubMed Central

    Rhoades, Charles C.; McCutchan, James H.; Cooper, Leigh A.; Clow, David; Detmer, Thomas M.; Briggs, Jennifer S.; Stednick, John D.; Veblen, Thomas T.; Ertz, Rachel M.; Likens, Gene E.; Lewis, William M.

    2013-01-01

    A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg⋅ha⋅y), disturbance of forests by timber harvest or violent storms causes an increase in stream nitrate concentration that typically is close to 400% of predisturbance concentrations. In contrast, no significant increase in streamwater nitrate concentrations has occurred following extensive tree mortality caused by the mountain pine beetle in Colorado. A model of nitrate release from Colorado watersheds calibrated with field data indicates that stimulation of nitrate uptake by vegetation components unaffected by beetles accounts for significant nitrate retention in beetle-infested watersheds. The combination of low atmospheric N deposition (<10 kg⋅ha⋅y), tree mortality spread over multiple years, and high compensatory capacity associated with undisturbed residual vegetation and soils explains the ability of these beetle-infested watersheds to retain nitrate despite catastrophic mortality of the dominant canopy tree species. PMID:23319612

  14. Southern Pine Beetle Ecology: Populations within Stands

    Treesearch

    Matthew P. Ayres; Sharon J. Martinson; Nicholas A. Friedenberg

    2011-01-01

    Populations of southern pine beetle (SPB) are typically substructured into local aggregations, each with tens of thousands of individual beetles. These aggregations, known as “spots” because of their appearance during aerial surveys, are the basic unit for the monitoring and management of SPB populations in forested regions. They typically have a maximum lifespan of 1...

  15. Floral Associations of Cyclocephaline Scarab Beetles

    PubMed Central

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  16. Floral associations of cyclocephaline scarab beetles.

    PubMed

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  17. Dung beetle (Coleoptera: Scarabaeoidea) assemblages in the western Italian Alps: benchmark data for land use monitoring.

    PubMed

    Tocco, Claudia; Villet, Martin H

    2016-01-01

    Traditional agro-pastoral practices are in decline over much of the Alps (MacDonald et al. 2000), leading to shrub and tree encroachment, and this represents one of the main threats for the conservation of alpine biodiversity, as many plant and animal species are dependent on the presence of semi-natural open habitats. However, quantifying this environmental change and assessing its impact on biodiversity may be difficult, especially in the context of sparse historical survey data. The accessibility of contemporary data about local biodiversity surveys in general, and indicator taxa in particular, is an essential consideration for planning future evaluations of conservation status in the Alps and for conservation plans that use ecological indicators to monitor temporal changes in biodiversity. Dung beetles are important ecosystem service providers (Nichols et al. 2008) that have been assessed as a good ecological indicator taxon in several studies (reviewed by Nichols and Gardner 2011), and although the Alps is perhaps one of the best-studied regions in respect of dung beetles, there are still only eight readily-accessible publications. We have augmented and comprehensively reviewed the data from these publications. We first provide data about changes on a temporal scale of seasons in a dung beetle community in the western Italian Alps, an issue that has to be addressed in the local assemblages because it would affect regional biomonitoring and conservation research. This survey of 12 099 individuals belonging to 22 species illustrates a distinct seasonal pattern at a single site. Second, we collate the results of 13 published surveys of the presence of 46 species of dung beetles in 11 valleys in the western Italian Alps in the period from 2005 to 2012, a period of accelerated change in land use that started around 1945 (MacDonald et al. 2000). Because ten of the surveys used baited pitfall traps and four more used manual collection of specimens, the abundance data

  18. Instability of copronecrophagous beetle assemblages (Coleoptera: Scarabaeinae) in a mountainous tropical landscape of Mexico.

    PubMed

    Halffter, Gonzalo; Pineda, Eduardo; Arellano, Lucrecia; Escobar, Federico

    2007-12-01

    We analyzed changes over time in species composition and functional guild structure (temporal beta diversity) for natural assemblages and those modified by humans in a fragmented, tropical mountain landscape. The assemblages belong to cloud forests (the original vegetation type), secondary forests, traditional shaded coffee plantations, commercial shaded coffee plantations, and a cattle pasture. Copronecrophagous beetles, subfamily Scarabaeinae (Insecta: Coleoptera: Scarabaeidae), were used as the indicator group. This group has been used in previous studies and other tropical forests and has been found to be a good indicator of the effects of anthropogenic change. For each assemblage, we compared samples that were collected several years apart. Changes were found in species composition, order of abundance, and in the proportion that a given species is present in the different functional groups. The changes that occurred between samplings affected the less abundant species in the cloud forest and in the pasture. In the other vegetation types, both abundant and less abundant species were affected. Their order of abundance and proportion in the different guilds also changed. This study shows that, although landscape richness remains relatively constant, richness at the local level (alpha diversity) changes notably even over short lapses of time. This could be a characteristic of landscapes with intermediate degrees of disturbance (such as those that have been partially modified for human use), where assemblage composition is very fluid.

  19. Elm leaf beetle performance on ozone-fumigated elm

    Treesearch

    Jack H. Barger; Richard W. Hall; Alden M. Townsend; Alden M. Townsend

    1992-01-01

    Leaves (1986) from elm hybrids ('Pioneer', 'Homestead', '970') previously fumigated in open-top chambers with ozone or with charcoal-filtered air (CFA) were evaluated for water and nitrogen content or were fed to adult elm leaf beetles (ELB), Xanthogaleruca = (Pyrrhallta) luteola (Muller), to determine host suitability for beetle fecundity...

  20. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface.

    PubMed

    McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen

    2016-11-11

    Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.

  1. Proceedings from the Third Workshop on Genetics of Bark Beetles and Associated Microorganisms

    Treesearch

    Barbara Bentz; Anthony Cognato; Kenneth Raffa

    2007-01-01

    These proceedings provide a synopsis of the Third Workshop on Genetics of Bark Beetles and Association Microorganisms, which was held May 20-2, 2006 in Asheville, NC. Twenty- five participants from five countries attended the meeting. The proceedings are structured into four parts: Phylogenetics of Bark Beetles, Population Genetics of Bark Beetles, Bark Beetle Gene...

  2. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    PubMed

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  3. What is Next in Bark Beetle Phylogeography?

    PubMed Central

    Avtzis, Dimitrios N.; Bertheau, Coralie; Stauffer, Christian

    2012-01-01

    Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km2 of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree’s defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi) or even by reducing the resistance of host trees (blue-stain fungi). Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava). A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel techniques will provide a more detailed insight into the genome of scolytids facilitating at the same time the

  4. Losses of red-cockaded woodpecker cavity trees to southern pine beetles

    Treesearch

    Richard N. Conner; D. Craig Rudolph

    1995-01-01

    Over an 1 l-year period (1983-1993), we examined the southern pine beetle (Dendroctonus frontalis) infestation rate of single Red-cockaded Woodpecker (Picoides borealis) cavity trees on the Angelina National Forest in Texas. Southern pine beetles infested and killed 38 cavity trees during this period. Typically, within each cavity tree cluster, beetles infested only...

  5. Describing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ)

    PubMed Central

    Tan, Qian-Qian; Liu, Wen; Zhu, Fen; Lei, Chao-Liang; Hahn, Daniel A.; Wang, Xiao-Ping

    2017-01-01

    Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an “omics” approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ) to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, Colaphellus bowringi. A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP) that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to environmental stress

  6. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles

    PubMed Central

    2010-01-01

    Background In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. Results The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic

  7. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles.

    PubMed

    Nørgaard, Thomas; Dacke, Marie

    2010-07-16

    In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic. The differences in

  8. Decreases in beetle body size linked to climate change and warming temperatures.

    PubMed

    Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina

    2018-05-01

    Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The

  9. Strategies for managing rival bacterial communities: Lessons from burying beetles.

    PubMed

    Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M

    2018-03-01

    The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through

  10. Effect of larval growth conditions on adult body mass and long-distance flight endurance in a wood-boring beetle: Do smaller beetles fly better?

    PubMed

    Brown, Stav; Soroker, Victoria; Ribak, Gal

    2017-04-01

    The tropical fig borer, Batocera rufomaculata De Geer, is a large beetle that is a pest on a number of fruit trees, including fig and mango. Adults feed on the leaves and twigs and females lay their eggs under the bark of the tree. The larvae bore into the tree trunk, causing substantial damage that may lead to the collapse and death of the host tree. We studied how larval development under inferior feeding conditions (experienced during development in dying trees) affects flight endurance in the adult insect. We grew larvae either in their natural host or on sawdust enriched with stale fig tree twigs. Flight endurance of the adults was measured using a custom-built flight-mill. Beetles emerging from the natural host were significantly larger but flew shorter distances than beetles reared on less favourable substrates. There was no difference in the allometric slope of wing area with body mass between the beetles groups; however flight muscle mass scaled with total body mass with an exponent significantly lower than 1.0. Hence, smaller beetles had proportionally larger flight muscles. These findings suggest that beetles that developed smaller as a result from poor nutritional conditions in deteriorating hosts, are better equipped to fly longer distances in search of a new host tree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Invasive Bark Beetles, Forest Insect& Disease Leaflet 176

    Treesearch

    J.C. Lee; R.A. Haack; J.F. Negron; J.J. Witcosky; S.J. Seybold

    2007-01-01

    Bark beetles (Scolytidae) are among the most damaging insects in Northern Hemisphere forests, killing trees by direct feeding and by vectoring fungal pathogens. In addition to an already formidable native bark beetle complex, the number of exotic scolytids in U.S. forests has increased rapidly, with 53 known species established as of June 2007.

  12. Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor).

    PubMed

    Shea, John F

    2007-09-01

    The beetle-tapeworm life cycle provides a convenient system to study how host behaviour influences the probability of re-infection because initial and secondary infections can be tracked. The beetle, Tenebrio molitor, is infected with the tapeworm Hymenolepis diminuta when it ingests rat faeces containing tapeworm eggs, which upon hatching undergo five morphologically distinct stages while developing inside the beetle. In a series of preference trials, both individual and groups of previously infected beetles were exposed to baits of infective (faeces with eggs) and uninfective faeces. Beetles did not differ in the amount of time spent or in the number of occurrences at each bait type, suggesting that infected beetles show no preference for infective faeces. This may be a host adaptation to avoid further infection, parasite manipulation to avoid competition for host resources, or both. Further, once infected, beetles are no more or no less likely to become re-infected than uninfected beetles. An analysis of the mean and variance of infection suggests that some individuals are highly susceptible to and some are highly resistant to infection, with males being more variable than females. This could explain the higher load of cysticercoids observed in males.

  13. Nonhost angiosperm volatiles and verbenone protect individual ponderosa pines from attack by western pine beetle and red turpentine beetle (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Christopher J. Fettig; Christopher P. Dabney; Stepehen R. McKelvey; Dezene P.W. Huber

    2008-01-01

    Nonhost angiosperm volatiles (NAV) and verbenone were tested for their ability to protect individual ponderosa pines, Pinus ponderosa Dougl. ex. Laws., from attack by western pine beetle (WPB), Dendroctonus brevicomis LeConte, and red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae). A combination of (

  14. Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus

    NASA Astrophysics Data System (ADS)

    Fernández del Río, Lía; Arwin, Hans; Järrendahl, Kenneth

    2016-07-01

    The optical properties of several scarab beetles have been previously studied but few attempts have been made to compare beetles in the same genus. To determine whether there is any relation between specimens of the same genus, we have studied and classified seven species from the Chrysina genus. The polarization properties were analyzed with Mueller-matrix spectroscopic ellipsometry and the structural characteristics with optical microscopy and scanning electron microscopy. Most of the Chrysina beetles are green colored or have a metallic look (gold or silver). The results show that the green-colored beetles polarize reflected light mainly at off-specular angles. The gold-colored beetles polarize light left-handed near circular at specular reflection. The structure of the exoskeleton is a stack of layers that form a cusplike structure in the green beetles whereas the layers are parallel to the surface in the case of the gold-colored beetles. The beetle C. gloriosa is green with gold-colored stripes along the elytras and exhibits both types of effects. The results indicate that Chrysina beetles can be classified according to these two major polarization properties.

  15. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle

    PubMed Central

    Seidl, Rupert; Müller, Jörg; Hothorn, Torsten; Bässler, Claus; Heurich, Marco; Kautz, Markus

    2016-01-01

    Summary 1. Unprecedented bark beetle outbreaks have been observed for a variety of forest ecosystems recently, and damage is expected to further intensify as a consequence of climate change. In Central Europe, the response of ecosystem management to increasing infestation risk has hitherto focused largely on the stand level, while the contingency of outbreak dynamics on large-scale drivers remains poorly understood. 2. To investigate how factors beyond the local scale contribute to the infestation risk from Ips typographus (Col., Scol.), we analysed drivers across seven orders of magnitude in scale (from 103 to 1010 m2) over a 23-year period, focusing on the Bavarian Forest National Park. Time-discrete hazard modelling was used to account for local factors and temporal dependencies. Subsequently, beta regression was applied to determine the influence of regional and landscape factors, the latter characterized by means of graph theory. 3. We found that in addition to stand variables, large-scale drivers also strongly influenced bark beetle infestation risk. Outbreak waves were closely related to landscape-scale connectedness of both host and beetle populations as well as to regional bark beetle infestation levels. Furthermore, regional summer drought was identified as an important trigger for infestation pulses. Large-scale synchrony and connectivity are thus key drivers of the recently observed bark beetle outbreak in the area. 4. Synthesis and applications. Our multiscale analysis provides evidence that the risk for biotic disturbances is highly dependent on drivers beyond the control of traditional stand-scale management. This finding highlights the importance of fostering the ability to cope with and recover from disturbance. It furthermore suggests that a stronger consideration of landscape and regional processes is needed to address changing disturbance regimes in ecosystem management. PMID:27041769

  16. Effect of trap type, trap position, time of year, and beetle density on captures of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae).

    Treesearch

    James Hanula; Michael Ulyshen; Scott Horn`

    2011-01-01

    The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), and its fungal symbiont Raffaellea lauricola Harrington, Fraedrich, and Aghayeva are responsible for widespread redbay, Persea borbonia (L.) Spreng., mortality in the southern United States. Effective traps and lures are needed to monitor spread of the beetle and...

  17. Chemical ecology and lure development for redbay ambrosia beetle

    USDA-ARS?s Scientific Manuscript database

    The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the U.S., currently established in nine southeastern states. Female beetles are the primary vectors of a pathogenic fungus (Raffaelea lauricola) that causes laurel wilt. This lethal vascular dise...

  18. Ophiostomatoid fungi associated with conifer-infesting beetles and their phoretic mites in Yunnan, China

    PubMed Central

    Chang, Runlei; Duong, Tuan A.; Taerum, Stephen J.; Wingfield, Michael J.; Zhou, Xudong; de Beer, Z. Wilhelm

    2017-01-01

    Abstract The Ophiostomatales is an Ascomycete order of fungi that accommodates several tree pathogens and many species that degrade wood. These fungi are commonly vectored by Scolytine bark and ambrosia beetles. In recent years it has also been shown that hyperphoretic mites on these beetles can vector some Ophiostomatales. Little is known regarding the Ophiostomatales in China and we have consequently explored the diversity of these fungi associated with conifer-infesting beetles and mites in Yunnan province. Galleries and beetles were collected for 17 beetle species, while 13 mite species were obtained from six of these beetle species. Collectively, 340 fungal isolates were obtained, 45 from beetles, 184 from mites, 56 from galleries and 55 isolates where the specific niche was not clear. DNA sequences for five gene regions (ITS, LSU, BT, EF, and CAL) were determined for fungal isolates representing different morphological groups. Phylogenetic analyses confirmed the presence of 19 fungal taxa, including five novel species described here as Ophiostoma acarorum sp. nov., Ophiostoma brevipilosi sp. nov., Graphilbum kesiyae sp. nov., Graphilbum puerense sp. nov., and Leptographium ningerense sp. nov. Ophiostoma ips was the most frequently isolated species, representing approximately 31% of all isolates. Six of 19 taxa were present on mites, beetles and in the galleries of the beetles, while three species were found on mites and galleries. Two species were found only on mites and one species only on a beetle. Although the numbers of beetles and mites were insufficient to provide statistical inferences, this study confirmed that mites are important vectors of the Ophiostomatales in China. We hypothesize that these mites are most likely responsible for horizontal transfer of fungal species between galleries of different beetle species. The fact that half of the fungal species found were new to science, suggests that the forests of east Asia include many undescribed

  19. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle.

    PubMed

    Immonen, Esa-Ville; Dacke, Marie; Heinze, Stanley; El Jundi, Basil

    2017-06-01

    To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular. © 2017 Wiley Periodicals, Inc.

  20. User's guide to the Douglas-fir beetle impact model

    Treesearch

    Michael A. Marsden; Bov B. Eav; Matthew K. Thompson

    1993-01-01

    Douglas-fir beetle (Dendroctonus pseudotsugae Hopk.) occurs throughout the range of its principal host, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). At epidemic levels, the beetle causes considerable mortality in large-diameter Douglas-fir trees. Wind storms, drought, fire, and other factors have been reported as precedent...

  1. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    PubMed

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado

  2. Discordant phylogenies suggest repeated host shifts in the Fusarium–Euwallacea ambrosia beetle mutualism

    USDA-ARS?s Scientific Manuscript database

    The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known independent evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symb...

  3. Cannibalism in invasive, native and biocontrol populations of the harlequin ladybird.

    PubMed

    Tayeh, Ashraf; Estoup, Arnaud; Lombaert, Eric; Guillemaud, Thomas; Kirichenko, Natalia; Lawson-Handley, Lori; De Clercq, Patrick; Facon, Benoît

    2014-02-05

    Cannibalism is widespread in both vertebrates and invertebrates but its extent is variable between and within species. Cannibalism depends on population density and nutritional conditions, and could be beneficial during colonisation of new environments. Empirical studies are needed to determine whether this trait might facilitate invasion of a new area in natural systems. We investigated whether the propensity for cannibalism in H. axyridis differs both between native and invasive populations and between invasive populations from the core and from the front of the invasive area in Western Europe. We also compared the propensity for cannibalism of these natural populations with that of laboratory-reared biocontrol populations. We measured the cannibalism rates of eggs by first instar larvae and adult females at two different individual densities of ladybirds from three types of population (invasive, native and biocontrol), in laboratory-controlled conditions. Cannibalism was significantly greater in larvae from invasive populations compared to native or biocontrol populations, but there was no difference in cannibalism rates between populations from the core or front of the invaded range. Cannibalism was significantly lower in larvae from biocontrol populations compared to wild (invasive and native) populations. No differences in cannibalism rates of adult females were found between any populations. While high population density significantly increased cannibalism in both larvae and adults, the norm of reaction of cannibalism to individual density did not change significantly during the invasion and/or laboratory rearing processes. This study is the first to provide evidence for a higher propensity for cannibalism in invasive populations compared to native ones. Our experiments also shed light on the difference in cannibalism evolution with respect to life stages. However, we are still at an early stage in understanding the underlying mechanisms and several

  4. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    PubMed

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to

  5. Lack of nucleotide variability in a beetle pest with extreme inbreeding.

    PubMed

    Andreev, D; Breilid, H; Kirkendall, L; Brun, L O; ffrench-Constant, R H

    1998-05-01

    The coffee berry borer beetle Hypothenemus hampei (Ferrari) (Curculionidae: Scolytinae) is the major insect pest of coffee and has spread to most of the coffee-growing countries of the world. This beetle also displays an unusual life cycle, with regular sibling mating. This regular inbreeding and the population bottlenecks occurring on colonization of new regions should lead to low levels of genetic diversity. We were therefore interested in determining the level of nucleotide variation in nuclear and mitochondrial genomes of this beetle worldwide. Here we show that two nuclear loci (Resistance to dieldrin and ITS2) are completely invariant, whereas some variability is maintained at a mitochondrial locus (COI), probably corresponding to a higher mutation rate in the mitochondrial genome. Phylogenetic analysis of the mitochondrial data shows only two clades of beetle haplotypes outside of Kenya, the proposed origin of the species. These data confirm that inbreeding greatly reduces nucleotide variation and suggest the recent global spread of only two inbreeding lines of this bark beetle.

  6. Semiochemical sabotage: behavioral chemicals for protection of western conifers from bark beetles

    Treesearch

    Nancy. E. Gillette; A. Steve Munson

    2009-01-01

    The discovery and elucidation of volatile behavioral chemicals used by bark beetles to locate hosts and mates has revealed a rich potential for humans to sabotage beetle host-finding and reproduction. Here, we present a description of currently available semiochemical methods for use in monitoring and controlling bark beetle pests in western conifer forests. Delivery...

  7. Dung beetle (Coleoptera: Scarabaeoidea) assemblages in the western Italian Alps: benchmark data for land use monitoring

    PubMed Central

    Villet, Martin H

    2016-01-01

    collection of specimens, the abundance data were not strictly comparable and they were therefore transformed to binary data (presence-or-absence records) with measures of sampling effort. The results illustrate both spatial variation and temporal variation at the scale of years.Because of the importance of dung beetles in agro-pastoral ecosystems and the high sensitivity of montane ecosystems to climate change, these spatially and temporally explicit data sets provide important baseline information about western Italian Alpine dung beetles for investigations of the effects of land use change under ongoing climate change scenarios. PMID:27932920

  8. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt

    PubMed Central

    Arriaga-Jiménez, Alfonsina; Halffter, Gonzalo

    2018-01-01

    Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest–shrubland–pasture (FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled). These discoveries may indicate that speciation rate is high among these volcanoes—a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity and abundance

  9. Beetles, Biofuel, and Coffee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  10. Beetles, Biofuel, and Coffee

    ScienceCinema

    Ceja-Navarro, Javier

    2018-01-16

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  11. Red List of beetles of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Mahler, V.; Suikat, R.; Aßmann, Th.

    1996-10-01

    As no data on beetles in the Wadden Sea area are available from The Netherlands, the trilateral status of threat only refers to the Danish and German part of the Wadden Sea. In this area, in total, 238 species of beetles are threatened in at least one subregion. Of these, 189 species are threatened in the entire area and are therefore placed on the trilateral Red List. 4 species are (probably) extinct in the entire Wadden Sea area. The status of 24 species of beetles is (probably) critical, 46 species are (probably) endangered, the status of 86 species is (probably) vulnerable and of 29 species (probably) susceptible.

  12. Distance and Sex Determine Host Plant Choice by Herbivorous Beetles

    PubMed Central

    Ballhorn, Daniel J.; Kautz, Stefanie; Heil, Martin

    2013-01-01

    Background Plants respond to herbivore damage with the release of volatile organic compounds (VOCs). This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? Methodology We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis) when facing lima bean plants (Fabaceae: Phaseolus lunatus) with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. Conclusion Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a

  13. Mountain pine beetle attack in ponderosa pine: Comparing methods for rating susceptibility

    Treesearch

    David C. Chojnacky; Barbara J. Bentz; Jesse A. Logan

    2000-01-01

    Two empirical methods for rating susceptibility of mountain pine beetle attack in ponderosa pine were evaluated. The methods were compared to stand data modeled to objectively rate each sampled stand for susceptibly to bark-beetle attack. Data on bark-beetle attacks, from a survey of 45 sites throughout the Colorado Plateau, were modeled using logistic regression to...

  14. Effects of Japanese beetle (Coleoptera: Scarabaeidae) and silk clipping in field corn.

    PubMed

    Steckel, Sandy; Stewart, S D; Tindall, K V

    2013-10-01

    Japanese beetle (Popillia japonica Newman) is an emerging silk-feeding insect found in fields in the lower Corn Belt and Midsouthern United States. Studies were conducted in 2010 and 2011 to evaluate how silk clipping in corn affects pollination and yield parameters. Manually clipping silks once daily had modest effects on yield parameters. Sustained clipping by either manually clipping silks three times per day or by caging Japanese beetles onto ears affected total kernel weight if it occurred during early silking (R1 growth stage). Manually clipping silks three times per day for the first 5 d of silking affected the number of kernels per ear, total kernel weight, and the weight of individual kernels. Caged beetles fed on silks and, depending on the number of beetles caged per ear, reduced the number of kernels per ear. Caging eight beetles per ear significantly reduced total kernel weight compared with noninfested ears. Drought stress before anthesis appeared to magnify the impact of silk clipping by Japanese beetles. There was evidence of some compensation for reduced pollination by increasing the size of pollinated kernels within the ear. Our results showed that it requires sustained silk clipping during the first week of silking to have substantial impacts on pollination and yield parameters, at least under good growing conditions. Some states recommend treating for Japanese beetle when three Japanese beetles per ear are found, silks are clipped to < 13 mm, and pollination is < 50% complete, and that recommendation appears to be adequate.

  15. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem.

    PubMed

    Buotte, Polly C; Hicke, Jeffrey A; Preisler, Haiganoush K; Abatzoglou, John T; Raffa, Kenneth F; Logan, Jesse A

    2016-12-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by

  16. Influence of predators and parisitoids on bark beetle productivity

    Treesearch

    Jan Weslien

    1991-01-01

    In an earlier field experiment, natural enemies of the bark beetle, Ips typographus (L) were estimated to have reduced bark beetle productivity by more than 80 percent. To test this hypothesis, spruce logs (Picea abies) were placed in the forest in the spring, prior to commencement of flight by I. typographus....

  17. Geographic variation in prey preference in bark beetle predators

    Treesearch

    John D. Reeve; Brian L. Strom; Lynne K. Rieske; Bruce D. Ayers; Arnaud Costa

    2009-01-01

    1. Bark beetles and their predators are useful systems for addressing questions concerning diet breadth and prey preference in arthropod natural enemies. These predators use bark beetle pheromones to locate their prey, and the response todifferent pheromones is a measure of prey preference. 2. Trapping experiments were conducted to examine geographic...

  18. Adult cannibalism in an oligophagous herbivore, the Colorado potato beetle.

    PubMed

    Booth, Everett; Alyokhin, Andrei; Pinatti, Sarah

    2017-04-01

    Cannibalism, or intraspecific predation, can play a major role in changing individual fitness and population processes. In insects, cannibalism frequently occurs across life stages, with cannibals consuming a smaller or more vulnerable stage. Predation of adult insects on one another is considered to be uncommon. We investigated adult cannibalism in the Colorado potato beetle, Leptinotarsa decemlineata (Say), which is an oligophagous herbivore specializing on plants in family Solanaceae, and an important agricultural pest. Under laboratory conditions, starvation and crowding encouraged teneral adults to feed upon each other, which reduced their weight loss during the period of starvation. However, pupae were attacked and consumed before adults. Injured beetles had a higher probability of being cannibalized than intact beetles. Males were more frequently attacked than females, but that appeared to be a function of their smaller size rather than other gender-specific traits. Cannibalizing eggs at a larval stage did not affect beetle propensity to cannibalize adults at an adult stage. When given a choice between conspecific adults and mealworms, the beetles preferred to eat conspecifics. Cannibalistic behavior, including adult cannibalism, could be important for population persistence in this species. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  19. Ploy and counterploy in predator-prey interactions: Orb-weaving spiders versus bombardier beetles*

    PubMed Central

    Eisner, Thomas; Dean, Jeffrey

    1976-01-01

    Bombardier beetles (Brachinus spp.) offered to orb-weaving spiders are either captured or lost, depending on the attack strategy of the spider. Nephila clavipes grasps a beetle directly and attempts to bite it outright, but is repelled by the beetle's defensive spray. As the spider recovers from the spray, the beetle makes its escape from the web. Argiope first imprisons the beetle by wrapping it delicately in silk, without causing it to spray. When the spider then proceeds to bite, the wrapping protects it against the full effects of the spray. The wrapping strategy may be generally effective against chemically protected insects, and it is suggested that this may be one of its principal adaptive justifications. Images PMID:16592308

  20. The artificial beetle, or a brief manifesto for engineered biomimicry

    NASA Astrophysics Data System (ADS)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  1. Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae).

    PubMed

    Johnson, J A; Valero, K A; Wang, S; Tang, J

    2004-12-01

    While developing radio frequency heat treatments for dried fruits and nuts, we used a heating block system developed by Washington State University to identify the most heat-tolerant life stage of red flour beetle, Tribolium castaneum (Herbst), and to determine its thermal death kinetics. Using a heating rate of 15 degrees C/min to approximate the rapid heating of radio frequency treatments, the relative heat tolerance of red flour beetle stages was found to be older larvae > pupae and adults > eggs and younger larvae. Lethal exposure times for temperatures of 48, 50, and 52 degrees C for the most heat-tolerant larval stage were estimated using a 0.5th order kinetic model. Exposures needed for 95% mortality at 48 degrees C were too long to be practical (67 min), but increasing treatment temperatures to 50 and 52 degrees C resulted in more useful exposure times of 8 and 1.3 min, respectively. Red flour beetle was more sensitive to changes in treatment temperature than previously studied moth species, resulting in red flour beetle being the most heat-tolerant species at 48 degrees C, but navel orangeworm, Amyelois transitella (Walker), being most heat tolerant at 50 and 52 degrees C. Consequently, efficacious treatments for navel orangeworm at 50-52 degrees C also would control red flour beetle.

  2. Technique for Rearing Mite-Free Southern Pine Beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), Adults

    Treesearch

    John C. Moser; J. Robert Bridges

    1983-01-01

    Southern pine beetles can be reared free of phoretic mites from naturally infested bark if the bark is removed from the tree and air dried. Bark removal does not reduce the number of beetles that emerge. On the average fewer than 1% of the beetles emerging from removed bark carried one or fewer mites, and 85% of the beetles emerging from attacked bard carried one or...

  3. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  4. Invasive bark beetle-associated microbes degrade a host defensive monoterpene.

    PubMed

    Xu, Le-Tian; Lu, Min; Sun, Jiang-Hua

    2016-04-01

    Conifers respond to herbivore attack with defensive chemicals, which are toxic to both insects and their associated microorganisms. Microorganisms associated with insects have been widely reported to metabolize toxic chemicals, which may help both microorganisms and host insects overcome host conifer defense. Dendroctonus valens LeConte, an introduced exotic pest from North America to China, has killed millions of healthy pines. Alpha-pinene is the most abundant defensive monoterpene in Chinese Pinus tabuliformis. Although microorganisms associated with D. valens have already been investigated, little is known about their bioactivities when encountering host defensive monoterpenes. In this study, we evaluated the influences of different concentrations of α-pinene to D. valens and the three most frequently isolated yeasts and bacteria of D. valens, and further assayed microorganisms' capabilities to degrade α-pinene. Results showed that the gallery lengths and body weight changes of bark beetles were significantly affected by 6 mg/mL and 12 mg/mL of α-pinene applied in media compared to controls. The tolerance of experimental microorganisms to α-pinene varied depending on the microbial species. Two out of three yeast strains and all three bacterial strains degraded 20%-50% of α-pinene compared to controls in 24 h in vitro. The microorganisms capable of α-pinene degradation in vitro and their tolerance to high levels of α-pinene suggested that D. valens-associated microorganisms may help both microorganisms and the bark beetle overcome host α-pinene defense. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  5. Effects of bark beetle-caused tree mortality on wildfire

    Treesearch

    Jeffrey A Hicke; Morris C. Johnson; Jane L. Hayes; Haiganoush K. Preisler

    2012-01-01

    Millions of trees killed by bark beetles in western North America have raised concerns about subsequent wildfire, but studies have reported a range of conclusions, often seemingly contradictory, about effects on fuels and wildfire. In this study, we reviewed and synthesized the published literature on modifications to fuels and fire characteristics following beetle-...

  6. Quaternary beetle research: the state of the art

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.

    2006-08-01

    Quaternary beetle research has progressed in a variety of ways during the last decade. New kinds of data are being extracted from the fossil specimens themselves, such as ancient DNA and stable isotopes. The ancient DNA studies hold the promise of proving new insights on the stability of beetle genotypes. The study of stable isotopes of H and O from fossil beetle chitin holds the promise of providing an independent proxy for the reconstruction of temperature and precipitation. The discipline is also expanding into previously unstudied regions, such as Australia, New Zealand, and northern Asia. Along with the new study regions, new schools of thought are also forming in the discipline, challenging old research paradigms. This is a necessary step forward for the discipline, as it grows and develops in the 21st Century.

  7. Antibiotic-producing bacteria from stag beetle mycangia.

    PubMed

    Miyashita, Atsushi; Hirai, Yuuki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-02-01

    The search for new antibiotics or antifungal agents is crucial for the chemotherapies of infectious diseases. The limited resource of soil bacteria makes it difficult to discover such new drug candidate. We, therefore, focused on another bacterial resource than soil bacteria, the microbial flora of insect species. In the present study, we isolated 40 strains of bacteria and fungi from the mycangia of three species of stag beetle, Dorcus hopei binodulosus, Dorcus rectus, and Dorcus titanus pilifer. We identified those species with their ribosomal DNA sequences, and revealed that Klebsiella spp. are the most frequent symbiont in the stag beetle mycangia. We examined whether these microorganisms produce antibiotics against a Gram-negative bacterium, Escherichia coli, a Gram-positive bacterium, Staphylococcus aureus, or a fungus, Cryptococcus neoformans. Culture supernatants from 33, 29, or 18 strains showed antimicrobial activity against E. coli, S. aureus, or C. neoformans, respectively. These findings suggest that bacteria present in the mycangia of stag beetles are useful resources for screening novel antibiotics.

  8. Anther Cap Retention Prevents Self-pollination by Elaterid Beetles in the South African Orchid Eulophia foliosa

    PubMed Central

    PETER, CRAIG I.; JOHNSON, STEVEN D.

    2006-01-01

    • Background and Aims Pollination by insects that spend long periods visiting many flowers on a plant may impose a higher risk of facilitated self-pollination. Orchids and asclepiads are particularly at risk as their pollen is packaged as pollinia and so can be deposited on self-stigmas en masse. Many orchids and asclepiads have adaptations to limit self-deposition of pollinia, including gradual reconfiguration of pollinaria following removal. Here an unusual mechanism—anther cap retention—that appears to prevent self-pollination in the South African orchid Eulophia foliosa is examined. • Methods Visits to inflorescences in the field were observed and pollinators collected. Visitation rates to transplanted inflorescences were compared between a site where putative pollinators were abundant and a site where they were rare. Anther cap retention times were determined for removed pollinaria and atmospheric vapour pressure deficit was recorded concurrently. Anther cap anatomy was examined using light microscopy. • Key Results Eulophia foliosa is pollinated almost exclusively by Cardiophorus obliquemaculatus (Elateridae) beetles, which remain on the deceptive inflorescences for on average 301 s (n = 18). The anther cap that covers the pollinarium is retained for an average of 512 s (n = 24) after pollinarium removal by beetles. In all populations measured, anther cap dimensions are greater than those of the stigmatic cavity, thus precluding the deposition of self-pollinia until after the anther cap has dropped. An anatomical investigation of this mechanism suggests that differential water loss from regions of the anther cap results in opening of the anther cap flaps. This is supported by observations that as atmospheric vapour pressure deficits increased, the duration of anther cap retention was reduced. • Conclusions Flowers of E. foliosa are specialized for pollination by elaterid beetles. Retention of anther caps for a period exceeding average visit times

  9. Field test of lindane against overwintering broods of the western pine beetle

    Treesearch

    Robert L. Lyon; Kenneth M. Swain

    1968-01-01

    The insecticide lindane, applied on bark any time of the year, can effectively destroy broods of the western pine beetle. It may also be effective the year round on the mountain pine beetle, the California five-spined ips, and probably other California species of bark beetles. In tests on the Sierra National Forest, lindane sprays formulated at 1.5 percent...

  10. Intercrop movement of convergent lady beetle, Hippodamia convergens (Coleoptera: Coccinellidae), between adjacent cotton and alfalfa.

    PubMed

    Bastola, Anup; Parajulee, Megha N; Porter, R Patrick; Shrestha, Ram B; Chen, Fa-Jun; Carroll, Stanley C

    2016-02-01

    A 2-year study was conducted to characterize the intercrop movement of convergent lady beetle, Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinellidae) between adjacent cotton and alfalfa. A dual protein-marking method was used to assess the intercrop movement of the lady beetles in each crop. In turns field collected lady beetles in each crop were assayed by protein specific ELISA to quantify the movement of beetles between the crops. Results indicated that a high percentage of convergent lady beetles caught in cotton (46% in 2008; 56% in 2009) and alfalfa (46% in 2008; 71% in 2009) contained a protein mark, thus indicating that convergent lady beetle movement was largely bidirectional between the adjacent crops. Although at a much lower proportion, lady beetles also showed unidirectional movement from cotton to alfalfa (5% in 2008 and 6% in 2009) and from alfalfa to cotton (9% in 2008 and 14% in 2009). The season-long bidirectional movement exhibited by the beetles was significantly higher in alfalfa than cotton during both years of the study. The total influx of lady beetles (bidirectional and unidirectional combined) was significantly higher in alfalfa compared with that in cotton for both years. While convergent lady beetles moved between adjacent cotton and alfalfa, they were more attracted to alfalfa when cotton was not flowering and/or when alfalfa offered more opportunities for prey. This study offers much needed information on intercrop movement of the convergent lady beetle that should facilitate integrated pest management decisions in cotton utilizing conservation biological control. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  11. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the Southern Pine Beetle Prevention Program

    Treesearch

    John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie

    2015-01-01

    Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....

  12. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    PubMed

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  13. Bark Beetle-Fungal Symbiosis: Context Dependency in Complex Associations

    Treesearch

    Kier D. Klepzig; D.L. Six

    2004-01-01

    Recent thinking in symbiosis research has emphasized a holistic consideration of these complex interactions. Bark beetles and their associated microbes are one group which has previously not been addressed in this manner. We review the study of symbiotic interactions among bark beetles and microbes in light of this thinking. We describe the considerable progress...

  14. Faecal mimicry by seeds ensures dispersal by dung beetles.

    PubMed

    Midgley, Jeremy J; White, Joseph D M; Johnson, Steven D; Bronner, Gary N

    2015-10-05

    The large brown, round, strongly scented seeds of Ceratocaryum argenteum (Restionaceae) emit many volatiles found to be present in herbivore dung. These seeds attract dung beetles that roll and bury them. As the seeds are hard and offer no reward to the dung beetles, this is a remarkable example of deception in plant seed dispersal.

  15. Interactions among the mountain pine beetle, fires, and fuels

    Treesearch

    Michael J. Jenkins; Justin B. Runyon; Christopher J. Fettig; Wesley G. Page; Barbara J. Bentz

    2014-01-01

    Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with...

  16. Checklist of leaf beetles (Coleoptera: Chrysomelidae) from the state of Morelos, Mexico.

    PubMed

    Niño-Maldonado, Santiago; Sánchez-Reyes, Uriel Jeshua; Clark, Shawn M; Toledo-Hernández, Victor Hugo; Corona-López, Angélica María; Jones, Robert W

    2016-03-07

    We record 116 genera and 366 species of Chrysomelidae from the state of Morelos, Mexico. This represents an increase of 9.3% in the species richness of these beetles for the state. Also, Morelos is currently the third most diverse state in leaf beetles within Mexico, with 16.78% of total species recorded for the country. The most diverse genera were Calligrapha, Disonycha, Blepharida, Leptinotarsa, Cryptocephalus, Systena, Alagoasa, Diabrotica and Pachybrachis, each with more than eight species. Most of these genera contain large, showy beetles. When the chrysomelid fauna is more fully understood, some of the genera of tiny beetles will likely prove to be more diverse.

  17. Quantifying Beetle-Mediated Effects on Gas Fluxes from Dung Pats

    PubMed Central

    Penttilä, Atte; Slade, Eleanor M.; Simojoki, Asko; Riutta, Terhi; Minkkinen, Kari; Roslin, Tomas

    2013-01-01

    Agriculture is one of the largest contributors of the anthropogenic greenhouse gases (GHGs) responsible for global warming. Measurements of gas fluxes from dung pats suggest that dung is a source of GHGs, but whether these emissions are modified by arthropods has not been studied. A closed chamber system was used to measure the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from dung pats with and without dung beetles on a grass sward. The presence of dung beetles significantly affected the fluxes of GHGs from dung pats. Most importantly, fresh dung pats emitted higher amounts of CO2 and lower amounts of CH4 per day in the presence than absence of beetles. Emissions of N2O showed a distinct peak three weeks after the start of the experiment – a pattern detected only in the presence of beetles. When summed over the main grazing season (June–July), total emissions of CH4 proved significantly lower, and total emissions of N2O significantly higher in the presence than absence of beetles. While clearly conditional on the experimental conditions, the patterns observed here reveal a potential impact of dung beetles on gas fluxes realized at a small spatial scale, and thereby suggest that arthropods may have an overall effect on gas fluxes from agriculture. Dissecting the exact mechanisms behind these effects, mapping out the range of conditions under which they occur, and quantifying effect sizes under variable environmental conditions emerge as key priorities for further research. PMID:23940758

  18. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera: Tenebrionidae) Beetles from Iran.

    PubMed

    Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza

    2017-06-01

    Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010-2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12-14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97-100% with similar sequences from GenBank database. Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations.

  19. Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, Howard S.; LeBrun, Roger A.; Heyer, Klaus; Zhioua, Elyes

    2002-01-01

    The potential for nontarget effects of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin, when used for biological control of ticks, was assessed in laboratory trials. Fungal pathogenicity was studied against convergent ladybird beetles, Hippodamia convergens Guérin-Méneville, house crickets, Acheta domesticus (L.), and the milkweed bugs Oncopeltus fasciatus (Dallas). Fungal spores applied with a spray tower produced significant mortality in H. convergens and A. domesticus, but effects on O. fasciatus were marginal. Placing treated insects with untreated individuals resulted in mortality from horizontal transmission to untreated beetles and crickets, but not milkweed bugs. Spread of fungal infection in the beetles resulted in mortality on days 4–10 after treatment, while in crickets mortality was on day 2 after treatment, suggesting different levels of pathogenicity and possibly different modes of transmission. Therefore, M. anisopliae varies in pathogenicity to different insects. Inundative applications can potentially affect nontarget species, but M. anisopliae is already widely distributed in North America, so applications for tick control generally would not introduce a novel pathogen into the environment. Pathogenicity in lab trials does not, by itself, demonstrate activity under natural conditions, so field trials are needed to confirm these results and to assess methods to minimize nontarget exposure.

  20. Scramble competition in the southern pine beetle, Dendroctonus frontalis

    Treesearch

    John D. Reeve; Douglas J. Rhodes; Peter Turchin

    1998-01-01

    1. The nature of intraspecific competition was investigated in the southern pine beetle, Dendroctonus frontalis, a highly destructive pest of pine forests in the southern U.S.A.Date were analyzed from an observation study of naturally-attacked trees, and from field experiments where attack density was manipulated by adding different numbers of beetles to caged trees....

  1. Laboratory and Field Evaluation of the Entomopathogenic Fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for Population Management of Spruce Beetle, Dendroctonus rufipennis (Coleoptera: Scolytinae), in Felled Trees and Factors Limiting Pathogen Success.

    PubMed

    Davis, Thomas Seth; Mann, Andrew J; Malesky, Danielle; Jankowski, Egan; Bradley, Clifford

    2018-03-24

    An isolate of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) was tested for its ability to reduce survival and reproduction of spruce beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Scolytinae), under laboratory and field conditions. Conidial suspension applied directly to adults or to filter papers that adults contacted had a median survival time of 3-4 d in laboratory assays and beetles died more rapidly when exposed to conidial suspension than when treated with surfactant solution only. In the field, conidial suspension was applied to the surface of felled and pheromone-baited Engelmann spruce (Picea engelmannii) trees using a backpack sprayer. Mortality of colonizing parent beetles (F0), reproduction (abundance of F1 offspring in logs), and emergence of F1 beetles from logs was compared between treated and nontreated logs. Application of spore suspension increased mortality of F0 adults by 36% on average. Total F1 reproduction was reduced by 17% and emergence from logs was reduced by 13% in treated logs, but considerable variability in reproduction and emergence was observed. Viable spores were re-isolated from treated logs up to 90 d after application, indicating that spores are capable of long-term persistence on the tree bole microhabitat. Subsequent in vitro tests revealed that temperatures below 15°C and exposure to spruce monoterpenes likely limit performance of B. bassiana under field conditions, but exposure to low-intensity light or interactions with spruce beetle symbiotic fungi were not strongly inhibitory. It is concluded that matching environmental tolerances of biocontrol fungi to field conditions can likely improve their usefulness for control of spruce beetle in windthrown trees.

  2. Callosobruchus maculatus: A Seed Beetle with a Future in Schools.

    ERIC Educational Resources Information Center

    Dockery, Michael

    1997-01-01

    Recommends the use of seed beetles for studying animal behavior and provides suggestions for practical and project assignments. Sources for obtaining the beetles and a list of the equipment needed for their study and maintenance are provided. Answers to common concerns are addressed. (DDR)

  3. Symbiosis and competition: complex interactions among beetles, fungi, and mites

    Treesearch

    Kier D. Klepzig; J.C. Moser; F.J. Lombardero; R.W. Hofstetter; M.P. Ayres

    2001-01-01

    Symbioses among bark beetles and their fungal and mite associates involve complex, multi-level interactions. Dendroctonus frontalis attacks and kills southern pines, introducing fungi into the tree. Ophiostoma minus may initially aid beetles in killing trees, but later this "bluestain" fungus becomes an antagonist,...

  4. Formulating entompathogens for control of boring beetles in avocado orchards

    USDA-ARS?s Scientific Manuscript database

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  5. Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus.

    PubMed

    Wu, Yuan-Ming; Li, Jiang; Chen, Xiang-Sheng

    2018-03-01

    Commonly known as blister beetles or Spanish fly, there are more than 1500 species in the Meloidae family (Hexapoda: Coleoptera: Tenebrionoidea) that produce the potent defensive blistering agent cantharidin. Cantharidin and its derivatives have been used to treat cancers such as liver, stomach, lung, and esophageal cancers. Hycleus cichorii and Hycleus phaleratus are the most commercially important blister beetles in China due to their ability to biosynthesize this potent vesicant. However, there is a lack of genome reference, which has hindered development of studies on the biosynthesis of cantharidin and a better understanding of its biology and pharmacology. We report 2 draft genomes and quantified gene sets for the blister beetles H. cichorii and H. phaleratus, 2 complex genomes with >72% repeats and approximately 1% heterozygosity, using Illumina sequencing data. An integrated assembly pipeline was performed for assembly, and most of the coding regions were obtained. Benchmarking universal single-copy orthologs (BUSCO) assessment showed that our assembly obtained more than 98% of the Endopterygota universal single-copy orthologs. Comparison analysis showed that the completeness of coding genes in our assembly was comparable to other beetle genomes such as Dendroctonus ponderosae and Agrilus planipennis. Gene annotation yielded 13 813 and 13 725 protein-coding genes in H. cichorii and H. phaleratus, of which approximately 89% were functionally annotated. BUSCO assessment showed that approximately 86% and 84% of the Endopterygota universal single-copy orthologs were annotated completely in these 2 gene sets, whose completeness is comparable to that of D. ponderosae and A. planipennis. Assembly of both blister beetle genomes provides a valuable resource for future biosynthesis of cantharidin and comparative genomic studies of blister beetles and other beetles.

  6. Associations of Conifer-Infesting Bark Beetles and Fungi in Fennoscandia

    PubMed Central

    Linnakoski, Riikka; de Beer, Z. Wilhelm; Niemelä, Pekka; Wingfield, Michael J.

    2012-01-01

    Bark beetles (Coleoptera, Scolytinae) have a widespread association with fungi, especially with ophiostomatoid fungi (Ascomycota) that cause blue staining of wood, and in some cases, serious tree diseases. In Fennoscandia, most studies of these fungi have focused on economically important bark beetle species and this is likely to have led to a biased view of the fungal biodiversity in the region. Recently, the associations between fungi and bark beetles in Fennoscandia have been shown to be more diverse than previously thought. Furthermore, they form complex and dynamic associations that are only now beginning to emerge. This review examines the current knowledge of the rather poorly known interactions between bark beetles, fungi and their conifer host trees in Fennoscandia. The diversity of ophiostomatoid species is discussed and the possible factors that influence the assemblages of fungal associates are considered for all species that are known to occur in the region. For many ophiostomatoid species found in Fennoscandia, little or nothing is known regarding their pathogenicity, particularly if they were to be transferred to new environments. We, therefore, draw attention to the possible threats of timber trade and climate change-induced invasions of new habitats by bark beetles and the fungi that can be moved along with them. PMID:26467956

  7. Volume regulation during dehydration of desert beetles.

    PubMed

    Zachariassen, Karl Erik; Pedersen, Sindre Andre

    2002-11-01

    In arid areas in East Africa, dietary water is available only during the rainy seasons. Since the rainy seasons are separated by dry seasons, which may last for many months and in extreme cases for more than a year, the beetles may lose more than 80% of their body water. The water loss takes place mainly at the expense of the extracellular fluid, i.e. as the haemolymph volume drops to zero, the cell volume is only moderately reduced. The protection of cell volume at the expense of the haemolymph requires that solutes are removed from the haemolymph. The solutes are either excreted from the body or sequestered within the body in an osmotically inactive state. In predatory beetles of the family Carabidae, where Na is the dominating extracellular solute, Na is excreted, but it can easily be replaced from the diet. In most herbivorous beetles, such as the Tenebrionidae, which feed on a low Na diet, and which have low extracellular Na levels, Na is usually, but not always, deposited within the body. Free amino acids are moved from haemolymph to cells, but some seem to be made osmotically inactive by polymerization to peptides. As beetles become rehydrated, the peptides are rapidly depolymerized and the amino acids released to the haemolymph. Another factor, which may be important in the stabilisation of cell volume, is the colloid osmotic contribution of intracellular proteins, which may have a steep increase in their osmotic activity with increasing concentration.

  8. Fires following bark beetles: Factors controlling severity and disturbance interactions in ponderosa pine

    Treesearch

    Carolyn H. Sieg; Rodman R. Linn; Francois Pimont; Chad M. Hoffman; Joel D. McMillin; Judith Winterkamp; L. Scott Baggett

    2017-01-01

    Previous studies have suggested that bark beetles and fires can be interacting disturbances, whereby bark beetle-caused tree mortality can alter the risk and severity of subsequent wildland fires. However, there remains considerable uncertainty around the type and magnitude of the interaction between fires following bark beetle attacks, especially in drier forest types...

  9. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops.

    PubMed

    Shackelford, Gorm; Steward, Peter R; Benton, Tim G; Kunin, William E; Potts, Simon G; Biesmeijer, Jacobus C; Sait, Steven M

    2013-11-01

    To manage agroecosystems for multiple ecosystem services, we need to know whether the management of one service has positive, negative, or no effects on other services. We do not yet have data on the interactions between pollination and pest-control services. However, we do have data on the distributions of pollinators and natural enemies in agroecosystems. Therefore, we compared these two groups of ecosystem service providers, to see if the management of farms and agricultural landscapes might have similar effects on the abundance and richness of both. In a meta-analysis, we compared 46 studies that sampled bees, predatory beetles, parasitic wasps, and spiders in fields, orchards, or vineyards of food crops. These studies used the proximity or proportion of non-crop or natural habitats in the landscapes surrounding these crops (a measure of landscape complexity), or the proximity or diversity of non-crop plants in the margins of these crops (a measure of local complexity), to explain the abundance or richness of these beneficial arthropods. Compositional complexity at both landscape and local scales had positive effects on both pollinators and natural enemies, but different effects on different taxa. Effects on bees and spiders were significantly positive, but effects on parasitoids and predatory beetles (mostly Carabidae and Staphylinidae) were inconclusive. Landscape complexity had significantly stronger effects on bees than it did on predatory beetles and significantly stronger effects in non-woody rather than in woody crops. Effects on richness were significantly stronger than effects on abundance, but possibly only for spiders. This abundance-richness difference might be caused by differences between generalists and specialists, or between arthropods that depend on non-crop habitats (ecotone species and dispersers) and those that do not (cultural species). We call this the 'specialist-generalist' or 'cultural difference' mechanism. If complexity has stronger

  10. Western Pine Beetle

    Treesearch

    Clarence J. Jr. DeMars; Bruce H. Roettgering

    1982-01-01

    The western pine beetle, Dendroctonus brevicomis LeConte, can aggressively attack and kill ponderosa and Coulter pine trees of all ages and vigor classes that are 6 inches (15 cm) or larger in diameter, including apparently healthy trees. Group killing of trees is common in dense, overstocked stands of pure, even-aged, young sawtimber (fig. 1), but also occurs among...

  11. Pine Beetle Detection

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Earth Systems Science Office scientists worked with officials in St. Tammany Parish, La., to detect and battle pine beetle infestation in Fontainebleu State Park. The scientists used a new method of detecting plant stress by using special lenses and modified sensors to detect a change in light levels given off by the plant before the stress is visible to the naked eye.

  12. Characterisation and tissue distribution of the PISCF allatostatin receptor in the red flour beetle, Tribolium castaneum.

    PubMed

    Audsley, Neil; Vandersmissen, Hans Peter; Weaver, Robert; Dani, Paulina; Matthews, June; Down, Rachel; Vuerinckx, Kristel; Kim, Young-Joon; Vanden Broeck, Jozef

    2013-01-01

    The insect PISCF/allatostatins (ASTs) are pleiotropic peptides that are involved in the regulation of juvenile hormone biosynthesis, are myoinhibitory on the gut and the heart, and suppress feeding in various insects, but their roles in beetles are poorly understood. To provide further insight into the significance of PISCF/ASTs in beetles, the PISCF/AST receptor from Tribolium castaneum has been characterised and its tissue distribution determined. The biological activity of the T. castaneum PISCF/AST (Trica-AS) was also investigated. The Trica-AS receptor shows high sequence homology to other insect PISCF/AST receptors, which are related to the mammalian somatostatin/opioid receptors, a family of G protein-coupled receptors. The Trica-AS receptor was activated in a dose-dependent manner by both Trica-AS and T. castaneum allatostatin double C (Trica-ASTCC) as well as Manduca sexta-allatostatin (Manse-AS). Other allatoregulatory peptides (a FLG/AST, a MIP/AST and an allatotropin) and somatostatin(14) were inactive on this receptor. Receptor transcript levels in tissues, determined by qRT-PCR, were highest in the head and the gut, with variable amounts in the fat body and reproductive organs. There were measurable differences in receptor levels of the head, fat body and reproductive organs between males and females. There was also a widespread distribution of Trica-AS in various tissues of T. castaneum. The Trica-AS peptide precursor was most abundant in the head and there was a significant difference between levels in the heads and reproductive organs of males and females. Whole mount immunocytochemistry localised Trica-AS in the median and lateral neurosecretory cells of the brain, in the corpus cardiacum and throughout the ventral nerve cord. The peptide was also present in midgut neurosecretory cells, but no immunostaining was detected in the reproductive organs or Malpighian tubules. The widespread distribution of both Trica-AS and its receptor suggest this

  13. Barcode haplotype variation in North American agroecosystem ladybird beetles (Coleoptera: Coccinellidae

    USDA-ARS?s Scientific Manuscript database

    DNA barcodes have proven invaluable in identifying and distinguishing insect pests, for example for determining the provenance of exotic invasives, but relatively few insect natural enemies have been barcoded. We used Folmer et al.’s universal invertebrate primers (1994), and those designed by Heber...

  14. Waves and Water Beetles

    ERIC Educational Resources Information Center

    Tucker, Vance A.

    1971-01-01

    Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)

  15. Book review of advances in insect physiology: pine bark beetles

    USDA-ARS?s Scientific Manuscript database

    If not the most destructive forest pest, bark beetles are probably a close second in their culpability for killing millions of trees in the Northern Hemisphere. This volume provides an aptly-timed interdisciplinary review on aspects of bark beetle physiology, especially how it relates to selecting, ...

  16. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Movement of live Japanese beetles. 301.48-6 Section 301.48-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and...

  17. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Movement of live Japanese beetles. 301.48-6 Section 301.48-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and...

  18. Predicting county-level southern pine beetle outbreaks from neighborhood patterns

    USDA-ARS?s Scientific Manuscript database

    The southern pine beetle (Dendroctonus frontalis, Coleoptera: Curculionidae) is the most destructive insect in southern forests. States have kept county-level records on the locations of beetle outbreaks for the past forty-eight years. In this study, we seek to determine how accurately patterns of c...

  19. Mountain pine beetle infestations in relation to lodgepole pine diameters

    Treesearch

    Walter E. Cole; Gene D. Amman

    1969-01-01

    Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...

  20. Colonization of disturbed trees by the southern pine bark beetle guild (Coleoptera: Scolytidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flamm, R.O.; Pulley, P.E.; Coulson, R.N.

    1993-02-01

    The southern pine bark beetle guild [Dendroctonus frontalis Zimmermann, D. terebrans (Olivier), Ips calligraphus (Germar), I. grandicollis (Eichhoff), and I. avulsus (Eichhoff)] uses disturbed hosts as habitat for establishment of within-tree populations. The process of colonization of disturbed hosts was examined. Using a procedure designed to emulate effects of a lightning strike, pines were severely disturbed. Response was characterized by measuring beetle populations that (1) arrived at the trees and (2) successfully attacked the trees. Establishment of within-tree populations was characterized by measuring length of egg gallery excavated by attacking adults. The time delay between arrival and attack for D.more » frontalis and I. calligraphus was also calculated. Attack densities of both species became asymptotic as arrival increased. The percentage of arriving beetles that attacked ranged from 9 to 41 for D. frontalis and from 8 to 59 for I. calligraphus. Numbers of beetles that arrived at the tree but did not attack ranged from 2.7 to 50.2 beetles per dm[sup 2] for D. frontalis and from 0.2 to 10.0 beetles per dm[sup 2] for I. calligraphus. Most D. frontalis and I. calligraphus attacked on the day they arrived. The delay between arrival and attack was longer for I. calligraphus than the D. frontalis. Egg gallery excavated by D. frontalis increased throughout the study. Eventually, the Ips species were excluded from the lower half of the hole. The low attack densities observed in this study illustrate the significance of disturbed trees in providing refuges for enzootic levels of bark beetles. The aggregation behavior of beetle populations colonizing disturbed hosts supported the contention that these trees serve as foci for initiation of infestations. Furthermore, in disturbed pines, small numbers of beetles were capable of overcoming host defense systems.« less

  1. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera: Tenebrionidae) Beetles from Iran

    PubMed Central

    Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza

    2017-01-01

    Background: Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. Methods: The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010–2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Results: Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12–14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97–100% with similar sequences from GenBank database. Conclusion: Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations. PMID:29062858

  2. Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.

    PubMed

    Strohm, S; Tyson, R C; Powell, J A

    2013-10-01

    Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.

  3. Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi

    Treesearch

    W. R. Jacobi; R. D. Koski; J. F. Negron

    2013-01-01

    Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophiostoma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus...

  4. Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo.

    PubMed

    Sasu, M A; Seidl-Adams, I; Wall, K; Winsor, J A; Stephenson, A G

    2010-02-01

    Cucumber beetles, Acalymma vittatum (F.) and Diabrotica undecipunctata howardi (Barber), are specialist herbivores of cucurbits and the vector of Erwinia tracheiphila (E.F. Smith) Holland, the causative agent of wilt disease. Cucumber beetles transmit E. tracheiphila when infected frass falls onto leaf wounds at the site of beetle feeding. We show that E. tracheiphila also can be transmitted via the floral nectaries of Cucurbita pepo ssp. texana L. Andres (Texas gourd). Under field conditions, we found that beetles aggregate in flowers in the late morning, that these beetles chew the anther filaments that cover the nectaries in male flowers thereby exposing the nectary, and that beetle frass accumulates on the nectary. We use real-time polymerase chain reaction to show that most of the flowers produced during the late summer possess beetle frass containing E. tracheiphila. Greenhouse experiments, in which cultures of E. tracheiphila are deposited onto floral nectaries, show that Texas gourds can contract wilt disease through the floral nectaries. Finally, we use green fluorescent protein-transformed E. tracheiphila to document the movement of E. tracheiphila through the nectary into the xylem of the pedicel before the abscission of the flower. Together, these data show that E. tracheiphila can be transmitted through infected frass that falls on or near the floral nectaries. We hypothesize that the concentration of frass from many beetles in the flowers increases both exposure to and the concentration of E. tracheiphila and plays a major role in the dynamics of wilt disease in both wild populations and cultivated squash fields.

  5. Recognition of imported lady beetles in the tribe Scymnini released in Eastern North America

    Treesearch

    Lynn A. Jones; Michael Montgomery; Guoyue Yu; Wenhau Lu

    2002-01-01

    Adults of lady beetles in the tribe Scymnini imported for biological control of hemlock woolly adelgid, Adelges tsugae Annand, in eastern North America can be readily distinguished from native lady beetles (Coccinellidae). The imported lady beetles are in the genera Pseudoscymnus and Scymnus (Neopullus...

  6. Ecological Complexity in a Coffee Agroecosystem: Spatial Heterogeneity, Population Persistence and Biological Control

    PubMed Central

    Liere, Heidi; Jackson, Doug; Vandermeer, John

    2012-01-01

    Background Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. Methodology/Principal Findings Here we report on a predatory ladybird beetle whose natural history suggests that the beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant, Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered distribution of the mutualistic ants in the first place. Conclusions/Significance From a theoretical point of view, our model represents a novel situation in which a predator indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that involves the emergent spatial pattern. PMID:23029061

  7. Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee.

    PubMed

    Torto, Baldwyn; Boucias, Drion G; Arbogast, Richard T; Tumlinson, James H; Teal, Peter E A

    2007-05-15

    Colony defense by honey bees, Apis mellifera, is associated with stinging and mass attack, fueled by the release of alarm pheromones. Thus, alarm pheromones are critically important to survival of honey bee colonies. Here we report that in the parasitic relationship between the European honey bee and the small hive beetle, Aethina tumida, the honey bee's alarm pheromones serve a negative function because they are potent attractants for the beetle. Furthermore, we discovered that the beetles from both Africa and the United States vector a strain of Kodamaea ohmeri yeast, which produces these same honey bee alarm pheromones when grown on pollen in hives. The beetle is not a pest of African honey bees because African bees have evolved effective methods to mitigate beetle infestation. However, European honey bees, faced with disease and pest management stresses different from those experienced by African bees, are unable to effectively inhibit beetle infestation. Therefore, the environment of the European honey bee colony provides optimal conditions to promote the unique bee-beetle-yeast-pollen multitrophic interaction that facilitates effective infestation of hives at the expense of the European honey bee.

  8. Chemical Strategies of the Beetle Metoecus Paradoxus, Social Parasite of the Wasp Vespula Vulgaris.

    PubMed

    Van Oystaeyen, Annette; van Zweden, Jelle S; Huyghe, Hilde; Drijfhout, Falko; Bonckaert, Wim; Wenseleers, Tom

    2015-12-01

    The parasitoid beetle Metoecus paradoxus frequently parasitizes colonies of the common wasp, Vespula vulgaris. It penetrates a host colony as a larva that attaches itself onto a foraging wasp's body and, once inside the nest, it feeds on a wasp larva inside a brood cell and then pupates. Avoiding detection by the wasp host is crucial when the beetle emerges. Here, we tested whether adult M. paradoxus beetles avoid detection by mimicking the cuticular hydrocarbon profile of their host. The beetles appear to be chemically adapted to their main host species, the common wasp, because they share more hydrocarbon compounds with it than they do with the related German wasp, V. germanica. In addition, aggression tests showed that adult beetles were attacked less by common wasp workers than by German wasp workers. Our results further indicated that the host-specific compounds were, at least partially, produced through recycling of the prey's hydrocarbons, and were not acquired through contact with the adult host. Moreover, the chemical profile of the beetles shows overproduction of the wasp queen pheromone, nonacosane (n-C29), suggesting that beetles might mimic the queen's pheromonal bouquet.

  9. Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus

    PubMed Central

    Wu, Yuan-Ming; Li, Jiang

    2018-01-01

    Abstract Background Commonly known as blister beetles or Spanish fly, there are more than 1500 species in the Meloidae family (Hexapoda: Coleoptera: Tenebrionoidea) that produce the potent defensive blistering agent cantharidin. Cantharidin and its derivatives have been used to treat cancers such as liver, stomach, lung, and esophageal cancers. Hycleus cichorii and Hycleus phaleratus are the most commercially important blister beetles in China due to their ability to biosynthesize this potent vesicant. However, there is a lack of genome reference, which has hindered development of studies on the biosynthesis of cantharidin and a better understanding of its biology and pharmacology. Results We report 2 draft genomes and quantified gene sets for the blister beetles H. cichorii and H. phaleratus, 2 complex genomes with >72% repeats and approximately 1% heterozygosity, using Illumina sequencing data. An integrated assembly pipeline was performed for assembly, and most of the coding regions were obtained. Benchmarking universal single-copy orthologs (BUSCO) assessment showed that our assembly obtained more than 98% of the Endopterygota universal single-copy orthologs. Comparison analysis showed that the completeness of coding genes in our assembly was comparable to other beetle genomes such as Dendroctonus ponderosae and Agrilus planipennis. Gene annotation yielded 13 813 and 13 725 protein-coding genes in H. cichorii and H. phaleratus, of which approximately 89% were functionally annotated. BUSCO assessment showed that approximately 86% and 84% of the Endopterygota universal single-copy orthologs were annotated completely in these 2 gene sets, whose completeness is comparable to that of D. ponderosae and A. planipennis. Conclusions Assembly of both blister beetle genomes provides a valuable resource for future biosynthesis of cantharidin and comparative genomic studies of blister beetles and other beetles. PMID:29444297

  10. Efficacy of fipronil for protecting individual pines from mortality attributed to attack by western pine beetle and mountain pine beetle (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    C.J. Fettig; A.S. Munson; C.I. Jorgenson; D.M. and Grosman

    2010-01-01

    Bark beetles (Coleoptera: C~rculionidae, Scolytinae) are commonly recognized as important tree mortality agents in coniferous forests of the western U.S. Most species feed on the phloem and cambium, or xylem tissue of woody plants; and a few are recognized as the most destructive of all forest insect pests. The last decade has seen elevated levels of bark beetle caused...

  11. Proceedings of a workshop on bark beetle genetics: current status of research. Workshop on Bark Beetle Genetics; 1998 July 17-18; Madison, WI.

    Treesearch

    Jane L. Hayes; Kenneth F. Raffa

    1999-01-01

    This proceedings contains contributions from each author or group of authors who presented their current research at the bark beetle genetics workshop held 17-18 July 1998 on the campus of the University of Wisconsin in Madison, Wisconsin, USA. This was the second meeting on this subject; the first was held in 1992. The subject of bark beetle genetics is of growing,...

  12. Scattering and polarization properties of the scarab beetle Cyphochilus insulanus cuticle.

    PubMed

    Åkerlind, Christina; Arwin, Hans; Hallberg, Tomas; Landin, Jan; Gustafsson, Johan; Kariis, Hans; Järrendahl, Kenneth

    2015-07-01

    Optical properties of natural photonic structures can inspire material developments in diversified areas, such as the spectral design of surfaces for camouflage. Here, reflectance, scattering, and polarization properties of the cuticle of the scarab beetle Cyphochilus insulanus are studied with spectral directional hemispherical reflectance, bidirectional reflection distribution function (BRDF) measurements, and Mueller-matrix spectroscopic ellipsometry (MMSE). At normal incidence, a reflectance (0.6-0.75) is found in the spectral range of 400-1600 nm and a weaker reflectance <0.2 in the UV range as well as for wavelengths >1600  nm. A whiteness of W=42 is observed for mainly the elytra of the beetle. Chitin is a major constituent of the insect cuticle which is verified by the close similarity of the measured IR spectrum to that of α-chitin. The BRDF signal shows close-to-Lambertian properties of the beetle for visible light at small angles of incidence. From the MMSE measurement it is found that the beetles appear as dielectric reflectors reflecting linearly polarized light at oblique incidence with low gloss and a low degree of polarization. The measured beetle properties are properties that can be beneficial in a camouflage material.

  13. Effects of available water on growth and competition of southern pine beetle associated fungi

    Treesearch

    Kier D. Klepzig; J. Flores-Otero; R.W. Hofstetter; M.P. Ayers

    2004-01-01

    Competitive interactions among bark beetle associated fungi are potentially influenced by abiotic factors. Water potential, in particular, undergoes marked changes over the course of beetle colonization of tree hosts. To investigate the impact of water potential on competition among three southern pine beetle associated fungi, Ophiostoma minus,

  14. 77 FR 31720 - Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    .... APHIS-2012-0003] Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York AGENCY...: We are amending the Asian longhorned beetle regulations to make changes to the list of quarantined... the artificial spread of Asian longhorned beetle to noninfested areas of the United States and to...

  15. Urban soil biomonitoring by beetle and earthworm populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janossy, L.; Bitto, A.

    1995-12-31

    Two macro invertebrate groups were chosen for biomonitoring environmental changes. The beetle population was pitfall trapped (five month in 1994) at five downtown sites (parks) of Budapest and in a hilly original woodland as a control site 33km NW of Budapest. Earthworms were collected by using formol solution. Five heavy metals were measured (Pb, Co, Hg, Zn, Cu) in the upper soil layer at the same sampling sites. Pb, Hg, Zn and Cu was over the tolerable limit in a park near the railway, extreme high Pb (530 mg/kg dry soil) and Zn content was measured in one park. Roadsmore » are also salted in wintertime. The number of beetle species in the downtown parks varied 10 to 22 (226--462 specimen). Near to the edge of the city up to 45 beetle species were found in a park with 1,027 specimen. In the woodland area 52 beetle species with 1,061 specimen were found. Less dominance and higher specific diversity showed the direction from downtown to woodland. Only 2 or 3 cosmopolitan earthworm species existed in downtown parks with 30--35 specimen/m{sup 2}, in the control woodland area 7 mostly endemic earthworm species were found with 74 specimens/m{sup 2}. But earthworm biomass was higher in three well fertilized parks (43--157 g/m{sup 2}), than in the original woodland (25-g/m{sup 2}). The beetle populations seem to be good tools for biomonitoring. Earthworms are susceptible to environmental changes but they also strongly depend on the leaf litter and the organic matter of the soil. The change in the animal populations is the result of summarized environmental impacts in such a big city like Budapest.« less

  16. Luciferase from Fulgeochlizus bruchi (Coleoptera:Elateridae), a Brazilian click-beetle with a single abdominal lantern: molecular evolution, biological function and comparison with other click-beetle luciferases.

    PubMed

    Amaral, Danilo T; Prado, Rogilene A; Viviani, Vadim R

    2012-07-01

    Bioluminescent click-beetles emit a wide range of bioluminescence colors (λ(Max) = 534-594 nm) from thoracic and abdominal lanterns, which are used for courtship. Only the luciferases from Pyrophorus and Pyrearinus species were cloned and sequenced. The Brazilian Fulgeochlizus bruchi click-beetle, which inhabits the Central-west Cerrado (Savannas), is noteworthy because, differently from other click-beetles, the adult stage displays only a functional abdominal lantern, which produces a bright green bioluminescence for sexual attraction purposes, and lacks functional thoracic lanterns. We cloned the cDNA for the abdominal lantern luciferase of this species. Notably, the primary sequence of this luciferase showed slightly higher identity with the green emitting dorsal lantern luciferases of the Pyrophorus genus instead of the abdominal lanterns luciferases. This luciferase displays a blue-shifted spectrum (λ(Max) = 540 nm), which is pH-insensitive from pH 7.5 to 9.5 and undergoes a slight red shift and broadening above this pH; the lowest K(M) for luciferin among studied click-beetle luciferases, and the highest optimum pH (9.0) ever reported for a beetle luciferase. At pH 9.0, the K(M) for luciferin increases, showing a decrease of affinity for this substrate, despite the higher activity. The slow luminescence decay rate of F. bruchi luciferase in vitro reaction could be an adaptation of this luciferase for the long and sustained in vivo luminescence display of the click-beetle during the courtship, and could be useful for in vivo intracellular imaging.

  17. Mountain pine beetle population sampling: inferences from Lindgren pheromone traps and tree emergence cages

    Treesearch

    Barbara J. Bentz

    2006-01-01

    Lindgren pheromone traps baited with a mountain pine beetle (Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae)) lure were deployed for three consecutive years in lodgepole pine stands in central Idaho. Mountain pine beetle emergence was also monitored each year using cages on infested trees. Distributions of beetles caught in...

  18. Overwintering biology and tests of trap and relocate as a conservation measure for burying beetles.

    DOT National Transportation Integrated Search

    2015-01-01

    Burying beetles are carrion beetles and utilize dead animal carcasses for feeding : and reproductive efforts. They assist with decomposition, prevent the spread of disease, : and reduce the number of pest species. The largest species of carrion beetl...

  19. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  20. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  1. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae

    Treesearch

    Jacques Regniere; Barbara Bentz

    2007-01-01

    Cold-induced mortality is a key factor driving mountain pine beetle, Dendroctonus ponderosae, population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following...

  2. Effectiveness of insecticide-incorporated bags to control stored-product beetles

    USDA-ARS?s Scientific Manuscript database

    Adults of seven stored-product beetle species were exposed on the inside and outside surfaces of polypropylene polymer bags incorporated with the insecticide deltamethrin (approx. concentration of 3,000 ppm; ZeroFly® Storage Bags (3g/kg). Beetles were exposed for 60, 120, and 180 min, and 1, 3 and 5...

  3. Ethanol injection of ornamental trees facilitates testing insecticide efficacy against ambrosia beetles (Coleoptera: Curculionidae: Scolytinae).

    PubMed

    Reding, Michael E; Oliver, Jason B; Schultz, Peter B; Ranger, Christopher M; Youssef, Nadeer N

    2013-02-01

    Exotic ambrosia beetles are damaging pests in ornamental tree nurseries in North America. The species Xylosandrus crassiusculus (Motshulsky) and Xylosandrus germanus (Blandford) are especially problematic. Management of these pests relies on preventive treatments of insecticides. However, field tests of recommended materials on nursery trees have been limited because of unreliable attacks by ambrosia beetles on experimental trees. Ethanol-injection of trees was used to induce colonization by ambrosia beetles to evaluate insecticides and botanical formulations for preventing attacks by ambrosia beetles. Experiments were conducted in Ohio, Tennessee, and Virginia. Experimental trees injected with ethanol had more attacks by ambrosia beetles than uninjected control trees in all but one experiment. Xylosandrus crassiusculus and X. germanus colonized trees injected with ethanol. In most experiments, attack rates declined 8 d after ethanol-injection. Ethanol-injection induced sufficient pressure from ambrosia beetles to evaluate the efficacy of insecticides for preventing attacks. Trunk sprays of permethrin suppressed cumulative total attacks by ambrosia beetles in most tests. Trunk sprays of the botanical formulations Armorex and Veggie Pharm suppressed cumulative total attacks in Ohio. Armorex, Armorex + Permethrin, and Veggie Pharm + Permethrin suppressed attacks in Tennessee. The bifenthrin product Onyx suppressed establishment of X. germanus in one Ohio experiment, and cumulative total ambrosia beetle attacks in Virginia. Substrate drenches and trunk sprays of neonicotinoids, or trunk sprays of anthranilic diamides or tolfenpyrad were not effective. Ethanol-injection is effective for inducing attacks and ensuring pressure by ambrosia beetles for testing insecticide efficacy on ornamental trees.

  4. Two genera of Aulacoscelinae beetles reflexively bleed azoxyglycosides found in their host cycads.

    PubMed

    Prado, Alberto; Ledezma, Julieta; Cubilla-Rios, Luis; Bede, Jacqueline C; Windsor, Donald M

    2011-07-01

    Aulacoscelinae beetles have an ancient relationship with cycads (Cycadophyta: Zamiaceae), which contain highly toxic azoxyglycoside (AZG) compounds. How these "primitive" leaf beetles deal with such host-derived compounds remains largely unknown. Collections were made of adult Aulacoscelis appendiculata from Zamia cf. elegantissima in Panama, A. vogti from Dioon edule in Mexico, and Janbechynea paradoxa from Zamia boliviana in Bolivia. Total AZG levels were quantified in both cycad leaves and adult beetles by high performance liquid chromatography (HPLC). On average, cycad leaves contained between 0.5-0.8% AZG (frozen weight, FW), while adult beetles feeding on the same leaves contained even higher levels of the compounds (average 0.9-1.5% FW). High AZG levels were isolated from reflex bleeding secreted at the leg joints when beetles were disturbed. Nuclear magnetic resonance and mass spectroscopy identified two AZGs, cycasin and macrozamin, in the reflex bleeding; this is the first account of potentially plant-derived compounds in secretions of the Aulacoscelinae. These data as well as the basal phylogenetic position of the Aulacoscelinae suggest that sequestration of plant secondary metabolites appeared early in leaf beetle evolution.

  5. Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.

    PubMed

    Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying

    2016-12-28

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. © 2016 The Author(s).

  6. Specialized proteinine rove beetles shed light on insect–fungal associations in the Cretaceous

    PubMed Central

    Leschen, Richard A. B.; Huang, Diying

    2016-01-01

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. PMID:28003444

  7. Southern Pine Beetle II

    Treesearch

    R. N. Coulson; Kier Klepzig

    2011-01-01

    The knowledge base for the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae) has increased dramatically since the last comprehensive and interpretative summary (Thatcher and others 1980). This insect continues to be a significant pest affecting the forest environment of the Southern US and adjoining states and it is also the subject of...

  8. Estimating the probability of mountain pine beetle red-attack damage

    Treesearch

    Michael A Wulder; J. C. White; Barbara J Bentz; M. F. Alvarez; N. C. Coops

    2006-01-01

    Accurate spatial information on the location and extent of mountain pine beetle infestation is critical for the planning of mitigation and treatment activities. Areas of mixed forest and variable terrain present unique challenges for the detection and mapping of mountain pine beetle red-attack damage, as red-attack has a more heterogeneous distribution under these...

  9. The Mexican pine beetle (Dendroctonus mexicanus), our "newest" invasive species

    Treesearch

    Kier D. Klepzig; John C. Moser; B. A. Fitzgibbon

    2003-01-01

    The Mexican pine beetle, Dendroctonus mexicanus Hopkins (XPB), is recorded here for the first time as a new introduction for the U.S. Individuals of this species are occupying the same logs of Pinus leiophilla and several other pines in the Chiricahua mountains, AZ with the sibling species of XPB, the southern pine beetle,

  10. Fungi associated with the North American spruce beetle, Dendroctonus rufipennis

    Treesearch

    Diana L. Six; Barbara J. Bentz

    2003-01-01

    Fungi were isolated from individual Dendroctonus rufipennis (Kirby) collected from six populations in Alaska, Colorado, Utah, and Minnesota, U.S.A. In all populations, Leptographium abietinum (Peck) Wingfield was the most commonly isolated mycelial fungus (91-100% of beetles). All beetles in all populations were associated with yeasts and some with only yeasts (0-5%)....

  11. Diversity and Interactions of Wood-Inhabiting Fungi and Beetles after Deadwood Enrichment

    PubMed Central

    Müller, Tobias; Dittrich, Marcus; Rudloff, Renate; Hoppe, Björn; Linsenmair, Karl Eduard

    2015-01-01

    Freshly cut beech deadwood was enriched in the canopy and on the ground in three cultural landscapes in Germany (Swabian Alb, Hainich-Dün, Schorfheide-Chorin) in order to analyse the diversity, distribution and interaction of wood-inhabiting fungi and beetles. After two years of wood decay 83 MOTUs (Molecular Operational Taxonomic Units) from 28 wood samples were identified. Flight Interception Traps (FITs) installed adjacent to the deadwood enrichments captured 29.465 beetles which were sorted to 566 species. Geographical ‘region’ was the main factor determining both beetle and fungal assemblages. The proportions of species occurring in all regions were low. Statistic models suggest that assemblages of both taxa differed between stratum and management praxis but their strength varied among regions. Fungal assemblages in Hainich-Dün, for which the data was most comprehensive, discriminated unmanaged from extensively managed and age-class forests (even-aged timber management) while canopy communities differed not from those near the ground. In contrast, the beetle assemblages at the same sites showed the opposite pattern. We pursued an approach in the search for fungus-beetle associations by computing cross correlations and visualize significant links in a network graph. These correlations can be used to formulate hypotheses on mutualistic relationships for example in respect to beetles acting as vectors of fungal spores. PMID:26599572

  12. Striped Cucumber Beetle (Coleoptera: Chrysomelidae) Aggregation in Response to Cultivar and Flowering.

    PubMed

    Gardner, Jeffrey; Hoffmann, Michael P; Mazourek, Michael

    2015-04-01

    The striped cucumber beetle [Acalymma vittatum (F.)] is a specialist pest of cucurbits throughout its range in the United States and Canada. Improved integrated pest management options are needed across the pest's range, especially on organic farms where there are few effective controls. Trap cropping in cucurbits is an option, but there are significant challenges to the technique. Because cucurbit flowers are highly attractive to the beetles, four field experiments tested whether cultivar and phenology interact to preferentially aggregate beetles. The first experiment tested the hypothesis that cucurbit flowers were more attractive to striped cucumber beetles than was foliage. The second experiment tested whether there were differences in beetle aggregation between two relatively attractive cultivars. The third and fourth experiments were factorial designs with two plant cultivars and two levels of flowering to specifically test for an interaction of cultivar and flowering. Results indicated that flowers were more attractive than foliage, beetle aggregation was affected by plant cultivar, and that there was an interaction of cultivar with flowering. We conclude that a single cultivar may be sufficient to serve as a generic trap crop to protect a wide variety of cucurbits. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Effects on eastern larch beetle of its natural attractant and synthetic pheromones in Alaska.

    Treesearch

    Richard A. Werner; Malcom M. Furniss; Thomas. Ward

    1981-01-01

    Traps baited with Seudenol + a-pinene caught 87 percent more eastern larch beetles, Dendroctonus simplex LeConte, than did tamarack logs infested with females. Male beetles responded to the synthetic attractant in greater numbers than females. Male beetles were not attracted to frontalin, a principal attractant of the closely related Douglas-fir...

  14. Cannibalism in invasive, native and biocontrol populations of the harlequin ladybird

    PubMed Central

    2014-01-01

    Background Cannibalism is widespread in both vertebrates and invertebrates but its extent is variable between and within species. Cannibalism depends on population density and nutritional conditions, and could be beneficial during colonisation of new environments. Empirical studies are needed to determine whether this trait might facilitate invasion of a new area in natural systems. We investigated whether the propensity for cannibalism in H. axyridis differs both between native and invasive populations and between invasive populations from the core and from the front of the invasive area in Western Europe. We also compared the propensity for cannibalism of these natural populations with that of laboratory-reared biocontrol populations. We measured the cannibalism rates of eggs by first instar larvae and adult females at two different individual densities of ladybirds from three types of population (invasive, native and biocontrol), in laboratory-controlled conditions. Results Cannibalism was significantly greater in larvae from invasive populations compared to native or biocontrol populations, but there was no difference in cannibalism rates between populations from the core or front of the invaded range. Cannibalism was significantly lower in larvae from biocontrol populations compared to wild (invasive and native) populations. No differences in cannibalism rates of adult females were found between any populations. While high population density significantly increased cannibalism in both larvae and adults, the norm of reaction of cannibalism to individual density did not change significantly during the invasion and/or laboratory rearing processes. Conclusion This study is the first to provide evidence for a higher propensity for cannibalism in invasive populations compared to native ones. Our experiments also shed light on the difference in cannibalism evolution with respect to life stages. However, we are still at an early stage in understanding the underlying

  15. Evidence that ribonuclease activity present in beetle regurgitant is found to stimulate virus resistance in plants.

    PubMed

    Musser, Richard O; Hum-Musser, Sue M; Slaten-Bickford, Shannon E; Felton, Gary W; Gergerich, Rose C

    2002-08-01

    Phaseolus vulgaris L. cv. 'Pinto' bean is a local lesion host for the plant pathogen Southern bean mosaic virus (SBMV) and its vector is the Mexican bean beetle, Epilachna varivestis Mulsant. The objective of this study was to determine if prior feeding by the beetle would affect 'Pinto' bean's resistance to SBMV and determine if ribonuclease (RNase), a major constituent of beetle regurgitant, mediated the plant's response to the virus. 'Pinto' bean plants fed upon by beetles had increased resistance to plant viruses compared to non-wounded or mechanically wounded and buffer-treated plants. Plants that were mechanically wounded and treated with RNase had increased resistance to plant viruses that was equal to plants fed upon by adult beetles. The induction of plant pathogen defenses could be a good adaptation for the plant in the presence of a beetle and pathogen threat. This evidence suggests that RNase activity in the beetle regurgitant could function as an insect-derived elicitor of plant resistance to viruses.

  16. Chemical ecology and serendipity: Developing attractants for Florida ambrosia beetle pests

    USDA-ARS?s Scientific Manuscript database

    Two exotic ambrosia beetles have become established in southern Florida: Xyleborus glabratus, the redbay ambrosia beetle (RAB), and Euwallacea fornicatus, the tea shot hole borer (TSHB). Both pests vector pathogenic fungal symbionts; the former for laurel wilt and the latter for Fusarium dieback d...

  17. Age and aggregation trigger mating behaviour in the small hive beetle, Aethina tumida (Nitidulidae)

    NASA Astrophysics Data System (ADS)

    Mustafa, Sandra G.; Spooner-Hart, Robert; Duncan, Michael; Pettis, Jeffery S.; Steidle, Johannes L. M.; Rosenkranz, Peter

    2015-10-01

    This study aimed to investigate the poorly documented reproductive behaviour of the small hive beetle, Aethina tumida (Nitidulidae), a honey bee ( Apis mellifera) parasite. We described the mating behaviour in detail and tested the hypothesis that beetle aggregation plays a vital role in mating in this species. Gender preference was examined in the context of age-dependency and possible chemical communication. Beetles started mating at a high frequency 18 days after emergence from the soil but only if they were aggregated ( p < 0.001); mating was infrequent when beetles were paired. Males in aggregation also tried to copulate with males and only copulated more frequently with females at 18 days after emergence from soil ( p < 0.001) in contrast to newly emerged, 7-day-old and 60-day-old beetles. Males and females spent more time in social contact with the opposite sex ( p < 0.01) when they were 18 days old in contrast to 7-day-old beetles. Filter papers which had been in contact with 21-day-old beetles were highly attractive to similar-aged beetles of the opposite sex ( p < 0.01). This suggests that chemical substances produced by the beetles themselves play a role in mating. Mating behaviour was characterised by a short pre-copulation courtship and female aggression towards other females and copulating couples. Both behaviours may be indicative of cryptic female choice. Delayed onset of reproductive behaviour is typical of many polygamous species, whilst the indispensability of aggregation for onset of sexual behaviour seems to be a feature unique to A. tumida. Both strategies support mass reproduction in this parasitic species, enabling A. tumida to overcome its honey bee host colony, and are probably triggered by chemotactic cues.

  18. The tiger beetles (Coleoptera, Carabidae, Cicindelinae) of Israel and adjacent lands

    PubMed Central

    Matalin, Andrey V.; Chikatunov, Vladimir I.

    2016-01-01

    Abstract Based on field studies, museums collections and literature sources, the current knowledge of the tiger beetle fauna of Israel and adjacent lands is presented. In Israel eight species occur, one of them with two subspecies, while in the Sinai Peninsula nine species of tiger beetles are now known. In the combined regions seven genera from two tribes were found. The Rift Valley with six cicindelids species is the most specious region of Israel. Cylindera contorta valdenbergi and Cicindela javeti azari have localized distributions and should be considered regional endemics. A similarity analysis of the tiger beetles faunas of different regions of Israel and the Sinai Peninsula reveal two clusters of species. The first includes the Great Rift Valley and most parts of the Sinai Peninsula, and the second incorporates most regions of Israel together with Central Sinai Foothills. Five distinct adult phenological groups of tiger beetles can be distinguished in these two clusters: active all-year (three species), spring-fall (five species), summer (two species), spring-summer (one species) and spring (one species). The likely origins of the tiger beetle fauna of this area are presented. An annotated list and illustrated identification key of the Cicindelinae of Israel and adjacent lands are provided. PMID:27110198

  19. Antiserum Preparation For Immunodiffusion In Southern Pine Beetle Predation Studies

    Treesearch

    M.C. Miller; W. Adrian Chappell; William C. Gamble; J. Robert Bridges

    1978-01-01

    An anti-adult southern pine beetle serum was produced by subcutaneous injection of rabbits with southern pine beetle (SPB) adult antigen. Initial tests demonstrated the ability of the anti-adult SPB serum to detect adult SPB antigen in the body of the adult predator, Thanasimus dubius (F.). Cross reactivity was found between the anti-adult serum...

  20. Bark beetle outbreaks in western North America: Causes and consequences

    Treesearch

    Barbara Bentz; Jesse Logan; Jim MacMahon; Craig D. Allen; Matt Ayres; Ed Berg; Allan Carroll; Matt Hansen; Jeff Hicke; Linda Joyce; Wallace Macfarlane; Steve Munson; Jose Negron; Tim Paine; Jim Powell; Ken Raffa; Jacques Regniere; Mary Reid; Bill Romme; Steven J. Seybold; Diana Six; Diana Tomback; Jim Vandygriff; Tom Veblen; Mike White; Jeff Witcosky; David Wood

    2009-01-01

    Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded...

  1. Bark beetle outbreaks in western North America: Causes and consequences

    USGS Publications Warehouse

    Bentz, Barbara; Logan, Jesse; MacMahon, James A.; Allen, Craig D.; Ayres, Matt; Berg, Edward E; Carroll, Allan; Hansen, Matt; Hicke, Jeff H.; Joyce, Linda A.; Macfarlane, Wallace; Munson, Steve; Negron, Jose; Paine, Tim; Powell, Jim; Raffa, Kenneth; Regniere, Jacques; Reid, Mary; Romme, Bill; Seybold, Steven J.; Six, Diana; Vandygriff, Jim; Veblen, Tom; White, Mike; Witcosky, Jeff

    2005-01-01

    Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded history.

  2. Do Phoretic Mites Influence the Reproductive Success of Ips grandicollis (Coleoptera: Curculionidae)?

    PubMed

    Pfammatter, Jesse A; Raffa, Kenneth F

    2015-12-01

    Ips grandicollis (Eichhoff) can be an important pest of plantation trees in the Great Lakes region. Mites commonly occur in phoretic association with this beetle, but little is known about their effects on beetle population dynamics. We assessed the effects of phoretic mites on the reproductive success of I. grandicollis using complementary correlative and manipulative approaches. First, we allowed beetles to colonize Pinus resinosa (Ait) logs from sites across Wisconsin, reared them in a common environment, and related the species identities and abundances of mites with beetle production from each log. We found a positive relationship between I. grandicollis abundance and the presence of five mite species, Histiostoma spp., Dendrolaelaps quadrisetus (Berlese), Iponemus confusus (Lindquist), Trichouropoda australis Hirschmann, and Tarsonemus spp. While the abundance of individual mite species was positively correlated with beetle abundance, assessments of mite community structure did not explain beetle reproduction. Next, we introduced beetles that either had a natural complement of mites or whose mites were mechanically reduced into logs, and compared reproductive success between these beetles. We found no difference in colonization rates or beetle emergence between mite-present and mite-reduced treatments. Collectively, these results suggest a correlative, rather than causal, link between beetle reproductive success and mite incidence and abundances. These mites and beetles likely benefit from mutually suitable environments rather than exerting strong reciprocal impacts. Although mites may have some effects on I. grandicollis reproductive success, they likely play a minimal role compared to factors such as tree quality, beetle predation, and weather. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Host preference and host colonization of the Asian long-horned beetle, Anoplophora glabripennis (Coleoptera Cerambycidae), in Southern Europe.

    PubMed

    Faccoli, M; Favaro, R

    2016-06-01

    The Asian long-horned beetle (ALB), Anoplophora glabripennis (Motschulsky), is a highly polyphagous invasive pest with a broad range of host species, but showing relevant differences between infestation areas. Host preference and host colonization (female fecundity, egg and larval survival) were assessed in a population in Northern Italy by choice and no-choice experiments conducted in both field and laboratory conditions. During 5 years of field observations, ALB was found to infest seven genera of trees: Acer, Aesculus, Betula, Populus, Prunus, Salix and Ulmus. However, Acer, Betula, Ulmus and Salix resulted to be the preferred hosts corresponding to 97.5% (1112) of the 1140 infested trees. In both laboratory and field trials carried out on these four host genera, no-choice experiments recorded the highest host colonization of A. glabripennis on Acer trees, with the highest number of laid eggs and the lowest egg and larval mortality. Ulmus and Salix showed a lower number of laid eggs during laboratory choice test, but egg and larval mortality had mean values similar to Acer. On the contrary, despite the high number of Betula trees felled during the eradication plan carried out in the infestation area, this tree species showed the lowest beetle suitability in terms of number of laid eggs and insect survival. An overestimation of the number of infested Betula occurring during the tree survey may explain the discordance between high number of infested Betula and low beetle suitability. Instead, the large number of infested Acer recorded in the field was probably due to the high abundance of these trees occurring in parks and gardens within the infestation area and to the low adult dispersal of A. glabripennis. Overall, results from this study confirm that host species affects both beetle colonization and breeding performance. The study shows ALB host preference and host suitability varying between tree species, suggesting an ALB acceptance even of sub-optimal hosts.

  4. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    PubMed Central

    Brouillard, Brent M.; Bokman, Chelsea M.; Sharp, Jonathan O.

    2017-01-01

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH4+ concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. PMID:29208740

  5. Effects of pitfall trap preservative on collections of carabid beetles (Coleoptera: Carabidae)

    USGS Publications Warehouse

    McCravy, K.W.; Willand, J.E.

    2007-01-01

    Effects of six pitfall trap preservatives (5% acetic acid solution, distilled water, 70% ethanol, 50% ethylene glycol solution, 50% propylene glycol solution, and 10% saline solution) on collections of carabid beetles (Coleoptera: Carabidae) were studied in a west-central Illinois deciduous forest from May to October 2005. A total of 819 carabids, representing 33 species and 19 genera, were collected. Saline produced significantly fewer captures than did acetic acid, ethanol, ethylene glycol, and propylene glycol, while distilled water produced significantly fewer captures than did acetic acid. Significant associations between numbers of captures and treatment were seen in four species: Amphasia interstitialis (Say), Calathus opaculus LeConte, Chlaenius nemoralis Say, and Cyclotrachelus sodalis (LeConte). Results of this study suggest that type of preservative used can have substantial effects on abundance and species composition of carabids collected in pitfall traps.

  6. Localized spatial and temporal attack dynamics of the mountain pine beetle in lodgepole pine. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentz, B.J.; Powell, J.A.; Logan, J.A.

    1996-12-01

    Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and thatmore » verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.« less

  7. Impact of cold on the immune system of burying beetle, Nicrophorus vespilloides (Coleoptera: Silphidae).

    PubMed

    Urbański, Arkadiusz; Czarniewska, Elżbieta; Baraniak, Edward; Rosiński, Grzegorz

    2017-06-01

    Insect overwintering is one of the most astonishing phases of the insect life cycle. Despite vast amounts of knowledge available about the physiological mechanisms of this phenomenon, the impact of stress factors on insect immune system functioning during the winter is still unknown. The aim of this study is to analyze how low temperatures influence the immune system of the beetle Nicrophorus vespilloides. The results show that the beetle's immune system is differently modulated by cold induced in laboratory settings than that which occurs in natural conditions. Among beetles cultured in conditions similar to summer, low temperatures, did not influence the number of circulating haemocytes, phenoloxidase activity, haemocytes morphology, and percentage ratio of haemocyte types. In these beetles, differences were noted only in the ability of haemocytes to perform phagocytosis. Individuals acclimated in natural conditions in autumn had a higher level of humoral response and a different percentage ratio of haemocyte types. During the winter period, the number of haemocytes in the beetles decreased, but the percentage ratio of phagocytic haemocytes increased. Furthermore, we noted an increase of phenoloxidase activity. Our study also showed mitotic divisions of haemocytes in haemolymph collected from burying beetles after cold exposure and from burying beetles collected from natural conditions during autumn and winter. Differences in response to low temperatures in laboratory conditions and the natural environment suggest that the simultaneous presence of other stress factors during winter such as desiccation and starvation have a significant influence on the activity of burying beetle's immune system. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  8. Verbenone decreases whitebark pine mortality throughout a mountain pine beetle outbreak

    USDA-ARS?s Scientific Manuscript database

    Mountain pine beetle [Dendroctonus ponderosae (Hopkins)] outbreaks are killing large numbers of pine trees on millions of hectares in the western U.S. The ranges, impacts and frequencies of mountain pine beetle outbreaks are increasing, perhaps due to climate change. One of the species being impacte...

  9. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae

    PubMed Central

    Mitchell, Robert F.; Hughes, David T.; Luetje, Charles W.; Millar, Jocelyn G.; Soriano-Agatón, Flor; Hanks, Lawrence M.; Robertson, Hugh M.

    2012-01-01

    Odorant receptors (Ors) are a unique family of ligand-gated ion channels and the primary mechanism by which insects detect volatile chemicals. Here, we describe 57 putative Ors sequenced from an antennal transcriptome of the cerambycid beetle Megacyllene caryae (Gahan). The male beetles produce a pheromone blend of nine components, and we functionally characterized Ors tuned to three of these chemicals: receptor McOr3 is sensitive to (S)-2-methyl-1-butanol; McOr20 is sensitive to (2S,3R)-2,3-hexanediol; and McOr5 is sensitive to 2-phenylethanol. McOr3 and McOr20 are also sensitive to structurally-related chemicals that are pheromones of other cerambycid beetles, suggesting that orthologous receptors may be present across many cerambycid species. These Ors are the first to be functionally characterized from any species of beetle and lay the groundwork for understanding the evolution of pheromones within the Cerambycidae. PMID:22504490

  10. Ivermectin alters reproductive success, body condition and sexual trait expression in dung beetles.

    PubMed

    González-Tokman, Daniel; Martínez M, Imelda; Villalobos-Ávalos, Yesenia; Munguía-Steyer, Roberto; Ortiz-Zayas, María Del Rosario; Cruz-Rosales, Magdalena; Lumaret, Jean-Pierre

    2017-07-01

    Ivermectin is a very common parasiticide used in livestock. It is excreted in the dung and has negative effects on survival and reproduction of dung-degrading organisms, including dung beetles. Here we exposed the dung beetle Euoniticellus intermedius to different concentrations of ivermectin in the food and evaluated reproductive success and the expression of traits associated with survival and reproduction under laboratory conditions. It is the first time the effects of ivermectin were evaluated on offspring physiological condition and the expression of a secondary sexual trait. We also registered the number of emerged beetles, sex ratio and body size of emerged adult beetles. Besides reducing the number of emerged beetles and body size, as found in the same and other insects, ivermectin at high doses reduced muscle mass while at intermediate doses it increased lipid mass. Ivermectin changed offspring sex ratio and at high doses increased the size of male horn, which is an important trait defining the male mating success. Our results highlight the importance of regulating parasiticide usage in livestock in order to maintain ecosystem services provided by dung beetles and confirm that contaminants impose new environmental conditions that not only impact on wild animal survival, but also on evolutionary processes such as sexual selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch).

    PubMed

    Saremba, Brett M; Tymm, Fiona J M; Baethke, Kathy; Rheault, Mark R; Sherif, Sherif M; Saxena, Praveen K; Murch, Susan J

    2017-05-04

    American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses.

  12. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch)

    PubMed Central

    Saremba, Brett M.; Tymm, Fiona J. M.; Baethke, Kathy; Rheault, Mark R.; Sherif, Sherif M.; Saxena, Praveen K.; Murch, Susan J.

    2017-01-01

    ABSTRACT American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses. PMID:28448744

  13. Pulpability of beetle-killed spruce. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, G.M.; Bormett, D.W.; Sutherland, N.R.

    1996-08-01

    Infestation of the Dendroctonus rufipennis beetle has resulted in large stands of dead and dying timber on the Kenai Peninsula in Alaska. Tests were conducted to evaluate the value of beetle-killed spruce as pulpwood. The results showed that live and dead spruce wood can be pulped effectively. The two least deteriorated classes and the most deteriorated class of logs had similar characteristics when pulped; the remaining class had somewhat poorer pulpability.

  14. The Mexican pine beetle, dendroctonus maxicanus: first recorded in the United States and co-occurrence with the southern pine beetle - dendroctonus frontalis (coleoptera: scolytidae or curculionidae: scolytinae)

    Treesearch

    John C. Moser; Bobbe A. Fitzgibbon; Kier D. Klepzig

    2005-01-01

    The Mexican pine beetle (XPB) Dendroctonus mexicanus, is recorded here for the first time as a new introduction for the United States (US). Individuals of XPB and its sibling species, the southern pine beetle (SPB) Dendroctonus frontalis, were found infesting the same logs of Chihuahua pine, Pinus...

  15. A Variable-Instar Climate-Driven Individual Beetle-Based Phenology Model for the Invasive Asian Longhorned Beetle (Coleoptera: Cerambycidae).

    PubMed

    Trotter, R Talbot; Keena, Melody A

    2016-12-01

    Efforts to manage and eradicate invasive species can benefit from an improved understanding of the physiology, biology, and behavior of the target species, and ongoing efforts to eradicate the Asian longhorned beetle (Anoplophora glabripennis Motschulsky) highlight the roles this information may play. Here, we present a climate-driven phenology model for A. glabripennis that provides simulated life-tables for populations of individual beetles under variable climatic conditions that takes into account the variable number of instars beetles may undergo as larvae. Phenology parameters in the model are based on a synthesis of published data and studies of A. glabripennis, and the model output was evaluated using a laboratory-reared population maintained under varying temperatures mimicking those typical of Central Park in New York City. The model was stable under variations in population size, simulation length, and the Julian dates used to initiate individual beetles within the population. Comparison of model results with previously published field-based phenology studies in native and invasive populations indicates both this new phenology model, and the previously published heating-degree-day model show good agreement in the prediction of the beginning of the flight season for adults. However, the phenology model described here avoids underpredicting the cumulative emergence of adults through the season, in addition to providing tables of life stages and estimations of voltinism for local populations. This information can play a key role in evaluating risk by predicting the potential for population growth, and may facilitate the optimization of management and eradication efforts. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  16. Mountain pine beetle in high-elevation five-needle white pine ecosystems

    Treesearch

    Barbara Bentz; Elizabeth Campbell; Ken Gibson; Sandra Kegley; Jesse Logan; Diana Six

    2011-01-01

    Across western North America mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae), populations are growing at exponential rates in pine ecosystems that span a wide range of elevations. As temperature increased over the past several decades, the flexible, thermally-regulated life-history strategies of mountain pine beetle have allowed...

  17. Pheromones in White Pine Cone Beetle, Conophthorus coniperdu (Schwarz) (Coleoptera: Scolytidae)

    Treesearch

    Goran Birgersson; Gary L. DeBarr; Peter de Groot; Mark J. Dalusky; Harold D. Pierce; John H. Borden; Holger Meyer; Wittko Francke; Karl E. Espelie; C. Wayne Berisford

    1995-01-01

    Female white pine cone beetles, Conophrhorus coniperda, attacking second-year cones of eastern white pine, Pinus strobus L., produced a sex-specific pheromone that attracted conspecific males in laboratory bioassays and to field traps. Beetle response was enhanced by host monoterpenes. The female-produced compound was identified in...

  18. Optimal Level of Expenditure to Control the Southern Pine Beetle

    Treesearch

    Joseph E. de Steiguer; Roy L. Hedden; John M. Pye

    1987-01-01

    Optimal level of expenditure to control damage to commercial timber stands by the southern pine beetle was determined by models that simulated and analyzed beetle attacks during a typical season for 11 Southern States. At a real discount rate of 4 percent, maximized net benefits for the Southern region are estimated at about $50 million; at 10 percent, more than $30...

  19. Hidden in Plain sight: synthetic pheromone misleads beetles, protects trees

    Treesearch

    Paul Meznarich; Robert Progar

    2015-01-01

    In the last decade, pine forests throughout much of the western United States have been ravaged by the mountain pine beetle (Dendroctonus ponderosae). This bark beetle is native to the United States and has been responsible for massive tree kills in the past. The current outbreak, however, has been notably severe and wide ranging and the effects have been more dramatic...

  20. Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response

    Treesearch

    Charles C. Rhoades; James H. McCutchan; Leigh A. Cooper; David Clow; Thomas M. Detmer; Jennifer S. Briggs; John D. Stednick; Thomas T. Veblen; Rachel M. Ertz; Gene E. Likens; William M. Lewis

    2013-01-01

    A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg�ha�y), disturbance of...

  1. Temporal Resource Partitioning and Interspecific Correlations in a Warm, Temperate Climate Assemblage of Dung Beetles (Coleoptera: Scarabaeidae).

    PubMed

    Sullivan, Gregory T; Ozman-Sullivan, Sebahat K; Bourne, Anne; Lumaret, Jean-Pierre; Zeybekoglu, Unal; Zalucki, Myron P; Baxter, Greg

    2017-01-01

    Guilds of dung dwelling and tunneling dung beetles coexist in local assemblages in warm temperate regions, despite the tendency of dwellers to be inferior competitors. A field experiment on the Black Sea coast of Turkey examined the role of temporal resource partitioning in their coexistence. Standardized dung pads deposited at 4 h intervals through a 24 h period in summer were collected 12, 24, or 48 h later. Adults from 10 tunneling and seven dung dwelling species were collected. The tunnelers contributed a high proportion of both total abundance and biomass. There was a significant effect of dung deposition time and exposure period on mean tunneler abundance. Mean tunneler abundance was nearly seven times higher in dung deposited at 06:00 than at 18:00. The dwellers reduced the potential for competitive interactions with tunnelers by relatively uniform dispersal across the six dung deposition times. The distinctly different dung use patterns by dwellers and tunnelers demonstrated temporal resource partitioning. Interspecific correlation coefficients were also determined because interspecific relationships are at the core of resource partitioning. Total tunneler and dweller abundances were not correlated. Overall, there were strong positive correlations between tunneling species and low correlations between tunneling and dwelling species, and between dwelling species. The five most abundant tunnelers, from two tribes and three genera, were strongly positively correlated. There were substantial size differences among the four most abundant tunnelers that probably facilitate their coexistence. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. The role of the sun in the celestial compass of dung beetles

    PubMed Central

    Dacke, M.; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day. PMID:24395963

  3. The role of the sun in the celestial compass of dung beetles.

    PubMed

    Dacke, M; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day.

  4. Longevity and viability of Taenia solium eggs in the digestive system of the beetle Ammophorus rubripes.

    PubMed

    Gomez-Puerta, Luis Antonio; Lopez-Urbina, Maria Teresa; Garcia, Hector Hugo; Gonzalez, Armando Emiliano

    2014-03-01

    The present study evaluated the capacity of Ammophorus rubripes beetles to carry Taenia solium eggs, in terms of duration and viability of eggs in their digestive system. One hundred beetles were distributed into five polyethylene boxes, and then they were infected with T. solium eggs. Gravid proglottids of T. solium were crushed and then mixed with cattle feces. One gram of this mixture was placed in each box for 24 hours, after which each group of beetles was transferred into a new clean box. Then, five beetles were dissected every three days. Time was strongly associated with viability (r=0.89; P<0.001) and the calculated time to cero viability is 36 days. The eggs in the intestinal system of each beetle were counted and tested for viability. Taenia solium eggs were present in the beetle's digestive system for up to 39 days (13th sampling day out of 20), gradually reducing in numbers and viability, which was 0 on day 36 post-infection. Egg viability was around 40% up to day 24 post-infection, with a median number of eggs of 11 per beetle at this time. Dung beetles may potentially contribute towards dispersing T. solium eggs in endemic areas.

  5. Long-term dynamics of leafy spurge (Euphorbia esula) and its biocontrol agent, flea beetles in the genus Aphthona

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.; Larson, J.L.

    2008-01-01

    Three flea beetle species (Aphthona spp.), first introduced into North America in 1988, have come to be regarded as effective biological control organisms for leafy spurge (Euphorbia esula). The black flea beetles (Aphthona lacertosa and A. czwalinae) in particular have been shown to cause reductions in leafy spurge stem counts in the northern Great Plains, while the brown flea beetle (A. nigriscutis) has persisted and spread, but has not been found to be as effective at controlling leafy spurge. The ability of black flea beetles to control leafy spurge in any given year, however, has been found to vary. To better understand the long-term effects of flea beetle herbivory on leafy spurge, we monitored stem counts of leafy spurge and numbers of black and brown flea beetles at three sites on two National Wildlife Refuges in east-central North Dakota, USA, from 1998 to 2006. Brown flea beetle numbers were observed to be negligible on these sites. Over the 9 years of the study, black flea beetles were seen to spread over the three study sites and leafy spurge stem counts declined substantially on two of the three sites. Even at low densities of spurge, black flea beetle populations persisted, a necessary prerequisite for long-term control. We used structural equation models (SEM) to assess the yearly effects of black flea beetles, soil texture, and refuge site on leafy spurge stem counts over this time period. We then used equations developed from the SEM analysis to explore flea beetle-leafy spurge dynamics over time, after controlling for soil texture and refuge. Yearly effect strength of black flea beetles on leafy spurge was found to be modest, largely owing to substantial spatial variability in control. However, simulation results based on prediction coefficients revealed leafy spurge to be highly responsive to increases in flea beetle populations on average.

  6. Wood-destroying Beetle Treatment Incidence in Arkansas and Georgia During 1962 and 1967 With Estimated Losses Caused by Beetles for II Southern States During 1970

    Treesearch

    Lonnie H. Williams; Richard V. Smythe

    1978-01-01

    Estimates derived from 1962 and 1967 State regulatory records indicate that as many as 53,000 treatments for wood-destroying beetles were performed in 11 Southern States in 1970. Cost of these treatments was probably about $4.9 million. With inflation and the fact that beetles can no longer be treated in combination with termite treatments, 1976 losses were estimated...

  7. Monitoring and risk assessment of the spruce bark beetle, Ips typographus

    Treesearch

    S. Netherer; J. Pennerstorfer; P. Baier; E. Fuhrer; A. Schopf

    2003-01-01

    A model describing development of the spruce bark beetle, Ips typographus, combines topo-climatic aspects of the terrain with eco-physiological aspects of the bark beetle. By correlating air temperature and solar irradiation measured at a reference station, along with topographic data and microclimatic conditions of terrain plots, topo-climatic...

  8. Dual-Color Click Beetle Luciferase Heteroprotein Fragment Complementation Assays

    PubMed Central

    Villalobos, Victor; Naik, Snehal; Bruinsma, Monique; Dothager, Robin S.; Pan, Mei-Hsiu; Samrakandi, Mustapha; Moss, Britney; Elhammali, Adnan; Piwnica-Worms, David

    2010-01-01

    Summary Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically-relevant time scales. Herein we describe a novel set of reversible, multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discreet pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a novel candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells. PMID:20851351

  9. Evidence of an aggregation pheromone in the flea beetle,Phyllotreta Cruciferae (Goeze) (Coleoptera: Chrysomelidae).

    PubMed

    Peng, C; Weiss, M J

    1992-06-01

    Laboratory olfactometer bioassays and field trapping experiments showed that the flea beetle,Phyllotreta cruciferae (Goeze), was highly attracted by oilseed rape(Brassica napus L.) when flea beetles were on the plant. This attraction was mediated by a flea beetle-produced aggregation pheromone based upon: (1) Oilseed rape damaged mechanically, or byP. cruciferae, or by diamondback moth,Plutella xylostella (L.), did not attractP. cruciferae. (2) Contact with the plants or feeding was required for the production of aggregation pheromone because oilseed rape alone was not attractive when separated from flea beetles by a screen. (3) Equal numbers of males and females were attracted.

  10. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  11. Management of Chinese Rose Beetle (Adoretus sinicus) Adults Feeding on Cacao (Theobroma cacao) Using Insecticides

    PubMed Central

    Spafford, Helen; Ching, Alexander; Manley, Megan; Hardin, Chelsea; Bittenbender, Harry

    2016-01-01

    The Chinese rose beetle (Adoretus sinicus Burmeister (Coleoptera: Scarabaeidae)) is an introduced, widely-established pest in Hawai’i. The adult beetles feed on the leaves of cacao (Theobroma cacao L.), which can lead to defoliation and even death of young trees. We evaluated the impact of five commercially available products with different active ingredients (imidacloprid, azadirachtin, Beauveria bassiana (Bals.-Criv.) Vuill., kaolin clay, and pyrethrin) and the presence or absence of weed mat cover in reducing adult beetle feeding on sapling cacao in the field. The use of weed mat cover reduced feeding damage compared to the untreated control, as did foliar application of imidacloprid, azadirachtin, and B. bassiana. In the laboratory, field-collected adult beetles were presented cacao leaf samples dipped in one of the five products and compared to a control. Beetles exposed to pyrethrin died rapidly. Among the other treatments, only exposure to imidacloprid significantly reduced survival relative to the control. Beetles fed very little on leaf samples with azadirachtin but their longevity was not significantly reduced. Imidacloprid, azadirachtin, and weed mat application had the most promise for reducing adult Chinese rose beetle feeding damage in young cacao and deserve further investigation for successful management of this significant pest. PMID:27348004

  12. Effect of verbenone on five species of bark beetles (Coleoptera: Scolytidae) in Lodgepole pine forests

    Treesearch

    B. Staffan Lindren; Daniel R. Miller

    2002-01-01

    The response by five species of bark beetles to a range of verbenone doses were tested in bioassays using Lindgren funnel traps baited with attractant semiochemicals. The objective was to determine how these bark beetles respond to verbenone, a purported anti-aggregation pheromone of several economically significant bark beetle species. Catches of Dendroctonus...

  13. Even the Smallest Non-Crop Habitat Islands Could Be Beneficial: Distribution of Carabid Beetles and Spiders in Agricultural Landscape

    PubMed Central

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  14. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape.

    PubMed

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  15. Hemlock woolly adelgid phenology and predacious beetle community on Japanese hemlocks

    Treesearch

    Shigehiko Shiyake; Yorio Miyatake; Michael Montgomery; Ashley Lamb

    2008-01-01

    Monthly samples of the hemlock woolly adelgid (HWA), Adelges tsugae, and predatory beetles were taken from Tsuga sieboldii near the border of Osaka and Kyoto prefectures. The beetles were collected by sweeping the canopy up to 5 meters height with nets. The phenology of HWA life stages were monitored by collecting branches and...

  16. Fire-injured ponderosa pine provide a pulsed resource for bark beetles

    Treesearch

    Ryan S. Davis; Sharon Hood; Barbara J. Bentz

    2012-01-01

    Bark beetles can cause substantial mortality of trees that would otherwise survive fire injuries. Resin response of fire-injured northern Rocky Mountain ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and specific injuries that contribute to increased bark beetle attack susceptibility and brood production are unknown. We monitored ponderosa pine...

  17. Efficacy of Compounds Isolated from the Essential Oil of Artemisia lavandulaefolia in Control of the Cigarette Beetle, Lasioderma serricorne.

    PubMed

    Zhou, Jun; Zou, Kexing; Zhang, Wenjuan; Guo, Shanshan; Liu, Hong; Sun, Jiansheng; Li, Jigang; Huang, Dongye; Wu, Yan; Du, Shushan; Borjigidai, Almaz

    2018-02-07

    To develop natural product resources to control cigarette beetles ( Lasioderma serricorne ), the essential oil from Artemisia lavandulaefolia (Compositae) was investigated. Oil was extracted by hydrodistillation of the above-ground portion of A. lavandulaefolia and analyzed using gas chromatography-mass spectrometer (GC-MS). Extracted essential oil and three compounds isolated from the oil were then evaluated in laboratory assays to determine the fumigant, contact, and repellent efficacy against the stored-products' pest, L. serricorne . The bioactive constituents from the oil extracts were identified as chamazulene (40.4%), 1,8-cineole (16.0%), and β-caryophyllene (11.5%). In the insecticidal activity assay, the adults of L. serricorne were susceptible to fumigant action of the essential oil and 1,8-cineole, with LC 50 values of 31.81 and 5.18 mg/L air. The essential oil, 1,8-cineole, chamazulene, and β-caryophyllene exhibited contact toxicity with LD 50 values of 13.51, 15.58, 15.18 and 35.52 μg/adult, respectively. During the repellency test, the essential oil and chamazulene had repellency approximating the positive control. The results indicated that chamazulene was abundant in A. lavandulaefolia essential oil and was toxic to cigarette beetles.

  18. Protected by fumigants: beetle perfumes in antimicrobial defense.

    PubMed

    Gross, Jürgen; Schumacher, Kerstin; Schmidtberg, Henrike; Vilcinskas, Andreas

    2008-02-01

    Beetles share with other eukaryotes an innate immune system that mediates endogenous defense against pathogens. In addition, larvae of some taxa produce fluid exocrine secretions that contain antimicrobial compounds. In this paper, we provide evidence that larvae of the brassy willow leaf beetle Phratora vitellinae constitutively release volatile glandular secretions that combat pathogens in their microenvironment. We identified salicylaldehyde as the major component of their enveloping perfume cloud, which is emitted by furrow-shaped openings of larval glandular reservoirs and which inhibits in vitro the growth of the bacterial entomopathogen Bacillus thuringiensis. The suggested role of salicylaldehyde as a fumigant in exogenous antimicrobial defense was confirmed in vivo by its removal from glandular reservoirs. This resulted in an enhanced susceptibility of the larvae to infection with the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae. Consequently, we established the hypothesis that antimicrobial defense in beetles can be expanded beyond innate immunity to include external disinfection of their microenvironment, and we report for the first time the contribution of fumigants to antimicrobial defense in animals.

  19. Lunar orientation in a beetle.

    PubMed

    Dacke, Marie; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J

    2004-02-22

    Many animals use the sun's polarization pattern to orientate, but the dung beetle Scarabaeus zambesianus is the only animal so far known to orientate using the million times dimmer polarization pattern of the moonlit sky. We demonstrate the relative roles of the moon and the nocturnal polarized-light pattern for orientation. We find that artificially changing the position of the moon, or hiding the moon's disc from the beetle's field of view, generally did not influence its orientation performance. We thus conclude that the moon does not serve as the primary cue for orientation. The effective cue is the polarization pattern formed around the moon, which is more reliable for orientation. Polarization sensitivity ratios in two photoreceptors in the dorsal eye were found to be 7.7 and 12.9, similar to values recorded in diurnal navigators. These results agree with earlier results suggesting that the detection and analysis of polarized skylight is similar in diurnal and nocturnal insects.

  20. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    PubMed Central

    Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05–0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research. PMID:26728164

  1. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    NASA Astrophysics Data System (ADS)

    Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  2. The role of dung beetles in reducing greenhouse gas emissions from cattle farming.

    PubMed

    Slade, Eleanor M; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L

    2016-01-05

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results, [corrected] and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  3. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA.

    PubMed

    Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David

    2016-02-01

    As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual

  4. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest.

    Treesearch

    S. Horn; M.D. Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles...

  5. Pre-treatment assemblages of wood-boring beetles (Coleoptera: Buprestidae, Cerambycidae) of the hardwood ecosystem experiment

    Treesearch

    Jeffrey D. Holland; John T. Shukle; Hossam Eldien M. Abdel Moniem; Thomas W. Mager; Kapil R. Raje; Kyle Schnepp; Shulin Yang

    2013-01-01

    Longhorned beetles are a diverse and important group of insects in forest ecosystems; several species attack weakened or stressed trees, relatively few attack healthy trees, and most species use only dead and decomposing wood. We surveyed longhorned beetles and metallic wood-boring beetles using four different types of traps at 36 Hardwood Ecosystem Experiment (Indiana...

  6. Floral characteristics affect susceptibility of hybrid tea roses, Rosa x hybrida, to Japanese beetles (Coleoptera: Scarabaeidae).

    PubMed

    Held, David W; Potter, Daniel A

    2004-04-01

    The Japanese beetle, Popillia japonica Newman, feeds on the flowers and foliage of roses. Rosa x hybrida. Beetles attracted to roses land almost exclusively on the flowers. This study evaluated characteristics of rose flowers including color, size, petal count and fragrance, as well as height of plants and blooms within plant as factors in attractiveness to Japanese beetles. Artificial flowers that had been painted to match the spectral reflectance of real blooms were attached to potted nonflowering rose plants in the field and the number of beetles that landed on each model was recorded. More beetles landed on the yellow- and white-colored flower models than on the five other bloom colors that were tested. Large (15 cm diameter) yellow flower models attracted more beetles than did smaller (8 cm diameter) yellow models. There was no difference in beetle response to yellow flower models of the same size that differed in bloom complexity (i.e., number of petals). Experiments in which blooming rose plants were elevated above controls, or in which flower models were placed at different heights within plant canopies, failed to support the hypothesis that height per se accounts for beetles' attraction to flowers over leaves. Attractiveness of selected rose cultivars that varied in fragrance and flower color also was evaluated in the field. Yellow-flowered cultivars were more susceptible than those with red flowers, regardless of fragrance intensity as rated by breeders. Growing cultivars of roses that have relatively dark and small-sized blooms may have some benefit in reducing Japanese beetles' attraction to roses.

  7. Effect of temperature on the occurrence and distribution of colorado potato beetle (Coleoptera: Chrysomelidae) in China.

    PubMed

    Li, Chao; Liu, Huai; Huang, Fangneng; Cheng, Deng-Fa; Wang, Jin-Jun; Zhang, Yun-Hui; Sun, Jin-Rui; Guo, Wen-Chao

    2014-04-01

    Colorado potato beetle, Leptinotarsa decemlineata (Say), is the most destructive pest of potato in many countries of the world. It first invaded China from Kazakhstan in 1990s and now is a major pest of potato in many areas of Xinjiang Uygur Autonomous Region (Xinjiang). The objective of this study was to determine the effect of temperature on the spread of Colorado potato beetle in China after its invasion. Cold temperature in winter (December) and high temperature in summer (July) were analyzed in accordance with the absence and presence of Colorado potato beetle in Xinjiang. The boundary between the absence and presence of Colorado potato beetle in Xinjiang nearly coincided with the -8°C isotherm of monthly mean minimum temperature in winter. The stress of the low temperature in winter for Colorado potato beetle basically disappeared in the southeastern Hexi Corridor in Gansu Province of China, suggesting that the Hexi Corridor is the best channel to prevent any long-distance invasions of Colorado potato beetle into the Central Plains region. However, in Turpan City in northeastern Xinjiang, the extremely hot weather in the summer prevents the local colonization of Colorado potato beetle. Furthermore, according to our monitoring, high temperature in summer also limited Colorado potato beetle to diffuse eastward through Turpan. Results of this study suggest that it is essential to strengthen inspection and quarantine measures to prevent any artificial transmissions of Colorado potato beetle spreading eastward and thus to ensure the sustainable production of potato and other Solanaceae crops in northwest regions of China.

  8. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    PubMed

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  9. Is self-thinning in ponderosa pine ruled by Dendroctonus bark beetles?

    Treesearch

    William W. Oliver

    1995-01-01

    Stand density of even-aged stands of ponderosa pine in California seems to be ruled by Dendroctonus bark beetles, rather than the suppressioninduced mortality common for other tree species. Size-density trajectories were plotted for 155 permanent plots in both plantations and natural stands. Bark beetle kills created a limiting Stand Density Index of...

  10. Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson

    NASA Astrophysics Data System (ADS)

    Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth

    2012-04-01

    One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.

  11. Influence of elevation on bark beetle community structure in ponderosa pine stands of northern Arizona

    Treesearch

    Andrew Miller; Kelly Barton; Joel McMillin; Tom DeGomez; Karen Clancy; John Anhold

    2008-01-01

    (Please note, this is an abstract only) Bark beetles killed more than 20 million ponderosa pine trees in Arizona during 2002-2004. Historically, bark beetle populations remained endemic and ponderosa pine mortality was limited to localized areas in Arizona. Consequently, there is a lack of information on bark beetle community structure in ponderosa pine stands of...

  12. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest

    Treesearch

    Scott Horn; Michael Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles were captured in significantly...

  13. Evaluating Pyemotes dryas (Vitzthum 1923)(Acari: Pyemotidae) as a parasite of the southern pine beetle

    Treesearch

    John C. Moser; B. Kielczewski; J. Wisniewski; S. Balazy

    1978-01-01

    Populations of Pyemotes dryas (Vitzthum 1923) from Poland were bioassayed for potential use in the biological control of the southern pine beetle in the United States. The mite apparently rides and attacks a wide range of European bark beetles that attack conifers and readily consumes brood of the southern pine beetle. However, it is not phoretic on...

  14. Tiger beetles pursue prey using a proportional control law with a delay of one half-stride.

    PubMed

    Haselsteiner, Andreas F; Gilbert, Cole; Wang, Z Jane

    2014-06-06

    Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s(-1), is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier.

  15. Long-term dynamics of leafy spurge (Euphorbia esula) and its biocontrol agent, flea beetles in the genus Aphthona

    USGS Publications Warehouse

    Larson, Diane L.; Grace, James B.; Larson, Jennifer L.

    2008-01-01

    Three flea beetle species (Aphthona spp.), first introduced into North America in 1988, have come to be regarded as effective biological control organisms for leafy spurge (Euphorbia esula). The black flea beetles (Aphthona lacertosa and A. czwalinae) in particular have been shown to cause reductions in leafy spurge stem counts in the northern Great Plains, while the brown flea beetle (A. nigriscutis) has persisted and spread, but has not been found to be as effective at controlling leafy spurge. The ability of black flea beetles to control leafy spurge in any given year, however, has been found to vary. To better understand the long-term effects of flea beetle herbivory on leafy spurge, we monitored stem counts of leafy spurge and numbers of black and brown flea beetles at three sites on two National Wildlife Refuges in east-central North Dakota, USA, from 1998 to 2006. Brown flea beetle numbers were observed to be negligible on these sites. Over the 9 years of the study, black flea beetles were seen to spread over the three study sites and leafy spurge stem counts declined substantially on two of the three sites. Even at low densities of spurge, black flea beetle populations persisted, a necessary prerequisite for long-term control. We used structural equation models (SEM) to assess the yearly effects of black flea beetles, soil texture, and refuge site on leafy spurge stem counts over this time period. We then used equations developed from the SEM analysis to explore flea beetle–leafy spurge dynamics over time, after controlling for soil texture and refuge. Yearly effect strength of black flea beetles on leafy spurge was found to be modest, largely owing to substantial spatial variability in control. However, simulation results based on prediction coefficients revealed leafy spurge to be highly responsive to increases in flea beetle populations on average.

  16. Indirect effects of biocontrol of an invasive riparian plant (Tamarix) alters habitat and reduces herpetofauna abundance

    USGS Publications Warehouse

    Bateman, H.L.; Merritt, D.M.; Glenn, E.P.; Nagler, P.L.

    2014-01-01

    The biological control agent (tamarisk leaf beetle, Diorhabda spp.) is actively being used to defoliate exotic saltcedar or tamarisk (Tamarix spp.) in riparian ecosystems in western USA. The Virgin River in Arizona and Nevada is a system where tamarisk leaf beetle populations are spreading. Saltcedar biocontrol, like other control methods, has the potential to affect non-target species. Because amphibians and reptiles respond to vegetation changes in habitat and forage in areas where beetles are active, herpetofauna are model taxa to investigate potential impacts of biocontrol defoliation. Our objectives related herpetofauna abundance to vegetation cover and indices (normalized difference vegetation index, NDVI; enhanced vegetation index, EVI) and timing of biocontrol defoliation. We captured herpetofauna and ground-dwelling arthropods in trap arrays and measured vegetation using remotely sensed images and on-the-ground measurements at 16–21 sites 2 years before (2009–2010) and 2 years following (2011–2012) biocontrol defoliation. Following defoliation, riparian stands (including stands mixed with native and exotic trees and stands of monotypic exotic saltcedar) had significantly lower NDVI and EVI values and fewer captures of marked lizards. Total captures of herpetofauna (toads, lizards, and snakes) were related to higher vegetation cover and sites with a lower proportion of saltcedar. Our results suggest that effects of biocontrol defoliation are likely to be site-specific and depend upon the proportion of native riparian trees established prior to biocontrol introduction and defoliation. The mechanisms by which habitat structure, microclimate, and ultimately vertebrate species are affected by exotic plant biocontrol riparian areas should be a focus of natural-resource managers.

  17. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    PubMed Central

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  18. Trophic habits of mesostigmatid mites associated with bark beetles in Mexico

    Treesearch

    M. Patricia Chaires-Grijalva; Edith G. Estrada-Venegas; Armando Equihua-Martinez; John C. Moser; Stacy R. Blomquist

    2016-01-01

    Samples of bark and logs damaged by bark beetles were collected from 16 states of Mexico from 2007 to 2012. Fifteen bark beetle species were found within the bark and log samples and were examined for phoretic mites and arthropod associates. Thirty-three species of mesostigmatid mites were discovered within the samples. They were identified in several trophic guilds...

  19. Climate change and the outbreak ranges of two North American bark beetles

    Treesearch

    David W. Williams; Andrew M. Liebhold

    2002-01-01

    One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large-scale disturbances to pine forests in...

  20. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle

    Treesearch

    Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres

    2005-01-01

    Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis...