Sample records for ladybird beetle harmonia

  1. Spotlight on the positive effects of the ladybird Harmonia axyridis on agriculture

    USDA-ARS?s Scientific Manuscript database

    In the midst of considerable negativity surrounding the ladybird Harmonia axyridis (Pallas), this paper sheds some light on the positive effects that this predator has had on agriculture. Using resources available at the USDA, National Agricultural Library (DigiTop literature database, Navigator pla...

  2. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians

    PubMed Central

    Sloggett, John J.

    2012-01-01

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups. PMID:26466621

  3. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians.

    PubMed

    Sloggett, John J

    2012-07-18

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups.

  4. Predators and parasitoids of the harlequin ladybird, Harmonia axyridis, in its native range and invaded areas

    USDA-ARS?s Scientific Manuscript database

    The harlequin ladybird Harmonia (H.) axyridis (Coleoptera:Coccinellidae) has rapidly spread in several continents over the past 30 years and is considered an invasive alien species. The success of H. axyridis as an invader is often attributed to weak control by natural enemies. In this paper, we pro...

  5. Complete mitochondrial genome sequence of a phytophagous ladybird beetle, Henosepilachna pusillanima (Mulsant) (Coleoptera: Coccinellidae).

    PubMed

    Behere, G T; Firake, D M; Tay, W T; Azad Thakur, N S; Ngachan, S V

    2016-01-01

    Ladybird beetles are generally considered as agriculturally beneficial insects, but the ladybird beetles in the coleopteran subfamily Epilachninae are phytophagous and major plant feeding pest species which causes severe economic losses to cucurbitaceous and solanaceous crops. Henosepilachna pusillanima (Mulsant) is one of the important pest species of ladybird beetle. In this report, we sequenced and characterized the complete mitochondrial genome of H. pusillanima. For sequencing of the complete mitochondrial genome, we used the Ion Torrent sequencing platform. The complete circular mitochondrial genome of the H. pusillanima was determined to be 16,216 bp long. There were totally 13 protein coding genes, 22 transfer RNA, 2 ribosomal RNA and a control (A + T-rich) region estimated to be 1690 bp. The gene arrangement and orientations of assembled mitogenome were identical to the reported predatory ladybird beetle Coccinella septempunctata L. This is the first completely sequenced coleopteran mitochondrial genome from the beetle subfamily Epilachninae from India. Data generated in this study will benefit future comparative genomics studies for understanding the evolutionary relationships between predatory and phytophagous coccinellid beetles.

  6. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography.

    PubMed

    Saito, Kazuya; Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji

    2017-05-30

    Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: ( i ) the wing rigidity with relatively thick veins and ( ii ) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.

  7. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography

    PubMed Central

    Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji

    2017-01-01

    Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: (i) the wing rigidity with relatively thick veins and (ii) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure. PMID:28507159

  8. From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong

    PubMed Central

    Ortega-Iturriaga, Adrián; del-Val, Ek

    2017-01-01

    The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird (Harmonia axyridis) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing “Harmonia axyridis” to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata, native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services. PMID:28533958

  9. From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong.

    PubMed

    Camacho-Cervantes, Morelia; Ortega-Iturriaga, Adrián; Del-Val, Ek

    2017-01-01

    The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird ( Harmonia axyridis ) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing " Harmonia axyridis " to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata , native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services.

  10. Parasites of Harmonia axyridis: current research and perspectives

    USDA-ARS?s Scientific Manuscript database

    The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae) has been introduced widely for biological control of agricultural pests. Populations of H. axyridis have established in four continents outside of its native range in Asia and it is considered an invasive alien species (IAS). Despi...

  11. Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles.

    PubMed

    Ferry, Natalie; Mulligan, Evan A; Majerus, Michael E N; Gatehouse, Angharad M R

    2007-12-01

    Insect-resistant transgenic plants have been suggested to have unpredictable effects on the biodiversity of the agro-ecosystem, including potential effects on insect natural enemies, beneficial in control of crop pests. Whilst carnivorous as adults, many of these predators may also consume plant tissues, in particular plant pollen and nectar. Coleoptera are important in terms of agro-ecological research not only because of the large number of species in this order, but also because of their role as biological control agents. Thus any detrimental impact on this group of insects would be highly undesirable. The effects of potato expressing the coleopteran-specific Bacillus thuringiensis delta-endotoxin Cry3A (Bt Cry3A) on the ladybird beetle Harmonia axyridis and the carabid beetle Nebria brevicollis were investigated via the bitrophic interaction of the adult ladybird with potato flowers and the tritrophic interaction of the carabid consuming a non-target potato pest. Immunoassays confirmed accumulation of the transgene product in potato leaves and floral tissues (at levels of up to 0.01% (pollen) and 0.0285% (anthers) of total soluble protein). Despite H. axyridis and N. brevicollis belonging to the targeted insect order, no significant effects upon survival or overall body mass change of either beetle were observed. Furthermore, Bt Cry3A had no detrimental effects on reproductive fitness of either beetle species, either in terms of fecundity or subsequent egg viability. Behavioural analysis revealed no significant impact of Bt Cry3A on beetle activity or locomoter behaviour. Ligand blots indicate that this is due to either the absence of Bt-binding sites in brush border membrane vesicles (BBMV) isolated from Nebria brevicollis, or in the case of Harmonia axyridis, the binding did not functionally lead to behavioural or physical effects.

  12. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.

    PubMed

    Tabata, Jun; De Moraes, Consuelo M; Mescher, Mark C

    2011-01-01

    Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical "moldy" odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.

  13. Olfactory Cues from Plants Infected by Powdery Mildew Guide Foraging by a Mycophagous Ladybird Beetle

    PubMed Central

    Tabata, Jun; De Moraes, Consuelo M.; Mescher, Mark C.

    2011-01-01

    Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical “moldy” odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms. PMID:21876772

  14. Identification of Conditions for Successful Aphid Control by Ladybirds in Greenhouses

    PubMed Central

    Riddick, Eric W.

    2017-01-01

    As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usually did not correlate with aphid reduction. The ratio of aphid reduction/release rate was slightly less for larvae than adults in some studies, suggesting that larvae were less effective (than adults) in suppressing aphids. Some adult releases were inside cages, thereby limiting adult dispersion from plants. Overall, the ratio of aphid reduction/release rate was greatest for ladybird adults of the normal strain (several species combined), but least for adults of a flightless Harmonia axyridis strain. The combined action of ladybirds and hymenopteran parasitoids could have a net positive effect on aphid population suppression and, consequently, on host (crop) plants. However, ladybird encounters with aphid-tending or foraging ants must be reduced. Deploying ladybirds to help manage aphids in greenhouses and similar protective structures is encouraged. PMID:28350349

  15. Effects of bioflavonoids on oviposition behavior in the pink-spotted ladybird beetle Coleomegilla maculata (Coleoptera: Coccinellidae)

    USDA-ARS?s Scientific Manuscript database

    One goal of our current research is to mass produce ladybird beetles for biological control of plant pests in greenhouses and other protective structures. Cost-effective mass production involves the use of alternative prey/foods or artificial diets (rather than natural prey, e.g., aphids). One chall...

  16. Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini).

    PubMed

    Escalona, Hermes E; Zwick, Andreas; Li, Hao-Sen; Li, Jiahui; Wang, Xingmin; Pang, Hong; Hartley, Diana; Jermiin, Lars S; Nedvěd, Oldřich; Misof, Bernhard; Niehuis, Oliver; Ślipiński, Adam; Tomaszewska, Wioletta

    2017-06-26

    The tribe Coccinellini is a group of relatively large ladybird beetles that exhibits remarkable morphological and biological diversity. Many species are aphidophagous, feeding as larvae and adults on aphids, but some species also feed on other hemipterous insects (i.e., heteropterans, psyllids, whiteflies), beetle and moth larvae, pollen, fungal spores, and even plant tissue. Several species are biological control agents or widespread invasive species (e.g., Harmonia axyridis (Pallas)). Despite the ecological importance of this tribe, relatively little is known about the phylogenetic relationships within it. The generic concepts within the tribe Coccinellini are unstable and do not reflect a natural classification, being largely based on regional revisions. This impedes the phylogenetic study of important traits of Coccinellidae at a global scale (e.g. the evolution of food preferences and biogeography). We present the most comprehensive phylogenetic analysis of Coccinellini to date, based on three nuclear and one mitochondrial gene sequences of 38 taxa, which represent all major Coccinellini lineages. The phylogenetic reconstruction supports the monophyly of Coccinellini and its sister group relationship to Chilocorini. Within Coccinellini, three major clades were recovered that do not correspond to any previously recognised divisions, questioning the traditional differentiation between Halyziini, Discotomini, Tytthaspidini, and Singhikaliini. Ancestral state reconstructions of food preferences and morphological characters support the idea of aphidophagy being the ancestral state in Coccinellini. This indicates a transition from putative obligate scale feeders, as seen in the closely related Chilocorini, to more agile general predators. Our results suggest that the classification of Coccinellini has been misled by convergence in morphological traits. The evolutionary history of Coccinellini has been very dynamic in respect to changes in host preferences, involving

  17. Eating chemically defended prey: alkaloid metabolism in an invasive ladybird predator of other ladybirds (Coleoptera: Coccinellidae).

    PubMed

    Sloggett, J J; Davis, A J

    2010-01-15

    By comparison with studies of herbivore physiological adaptation to plant allelochemicals, work on predator physiological adaptation to potentially toxic prey has been very limited. Such studies are important in understanding how evolution could shape predator diets. An interesting question is the specificity of predator adaptation to prey allelochemicals, given that many predators consume diverse prey with different chemical defences. The ladybird Harmonia axyridis, an invasive species in America, Europe and Africa, is considered a significant predatory threat to native invertebrates, particularly other aphid-eating ladybirds of which it is a strong intraguild predator. Although ladybirds possess species-specific alkaloid defences, H. axyridis exhibits high tolerance for allospecific ladybird prey alkaloids. Nonetheless, it performs poorly on species with novel alkaloids not commonly occurring within its natural range. We examined alkaloid fate in H. axyridis larvae after consumption of two other ladybird species, one containing an alkaloid historically occurring within the predator's native range (isopropyleine) and one containing a novel alkaloid that does not (adaline). Our results indicate that H. axyridis rapidly chemically modifies the alkaloid to which it has been historically exposed to render it less harmful: this probably occurs outside of the gut. The novel, more toxic alkaloid persists in the body unchanged for longer. Our results suggest metabolic alkaloid specialisation, in spite of the diversity of chemically defended prey that the predator consumes. Physiological adaptations appear to have made H. axyridis a successful predator of other ladybirds; however, limitations are imposed by its physiology when it eats prey with novel alkaloids.

  18. Incidence of Male-Killing Rickettsia spp. (α-Proteobacteria) in the Ten-Spot Ladybird Beetle Adalia decempunctata L. (Coleoptera: Coccinellidae)

    PubMed Central

    von der Schulenburg, J. Hinrich Graf; Habig, Michael; Sloggett, John J.; Webberley, K. Mary; Bertrand, Dominique; Hurst, Gregory D. D.; Majerus, Michael E. N.

    2001-01-01

    The diversity of endosymbiotic bacteria that kill male host offspring during embryogenesis and their frequencies in certain groups of host taxa suggest that the evolution of male killing and the subsequent spread of male-killing symbionts are primarily determined by host life history characteristics. We studied the 10-spot ladybird beetle, Adalia decempunctata L. (Coleoptera: Coccinellidae), in which male killing has not been recorded previously, to test this hypothesis, and we also assessed the evolution of the male killer identified by DNA sequence analysis. Our results show that A. decempunctata harbors male-killing Rickettsia (α-proteobacteria). Male-killing bacteria belonging to the genus Rickettsia have previously been reported only for the congeneric two-spot ladybird beetle, Adalia bipunctata L. Phylogenetic analysis of Rickettsia DNA sequences isolated from different populations of the two host species revealed a single origin of male killing in the genus Rickettsia. The data also indicated possible horizontal transfer of symbionts between host species. In addition, A. bipunctata is known to bear at least four different male-killing symbionts in its geographic range two of which coexist in the two locations from which A. decempunctata specimens were obtained for the present study. Since only a single male-killing taxon was found in A. decempunctata, we assume that the two closely related ladybird beetle species must differ in the number and/or geographic distribution of male killers. We discuss the importance of these findings to our understanding of the evolution and dynamics of symbiotic associations between male-killing bacteria and their insect hosts. PMID:11133455

  19. Melanic Facial Patterns and their Significance in the Multicolored Asian Lady Beetle (Harmonia axyridis)

    PubMed Central

    BEZZERIDES, ALEXANDER L.; LOOFBOURROW, SETH A.

    2015-01-01

    The relationship between the patterns present on the pronotum and the elytron of the multicolored Asian lady beetle Harmonia axyridis was investigated. In males elytron size was a significant predictor of pronotal intensity and in females the fraction of the pronotum covered in black was related to their elytral spot brightness. Other significant sex differences included females having more of their pronota covered by melanins and the pigments deposited there being more intense than in males. The potential significance of these sex differences is discussed as well as the potential for these signals to serve in a mate choice context. PMID:25705051

  20. Melanic Facial Patterns and their Significance in the Multicolored Asian Lady Beetle (Harmonia axyridis).

    PubMed

    Bezzerides, Alexander L; Loofbourrow, Seth A

    2014-10-01

    The relationship between the patterns present on the pronotum and the elytron of the multicolored Asian lady beetle Harmonia axyridi s was investigated. In males elytron size was a significant predictor of pronotal intensity and in females the fraction of the pronotum covered in black was related to their elytral spot brightness. Other significant sex differences included females having more of their pronota covered by melanins and the pigments deposited there being more intense than in males. The potential significance of these sex differences is discussed as well as the potential for these signals to serve in a mate choice context.

  1. Estimating ladybird predation of aphids in the presence of foraging ants in lab bioassays

    USDA-ARS?s Scientific Manuscript database

    Foraging or tending ants often disrupt ladybird beetle predation of aphids on crop plants. In this study, we assessed the foraging behavior of the red imported fire ant (Solenopsis invicta) and tested the hypothesis that foraging ants disrupt ladybird predation. We setup experiments in the laborator...

  2. The mitochondrial genome of the multicolored Asian lady beetle Harmonia axyridis (Pallas) and a phylogenetic analysis of the Polyphaga (Insecta: Coleoptera).

    PubMed

    Niu, Fang-Fang; Zhu, Liang; Wang, Su; Wei, Shu-Jun

    2016-07-01

    Here, we report the mitochondrial genome sequence of the multicolored Asian lady beetle Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) (GenBank accession No. KR108208). This is the first species with sequenced mitochondrial genome from the genus Harmonia. The current length with partitial A + T-rich region of this mitochondrial genome is 16,387 bp. All the typical genes were sequenced except the trnI and trnQ. As in most other sequenced mitochondrial genomes of Coleoptera, there is no re-arrangement in the sequenced region compared with the pupative ancestral arrangement of insects. All protein-coding genes start with ATN codons. Five, five and three protein-coding genes stop with termination codon TAA, TA and T, respectively. Phylogenetic analysis using Bayesian method based on the first and second codon positions of the protein-coding genes supported that the Scirtidae is a basal lineage of Polyphaga. The Harmonia and the Coccinella form a sister lineage. The monophyly of Staphyliniformia, Scarabaeiformia and Cucujiformia was supported. The Buprestidae was found to be a sister group to the Bostrichiformia.

  3. Ladybirds as Teaching Aids: 1 Collecting and Culturing.

    ERIC Educational Resources Information Center

    Majerus, M. E. N.; And Others

    1989-01-01

    Described are methods for locating, collecting and culturing ladybird beetles. Included are necessary equipment for feeding and breeding the insects and modifications for various species found in Great Britain. Overwintering spots of various species are also listed. (CW)

  4. Survival and behavioural responses of the predatory ladybird beetle, Eriopis connexa populations susceptible and resistant to a pyrethroid insecticide.

    PubMed

    Spíndola, A F; Silva-Torres, C S A; Rodrigues, A R S; Torres, J B

    2013-08-01

    The ladybird beetle, Eriopis connexa (Germar) (Coleoptera: Coccinellidae), is one of the commonest predators of aphids (Hemiptera: Aphididae) in the cotton agroecosystem and in many other row and fruit crops in Brazil, and has been introduced into other countries such as the USA for purposes of aphid control. In addition, the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the most serious cotton pest where it occurs, including Brazil. Controlling boll weevils and other pests such as cotton defoliators still tends to involve the intense application of insecticides to secure cotton production. The pyrethroid insecticide lambda-cyhalothrin (LCT) is commonly used, but this compound is not effective against aphids; hence, a desirable strategy would be to maintain E. connexa populations in cotton fields where LCT is applied. Using populations of E. connexa resistant (Res) and susceptible (Sus) to LCT, we compared behavioural responses on treated cotton plants and under confinement on partially and fully treated surfaces, and assessed the insects' survival on treated plants compared with that of the boll weevil. The E. connexa resistant population caged on treated plants with 15 and 75 g a.i. ha-1 exhibited ≫82% survival for both insecticide concentrations compared with ≪3% and ≪17% survival for susceptible E. connexa populations and boll weevils, respectively. The response of E. connexa Res and Sus populations when released, either on the soil or on the plant canopy, indicated avoidance towards treated plants, as measured by elapsed time to assess the plant. When compared with susceptible individuals, resistant ones took longer time to suffer insecticide knockdown, had a higher recovery rate after suffering knockdown, and spent more time in the plant canopy. Based on behavioural parameters evaluated in treated arenas, no ladybird beetles exhibited repellency. However, irritability was evident, with the susceptible population exhibiting

  5. Interactions between the Multicolored Asian Lady Beetle Harmonia axyridis and the Parasitoid Dinocampus coccinellae

    PubMed Central

    Dindo, Maria Luisa; Francati, Santolo; Lanzoni, Alberto; di Vitantonio, Cinzia; Marchetti, Elisa; Burgio, Giovanni; Maini, Stefano

    2016-01-01

    Harmonia axyridis (Pallas) has been introduced either intentionally or accidentally in different areas outside its native range, where it is often regarded as invasive. Dinocampus coccinellae (Schrank) has been recorded to parasitize H. axyridis in the field, both in the native and introduced areas, Italy included. The percent of parasitism found in our field investigation was low (four percent). The effect of exposure time of H. axyridis to D. coccinellae and the impact of parasitization on host longevity, oviposition capacity and egg fertility were evaluated in the laboratory. The acceptance and suitability of H. axyridis as host for D. coccinellae were then studied, in comparison with the native coccinellid Adalia bipunctata (L.), which shares the same ecological niche. The effects of parasitization on female longevity and reproduction capacity in the exotic vs. the indigenous lady beetle were also investigated. The overall results showed that D. coccinellae negatively affected the fitness of H. axyridis, more than that of A. bipunctata. The parasitoid may thus play a marginal role in controlling the populations of the Asian lady beetle, without representing a threat to A. bipunctata. PMID:27886136

  6. Ladybirds as Teaching Aids: 2. Potential for Practical and Project Work.

    ERIC Educational Resources Information Center

    Majerus, M. E. N.; And Others

    1989-01-01

    Presented are several ideas for projects involving ladybird beetles. Discussed is background information about the insects; and projects involving life histories, intra-specific variation, taxonomy, genetics, behavior, ecology, habitat surveys, population biology, and overwintering biology. Lists 12 references. (CW)

  7. Characteristics and Drivers of High-Altitude Ladybird Flight: Insights from Vertical-Looking Entomological Radar

    PubMed Central

    Jeffries, Daniel L.; Chapman, Jason; Roy, Helen E.; Humphries, Stuart; Harrington, Richard; Brown, Peter M. J.; Handley, Lori-J. Lawson

    2013-01-01

    Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends) and drivers (aphid abundance, air temperature, wind speed and rainfall) of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis). These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ∼1100 m above ground level, where displacement speeds of up to ∼60 km/h were recorded, however most ladybirds were found between ∼150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a “typical” high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high

  8. Do bioflavonoids in Juniperus virginiana heartwood stimulate oviposition in the ladybird Coleomegilla maculata?

    USDA-ARS?s Scientific Manuscript database

    Maximizing the reproductive potential of ladybird beetles fed factitious foods or artificial diets, in lieu of natural prey, is a major challenge to cost-effective mass-rearing for augmentative biological control. In this study, we tested the hypothesis that compounds in redcedar, Juniperus (J.) vir...

  9. Pallidus beetle, Delphastus pallidus LeConte (Insecta: Coleoptera: Coccinellidae), a native predatory beetle of whitefly species in Florida

    USDA-ARS?s Scientific Manuscript database

    Beetles in the genus Delphastus Casey are small whitefly-specific predatory ladybird beetles belonging to the coccinellid tribe Serangiini. They feed on all immature stages of whitefly and are reared and sold commercially all over the world for this purpose. They are compatible with the application ...

  10. Use of a pollen-based diet to expose the ladybird beetle Propylea japonica to insecticidal proteins.

    PubMed

    Zhang, Xiaojie; Li, Yunhe; Romeis, Jörg; Yin, Xinming; Wu, Kongming; Peng, Yufa

    2014-01-01

    A rape seed pollen-based diet was developed and found to be suitable for use in a dietary exposure assay for Propylea japonica. Using the diet, we established and validated a dietary exposure assay by using the protease inhibitor E-64 as positive control. Dose-dependent responses were documented for all observed life-table parameters of P. japonica including survival, pupation and eclosion rates, development time and adult weight. Results suggested that the dietary assay can detect the effects of insecticidal compounds on the survival and development of P. japonica. Using the established dietary assay, we subsequently tested the toxicity of Cry1Ab, Cry1Ac and Cry1F proteins that are expressed by transgenic maize, cotton or rice plants to P. japonica larvae. The diet containing E-64 was included as a positive control. Survival and development of P. japonica larvae were not adversely affected when the diet contained purified Cry1Ab, Cry1Ac, or Cry1F at 500 µg/g diet representing a worst-case exposure scenario. In contrast, P. japonica larvae were adversely affected when the diet contained E-64. The bioactivity and stability of the Cry proteins in the diet and Cry protein uptake by the ladybird larvae were confirmed by bioassay with a Cry-sensitive insect species and by ELISA. The current study describes a suitable experimental system for assessing the potential effects of gut-active insecticidal compounds on ladybird beetle larvae. The experiments with the Cry proteins demonstrate that P. japonica larvae are not sensitive to Cry1Ab, Cry1Ac and Cry1F.

  11. Invasions by Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in the Western Hemisphere: implications for South America

    Treesearch

    Robert L. Koch; Robert C. Venette; William D. Hutchison

    2006-01-01

    The multicolored Asian lady beetle, Harmonia axyridis (Pallas), native to Asia, has recently been detected in South America after successfully invading North America and Europe. This coccinellid is a voracious predator; therefore, it is popular and effective in biological control. Unfortunately, H. axyridis also has associated...

  12. Does a change from whole to powdered food (Artemia franciscana eggs) increase oviposition in the ladybird Coleomegilla maculata

    USDA-ARS?s Scientific Manuscript database

    The limited availability of alternative foods to replace natural prey hinders cost-effective mass production of ladybird beetles for augmentative biological control. We compared the effects of powdered versus whole Artemia franciscana (brine shrimp) eggs with or without a dietary supplement on devel...

  13. Do Bioflavonoids in Juniperus virginiana Heartwood Stimulate Oviposition in the Ladybird Coleomegilla maculata?

    PubMed Central

    Riddick, Eric W; Wu, Zhixin; Eller, Fred J; Berhow, Mark A

    2018-01-01

    Maximizing the reproductive potential of ladybird beetles fed factitious foods or artificial diets, in lieu of natural prey, is a major challenge to cost-effective mass rearing for augmentative biological control. In this study, we tested the hypothesis that compounds in redcedar, Juniperus virginiana, stimulate oviposition in the ladybird Coleomegilla maculata. We also tested the prediction that several bioflavonoids, identified in heartwood fractions, elicited this behavioral response. Phenolic compounds were extracted from J. virginiana heartwood sawdust, separated into several fractions, then presented to adult beetles, in a powdered, pure form, in the laboratory. Females preferentially oviposited within 1 to 2 cm of fractions B, C, D, and E, but not A or the unfractionated extract, at the base of test cages. Chemical analysis identified bioflavonoids in heartwood fractions and subsequent bioassays using several identified in fractions C, D, and E confirmed that quercetin, taxifolin, and naringenin (to a lesser extent) stimulated oviposition. All tested fractions and bioflavonoids readily adhered to the chorion of freshly laid eggs but did not reduce egg hatch. This study demonstrates that several bioflavonoids stimulate oviposition by C. maculata and could be useful for mass rearing programs. PMID:29531477

  14. Does the volatile hydrocarbon profile differ between the sexes: a case study on five aphidophagous ladybirds.

    PubMed

    Pattanayak, Rojalin; Mishra, Geetanjali; Omkar; Chanotiya, Chandan Singh; Rout, Prasant Kumar; Mohanty, Chandra Sekhar

    2014-11-01

    Insect hydrocarbons (HCs) primarily serve as a waterproofing cuticular layer and function extensively in chemical communication by facilitating species, sex, and colony recognition. In this study, headspace solid-phase microextraction is employed for investigating the sex-specific volatile HC profile of five ladybirds collected from Lucknow, India namely, Coccinella septempunctata (L.), Coccinella transversalis (Fabr.), Menochilus sexmaculatus (Fabr.), Propylea dissecta (Mulsant), and Anegleis cardoni (Weise) for the first time. Major compounds reported in C. septempunctata, C. transversalis, and A. cardoni are methyl-branched saturated HCs, whereas in M. sexmaculatus, and P. dissecta, they are unsaturated HCs. Other than A. cardoni, both the sexes of the other four ladybirds had similar compounds at highest peak but with statistically significant differences. However, in A. cardoni, which is a beetle with a narrow niche, the major compound in both male and female was different. The difference in volatile HC profile of the sexes of the five ladybirds indicates that gender-specific differences primarily exist due to quantitative differences in chemicals with only very few chemicals being unique to a gender. This variation in semiochemicals might have a role in behavioral or ecological aspects of the studied ladybirds. © 2014 Wiley Periodicals, Inc.

  15. The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts

    PubMed Central

    Koch, R L

    2003-01-01

    Throughout the last century, the multicolored Asian lady beetle, Harmonia axyridis (Pallas) has been studied quite extensively, with topics ranging from genetics and evolution to population dynamics and applied biological control being covered. Much of the early work on H. axyridis was conducted in the native Asian range. From the 1980's to the present, numerous European and North American studies have added to the body of literature on H. axyridis. H. axyridis has recently gained attention in North America both as a biological control agent and as a pest. This literature review was compiled for two reasons. First, to assist other researchers as a reference, summarizing most of the voluminous body of literature on H. axyridis pertaining to its biology, life history, uses in biological control, and potential non-target impacts. Secondly, to be a case study on the impacts of an exotic generalist predator. PMID:15841248

  16. Two Strains of Male-Killing Wolbachia in a Ladybird, Coccinella undecimpunctata, from a Hot Climate

    PubMed Central

    Elnagdy, Sherif; Messing, Susan

    2013-01-01

    Ladybirds are a hot-spot for the invasion of male-killing bacteria. These maternally inherited endosymbionts cause the death of male host embryos, to the benefit of female sibling hosts and the bacteria that they contain. Previous studies have shown that high temperatures can eradicate male-killers from ladybirds, leaving the host free from infection. Here we report the discovery of two maternally inherited sex ratio distorters in populations of a coccinellid, Coccinella undecimpunctata, from a hot lowland region of the Middle East. DNA sequence analysis indicates that the male killing is the result of infection by Wolbachia, that the trait is tetracycline sensitive, and that two distinct strains of Wolbachia co-occur within one beetle population. We discuss the implications of these findings for theories of male-killing and suggest avenues for future field-work on this system. PMID:23349831

  17. Two strains of male-killing Wolbachia in a ladybird, Coccinella undecimpunctata, from a hot climate.

    PubMed

    Elnagdy, Sherif; Messing, Susan; Majerus, Michael E N

    2013-01-01

    Ladybirds are a hot-spot for the invasion of male-killing bacteria. These maternally inherited endosymbionts cause the death of male host embryos, to the benefit of female sibling hosts and the bacteria that they contain. Previous studies have shown that high temperatures can eradicate male-killers from ladybirds, leaving the host free from infection. Here we report the discovery of two maternally inherited sex ratio distorters in populations of a coccinellid, Coccinella undecimpunctata, from a hot lowland region of the Middle East. DNA sequence analysis indicates that the male killing is the result of infection by Wolbachia, that the trait is tetracycline sensitive, and that two distinct strains of Wolbachia co-occur within one beetle population. We discuss the implications of these findings for theories of male-killing and suggest avenues for future field-work on this system.

  18. Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle.

    PubMed

    Polsinelli, Gregory A; Singh, Sanjay K; Mishra, Rajesh K; Suranyi, Robert; Ragsdale, David W; Pang, Yuan-Ping; Brimijoin, Stephen

    2010-09-06

    Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Influence of Host Gender on Infection Rate, Density and Distribution of the Parasitic Fungus, Hesperomyces virescens, on the Multicolored Asian Lady Beetle, Harmonia axyridis

    PubMed Central

    Riddick, E. W.

    2006-01-01

    Hesperomyces virescens Thaxter (Laboulbeniales: Laboulbeniaceae) is a parasitic fungus that infects lady beetles (Coleoptera: Coccinellidae) via horizontal transmission between adults at overwintering and feeding sites. The differential behavior of male and female hosts could have profound effects on intensity of infection and positioning of fungus on the host's integument. The influence of host gender on infection rate, density and distribution of this parasite on the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), was determined at a feeding site. Adult H. axyridis were sampled from pecan, Carya illinoinensis (Wangenh.) K. Koch, trees in northern Mississippi, USA, during summer and early fall 2003–2004. Results indicated that the behavior of male or female beetles on pecan trees had only a limited effect on the intensity of infection. When averaged over the entire season, the percentage of H. axyridis infected with H. virescens was not influenced by host gender. In 2003, a seasonal average of 54 and 39% of males and females, respectively, were infected; whereas in 2004, 36 and 41% of male and female beetles, respectively, were infected. The percentage of males infected with H. virescens was correlated with the number of males captured at the site in 2003; infection rate decreased as male abundance increased. Infection rate did not correlate with female abundance in 2003 or male or female abundance in 2004. Host gender had a considerable effect on the density and distribution of the fungus. Hesperomyces virescens mature thalli were denser on male rather than female beetles. Also, thallus density was often greatest on the elytra, meso- and metathorax, and abdomen of males and elytra of females, than on other body parts, in 2003. In 2003 and 2004, approximately 59 and 97% and 67 and 96% of males and females, respectively, had mature thalli distributed on the elytra. Prevalence of H. virescens thalli on the dorsum of H

  20. Sexual dimorphism in the attachment ability of the ladybird beetle Coccinella septempunctata on soft substrates

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Petersen, Dennis S.; Tölle, Lisa; Wolff, Jonas O.; Gorb, Stanislav N.

    2017-01-01

    Many insects possess adhesive foot pads, which enable reliable attachment to diverse and unpredictable substrates. The function of these adhesive organs was shown to be affected by environmental conditions such as substrate roughness, chemistry, and ambient humidity. So far, the attachment ability of insects and also that of spiders and geckos has been tested on rigid substrates only. However, the natural habitats of climbing animals may provide a variety of substrate stiffness ranging from rigid rock surfaces to soft, biofilm covered substrates. In order to test the effect of different substrate stiffness on the attachment ability of insects, we have performed friction experiments with female and male ladybird beetles Coccinella septempunctata on smooth silicone elastomer substrates of different stiffness, using a centrifugal force tester. Whereas in females, the attachment ability was not affected by the substrate stiffness within the range of tested stiffness, males showed decreasing attachment ability with decreasing substrate stiffness. This sexual dimorphism in attachment ability is explained by the presence of a specialized, discoidal seta type in males, which is not present in females. It is argued that discoidal setae, when softer if compared to the substrate, may show an advantageous peak-free interfacial stress distribution when being pulled off the substrate. For such setae being stiffer if compared the substrate, they potentially show increased edge stress concentration. In this case, lower pull-off forces are expected, in agreement with the experimentally obtained results. With the present study, we demonstrate for the first time that the substrate stiffness may have an effect on the attachment ability of climbing animals, which may also be of relevance for technical and medical applications involving adhesion to soft substrates.

  1. Identification of Development-Related Genes in the Ovaries of Adult Harmonia axyridis (Pallas) Lady Beetles Using a Time- Series Analysis by RNA-seq.

    PubMed

    Du, Wenxiao; Zeng, Fanrong

    2016-12-14

    Adults of the lady beetle species Harmonia axyridis (Pallas) are bred artificially en masse for classic biological control, which requires egg-laying by the H. axyridis ovary. Development-related genes may impact the growth of the H. axyridis adult ovary but have not been reported. Here, we used integrative time-series RNA-seq analysis of the ovary in H. axyridis adults to detect development-related genes. A total of 28,558 unigenes were functionally annotated using seven types of databases to obtain an annotated unigene database for ovaries in H. axyridis adults. We also analysed differentially expressed genes (DEGs) between samples. Based on a combination of the results of this bioinformatics analysis with literature reports and gene expression level changes in four different stages, we focused on the development of oocyte reproductive stem cell and yolk formation process and identified 26 genes with high similarity to development-related genes. 20 DEGs were randomly chosen for quantitative real-time PCR (qRT-PCR) to validate the accuracy of the RNA-seq results. This study establishes a robust pipeline for the discovery of key genes using high-throughput sequencing and the identification of a class of development-related genes for characterization.

  2. Reproduction in Risky Environments: The Role of Invasive Egg Predators in Ladybird Laying Strategies

    PubMed Central

    Paul, Sarah C.; Pell, Judith K.; Blount, Jonathan D.

    2015-01-01

    Reproductive environments are variable and the resources available for reproduction are finite. If reliable cues about the environment exist, mothers can alter offspring phenotype in a way that increases both offspring and maternal fitness (‘anticipatory maternal effects’—AMEs). Strategic use of AMEs is likely to be important in chemically defended species, where the risk of offspring predation may be modulated by maternal investment in offspring toxin level, albeit at some cost to mothers. Whether mothers adjust offspring toxin levels in response to variation in predation risk is, however, unknown, but is likely to be important when assessing the response of chemically defended species to the recent and pervasive changes in the global predator landscape, driven by the spread of invasive species. Using the chemically defended two-spot ladybird, Adalia bipunctata, we investigated reproductive investment, including egg toxin level, under conditions that varied in the degree of simulated offspring predation risk from larval harlequin ladybirds, Harmonia axyridis. H. axyridis is a highly voracious alien invasive species in the UK and a significant intraguild predator of A. bipunctata. Females laid fewer, larger egg clusters, under conditions of simulated predation risk (P+) than when predator cues were absent (P-), but there was no difference in toxin level between the two treatments. Among P- females, when mean cluster size increased there were concomitant increases in both the mass and toxin concentration of eggs, however when P+ females increased cluster size there was no corresponding increase in egg toxin level. We conclude that, in the face of offspring predation risk, females either withheld toxins or were physiologically constrained, leading to a trade-off between cluster size and egg toxin level. Our results provide the first demonstration that the risk of offspring predation by a novel invasive predator can influence maternal investment in toxins within

  3. Seasonal inhalant insect allergy: Harmonia axyridis ladybug.

    PubMed

    Goetz, David W

    2009-08-01

    The exotic Asian lady beetle, Harmonia axyridis, has become a prominent cause of seasonal inhalant allergy (allergic rhinitis, asthma, and urticaria) in the last two decades in North America and Europe after being introduced into the environment as an agricultural pest-control predator. Seeking winter hibernation sites, ladybug swarms will invade human habitats in the fall. Large fall swarms and smaller spring dispersions produce corresponding peaks in ladybug allergy. Ladybug allergy prevalence in endemic areas has been reported as high as 10%. For some individuals ladybug allergy is their first expression of allergic disease. Exposures at home, work, school, and in other settings may be sensitizing. Ladybug hemolymph is the primary source of allergens. Har a 1 and Har a 2 major ladybug allergens have been characterized. 'Reflex bleeding' from tibiofemoral joints (for communication and during alarm) disperses these allergens. Ladybug skin testing should be routine in endemic areas. Avoidance continues to be the first step in treatment. Allergen vaccine therapy may be effective, but a commercial extract of H. axyridis is needed.

  4. Identification of conditions for successful aphid control by ladybirds in greenhouses

    USDA-ARS?s Scientific Manuscript database

    As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usual...

  5. Modification of Flight and Locomotion Performances, Respiratory Metabolism, and Transcriptome Expression in the Lady Beetle Harmonia axyridis through Sublethal Pesticide Exposure

    PubMed Central

    Xiao, Da; Tan, Xiaoling; Wang, Wenjuan; Zhang, Fan; Desneux, Nicolas; Wang, Su

    2017-01-01

    Biological control is usually used in combination with chemical control for practical agricultural applications. Thus, the influence of insecticides on the natural predators used for biological control should be investigated for integrated pest management. The ladybird Harmonia axyridis is an effective predator on aphids and coccids. Beta-cypermethrin is a broad-spectrum insecticide used worldwide for controlling insect pests. H. axyridis is becoming increasingly threatened by this insecticide. Here, we investigated the effect of a sublethal dose of beta-cypermethrin on flight, locomotion, respiration, and detoxification system of H. axyridis. After exposure to beta-cypermethrin, succinic female adults flew more times, longer distances, and during longer time periods. Exposure to a sublethal dose of beta-cypermethrin also promoted an increase in walking rate, walking distance, walking duration, and also an increase in respiratory quotient and respiratory rate. To investigate the effects of beta-cypermethrin on H. axyridis detoxification system, we analyzed the transcriptome of H. axyridis adults, focusing on genes related to detoxification systems. De novo assembly generated 65,509 unigenes with a mean length of 799 bp. From these genes, 26,020 unigenes (40.91% of all unigenes) exhibited clear homology to known genes in the NCBI non-redundant database. In addition, 10,402 unigenes were annotated in the Cluster of Orthologous Groups database, 12,088 unigenes were assigned to the Gene Ontology database and 12,269 unigenes were in the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Exposure to beta-cypermethrin had significant effects on the transcriptome profile of H. axyridis adult. Based on uniquely mapped reads, 3,296 unigenes were differentially expressed, 868 unigenes were up-regulated and 2,248 unigenes were down-regulated. We identified differentially-expressed unigenes related to general detoxification systems in H. axyridis. This assembled, annotated

  6. Modification of Flight and Locomotion Performances, Respiratory Metabolism, and Transcriptome Expression in the Lady Beetle Harmonia axyridis through Sublethal Pesticide Exposure.

    PubMed

    Xiao, Da; Tan, Xiaoling; Wang, Wenjuan; Zhang, Fan; Desneux, Nicolas; Wang, Su

    2017-01-01

    Biological control is usually used in combination with chemical control for practical agricultural applications. Thus, the influence of insecticides on the natural predators used for biological control should be investigated for integrated pest management. The ladybird Harmonia axyridis is an effective predator on aphids and coccids. Beta-cypermethrin is a broad-spectrum insecticide used worldwide for controlling insect pests. H. axyridis is becoming increasingly threatened by this insecticide. Here, we investigated the effect of a sublethal dose of beta-cypermethrin on flight, locomotion, respiration, and detoxification system of H. axyridis . After exposure to beta-cypermethrin, succinic female adults flew more times, longer distances, and during longer time periods. Exposure to a sublethal dose of beta-cypermethrin also promoted an increase in walking rate, walking distance, walking duration, and also an increase in respiratory quotient and respiratory rate. To investigate the effects of beta-cypermethrin on H. axyridis detoxification system, we analyzed the transcriptome of H. axyridis adults, focusing on genes related to detoxification systems. De novo assembly generated 65,509 unigenes with a mean length of 799 bp. From these genes, 26,020 unigenes (40.91% of all unigenes) exhibited clear homology to known genes in the NCBI non-redundant database. In addition, 10,402 unigenes were annotated in the Cluster of Orthologous Groups database, 12,088 unigenes were assigned to the Gene Ontology database and 12,269 unigenes were in the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Exposure to beta-cypermethrin had significant effects on the transcriptome profile of H. axyridis adult. Based on uniquely mapped reads, 3,296 unigenes were differentially expressed, 868 unigenes were up-regulated and 2,248 unigenes were down-regulated. We identified differentially-expressed unigenes related to general detoxification systems in H. axyridis . This assembled

  7. Bridgehead Effect in the Worldwide Invasion of the Biocontrol Harlequin Ladybird

    PubMed Central

    Lombaert, Eric; Guillemaud, Thomas; Cornuet, Jean-Marie; Malausa, Thibaut; Facon, Benoît; Estoup, Arnaud

    2010-01-01

    Recent studies of the routes of worldwide introductions of alien organisms suggest that many widespread invasions could have stemmed not from the native range, but from a particularly successful invasive population, which serves as the source of colonists for remote new territories. We call here this phenomenon the invasive bridgehead effect. Evaluating the likelihood of such a scenario is heuristically challenging. We solved this problem by using approximate Bayesian computation methods to quantitatively compare complex invasion scenarios based on the analysis of population genetics (microsatellite variation) and historical (first observation dates) data. We applied this approach to the Harlequin ladybird Harmonia axyridis (HA), a coccinellid native to Asia that was repeatedly introduced as a biocontrol agent without becoming established for decades. We show that the recent burst of worldwide invasions of HA followed a bridgehead scenario, in which an invasive population in eastern North America acted as the source of the colonists that invaded the European, South American and African continents, with some admixture with a biocontrol strain in Europe. This demonstration of a mechanism of invasion via a bridgehead has important implications both for invasion theory (i.e., a single evolutionary shift in the bridgehead population versus multiple changes in case of introduced populations becoming invasive independently) and for ongoing efforts to manage invasions by alien organisms (i.e., heightened vigilance against invasive bridgeheads). PMID:20305822

  8. Interactions of the Asian Lady Beetle, Harmonia axyridis (Coleoptera: Coccinellidae), and the North American Native Lady Beetle, Coccinella novemnotata (Coleoptera: Coccinellidae): Prospects for Recovery Post-Decline.

    PubMed

    Ducatti, Rafael Dal Bosco; Ugine, Todd A; Losey, John

    2017-02-01

    The decline of the North American native lady beetle, Coccinella novemnotata Herbst, is strongly correlated with the introduction of Coccinella septempunctata L., and C. novemnotata are locally extirpated across much of the United States. Since C. novemnotata's decline, the invasive Harmonia axyridis Pallas has become dominant in North America. This study investigated whether H. axyridis has the potential to impede the recovery of C. novemnotata populations. To determine how H. axyridis interacts with C. novemnotata via intraguild predation and competition for prey, we paired first-instar C. novemnotata with first-instar H. axyridis at low and high densities of pea aphid. Coccinella novemnotata survival when paired interspecifically was significantly lower than H. axyridis survival at both aphid densities. Both species had similar weights at eclosion across aphid densities; however, H. axyridis developed faster than C. novemnotata. To examine the effect of larval size on intraguild interactions, we conducted a second experiment where we varied the C. novemnotata and H. axyridis instar in our pairings. Coccinella novemnotata survival and final weight increased when paired with younger H. axyridis larvae. The percentage survival of C. novemnotata in interspecific treatments, at the low aphid density, was lower than for same-aged C. novemnotata reared conspecifically, except for pairs initiated with C. novemnotata larvae that were two instars more advanced than H. axyridis larvae. These results suggest that intraguild predation and competition for prey by H. axyridis have the potential to affect the recovery of C. novemnotata populations negatively. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas).

    PubMed

    Nawaz, Muhammad; Cai, Wanlun; Jing, Zhao; Zhou, Xingmiao; Mabubu, Juma Ibrahim; Hua, Hongxia

    2017-07-01

    In order to further develop integrated pest management (IPM) approaches for controlling insect pests, it is important to estimate the effects of pesticides. In this study, the toxicity and sublethal effects of the insecticide chlorantraniliprole on a non-specific predator, the multicolored Asian lady beetle Harmonia axyridis, were evaluated and life table parameter data were analyzed statistically using the age-stage, two-sex life table procedure. The results of this study show that the development time of second and fourth instar larvae as well as pupa was significantly prolonged in populations treated with LC10 (2.42 mg (a.i.) L -1 ) and LC30 (12.06 mg (a.i.) L -1 ), while adult longevity and fecundity were both significantly reduced and the preoviposition period (POP) was significantly prolonged following treatment compared to the control. In addition, the net reproductive rate (R 0 ), as well as the intrinsic (r) and finite rate of increase (λ) were significantly decreased in groups treated with the insecticide. These results reveal that because sublethal concentrations of chlorantraniliprole impair the population growth of H. axyridis, more attention should be paid to the use of this chemical as a component of IPM strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Influence of Exotic Lady Beetle (Coleoptera: Coccinellidae) Establishment on the Species Composition of the Native Lady Beetle Community in Missouri.

    PubMed

    Diepenbrock, Lauren M; Fothergill, Kent; Tindall, Kelly V; Losey, John E; Smyth, Rebecca R; Finke, Deborah L

    2016-08-01

    The diversity and abundance of native lady beetles (Coccinellidae) in North America has declined in recent decades. This decline is often correlated with the introduction and establishment of exotic lady beetle species, including Coccinella septempunctata L. and Harmonia axyridis Pallas, suggesting that exotic species precipitated the decline of native lady beetles. We examined species records of native coccinellids in Missouri over 118 yr and asked whether the species composition of the community experienced a shift following the establishment of the exotic species. We found that the contemporary native coccinellid community is different from the community that was present nearly a century ago. However, there was no evidence for a recent abrupt shift in composition triggered by the establishment of exotic species. Instead, our data suggest that the native lady beetle community has been undergoing consistent and gradual change over time, with some species decreasing in abundance and others increasing. While not excluding exotic species as a factor contributing to the decline of native lady beetle species, our findings suggest that other continuous factors, like land use change, may have played a more influential role in determining the composition of the native coccinellid communities within our region. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Ectoparasitic mite and fungus on Harmonia axyridis

    USDA-ARS?s Scientific Manuscript database

    Ectoparasitic mites (Acarina: Podapolipidae) and ectoparasitic fungi (Laboulbeniales: Laboulbeniaceae) occur on ladybirds (Coleoptera: Coccinellidae) throughout the world (Riddick et al., 2009). This study documents the interaction of a coccinellid-specific mite Coccipolipus hippodamiae (McDaniel &...

  12. Presence of Native Prey Does Not Divert Predation on Exotic Pests by Harmonia axyridis in Its Indigenous Range

    PubMed Central

    Zhang, Gui Fen; Lövei, Gábor L; Wu, Xia; Wan, Fang Hao

    2016-01-01

    In China, two invasive pests, Bemisia tabaci MEAM1 (Gennadius) and Frankliniella occidentalis (Pergande), often co-occur with the native pest, Aphis gossypii (Glover), on plants of Malvaceae and Cucurbitaceae. All three are preyed on by the native ladybird, Harmonia axyridis (Pallas); however, the native predator might be expected to prefer native prey to the exotic ones due to a shared evolutionary past. In order to clarify whether the presence of native prey affected the consumption of these two invasive species by the native predator, field-cage experiments were conducted. A duplex qPCR was used to simultaneously detect both non-native pests within the gut of the predator. H. axyridis readily accepted both invasive prey species, but preferred B. tabaci. With all three prey species available, H. axyridis consumption of B. tabaci was 39.3±2.2% greater than consumption of F. occidentalis. The presence of A. gossypii reduced (by 59.9% on B. tabaci, and by 60.6% on F. occidentalis), but did not stop predation on the two exotic prey when all three were present. The consumption of B. tabaci was similar whether it was alone or together with A. gossypii. However, the presence of aphids reduced predation on the invasive thrips. Thus, some invasive prey may be incorporated into the prey range of a native generalist predator even in the presence of preferred native prey. PMID:27391468

  13. Seven-spot ladybird optimization: a novel and efficient metaheuristic algorithm for numerical optimization.

    PubMed

    Wang, Peng; Zhu, Zhouquan; Huang, Shuai

    2013-01-01

    This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.

  14. Seven-Spot Ladybird Optimization: A Novel and Efficient Metaheuristic Algorithm for Numerical Optimization

    PubMed Central

    Zhu, Zhouquan

    2013-01-01

    This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879

  15. A visible dominant marker for insect transgenesis

    PubMed Central

    Osanai-Futahashi, Mizuko; Ohde, Takahiro; Hirata, Junya; Uchino, Keiro; Futahashi, Ryo; Tamura, Toshiki; Niimi, Teruyuki; Sezutsu, Hideki

    2012-01-01

    Transgenesis of most insects currently relies on fluorescence markers. Here we establish a transformation marker system causing phenotypes visible to the naked eye due to changes in the color of melanin pigments, which are widespread in animals. Ubiquitous overexpression of arylalkylamine-N-acetyl transferase in the silkworm, Bombyx mori, changes the color of newly hatched first-instar larvae from black to a distinctive light brown color, and can be used as a molecular marker by directly connecting to baculovirus immediate early 1 gene promoter. Suppression of black pigmentation by Bm-arylalkylamine-N-acetyl transferase can be observed throughout the larval stages and in adult animals. Alternatively, overexpression in another gene, B. mori β-alanyl-dopamine synthetase (Bm-ebony), changes the larval body color of older instars, although first-instar larvae had normal dark coloration. We further show that ectopic Bm-arylalkylamine-N-acetyl transferase expression lightens coloration in ladybird beetle Harmonia axyridis and fruit fly Drosophila melanogaster, highlighting the potential usefulness of this marker for transgenesis in diverse insect taxa. PMID:23250425

  16. A visible dominant marker for insect transgenesis.

    PubMed

    Osanai-Futahashi, Mizuko; Ohde, Takahiro; Hirata, Junya; Uchino, Keiro; Futahashi, Ryo; Tamura, Toshiki; Niimi, Teruyuki; Sezutsu, Hideki

    2012-01-01

    Transgenesis of most insects currently relies on fluorescence markers. Here we establish a transformation marker system causing phenotypes visible to the naked eye due to changes in the color of melanin pigments, which are widespread in animals. Ubiquitous overexpression of arylalkylamine-N-acetyl transferase in the silkworm, Bombyx mori, changes the color of newly hatched first-instar larvae from black to a distinctive light brown color, and can be used as a molecular marker by directly connecting to baculovirus immediate early 1 gene promoter. Suppression of black pigmentation by Bm-arylalkylamine-N-acetyl transferase can be observed throughout the larval stages and in adult animals. Alternatively, overexpression in another gene, B. mori β-alanyl-dopamine synthetase (Bm-ebony), changes the larval body color of older instars, although first-instar larvae had normal dark coloration. We further show that ectopic Bm-arylalkylamine-N-acetyl transferase expression lightens coloration in ladybird beetle Harmonia axyridis and fruit fly Drosophila melanogaster, highlighting the potential usefulness of this marker for transgenesis in diverse insect taxa.

  17. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  18. Assessment of psyllid double-stranded Ribonucleic acid, RNA, off-target effects on a ladybird beetle predator

    USDA-ARS?s Scientific Manuscript database

    Development of Ribonucleic acid interference, RNAi against insect pests needs to show species target specificity so that beneficial insects remain unharmed, as many pest insects are a food source for predatory insects like lady beetles. We evaluated an RNAi product specific to Asian citrus psyllid f...

  19. Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance.

    PubMed

    Rodrigues, Agna R S; Spindola, Aline F; Torres, Jorge B; Siqueira, Herbert A A; Colares, Felipe

    2013-10-01

    Simultaneous use of biological and chemical controls is a valued and historic goal of integrated pest management, but has rarely been achieved. One explanation for this failure may be the inadequate documentation of field populations of natural enemies for insecticide tolerance or resistance because natural enemies surviving insecticide application do not create problems like resistant pest species. Therefore, this study investigated 31 populations of lady beetles (Coleoptera: Coccinellidae) regarding their susceptibility to lambda-cyhalothrin, a pyrethroid insecticide that is widely used in cotton and other crops to control lepidopteran and coleopteran pests that are not targeted as prey by lady beetles. The study focused on seven coccinellid species common in cotton fields Coleomegilla maculata De Geer, Cycloneda sanguinea (L.), Eriopis connexa Germar, Harmonia axyridis (Pallas), Hippodamia convergens Guérin-Méneville, Olla v-nigrum (Mulsant), and Brumoides foudrasi (Mulsant) and one lady beetle species [Curinus coeruleus Mulsant] from a non-cotton ecosystem for comparisons. Dose-mortality curves were estimated after topical treatment of adult lady beetles with lambda-cyhalothrin. Statistically significant variations in lady beetle susceptibility were observed between species and between populations of a given species. Seven and eighteen populations of lady beetles exhibited greater values of LD50 and LD90, respectively, than the highest recommended field rate of lambda-cyhalothrin (20g a.i./hectare≈0.2g a.i./L) for cotton fields in Brazil. Furthermore, based on LD50 values, 29 out of 30 tested populations of lady beetles exhibited ratios of relative tolerance varying from 2- to 215-fold compared to the toxicity of lambda-cyhalothrin to the boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae). Four populations of E. connexa were 10.5-37.7 times more tolerant than the most susceptible population and thus were considered to be resistant to lambda

  20. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies.

    PubMed

    Krischik, Vera; Rogers, Mary; Gupta, Garima; Varshney, Aruna

    2015-01-01

    Integrated Pest Management (IPM) is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient) /canola seed and 1.2 mg AI/corn seed) translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon) pot and 69 g AI applied to the soil under a 61 (24 in) cm diam. tree. Translocation of imidacloprid from soil (300 mg AI) to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola), where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the principles of IPM.

  1. Soil-Applied Imidacloprid Translocates to Ornamental Flowers and Reduces Survival of Adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens Lady Beetles, and Larval Danaus plexippus and Vanessa cardui Butterflies

    PubMed Central

    Krischik, Vera; Rogers, Mary; Gupta, Garima; Varshney, Aruna

    2015-01-01

    Integrated Pest Management (IPM) is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient) /canola seed and 1.2 mg AI/corn seed) translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon) pot and 69 g AI applied to the soil under a 61 (24 in) cm diam. tree. Translocation of imidacloprid from soil (300 mg AI) to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola), where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the principles of IPM

  2. Chemically mediated intraguild predator avoidance by aphid parasitoids: interspecific variability in sensitivity to semiochemical trails of ladybird predators.

    PubMed

    Nakashima, Yoshitaka; Birkett, Michael A; Pye, Barry J; Powell, Wilf

    2006-09-01

    The avoidance responses of aphid parasitoids with varying host ranges (Aphidius eadyi, Aphidius ervi, and Praon volucre) to chemical trails deposited by intraguild predatory ladybirds, Coccinella septempunctata and Adalia bipunctata, were investigated. Females of all three parasitoid species avoided leaves previously visited by C. septempunctata or A. bipunctata adults. The avoidance responses shown by the two Aphidius species were stronger to trails of C. septempunctata than to those of A. bipunctata. However, P. volucre avoided trails of both ladybird species to a similar degree. Dose responses of these three parasitoid species to the hydrocarbons n-tricosane (C23H48), n-pentacosane (C25H52), and n-heptacosane (C27H56), which are components of the trails of both C. septempunctata and A. bipunctata, were evaluated. Dual-choice bioassays indicated the following: (1) A. eadyi showed more sensitive avoidance responses to n-tricosane than did the other two parasitoid species, (2) all three species showed similar responses to n-pentacosane across a range of doses, and (3) only P. volucre showed avoidance responses to n-heptacosane. Quantitative analyses of each hydrocarbon in the trails of the two ladybird species showed that n-pentacosane and n-heptacosane occur in significantly greater amounts in C. septempunctata trails than in those of A. bipunctata. The trails of the two species also differ qualitatively in the other hydrocarbons present.

  3. Powder from cedar heartwood affects oviposition behavior in Coleomegilla maculata: a ladybird native to the Americas

    USDA-ARS?s Scientific Manuscript database

    Introduction: Coleomegilla maculata is a predatory ladybird inhabiting ecosystems in North, Central, and South America. The aim of our research is to discover efficient, low-cost materials that boost oviposition in mass-reared C. maculata fed non-natural foods. We tested the hypothesis that eastern ...

  4. Potential utilization of Artemia franciscana eggs as food for Coleomegilla maculata

    USDA-ARS?s Scientific Manuscript database

    We tested the hypothesis that Artemia franciscana Kellogg (brine shrimp, Anostraca: Artemiidae) eggs are suitable factitious, i.e., alternative, food to support the life history of a predatory ladybird beetle, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). Using progeny from a stock colo...

  5. Teaching Basic Science Environmentally.

    ERIC Educational Resources Information Center

    Busch, Phylliss

    1987-01-01

    Discusses how, where, and when to capture indoor and outdoor insects for study: Grasshoppers, Cockroaches, Houseflies, Snowfleas, Stone Flies, Scorpian Flies, Crane Flies, Gypsy Moths, Tent Caterpillars, Bagworms, Praying Mantis, Oak Leaf Skeletonizers, Mourning Cloak Butterflies, Ladybird Beetles, Maple Leaf Cutters, Woolybears. Emphasizes…

  6. Host-plant effects on larval survival of a salicin-using leaf beetle Chrysomela aeneicollis Schaeffer (Coleoptera: Chrysomelidae).

    PubMed

    Rank, Nathan Egan

    1994-04-01

    Several species of willow leaf beetles use hostplant salicin to produce a defensive secretion that consists of salicylaldehyde. Generalist arthropod predators such as ants, ladybird beetles, and spiders are repelled by this secretion. The beetle larvae produce very little secretion when they feed on willows that lack salicylates, and salicin-using beetles prefer salicylate-rich willows over salicylate-poor ones. This preference may exist because the larvae are better defended against natural enemies on salicylate-rich willows. If this is true, the larvae should survive longer on those willows in nature. However, this prediction has not been tested. I determined the larval growth and survival of Chrysomela aeneicollis (Coleoptera: Chrysomelidae) on five willow species (Salix boothi, S. drummondiana, S. geyeriana, S. lutea, and S. orestera). These species differed in their salicylate chemistries and in leaf toughness but not in water content. The water content varied among the individual plants. Larval growth of C. aeneicollis did not differ among the five species in the laboratory, but it varied among the individual plants and it was related to the water content. In the field, C. aeneicollis larvae developed equally rapidly on the salicylate-poor S. lutea and on the salicylate-rich S. orestera. Larval survival was greater on S. orestera than on S. lutea in one year (1986), but there was no difference between them during three succeeding years. In another survivorship experiment, larval survival was low on the medium-salicylate S. geyeriana, but high on the salicylate-poor S. boothi and on S. orestera. Larval survival in the field was related to the larval growth and water content that had been previously measured in the laboratory. These results showed that the predicted relationship between the host plant chemistry and larval survival did not usually exist for C. aeneicollis. One possible reason for this was that the most important natural enemies were specialist

  7. Intraguild predation and native lady beetle decline.

    PubMed

    Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild

  8. Blackmargined aphid (Monellia caryella (Fitch); Hemiptera: Aphididae) honeydew production in pecan (Carya illinoinesis (Koch)) and implications for managing the pecan aphid complex in Texas

    USDA-ARS?s Scientific Manuscript database

    Field studies of the blackmargined aphid, Monellia caryella (Fitch), were conducted on three cultivars, “Cheyenne,” “Kiowa,” and “Pawnee,” of pecan, Carya illinoinisis (Wang) K. Koch. Aphid and natural enemy (lacewings, ladybird beetles, and spiders) densities were determined twice weekly by direct...

  9. Transcriptome analysis and identification of induced genes in the response of Harmonia axyridis to cold hardiness.

    PubMed

    Tang, Bin; Liu, Xiao-Jun; Shi, Zuo-Kun; Shen, Qi-Da; Xu, Yan-Xia; Wang, Su; Zhang, Fan; Wang, Shi-Gui

    2017-06-01

    Harmonia axyridis is an important predatory lady beetle that is a natural enemy of agricultural and forestry pests. In this research, the cold hardiness induced genes and their expression changes in H. axyridis were screened and detected by the way of the transcriptome and qualitative real-time PCR under normal and low temperatures, using high-throughput transcriptome and digital gene-expression-tag technologies. We obtained a 10Gb transcriptome and an 8Mb gene expression tag pool using Illumina deep sequencing technology and RNA-Seq analysis (accession number SRX540102). Of the 46,980 non-redundant unigenes identified, 28,037 (59.7%) were matched to known genes in GenBank, 21,604 (46.0%) in Swiss-Prot, 19,482 (41.5%) in Kyoto Encyclopedia of Genes and Genomes and 13,193 (28.1%) in Gene Ontology databases. Seventy-five percent of the unigene sequences had top matches with gene sequences from Tribolium castaneum. Results indicated that 60 genes regulated the entire cold-acclimation response, and, of these, seven genes were always up-regulated and five genes always down-regulated. Further screening revealed that six cold-resistant genes, E3 ubiquitin-protein ligase, transketolase, trehalase, serine/arginine repetitive matrix protein 2, glycerol kinase and sugar transporter SWEET1-like, play key roles in the response. Expression from a number of the differentially expressed genes was confirmed with quantitative real-time PCR (HaCS_Trans). The paper attempted to identify cold-resistance response genes, and study the potential mechanism by which cold acclimation enhances the insect's cold endurance. Information on these cold-resistance response genes will improve the development of low-temperature storage technology of natural enemy insects for future use in biological control. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mountain Pine Beetle

    Treesearch

    Gene D. Amman; Mark D. McGregor; Robert E. Jr. Dolph

    1989-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a member of a group of beetles known as bark beetles: Except when adults emerge and attack new trees, the mountain pine beetle completes its life cycle under the bark. The beetle attacks and kills lodgepole, ponderosa, sugar, and western white pines. Outbreaks frequently develop in lodgepole pine stands that...

  11. Discovery and identification of a male-killing agent in the Japanese ladybird Propylea japonica (Coleoptera: Coccinellidae)

    PubMed Central

    2010-01-01

    Background Endosymbionts that manipulate the reproduction of their hosts have been reported widely in invertebrates. One such group of endosymbionts is the male-killers. To date all male-killers reported are bacterial in nature, but comprise a diverse group. Ladybirds have been described as a model system for the study of male-killing, which has been reported in multiple species from widespread geographic locations. Whilst criteria of low egg hatch-rate and female-biased progenic sex ratio have been used to identify female hosts of male-killers, variation in vertical transmission efficiency and host genetic factors may result in variation in these phenotypic indicators of male-killer presence. Molecular identification of bacteria and screening for bacterial presence provide us with a more accurate method than breeding data alone to link the presence of the bacteria to the male-killing phenotype. In addition, by identifying the bacteria responsible we may find evidence for horizontal transfer between endosymbiont hosts and can gain insight into the evolutionary origins of male-killing. Phylogenetic placement of male-killing bacteria will allow us to address the question of whether male-killing is a potential strategy for only some, or all, maternally inherited bacteria. Together, phenotypic and molecular characterisation of male-killers will allow a deeper insight into the interactions between host and endosymbiont, which ultimately may lead to an understanding of how male-killers identify and kill male-hosts. Results A male-killer was detected in the Japanese coccinellid, Propylea japonica (Thunberg) a species not previously known to harbour male-killers. Families produced by female P. japonica showed significantly female-biased sex ratios. One female produced only daughters. This male-killer trait was maternally inherited and antibiotic treatment produced a full, heritable cure. Molecular analysis identified Rickettsia to be associated with the trait in this

  12. Why do Ladybugs Smell Bad? In-vivo Quantification of Odorous Insect Kairomones with SPME and Multidimensional GC-MS-Olfactometry

    NASA Astrophysics Data System (ADS)

    Cai, Lingshuang; Koziel, Jacek A.; O'Neal, Matthew E.

    2009-05-01

    Winemakers, small fruit growers, and homeowners are concerned with noxious compounds released by multicolored Asian ladybird beetles (Harmonia axyridis, Coleoptera: Coccinellidae). New method based on headspace solid phase microextraction (HS-SPME) coupled with multidimensional gas chromatography mass spectrometry—olfactometry (MDGC-MS-O) system was developed for extraction, isolation and simultaneous identification of compounds responsible for the characteristic odor of live H. axyridis. Four methoxypyrazines (MPs) were identified in headspace volatiles of live H. axyridis as those responsible for the characteristic odor: 2, 5-dimethy1-3-methoxypyrazine (DMMP), 2-isopropy1-3-methoxypyrazine (IPMP), 2-sec-buty1-3-methoxypyrazine (SBMP), and 2-isobuty1-3-methoxypyrazine (IBMP). To the best of our knowledge this is the first report of H. axyridis releasing DMMP and the first report of this compound being a component of the H. axyridis characteristic odor. Quantification of three MPs (IPMP, SBMP and IBMP) emitted from live H. axyridis were performed using external calibration with HS-SPME and direct injections. A linear relationship (R2>0.9958 for all 3 MPs) between MS response and concentration of standard was observed over a concentration range from 0.1 ng L-1 to 0.05 μg L-1 for HS-SPME-GC-MS. The method detection limits (MDL) based on multidimensional GC-MS approach for three MPs were estimated to be between 0.020 ng L-1. to 0.022 ng L-1. This methodology is applicable for in vivo determination of odor-causing chemicals associated with emissions of volatiles from insects.

  13. Southern Pine Beetle Competitors

    Treesearch

    Fred M. Stephen

    2011-01-01

    When southern pine beetles mass attack a living pine tree, if colonization is successful the tree dies and its phloem becomes immediately available to a complex of other bark beetles and long-horned beetles, all of which, in order to reproduce, compete for the new resource. In southern pines the phloem-inhabiting guild is composed of the southern pine beetle...

  14. Jeffrey Pine Beetle

    Treesearch

    Richard H. Smith

    1971-01-01

    The Jeffrey pine beetle (Dendroctonus jeffreyi Hopk.), one of the bark beetles that kill trees by mining between the bark and the wood, is the principal insect enemy of Jeffrey pine. The beetle is of economic importance chiefly in California, where most of the Jeffrey pine grows, and is most destructive in old-growth stands in the timber-producing areas of northeastern...

  15. The Classroom Animal: Flour Beetles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1988-01-01

    Describes the flour beetle, "Tribolium confusum," and its life cycle, habitat, culturing requirements, and some possible uses of this beetle as a classroom animal. Discusses what children could learn from flour beetles. Explains how to get rid of beetles found in foods at home. (CW)

  16. Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing.

    PubMed

    Zhang, Yuhong; Wu, Hongsheng; Xie, Jiaqin; Jiang, Ruixin; Deng, Congshuang; Pang, Hong

    2015-11-19

    Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect's ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses. Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect's response to heat- and cold-stress. These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.

  17. Disruption by conophthorin of the kairomonal response of sawyer beetles to bark beetle pheromones.

    PubMed

    Morewood, W D; Simmonds, K E; Gries, R; Allison, J D; Borden, J H

    2003-09-01

    Antennally active nonhost angiosperm bark volatiles were tested for their ability to reduce the response of three common species of coniferophagous wood-boring Cerambycidae to attractant-baited multiple funnel traps in the southern interior of British Columbia. Of the nonhost volatiles tested, only conophthorin was behaviorally active, disrupting the attraction of sawyer beetles, Monochamus spp., to traps baited with the host volatiles alpha-pinene and ethanol and the bark beetle pheromones ipsenol and ipsdienol. Conophthorin did not affect the attraction of sawyer beetles to the host kairomones alpha-pinene and ethanol in the absence of bark beetle pheromones, nor did it have any behavioral effect on adults of Xylotrechus longitarsis, which were not attracted to bark beetle pheromones. These results indicate that conophthorin does not act as a general repellent for coniferophagous Cerambycidae, as it seems to do for many species of Scolytidae, but has the specific activity of disrupting the kairomonal response of sawyer beetles to bark beetle pheromones.

  18. Attraction of bark beetle predator, Thanasimus undatulus (Coleoptera: Cleridae), to pheromones of the spruce beetle and two secondary bark beetles (Coleoptera: Scolytidae)

    Treesearch

    Therese M. Poland; John H. Borden

    1997-01-01

    The bark beetle predator Thanasimus undatulus Say was captured in statistically significant numbers (total catch = 470, 713, and 137) in three field experiments using multiple-funnel traps baited with various combinations of pheromones for the spruce beetle, Dendroctonus rufipennis Kirby, and the secondary bark beetles ...

  19. Why do Ladybugs Smell Bad? In-vivo Quantification of Odorous Insect Kairomones with SPME and Multidimensional GC-MS-Olfactometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Lingshuang; Koziel, Jacek A.; O'Neal, Matthew E.

    2009-05-23

    Winemakers, small fruit growers, and homeowners are concerned with noxious compounds released by multicolored Asian ladybird beetles (Harmonia axyridis, Coleoptera: Coccinellidae). New method based on headspace solid phase microextraction (HS-SPME) coupled with multidimensional gas chromatography mass spectrometry--olfactometry (MDGC-MS-O) system was developed for extraction, isolation and simultaneous identification of compounds responsible for the characteristic odor of live H. axyridis. Four methoxypyrazines (MPs) were identified in headspace volatiles of live H. axyridis as those responsible for the characteristic odor: 2, 5-dimethy1-3-methoxypyrazine (DMMP), 2-isopropy1-3-methoxypyrazine (IPMP), 2-sec-buty1-3-methoxypyrazine (SBMP), and 2-isobuty1-3-methoxypyrazine (IBMP). To the best of our knowledge this is the first report of H.more » axyridis releasing DMMP and the first report of this compound being a component of the H. axyridis characteristic odor. Quantification of three MPs (IPMP, SBMP and IBMP) emitted from live H. axyridis were performed using external calibration with HS-SPME and direct injections. A linear relationship (R{sup 2}>0.9958 for all 3 MPs) between MS response and concentration of standard was observed over a concentration range from 0.1 ng L{sup -1} to 0.05 {mu}g L{sup -1} for HS-SPME-GC-MS. The method detection limits (MDL) based on multidimensional GC-MS approach for three MPs were estimated to be between 0.020 ng L{sup -1}. to 0.022 ng L{sup -1}. This methodology is applicable for in vivo determination of odor-causing chemicals associated with emissions of volatiles from insects.« less

  20. Dispersal of the spruce beetle, Dendroctonus rufipennis, and the engraver beetle, Ips perturbatus, in Alaska.

    Treesearch

    Richard A. Werner; Edward H. Holsten

    1997-01-01

    Mark-release-recapture experiments were performed with spruce beetles (Dendroctonus rufipennis (Kirby)) and Ips engraver beetles (Ips perturbatus (Eichhoff)) to determine distance and direction of dispersal. The recapture rate of beetles marked with fluorescent powder was extremely low. Most I. perturbatus...

  1. Beetle-to-beetle transmission and dispersal of Hymenolepis diminuta (Cestoda) eggs via the feces of Tenebrio molitor.

    PubMed

    Pappas, P W; Barley, A J

    1999-04-01

    When grain beetles (Tenebrio molitor) were fed eggs of Hymenolepis diminuta, many of the eggs passed intact through the beetles' intestines, and eggs were present in the beetles' feces for at least 48 hr after feeding. When uninfected T. molitor were fed beetle feces containing H. diminuta eggs, they became infected. Tenebrio molitor were fed on H. diminuta eggs and then placed in fresh bran for 48 hr. When uninfected T. molitor were placed in this bran, they became infected. Thus, feces from beetles that have ingested H. diminuta eggs serve as a source of eggs for other beetles, as well as a mechanism of egg dispersal.

  2. Lady beetles of South Dakota

    USDA-ARS?s Scientific Manuscript database

    Lady beetles are one of the most familiar groups of beneficial insects. Farmers and gardeners appreciate them for devouring insect pests. Both adult lady beetles and caterpillar-like juveniles eat pests. Lady beetles are recognizable by their red and orange colors that contrast with black spots and...

  3. Mountain pine beetle

    Treesearch

    Ken Gibson; Sandy Kegley; Barbara Bentz

    2009-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) is a member of a group of insects known as bark beetles. Its entire life cycle is spent beneath the bark of host trees, except when adults emerge from brood trees and fly in search of new host trees.

  4. Southern Pine Bark Beetle Guild

    Treesearch

    T. Evan Nebeker

    2011-01-01

    Dendroctonus frontalis (southern pine beetle), D. terebrans (black turpentine beetle), Ips avulsus (small southern pine engraver or four-spined engraver), I. grandicollis (five-spined engraver), and I. calligraphus (six-spined engraver) comprise the southern pine bark beetle guild. Often they are found sharing the same hosts in the Southeastern United States. They...

  5. Southern Pine Beetle

    Treesearch

    Robert C. Thatcher; Patrick J. Barry

    1982-01-01

    The southern pine beetle (Dendroctonus frontalis Zimmermann) is one of pine's most destructive insect enemies in the Southern United States, Mexico, and Central America. Because populations build rapidly to outbreak proportions and large numbers of trees are killed, this insect generates considerable concern among managers of southern pine forests. The beetle...

  6. Southern Pine Beetle Handbook: Southern Pine Beetles Can Kill Your Ornamental Pine

    Treesearch

    Robert C. Thatcher; Jack E. Coster; Thomas L. Payne

    1974-01-01

    Southern pine beetles are compulsive eaters. Each year in the South from Texas to Virginia the voracious insects conduct a movable feast across thousands of acres of pine forests. Most trees die soon after the beetles sink their teeth into them.

  7. Where Have All the Beetles Gone?

    Treesearch

    Richard A. Goyer; Kier D. Klepzig

    2002-01-01

    Without a doubt, bark beetles are the most destructive insect pests of Southern pines. Among these, the Southern pine beetle (SPB), Dendroctonus frontalis, isi the most notable and most noticed. During outbreak years, this small, but very aggresive, beetle can cause catastrophic losses.

  8. Zombie soldier beetles: Epizootics in the goldenrod soldier beetle, Chauliognathus pensylvanicus (Coleoptera: Cantharidae) caused by Eryniopsis lampyridarum (Entomophthoromycotina: Entomophthoraceae).

    PubMed

    Steinkraus, Donald C; Hajek, Ann E; Liebherr, Jim K

    2017-09-01

    Adult goldenrod soldier beetles, Chauliognathus pensylvanicus, were found infected by the fungus Eryniopsis lampyridarum (Entomophthoromycotina) in Arkansas during September - October (1996, 2001, 2015 and 2016). Living and dead infected beetles were found on flowering frost aster, Symphyotrichum pilosum, common boneset, Eupatorium perfoliatum, and Canada goldenrod, Solidago canadensis. Live and dead beetles (n=446) were collected in 1996 from S. pilosum flowers and held individually in the laboratory for determination of fungal prevalence. Of the beetles collected, 281 (63%) were males and 165 (37%) were females. A total of 90 beetles were infected with E. lampyridarum, an overall prevalence of 20.2%. Prevalence in males was 19.6% (n=55 infected/281 males total) and prevalence in females was 21.2% (n=35 infected /165 females total). Conidia were produced from 57% of the infected beetles, 23% of the infected beetles produced resting spores, and 20% contained the hyphal body stage. Infected beetles produced either conidia or resting spores but never both in the same host. Post-mortem morphological changes in the hosts due to E. lampyridarum were observed periodically for 24h. Shortly before death, by unknown mechanisms, dying infected beetles tightly clamped their mandibles into flower heads and ca. 15-22h later (between 2400 and 0700h) the fungus caused dead beetles to raise their elytra and expand their metathoracic wings. Copyright © 2017. Published by Elsevier Inc.

  9. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    USDA-ARS?s Scientific Manuscript database

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  10. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  11. Charles Darwin, beetles and phylogenetics

    NASA Astrophysics Data System (ADS)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  12. The role of beetle marks and flower colour on visitation by monkey beetles (hopliini) in the greater cape floral region, South Africa.

    PubMed

    Van Kleunen, Mark; Nänni, Ingrid; Donaldson, John S; Manning, John C

    2007-12-01

    A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers.

  13. The Dung Beetle Dance: An Orientation Behaviour?

    PubMed Central

    Baird, Emily; Byrne, Marcus J.; Smolka, Jochen; Warrant, Eric J.; Dacke, Marie

    2012-01-01

    An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic “dance,” in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path. PMID:22279572

  14. Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection.

    PubMed

    Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir

    2016-09-01

    Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores.

  15. Predators of the Southern Pine Beetle

    Treesearch

    John D. Reeve

    2011-01-01

    This chapter of the Southern Pine Beetle II reviews the overall influence of predators on southern pine beetle (SPB) population dynamics, as well as recent research on specific predators such as the clerid beetle Thanasimus dubius. Several lines of evidence suggest that predators and other natural enemies generate significant SPB mortality that contributes to outbreak...

  16. Southern Pine Beetle Behavior and Semiochemistry

    Treesearch

    Brian T. Sullivan

    2011-01-01

    The southern pine beetle (SPB) feeds both as adults and larvae within the inner bark of pine trees, which invariably die as a result of colonization. Populations of the SPB erupt periodically and produce catastrophic losses of pines, while at other times the beetles persist almost undetectably in the environment. The southern pine beetle has evolved behaviors that...

  17. Southern Pine Beetle Information System (SPBIS)

    Treesearch

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  18. Anemomenotatic orientation in beetles and scorpions

    NASA Technical Reports Server (NTRS)

    Linsenmair, K. E.

    1972-01-01

    Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli.

  19. The Mexican bean beetle (Epilachna varivestis) regurgitome and insights into beetle-borne virus specificity

    PubMed Central

    Gedling, Cassidy R.; Smith, Charlotte M.; LeMoine, Christophe M. R.

    2018-01-01

    For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant’s defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle “regurgitome” and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions. PMID:29377955

  20. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  1. A dynamical model for bark beetle outbreaks

    Treesearch

    Vlastimil Krivan; Mark Lewis; Barbara J. Bentz; Sharon Bewick; Suzanne M. Lenhart; Andrew Liebhold

    2016-01-01

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees...

  2. Toxicity of Monoterpene Structure, Diversity and Concentration to Mountain Pine Beetles, Dendroctonus ponderosae: Beetle Traits Matter More.

    PubMed

    Reid, Mary L; Sekhon, Jagdeep K; LaFramboise, Lanielle M

    2017-04-01

    A high diversity of plant defenses may be a response to herbivore diversity or may be collectively more toxic than single compounds, either of which may be important for understanding insect-plant associations. Monoterpenes in conifers are particularly diverse. We tested the fumigant toxicity of four monoterpenes, alone and in combination, to mountain pine beetles, Dendroctonus ponderosae, in the context of the beetles' individual body traits. Chemical structures of tested monoterpene hydrocarbons had modest effects on beetle survival, mass loss, water content and fat content, with (R)-(+)-limonene tending to be more toxic than (-)-α-pinene, (-)-β-pinene, and (+)-3-carene. Monoterpene diversity (all qualitative combinations of one to four monoterpenes) did not affect toxicity. Concentration (0 to 1200 ppm) of individual monoterpenes was a strong determinant of toxicity. Beetle body size and body condition index strongly and positively affected survival during monoterpene treatments. Larger beetles in better condition lost proportionally less mass during exposure, where proportion mass loss negatively affected survivorship. Toxicity was much more associated with water loss than with fat loss, suggesting that a main cost of detoxification is excretion, a process that has received little attention. These results provide insight into the determinants of beetle success in historic and novel hosts that differ in monoterpene composition and concentration. We also suggest that water availability will affect beetle success directly through their ability to tolerate detoxification as well as indirectly through host responses to drought.

  3. Common Pine Shoot Beetle

    Treesearch

    Robert A. Haack; Daniel Kucera; Steven Passoa

    1993-01-01

    The common (or larger) pine shoot beetle, Tomicus (=Blastophagus) piniperda (L.), was discovered near Cleveland, Ohio in July 1992. As of this writing, it is now in six states: Illinois, Indiana, Michigan, New York, Ohio, and Pennsylvania. Adults of the common pine shoot beetle are cylindrical and range from 3 to 5 mm in length (about the size of a match head). Their...

  4. Characterization and analysis of structural isomers of dimethyl methoxypyrazines in cork stoppers and ladybugs (Harmonia axyridis and Coccinella septempunctata).

    PubMed

    Slabizki, Petra; Legrum, Charlotte; Meusinger, Reinhard; Schmarr, Hans-Georg

    2014-10-01

    The three constitutional isomers of dimethyl-substituted methoxypyrazines: 3,5-dimethyl-2-methoxypyrazine 1; 2,5-dimethyl-3-methoxypyrazine 2; and 2,3-dimethyl-5-methoxypyrazine 3 are potent flavor compounds with similar mass spectrometric, gas chromatographic, and nuclear magnetic resonance spectroscopic behavior. Therefore, unambiguous analytical determination is critical, particularly in complex matrices. The unequivocal identification of 1-3 could be achieved by homo- and heteronuclear NMR correlation experiments. The observed mass fragmentation for 1-3 is proposed and discussed, benefitting from synthesized partially deuterated 1 and 2. On common polar and apolar stationary phases used in gas chromatography (GC) 1 and 2 show similar behavior whereas 3 can be separated. In our focus on off-flavor analysis with respect to wine aroma, 1 has been described as a "moldy" off-flavor compound in cork and 2 as a constituent in Harmonia axyridis contributing to the so-called "ladybug taint," whereas 3 has not yet been described as a constituent of wine aroma. A successful separation of 1 and 2 could be achieved on octakis-(2,3-di-O-pentyl-6-O-methyl)-γ-cyclodextrin as stationary phase in GC. Applying heart-cut multidimensional GC analysis with tandem mass spectrometric detection we could confirm the presence of 1 as a "moldy" off-flavor compound in cork. However, in the case of Harmonia axyridis, a previous identification of 2 has to be reconsidered. In our experiments we identified the constitutional isomer 1, which was also found in Coccinella septempunctata, another species discussed with respect to the "ladybug taint." The analysis of such structurally related compounds is a demonstrative example for the importance of a chromatographic separation, as mass spectrometric data by itself could not guarantee the unequivocal identification.

  5. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  6. The fossil record and macroevolutionary history of the beetles

    PubMed Central

    Smith, Dena M.; Marcot, Jonathan D.

    2015-01-01

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  7. How tight are beetle hugs? Attachment in mating leaf beetles.

    PubMed

    Voigt, Dagmar; Tsipenyuk, Alexey; Varenberg, Michael

    2017-09-01

    Similar to other leaf beetles, rosemary beetles Chrysolina americana exhibit a distinct sexual dimorphism in tarsal attachment setae. Setal discoid terminals occur only in males, and they have been previously associated with a long-term attachment to the female's back (elytra) during copulation and mate guarding. For the first time, we studied living males and females holding to female's elytra. Pull-off force measurements with a custom-made tribometer featuring a self-aligning sample holder confirmed stronger attachment to female elytra compared with glass in both males and females; corresponding to 45 and 30 times the body weight, respectively. In line with previous studies, males generated significantly higher forces than females on convex elytra and flat glass, 1.2 times and 6.8 times, respectively. Convex substrates like elytra seem to improve the attachment ability of rosemary beetles, because they can hold more strongly due to favourable shear angles of legs, tarsi and adhesive setae. A self-aligning sample holder is found to be suitable for running force measurement tests with living biological samples.

  8. How tight are beetle hugs? Attachment in mating leaf beetles

    NASA Astrophysics Data System (ADS)

    Voigt, Dagmar; Tsipenyuk, Alexey; Varenberg, Michael

    2017-09-01

    Similar to other leaf beetles, rosemary beetles Chrysolina americana exhibit a distinct sexual dimorphism in tarsal attachment setae. Setal discoid terminals occur only in males, and they have been previously associated with a long-term attachment to the female's back (elytra) during copulation and mate guarding. For the first time, we studied living males and females holding to female's elytra. Pull-off force measurements with a custom-made tribometer featuring a self-aligning sample holder confirmed stronger attachment to female elytra compared with glass in both males and females; corresponding to 45 and 30 times the body weight, respectively. In line with previous studies, males generated significantly higher forces than females on convex elytra and flat glass, 1.2 times and 6.8 times, respectively. Convex substrates like elytra seem to improve the attachment ability of rosemary beetles, because they can hold more strongly due to favourable shear angles of legs, tarsi and adhesive setae. A self-aligning sample holder is found to be suitable for running force measurement tests with living biological samples.

  9. Larval life history responses to food deprivation in three species of predatory lady beetles (Coleoptera: Coccinellidae)

    USDA-ARS?s Scientific Manuscript database

    We studied life history responses of larvae of three coccinellid species, Coleomegilla maculata (DeGeer), Hippodamia convergens Guerin-Meneville, and Harmonia axyridis (Pallas), when deprived of food for different periods of time during the fourth stadium. The coccinellid species did not differ in ...

  10. Ectoparasitic mite and fungus on an invasive lady beetle: parasite coexistence and influence on host survival

    USDA-ARS?s Scientific Manuscript database

    Harmonia axyridis is an invasive generalist predator originating in Asia, but now distributed in North and South America, Europe and southern Africa. The naturally occurring enemies (parasites, pathogens, parasitoids) that attack H. axyridis are not well-known. A parasitic mite, Coccipolipus hippoda...

  11. Mechanical Control of Southern Pine Beetle Infestations

    Treesearch

    Ronald F. Billings

    2011-01-01

    Periodic outbreaks of the southern pine beetle (SPB) may affect thousands of acres of commercial pine forests in the Southeastern United States, Mexico, and Central America. Accordingly, this species is the target of more aggressive and effective suppression programs than any other bark beetle pest in the world. The strategy for controlling the southern pine beetle...

  12. Predictors of southern pine beetle flight activity

    Treesearch

    John C. Moser; T.R. Dell

    1979-01-01

    An equation based on weather data explained differences in capture counts of pine bark beetles trapped twice weekly for an entire year at a single infestation and contributed to the udnerstanding of some aspects of beetle dynamics. The proportion of the beetles that reached the traps increased with maximum temperature and decreased with heavy rain. Production of adults...

  13. Asian longhorned beetle complicates the relationship ...

    EPA Pesticide Factsheets

    Urban foresters routinely emphasise the importance of taxonomic diversity to reduce the vulnerability of tree assemblages to invasive pests, but it is unclear to what extent diversity reduces vulnerability to polyphagous (i.e. generalist) pests. Drawing on field data from seven communities in metropolitan Cincinnati, Ohio, USA, we tested the hypothesis that communities with higher diversity would exhibit lower vulnerability to the polyphagous Asian longhorned beetle, which currently threatens the region. Based on street tree compositions and the beetle?s host preferences, Asian longhorned beetle threatened up to 35.6% of individual street trees and 47.5% of the total basal area across the study area, but we did not see clear connections between taxonomic diversity and beetle vulnerability among study communities. For example, the city of Fairfield was among the least diverse communities but had the lowest proportion of trees vulnerable to Asian longhorned beetle, whereas the city of Wyoming exhibited high diversity and high vulnerability. On the other hand, Forest Park aligned with our original hypothesis, as it was characterised by low diversity and high vulnerability. Our results demonstrate that relatively high taxonomic diversity in street tree assemblages does not necessarily lead to reduced vulnerability to a polyphagous pest. Considering the threats posed by polyphagous pests, selecting a set of relatively pest resistant trees known to perform well in urb

  14. Non-native lady beetles: a diversity of outcomes

    USDA-ARS?s Scientific Manuscript database

    Introduction: Various lady beetle species have expanded their geographic ranges following intentional or accidental introduction and subsequent establishment within new regions. In many cases, this has been accompanied by declines in native lady beetles. Long-term monitoring of lady beetle populat...

  15. Influence of lethal and sublethal exposure to clothianidin on the seven-spotted lady beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae).

    PubMed

    Jiang, Jiangong; Zhang, Zhengqun; Yu, Xin; Ma, Dicheng; Yu, Caihong; Liu, Feng; Mu, Wei

    2018-06-06

    The seven-spotted ladybird beetle, Coccinella septempunctata L., as a dominant predator of aphids, has played a crucial role in integrated pest management (IPM) strategies in agricultural ecosystems. To study the risk of insecticides to C. septempunctata, the neonicotinoid clothianidin was selected for evaluation of its influence on C. septempunctata at lethal and sublethal doses. The LR 50 (application rate causing 50% mortality) in the exposed larvae decreased from 19.94 to 5.91 g a.i. ha -1 , and the daily HQ (hazard quotient) values increased from 3.00 to 10.15, indicating potential intoxication risks. We also determined NOERs (No Observed Effect application Rates) of clothianidin on the total developmental time (10 g a.i. ha -1 ), survival (2.5 g a.i. ha -1 ) and pupation (5 g a.i. ha -1 ). Moreover, clothianidin at a NOER of 2.5 g a.i. ha -1 did not profoundly affect adult emergence, fecundity or egg hatchability. The total effect (E) assessment also showed that clothianidin at 2.5 g a.i. ha -1 was slightly harmful to C. septempunctata. These results suggested that clothianidin would impair C. septempunctata when applied at over 2.5 g a.i. ha -1 in the field. Conservation of this biological control agent in agricultural ecosystems thus requires further measures to decrease the applied dosages of clothianidin. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Management of western North American bark beetles with semiochemicals

    Treesearch

    Steven J. Seybold; Barbara J. Bentz; Christopher J. Fettig; John E. Lundquist; Robert A. Progar; Nancy E. Gillette

    2018-01-01

    We summarize the status of semiochemical-based management of the major bark beetle species in western North America. The conifer forests of this region have a long history of profound impacts by phloem-feeding bark beetles, and species such as the mountain pine beetle (Dendroctonus ponderosae) and the spruce beetle (D. rufipennis) have recently undergone epic outbreaks...

  17. Fire and bark beetle interactions

    Treesearch

    Ken Gibson; Jose F. Negron

    2009-01-01

    Bark beetle populations are at outbreak conditions in many parts of the western United States and causing extensive tree mortality. Bark beetles interact with other disturbance agents in forest ecosystems, one of the primary being fires. In order to implement appropriate post-fire management of fire-damaged ecosystems, we need a better understanding of...

  18. Forest health and bark beetles

    Treesearch

    C. J. Fettig

    2012-01-01

    In recent years, bark beetles have caused significant tree mortality in the Sierra Nevada, rivaling mortality caused by wildfire in some locations. This chapter addresses two important questions: How can managers prepare for and influence levels of bark beetle-caused tree mortality given current forest conditions and future climate uncertainties? and How would the...

  19. Quantifying beetle-macrofungal associations in a temperate biodiversity hot spot.

    PubMed

    Epps, Mary Jane; Arnold, A Elizabeth

    2018-01-29

    Beetles (Coleoptera) are often among the most abundant and diverse insects that feed on sporocarps of macrofungi, but little is known regarding their relative specialism or generalism in most communities. We surveyed >9000 sporocarps in montane hardwood forest in the Appalachian Mountains (USA) to characterize associations of mycophagous beetles and macrofungi. We used traditional metrics and network analyses to quantify relationships between sporocarp traits (mass, age, persistence, and toughness) and assemblages of adult beetles, drawing from >50 000 beetles collected over two survey years. Strict-sense specificity was rare in these associations: most beetle species were found on multiple fungal genera, and most fungi hosted multiple beetle species. Sporocarp age and fresh mass were positively associated with beetle diversity in fungi with ephemeral sporocarps (here including 12 genera of Agaricales and Russulales), but sporocarp persistence was not. In Polyporales, beetle diversity was greater in softer sporocarps than in tough or woody sporocarps. The increase of beetle diversity in aging sporocarps could not be attributed to increases in sporocarp mass or sampling point in the growing season, suggesting that age-related changes in chemistry or structure may support increasingly diverse beetle communities. Interaction networks differed as a function of sporocarp age, revealing that community-wide measures of generalism (i.e., network connectance) and evenness (i.e., variance in normalized degree) change as sporocarps mature and senesce. Beetles observed on Agaricales and Russulales with more persistent sporocarps had narrower interaction breadth (i.e., were more host-specific) than those on less persistent sporocarps, and beetles on Polyporales with tougher sporocarps had narrower interaction breadth than those on soft sporocarps. In addition to providing a large-scale evaluation of sporocarp use by adult beetles in this temperate biodiversity hot spot, this

  20. A Multiplex PCR Assay for Differentiating Coconut Rhinoceros Beetle (Coleoptera: Scarabaeidae) From Oriental Flower Beetle (Coleoptera: Scarabaeidae) in Early Life Stages and Excrement.

    PubMed

    Watanabe, S; Melzer, M J

    2017-04-01

    The coconut rhinoceros beetle, Oryctes rhinoceros (L.), is a major pest of coconut and other palm trees. An incipient coconut rhinoceros beetle population was recently discovered on the island of Oahu, Hawaii and is currently the target of a large, mutiagency eradication program. Confounding this program is the widespread presence of another scarab beetle on Oahu, the oriental flower beetle, Protaetia orientalis (Gory and Percheron 1833). Eggs, early life stages, and fecal excrement of coconut rhinoceros beetle and oriental flower beetle are morphologically indistinguishable, thereby creating uncertainty when such specimens are discovered in the field. Here, we report the development of a multiplex PCR assay targeting cytochrome oxidase I of coconut rhinoceros beetle and oriental flower beetle that can rapidly detect and distinguish between these insects. This assay also features an internal positive control to ensure DNA of sufficient quantity and quality is used in the assay, increasing its reliability and reducing the chances of false negative results. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Barbara Bentz

    2008-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is considered one of the most economically important insect species in coniferous forests of western North America. Adult beetles are capable of successfully reproducing in at least 12 North American species of Pinus (Pineacea) from southern British Columbia to northern Baja Mexico. Mountain pine beetle adults...

  2. Natural History of the Southern Pine Beetle

    Treesearch

    Fred P. Hain; Adrian J. Duehl; Micah J. Gardner; Thomas L. Payne

    2011-01-01

    The southern pine beetle (SPB) is a tree killer of southern yellow pines. All life stages—eggs, larvae, pupae, and adults—infest the inner bark or phloem tissue of the host tree. Adult beetles overcome the tree’s defenses through a mass-attack phenomenon. They are attracted to the tree by a pheromone system consisting of volatiles produced by the beetles and the host....

  3. Targeting red-headed flea beetle larvae

    USDA-ARS?s Scientific Manuscript database

    Red-headed flea beetle (RHFB), Systena frontalis, is an emerging pest of cranberry that requires significant grower investment in monitoring and repeated applications of insecticides to reduce adult populations. The adult beetles are highly mobile and consume a broad range of host plants whereas t...

  4. Modelling spruce bark beetle infestation probability

    Treesearch

    Paulius Zolubas; Jose Negron; A. Steven Munson

    2009-01-01

    Spruce bark beetle (Ips typographus L.) risk model, based on pure Norway spruce (Picea abies Karst.) stand characteristics in experimental and control plots was developed using classification and regression tree statistical technique under endemic pest population density. The most significant variable in spruce bark beetle...

  5. Acoustic characteristics of rhinoceros beetle stridulations

    USDA-ARS?s Scientific Manuscript database

    Stridulation behavior has been reported for adults and larvae of many dynastids. This report describes acoustic recordings and analyses of stridulations by larvae of two Southeastern Asia rhinoceros beetle species and by adults of the coconut rhinoceros beetle. The behavioral context of the strid...

  6. Asian Longhorned Beetle - A New Introduction, Pest Alert

    Treesearch

    USDA Forest Service, State and Private Forestry, Northeastern Area; Animal and Plant Health Inspection Service

    2008-01-01

    The Asian longhorned beetle (ALB) has been discovered attacking trees in the United States. Tunneling by beetle larvae girdles tree stems and branches. Repeated attacks lead to dieback of the tree crown and, eventually, death of the tree. ALB probably traveled to the United States inside solid wood packing material from China. The beetle has been intercepted at ports...

  7. Competitive interactions among symbiotic fungi of the southern pine beetle

    Treesearch

    Kier D. Klepzig; Richard T. Wilkens

    1997-01-01

    The southern pine beetle, a damaging pest of conifers, is intimately linked to three symbiotic fungi.Two fungi, Ceratocystiopsis ranaculosus and Entomocorticium sp. A, are transported within specialized structures (mycangia) in the beetle exoskeleton and are mutualists of the beetle.A third fungus, Ophiostoma minus, is transported externally on the beetle exoskeleton (...

  8. Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi

    Treesearch

    Richard W. Hofstetter; John Moser; Stacy Blomquist

    2014-01-01

    The role that mites play in many ecosystems is often overlooked or ignored. Within bark beetle habitats, more than 100 mite species exist and they have important impacts on community dynamics, ecosystem processes, and biodiversity of bark beetle systems. Mites use bark beetles to access and disperse among beetle-infested trees and the associations may range from...

  9. Some ecological, economic, and social consequences of bark beetle infestations

    Treesearch

    Robert A. Progar; Adris Eglitis; John E. Lundquist

    2009-01-01

    Bark beetles are powerful agents of change in dynamic forest ecosystems. Most assessments of the effects of bark beetle outbreaks have been based on negative impacts on timber production. The positive effects of bark beetle activities are much less well understood. Bark beetles perform vital functions at all levels of scale in forest ecosystems. At the landscape...

  10. Biological Control of Southern Pine Beetle

    Treesearch

    Fred M. Stephen; C. Wayne Berisford

    2011-01-01

    Exotic invasive forest insects are frequently managed through classical biological control, which involves searching for, introducing, and establishing their exotic natural enemies. Biological control of native bark beetles, including the southern pine beetle (SPB), has been primarily attempted by conserving and manipulating their natural enemies. Knowledge of the role...

  11. Book review: Methods for catching beetles

    USDA-ARS?s Scientific Manuscript database

    Beetles are the most speciose animal group and found in virtually all habitats on Earth. Methods for Catching Beetles is a comprehensive general sourcebook about where and how to collect members of this diverse group. The book makes a compelling case in its Introduction about the value of scientif...

  12. Small hive beetles survive in honeybee prisons by behavioural mimicry

    NASA Astrophysics Data System (ADS)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  13. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles.

    PubMed

    Scully, Erin D; Geib, Scott M; Carlson, John E; Tien, Ming; McKenna, Duane; Hoover, Kelli

    2014-12-12

    Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages. Through parallel transcriptome profiling of beetle- and microbial- derived mRNAs, we demonstrate that the midgut microbiome of the Asian longhorned beetle (Anoplophora glabripennis), a member of the beetle family Cerambycidae, is enriched in biosynthetic pathways for the synthesis of essential amino acids, vitamins, and sterols. Consequently, the midgut microbiome of A. glabripennis can provide essential nutrients that the beetle cannot obtain from its woody diet or synthesize itself. The beetle gut microbiota also produce their own suite of transcripts that can enhance lignin degradation, degrade hemicellulose, and ferment xylose and wood sugars. An abundance of cellulases from several glycoside hydrolase families are expressed endogenously by A. glabripennis, as well as transcripts that allow the beetle to convert microbe-synthesized essential amino acids into non-essential amino acids. A. glabripennis and its gut microbes likely collaborate to digest carbohydrates and convert released sugars and amino acid intermediates into essential nutrients otherwise lacking from their woody host plants. The nutritional provisioning capabilities of the A. glabripennis gut microbiome may contribute to the beetles' unusually broad host range. The presence of some of the same microbes in the guts of other Cerambycidae and other wood-feeding beetles suggests that partnerships with microbes may be a facilitator of evolutionary radiations in beetles, as in certain other groups of insects, allowing access to novel food sources through enhanced nutritional provisioning.

  14. Wood-boring beetles in homes

    Treesearch

    V.R. Lewis; S.J. Seybold

    2010-01-01

    Three groups of wood-boring beetles—powderpost, deathwatch, and false powderpost (Table 1)—invade and damage wood furniture as well as structural and decorative wood inside of buildings. The beetle larvae feed in and do most of the damage to wood, and when they reach the adult stage, they emerge through round exit holes, which they create by chewing through the wood...

  15. Bark beetles in a changing climate

    Treesearch

    John E. Lundquist; Barbara J. Bentz

    2009-01-01

    Over the past decade, native bark beetles (Coleoptera: Curculionidae) have killed billions of trees across millions of hectares of forest from Alaska to Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several current outbreaks occurring simultaneously across western North America are the largest and most...

  16. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.

    PubMed

    Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang

    2017-06-01

    Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.

  17. The eastern larch beetle in Alaska.

    Treesearch

    Richard A. Werner

    1986-01-01

    The eastern larch beetle (Dendroctonus simplex LeConte) exists throughout the range of tamarack (Larix laricina (Du Roi) K. Koch) in interior Alaska where it has a 1-year life cycle. Beetles overwinter as adults in the bark of the trunk below snowline in infested trees. Tamarack trees that are slow growing because of repeated...

  18. Monitoring Asian longhorned beetles in Massachusetts

    Treesearch

    Maya Nehme; Melody Keena; Aijun Zhang; Alan Sawyer; Kelli. Hoover

    2011-01-01

    An operationally effective trap to monitor the Asian longhorned beetle (Anoplophora glabripennis or ALB) has been a goal of the ALB eradication program since the first beetle was found in New York in 1996. Ground surveying is only ~20 percent effective at identifying infested trees and, although tree climbing is more effective, it is also...

  19. Bearing selection in ball-rolling dung beetles: is it constant?

    PubMed

    Baird, Emily; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J; Dacke, Marie

    2010-11-01

    Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.

  20. Ips Bark Beetles in the South

    Treesearch

    Michael D. Conner; Robert C. Wilkinson

    1983-01-01

    Ips beetles usually attack weakened, dying, or recently felled trees and fresh logging debris. Large numbers Ips may build up when natural events such as lightning storms, ice storms, tornadoes, wildfires, and droughts create large amounts of pine suitable for the breeding of these beetles. Ips populations may also build up following forestry activities, such as...

  1. Landscape dynamics of mountain pine beetles

    Treesearch

    John E. Lundquist; Robin M. Reich

    2014-01-01

    The magnitude and urgency of current mountain pine beetle outbreaks in the western United States and Canada have resulted in numerous studies of the dynamics and impacts of these insects in forested ecosystems. This paper reviews some of the aspects of the spatial dynamics and landscape ecology of this bark beetle. Landscape heterogeneity influences dispersal patterns...

  2. Green leaf volatiles disrupt responses by the spruce beetle, Dendroctonus rufipennis, and the western pine beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae) to attractant-baited traps

    Treesearch

    Therese M. Poland; J. H. Borden; A. J. Stock; L. J. Chong

    1998-01-01

    We tested the hypothesis that green leaf volatiles (GLVs) disrupt the response of spruce beetles, Dendroctonus rufipennis Kirby, and western pine beetles, Dendroctonus brevicomis LeConte, to attraetant-baited traps. Two green leaf aldehydes, hexanal and (E)-2-hexenal, reduced the number of spruce beetles captured...

  3. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    USDA-ARS?s Scientific Manuscript database

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  4. A catalogue of Lithuanian beetles (Insecta, Coleoptera)

    PubMed Central

    Tamutis, Vytautas; Tamutė, Brigita; Ferenca, Romas

    2011-01-01

    Abstract This paper presents the first complete and updated list of all 3597 species of beetles (Insecta: Coleoptera) belonging to 92 familiesfound and published in Lithuania until 2011, with comments also provided on the main systematic and nomenclatural changes since the last monographic treatment in two volumes (Pileckis and Monsevičius 1995, 1997). The introductory section provides a general overview of the main features of the territory of Lithuania, the origins and formation of the beetle fauna and their conservation, the faunistic investigations in Lithuania to date revealing the most important stages of the faunistic research process with reference to the most prominent scientists, an overview of their work, and their contribution to Lithuanian coleopteran faunal research. Species recorded in Lithuania by some authors without reliable evidence and requiring further confirmation with new data are presented in a separate list, consisting of 183 species. For the first time, analysis of errors in works of Lithuanian authors concerning data on coleopteran fauna has been conducted and these errors have been corrected. All available published and Internet sources on beetles found in Lithuania have been considered in the current study. Over 630 literature sources on species composition of beetles, their distribution in Lithuania and neighbouring countries, and taxonomic revisions and changes are reviewed and cited. An alphabetical list of these literature sources is presented. After revision of public beetle collections in Lithuania, the authors propose to remove 43 species from the beetle species list of the country on the grounds, that they have been wrongly identified or published by mistake. For reasons of clarity, 19 previously noted but later excluded species are included in the current checklist with comments. Based on faunal data from neighbouring countries, species expected to occur in Lithuania are matnioned. In total 1390 species are attributed to this

  5. Beetle Kill Wall at NREL

    ScienceCinema

    None

    2017-12-22

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  6. Male-specific sesquiterpenes from Phyllotreta flea beetles

    USDA-ARS?s Scientific Manuscript database

    Flea beetles in several genera are known to possess male-specific sesquiterpenes, at least some of which serve as aggregation pheromones that attract both sexes. In continuing research on the chemical ecology of Phyllotreta flea beetles, six new male-specific sesquiterpenes were identified, one fro...

  7. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?

    PubMed

    Parmain, G; Bouget, C; Müller, J; Horak, J; Gossner, M M; Lachat, T; Isacsson, G

    2015-02-01

    Monitoring saproxylic beetle diversity, though challenging, can help identifying relevant conservation sites or key drivers of forest biodiversity, and assessing the impact of forestry practices on biodiversity. Unfortunately, monitoring species assemblages is costly, mainly due to the time spent on identification. Excluding families which are rich in specimens and species but are difficult to identify is a frequent procedure used in ecological entomology to reduce the identification cost. The Staphylinidae (rove beetle) family is both one of the most frequently excluded and one of the most species-rich saproxylic beetle families. Using a large-scale beetle and environmental dataset from 238 beech stands across Europe, we evaluated the effects of staphylinid exclusion on results in ecological forest studies. Simplified staphylinid-excluded assemblages were found to be relevant surrogates for whole assemblages. The species richness and composition of saproxylic beetle assemblages both with and without staphylinids responded congruently to landscape, climatic and stand gradients, even when the assemblages included a high proportion of staphylinid species. At both local and regional scales, the species richness as well as the species composition of staphylinid-included and staphylinid-excluded assemblages were highly positively correlated. Ranking of sites according to their biodiversity level, which either included or excluded Staphylinidae in species richness, also gave congruent results. From our results, species assemblages omitting staphylinids can be taken as efficient surrogates for complete assemblages in large scale biodiversity monitoring studies.

  8. Impacts of silvicultural thinning treatments on beetle trap captures and tree attacks during low bark beetle populations in ponderosa pine forests of northern Arizona.

    PubMed

    Gaylord, M L; Hofstetter, R W; Wagner, M R

    2010-10-01

    Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.

  9. Low concentration of lindane plus induced attraction traps mountain pine beetle

    Treesearch

    Richard H. Smith

    1976-01-01

    Mountain pine beetles were induced to attack lodgepole pine sprayed with 0.2 percent or 0.3 percent lindane emulsion. Large numbers of beetles were killed and fell into traps at the base of the tree. The few successfully attacking beetles caused the sprayed trees to remain attractive to beetles for about two months. The incidence of attacked trees in the immediate area...

  10. Pyrearinus termitilluminans larval click beetle luciferase: active site properties, structure and function relationships and comparison with other beetle luciferases.

    PubMed

    Silva Neto, A J; Scorsato, V; Arnoldi, F G C; Viviani, V R

    2009-12-01

    Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, K(M) values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging.

  11. The Effects of Thinning on Beetles (Coleoptera: Carabidae, Cerambycidae) in Bottomland Hardwood Forests

    Treesearch

    Michael D. Warriner; T. Evan Nebeker; Theodor D. Leininger; James S. Meadows

    2002-01-01

    Abstract - The responses of two groups of beetles, ground beetles (Carabidae) and longhorned beetles (Cerambycidae), to a partial cutting technique (thinning) applied to major and minor stream bottom sites in Mississippi were examined. Species diversity of ground beetles and longhorned beetles was greater in thinned stands than unthinned stands two...

  12. Spectral information as an orientation cue in dung beetles.

    PubMed

    El Jundi, Basil; Foster, James J; Byrne, Marcus J; Baird, Emily; Dacke, Marie

    2015-11-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. © 2015 The Author(s).

  13. Interactions of Root Disease and Bark Beetles

    Treesearch

    George T. Ferrell; J. Richard Parmeter Jr.

    1989-01-01

    Associations between root diseases and bark beetles (Scolytidae) constitute some of the most serious pest complexes affecting forests in North America and elsewhere. The interactive functioning of these pests derives from the following relationships: 1) root diseases predispose trees to bark beetle infestation by lowering resistance, and perhaps...

  14. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...

  15. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...

  16. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...

  17. Cantharidin poisoning due to "Blister beetle" ingestion.

    PubMed

    Tagwireyi, D; Ball, D E; Loga, P J; Moyo, S

    2000-12-01

    Cantharidin, the active ingredient of "Spanish Fly", is contained in a number of insects collectively called blister beetles and is a well known toxin and vesicant. We report on a case of ingestion of Mylabris dicincta ("Blister beetle") in Zimbabwe by a 4 year old girl. The ingested beetles were probably mistaken for the edible Eulepida mashona. She presented with many of the classic signs and symptoms of cantharidin poisoning including haematuria and abdominal pains. This was recognised only after consultation with the drug information centre. She was managed conservatively, recovered and was discharged after 9 days. A overview of the clinical effects of cantharidin toxicity and its treatment is presented.

  18. Quantifying sources of variation in the frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle-symbiont relationships.

    Treesearch

    Brian H. Aukema; Richard A. Werner; Kirsten E. Haberkern; Barbara L. Illman; Murray K. Clayton; Kenneth F. Raffa

    2005-01-01

    The spruce beetle, Dendroctonus rufipennis (Kirby), causes landscape level mortality to mature spruce (Picea spp.) throughout western and northern North America. As with other bark beetles, this beetle is associated with a variety of fungi, whose ecological functions are largely unknown. It has been proposed that the relative...

  19. Enumerative and binomial sequential sampling plans for the multicolored Asian lady beetle (Coleoptera: Coccinellidae) in wine grapes.

    PubMed

    Galvan, T L; Burkness, E C; Hutchison, W D

    2007-06-01

    To develop a practical integrated pest management (IPM) system for the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in wine grapes, we assessed the spatial distribution of H. axyridis and developed eight sampling plans to estimate adult density or infestation level in grape clusters. We used 49 data sets collected from commercial vineyards in 2004 and 2005, in Minnesota and Wisconsin. Enumerative plans were developed using two precision levels (0.10 and 0.25); the six binomial plans reflected six unique action thresholds (3, 7, 12, 18, 22, and 31% of cluster samples infested with at least one H. axyridis). The spatial distribution of H. axyridis in wine grapes was aggregated, independent of cultivar and year, but it was more randomly distributed as mean density declined. The average sample number (ASN) for each sampling plan was determined using resampling software. For research purposes, an enumerative plan with a precision level of 0.10 (SE/X) resulted in a mean ASN of 546 clusters. For IPM applications, the enumerative plan with a precision level of 0.25 resulted in a mean ASN of 180 clusters. In contrast, the binomial plans resulted in much lower ASNs and provided high probabilities of arriving at correct "treat or no-treat" decisions, making these plans more efficient for IPM applications. For a tally threshold of one adult per cluster, the operating characteristic curves for the six action thresholds provided binomial sequential sampling plans with mean ASNs of only 19-26 clusters, and probabilities of making correct decisions between 83 and 96%. The benefits of the binomial sampling plans are discussed within the context of improving IPM programs for wine grapes.

  20. On the origin and evolutionary diversification of beetle horns

    PubMed Central

    Emlen, Douglas J.; Corley Lavine, Laura; Ewen-Campen, Ben

    2007-01-01

    Many scarab beetles produce rigid projections from the body called horns. The exaggerated sizes of these structures and the staggering diversity of their forms have impressed biologists for centuries. Recent comparative studies using DNA sequence-based phylogenies have begun to reconstruct the historical patterns of beetle horn evolution. At the same time, developmental genetic experiments have begun to elucidate how beetle horns grow and how horn growth is modulated in response to environmental variables, such as nutrition. We bring together these two perspectives to show that they converge on very similar conclusions regarding beetle evolution. Horns do not appear to be difficult structures to gain or lose, and they can diverge both dramatically and rapidly in form. Although much of this work is still preliminary, we use available information to propose a conceptual developmental model for the major trajectories of beetle horn evolution. We illustrate putative mechanisms underlying the evolutionary origin of horns and the evolution of horn location, shape, allometry, and dimorphism. PMID:17494751

  1. Experimental porcine cysticercosis using infected beetles with Taenia solium eggs.

    PubMed

    Gomez-Puerta, Luis A; Garcia, Hector H; Gonzalez, Armando E

    2018-07-01

    Beetles are intermediate hosts for human and animal parasites, and several beetle species have been shown to carry Taenia eggs. An experimental porcine cysticercosis infection model was developed using beetles (Ammophorus rubripes) infected with Taenia solium eggs and then using these beetles for oral pig challenge. A total of 18 three months-old Landrace pigs were divided in four groups. Pigs from groups 1, 2, and 3 (n = 6 pigs per group) were challenged with one, three, and six beetles infected with T. solium eggs, containing approximately 52, 156 or 312 eggs respectively. Pigs were necropsied 12 weeks after infection to assess the presence of T. solium metacestode. Porcine cysticercosis by T. solium was produced in 17 out of 18 pigs (94.4%) challenged with infected beetles, all infected pigs had viable cysts. Only one pig from group 1 was negative to the presence of cysts. The median number of metacestodes per pig in groups 1, 2, and 3 were 2 (range 0-71), 26 (range 5-33) and 40 cysts (range 4-111), respectively. Experimental porcine cysticercosis infection is consistently obtained using beetles as mechanical vectors for T. solium eggs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A continuous mass-rearing technique for the southern pine beetle (Coleoptera: Scolytidae)

    Treesearch

    J. Robert Bridges; John C. Moser

    1983-01-01

    Studying the southern pine beetle (SPB), Dendroctonus frontalis zimmermann, during endemic periods is difficult because beetle-infested trees are often hard to locate. This is especially true during the winter months. Studies that require a continuous supply of beetles are often jeopardized by a lack of beetles. During our studies of the...

  3. Phoretic symbionts of the mountain pine beetle (Dendroctonus ponderosae Hopkins)

    Treesearch

    Javier E. Mercado; Richard W. Hofstetter; Danielle M. Reboletti; Jose F. Negron

    2014-01-01

    During its life cycle, the tree-killing mountain pine beetle Dendroctonus ponderosae Hopkins interacts with phoretic organisms such as mites, nematodes, fungi, and bacteria. The types of associations these organisms establish with the mountain pine beetle (MPB) vary from mutualistic to antagonistic. The most studied of these interactions are those between beetle and...

  4. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    PubMed

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P < 0.05) affected the beetle and tree species diversity as well as the soil nutrients as shown by univariate (one-way analysis of variance (ANOVA), correlation and regression, diversity indices) and multivariate (cluster analysis, principal component analysis (PCA), detrended correspondence analysis (DCA), canonical variate analysis (CVA), permutational multivariate analysis of variance (PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern

  5. Cloning and characterization of luciferase from a Fijian luminous click beetle.

    PubMed

    Mitani, Yasuo; Futahashi, Ryo; Niwa, Kazuki; Ohba, Nobuyoshi; Ohmiya, Yoshihiro

    2013-01-01

    Luminous click beetle is distributed almost exclusively in Central and South America with a single genus in Melanesia. Among these click beetles, the description of Melanesian species has been fragmentary, and its luciferase gene and phylogenetic relation to other click beetles still remain uncertain. We collected a living luminous click beetle, Photophorus jansonii in Fiji. It emits green-yellow light from two spots on the pronotum and has no ventral luminous organ. Here, we cloned a luciferase gene from this insect by RT-PCR. The deduced amino acid sequence showed high identity of ~85% to the luciferases derived from other click beetle species. The luciferase of the Fijian click beetle was produced as a recombinant protein to characterize its biochemical properties. The Km for D-luciferin and ATP were 173 and 270 μm, respectively. The luciferase was pH-insensitive and the spectrum measured at pH 8.0 showed a peak at 559 nm, which was in the range of green-yellow light as seen in the luminous spot of the living Fijian click beetle. The Fijian click beetle luciferase was assigned to the Elateridae clade by a phylogenetic analysis, but it made a clearly different branch from Pyrophorus group examined in this study. © 2013 The American Society of Photobiology.

  6. Mountain pine beetle emergence from lodgepole pine at different elevations near Fraser, CO

    Treesearch

    J Tishmack; S.A. Mata; J.M. Schmid

    2005-01-01

    Mountain pine beetle emergence was studied at 8760 ft, 9200 ft, and 9900 ft near Fraser, CO. Beetles began emerging at 8760 ft between July 9 and July 14 while no beetles emerged at 9200 ft and only one beetle emerged at 9900 ft during the same period. Beetle emergence continued at relatively low but fluctuating rates for the next two to three weeks. Peak emergence...

  7. Guidelines for regenerating southern pine beetle spots

    Treesearch

    J.C.G. Goelz; B.L. Strom; J.P. Barnett; M.A. Sword Sayer

    2012-01-01

    Southern pine forests are of exceptional commercial and ecological importance to the United States, and the southern pine beetle is their most serious insect pest. The southern pine beetle generally kills overstory pines, causing spots of tree mortality that are unpredictable in time and space and frequently disruptive to management activities and goals. The canopy...

  8. Chirality determines pheromone activity for flour beetles

    NASA Astrophysics Data System (ADS)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  9. Endocrine control of exaggerated traits in rhinoceros beetles

    USDA-ARS?s Scientific Manuscript database

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  10. Population Structure of Mountain Pine Beetle Symbiont Leptographium longiclavatum and the Implication on the Multipartite Beetle-Fungi Relationships

    PubMed Central

    Tsui, Clement Kin-Ming; Farfan, Lina; Roe, Amanda D.; Rice, Adrianne V.; Cooke, Janice E. K.; El-Kassaby, Yousry A.; Hamelin, Richard C.

    2014-01-01

    Over 18 million ha of forests have been destroyed in the past decade in Canada by the mountain pine beetle (MPB) and its fungal symbionts. Understanding their population dynamics is critical to improving modeling of beetle epidemics and providing potential clues to predict population expansion. Leptographium longiclavatum and Grosmannia clavigera are fungal symbionts of MPB that aid the beetle to colonize and kill their pine hosts. We investigated the genetic structure and demographic expansion of L. longiclavatum in populations established within the historic distribution range and in the newly colonized regions. We identified three genetic clusters/populations that coincide with independent geographic locations. The genetic profiles of the recently established populations in northern British Columbia (BC) and Alberta suggest that they originated from central and southern BC. Approximate Bayesian Computation supports the scenario that this recent expansion represents an admixture of individuals originating from BC and the Rocky Mountains. Highly significant correlations were found among genetic distance matrices of L. longiclavatum, G. clavigera, and MPB. This highlights the concordance of demographic processes in these interacting organisms sharing a highly specialized niche and supports the hypothesis of long-term multipartite beetle-fungus co-evolutionary history and mutualistic relationships. PMID:25153489

  11. Relative abundance of the southern pine beetle associates in East Texas

    Treesearch

    John C. Moser; R. C. Thatcher; L. S. Pickard

    1971-01-01

    More than 90 species of insects were identified in bolts taken from east Texas loblolly pines infested by the southern pine beetle, Dendroctonus frontalis Zimmermann and by Ips engraver beetles (Coleoptera: scolytidae). Seasonal abundance of the associates generally paralleled that of the southern pine beetle.

  12. Seasonal abundance, arrival and emergence patterns of predaceous hister beetles (Coleoptera: Histeridae) associated with Ips engraver beetles (Coleoptera: Scolytidae) in Louisiana

    Treesearch

    William P. Shepherd; Richard A. Goyer

    2003-01-01

    The most common predaceious hister beetles (Coleoptera: Histeridae) found associated with Ips engraver beetles (Coleoptera: Scolytidae) in southern Louisiana were Platysoma attenuata LeConte, P. cylindrica (Paykull), P. parallelum (Say), and Plegaderus transversus (Say). The seasonal abundance of...

  13. Dung beetles use the Milky Way for orientation.

    PubMed

    Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J

    2013-02-18

    When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Biodiversity Loss following the Introduction of Exotic Competitors: Does Intraguild Predation Explain the Decline of Native Lady Beetles?

    PubMed Central

    Smith, Chelsea A.; Gardiner, Mary M.

    2013-01-01

    Exotic species are widely accepted as a leading cause of biodiversity decline. Lady beetles (Coccinellidae) provide an important model to study how competitor introductions impact native communities since several native coccinellids have experienced declines that coincide with the establishment and spread of exotic coccinellids. This study tested the central hypothesis that intraguild predation by exotic species has caused these declines. Using sentinel egg experiments, we quantified the extent of predation on previously-common (Hippodamia convergens) and common (Coleomegilla maculata) native coccinellid eggs versus exotic coccinellid (Harmonia axyridis) eggs in three habitats: semi-natural grassland, alfalfa, and soybean. Following the experiments quantifying egg predation, we used video surveillance to determine the composition of the predator community attacking the eggs. The extent of predation varied across habitats, and egg species. Native coccinellids often sustained greater egg predation than H. axyridis. We found no evidence that exotic coccinellids consumed coccinellid eggs in the field. Harvestmen and slugs were responsible for the greatest proportion of attacks. This research challenges the widely-accepted hypothesis that intraguild predation by exotic competitors explains the loss of native coccinellids. Although exotic coccinellids may not be a direct competitor, reduced egg predation could indirectly confer a competitive advantage to these species. A lower proportion of H. axyridis eggs removed by predators may have aided its expansion and population increase and could indirectly affect native species via exploitative or apparent competition. These results do not support the intraguild predation hypothesis for native coccinellid decline, but do bring to light the existence of complex interactions between coccinellids and the guild of generalist predators in coccinellid foraging habitats. PMID:24386383

  15. Use of acoustics to deter bark beetles from entering tree material.

    PubMed

    Aflitto, Nicholas C; Hofstetter, Richard W

    2014-12-01

    Acoustic technology is a potential tool to protect wood materials and eventually live trees from colonization by bark beetles. Bark beetles such as the southern pine beetle Dendroctonus frontalis, western pine beetle D. brevicomis and pine engraver Ips pini (Coleoptera: Curculionidae) use chemical and acoustic cues to communicate and to locate potential mates and host trees. In this study, the efficacy of sound treatments on D. frontalis, D. brevicomis and I. pini entry into tree materials was tested. Acoustic treatments significantly influenced whether beetles entered pine logs in the laboratory. Playback of artificial sounds reduced D. brevicomis entry into logs, and playback of stress call sounds reduced D. frontalis entry into logs. Sound treatments had no effect on I. pini entry into logs. The reduction in bark beetle entry into logs using particular acoustic treatments indicates that sound could be used as a viable management tool. © 2013 Society of Chemical Industry.

  16. Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response

    PubMed Central

    Rhoades, Charles C.; McCutchan, James H.; Cooper, Leigh A.; Clow, David; Detmer, Thomas M.; Briggs, Jennifer S.; Stednick, John D.; Veblen, Thomas T.; Ertz, Rachel M.; Likens, Gene E.; Lewis, William M.

    2013-01-01

    A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg⋅ha⋅y), disturbance of forests by timber harvest or violent storms causes an increase in stream nitrate concentration that typically is close to 400% of predisturbance concentrations. In contrast, no significant increase in streamwater nitrate concentrations has occurred following extensive tree mortality caused by the mountain pine beetle in Colorado. A model of nitrate release from Colorado watersheds calibrated with field data indicates that stimulation of nitrate uptake by vegetation components unaffected by beetles accounts for significant nitrate retention in beetle-infested watersheds. The combination of low atmospheric N deposition (<10 kg⋅ha⋅y), tree mortality spread over multiple years, and high compensatory capacity associated with undisturbed residual vegetation and soils explains the ability of these beetle-infested watersheds to retain nitrate despite catastrophic mortality of the dominant canopy tree species. PMID:23319612

  17. Southern Pine Beetle Ecology: Populations within Stands

    Treesearch

    Matthew P. Ayres; Sharon J. Martinson; Nicholas A. Friedenberg

    2011-01-01

    Populations of southern pine beetle (SPB) are typically substructured into local aggregations, each with tens of thousands of individual beetles. These aggregations, known as “spots” because of their appearance during aerial surveys, are the basic unit for the monitoring and management of SPB populations in forested regions. They typically have a maximum lifespan of 1...

  18. Floral Associations of Cyclocephaline Scarab Beetles

    PubMed Central

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  19. Floral associations of cyclocephaline scarab beetles.

    PubMed

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  20. Elm leaf beetle performance on ozone-fumigated elm

    Treesearch

    Jack H. Barger; Richard W. Hall; Alden M. Townsend; Alden M. Townsend

    1992-01-01

    Leaves (1986) from elm hybrids ('Pioneer', 'Homestead', '970') previously fumigated in open-top chambers with ozone or with charcoal-filtered air (CFA) were evaluated for water and nitrogen content or were fed to adult elm leaf beetles (ELB), Xanthogaleruca = (Pyrrhallta) luteola (Muller), to determine host suitability for beetle fecundity...

  1. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface.

    PubMed

    McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen

    2016-11-11

    Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.

  2. Proceedings from the Third Workshop on Genetics of Bark Beetles and Associated Microorganisms

    Treesearch

    Barbara Bentz; Anthony Cognato; Kenneth Raffa

    2007-01-01

    These proceedings provide a synopsis of the Third Workshop on Genetics of Bark Beetles and Association Microorganisms, which was held May 20-2, 2006 in Asheville, NC. Twenty- five participants from five countries attended the meeting. The proceedings are structured into four parts: Phylogenetics of Bark Beetles, Population Genetics of Bark Beetles, Bark Beetle Gene...

  3. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    PubMed

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  4. What is Next in Bark Beetle Phylogeography?

    PubMed Central

    Avtzis, Dimitrios N.; Bertheau, Coralie; Stauffer, Christian

    2012-01-01

    Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km2 of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree’s defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi) or even by reducing the resistance of host trees (blue-stain fungi). Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava). A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel techniques will provide a more detailed insight into the genome of scolytids facilitating at the same time the

  5. Losses of red-cockaded woodpecker cavity trees to southern pine beetles

    Treesearch

    Richard N. Conner; D. Craig Rudolph

    1995-01-01

    Over an 1 l-year period (1983-1993), we examined the southern pine beetle (Dendroctonus frontalis) infestation rate of single Red-cockaded Woodpecker (Picoides borealis) cavity trees on the Angelina National Forest in Texas. Southern pine beetles infested and killed 38 cavity trees during this period. Typically, within each cavity tree cluster, beetles infested only...

  6. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles

    PubMed Central

    2010-01-01

    Background In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. Results The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic

  7. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles.

    PubMed

    Nørgaard, Thomas; Dacke, Marie

    2010-07-16

    In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic. The differences in

  8. Decreases in beetle body size linked to climate change and warming temperatures.

    PubMed

    Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina

    2018-05-01

    Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The

  9. Strategies for managing rival bacterial communities: Lessons from burying beetles.

    PubMed

    Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M

    2018-03-01

    The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through

  10. Effect of larval growth conditions on adult body mass and long-distance flight endurance in a wood-boring beetle: Do smaller beetles fly better?

    PubMed

    Brown, Stav; Soroker, Victoria; Ribak, Gal

    2017-04-01

    The tropical fig borer, Batocera rufomaculata De Geer, is a large beetle that is a pest on a number of fruit trees, including fig and mango. Adults feed on the leaves and twigs and females lay their eggs under the bark of the tree. The larvae bore into the tree trunk, causing substantial damage that may lead to the collapse and death of the host tree. We studied how larval development under inferior feeding conditions (experienced during development in dying trees) affects flight endurance in the adult insect. We grew larvae either in their natural host or on sawdust enriched with stale fig tree twigs. Flight endurance of the adults was measured using a custom-built flight-mill. Beetles emerging from the natural host were significantly larger but flew shorter distances than beetles reared on less favourable substrates. There was no difference in the allometric slope of wing area with body mass between the beetles groups; however flight muscle mass scaled with total body mass with an exponent significantly lower than 1.0. Hence, smaller beetles had proportionally larger flight muscles. These findings suggest that beetles that developed smaller as a result from poor nutritional conditions in deteriorating hosts, are better equipped to fly longer distances in search of a new host tree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of an increase in population of sika deer on beetle communities in deciduous forests.

    PubMed

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2016-01-01

    The overabundance of large herbivores is now recognized as a serious ecological problem. However, the resulting ecological consequences remain poorly understood. The ecological effects of an increase in sika deer, Cervus nippon Temminck (Cervidae), on three insect groups of beetles was investigated: ground beetles (Carabidae), carrion beetles (Silphidae), and dung beetles (Scarabaeidae and Geotrupidae) on Nakanoshima Island, Hokkaido, northern Japan. We collected beetles on Nakanoshima Island (experimental site) and lakeshore areas (control site) and compared the species richness, abundance, diversity index, and community composition of beetles between the sites. Results showed that although both species diversity and abundance of carabid beetles were significantly higher at the lakeshore site, those of dung and carrion beetles were higher at the island site. It was additionally observed that abundance of larger carabid beetles was higher at the lakeshore site, whereas that of small-sized carabid beetles did not differ between the lakeshore and island sites. For dung beetles, abundance of smaller species was higher at the island site, whereas that of large species did not differ between the lakeshore and island sites. Abundance of two body sizes (small and large) of carrion beetles were both higher at the island site. Overall, the findings of this study demonstrated that an increase in deer population altered the insect assemblages at an island scale, suggesting further changes in ecosystem functions and services in this region.

  12. Invasive Bark Beetles, Forest Insect& Disease Leaflet 176

    Treesearch

    J.C. Lee; R.A. Haack; J.F. Negron; J.J. Witcosky; S.J. Seybold

    2007-01-01

    Bark beetles (Scolytidae) are among the most damaging insects in Northern Hemisphere forests, killing trees by direct feeding and by vectoring fungal pathogens. In addition to an already formidable native bark beetle complex, the number of exotic scolytids in U.S. forests has increased rapidly, with 53 known species established as of June 2007.

  13. Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor).

    PubMed

    Shea, John F

    2007-09-01

    The beetle-tapeworm life cycle provides a convenient system to study how host behaviour influences the probability of re-infection because initial and secondary infections can be tracked. The beetle, Tenebrio molitor, is infected with the tapeworm Hymenolepis diminuta when it ingests rat faeces containing tapeworm eggs, which upon hatching undergo five morphologically distinct stages while developing inside the beetle. In a series of preference trials, both individual and groups of previously infected beetles were exposed to baits of infective (faeces with eggs) and uninfective faeces. Beetles did not differ in the amount of time spent or in the number of occurrences at each bait type, suggesting that infected beetles show no preference for infective faeces. This may be a host adaptation to avoid further infection, parasite manipulation to avoid competition for host resources, or both. Further, once infected, beetles are no more or no less likely to become re-infected than uninfected beetles. An analysis of the mean and variance of infection suggests that some individuals are highly susceptible to and some are highly resistant to infection, with males being more variable than females. This could explain the higher load of cysticercoids observed in males.

  14. Nonhost angiosperm volatiles and verbenone protect individual ponderosa pines from attack by western pine beetle and red turpentine beetle (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Christopher J. Fettig; Christopher P. Dabney; Stepehen R. McKelvey; Dezene P.W. Huber

    2008-01-01

    Nonhost angiosperm volatiles (NAV) and verbenone were tested for their ability to protect individual ponderosa pines, Pinus ponderosa Dougl. ex. Laws., from attack by western pine beetle (WPB), Dendroctonus brevicomis LeConte, and red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae). A combination of (

  15. Method for continuously rearing Coccinella lady beetles (Coleoptera: Coccinellidae)

    USDA-ARS?s Scientific Manuscript database

    Coccinella novemnotata L., the ninespotted lady beetle, and Coccinella transversoguttata richardsoni Brown, the transverse lady beetle, are predatory species whose abundance has declined significantly over the last few decades in North America. An ex situ system for continuously rearing these two b...

  16. Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus

    NASA Astrophysics Data System (ADS)

    Fernández del Río, Lía; Arwin, Hans; Järrendahl, Kenneth

    2016-07-01

    The optical properties of several scarab beetles have been previously studied but few attempts have been made to compare beetles in the same genus. To determine whether there is any relation between specimens of the same genus, we have studied and classified seven species from the Chrysina genus. The polarization properties were analyzed with Mueller-matrix spectroscopic ellipsometry and the structural characteristics with optical microscopy and scanning electron microscopy. Most of the Chrysina beetles are green colored or have a metallic look (gold or silver). The results show that the green-colored beetles polarize reflected light mainly at off-specular angles. The gold-colored beetles polarize light left-handed near circular at specular reflection. The structure of the exoskeleton is a stack of layers that form a cusplike structure in the green beetles whereas the layers are parallel to the surface in the case of the gold-colored beetles. The beetle C. gloriosa is green with gold-colored stripes along the elytras and exhibits both types of effects. The results indicate that Chrysina beetles can be classified according to these two major polarization properties.

  17. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle

    PubMed Central

    Seidl, Rupert; Müller, Jörg; Hothorn, Torsten; Bässler, Claus; Heurich, Marco; Kautz, Markus

    2016-01-01

    Summary 1. Unprecedented bark beetle outbreaks have been observed for a variety of forest ecosystems recently, and damage is expected to further intensify as a consequence of climate change. In Central Europe, the response of ecosystem management to increasing infestation risk has hitherto focused largely on the stand level, while the contingency of outbreak dynamics on large-scale drivers remains poorly understood. 2. To investigate how factors beyond the local scale contribute to the infestation risk from Ips typographus (Col., Scol.), we analysed drivers across seven orders of magnitude in scale (from 103 to 1010 m2) over a 23-year period, focusing on the Bavarian Forest National Park. Time-discrete hazard modelling was used to account for local factors and temporal dependencies. Subsequently, beta regression was applied to determine the influence of regional and landscape factors, the latter characterized by means of graph theory. 3. We found that in addition to stand variables, large-scale drivers also strongly influenced bark beetle infestation risk. Outbreak waves were closely related to landscape-scale connectedness of both host and beetle populations as well as to regional bark beetle infestation levels. Furthermore, regional summer drought was identified as an important trigger for infestation pulses. Large-scale synchrony and connectivity are thus key drivers of the recently observed bark beetle outbreak in the area. 4. Synthesis and applications. Our multiscale analysis provides evidence that the risk for biotic disturbances is highly dependent on drivers beyond the control of traditional stand-scale management. This finding highlights the importance of fostering the ability to cope with and recover from disturbance. It furthermore suggests that a stronger consideration of landscape and regional processes is needed to address changing disturbance regimes in ecosystem management. PMID:27041769

  18. Effect of trap type, trap position, time of year, and beetle density on captures of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae).

    Treesearch

    James Hanula; Michael Ulyshen; Scott Horn`

    2011-01-01

    The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), and its fungal symbiont Raffaellea lauricola Harrington, Fraedrich, and Aghayeva are responsible for widespread redbay, Persea borbonia (L.) Spreng., mortality in the southern United States. Effective traps and lures are needed to monitor spread of the beetle and...

  19. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest

    PubMed Central

    de Novais, Samuel Matos Antunes; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; de Faria, Maurício Lopes; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969

  20. Chemical ecology and lure development for redbay ambrosia beetle

    USDA-ARS?s Scientific Manuscript database

    The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the U.S., currently established in nine southeastern states. Female beetles are the primary vectors of a pathogenic fungus (Raffaelea lauricola) that causes laurel wilt. This lethal vascular dise...

  1. Inter- and intra-guild interactions related to aphids in nettle (Urtica dioica L.) strips closed to field crops.

    PubMed

    Alhmedi, A; Haubruge, E; Bodson, B; Francis, F

    2006-01-01

    A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species and the differential pesticide application (treated plot and control). Insects were visually observed every week during all the cultivation season. Two main families of aphidophagous predators were found in all field crops and nettle, the Coccinellidae and Syrphidae. The diversity of the aphidophagous predators was shown to be higher on nettle than in field crops, particularly the Chrysopidae, the Anthocoridae and the Miridae. However, a striking difference of ladybird abundance was observed according to the aphid host plant. In one side, Coccinella septempunctata was much more abundant on Acyrthosiphon pisum infested green pea than on the other host plant species. At the opposite, higher occurrence of Harmonia axyridis was observed on the aphid infested nettle plants than on the crop plants. In particular, none of H. axyridis was found in wheat crop. Also, more than only a significant positive correlation between predator and aphid abundance, specialised relations between particular aphid species and some so-called generalist predators was determined in the fields. Finally, intraguild interactions between the aphidophagous predators was assessed and shown that only a significant negative correlation between Episyrphus balteatus and H. axyridis related to the nettle aphid, Micrlophium carnosum, was observed. The relative distribution of the ladybirds, namely C. septempunctata and H. axyridis according to the host plant, nettle strips and crop plots was discussed in relation to

  2. Ophiostomatoid fungi associated with conifer-infesting beetles and their phoretic mites in Yunnan, China

    PubMed Central

    Chang, Runlei; Duong, Tuan A.; Taerum, Stephen J.; Wingfield, Michael J.; Zhou, Xudong; de Beer, Z. Wilhelm

    2017-01-01

    Abstract The Ophiostomatales is an Ascomycete order of fungi that accommodates several tree pathogens and many species that degrade wood. These fungi are commonly vectored by Scolytine bark and ambrosia beetles. In recent years it has also been shown that hyperphoretic mites on these beetles can vector some Ophiostomatales. Little is known regarding the Ophiostomatales in China and we have consequently explored the diversity of these fungi associated with conifer-infesting beetles and mites in Yunnan province. Galleries and beetles were collected for 17 beetle species, while 13 mite species were obtained from six of these beetle species. Collectively, 340 fungal isolates were obtained, 45 from beetles, 184 from mites, 56 from galleries and 55 isolates where the specific niche was not clear. DNA sequences for five gene regions (ITS, LSU, BT, EF, and CAL) were determined for fungal isolates representing different morphological groups. Phylogenetic analyses confirmed the presence of 19 fungal taxa, including five novel species described here as Ophiostoma acarorum sp. nov., Ophiostoma brevipilosi sp. nov., Graphilbum kesiyae sp. nov., Graphilbum puerense sp. nov., and Leptographium ningerense sp. nov. Ophiostoma ips was the most frequently isolated species, representing approximately 31% of all isolates. Six of 19 taxa were present on mites, beetles and in the galleries of the beetles, while three species were found on mites and galleries. Two species were found only on mites and one species only on a beetle. Although the numbers of beetles and mites were insufficient to provide statistical inferences, this study confirmed that mites are important vectors of the Ophiostomatales in China. We hypothesize that these mites are most likely responsible for horizontal transfer of fungal species between galleries of different beetle species. The fact that half of the fungal species found were new to science, suggests that the forests of east Asia include many undescribed

  3. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle.

    PubMed

    Immonen, Esa-Ville; Dacke, Marie; Heinze, Stanley; El Jundi, Basil

    2017-06-01

    To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular. © 2017 Wiley Periodicals, Inc.

  4. User's guide to the Douglas-fir beetle impact model

    Treesearch

    Michael A. Marsden; Bov B. Eav; Matthew K. Thompson

    1993-01-01

    Douglas-fir beetle (Dendroctonus pseudotsugae Hopk.) occurs throughout the range of its principal host, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). At epidemic levels, the beetle causes considerable mortality in large-diameter Douglas-fir trees. Wind storms, drought, fire, and other factors have been reported as precedent...

  5. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    PubMed

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado

  6. Influences of Different Large Mammalian Fauna on Dung Beetle Diversity in Beech Forests

    PubMed Central

    Enari, Hiroto; Koike, Shinsuke; Sakamaki, Haruka

    2013-01-01

    This paper focuses on biological relationships between mammalian species richness and the community structure of dung beetles in cool-temperate forests in the northernmost part of mainland Japan. The composition of beetle assemblages was evaluated at 3 sites in undisturbed beech forests with different mammalian fauna. In spring and summer 2009, beetles were collected at each site using pitfall traps baited with feces from Japanese macaques, Macaca fuscata Blyth (Primates: Cercopithecidae); Asiatic black bears, Ursus thibetanus Cuvier (Carnivora: Ursidae); Japanese serows, Capricornis crispus Temminck (Artiodactyla: Bovidae); and cattle. In the present study, 1,862 dung beetles representing 14 species were collected, and most dung beetles possessed the ecological characteristic of selecting specific mammalian feces. The present findings indicated that although species diversity in dung beetle assemblages was not necessarily positively correlated with mammalian species richness in cool-temperate forests, the absence of the macaque population directly resulted in the marked reduction of the beetle abundance, with the loss of the most frequent species, Aphodius eccoptus Bates (Coleoptera: Scarabaeidae) during spring. PMID:23909510

  7. Discordant phylogenies suggest repeated host shifts in the Fusarium–Euwallacea ambrosia beetle mutualism

    USDA-ARS?s Scientific Manuscript database

    The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known independent evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symb...

  8. Cannibalism in invasive, native and biocontrol populations of the harlequin ladybird.

    PubMed

    Tayeh, Ashraf; Estoup, Arnaud; Lombaert, Eric; Guillemaud, Thomas; Kirichenko, Natalia; Lawson-Handley, Lori; De Clercq, Patrick; Facon, Benoît

    2014-02-05

    Cannibalism is widespread in both vertebrates and invertebrates but its extent is variable between and within species. Cannibalism depends on population density and nutritional conditions, and could be beneficial during colonisation of new environments. Empirical studies are needed to determine whether this trait might facilitate invasion of a new area in natural systems. We investigated whether the propensity for cannibalism in H. axyridis differs both between native and invasive populations and between invasive populations from the core and from the front of the invasive area in Western Europe. We also compared the propensity for cannibalism of these natural populations with that of laboratory-reared biocontrol populations. We measured the cannibalism rates of eggs by first instar larvae and adult females at two different individual densities of ladybirds from three types of population (invasive, native and biocontrol), in laboratory-controlled conditions. Cannibalism was significantly greater in larvae from invasive populations compared to native or biocontrol populations, but there was no difference in cannibalism rates between populations from the core or front of the invaded range. Cannibalism was significantly lower in larvae from biocontrol populations compared to wild (invasive and native) populations. No differences in cannibalism rates of adult females were found between any populations. While high population density significantly increased cannibalism in both larvae and adults, the norm of reaction of cannibalism to individual density did not change significantly during the invasion and/or laboratory rearing processes. This study is the first to provide evidence for a higher propensity for cannibalism in invasive populations compared to native ones. Our experiments also shed light on the difference in cannibalism evolution with respect to life stages. However, we are still at an early stage in understanding the underlying mechanisms and several

  9. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    PubMed

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to

  10. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    PubMed

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  11. Lack of nucleotide variability in a beetle pest with extreme inbreeding.

    PubMed

    Andreev, D; Breilid, H; Kirkendall, L; Brun, L O; ffrench-Constant, R H

    1998-05-01

    The coffee berry borer beetle Hypothenemus hampei (Ferrari) (Curculionidae: Scolytinae) is the major insect pest of coffee and has spread to most of the coffee-growing countries of the world. This beetle also displays an unusual life cycle, with regular sibling mating. This regular inbreeding and the population bottlenecks occurring on colonization of new regions should lead to low levels of genetic diversity. We were therefore interested in determining the level of nucleotide variation in nuclear and mitochondrial genomes of this beetle worldwide. Here we show that two nuclear loci (Resistance to dieldrin and ITS2) are completely invariant, whereas some variability is maintained at a mitochondrial locus (COI), probably corresponding to a higher mutation rate in the mitochondrial genome. Phylogenetic analysis of the mitochondrial data shows only two clades of beetle haplotypes outside of Kenya, the proposed origin of the species. These data confirm that inbreeding greatly reduces nucleotide variation and suggest the recent global spread of only two inbreeding lines of this bark beetle.

  12. Semiochemical sabotage: behavioral chemicals for protection of western conifers from bark beetles

    Treesearch

    Nancy. E. Gillette; A. Steve Munson

    2009-01-01

    The discovery and elucidation of volatile behavioral chemicals used by bark beetles to locate hosts and mates has revealed a rich potential for humans to sabotage beetle host-finding and reproduction. Here, we present a description of currently available semiochemical methods for use in monitoring and controlling bark beetle pests in western conifer forests. Delivery...

  13. Beetles, Biofuel, and Coffee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  14. Beetles, Biofuel, and Coffee

    ScienceCinema

    Ceja-Navarro, Javier

    2018-01-16

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  15. Red List of beetles of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Mahler, V.; Suikat, R.; Aßmann, Th.

    1996-10-01

    As no data on beetles in the Wadden Sea area are available from The Netherlands, the trilateral status of threat only refers to the Danish and German part of the Wadden Sea. In this area, in total, 238 species of beetles are threatened in at least one subregion. Of these, 189 species are threatened in the entire area and are therefore placed on the trilateral Red List. 4 species are (probably) extinct in the entire Wadden Sea area. The status of 24 species of beetles is (probably) critical, 46 species are (probably) endangered, the status of 86 species is (probably) vulnerable and of 29 species (probably) susceptible.

  16. Distance and Sex Determine Host Plant Choice by Herbivorous Beetles

    PubMed Central

    Ballhorn, Daniel J.; Kautz, Stefanie; Heil, Martin

    2013-01-01

    Background Plants respond to herbivore damage with the release of volatile organic compounds (VOCs). This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? Methodology We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis) when facing lima bean plants (Fabaceae: Phaseolus lunatus) with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. Conclusion Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a

  17. Mountain pine beetle attack in ponderosa pine: Comparing methods for rating susceptibility

    Treesearch

    David C. Chojnacky; Barbara J. Bentz; Jesse A. Logan

    2000-01-01

    Two empirical methods for rating susceptibility of mountain pine beetle attack in ponderosa pine were evaluated. The methods were compared to stand data modeled to objectively rate each sampled stand for susceptibly to bark-beetle attack. Data on bark-beetle attacks, from a survey of 45 sites throughout the Colorado Plateau, were modeled using logistic regression to...

  18. Effects of Japanese beetle (Coleoptera: Scarabaeidae) and silk clipping in field corn.

    PubMed

    Steckel, Sandy; Stewart, S D; Tindall, K V

    2013-10-01

    Japanese beetle (Popillia japonica Newman) is an emerging silk-feeding insect found in fields in the lower Corn Belt and Midsouthern United States. Studies were conducted in 2010 and 2011 to evaluate how silk clipping in corn affects pollination and yield parameters. Manually clipping silks once daily had modest effects on yield parameters. Sustained clipping by either manually clipping silks three times per day or by caging Japanese beetles onto ears affected total kernel weight if it occurred during early silking (R1 growth stage). Manually clipping silks three times per day for the first 5 d of silking affected the number of kernels per ear, total kernel weight, and the weight of individual kernels. Caged beetles fed on silks and, depending on the number of beetles caged per ear, reduced the number of kernels per ear. Caging eight beetles per ear significantly reduced total kernel weight compared with noninfested ears. Drought stress before anthesis appeared to magnify the impact of silk clipping by Japanese beetles. There was evidence of some compensation for reduced pollination by increasing the size of pollinated kernels within the ear. Our results showed that it requires sustained silk clipping during the first week of silking to have substantial impacts on pollination and yield parameters, at least under good growing conditions. Some states recommend treating for Japanese beetle when three Japanese beetles per ear are found, silks are clipped to < 13 mm, and pollination is < 50% complete, and that recommendation appears to be adequate.

  19. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem.

    PubMed

    Buotte, Polly C; Hicke, Jeffrey A; Preisler, Haiganoush K; Abatzoglou, John T; Raffa, Kenneth F; Logan, Jesse A

    2016-12-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by

  20. Influence of predators and parisitoids on bark beetle productivity

    Treesearch

    Jan Weslien

    1991-01-01

    In an earlier field experiment, natural enemies of the bark beetle, Ips typographus (L) were estimated to have reduced bark beetle productivity by more than 80 percent. To test this hypothesis, spruce logs (Picea abies) were placed in the forest in the spring, prior to commencement of flight by I. typographus....

  1. Geographic variation in prey preference in bark beetle predators

    Treesearch

    John D. Reeve; Brian L. Strom; Lynne K. Rieske; Bruce D. Ayers; Arnaud Costa

    2009-01-01

    1. Bark beetles and their predators are useful systems for addressing questions concerning diet breadth and prey preference in arthropod natural enemies. These predators use bark beetle pheromones to locate their prey, and the response todifferent pheromones is a measure of prey preference. 2. Trapping experiments were conducted to examine geographic...

  2. Adult cannibalism in an oligophagous herbivore, the Colorado potato beetle.

    PubMed

    Booth, Everett; Alyokhin, Andrei; Pinatti, Sarah

    2017-04-01

    Cannibalism, or intraspecific predation, can play a major role in changing individual fitness and population processes. In insects, cannibalism frequently occurs across life stages, with cannibals consuming a smaller or more vulnerable stage. Predation of adult insects on one another is considered to be uncommon. We investigated adult cannibalism in the Colorado potato beetle, Leptinotarsa decemlineata (Say), which is an oligophagous herbivore specializing on plants in family Solanaceae, and an important agricultural pest. Under laboratory conditions, starvation and crowding encouraged teneral adults to feed upon each other, which reduced their weight loss during the period of starvation. However, pupae were attacked and consumed before adults. Injured beetles had a higher probability of being cannibalized than intact beetles. Males were more frequently attacked than females, but that appeared to be a function of their smaller size rather than other gender-specific traits. Cannibalizing eggs at a larval stage did not affect beetle propensity to cannibalize adults at an adult stage. When given a choice between conspecific adults and mealworms, the beetles preferred to eat conspecifics. Cannibalistic behavior, including adult cannibalism, could be important for population persistence in this species. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  3. Ploy and counterploy in predator-prey interactions: Orb-weaving spiders versus bombardier beetles*

    PubMed Central

    Eisner, Thomas; Dean, Jeffrey

    1976-01-01

    Bombardier beetles (Brachinus spp.) offered to orb-weaving spiders are either captured or lost, depending on the attack strategy of the spider. Nephila clavipes grasps a beetle directly and attempts to bite it outright, but is repelled by the beetle's defensive spray. As the spider recovers from the spray, the beetle makes its escape from the web. Argiope first imprisons the beetle by wrapping it delicately in silk, without causing it to spray. When the spider then proceeds to bite, the wrapping protects it against the full effects of the spray. The wrapping strategy may be generally effective against chemically protected insects, and it is suggested that this may be one of its principal adaptive justifications. Images PMID:16592308

  4. The artificial beetle, or a brief manifesto for engineered biomimicry

    NASA Astrophysics Data System (ADS)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  5. Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae).

    PubMed

    Johnson, J A; Valero, K A; Wang, S; Tang, J

    2004-12-01

    While developing radio frequency heat treatments for dried fruits and nuts, we used a heating block system developed by Washington State University to identify the most heat-tolerant life stage of red flour beetle, Tribolium castaneum (Herbst), and to determine its thermal death kinetics. Using a heating rate of 15 degrees C/min to approximate the rapid heating of radio frequency treatments, the relative heat tolerance of red flour beetle stages was found to be older larvae > pupae and adults > eggs and younger larvae. Lethal exposure times for temperatures of 48, 50, and 52 degrees C for the most heat-tolerant larval stage were estimated using a 0.5th order kinetic model. Exposures needed for 95% mortality at 48 degrees C were too long to be practical (67 min), but increasing treatment temperatures to 50 and 52 degrees C resulted in more useful exposure times of 8 and 1.3 min, respectively. Red flour beetle was more sensitive to changes in treatment temperature than previously studied moth species, resulting in red flour beetle being the most heat-tolerant species at 48 degrees C, but navel orangeworm, Amyelois transitella (Walker), being most heat tolerant at 50 and 52 degrees C. Consequently, efficacious treatments for navel orangeworm at 50-52 degrees C also would control red flour beetle.

  6. Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae).

    PubMed

    Izzo, Victor M; Chen, Yolanda H; Schoville, Sean D; Wang, Cong; Hawthorne, David J

    2018-04-02

    Colorado potato beetle (Leptinotarsa decemlineata Say [Coleoptera: Chrysomelidae]) is a pest of potato throughout the Northern Hemisphere, but little is known about the beetle's origins as a pest. We sampled the beetle from uncultivated Solanum host plants in Mexico, and from pest and non-pest populations in the United States and used mitochondrial DNA and nuclear loci to examine three hypotheses on the origin of the pest lineages: 1) the pest beetles originated from Mexican populations, 2) they descended from hybridization between previously divergent populations, or 3) they descended from populations that are native to the Plains states in the United States. Mitochondrial haplotypes of non-pest populations from Mexico and Arizona differed substantially from beetles collected from the southern plains and potato fields in the United States, indicating that beetles from Mexico and Arizona did not contribute to founding the pest lineages. Similar results were observed for AFLP and microsatellite data . In contrast, non-pest populations from the states of Colorado, Kansas, Nebraska, New Mexico, and Texas were genetically similar to U.S. pest populations, indicating that they contributed to the founding of the pest lineages. Most of the pest populations do not show a significant reduction in genetic diversity compared to the plains populations in the United States. We conclude that genetically heterogeneous beetle populations expanded onto potato from native Solanum hosts. This mode of host range expansion may have contributed to the abundant genetic diversity of contemporary populations, perhaps contributing to the rapid evolution of climate tolerance, host range, and insecticide resistance.

  7. Technique for Rearing Mite-Free Southern Pine Beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), Adults

    Treesearch

    John C. Moser; J. Robert Bridges

    1983-01-01

    Southern pine beetles can be reared free of phoretic mites from naturally infested bark if the bark is removed from the tree and air dried. Bark removal does not reduce the number of beetles that emerge. On the average fewer than 1% of the beetles emerging from removed bark carried one or fewer mites, and 85% of the beetles emerging from attacked bard carried one or...

  8. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  9. Effects of bark beetle-caused tree mortality on wildfire

    Treesearch

    Jeffrey A Hicke; Morris C. Johnson; Jane L. Hayes; Haiganoush K. Preisler

    2012-01-01

    Millions of trees killed by bark beetles in western North America have raised concerns about subsequent wildfire, but studies have reported a range of conclusions, often seemingly contradictory, about effects on fuels and wildfire. In this study, we reviewed and synthesized the published literature on modifications to fuels and fire characteristics following beetle-...

  10. Quaternary beetle research: the state of the art

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.

    2006-08-01

    Quaternary beetle research has progressed in a variety of ways during the last decade. New kinds of data are being extracted from the fossil specimens themselves, such as ancient DNA and stable isotopes. The ancient DNA studies hold the promise of proving new insights on the stability of beetle genotypes. The study of stable isotopes of H and O from fossil beetle chitin holds the promise of providing an independent proxy for the reconstruction of temperature and precipitation. The discipline is also expanding into previously unstudied regions, such as Australia, New Zealand, and northern Asia. Along with the new study regions, new schools of thought are also forming in the discipline, challenging old research paradigms. This is a necessary step forward for the discipline, as it grows and develops in the 21st Century.

  11. Antibiotic-producing bacteria from stag beetle mycangia.

    PubMed

    Miyashita, Atsushi; Hirai, Yuuki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-02-01

    The search for new antibiotics or antifungal agents is crucial for the chemotherapies of infectious diseases. The limited resource of soil bacteria makes it difficult to discover such new drug candidate. We, therefore, focused on another bacterial resource than soil bacteria, the microbial flora of insect species. In the present study, we isolated 40 strains of bacteria and fungi from the mycangia of three species of stag beetle, Dorcus hopei binodulosus, Dorcus rectus, and Dorcus titanus pilifer. We identified those species with their ribosomal DNA sequences, and revealed that Klebsiella spp. are the most frequent symbiont in the stag beetle mycangia. We examined whether these microorganisms produce antibiotics against a Gram-negative bacterium, Escherichia coli, a Gram-positive bacterium, Staphylococcus aureus, or a fungus, Cryptococcus neoformans. Culture supernatants from 33, 29, or 18 strains showed antimicrobial activity against E. coli, S. aureus, or C. neoformans, respectively. These findings suggest that bacteria present in the mycangia of stag beetles are useful resources for screening novel antibiotics.

  12. Field test of lindane against overwintering broods of the western pine beetle

    Treesearch

    Robert L. Lyon; Kenneth M. Swain

    1968-01-01

    The insecticide lindane, applied on bark any time of the year, can effectively destroy broods of the western pine beetle. It may also be effective the year round on the mountain pine beetle, the California five-spined ips, and probably other California species of bark beetles. In tests on the Sierra National Forest, lindane sprays formulated at 1.5 percent...

  13. Intercrop movement of convergent lady beetle, Hippodamia convergens (Coleoptera: Coccinellidae), between adjacent cotton and alfalfa.

    PubMed

    Bastola, Anup; Parajulee, Megha N; Porter, R Patrick; Shrestha, Ram B; Chen, Fa-Jun; Carroll, Stanley C

    2016-02-01

    A 2-year study was conducted to characterize the intercrop movement of convergent lady beetle, Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinellidae) between adjacent cotton and alfalfa. A dual protein-marking method was used to assess the intercrop movement of the lady beetles in each crop. In turns field collected lady beetles in each crop were assayed by protein specific ELISA to quantify the movement of beetles between the crops. Results indicated that a high percentage of convergent lady beetles caught in cotton (46% in 2008; 56% in 2009) and alfalfa (46% in 2008; 71% in 2009) contained a protein mark, thus indicating that convergent lady beetle movement was largely bidirectional between the adjacent crops. Although at a much lower proportion, lady beetles also showed unidirectional movement from cotton to alfalfa (5% in 2008 and 6% in 2009) and from alfalfa to cotton (9% in 2008 and 14% in 2009). The season-long bidirectional movement exhibited by the beetles was significantly higher in alfalfa than cotton during both years of the study. The total influx of lady beetles (bidirectional and unidirectional combined) was significantly higher in alfalfa compared with that in cotton for both years. While convergent lady beetles moved between adjacent cotton and alfalfa, they were more attracted to alfalfa when cotton was not flowering and/or when alfalfa offered more opportunities for prey. This study offers much needed information on intercrop movement of the convergent lady beetle that should facilitate integrated pest management decisions in cotton utilizing conservation biological control. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  14. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the Southern Pine Beetle Prevention Program

    Treesearch

    John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie

    2015-01-01

    Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....

  15. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    PubMed

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  16. Bark Beetle-Fungal Symbiosis: Context Dependency in Complex Associations

    Treesearch

    Kier D. Klepzig; D.L. Six

    2004-01-01

    Recent thinking in symbiosis research has emphasized a holistic consideration of these complex interactions. Bark beetles and their associated microbes are one group which has previously not been addressed in this manner. We review the study of symbiotic interactions among bark beetles and microbes in light of this thinking. We describe the considerable progress...

  17. Faecal mimicry by seeds ensures dispersal by dung beetles.

    PubMed

    Midgley, Jeremy J; White, Joseph D M; Johnson, Steven D; Bronner, Gary N

    2015-10-05

    The large brown, round, strongly scented seeds of Ceratocaryum argenteum (Restionaceae) emit many volatiles found to be present in herbivore dung. These seeds attract dung beetles that roll and bury them. As the seeds are hard and offer no reward to the dung beetles, this is a remarkable example of deception in plant seed dispersal.

  18. Interactions among the mountain pine beetle, fires, and fuels

    Treesearch

    Michael J. Jenkins; Justin B. Runyon; Christopher J. Fettig; Wesley G. Page; Barbara J. Bentz

    2014-01-01

    Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with...

  19. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia.

    PubMed

    Chung, A Y; Eggleton, P; Speight, M R; Hammond, P M; Chey, V K

    2000-12-01

    The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.

  20. Checklist of leaf beetles (Coleoptera: Chrysomelidae) from the state of Morelos, Mexico.

    PubMed

    Niño-Maldonado, Santiago; Sánchez-Reyes, Uriel Jeshua; Clark, Shawn M; Toledo-Hernández, Victor Hugo; Corona-López, Angélica María; Jones, Robert W

    2016-03-07

    We record 116 genera and 366 species of Chrysomelidae from the state of Morelos, Mexico. This represents an increase of 9.3% in the species richness of these beetles for the state. Also, Morelos is currently the third most diverse state in leaf beetles within Mexico, with 16.78% of total species recorded for the country. The most diverse genera were Calligrapha, Disonycha, Blepharida, Leptinotarsa, Cryptocephalus, Systena, Alagoasa, Diabrotica and Pachybrachis, each with more than eight species. Most of these genera contain large, showy beetles. When the chrysomelid fauna is more fully understood, some of the genera of tiny beetles will likely prove to be more diverse.

  1. Quantifying Beetle-Mediated Effects on Gas Fluxes from Dung Pats

    PubMed Central

    Penttilä, Atte; Slade, Eleanor M.; Simojoki, Asko; Riutta, Terhi; Minkkinen, Kari; Roslin, Tomas

    2013-01-01

    Agriculture is one of the largest contributors of the anthropogenic greenhouse gases (GHGs) responsible for global warming. Measurements of gas fluxes from dung pats suggest that dung is a source of GHGs, but whether these emissions are modified by arthropods has not been studied. A closed chamber system was used to measure the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from dung pats with and without dung beetles on a grass sward. The presence of dung beetles significantly affected the fluxes of GHGs from dung pats. Most importantly, fresh dung pats emitted higher amounts of CO2 and lower amounts of CH4 per day in the presence than absence of beetles. Emissions of N2O showed a distinct peak three weeks after the start of the experiment – a pattern detected only in the presence of beetles. When summed over the main grazing season (June–July), total emissions of CH4 proved significantly lower, and total emissions of N2O significantly higher in the presence than absence of beetles. While clearly conditional on the experimental conditions, the patterns observed here reveal a potential impact of dung beetles on gas fluxes realized at a small spatial scale, and thereby suggest that arthropods may have an overall effect on gas fluxes from agriculture. Dissecting the exact mechanisms behind these effects, mapping out the range of conditions under which they occur, and quantifying effect sizes under variable environmental conditions emerge as key priorities for further research. PMID:23940758

  2. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera: Tenebrionidae) Beetles from Iran.

    PubMed

    Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza

    2017-06-01

    Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010-2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12-14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97-100% with similar sequences from GenBank database. Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations.

  3. Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, Howard S.; LeBrun, Roger A.; Heyer, Klaus; Zhioua, Elyes

    2002-01-01

    The potential for nontarget effects of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin, when used for biological control of ticks, was assessed in laboratory trials. Fungal pathogenicity was studied against convergent ladybird beetles, Hippodamia convergens Guérin-Méneville, house crickets, Acheta domesticus (L.), and the milkweed bugs Oncopeltus fasciatus (Dallas). Fungal spores applied with a spray tower produced significant mortality in H. convergens and A. domesticus, but effects on O. fasciatus were marginal. Placing treated insects with untreated individuals resulted in mortality from horizontal transmission to untreated beetles and crickets, but not milkweed bugs. Spread of fungal infection in the beetles resulted in mortality on days 4–10 after treatment, while in crickets mortality was on day 2 after treatment, suggesting different levels of pathogenicity and possibly different modes of transmission. Therefore, M. anisopliae varies in pathogenicity to different insects. Inundative applications can potentially affect nontarget species, but M. anisopliae is already widely distributed in North America, so applications for tick control generally would not introduce a novel pathogen into the environment. Pathogenicity in lab trials does not, by itself, demonstrate activity under natural conditions, so field trials are needed to confirm these results and to assess methods to minimize nontarget exposure.

  4. Scramble competition in the southern pine beetle, Dendroctonus frontalis

    Treesearch

    John D. Reeve; Douglas J. Rhodes; Peter Turchin

    1998-01-01

    1. The nature of intraspecific competition was investigated in the southern pine beetle, Dendroctonus frontalis, a highly destructive pest of pine forests in the southern U.S.A.Date were analyzed from an observation study of naturally-attacked trees, and from field experiments where attack density was manipulated by adding different numbers of beetles to caged trees....

  5. Callosobruchus maculatus: A Seed Beetle with a Future in Schools.

    ERIC Educational Resources Information Center

    Dockery, Michael

    1997-01-01

    Recommends the use of seed beetles for studying animal behavior and provides suggestions for practical and project assignments. Sources for obtaining the beetles and a list of the equipment needed for their study and maintenance are provided. Answers to common concerns are addressed. (DDR)

  6. Symbiosis and competition: complex interactions among beetles, fungi, and mites

    Treesearch

    Kier D. Klepzig; J.C. Moser; F.J. Lombardero; R.W. Hofstetter; M.P. Ayres

    2001-01-01

    Symbioses among bark beetles and their fungal and mite associates involve complex, multi-level interactions. Dendroctonus frontalis attacks and kills southern pines, introducing fungi into the tree. Ophiostoma minus may initially aid beetles in killing trees, but later this "bluestain" fungus becomes an antagonist,...

  7. Formulating entompathogens for control of boring beetles in avocado orchards

    USDA-ARS?s Scientific Manuscript database

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  8. Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus.

    PubMed

    Wu, Yuan-Ming; Li, Jiang; Chen, Xiang-Sheng

    2018-03-01

    Commonly known as blister beetles or Spanish fly, there are more than 1500 species in the Meloidae family (Hexapoda: Coleoptera: Tenebrionoidea) that produce the potent defensive blistering agent cantharidin. Cantharidin and its derivatives have been used to treat cancers such as liver, stomach, lung, and esophageal cancers. Hycleus cichorii and Hycleus phaleratus are the most commercially important blister beetles in China due to their ability to biosynthesize this potent vesicant. However, there is a lack of genome reference, which has hindered development of studies on the biosynthesis of cantharidin and a better understanding of its biology and pharmacology. We report 2 draft genomes and quantified gene sets for the blister beetles H. cichorii and H. phaleratus, 2 complex genomes with >72% repeats and approximately 1% heterozygosity, using Illumina sequencing data. An integrated assembly pipeline was performed for assembly, and most of the coding regions were obtained. Benchmarking universal single-copy orthologs (BUSCO) assessment showed that our assembly obtained more than 98% of the Endopterygota universal single-copy orthologs. Comparison analysis showed that the completeness of coding genes in our assembly was comparable to other beetle genomes such as Dendroctonus ponderosae and Agrilus planipennis. Gene annotation yielded 13 813 and 13 725 protein-coding genes in H. cichorii and H. phaleratus, of which approximately 89% were functionally annotated. BUSCO assessment showed that approximately 86% and 84% of the Endopterygota universal single-copy orthologs were annotated completely in these 2 gene sets, whose completeness is comparable to that of D. ponderosae and A. planipennis. Assembly of both blister beetle genomes provides a valuable resource for future biosynthesis of cantharidin and comparative genomic studies of blister beetles and other beetles.

  9. Associations of Conifer-Infesting Bark Beetles and Fungi in Fennoscandia

    PubMed Central

    Linnakoski, Riikka; de Beer, Z. Wilhelm; Niemelä, Pekka; Wingfield, Michael J.

    2012-01-01

    Bark beetles (Coleoptera, Scolytinae) have a widespread association with fungi, especially with ophiostomatoid fungi (Ascomycota) that cause blue staining of wood, and in some cases, serious tree diseases. In Fennoscandia, most studies of these fungi have focused on economically important bark beetle species and this is likely to have led to a biased view of the fungal biodiversity in the region. Recently, the associations between fungi and bark beetles in Fennoscandia have been shown to be more diverse than previously thought. Furthermore, they form complex and dynamic associations that are only now beginning to emerge. This review examines the current knowledge of the rather poorly known interactions between bark beetles, fungi and their conifer host trees in Fennoscandia. The diversity of ophiostomatoid species is discussed and the possible factors that influence the assemblages of fungal associates are considered for all species that are known to occur in the region. For many ophiostomatoid species found in Fennoscandia, little or nothing is known regarding their pathogenicity, particularly if they were to be transferred to new environments. We, therefore, draw attention to the possible threats of timber trade and climate change-induced invasions of new habitats by bark beetles and the fungi that can be moved along with them. PMID:26467956

  10. Volume regulation during dehydration of desert beetles.

    PubMed

    Zachariassen, Karl Erik; Pedersen, Sindre Andre

    2002-11-01

    In arid areas in East Africa, dietary water is available only during the rainy seasons. Since the rainy seasons are separated by dry seasons, which may last for many months and in extreme cases for more than a year, the beetles may lose more than 80% of their body water. The water loss takes place mainly at the expense of the extracellular fluid, i.e. as the haemolymph volume drops to zero, the cell volume is only moderately reduced. The protection of cell volume at the expense of the haemolymph requires that solutes are removed from the haemolymph. The solutes are either excreted from the body or sequestered within the body in an osmotically inactive state. In predatory beetles of the family Carabidae, where Na is the dominating extracellular solute, Na is excreted, but it can easily be replaced from the diet. In most herbivorous beetles, such as the Tenebrionidae, which feed on a low Na diet, and which have low extracellular Na levels, Na is usually, but not always, deposited within the body. Free amino acids are moved from haemolymph to cells, but some seem to be made osmotically inactive by polymerization to peptides. As beetles become rehydrated, the peptides are rapidly depolymerized and the amino acids released to the haemolymph. Another factor, which may be important in the stabilisation of cell volume, is the colloid osmotic contribution of intracellular proteins, which may have a steep increase in their osmotic activity with increasing concentration.

  11. Fires following bark beetles: Factors controlling severity and disturbance interactions in ponderosa pine

    Treesearch

    Carolyn H. Sieg; Rodman R. Linn; Francois Pimont; Chad M. Hoffman; Joel D. McMillin; Judith Winterkamp; L. Scott Baggett

    2017-01-01

    Previous studies have suggested that bark beetles and fires can be interacting disturbances, whereby bark beetle-caused tree mortality can alter the risk and severity of subsequent wildland fires. However, there remains considerable uncertainty around the type and magnitude of the interaction between fires following bark beetle attacks, especially in drier forest types...

  12. Western Pine Beetle

    Treesearch

    Clarence J. Jr. DeMars; Bruce H. Roettgering

    1982-01-01

    The western pine beetle, Dendroctonus brevicomis LeConte, can aggressively attack and kill ponderosa and Coulter pine trees of all ages and vigor classes that are 6 inches (15 cm) or larger in diameter, including apparently healthy trees. Group killing of trees is common in dense, overstocked stands of pure, even-aged, young sawtimber (fig. 1), but also occurs among...

  13. Pine Beetle Detection

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Earth Systems Science Office scientists worked with officials in St. Tammany Parish, La., to detect and battle pine beetle infestation in Fontainebleu State Park. The scientists used a new method of detecting plant stress by using special lenses and modified sensors to detect a change in light levels given off by the plant before the stress is visible to the naked eye.

  14. Barcode haplotype variation in North American agroecosystem ladybird beetles (Coleoptera: Coccinellidae

    USDA-ARS?s Scientific Manuscript database

    DNA barcodes have proven invaluable in identifying and distinguishing insect pests, for example for determining the provenance of exotic invasives, but relatively few insect natural enemies have been barcoded. We used Folmer et al.’s universal invertebrate primers (1994), and those designed by Heber...

  15. Waves and Water Beetles

    ERIC Educational Resources Information Center

    Tucker, Vance A.

    1971-01-01

    Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)

  16. Book review of advances in insect physiology: pine bark beetles

    USDA-ARS?s Scientific Manuscript database

    If not the most destructive forest pest, bark beetles are probably a close second in their culpability for killing millions of trees in the Northern Hemisphere. This volume provides an aptly-timed interdisciplinary review on aspects of bark beetle physiology, especially how it relates to selecting, ...

  17. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Movement of live Japanese beetles. 301.48-6 Section 301.48-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and...

  18. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Movement of live Japanese beetles. 301.48-6 Section 301.48-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and...

  19. Predicting county-level southern pine beetle outbreaks from neighborhood patterns

    USDA-ARS?s Scientific Manuscript database

    The southern pine beetle (Dendroctonus frontalis, Coleoptera: Curculionidae) is the most destructive insect in southern forests. States have kept county-level records on the locations of beetle outbreaks for the past forty-eight years. In this study, we seek to determine how accurately patterns of c...

  20. Mountain pine beetle infestations in relation to lodgepole pine diameters

    Treesearch

    Walter E. Cole; Gene D. Amman

    1969-01-01

    Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...

  1. Colonization of disturbed trees by the southern pine bark beetle guild (Coleoptera: Scolytidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flamm, R.O.; Pulley, P.E.; Coulson, R.N.

    1993-02-01

    The southern pine bark beetle guild [Dendroctonus frontalis Zimmermann, D. terebrans (Olivier), Ips calligraphus (Germar), I. grandicollis (Eichhoff), and I. avulsus (Eichhoff)] uses disturbed hosts as habitat for establishment of within-tree populations. The process of colonization of disturbed hosts was examined. Using a procedure designed to emulate effects of a lightning strike, pines were severely disturbed. Response was characterized by measuring beetle populations that (1) arrived at the trees and (2) successfully attacked the trees. Establishment of within-tree populations was characterized by measuring length of egg gallery excavated by attacking adults. The time delay between arrival and attack for D.more » frontalis and I. calligraphus was also calculated. Attack densities of both species became asymptotic as arrival increased. The percentage of arriving beetles that attacked ranged from 9 to 41 for D. frontalis and from 8 to 59 for I. calligraphus. Numbers of beetles that arrived at the tree but did not attack ranged from 2.7 to 50.2 beetles per dm[sup 2] for D. frontalis and from 0.2 to 10.0 beetles per dm[sup 2] for I. calligraphus. Most D. frontalis and I. calligraphus attacked on the day they arrived. The delay between arrival and attack was longer for I. calligraphus than the D. frontalis. Egg gallery excavated by D. frontalis increased throughout the study. Eventually, the Ips species were excluded from the lower half of the hole. The low attack densities observed in this study illustrate the significance of disturbed trees in providing refuges for enzootic levels of bark beetles. The aggregation behavior of beetle populations colonizing disturbed hosts supported the contention that these trees serve as foci for initiation of infestations. Furthermore, in disturbed pines, small numbers of beetles were capable of overcoming host defense systems.« less

  2. Urban forests sustain diverse carrion beetle assemblages in the New York City metropolitan area

    PubMed Central

    Fusco, Nicole A.; Zhao, Anthony

    2017-01-01

    Urbanization is an increasingly pervasive form of land transformation that reduces biodiversity of many taxonomic groups. Beetles exhibit a broad range of responses to urbanization, likely due to the high functional diversity in this order. Carrion beetles (Order: Coleoptera, Family: Silphidae) provide an important ecosystem service by promoting decomposition of small-bodied carcasses, and have previously been found to decline due to forest fragmentation caused by urbanization. However, New York City (NYC) and many other cities have fairly large continuous forest patches that support dense populations of small mammals, and thus may harbor relatively robust carrion beetle communities in city parks. In this study, we investigated carrion beetle community composition, abundance and diversity in forest patches along an urban-to-rural gradient spanning the urban core (Central Park, NYC) to outlying rural areas. We conducted an additional study comparing the current carrion beetle community at a single suburban site in Westchester County, NY that was intensively surveyed in the early 1970’s. We collected a total of 2,170 carrion beetles from eight species at 13 sites along this gradient. We report little to no effect of urbanization on carrion beetle diversity, although two species were not detected in any urban parks. Nicrophorus tomentosus was the most abundant species at all sites and seemed to dominate the urban communities, potentially due to its generalist habits and shallower burying depth compared to the other beetles surveyed. Variation between species body size, habitat specialization, and % forest area surrounding the surveyed sites also did not influence carrion beetle communities. Lastly, we found few significant differences in relative abundance of 10 different carrion beetle species between 1974 and 2015 at a single site in Westchester County, NY, although two of the rare species in the early 1970’s were not detected in 2015. These results indicate

  3. Urban forests sustain diverse carrion beetle assemblages in the New York City metropolitan area.

    PubMed

    Fusco, Nicole A; Zhao, Anthony; Munshi-South, Jason

    2017-01-01

    Urbanization is an increasingly pervasive form of land transformation that reduces biodiversity of many taxonomic groups. Beetles exhibit a broad range of responses to urbanization, likely due to the high functional diversity in this order. Carrion beetles (Order: Coleoptera, Family: Silphidae) provide an important ecosystem service by promoting decomposition of small-bodied carcasses, and have previously been found to decline due to forest fragmentation caused by urbanization. However, New York City (NYC) and many other cities have fairly large continuous forest patches that support dense populations of small mammals, and thus may harbor relatively robust carrion beetle communities in city parks. In this study, we investigated carrion beetle community composition, abundance and diversity in forest patches along an urban-to-rural gradient spanning the urban core (Central Park, NYC) to outlying rural areas. We conducted an additional study comparing the current carrion beetle community at a single suburban site in Westchester County, NY that was intensively surveyed in the early 1970's. We collected a total of 2,170 carrion beetles from eight species at 13 sites along this gradient. We report little to no effect of urbanization on carrion beetle diversity, although two species were not detected in any urban parks. Nicrophorus tomentosus was the most abundant species at all sites and seemed to dominate the urban communities, potentially due to its generalist habits and shallower burying depth compared to the other beetles surveyed. Variation between species body size, habitat specialization, and % forest area surrounding the surveyed sites also did not influence carrion beetle communities. Lastly, we found few significant differences in relative abundance of 10 different carrion beetle species between 1974 and 2015 at a single site in Westchester County, NY, although two of the rare species in the early 1970's were not detected in 2015. These results indicate that

  4. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera: Tenebrionidae) Beetles from Iran

    PubMed Central

    Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza

    2017-01-01

    Background: Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. Methods: The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010–2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Results: Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12–14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97–100% with similar sequences from GenBank database. Conclusion: Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations. PMID:29062858

  5. Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.

    PubMed

    Strohm, S; Tyson, R C; Powell, J A

    2013-10-01

    Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.

  6. Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi

    Treesearch

    W. R. Jacobi; R. D. Koski; J. F. Negron

    2013-01-01

    Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophiostoma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus...

  7. Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo.

    PubMed

    Sasu, M A; Seidl-Adams, I; Wall, K; Winsor, J A; Stephenson, A G

    2010-02-01

    Cucumber beetles, Acalymma vittatum (F.) and Diabrotica undecipunctata howardi (Barber), are specialist herbivores of cucurbits and the vector of Erwinia tracheiphila (E.F. Smith) Holland, the causative agent of wilt disease. Cucumber beetles transmit E. tracheiphila when infected frass falls onto leaf wounds at the site of beetle feeding. We show that E. tracheiphila also can be transmitted via the floral nectaries of Cucurbita pepo ssp. texana L. Andres (Texas gourd). Under field conditions, we found that beetles aggregate in flowers in the late morning, that these beetles chew the anther filaments that cover the nectaries in male flowers thereby exposing the nectary, and that beetle frass accumulates on the nectary. We use real-time polymerase chain reaction to show that most of the flowers produced during the late summer possess beetle frass containing E. tracheiphila. Greenhouse experiments, in which cultures of E. tracheiphila are deposited onto floral nectaries, show that Texas gourds can contract wilt disease through the floral nectaries. Finally, we use green fluorescent protein-transformed E. tracheiphila to document the movement of E. tracheiphila through the nectary into the xylem of the pedicel before the abscission of the flower. Together, these data show that E. tracheiphila can be transmitted through infected frass that falls on or near the floral nectaries. We hypothesize that the concentration of frass from many beetles in the flowers increases both exposure to and the concentration of E. tracheiphila and plays a major role in the dynamics of wilt disease in both wild populations and cultivated squash fields.

  8. Recognition of imported lady beetles in the tribe Scymnini released in Eastern North America

    Treesearch

    Lynn A. Jones; Michael Montgomery; Guoyue Yu; Wenhau Lu

    2002-01-01

    Adults of lady beetles in the tribe Scymnini imported for biological control of hemlock woolly adelgid, Adelges tsugae Annand, in eastern North America can be readily distinguished from native lady beetles (Coccinellidae). The imported lady beetles are in the genera Pseudoscymnus and Scymnus (Neopullus...

  9. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition

    PubMed Central

    Arnieri, Fabrizio; Caprio, Enrico; Nervo, Beatrice; Pelissetti, Simone; Palestrini, Claudia; Roslin, Tomas; Rolando, Antonio

    2017-01-01

    Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species), we ran six experimental treatments (four monospecific and two mixed) and two controls (one with dung but without beetles, and one with neither dung nor beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux–an effect potentially traceable to the species’ nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%). As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems. PMID:28700590

  10. Ecological Complexity in a Coffee Agroecosystem: Spatial Heterogeneity, Population Persistence and Biological Control

    PubMed Central

    Liere, Heidi; Jackson, Doug; Vandermeer, John

    2012-01-01

    Background Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. Methodology/Principal Findings Here we report on a predatory ladybird beetle whose natural history suggests that the beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant, Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered distribution of the mutualistic ants in the first place. Conclusions/Significance From a theoretical point of view, our model represents a novel situation in which a predator indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that involves the emergent spatial pattern. PMID:23029061

  11. Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee.

    PubMed

    Torto, Baldwyn; Boucias, Drion G; Arbogast, Richard T; Tumlinson, James H; Teal, Peter E A

    2007-05-15

    Colony defense by honey bees, Apis mellifera, is associated with stinging and mass attack, fueled by the release of alarm pheromones. Thus, alarm pheromones are critically important to survival of honey bee colonies. Here we report that in the parasitic relationship between the European honey bee and the small hive beetle, Aethina tumida, the honey bee's alarm pheromones serve a negative function because they are potent attractants for the beetle. Furthermore, we discovered that the beetles from both Africa and the United States vector a strain of Kodamaea ohmeri yeast, which produces these same honey bee alarm pheromones when grown on pollen in hives. The beetle is not a pest of African honey bees because African bees have evolved effective methods to mitigate beetle infestation. However, European honey bees, faced with disease and pest management stresses different from those experienced by African bees, are unable to effectively inhibit beetle infestation. Therefore, the environment of the European honey bee colony provides optimal conditions to promote the unique bee-beetle-yeast-pollen multitrophic interaction that facilitates effective infestation of hives at the expense of the European honey bee.

  12. Chemical Strategies of the Beetle Metoecus Paradoxus, Social Parasite of the Wasp Vespula Vulgaris.

    PubMed

    Van Oystaeyen, Annette; van Zweden, Jelle S; Huyghe, Hilde; Drijfhout, Falko; Bonckaert, Wim; Wenseleers, Tom

    2015-12-01

    The parasitoid beetle Metoecus paradoxus frequently parasitizes colonies of the common wasp, Vespula vulgaris. It penetrates a host colony as a larva that attaches itself onto a foraging wasp's body and, once inside the nest, it feeds on a wasp larva inside a brood cell and then pupates. Avoiding detection by the wasp host is crucial when the beetle emerges. Here, we tested whether adult M. paradoxus beetles avoid detection by mimicking the cuticular hydrocarbon profile of their host. The beetles appear to be chemically adapted to their main host species, the common wasp, because they share more hydrocarbon compounds with it than they do with the related German wasp, V. germanica. In addition, aggression tests showed that adult beetles were attacked less by common wasp workers than by German wasp workers. Our results further indicated that the host-specific compounds were, at least partially, produced through recycling of the prey's hydrocarbons, and were not acquired through contact with the adult host. Moreover, the chemical profile of the beetles shows overproduction of the wasp queen pheromone, nonacosane (n-C29), suggesting that beetles might mimic the queen's pheromonal bouquet.

  13. Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus

    PubMed Central

    Wu, Yuan-Ming; Li, Jiang

    2018-01-01

    Abstract Background Commonly known as blister beetles or Spanish fly, there are more than 1500 species in the Meloidae family (Hexapoda: Coleoptera: Tenebrionoidea) that produce the potent defensive blistering agent cantharidin. Cantharidin and its derivatives have been used to treat cancers such as liver, stomach, lung, and esophageal cancers. Hycleus cichorii and Hycleus phaleratus are the most commercially important blister beetles in China due to their ability to biosynthesize this potent vesicant. However, there is a lack of genome reference, which has hindered development of studies on the biosynthesis of cantharidin and a better understanding of its biology and pharmacology. Results We report 2 draft genomes and quantified gene sets for the blister beetles H. cichorii and H. phaleratus, 2 complex genomes with >72% repeats and approximately 1% heterozygosity, using Illumina sequencing data. An integrated assembly pipeline was performed for assembly, and most of the coding regions were obtained. Benchmarking universal single-copy orthologs (BUSCO) assessment showed that our assembly obtained more than 98% of the Endopterygota universal single-copy orthologs. Comparison analysis showed that the completeness of coding genes in our assembly was comparable to other beetle genomes such as Dendroctonus ponderosae and Agrilus planipennis. Gene annotation yielded 13 813 and 13 725 protein-coding genes in H. cichorii and H. phaleratus, of which approximately 89% were functionally annotated. BUSCO assessment showed that approximately 86% and 84% of the Endopterygota universal single-copy orthologs were annotated completely in these 2 gene sets, whose completeness is comparable to that of D. ponderosae and A. planipennis. Conclusions Assembly of both blister beetle genomes provides a valuable resource for future biosynthesis of cantharidin and comparative genomic studies of blister beetles and other beetles. PMID:29444297

  14. Efficacy of fipronil for protecting individual pines from mortality attributed to attack by western pine beetle and mountain pine beetle (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    C.J. Fettig; A.S. Munson; C.I. Jorgenson; D.M. and Grosman

    2010-01-01

    Bark beetles (Coleoptera: C~rculionidae, Scolytinae) are commonly recognized as important tree mortality agents in coniferous forests of the western U.S. Most species feed on the phloem and cambium, or xylem tissue of woody plants; and a few are recognized as the most destructive of all forest insect pests. The last decade has seen elevated levels of bark beetle caused...

  15. Proceedings of a workshop on bark beetle genetics: current status of research. Workshop on Bark Beetle Genetics; 1998 July 17-18; Madison, WI.

    Treesearch

    Jane L. Hayes; Kenneth F. Raffa

    1999-01-01

    This proceedings contains contributions from each author or group of authors who presented their current research at the bark beetle genetics workshop held 17-18 July 1998 on the campus of the University of Wisconsin in Madison, Wisconsin, USA. This was the second meeting on this subject; the first was held in 1992. The subject of bark beetle genetics is of growing,...

  16. Scattering and polarization properties of the scarab beetle Cyphochilus insulanus cuticle.

    PubMed

    Åkerlind, Christina; Arwin, Hans; Hallberg, Tomas; Landin, Jan; Gustafsson, Johan; Kariis, Hans; Järrendahl, Kenneth

    2015-07-01

    Optical properties of natural photonic structures can inspire material developments in diversified areas, such as the spectral design of surfaces for camouflage. Here, reflectance, scattering, and polarization properties of the cuticle of the scarab beetle Cyphochilus insulanus are studied with spectral directional hemispherical reflectance, bidirectional reflection distribution function (BRDF) measurements, and Mueller-matrix spectroscopic ellipsometry (MMSE). At normal incidence, a reflectance (0.6-0.75) is found in the spectral range of 400-1600 nm and a weaker reflectance <0.2 in the UV range as well as for wavelengths >1600  nm. A whiteness of W=42 is observed for mainly the elytra of the beetle. Chitin is a major constituent of the insect cuticle which is verified by the close similarity of the measured IR spectrum to that of α-chitin. The BRDF signal shows close-to-Lambertian properties of the beetle for visible light at small angles of incidence. From the MMSE measurement it is found that the beetles appear as dielectric reflectors reflecting linearly polarized light at oblique incidence with low gloss and a low degree of polarization. The measured beetle properties are properties that can be beneficial in a camouflage material.

  17. Effects of available water on growth and competition of southern pine beetle associated fungi

    Treesearch

    Kier D. Klepzig; J. Flores-Otero; R.W. Hofstetter; M.P. Ayers

    2004-01-01

    Competitive interactions among bark beetle associated fungi are potentially influenced by abiotic factors. Water potential, in particular, undergoes marked changes over the course of beetle colonization of tree hosts. To investigate the impact of water potential on competition among three southern pine beetle associated fungi, Ophiostoma minus,

  18. 77 FR 31720 - Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    .... APHIS-2012-0003] Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York AGENCY...: We are amending the Asian longhorned beetle regulations to make changes to the list of quarantined... the artificial spread of Asian longhorned beetle to noninfested areas of the United States and to...

  19. Variegated tropical landscapes conserve diverse dung beetle communities.

    PubMed

    Costa, Cristiane; Oliveira, Victor Hugo F; Maciel, Rafaella; Beiroz, Wallace; Korasaki, Vanesca; Louzada, Julio

    2017-01-01

    Conserving biodiversity in tropical landscapes is a major challenge to scientists and conservationists. Current rates of deforestation, fragmentation, and land use intensification are producing variegated landscapes with undetermined values for the conservation of biological communities and ecosystem functioning. Here, we investigate the importance of tropical variegated landscapes to biodiversity conservation, using dung beetle as focal taxa. The study was carried out in 12 variegated landscapes where dung beetles were sampled using six pitfall traps, 30 m apart from each other, along a transect in each studied landscape use and cover classes-LUCC (forest fragment and corridor, coffee plantation, and pasture). We baited each pitfall trap with 30 g of human feces and left open for a 48 h period. We also measured three environmental variables reflecting structural differences among the studied classes: canopy cover, local vegetation heterogeneity and soil sand content. We collected 52 species and 2,695 individuals of dung beetles. We observed significant differences in the mean species richness, abundance and biomass among classes, with forest fragments presenting the highest values, forest corridors and coffee plantations presenting intermediate values, and pastures the lowest values. Regarding community structure, we also found significant differences among classes. Canopy cover was the only variable explaining variation in dung beetle species richness, abundance, biomass, and community structure. The relative importance of spatial turnover was greater than nestedness-resultant component in all studied landscapes. This study evaluated the ecological patterns of dung beetle communities in variegated tropical landscapes highlighting the importance of these landscapes for conservation of tropical biodiversity. However, we encourage variegation for the management of landscapes that have already been fragmented or as a complementary initiative of current conservation

  20. Urban soil biomonitoring by beetle and earthworm populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janossy, L.; Bitto, A.

    1995-12-31

    Two macro invertebrate groups were chosen for biomonitoring environmental changes. The beetle population was pitfall trapped (five month in 1994) at five downtown sites (parks) of Budapest and in a hilly original woodland as a control site 33km NW of Budapest. Earthworms were collected by using formol solution. Five heavy metals were measured (Pb, Co, Hg, Zn, Cu) in the upper soil layer at the same sampling sites. Pb, Hg, Zn and Cu was over the tolerable limit in a park near the railway, extreme high Pb (530 mg/kg dry soil) and Zn content was measured in one park. Roadsmore » are also salted in wintertime. The number of beetle species in the downtown parks varied 10 to 22 (226--462 specimen). Near to the edge of the city up to 45 beetle species were found in a park with 1,027 specimen. In the woodland area 52 beetle species with 1,061 specimen were found. Less dominance and higher specific diversity showed the direction from downtown to woodland. Only 2 or 3 cosmopolitan earthworm species existed in downtown parks with 30--35 specimen/m{sup 2}, in the control woodland area 7 mostly endemic earthworm species were found with 74 specimens/m{sup 2}. But earthworm biomass was higher in three well fertilized parks (43--157 g/m{sup 2}), than in the original woodland (25-g/m{sup 2}). The beetle populations seem to be good tools for biomonitoring. Earthworms are susceptible to environmental changes but they also strongly depend on the leaf litter and the organic matter of the soil. The change in the animal populations is the result of summarized environmental impacts in such a big city like Budapest.« less

  1. Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity.

    PubMed

    Korasaki, Vanesca; Lopes, José; Gardner Brown, George; Louzada, Julio

    2013-06-01

    We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina, Paraná, Brazil. This study provides the first empirical evidence of the impact of urbanization on richness, abundance, composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest. We evaluated the community aspects (abundance, richness, composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat, rotten fish, pig dung and decaying banana). A total of 1 719 individuals were collected, belonging to 29 species from 11 genera and six Scarabaeinae tribes. The most urban-immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness. The beetle communities were distinct with respect to the fragments and feeding habits. Except for the dung beetle assemblage in the most urbanized forest fragment, all others exhibited contrasting differences in species composition attracted to each bait type. Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities, even small ones, can provide refuges for Scarabaeinae. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  2. Luciferase from Fulgeochlizus bruchi (Coleoptera:Elateridae), a Brazilian click-beetle with a single abdominal lantern: molecular evolution, biological function and comparison with other click-beetle luciferases.

    PubMed

    Amaral, Danilo T; Prado, Rogilene A; Viviani, Vadim R

    2012-07-01

    Bioluminescent click-beetles emit a wide range of bioluminescence colors (λ(Max) = 534-594 nm) from thoracic and abdominal lanterns, which are used for courtship. Only the luciferases from Pyrophorus and Pyrearinus species were cloned and sequenced. The Brazilian Fulgeochlizus bruchi click-beetle, which inhabits the Central-west Cerrado (Savannas), is noteworthy because, differently from other click-beetles, the adult stage displays only a functional abdominal lantern, which produces a bright green bioluminescence for sexual attraction purposes, and lacks functional thoracic lanterns. We cloned the cDNA for the abdominal lantern luciferase of this species. Notably, the primary sequence of this luciferase showed slightly higher identity with the green emitting dorsal lantern luciferases of the Pyrophorus genus instead of the abdominal lanterns luciferases. This luciferase displays a blue-shifted spectrum (λ(Max) = 540 nm), which is pH-insensitive from pH 7.5 to 9.5 and undergoes a slight red shift and broadening above this pH; the lowest K(M) for luciferin among studied click-beetle luciferases, and the highest optimum pH (9.0) ever reported for a beetle luciferase. At pH 9.0, the K(M) for luciferin increases, showing a decrease of affinity for this substrate, despite the higher activity. The slow luminescence decay rate of F. bruchi luciferase in vitro reaction could be an adaptation of this luciferase for the long and sustained in vivo luminescence display of the click-beetle during the courtship, and could be useful for in vivo intracellular imaging.

  3. Mountain pine beetle population sampling: inferences from Lindgren pheromone traps and tree emergence cages

    Treesearch

    Barbara J. Bentz

    2006-01-01

    Lindgren pheromone traps baited with a mountain pine beetle (Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae)) lure were deployed for three consecutive years in lodgepole pine stands in central Idaho. Mountain pine beetle emergence was also monitored each year using cages on infested trees. Distributions of beetles caught in...

  4. Overwintering biology and tests of trap and relocate as a conservation measure for burying beetles.

    DOT National Transportation Integrated Search

    2015-01-01

    Burying beetles are carrion beetles and utilize dead animal carcasses for feeding : and reproductive efforts. They assist with decomposition, prevent the spread of disease, : and reduce the number of pest species. The largest species of carrion beetl...

  5. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  6. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  7. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae

    Treesearch

    Jacques Regniere; Barbara Bentz

    2007-01-01

    Cold-induced mortality is a key factor driving mountain pine beetle, Dendroctonus ponderosae, population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following...

  8. Effectiveness of insecticide-incorporated bags to control stored-product beetles

    USDA-ARS?s Scientific Manuscript database

    Adults of seven stored-product beetle species were exposed on the inside and outside surfaces of polypropylene polymer bags incorporated with the insecticide deltamethrin (approx. concentration of 3,000 ppm; ZeroFly® Storage Bags (3g/kg). Beetles were exposed for 60, 120, and 180 min, and 1, 3 and 5...

  9. Ethanol injection of ornamental trees facilitates testing insecticide efficacy against ambrosia beetles (Coleoptera: Curculionidae: Scolytinae).

    PubMed

    Reding, Michael E; Oliver, Jason B; Schultz, Peter B; Ranger, Christopher M; Youssef, Nadeer N

    2013-02-01

    Exotic ambrosia beetles are damaging pests in ornamental tree nurseries in North America. The species Xylosandrus crassiusculus (Motshulsky) and Xylosandrus germanus (Blandford) are especially problematic. Management of these pests relies on preventive treatments of insecticides. However, field tests of recommended materials on nursery trees have been limited because of unreliable attacks by ambrosia beetles on experimental trees. Ethanol-injection of trees was used to induce colonization by ambrosia beetles to evaluate insecticides and botanical formulations for preventing attacks by ambrosia beetles. Experiments were conducted in Ohio, Tennessee, and Virginia. Experimental trees injected with ethanol had more attacks by ambrosia beetles than uninjected control trees in all but one experiment. Xylosandrus crassiusculus and X. germanus colonized trees injected with ethanol. In most experiments, attack rates declined 8 d after ethanol-injection. Ethanol-injection induced sufficient pressure from ambrosia beetles to evaluate the efficacy of insecticides for preventing attacks. Trunk sprays of permethrin suppressed cumulative total attacks by ambrosia beetles in most tests. Trunk sprays of the botanical formulations Armorex and Veggie Pharm suppressed cumulative total attacks in Ohio. Armorex, Armorex + Permethrin, and Veggie Pharm + Permethrin suppressed attacks in Tennessee. The bifenthrin product Onyx suppressed establishment of X. germanus in one Ohio experiment, and cumulative total ambrosia beetle attacks in Virginia. Substrate drenches and trunk sprays of neonicotinoids, or trunk sprays of anthranilic diamides or tolfenpyrad were not effective. Ethanol-injection is effective for inducing attacks and ensuring pressure by ambrosia beetles for testing insecticide efficacy on ornamental trees.

  10. Two genera of Aulacoscelinae beetles reflexively bleed azoxyglycosides found in their host cycads.

    PubMed

    Prado, Alberto; Ledezma, Julieta; Cubilla-Rios, Luis; Bede, Jacqueline C; Windsor, Donald M

    2011-07-01

    Aulacoscelinae beetles have an ancient relationship with cycads (Cycadophyta: Zamiaceae), which contain highly toxic azoxyglycoside (AZG) compounds. How these "primitive" leaf beetles deal with such host-derived compounds remains largely unknown. Collections were made of adult Aulacoscelis appendiculata from Zamia cf. elegantissima in Panama, A. vogti from Dioon edule in Mexico, and Janbechynea paradoxa from Zamia boliviana in Bolivia. Total AZG levels were quantified in both cycad leaves and adult beetles by high performance liquid chromatography (HPLC). On average, cycad leaves contained between 0.5-0.8% AZG (frozen weight, FW), while adult beetles feeding on the same leaves contained even higher levels of the compounds (average 0.9-1.5% FW). High AZG levels were isolated from reflex bleeding secreted at the leg joints when beetles were disturbed. Nuclear magnetic resonance and mass spectroscopy identified two AZGs, cycasin and macrozamin, in the reflex bleeding; this is the first account of potentially plant-derived compounds in secretions of the Aulacoscelinae. These data as well as the basal phylogenetic position of the Aulacoscelinae suggest that sequestration of plant secondary metabolites appeared early in leaf beetle evolution.

  11. Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.

    PubMed

    Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying

    2016-12-28

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. © 2016 The Author(s).

  12. Specialized proteinine rove beetles shed light on insect–fungal associations in the Cretaceous

    PubMed Central

    Leschen, Richard A. B.; Huang, Diying

    2016-01-01

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. PMID:28003444

  13. Southern Pine Beetle II

    Treesearch

    R. N. Coulson; Kier Klepzig

    2011-01-01

    The knowledge base for the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae) has increased dramatically since the last comprehensive and interpretative summary (Thatcher and others 1980). This insect continues to be a significant pest affecting the forest environment of the Southern US and adjoining states and it is also the subject of...

  14. Estimating the probability of mountain pine beetle red-attack damage

    Treesearch

    Michael A Wulder; J. C. White; Barbara J Bentz; M. F. Alvarez; N. C. Coops

    2006-01-01

    Accurate spatial information on the location and extent of mountain pine beetle infestation is critical for the planning of mitigation and treatment activities. Areas of mixed forest and variable terrain present unique challenges for the detection and mapping of mountain pine beetle red-attack damage, as red-attack has a more heterogeneous distribution under these...

  15. The Mexican pine beetle (Dendroctonus mexicanus), our "newest" invasive species

    Treesearch

    Kier D. Klepzig; John C. Moser; B. A. Fitzgibbon

    2003-01-01

    The Mexican pine beetle, Dendroctonus mexicanus Hopkins (XPB), is recorded here for the first time as a new introduction for the U.S. Individuals of this species are occupying the same logs of Pinus leiophilla and several other pines in the Chiricahua mountains, AZ with the sibling species of XPB, the southern pine beetle,

  16. Fungi associated with the North American spruce beetle, Dendroctonus rufipennis

    Treesearch

    Diana L. Six; Barbara J. Bentz

    2003-01-01

    Fungi were isolated from individual Dendroctonus rufipennis (Kirby) collected from six populations in Alaska, Colorado, Utah, and Minnesota, U.S.A. In all populations, Leptographium abietinum (Peck) Wingfield was the most commonly isolated mycelial fungus (91-100% of beetles). All beetles in all populations were associated with yeasts and some with only yeasts (0-5%)....

  17. Diversity and Interactions of Wood-Inhabiting Fungi and Beetles after Deadwood Enrichment

    PubMed Central

    Müller, Tobias; Dittrich, Marcus; Rudloff, Renate; Hoppe, Björn; Linsenmair, Karl Eduard

    2015-01-01

    Freshly cut beech deadwood was enriched in the canopy and on the ground in three cultural landscapes in Germany (Swabian Alb, Hainich-Dün, Schorfheide-Chorin) in order to analyse the diversity, distribution and interaction of wood-inhabiting fungi and beetles. After two years of wood decay 83 MOTUs (Molecular Operational Taxonomic Units) from 28 wood samples were identified. Flight Interception Traps (FITs) installed adjacent to the deadwood enrichments captured 29.465 beetles which were sorted to 566 species. Geographical ‘region’ was the main factor determining both beetle and fungal assemblages. The proportions of species occurring in all regions were low. Statistic models suggest that assemblages of both taxa differed between stratum and management praxis but their strength varied among regions. Fungal assemblages in Hainich-Dün, for which the data was most comprehensive, discriminated unmanaged from extensively managed and age-class forests (even-aged timber management) while canopy communities differed not from those near the ground. In contrast, the beetle assemblages at the same sites showed the opposite pattern. We pursued an approach in the search for fungus-beetle associations by computing cross correlations and visualize significant links in a network graph. These correlations can be used to formulate hypotheses on mutualistic relationships for example in respect to beetles acting as vectors of fungal spores. PMID:26599572

  18. Striped Cucumber Beetle (Coleoptera: Chrysomelidae) Aggregation in Response to Cultivar and Flowering.

    PubMed

    Gardner, Jeffrey; Hoffmann, Michael P; Mazourek, Michael

    2015-04-01

    The striped cucumber beetle [Acalymma vittatum (F.)] is a specialist pest of cucurbits throughout its range in the United States and Canada. Improved integrated pest management options are needed across the pest's range, especially on organic farms where there are few effective controls. Trap cropping in cucurbits is an option, but there are significant challenges to the technique. Because cucurbit flowers are highly attractive to the beetles, four field experiments tested whether cultivar and phenology interact to preferentially aggregate beetles. The first experiment tested the hypothesis that cucurbit flowers were more attractive to striped cucumber beetles than was foliage. The second experiment tested whether there were differences in beetle aggregation between two relatively attractive cultivars. The third and fourth experiments were factorial designs with two plant cultivars and two levels of flowering to specifically test for an interaction of cultivar and flowering. Results indicated that flowers were more attractive than foliage, beetle aggregation was affected by plant cultivar, and that there was an interaction of cultivar with flowering. We conclude that a single cultivar may be sufficient to serve as a generic trap crop to protect a wide variety of cucurbits. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Effects on eastern larch beetle of its natural attractant and synthetic pheromones in Alaska.

    Treesearch

    Richard A. Werner; Malcom M. Furniss; Thomas. Ward

    1981-01-01

    Traps baited with Seudenol + a-pinene caught 87 percent more eastern larch beetles, Dendroctonus simplex LeConte, than did tamarack logs infested with females. Male beetles responded to the synthetic attractant in greater numbers than females. Male beetles were not attracted to frontalin, a principal attractant of the closely related Douglas-fir...

  20. Cannibalism in invasive, native and biocontrol populations of the harlequin ladybird

    PubMed Central

    2014-01-01

    Background Cannibalism is widespread in both vertebrates and invertebrates but its extent is variable between and within species. Cannibalism depends on population density and nutritional conditions, and could be beneficial during colonisation of new environments. Empirical studies are needed to determine whether this trait might facilitate invasion of a new area in natural systems. We investigated whether the propensity for cannibalism in H. axyridis differs both between native and invasive populations and between invasive populations from the core and from the front of the invasive area in Western Europe. We also compared the propensity for cannibalism of these natural populations with that of laboratory-reared biocontrol populations. We measured the cannibalism rates of eggs by first instar larvae and adult females at two different individual densities of ladybirds from three types of population (invasive, native and biocontrol), in laboratory-controlled conditions. Results Cannibalism was significantly greater in larvae from invasive populations compared to native or biocontrol populations, but there was no difference in cannibalism rates between populations from the core or front of the invaded range. Cannibalism was significantly lower in larvae from biocontrol populations compared to wild (invasive and native) populations. No differences in cannibalism rates of adult females were found between any populations. While high population density significantly increased cannibalism in both larvae and adults, the norm of reaction of cannibalism to individual density did not change significantly during the invasion and/or laboratory rearing processes. Conclusion This study is the first to provide evidence for a higher propensity for cannibalism in invasive populations compared to native ones. Our experiments also shed light on the difference in cannibalism evolution with respect to life stages. However, we are still at an early stage in understanding the underlying

  1. Complementarity of statistical treatments to reconstruct worldwide routes of invasion: The case of the Asian ladybird Harmonia axyridis

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract. Molecular markers can provide clear insight into the introduction history of invasive species. However, inferences about recent introduction histories remain challenging, because of the stochastic demographic processes often involved. Approximate Bayesian computation (ABC) can he...

  2. Evidence that ribonuclease activity present in beetle regurgitant is found to stimulate virus resistance in plants.

    PubMed

    Musser, Richard O; Hum-Musser, Sue M; Slaten-Bickford, Shannon E; Felton, Gary W; Gergerich, Rose C

    2002-08-01

    Phaseolus vulgaris L. cv. 'Pinto' bean is a local lesion host for the plant pathogen Southern bean mosaic virus (SBMV) and its vector is the Mexican bean beetle, Epilachna varivestis Mulsant. The objective of this study was to determine if prior feeding by the beetle would affect 'Pinto' bean's resistance to SBMV and determine if ribonuclease (RNase), a major constituent of beetle regurgitant, mediated the plant's response to the virus. 'Pinto' bean plants fed upon by beetles had increased resistance to plant viruses compared to non-wounded or mechanically wounded and buffer-treated plants. Plants that were mechanically wounded and treated with RNase had increased resistance to plant viruses that was equal to plants fed upon by adult beetles. The induction of plant pathogen defenses could be a good adaptation for the plant in the presence of a beetle and pathogen threat. This evidence suggests that RNase activity in the beetle regurgitant could function as an insect-derived elicitor of plant resistance to viruses.

  3. Chemical ecology and serendipity: Developing attractants for Florida ambrosia beetle pests

    USDA-ARS?s Scientific Manuscript database

    Two exotic ambrosia beetles have become established in southern Florida: Xyleborus glabratus, the redbay ambrosia beetle (RAB), and Euwallacea fornicatus, the tea shot hole borer (TSHB). Both pests vector pathogenic fungal symbionts; the former for laurel wilt and the latter for Fusarium dieback d...

  4. Age and aggregation trigger mating behaviour in the small hive beetle, Aethina tumida (Nitidulidae)

    NASA Astrophysics Data System (ADS)

    Mustafa, Sandra G.; Spooner-Hart, Robert; Duncan, Michael; Pettis, Jeffery S.; Steidle, Johannes L. M.; Rosenkranz, Peter

    2015-10-01

    This study aimed to investigate the poorly documented reproductive behaviour of the small hive beetle, Aethina tumida (Nitidulidae), a honey bee ( Apis mellifera) parasite. We described the mating behaviour in detail and tested the hypothesis that beetle aggregation plays a vital role in mating in this species. Gender preference was examined in the context of age-dependency and possible chemical communication. Beetles started mating at a high frequency 18 days after emergence from the soil but only if they were aggregated ( p < 0.001); mating was infrequent when beetles were paired. Males in aggregation also tried to copulate with males and only copulated more frequently with females at 18 days after emergence from soil ( p < 0.001) in contrast to newly emerged, 7-day-old and 60-day-old beetles. Males and females spent more time in social contact with the opposite sex ( p < 0.01) when they were 18 days old in contrast to 7-day-old beetles. Filter papers which had been in contact with 21-day-old beetles were highly attractive to similar-aged beetles of the opposite sex ( p < 0.01). This suggests that chemical substances produced by the beetles themselves play a role in mating. Mating behaviour was characterised by a short pre-copulation courtship and female aggression towards other females and copulating couples. Both behaviours may be indicative of cryptic female choice. Delayed onset of reproductive behaviour is typical of many polygamous species, whilst the indispensability of aggregation for onset of sexual behaviour seems to be a feature unique to A. tumida. Both strategies support mass reproduction in this parasitic species, enabling A. tumida to overcome its honey bee host colony, and are probably triggered by chemotactic cues.

  5. The tiger beetles (Coleoptera, Carabidae, Cicindelinae) of Israel and adjacent lands

    PubMed Central

    Matalin, Andrey V.; Chikatunov, Vladimir I.

    2016-01-01

    Abstract Based on field studies, museums collections and literature sources, the current knowledge of the tiger beetle fauna of Israel and adjacent lands is presented. In Israel eight species occur, one of them with two subspecies, while in the Sinai Peninsula nine species of tiger beetles are now known. In the combined regions seven genera from two tribes were found. The Rift Valley with six cicindelids species is the most specious region of Israel. Cylindera contorta valdenbergi and Cicindela javeti azari have localized distributions and should be considered regional endemics. A similarity analysis of the tiger beetles faunas of different regions of Israel and the Sinai Peninsula reveal two clusters of species. The first includes the Great Rift Valley and most parts of the Sinai Peninsula, and the second incorporates most regions of Israel together with Central Sinai Foothills. Five distinct adult phenological groups of tiger beetles can be distinguished in these two clusters: active all-year (three species), spring-fall (five species), summer (two species), spring-summer (one species) and spring (one species). The likely origins of the tiger beetle fauna of this area are presented. An annotated list and illustrated identification key of the Cicindelinae of Israel and adjacent lands are provided. PMID:27110198

  6. Antiserum Preparation For Immunodiffusion In Southern Pine Beetle Predation Studies

    Treesearch

    M.C. Miller; W. Adrian Chappell; William C. Gamble; J. Robert Bridges

    1978-01-01

    An anti-adult southern pine beetle serum was produced by subcutaneous injection of rabbits with southern pine beetle (SPB) adult antigen. Initial tests demonstrated the ability of the anti-adult SPB serum to detect adult SPB antigen in the body of the adult predator, Thanasimus dubius (F.). Cross reactivity was found between the anti-adult serum...

  7. Bark beetle outbreaks in western North America: Causes and consequences

    Treesearch

    Barbara Bentz; Jesse Logan; Jim MacMahon; Craig D. Allen; Matt Ayres; Ed Berg; Allan Carroll; Matt Hansen; Jeff Hicke; Linda Joyce; Wallace Macfarlane; Steve Munson; Jose Negron; Tim Paine; Jim Powell; Ken Raffa; Jacques Regniere; Mary Reid; Bill Romme; Steven J. Seybold; Diana Six; Diana Tomback; Jim Vandygriff; Tom Veblen; Mike White; Jeff Witcosky; David Wood

    2009-01-01

    Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded...

  8. Bark beetle outbreaks in western North America: Causes and consequences

    USGS Publications Warehouse

    Bentz, Barbara; Logan, Jesse; MacMahon, James A.; Allen, Craig D.; Ayres, Matt; Berg, Edward E; Carroll, Allan; Hansen, Matt; Hicke, Jeff H.; Joyce, Linda A.; Macfarlane, Wallace; Munson, Steve; Negron, Jose; Paine, Tim; Powell, Jim; Raffa, Kenneth; Regniere, Jacques; Reid, Mary; Romme, Bill; Seybold, Steven J.; Six, Diana; Vandygriff, Jim; Veblen, Tom; White, Mike; Witcosky, Jeff

    2005-01-01

    Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded history.

  9. Localized spatial and temporal attack dynamics of the mountain pine beetle in lodgepole pine. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentz, B.J.; Powell, J.A.; Logan, J.A.

    1996-12-01

    Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and thatmore » verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.« less

  10. Impact of cold on the immune system of burying beetle, Nicrophorus vespilloides (Coleoptera: Silphidae).

    PubMed

    Urbański, Arkadiusz; Czarniewska, Elżbieta; Baraniak, Edward; Rosiński, Grzegorz

    2017-06-01

    Insect overwintering is one of the most astonishing phases of the insect life cycle. Despite vast amounts of knowledge available about the physiological mechanisms of this phenomenon, the impact of stress factors on insect immune system functioning during the winter is still unknown. The aim of this study is to analyze how low temperatures influence the immune system of the beetle Nicrophorus vespilloides. The results show that the beetle's immune system is differently modulated by cold induced in laboratory settings than that which occurs in natural conditions. Among beetles cultured in conditions similar to summer, low temperatures, did not influence the number of circulating haemocytes, phenoloxidase activity, haemocytes morphology, and percentage ratio of haemocyte types. In these beetles, differences were noted only in the ability of haemocytes to perform phagocytosis. Individuals acclimated in natural conditions in autumn had a higher level of humoral response and a different percentage ratio of haemocyte types. During the winter period, the number of haemocytes in the beetles decreased, but the percentage ratio of phagocytic haemocytes increased. Furthermore, we noted an increase of phenoloxidase activity. Our study also showed mitotic divisions of haemocytes in haemolymph collected from burying beetles after cold exposure and from burying beetles collected from natural conditions during autumn and winter. Differences in response to low temperatures in laboratory conditions and the natural environment suggest that the simultaneous presence of other stress factors during winter such as desiccation and starvation have a significant influence on the activity of burying beetle's immune system. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  11. Verbenone decreases whitebark pine mortality throughout a mountain pine beetle outbreak

    USDA-ARS?s Scientific Manuscript database

    Mountain pine beetle [Dendroctonus ponderosae (Hopkins)] outbreaks are killing large numbers of pine trees on millions of hectares in the western U.S. The ranges, impacts and frequencies of mountain pine beetle outbreaks are increasing, perhaps due to climate change. One of the species being impacte...

  12. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae

    PubMed Central

    Mitchell, Robert F.; Hughes, David T.; Luetje, Charles W.; Millar, Jocelyn G.; Soriano-Agatón, Flor; Hanks, Lawrence M.; Robertson, Hugh M.

    2012-01-01

    Odorant receptors (Ors) are a unique family of ligand-gated ion channels and the primary mechanism by which insects detect volatile chemicals. Here, we describe 57 putative Ors sequenced from an antennal transcriptome of the cerambycid beetle Megacyllene caryae (Gahan). The male beetles produce a pheromone blend of nine components, and we functionally characterized Ors tuned to three of these chemicals: receptor McOr3 is sensitive to (S)-2-methyl-1-butanol; McOr20 is sensitive to (2S,3R)-2,3-hexanediol; and McOr5 is sensitive to 2-phenylethanol. McOr3 and McOr20 are also sensitive to structurally-related chemicals that are pheromones of other cerambycid beetles, suggesting that orthologous receptors may be present across many cerambycid species. These Ors are the first to be functionally characterized from any species of beetle and lay the groundwork for understanding the evolution of pheromones within the Cerambycidae. PMID:22504490

  13. Ivermectin alters reproductive success, body condition and sexual trait expression in dung beetles.

    PubMed

    González-Tokman, Daniel; Martínez M, Imelda; Villalobos-Ávalos, Yesenia; Munguía-Steyer, Roberto; Ortiz-Zayas, María Del Rosario; Cruz-Rosales, Magdalena; Lumaret, Jean-Pierre

    2017-07-01

    Ivermectin is a very common parasiticide used in livestock. It is excreted in the dung and has negative effects on survival and reproduction of dung-degrading organisms, including dung beetles. Here we exposed the dung beetle Euoniticellus intermedius to different concentrations of ivermectin in the food and evaluated reproductive success and the expression of traits associated with survival and reproduction under laboratory conditions. It is the first time the effects of ivermectin were evaluated on offspring physiological condition and the expression of a secondary sexual trait. We also registered the number of emerged beetles, sex ratio and body size of emerged adult beetles. Besides reducing the number of emerged beetles and body size, as found in the same and other insects, ivermectin at high doses reduced muscle mass while at intermediate doses it increased lipid mass. Ivermectin changed offspring sex ratio and at high doses increased the size of male horn, which is an important trait defining the male mating success. Our results highlight the importance of regulating parasiticide usage in livestock in order to maintain ecosystem services provided by dung beetles and confirm that contaminants impose new environmental conditions that not only impact on wild animal survival, but also on evolutionary processes such as sexual selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch).

    PubMed

    Saremba, Brett M; Tymm, Fiona J M; Baethke, Kathy; Rheault, Mark R; Sherif, Sherif M; Saxena, Praveen K; Murch, Susan J

    2017-05-04

    American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses.

  15. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch)

    PubMed Central

    Saremba, Brett M.; Tymm, Fiona J. M.; Baethke, Kathy; Rheault, Mark R.; Sherif, Sherif M.; Saxena, Praveen K.; Murch, Susan J.

    2017-01-01

    ABSTRACT American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses. PMID:28448744

  16. Pulpability of beetle-killed spruce. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, G.M.; Bormett, D.W.; Sutherland, N.R.

    1996-08-01

    Infestation of the Dendroctonus rufipennis beetle has resulted in large stands of dead and dying timber on the Kenai Peninsula in Alaska. Tests were conducted to evaluate the value of beetle-killed spruce as pulpwood. The results showed that live and dead spruce wood can be pulped effectively. The two least deteriorated classes and the most deteriorated class of logs had similar characteristics when pulped; the remaining class had somewhat poorer pulpability.

  17. The Mexican pine beetle, dendroctonus maxicanus: first recorded in the United States and co-occurrence with the southern pine beetle - dendroctonus frontalis (coleoptera: scolytidae or curculionidae: scolytinae)

    Treesearch

    John C. Moser; Bobbe A. Fitzgibbon; Kier D. Klepzig

    2005-01-01

    The Mexican pine beetle (XPB) Dendroctonus mexicanus, is recorded here for the first time as a new introduction for the United States (US). Individuals of XPB and its sibling species, the southern pine beetle (SPB) Dendroctonus frontalis, were found infesting the same logs of Chihuahua pine, Pinus...

  18. A Variable-Instar Climate-Driven Individual Beetle-Based Phenology Model for the Invasive Asian Longhorned Beetle (Coleoptera: Cerambycidae).

    PubMed

    Trotter, R Talbot; Keena, Melody A

    2016-12-01

    Efforts to manage and eradicate invasive species can benefit from an improved understanding of the physiology, biology, and behavior of the target species, and ongoing efforts to eradicate the Asian longhorned beetle (Anoplophora glabripennis Motschulsky) highlight the roles this information may play. Here, we present a climate-driven phenology model for A. glabripennis that provides simulated life-tables for populations of individual beetles under variable climatic conditions that takes into account the variable number of instars beetles may undergo as larvae. Phenology parameters in the model are based on a synthesis of published data and studies of A. glabripennis, and the model output was evaluated using a laboratory-reared population maintained under varying temperatures mimicking those typical of Central Park in New York City. The model was stable under variations in population size, simulation length, and the Julian dates used to initiate individual beetles within the population. Comparison of model results with previously published field-based phenology studies in native and invasive populations indicates both this new phenology model, and the previously published heating-degree-day model show good agreement in the prediction of the beginning of the flight season for adults. However, the phenology model described here avoids underpredicting the cumulative emergence of adults through the season, in addition to providing tables of life stages and estimations of voltinism for local populations. This information can play a key role in evaluating risk by predicting the potential for population growth, and may facilitate the optimization of management and eradication efforts. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  19. Mountain pine beetle in high-elevation five-needle white pine ecosystems

    Treesearch

    Barbara Bentz; Elizabeth Campbell; Ken Gibson; Sandra Kegley; Jesse Logan; Diana Six

    2011-01-01

    Across western North America mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae), populations are growing at exponential rates in pine ecosystems that span a wide range of elevations. As temperature increased over the past several decades, the flexible, thermally-regulated life-history strategies of mountain pine beetle have allowed...

  20. Pheromones in White Pine Cone Beetle, Conophthorus coniperdu (Schwarz) (Coleoptera: Scolytidae)

    Treesearch

    Goran Birgersson; Gary L. DeBarr; Peter de Groot; Mark J. Dalusky; Harold D. Pierce; John H. Borden; Holger Meyer; Wittko Francke; Karl E. Espelie; C. Wayne Berisford

    1995-01-01

    Female white pine cone beetles, Conophrhorus coniperda, attacking second-year cones of eastern white pine, Pinus strobus L., produced a sex-specific pheromone that attracted conspecific males in laboratory bioassays and to field traps. Beetle response was enhanced by host monoterpenes. The female-produced compound was identified in...

  1. Optimal Level of Expenditure to Control the Southern Pine Beetle

    Treesearch

    Joseph E. de Steiguer; Roy L. Hedden; John M. Pye

    1987-01-01

    Optimal level of expenditure to control damage to commercial timber stands by the southern pine beetle was determined by models that simulated and analyzed beetle attacks during a typical season for 11 Southern States. At a real discount rate of 4 percent, maximized net benefits for the Southern region are estimated at about $50 million; at 10 percent, more than $30...

  2. Hidden in Plain sight: synthetic pheromone misleads beetles, protects trees

    Treesearch

    Paul Meznarich; Robert Progar

    2015-01-01

    In the last decade, pine forests throughout much of the western United States have been ravaged by the mountain pine beetle (Dendroctonus ponderosae). This bark beetle is native to the United States and has been responsible for massive tree kills in the past. The current outbreak, however, has been notably severe and wide ranging and the effects have been more dramatic...

  3. Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response

    Treesearch

    Charles C. Rhoades; James H. McCutchan; Leigh A. Cooper; David Clow; Thomas M. Detmer; Jennifer S. Briggs; John D. Stednick; Thomas T. Veblen; Rachel M. Ertz; Gene E. Likens; William M. Lewis

    2013-01-01

    A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg�ha�y), disturbance of...

  4. The role of the sun in the celestial compass of dung beetles

    PubMed Central

    Dacke, M.; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day. PMID:24395963

  5. The role of the sun in the celestial compass of dung beetles.

    PubMed

    Dacke, M; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day.

  6. Longevity and viability of Taenia solium eggs in the digestive system of the beetle Ammophorus rubripes.

    PubMed

    Gomez-Puerta, Luis Antonio; Lopez-Urbina, Maria Teresa; Garcia, Hector Hugo; Gonzalez, Armando Emiliano

    2014-03-01

    The present study evaluated the capacity of Ammophorus rubripes beetles to carry Taenia solium eggs, in terms of duration and viability of eggs in their digestive system. One hundred beetles were distributed into five polyethylene boxes, and then they were infected with T. solium eggs. Gravid proglottids of T. solium were crushed and then mixed with cattle feces. One gram of this mixture was placed in each box for 24 hours, after which each group of beetles was transferred into a new clean box. Then, five beetles were dissected every three days. Time was strongly associated with viability (r=0.89; P<0.001) and the calculated time to cero viability is 36 days. The eggs in the intestinal system of each beetle were counted and tested for viability. Taenia solium eggs were present in the beetle's digestive system for up to 39 days (13th sampling day out of 20), gradually reducing in numbers and viability, which was 0 on day 36 post-infection. Egg viability was around 40% up to day 24 post-infection, with a median number of eggs of 11 per beetle at this time. Dung beetles may potentially contribute towards dispersing T. solium eggs in endemic areas.

  7. Long-term dynamics of leafy spurge (Euphorbia esula) and its biocontrol agent, flea beetles in the genus Aphthona

    USGS Publications Warehouse

    Larson, D.L.; Grace, J.B.; Larson, J.L.

    2008-01-01

    Three flea beetle species (Aphthona spp.), first introduced into North America in 1988, have come to be regarded as effective biological control organisms for leafy spurge (Euphorbia esula). The black flea beetles (Aphthona lacertosa and A. czwalinae) in particular have been shown to cause reductions in leafy spurge stem counts in the northern Great Plains, while the brown flea beetle (A. nigriscutis) has persisted and spread, but has not been found to be as effective at controlling leafy spurge. The ability of black flea beetles to control leafy spurge in any given year, however, has been found to vary. To better understand the long-term effects of flea beetle herbivory on leafy spurge, we monitored stem counts of leafy spurge and numbers of black and brown flea beetles at three sites on two National Wildlife Refuges in east-central North Dakota, USA, from 1998 to 2006. Brown flea beetle numbers were observed to be negligible on these sites. Over the 9 years of the study, black flea beetles were seen to spread over the three study sites and leafy spurge stem counts declined substantially on two of the three sites. Even at low densities of spurge, black flea beetle populations persisted, a necessary prerequisite for long-term control. We used structural equation models (SEM) to assess the yearly effects of black flea beetles, soil texture, and refuge site on leafy spurge stem counts over this time period. We then used equations developed from the SEM analysis to explore flea beetle-leafy spurge dynamics over time, after controlling for soil texture and refuge. Yearly effect strength of black flea beetles on leafy spurge was found to be modest, largely owing to substantial spatial variability in control. However, simulation results based on prediction coefficients revealed leafy spurge to be highly responsive to increases in flea beetle populations on average.

  8. Wood-destroying Beetle Treatment Incidence in Arkansas and Georgia During 1962 and 1967 With Estimated Losses Caused by Beetles for II Southern States During 1970

    Treesearch

    Lonnie H. Williams; Richard V. Smythe

    1978-01-01

    Estimates derived from 1962 and 1967 State regulatory records indicate that as many as 53,000 treatments for wood-destroying beetles were performed in 11 Southern States in 1970. Cost of these treatments was probably about $4.9 million. With inflation and the fact that beetles can no longer be treated in combination with termite treatments, 1976 losses were estimated...

  9. Monitoring and risk assessment of the spruce bark beetle, Ips typographus

    Treesearch

    S. Netherer; J. Pennerstorfer; P. Baier; E. Fuhrer; A. Schopf

    2003-01-01

    A model describing development of the spruce bark beetle, Ips typographus, combines topo-climatic aspects of the terrain with eco-physiological aspects of the bark beetle. By correlating air temperature and solar irradiation measured at a reference station, along with topographic data and microclimatic conditions of terrain plots, topo-climatic...

  10. Dual-Color Click Beetle Luciferase Heteroprotein Fragment Complementation Assays

    PubMed Central

    Villalobos, Victor; Naik, Snehal; Bruinsma, Monique; Dothager, Robin S.; Pan, Mei-Hsiu; Samrakandi, Mustapha; Moss, Britney; Elhammali, Adnan; Piwnica-Worms, David

    2010-01-01

    Summary Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically-relevant time scales. Herein we describe a novel set of reversible, multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discreet pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a novel candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells. PMID:20851351

  11. Evidence of an aggregation pheromone in the flea beetle,Phyllotreta Cruciferae (Goeze) (Coleoptera: Chrysomelidae).

    PubMed

    Peng, C; Weiss, M J

    1992-06-01

    Laboratory olfactometer bioassays and field trapping experiments showed that the flea beetle,Phyllotreta cruciferae (Goeze), was highly attracted by oilseed rape(Brassica napus L.) when flea beetles were on the plant. This attraction was mediated by a flea beetle-produced aggregation pheromone based upon: (1) Oilseed rape damaged mechanically, or byP. cruciferae, or by diamondback moth,Plutella xylostella (L.), did not attractP. cruciferae. (2) Contact with the plants or feeding was required for the production of aggregation pheromone because oilseed rape alone was not attractive when separated from flea beetles by a screen. (3) Equal numbers of males and females were attracted.

  12. Management of Chinese Rose Beetle (Adoretus sinicus) Adults Feeding on Cacao (Theobroma cacao) Using Insecticides

    PubMed Central

    Spafford, Helen; Ching, Alexander; Manley, Megan; Hardin, Chelsea; Bittenbender, Harry

    2016-01-01

    The Chinese rose beetle (Adoretus sinicus Burmeister (Coleoptera: Scarabaeidae)) is an introduced, widely-established pest in Hawai’i. The adult beetles feed on the leaves of cacao (Theobroma cacao L.), which can lead to defoliation and even death of young trees. We evaluated the impact of five commercially available products with different active ingredients (imidacloprid, azadirachtin, Beauveria bassiana (Bals.-Criv.) Vuill., kaolin clay, and pyrethrin) and the presence or absence of weed mat cover in reducing adult beetle feeding on sapling cacao in the field. The use of weed mat cover reduced feeding damage compared to the untreated control, as did foliar application of imidacloprid, azadirachtin, and B. bassiana. In the laboratory, field-collected adult beetles were presented cacao leaf samples dipped in one of the five products and compared to a control. Beetles exposed to pyrethrin died rapidly. Among the other treatments, only exposure to imidacloprid significantly reduced survival relative to the control. Beetles fed very little on leaf samples with azadirachtin but their longevity was not significantly reduced. Imidacloprid, azadirachtin, and weed mat application had the most promise for reducing adult Chinese rose beetle feeding damage in young cacao and deserve further investigation for successful management of this significant pest. PMID:27348004

  13. Effect of verbenone on five species of bark beetles (Coleoptera: Scolytidae) in Lodgepole pine forests

    Treesearch

    B. Staffan Lindren; Daniel R. Miller

    2002-01-01

    The response by five species of bark beetles to a range of verbenone doses were tested in bioassays using Lindgren funnel traps baited with attractant semiochemicals. The objective was to determine how these bark beetles respond to verbenone, a purported anti-aggregation pheromone of several economically significant bark beetle species. Catches of Dendroctonus...

  14. Hemlock woolly adelgid phenology and predacious beetle community on Japanese hemlocks

    Treesearch

    Shigehiko Shiyake; Yorio Miyatake; Michael Montgomery; Ashley Lamb

    2008-01-01

    Monthly samples of the hemlock woolly adelgid (HWA), Adelges tsugae, and predatory beetles were taken from Tsuga sieboldii near the border of Osaka and Kyoto prefectures. The beetles were collected by sweeping the canopy up to 5 meters height with nets. The phenology of HWA life stages were monitored by collecting branches and...

  15. Fire-injured ponderosa pine provide a pulsed resource for bark beetles

    Treesearch

    Ryan S. Davis; Sharon Hood; Barbara J. Bentz

    2012-01-01

    Bark beetles can cause substantial mortality of trees that would otherwise survive fire injuries. Resin response of fire-injured northern Rocky Mountain ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and specific injuries that contribute to increased bark beetle attack susceptibility and brood production are unknown. We monitored ponderosa pine...

  16. Protected by fumigants: beetle perfumes in antimicrobial defense.

    PubMed

    Gross, Jürgen; Schumacher, Kerstin; Schmidtberg, Henrike; Vilcinskas, Andreas

    2008-02-01

    Beetles share with other eukaryotes an innate immune system that mediates endogenous defense against pathogens. In addition, larvae of some taxa produce fluid exocrine secretions that contain antimicrobial compounds. In this paper, we provide evidence that larvae of the brassy willow leaf beetle Phratora vitellinae constitutively release volatile glandular secretions that combat pathogens in their microenvironment. We identified salicylaldehyde as the major component of their enveloping perfume cloud, which is emitted by furrow-shaped openings of larval glandular reservoirs and which inhibits in vitro the growth of the bacterial entomopathogen Bacillus thuringiensis. The suggested role of salicylaldehyde as a fumigant in exogenous antimicrobial defense was confirmed in vivo by its removal from glandular reservoirs. This resulted in an enhanced susceptibility of the larvae to infection with the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae. Consequently, we established the hypothesis that antimicrobial defense in beetles can be expanded beyond innate immunity to include external disinfection of their microenvironment, and we report for the first time the contribution of fumigants to antimicrobial defense in animals.

  17. Lunar orientation in a beetle.

    PubMed

    Dacke, Marie; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J

    2004-02-22

    Many animals use the sun's polarization pattern to orientate, but the dung beetle Scarabaeus zambesianus is the only animal so far known to orientate using the million times dimmer polarization pattern of the moonlit sky. We demonstrate the relative roles of the moon and the nocturnal polarized-light pattern for orientation. We find that artificially changing the position of the moon, or hiding the moon's disc from the beetle's field of view, generally did not influence its orientation performance. We thus conclude that the moon does not serve as the primary cue for orientation. The effective cue is the polarization pattern formed around the moon, which is more reliable for orientation. Polarization sensitivity ratios in two photoreceptors in the dorsal eye were found to be 7.7 and 12.9, similar to values recorded in diurnal navigators. These results agree with earlier results suggesting that the detection and analysis of polarized skylight is similar in diurnal and nocturnal insects.

  18. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    PubMed Central

    Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05–0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research. PMID:26728164

  19. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    NASA Astrophysics Data System (ADS)

    Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  20. The role of dung beetles in reducing greenhouse gas emissions from cattle farming.

    PubMed

    Slade, Eleanor M; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L

    2016-01-05

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results, [corrected] and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  1. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated araceae.

    PubMed

    Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard

    2012-12-01

    Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.

  2. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest.

    Treesearch

    S. Horn; M.D. Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles...

  3. Pre-treatment assemblages of wood-boring beetles (Coleoptera: Buprestidae, Cerambycidae) of the hardwood ecosystem experiment

    Treesearch

    Jeffrey D. Holland; John T. Shukle; Hossam Eldien M. Abdel Moniem; Thomas W. Mager; Kapil R. Raje; Kyle Schnepp; Shulin Yang

    2013-01-01

    Longhorned beetles are a diverse and important group of insects in forest ecosystems; several species attack weakened or stressed trees, relatively few attack healthy trees, and most species use only dead and decomposing wood. We surveyed longhorned beetles and metallic wood-boring beetles using four different types of traps at 36 Hardwood Ecosystem Experiment (Indiana...

  4. Floral characteristics affect susceptibility of hybrid tea roses, Rosa x hybrida, to Japanese beetles (Coleoptera: Scarabaeidae).

    PubMed

    Held, David W; Potter, Daniel A

    2004-04-01

    The Japanese beetle, Popillia japonica Newman, feeds on the flowers and foliage of roses. Rosa x hybrida. Beetles attracted to roses land almost exclusively on the flowers. This study evaluated characteristics of rose flowers including color, size, petal count and fragrance, as well as height of plants and blooms within plant as factors in attractiveness to Japanese beetles. Artificial flowers that had been painted to match the spectral reflectance of real blooms were attached to potted nonflowering rose plants in the field and the number of beetles that landed on each model was recorded. More beetles landed on the yellow- and white-colored flower models than on the five other bloom colors that were tested. Large (15 cm diameter) yellow flower models attracted more beetles than did smaller (8 cm diameter) yellow models. There was no difference in beetle response to yellow flower models of the same size that differed in bloom complexity (i.e., number of petals). Experiments in which blooming rose plants were elevated above controls, or in which flower models were placed at different heights within plant canopies, failed to support the hypothesis that height per se accounts for beetles' attraction to flowers over leaves. Attractiveness of selected rose cultivars that varied in fragrance and flower color also was evaluated in the field. Yellow-flowered cultivars were more susceptible than those with red flowers, regardless of fragrance intensity as rated by breeders. Growing cultivars of roses that have relatively dark and small-sized blooms may have some benefit in reducing Japanese beetles' attraction to roses.

  5. Effect of temperature on the occurrence and distribution of colorado potato beetle (Coleoptera: Chrysomelidae) in China.

    PubMed

    Li, Chao; Liu, Huai; Huang, Fangneng; Cheng, Deng-Fa; Wang, Jin-Jun; Zhang, Yun-Hui; Sun, Jin-Rui; Guo, Wen-Chao

    2014-04-01

    Colorado potato beetle, Leptinotarsa decemlineata (Say), is the most destructive pest of potato in many countries of the world. It first invaded China from Kazakhstan in 1990s and now is a major pest of potato in many areas of Xinjiang Uygur Autonomous Region (Xinjiang). The objective of this study was to determine the effect of temperature on the spread of Colorado potato beetle in China after its invasion. Cold temperature in winter (December) and high temperature in summer (July) were analyzed in accordance with the absence and presence of Colorado potato beetle in Xinjiang. The boundary between the absence and presence of Colorado potato beetle in Xinjiang nearly coincided with the -8°C isotherm of monthly mean minimum temperature in winter. The stress of the low temperature in winter for Colorado potato beetle basically disappeared in the southeastern Hexi Corridor in Gansu Province of China, suggesting that the Hexi Corridor is the best channel to prevent any long-distance invasions of Colorado potato beetle into the Central Plains region. However, in Turpan City in northeastern Xinjiang, the extremely hot weather in the summer prevents the local colonization of Colorado potato beetle. Furthermore, according to our monitoring, high temperature in summer also limited Colorado potato beetle to diffuse eastward through Turpan. Results of this study suggest that it is essential to strengthen inspection and quarantine measures to prevent any artificial transmissions of Colorado potato beetle spreading eastward and thus to ensure the sustainable production of potato and other Solanaceae crops in northwest regions of China.

  6. Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Regional Dispersion and Relationship With Wheat Stand Denseness.

    PubMed

    Reisig, Dominic D; Bacheler, Jack S; Herbert, D Ames; Heiniger, Ron; Kuhar, Thomas; Malone, Sean; Philips, Chris; Tilley, M Scott

    2017-06-01

    Cereal leaf beetle, Oulema melanopus L., is a pest of small grains and the literature conflicts on whether it is more abundant in sparse or dense stands of wheat. Our objectives were to determine the impact of stand denseness on cereal leaf beetle abundance and to investigate the regional dispersion of cereal leaf beetles across North Carolina and Virginia. One-hundred twenty fields were sampled across North Carolina and Virginia during 2011 for stand denseness, and cereal leaf beetle eggs, larvae, and adults. Two small-plot wheat experiments were planted in North Carolina using a low and a high seeding rate. Main plots were split, with one receiving a single nitrogen application and one receiving two. Egg density, but not larva or adult density, was positively correlated with stand denseness in the regional survey. Furthermore, regional spatial patterns of aggregation were noted for both stand denseness and egg number. In the small-plot experiments, seeding rate influenced stand denseness, but not nitrogen application. In one experiment, egg densities per unit area were higher in denser wheat, while in the other experiment, egg densities per tiller were lower in denser wheat. Larvae were not influenced by any factor. Overall, there were more cereal leaf beetle eggs in denser wheat stands. Previous observations that sparse stands of wheat are more prone to cereal leaf beetle infestation can be attributed to the fact that sparser stands have fewer tillers, which increases the cereal leaf beetle to tiller ratio compared with denser stands. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    PubMed

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  8. Is self-thinning in ponderosa pine ruled by Dendroctonus bark beetles?

    Treesearch

    William W. Oliver

    1995-01-01

    Stand density of even-aged stands of ponderosa pine in California seems to be ruled by Dendroctonus bark beetles, rather than the suppressioninduced mortality common for other tree species. Size-density trajectories were plotted for 155 permanent plots in both plantations and natural stands. Bark beetle kills created a limiting Stand Density Index of...

  9. Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson

    NASA Astrophysics Data System (ADS)

    Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth

    2012-04-01

    One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.

  10. Diversity abundance and seasonality of ambrosia beetles (Coleoptera: curculionida) in Southern Mississippi

    USDA-ARS?s Scientific Manuscript database

    A survey was undertaken in 2010 to assess the makeup of the ambrosia beetle (Coleoptera: Curculionidae) community at two research sites in South Mississippi. Inexpensive beetle traps were constructed and fitted with ethanol lures, with bi-weekly collections made from March through November. The gr...

  11. Influence of elevation on bark beetle community structure in ponderosa pine stands of northern Arizona

    Treesearch

    Andrew Miller; Kelly Barton; Joel McMillin; Tom DeGomez; Karen Clancy; John Anhold

    2008-01-01

    (Please note, this is an abstract only) Bark beetles killed more than 20 million ponderosa pine trees in Arizona during 2002-2004. Historically, bark beetle populations remained endemic and ponderosa pine mortality was limited to localized areas in Arizona. Consequently, there is a lack of information on bark beetle community structure in ponderosa pine stands of...

  12. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest

    Treesearch

    Scott Horn; Michael Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles were captured in significantly...

  13. Evaluating Pyemotes dryas (Vitzthum 1923)(Acari: Pyemotidae) as a parasite of the southern pine beetle

    Treesearch

    John C. Moser; B. Kielczewski; J. Wisniewski; S. Balazy

    1978-01-01

    Populations of Pyemotes dryas (Vitzthum 1923) from Poland were bioassayed for potential use in the biological control of the southern pine beetle in the United States. The mite apparently rides and attacks a wide range of European bark beetles that attack conifers and readily consumes brood of the southern pine beetle. However, it is not phoretic on...

  14. Tiger beetles pursue prey using a proportional control law with a delay of one half-stride.

    PubMed

    Haselsteiner, Andreas F; Gilbert, Cole; Wang, Z Jane

    2014-06-06

    Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s(-1), is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier.

  15. Long-term dynamics of leafy spurge (Euphorbia esula) and its biocontrol agent, flea beetles in the genus Aphthona

    USGS Publications Warehouse

    Larson, Diane L.; Grace, James B.; Larson, Jennifer L.

    2008-01-01

    Three flea beetle species (Aphthona spp.), first introduced into North America in 1988, have come to be regarded as effective biological control organisms for leafy spurge (Euphorbia esula). The black flea beetles (Aphthona lacertosa and A. czwalinae) in particular have been shown to cause reductions in leafy spurge stem counts in the northern Great Plains, while the brown flea beetle (A. nigriscutis) has persisted and spread, but has not been found to be as effective at controlling leafy spurge. The ability of black flea beetles to control leafy spurge in any given year, however, has been found to vary. To better understand the long-term effects of flea beetle herbivory on leafy spurge, we monitored stem counts of leafy spurge and numbers of black and brown flea beetles at three sites on two National Wildlife Refuges in east-central North Dakota, USA, from 1998 to 2006. Brown flea beetle numbers were observed to be negligible on these sites. Over the 9 years of the study, black flea beetles were seen to spread over the three study sites and leafy spurge stem counts declined substantially on two of the three sites. Even at low densities of spurge, black flea beetle populations persisted, a necessary prerequisite for long-term control. We used structural equation models (SEM) to assess the yearly effects of black flea beetles, soil texture, and refuge site on leafy spurge stem counts over this time period. We then used equations developed from the SEM analysis to explore flea beetle–leafy spurge dynamics over time, after controlling for soil texture and refuge. Yearly effect strength of black flea beetles on leafy spurge was found to be modest, largely owing to substantial spatial variability in control. However, simulation results based on prediction coefficients revealed leafy spurge to be highly responsive to increases in flea beetle populations on average.

  16. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    PubMed Central

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  17. Trophic habits of mesostigmatid mites associated with bark beetles in Mexico

    Treesearch

    M. Patricia Chaires-Grijalva; Edith G. Estrada-Venegas; Armando Equihua-Martinez; John C. Moser; Stacy R. Blomquist

    2016-01-01

    Samples of bark and logs damaged by bark beetles were collected from 16 states of Mexico from 2007 to 2012. Fifteen bark beetle species were found within the bark and log samples and were examined for phoretic mites and arthropod associates. Thirty-three species of mesostigmatid mites were discovered within the samples. They were identified in several trophic guilds...

  18. Climate change and the outbreak ranges of two North American bark beetles

    Treesearch

    David W. Williams; Andrew M. Liebhold

    2002-01-01

    One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large-scale disturbances to pine forests in...

  19. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle

    Treesearch

    Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres

    2005-01-01

    Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis...

  20. Myrmeconycha new genus: the first myrmecophilous flea beetle (Coleoptera: Chrysomelidae: Galerucinae: Alticini)

    USDA-ARS?s Scientific Manuscript database

    The first myrmecophilous flea beetle genus (Myrmeconycha) with four new species (M. erwini – Ecuador, M. gordoni - Brazil, M. pakaluki - Panama and M. pheidole - Costa Rica) is described and illustrated. It is compared with Disonychine flea beetles and may be easily differentiated based on the exte...

  1. Evaluation of cucurbitacin-based gustatory stimulant to facilitate cucumber beetle (Coleoptera: Chrysomelidae) management with foliar insecticides in melons.

    PubMed

    Pedersen, Andrew B; Godfrey, Larry D

    2011-08-01

    The bitter plant-derived compounds cucurbitacins are known to stimulate feeding of adult cucumber beetles (Coleoptera: Chrysomelidae). A cucurbitacin-based gustatory stimulant applied as a flowable bait combined with either spinosad or carbaryl was compared with foliar sprays of spinosad and carbaryl for controlling two cucumber beetle species (Diabrotica undecimpunctata undecimpunctata Mannerheim and Acalymma trivittatum Mannerheim) in honeydew melons (Cucumis melo L.). Field studies were conducted on the University of California-Davis plant pathology farm in 2008 and 2009. Beetle densities after applications and fruit damage from beetle feeding were compared among treatments. In addition, beetle survival was compared within field cages placed over the treated foliage infested with beetles. Using all three measures of efficacy, we determined that the addition of cucurbitacin bait had no effect on the level of cucumber beetle control with carbaryl in either 2008 or 2009. In both years, spinosad did not significantly reduce cucumber beetle densities in either field cages or field plots and did not reduce fruit damage relative to the untreated control. The addition of the bait to spinosad did not improve its efficacy. A laboratory bioassay of the spinosad formulation used in the field showed it had significant lethal effects on adults of both cucumber beetle species. Results indicated that the bait formulation used did not improve cucumber beetle control but may benefit from the addition of floral attractants or using a different type of cucurbitacin.

  2. Raising Beetles in a Classroom.

    ERIC Educational Resources Information Center

    Hackett, Erla

    This guide is designed to provide elementary school teachers with a harmless, inexpensive, clean, odorless, and easy-to-care-for insect-rearing project for the classroom. The following topics are included: (1) instructions for the care and feeding of the beetle larvae; (2) student activities for observing larval characteristics and behavior…

  3. Attractiveness of native mammal's feces of different trophic guilds to dung beetles (Coleoptera: Scarabaeinae).

    PubMed

    Bogoni, Juliano A; Hernández, Malva I M

    2014-01-01

    Mammal feces are the primary food and nesting resource for the majority of dung beetle species, and larval development depends on the quantity and quality of that resource. Physiological necessities, competitive interactions, and resource sharing are common and suggest that dung beetles may show preferences for feces of greater nutritional quality, which may in turn impact beetle assemblages and community structure. This study investigated whether attractiveness of dung beetles to different resource (feces) types varies depending on mammal trophic guild and associated nutritional content. This study was conducted in Atlantic Forest fragments in the Parque Estadual da Serra do Tabuleiro, Santa Catarina, Brazil. To evaluate attractiveness, the feces of the carnivore Puma concolor, the omnivores Cerdocyon thous and Sapajus nigritus, and the herbivore Tapirus terrestris were utilized as bait. Dung was collected from zoo animals fed a standard diet. Sampling was performed in triplicate in five areas in the summer of 2013. Four pitfall traps were established in each area, and each trap was baited with one type of mammal feces. Food preference of the species was analyzed by calculating Rodgers' index for cafeteria-type experiments. In total, 426 individuals from 17 species were collected. Rodgers' index showed that omnivorous mammal feces (C. thous) were most attractive to all dung beetle species, although it is known that dung beetles are commonly opportunistic with respect to search for and allocation of food resources. These results suggest that mammal loss could alter competitive interactions between dung beetles. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  4. Flight Period of Mountain Pine Beetle (Coleoptera: Curculionidae) in its Recently Expanded Range.

    PubMed

    Bleiker, K P; Van Hezewijk, B H

    2016-12-01

    The ability to predict key phenological events, such as the timing of flight periods, is useful for the monitoring and management of insect pests. We used empirical data to describe the flight period of mountain pine beetle, Dendroctonus ponderosae Hopkins, in its recently expanded range east of the Rocky Mountains in Canada and developed a degree-day model based on the number of trapped beetles. Data were collected over four degrees of latitude and six years. The main flight period, when the middle 70% of the total number of beetles were caught, started during the second or third week of July, lasted 26 d, and peaked within 2 wk of starting. The best model accounted for 89% of the variation in the data. Mountain pine beetle's flight tended to start later and be more contracted at higher latitudes. The synchrony of mountain pine beetle's flight period in the expanded range appears to be comparable to the limited reports from the historic range, although it may start earlier. This suggests that conditions in the new range are suitable for a coordinated dispersal flight, which is critical for the beetle's strategy of overwhelming tree defenses by attacking en masse. Forest managers can use the model to support operational decisions, e.g., when to impose hauling restrictions to reduce the risk of spread through the transport of infested material, or the time frame for control programs. Understanding the flight period may also improve our ability to assess the response of mountain pine beetle to novel and changing climates in the future. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A Phloem Sandwich Unit for Observing Bark Beetles, Associated Predators, and Parasites

    Treesearch

    Donald N. Kim; Mitchel C. Miller

    1981-01-01

    This paper describes a phloem sandwich that allows observation of parent beetles, their brood, and associates within the inner bark, and permits observation of predator and parasite behavior on the bark surface. The construction of the unit permits the introduction of multiple pairs of beetles into a single sandwich.

  6. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Treesearch

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  7. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    PubMed

    Eidson, Erika L; Mock, Karen E; Bentz, Barbara J

    2018-01-01

    The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  8. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis

    PubMed Central

    Mock, Karen E.; Bentz, Barbara J.

    2018-01-01

    The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks. PMID:29715269

  9. Use of semiochemicals of secondary bark beetles to disrupt spruce beetle attraction and survival in Alaska.

    Treesearch

    Richard A. Werner; Edward H. Holsten

    2002-01-01

    Field experiments using baited multiple-funnel traps and baited felled trees were conducted to test the hypothesis that semiochemicals from secondary species of scolytids could be used to disrupt spruce beetle (Dendroctonus rufipennis (Kirby)) attraction. Semiochemicals from three secondary species of scolytids, (Ips perturbatus...

  10. Log bioassay of residual effectiveness of insecticides against bark beetles

    Treesearch

    Richard H. Smith

    1982-01-01

    Residual effectiveness of nine insecticides applied to bark was tested against western, mountain, and Jeffrey pine beetles. Ponderosa and Jeffrey pine trees were treated and logs cut from them 2 to 13 months later, and bioassayed with the three beetles. The insecticides were sprayed at the rate of 1 gal (3.8 l) per 40- or 80-ft² (3.6 or 7.2 m²) bark surface at varying...

  11. Spruce beetle in the Rockies

    Treesearch

    J. M. Schmid; R. H. Frye

    1977-01-01

    This report summarizes the literature on the spruce beetle in the western United States, primarily in the Rocky Mountains. Information is presented on life history and behavior, host relationships, mortality agents and impacts of infestations. A section on suppression details the current status of chemicals, pheromones, trap trees and silvicultural treatments. The...

  12. Effect of buprofezin on survival of immature stages of Harmonia axyridis, Stethorus punctum picipes (Coleoptera: Coccinellidae), Orius tristicolor (Hemiptera: Anthocoridae), and Geocoris spp. (Hemiptera: Geocoridae).

    PubMed

    James, David G

    2004-06-01

    The effect of buprofezin, a chitin synthesis inhibitor, on development and survival of immature stages of Harmonia axyridis (Pallas), Stethortus punctum picipes Casey, Orius tristicolor (White), Geocoris pallens Stål, and Geocoris punctipes (Say), was examined in a series of laboratory bioassays. Very few H. axyridis larvae (3.1%) treated with buprofezin reached adulthood, although 65% of treated pupae emerged successfully. Buprofezin caused no mortality to eggs of S. punctum picipes but 71.1% of treated early instar larvae failed to complete development. Eighty percent of treated late instars and 92.3% of pupae produced viable adults. Early instar nymphs of O. tristicolor were unaffected by buprofezin, whereas 47.7 and 85% of G. punctipes and G. pallens nymphs, respectively, failed to complete development. Treated eggs of G. pallens hatched successfully. The use of buprofezin in integrated pest management in Washington state wine grapes is discussed.

  13. Tiger beetles pursue prey using a proportional control law with a delay of one half-stride

    PubMed Central

    Haselsteiner, Andreas F.; Gilbert, Cole; Wang, Z. Jane

    2014-01-01

    Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s−1, is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier. PMID:24718454

  14. LONGEVITY AND VIABILITY OF Taenia solium EGGS IN THE DIGESTIVE SYSTEM OF THE BEETLE Ammophorus rubripes

    PubMed Central

    Gomez-Puerta, Luis Antonio; Lopez-Urbina, Maria Teresa; Garcia, Hector Hugo; Gonzalez, Armando Emiliano

    2015-01-01

    The present study evaluated the capacity of Ammophorus rubripes beetles to carry Taenia solium eggs, in terms of duration and viability of eggs in their digestive system. One hundred beetles were distributed into five polyethylene boxes, and then they were infected with T. solium eggs. Gravid proglottids of T. solium were crushed and then mixed with cattle feces. One gram of this mixture was placed in each box for 24 hours, after which each group of beetles was transferred into a new clean box. Then, five beetles were dissected every three days. Time was strongly associated with viability (r=0.89; P<0.001) and the calculated time to cero viability is 36 days. The eggs in the intestinal system of each beetle were counted and tested for viability. Taenia solium eggs were present in the beetle’s digestive system for up to 39 days (13th sampling day out of 20), gradually reducing in numbers and viability, which was 0 on day 36 post-infection. Egg viability was around 40% up to day 24 post-infection, with a median number of eggs of 11 per beetle at this time. Dung beetles may potentially contribute towards dispersing T. solium eggs in endemic areas. PMID:24728368

  15. Diapause and overwintering of two spruce bark beetle species

    PubMed Central

    Hansen, E. Matthew; Schopf, Axel; Ragland, Gregory J.; Stauffer, Christian; Bentz, Barbara J.

    2017-01-01

    Abstract Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology, voltinism and ultimately population growth. We review the literature on diapause and overwintering behaviour of two bark beetle species that affect spruce‐dominated forests in the northern hemisphere, and describe and compare how these strategies can influence population dynamics. The European spruce bark beetle Ips typographus (L.) (Coleoptera, Curculionidae) is the most important forest pest of Norway spruce in Europe. It enters an adult reproductive diapause that might be either facultative or obligate. Obligate diapausing beetles are considered strictly univoltine, entering this dormancy type regardless of environmental cues. Facultative diapausing individuals enter diapause induced by photoperiod, modified by temperature, thus being potentially multivoltine. The spruce beetle Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae) infests all spruce species in its natural range in North America. A facultative prepupal diapause is averted by relatively warm temperatures, resulting in a univoltine life cycle, whereas cool temperatures induce prepupal diapause leading to a semivoltine cycle. An adult obligate diapause in D. rufipennis could limit bi‐ or multivoltinism. We discuss and compare the influence of diapause and overwinter survival on voltinism and population dynamics of these two species in a changing climate and provide an outlook on future research. PMID:28979060

  16. Effect of verbenone on attraction of predatory and woodboring beetles (Coleoptera) to kairomones in Lodgepole pine forests

    Treesearch

    B. Staffan Lindgren; Daniel R. Miller

    2002-01-01

    The response of bark beetle predators and woodboring beetles to the bark beetle anti-aggregation pheromone, verbenone, was tested in the field with multiple-funnel traps baited with attractant kairomones. Catches of the predators Thanasimus undatulus (Say), Enoclerus sphegeus (F.), Enocleris lecontei (Wolcott) (...

  17. Inquiry-based Investigation in Biology Laboratories: Does Neem Provide Bioprotection against Bean Beetles?

    ERIC Educational Resources Information Center

    Pearce, Amy R.; Sale, Amanda Lovelace; Srivatsan, Malathi; Beck, Christopher W.; Blumer, Lawrence S.; Grippo, Anne A.

    2013-01-01

    We developed an inquiry-based biology laboratory exercise in which undergraduate students designed experiments addressing whether material from the neem tree ("Azadirachta indica") altered bean beetle ("Callosobruchus maculatus") movements and oviposition. Students were introduced to the bean beetle life cycle, experimental…

  18. Potential for biological control of native North American Dendroctonus beetles (Coleoptera: Scolytidae)

    Treesearch

    M.C. Miller; John C. Moser; M. McGregor; J.C. Gregoire; M. Baisier; D.L. Dahlsten; R.A. Werner

    1987-01-01

    Bark beetles of the genus Dendroctonus inflict serious damage in North American coniferous forests. Biological control, which has never been seriously attempted with bark beetles in the United States, should be reconsidered in light of results disclosed here. Impact of indigenous associates is discussed, as well as previous, unsuccessful attempts to...

  19. Effect of increasing temperatures on the distribution of spruce beetle in Engelmann spruce forests of the Interior West, USA

    Treesearch

    R. Justin DeRose; Barbara J. Bentz; James N. Long; John D. Shaw

    2013-01-01

    The spruce beetle (Dendoctronus rufipennis) is a pervasive bark beetle indigenous to spruce (Picea spp.) forests of North America. In the last two decades outbreaks of spruce beetle have increased in severity and extent. Increasing temperatures have been implicated as they directly control beetle populations, potentially inciting endemic populations to build to...

  20. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    PubMed

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  1. Hormesis is induced in the red flour beetle Tribolium castaneum through ingestion of charred toast.

    PubMed

    Grünwald, Stefanie; Niedermeier, Janine; Wenzel, Uwe

    2015-06-01

    Charred foods are generally suspected to exert health threats by providing toxicants, such as acrylamide or polycyclic aromatic hydrocarbons. Using the red flour beetle Tribolium castaneum as a model organism, we tested its survival under heat stress in response to feeding charred toast. Survival of beetles was measured at 42 °C after a pre-feeding phase with flour enriched with increasing concentrations of charred toast. In order to assess the influence of key transcription factors for phase-I and phase-II xenobiotic metabolism, gene homologs for ahr and nrf-2, respectively, were knocked down by the use of RNA interference (RNAi). Beetles fed only charred toast died off much earlier than control beetles fed on flour, whereas beetles fed flour enriched with 5% charred toast survived significantly longer than the control. Both, ahr and nrf-2 proved essential in order to enable the increase in survival by the feeding of 5% charred toast. Moreover, functional loss of ahr and nrf-2 made the beetles hypersensitive versus the feeding of 100% charred toast. Finally, at the transcriptional level, it was shown that RNAi for ahr blocked the inducing activities of charred toast on nrf-2. Our studies suggest a hormetic response of the red flour beetle to feeding of charred toast that causes an increased stress resistance through the activation of ahr and nrf-2. Those adaptations, however, are saturable and accordingly the hormetic effects at increasing concentrations of the toxicants become expended.

  2. Catechol--an oviposition stimulant for cigarette beetle in roasted coffee beans.

    PubMed

    Nagasawa, Atsuhiko; Kamada, Yuji; Kosaka, Yuji; Arakida, Naohiro; Hori, Masatoshi

    2014-05-01

    The cigarette beetle, Lasioderma serricorne, is a serious global pest that preys on stored food products. Larvae of the beetle cannot grow on roasted coffee beans or dried black or green tea leaves, although they oviposit on such products. We investigated oviposition by the beetles on MeOH extracts of the above products. The number of eggs laid increased with an increase in dose of each extract, indicating that chemical factors stimulate oviposition by the beetles. This was especially true for \\ coffee bean extracts, which elicited high numbers of eggs even at a low dose (0.1 g bean equivalent/ml) compared to other extracts. Coffee beans were extracted in hexane, chloroform, 1-butanol, MeOH, and 20% MeOH in water. The number of eggs laid was higher on filter papers treated with chloroform, 1-butanol, MeOH, and 20% MeOH in water extracts than on control (solvent alone) papers. The chloroform extract was fractionated by silica-gel column chromatography. Nine compounds were identified by gas chromatography/mass spectrometry from an active fraction. Of these compounds, only a significant ovipositional response to catechol was observed.

  3. Diesel fuel oil for increasing mountain pine beetle mortality in felled logs

    Treesearch

    S. A. Mata; J. M. Schmid; D. A. Leatherman

    2002-01-01

    Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....

  4. Insecticide dip treatments to prevent walnut twig beetle colonization of black walnut logs

    Treesearch

    Jackson Audley; Adam Taylor; William E. Klingeman; Albert (Bud) Mayfield; Scott W. Myers

    2016-01-01

    The health, sustainability, and commercial viability of eastern black walnut (Juglans nigra) are currently under threat from thousand cankers disease. The disease is caused by an invasive bark beetle species, the walnut twig beetle (Pityophthorus juglandis), and its associated fungal pathogen (Geosmithia morbida...

  5. Concept of an Active Amplification Mechanism in the Infrared Organ of Pyrophilous Melanophila Beetles

    PubMed Central

    Schneider, Erik S.; Schmitz, Anke; Schmitz, Helmut

    2015-01-01

    Jewel beetles of the genus Melanophila possess a pair of metathoracic infrared (IR) organs. These organs are used for forest fire detection because Melanophila larvae can only develop in fire killed trees. Several reports in the literature and a modeling of a historic oil tank fire suggest that beetles may be able to detect large fires by means of their IR organs from distances of more than 100 km. In contrast, the highest sensitivity of the IR organs, so far determined by behavioral and physiological experiments, allows a detection of large fires from distances up to 12 km only. Sensitivity thresholds, however, have always been determined in non-flying beetles. Therefore, the complete micromechanical environment of the IR organs in flying beetles has not been taken into consideration. Because the so-called photomechanic sensilla housed in the IR organs respond bimodally to mechanical as well as to IR stimuli, it is proposed that flying beetles make use of muscular energy coupled out of the flight motor to considerably increase the sensitivity of their IR sensilla during intermittent search flight sequences. In a search flight the beetle performs signal scanning with wing beat frequency while the inputs of the IR organs on both body sides are compared. By this procedure the detection of weak IR signals could be possible even if the signals are hidden in the thermal noise. If this proposed mechanism really exists in Melanophila beetles, their IR organs could even compete with cooled IR quantum detectors. The theoretical concept of an active amplification mechanism in a photon receptor innervated by highly sensitive mechanoreceptors is presented in this article. PMID:26733883

  6. Concept of an Active Amplification Mechanism in the Infrared Organ of Pyrophilous Melanophila Beetles.

    PubMed

    Schneider, Erik S; Schmitz, Anke; Schmitz, Helmut

    2015-01-01

    Jewel beetles of the genus Melanophila possess a pair of metathoracic infrared (IR) organs. These organs are used for forest fire detection because Melanophila larvae can only develop in fire killed trees. Several reports in the literature and a modeling of a historic oil tank fire suggest that beetles may be able to detect large fires by means of their IR organs from distances of more than 100 km. In contrast, the highest sensitivity of the IR organs, so far determined by behavioral and physiological experiments, allows a detection of large fires from distances up to 12 km only. Sensitivity thresholds, however, have always been determined in non-flying beetles. Therefore, the complete micromechanical environment of the IR organs in flying beetles has not been taken into consideration. Because the so-called photomechanic sensilla housed in the IR organs respond bimodally to mechanical as well as to IR stimuli, it is proposed that flying beetles make use of muscular energy coupled out of the flight motor to considerably increase the sensitivity of their IR sensilla during intermittent search flight sequences. In a search flight the beetle performs signal scanning with wing beat frequency while the inputs of the IR organs on both body sides are compared. By this procedure the detection of weak IR signals could be possible even if the signals are hidden in the thermal noise. If this proposed mechanism really exists in Melanophila beetles, their IR organs could even compete with cooled IR quantum detectors. The theoretical concept of an active amplification mechanism in a photon receptor innervated by highly sensitive mechanoreceptors is presented in this article.

  7. Evidence for a Phe-Gly-Leu-amide-like allatostatin in the beetle Tenebrio molitor.

    PubMed

    Elliott, Karen L; Chan, Kuen Kuen; Stay, Barbara

    2010-03-01

    The allatostatins (ASTs) with Phe-Gly-Leu-amide C-terminal sequence are multifunctional neuropeptides discovered as inhibitors of juvenile hormone (JH) synthesis by corpora allata (CA) of cockroaches. Although these ASTs inhibit JH synthesis only in cockroaches, crickets, termites and locusts, isolation of peptides or of cDNA/genomic DNA or analysis of genomes indicates their occurrence in many orders of insects with the exception of coleopterans. The gene for these ASTs has not been found in the genome of the red flour beetle Tribolium castaneum (Family Tenebrionidae). Yet, in view of widespread occurrence of these peptides in insects, crustaceans and nematodes, they would be expected to occur in beetles. This study provides evidence for the presence of FGLa-like ASTs in the tenebrionid beetle, Tenebrio molitor, and scarabid beetle, Popillia japonica. Extract of brain from both beetles inhibited JH synthesis by cockroach CA dose dependently and reversibly. 20 brain equivalents of T. molitor and P. japonica extracts inhibited JH synthesis 64+/-5 and 65+/-0.6% respectively. Antibody against cockroach allatostatin (Diploptera punctata AST-7) used in an enzyme-linked immunosorbent assay reacted with brain extract of these beetles. Antibody against D. punctata AST-5 localized FGLa-like ASTs in the brain and subesophageal ganglion of T. molitor and P. japonica. In addition, pretreatment of T. molitor brain extract with anti-D. punctata AST-5 reduced the inhibition of JH synthesis and pretreatment of anti-D. punctata AST-5 with D. punctata AST-5 diminished the immunoreactivity of the antibody. Thus we predict that FGLa-like allatostatins will be found in beetles. (c) 2009 Elsevier Inc. All rights reserved.

  8. Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus.

    PubMed

    Endoh, Rikiya; Suzuki, Motofumi; Okada, Gen; Takeuchi, Yuko; Futai, Kazuyoshi

    2011-07-01

    Isolations were made to determine the fungal symbionts colonizing Platypus quercivorus beetle galleries of dead or dying Quercus laurifolia, Castanopsis cuspidata, Quercus serrata, Quercus crispula, and Quercus robur. For these studies, logs from oak wilt-killed trees were collected from Kyoto Prefecture, Japan. Fungi were isolated from the: (1) entrances of beetle galleries, (2) vertical galleries, (3) lateral galleries, and (4) the larval cradle of P. quercivorus in each host tree. Among the fungus colonies which appeared on YM agar plates, 1,219 were isolated as the representative isolates for fungus species inhabiting in the galleries based on their cultural characteristics. The validity of the visual classification of the fungus colonies was checked and if necessary properly corrected using microsatellite-primed PCR fingerprints. The nucleotide sequence of the D1/D2 region of the large subunit nuclear rRNA gene detected 38 fungus species (104 strains) of which three species, i.e., Candida sp. 3, Candida kashinagacola (both yeasts), and the filamentous fungus Raffaelea quercivora were isolated from all the tree species. The two yeasts were most prevalent in the interior of galleries, regardless of host tree species, suggesting their close association with the beetle. A culture-independent method, terminal restriction fragment length polymorphism (T-RFLP) analysis was also used to characterize the fungus flora of beetle galleries. T-RFLP patterns showed that yeast species belonging to the genus Ambrosiozyma frequently occurred on the gallery walls along with the two Candida species. Ours is the first report showing the specific fungi inhabiting the galleries of a platypodid ambrosia beetle.

  9. Predicting live and dead basal area in bark beetle-affected forests from discrete-return LiDAR

    Treesearch

    Andrew T. Hudak; Ben Bright; Jose Negron; Robert McGaughey; Hans-Erik Andersen; Jeffrey A. Hicke

    2012-01-01

    Recent bark beetle outbreaks in western North America have been widespread and severe. High tree mortality due to bark beetles affects the fundamental ecosystem processes of primary production and decomposition that largely determine carbon balance (Kurz et al. 2008, Pfeifer et al. 2011, Hicke et al. 2012). Forest managers need accurate data on beetle-induced tree...

  10. The alternative Pharaoh approach: stingless bees mummify beetle parasites alive

    NASA Astrophysics Data System (ADS)

    Greco, Mark K.; Hoffmann, Dorothee; Dollin, Anne; Duncan, Michael; Spooner-Hart, Robert; Neumann, Peter

    2010-03-01

    Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers ( Trigona carbonaria) immediately mummify invading adult small hive beetles ( Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.

  11. Ancient symbiosis confers desiccation resistance to stored grain pest beetles.

    PubMed

    Engl, Tobias; Eberl, Nadia; Gorse, Carla; Krüger, Theresa; Schmidt, Thorsten H P; Plarre, Rudy; Adler, Cornel; Kaltenpoth, Martin

    2018-04-01

    Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities. © 2017 John Wiley & Sons Ltd.

  12. Rainfastness of insecticides used to control Japanese beetle in blueberries.

    PubMed

    Hulbert, Daniel; Reeb, Pablo; Isaacs, Rufus; Vandervoort, Christine; Erhardt, Susan; Wise, John C

    2012-10-01

    Field-based bioassays were used to determine the relative impact of rainfall on the relative toxicity of four insecticides, phosmet, carbaryl, zeta-cypermethrin, or imidacloprid, from different chemical classes on adult Japanese beetles, Popillia japonica Newman, in highbush blueberries, Vaccinium corymbosum L. Bioassays were set up 24 h after spraying occurred and Japanese beetle condition was scored as alive, knockdown or immobile 1, 24, and 48 h after bioassay setup. All insecticides were significantly more toxic than the untreated control and zeta-cypermethrin consistently had the greatest toxic effect against the Japanese beetles. All insecticides experienced a decrease in efficacy after simulated rainfall onto treated blueberry shoots, although the efficacy of zeta-cypermethrin was the least affected by rainfall. This study will help blueberry growers make informed decisions on when reapplications of insecticides are needed in the field with the aim of improving integrated pest management (IPM).

  13. User's guide to the douglas-fir beetle impact model. Forest Service general technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsden, M.A.; Eav, B.B.; Thompson, M.K.

    1994-09-01

    Douglas-fir beetle occurs throughout the range of its principal host, Douglas-fir. At epidemic levels, the beetle causes considerable mortality in large-diameter Douglas-fir trees. Wind storms, drought, fire, and other factors have been reported as precendent conditions for epidemics of Douglas-fir beetle. An impact model has been developed to simulate tree mortality during such epidemics. The model has been linked to the Stand Prognosis Model (Forest Vegetation Simulator). This is a guide for using the model.

  14. TrOn: an anatomical ontology for the beetle Tribolium castaneum.

    PubMed

    Dönitz, Jürgen; Grossmann, Daniela; Schild, Inga; Schmitt-Engel, Christian; Bradler, Sven; Prpic, Nikola-Michael; Bucher, Gregor

    2013-01-01

    In a morphological ontology the expert's knowledge is represented in terms, which describe morphological structures and how these structures relate to each other. With the assistance of ontologies this expert knowledge is made processable by machines, through a formal and standardized representation of terms and their relations to each other. The red flour beetle Tribolium castaneum, a representative of the most species rich animal taxon on earth (the Coleoptera), is an emerging model organism for development, evolution, physiology, and pest control. In order to foster Tribolium research, we have initiated the Tribolium Ontology (TrOn), which describes the morphology of the red flour beetle. The content of this ontology comprises so far most external morphological structures as well as some internal ones. All modeled structures are consistently annotated for the developmental stages larva, pupa and adult. In TrOn all terms are grouped into three categories: Generic terms represent morphological structures, which are independent of a developmental stage. In contrast, downstream of such terms are concrete terms which stand for a dissectible structure of a beetle at a specific life stage. Finally, there are mixed terms describing structures that are only found at one developmental stage. These terms combine the characteristics of generic and concrete terms with features of both. These annotation principles take into account the changing morphology of the beetle during development and provide generic terms to be used in applications or for cross linking with other ontologies and data resources. We use the ontology for implementing an intuitive search function at the electronic iBeetle-Base, which stores morphological defects found in a genome wide RNA interference (RNAi) screen. The ontology is available for download at http://ibeetle-base.uni-goettingen.de.

  15. Orthotomicus erosus: A new pine-infesting bark beetle in the United States

    Treesearch

    Robert A. Haack

    2004-01-01

    Established populations of yet another new exotic beetle (Scolytidae) were discovered in the United States in 2004: Othotomicus erosus. This Eurasian bark beetle, commonly called the Mediterranean pine engraver, is native to the pine (Pinus)growing areas of Europe, northern Africa, and Asia. It has also been introduced to Chile, Fiji, South Africa, and Swaziland....

  16. BeetleBase in 2010: Revisions to Provide Comprehensive Genomic Information for Tribolium castaneum

    USDA-ARS?s Scientific Manuscript database

    BeetleBase (http://www.beetlebase.org) has been updated to provide more comprehensive genomic information for the red flour beetle Tribolium castaneum. The database contains genomic sequence scaffolds mapped to 10 linkage groups (genome assembly release Tcas_3.0), genetic linkage maps, the official ...

  17. Response of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) to host volatiles

    Treesearch

    Jon Sweeney; Peter de Groot; Linda MacDonald

    2003-01-01

    Studies were undertaken to develop an attractant and trap for survey and detection of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), a European beetle recently found established in Halifax, Nova Scotia. Cortical volatiles of T. fuscum-infested red spruce, Picea rubens Sarg...

  18. Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution.

    PubMed

    Stone, David; Jepson, Paul; Laskowski, Ryszard

    2002-05-01

    Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, P<0.001, respectively) compared with the reference site (OLK7). In addition, OLK3 females had significantly higher levels of CaE compared with the reference beetles (P=0.01). Male beetles did not differ in enzyme activity along the metal gradient. Overall, obvious trends in detoxification enzymes were not detected in ground beetles in association with metal body burdens.

  19. Bark beetle conditions in western forests and formation of the Western Bark Beetle Research Group

    Treesearch

    Robert J. Cain; Jane L. Hayes

    2009-01-01

    The recent dramatic impacts of bark beetle outbreaks across conifer forests of the West have been mapped and reported by entomology and pathology professionals with Forest Health Protection (FHP), a component of USDA Forest Service's State and Private Forestry, and their state counterparts. These forest conditions set the stage for the formation of the Western...

  20. Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae)

    NASA Astrophysics Data System (ADS)

    Lusebrink, Inka; Dettner, Konrad; Seifert, Karlheinz

    2008-08-01

    Stenusine is well known as the alkaloid, discharged by the rove beetle, genus Stenus Latreille (Coleoptera, Staphylinidae). The Stenus beetles employ the alkaloid as an escape mechanism when on water surfaces. In the case of danger, they lower their abdomen and emit stenusine from their pygidial glands. Stenusine shows a low surface tension and therefore a high spreading pressure; these properties propel the beetle quickly over the water. Many Steninae do not live in habitats with open waters, but in detritus, leaf litter, mosses, etc. This raises the possibility that stenusine might also have another function, e.g., as antibiotic or fungicide. Stenus beetles show an intense grooming behaviour. With gas chromatography mass spectrometry analyses we could prove that they cover themselves with their secretion. To tests its antimicrobial properties we conducted agar diffusion tests with stenusine and norstenusine, another substance that is abundant in most Stenus species. Both compounds have an antimicrobial effect on entomopathogenic bacteria and fungi. Stenusine not only allows for an extraordinary method of locomotion on water surfaces, it also protects the Steninae from being infested with microorganisms.

  1. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    NASA Astrophysics Data System (ADS)

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  2. First report of an attractant for a tumbling flower beetle (Coleoptera: Mordellidae).

    PubMed

    Rutledge, Claire E; Young, Daniel K

    2007-08-01

    In 2004 and 2005, large numbers of the tumbling flower beetle, Falsomordellistena bihamata (Melsheimer), were found on traps baited with sweet birch oil, whereas significantly fewer individuals were found on control traps. In both years, peak captures were at 680 DD10 degrees C. Trapping was conducted in Naugatuck State Forest in Naugatuck, CT. Little is known about the ecology and biology of the tumbling flower beetles (Coleoptera: Mordellidae), and the larval food plant for this species is not known. Thus, we cannot say why the beetle is attracted to sweet birch oil. Sweet birch oil is approximately 99.8% methyl salicylate (MeSA). MeSA is found constitutively in large quantities in some plants, but it is also an important signal in, and product of, plant stress-response pathways. MeSA has been found to attract both herbivores that need stressed plants as food and natural enemies of herbivores in stressed plants. To our knowledge, this is the first report of mass trapping of a tumbling flower beetle. Fuller understanding of the phenomenon awaits further study.

  3. Pine Shoot Beetle Research Update

    Treesearch

    Robert A. Haack; Therese M. Poland

    2000-01-01

    Established populations of the pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), were first detected in the US in 1992. As of January 2000, T. piniperda was known to be established in 271 counties in 11 US states (IL, IN, MD, MI, NH, NY, OH, PA, VT, WI, WV) and 25 counties in Ontario and 8 counties in Quebec,...

  4. Predation and bark beetle dynamics

    Treesearch

    John D. Reeve

    1997-01-01

    Bark beetle populations may undergo dramatic fluctuations and are often important pests in coniferous forests.Their dynamics are thought to be primarily driven by factors affecting the resistance of the host tree to attack, i.e., bottom-up forces, while natural enemies are usually assigned a minor role in these systems.I present behavioral experiments that suggest that...

  5. Tree physiology and bark beetles

    Treesearch

    Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood

    2015-01-01

    Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...

  6. Southern Pine Beetle Field Survey

    Treesearch

    Saul D. Petty

    2011-01-01

    Southern pine beetle (SPB) is one of the most formidable insect pests impacting southern forests. Federal, State, and private forest managers have always dealt with this pest in some capacity. One of the primary requirements for controlling SPB is locating infestations on the ground. Once the infestation has been located, data is collected and used in management...

  7. Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation.

    PubMed

    el Jundi, Basil; Smolka, Jochen; Baird, Emily; Byrne, Marcus J; Dacke, Marie

    2014-07-01

    To escape competition at the dung pile, a ball-rolling dung beetle forms a piece of dung into a ball and rolls it away. To ensure their efficient escape from the dung pile, beetles rely on a 'celestial compass' to move along a straight path. Here, we analyzed the reliability of different skylight cues for this compass and found that dung beetles rely not only on the sun but also on the skylight polarization pattern. Moreover, we show the first evidence of an insect using the celestial light-intensity gradient for orientation. Using a polarizer, we manipulated skylight so that the polarization pattern appeared to turn by 90 deg. The beetles then changed their bearing close to the expected 90 deg. This behavior was abolished if the sun was visible to the beetle, suggesting that polarized light is hierarchically subordinate to the sun. When the sky was depolarized and the sun was invisible, the beetles could still move along straight paths. Therefore, we analyzed the use of the celestial light-intensity gradient for orientation. Artificial rotation of the intensity pattern by 180 deg caused beetles to orient in the opposite direction. This light-intensity cue was also found to be subordinate to the sun and could play a role in disambiguating the polarization signal, especially at low sun elevations. © 2014. Published by The Company of Biologists Ltd.

  8. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles.

    PubMed

    Hammer, Tobin J; Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas

    2016-05-25

    Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal. © 2016 The Author(s).

  9. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles

    PubMed Central

    Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas

    2016-01-01

    Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal. PMID:27226475

  10. Assessment and response to bark beetle outbreaks in the Rocky Mountain area

    Treesearch

    Safiya Samman; Jesse Logan

    2000-01-01

    Bark beetles act as "agents of change" within the conifer forests of the Rocky Mountain area. They play a critical role in the development, senescence, and rebirth of Western forests. Bark beetle-caused tree mortality can be extensive, covering thousands of acres. This report is the Forest Service response to a Congressional direction in the FY2000 Interior...

  11. National Trade can Drive Range Expansion of Bark- and Wood-Boring Beetles

    Treesearch

    Davide Rassati; Robert A Haack; Miloš Knížek; Massimo Faccoli

    2017-01-01

    Several native species of bark- and wood-boring beetles (Coleoptera) have expanded their range within their native biogeographic regions in the last years, but the role of human activity in driving this phenomenon has been underinvestigated. Here we analyze 3 yr of trapping records of native bark- and wood-boring beetles (Cerambycidae and Scolytinae) collected at 12...

  12. Pheromone Production by an Invasive Bark Beetle Varies with Monoterpene Composition of its Naïve Host.

    PubMed

    Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir

    2015-06-01

    The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.

  13. Using pheromones to protect heat-injured lodgepole pine from mountain pine beetle infestation

    Treesearch

    Gene D. Amman; Kevin C. Ryan

    1994-01-01

    The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the...

  14. Response of smaller European elm bark beetles to pruning wounds on American elm

    Treesearch

    Jack H. Barger; William N. Cannon

    1987-01-01

    From 1982 to 1984, inflight smaller European elm bark beetles, Scolytus multistriatus, were captured on American elms, Ulmus americana, that were therapeutically pruned for Dutch elm disease control. Pruning wounds were treated with wound dressing or left untreated to determine effects of the treatments on beetle attraction....

  15. Molecular genetics of Asian longhorned beetles: introduction, invasion, and spread in North America

    Treesearch

    M. D. Ginzel; L. M. Hanks; K. N. Paige

    2003-01-01

    We have used molecular techniques to study the genetic structure of Asian longhorned beetle (ALB) populations in North America, allowing us to assess the dispersal behavior of the adult beetles, the extent to which populations have spread in urban areas, and the potential for future spread.

  16. Attractiveness of Native Mammal’s Feces of Different Trophic Guilds to Dung Beetles (Coleoptera: Scarabaeinae)

    PubMed Central

    Bogoni, Juliano A.; Hernández, Malva I. M.

    2014-01-01

    Abstract Mammal feces are the primary food and nesting resource for the majority of dung beetle species, and larval development depends on the quantity and quality of that resource. Physiological necessities, competitive interactions, and resource sharing are common and suggest that dung beetles may show preferences for feces of greater nutritional quality, which may in turn impact beetle assemblages and community structure. This study investigated whether attractiveness of dung beetles to different resource (feces) types varies depending on mammal trophic guild and associated nutritional content. This study was conducted in Atlantic Forest fragments in the Parque Estadual da Serra do Tabuleiro, Santa Catarina, Brazil. To evaluate attractiveness, the feces of the carnivore Puma concolor , the omnivores Cerdocyon thous and Sapajus nigritus, and the herbivore Tapirus terrestris were utilized as bait. Dung was collected from zoo animals fed a standard diet. Sampling was performed in triplicate in five areas in the summer of 2013. Four pitfall traps were established in each area, and each trap was baited with one type of mammal feces. Food preference of the species was analyzed by calculating Rodgers’ index for cafeteria-type experiments. In total, 426 individuals from 17 species were collected. Rodgers’ index showed that omnivorous mammal feces ( C. thous ) were most attractive to all dung beetle species , although it is known that dung beetles are commonly opportunistic with respect to search for and allocation of food resources. These results suggest that mammal loss could alter competitive interactions between dung beetles. PMID:25528749

  17. Floral scent in bird- and beetle-pollinated Protea species (Proteaceae): chemistry, emission rates and function.

    PubMed

    Steenhuisen, S-L; Raguso, R A; Johnson, S D

    2012-12-01

    Evolutionary shifts between pollination systems are often accompanied by modifications of floral traits, including olfactory cues. We investigated the implications of a shift from passerine bird to beetle pollination in Protea for floral scent chemistry, and also explored the functional significance of Protea scent for pollinator attraction. Using headspace sampling and gas chromatography-mass spectrometry, we found distinct differences in the emission rates and chemical composition of floral scents between eight bird- and four beetle-pollinated species. The amount of scent emitted from inflorescences of beetle-pollinated species was, on average, about 10-fold greater than that of bird-pollinated species. Floral scent of bird-pollinated species consists mainly of small amounts of "green-leaf volatiles" and benzenoid compounds, including benzaldehyde, anisole and benzyl alcohol. The floral scent of beetle-pollinated species is dominated by emissions of linalool, a wide variety of other monoterpenes and the benzenoid methyl benzoate, which imparts a fruity odour to the human nose. The number of compounds recorded in the scent of beetle-pollinated species was, on average, greater than in bird-pollinated species (45 versus 29 compounds, respectively). Choice experiments using a Y-maze showed that a primary pollinator of Protea species, the cetoniine beetle Atrichelaphinis tigrina, strongly preferred the scent of inflorescences of the beetle-pollinated Protea simplex over those of the bird-pollinated sympatric congener, Protea roupelliae. This study shows that a shift from passerine bird- to insect-pollination can be associated with marked up-regulation and compositional changes in floral scent emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus.

    PubMed

    Cinkornpumin, Jessica K; Wisidagama, Dona R; Rapoport, Veronika; Go, James L; Dieterich, Christoph; Wang, Xiaoyue; Sommer, Ralf J; Hong, Ray L

    2014-10-15

    Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny.

  19. The complete mitochondrial genome of the desert darkling beetle Asbolus verrucosus (Coleoptera, Tenebrionidae).

    PubMed

    Rider, Stanley Dean

    2016-07-01

    The complete mitochondrial genome of the desert darkling beetle Asbolus verrucosus (LeConte, 1851) was sequenced using paired-end technology to an average depth of 42,111× and assembled using De Bruijn graph-based methods. The genome is 15,828 bp in length and conforms to the basal arthropod mitochondrial gene composition with the same gene orders and orientations as other darkling beetle mitochondria. This arrangement includes a control region, 22 tRNA genes, 2 rRNA genes and 13 protein-coding genes. The main coding strand is probably replicated as the lagging strand (GC skew of -0.36 and AT skew of +0.19). Phylogenomics analyses are consistent with taxonomic classifications and indicate that Tenebrio molitor is the closest relative that has a completely sequenced mitochondrial genome available for analysis. This is the first fully assembled mitogenome sequence for a darkling beetle in the subfamily Pimeliinae and will be useful for population studies on members of this ecologically important group of beetles.

  20. The Role of the Beetle Hypocryphalus mangiferae (Coleoptera: Curculionidae) in the Spatiotemporal Dynamics of Mango Wilt.

    PubMed

    Galdino, Tarcísio Visintin da Silva; Ferreira, Dalton de Oliveira; Santana Júnior, Paulo Antônio; Arcanjo, Lucas de Paulo; Queiroz, Elenir Aparecida; Sarmento, Renato Almeida; Picanço, Marcelo Coutinho

    2017-06-01

    The knowledge of the spatiotemporal dynamics of pathogens and their vectors is an important step in determining the pathogen dispersion pattern and the role of vectors in disease dynamics. However, in the case of mango wilt little is known about its spatiotemporal dynamics and the relationship of its vector [the beetle Hypocryphalus mangiferae (Stebbing 1914)] to these dynamics. The aim of this work was to determine the spatial-seasonal dynamic of H. mangiferae attacks and mango wilt in mango orchards and to verify the importance of H. mangiferae in the spatiotemporal dynamics of the disease. Two mango orchards were monitored during a period of 3 yr. The plants in these orchards were georeferenced and inspected monthly to quantify the number of plants attacked by beetles and the fungus. In these orchards, the percentage of mango trees attacked by beetles was always higher than the percentage infected by the fungus. The colonization of mango trees by beetles and the fungus occurred by colonization of trees both distant and proximal to previously attacked trees. The new plants attacked by the fungus emerged in places where the beetles had previously begun their attack. This phenomenon led to a large overlap in sites of beetle and fungal occurrence, indicating that establishment by the beetle was followed by establishment by the fungus. This information can be used by farmers to predict disease infection, and to control bark beetle infestation in mango orchards. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    PubMed

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  2. Enhanced anandamide signaling reduces flight behavior elicited by an approaching robo-beetle.

    PubMed

    Heinz, Daniel E; Genewsky, Andreas; Wotjak, Carsten T

    2017-11-01

    Our current knowledge of the implications of endocannabinoids in fear and anxiety is largely based on fear conditioning paradigms and approach-avoidance conflicts. Here we establish the ethobehavioral beetle mania task (BMT), which confronts mice with an erratically moving robo-beetle. With the help of this task we demonstrate decreased tolerance yet increased avoidance responses to an approaching beetle in high-anxiety behavior (HAB) and BALBc mice compared to C57BL/6N, CD1 and normal-anxiety behavior (NAB) mice. Also DBA/2N mice showed decreased passive and increased active behavior, but followed the robo-beetle more often than HAB and BALBc mice. Treatment with diazepam (1 mg/kg) increased tolerance without affecting avoidance behavior in HAB mice. Treatment with the MAGL inhibitor JZL184 (8 mg/kg) increased flight behavior, but did not affect tolerance. The FAAH inhibitor URB597 (0.3 mg/kg), however, reduced flight behavior and enhanced tolerance to the robo-beetle. The latter effects were blocked by co-treatment with the CB1 receptor antagonist SR141716A (3 mg/kg), which failed to affect the behavior by itself. Taken together, we validate the BMT as a novel test for studying endocannabinoids beyond traditional paradigms and for assessing active fear responses in mice. Furthermore, we demonstrate panicolytic consequences of pharmacological enhancement of anandamide, but not 2-AG signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Differences in coprophilous beetle communities structure in Sierra de Minas (Uruguay): a mosaic landscape.

    PubMed

    González-Vainer, Patricia; Morelli, E; Defeo, O

    2012-10-01

    Coprophilous beetles represent an abundant and rich group with critical importance in the functioning of terrestrial ecosystems. Most coprophagous beetles have a stenotopic distribution in relation to vegetation types. Because of this, they are usually very sensitive to environmental changes and are considered well suited as bioindicator organisms. The aim of this study was to analyze variations in coprophilous beetle assemblages in natural and anthropogenic habitats. Coprophilous beetle communities were sampled monthly for 1 year using pitfall traps baited with cow dung, in native xeric upland forests, 15-years-old plantations of Pinus elliottii and pastures in Sierra de Minas, Lavalleja, Uruguay. A total of 7,436 beetles were caught and identified to species or morphospecies level. The most abundant families were Aphodiidae, Scarabaeidae, and Staphylinidae. Differences in species richness, abundance, Shannon index, evenness, and dominance were detected between habitats. Abundances of most frequent families were significantly higher in both kinds of forests. Species richness and diversity of Aphodiidae and Staphylinidae were higher in forests, while Scarabaeidae showed the highest richness and diversity in pine plantations. Species composition significantly differed between habitats. Uroxys terminalis Waterhouse and Ataenius perforatus Harold typified the assemblages in native forests and pine plantations and also discriminated both communities because of their differential pattern of abundance between habitats. Typifying species in pastures were Onthophagus hirculus, Ateuchus robustus (Harold), and Ataenius platensis Blanchard. Habitat type had a strong effect on the coprophilous beetle community structure and composition.

  4. Predaceous diving beetle, Dytiscus sharpi sharpi (Coleoptera: Dytiscidae) larvae avoid cannibalism by recognizing prey.

    PubMed

    Inoda, Toshio

    2012-09-01

    Larvae of diving beetles such as the various Dytiscus species (Coleoptera: Dytiscidae) are carnivorous and usually prey on other aquatic animals. Cannibalism among larvae of Dytiscus sharpi sharpi (Wehncke) was observed to begin when they were starved for more than two days under artificial breeding conditions. However, the 2-day starved larvae did not show cannibalism in the presence of intact, motionless, frozen tadpoles, or frozen shrimps. The beetle larvae attacked and captured intact tadpoles faster (15 sec) than other motionless and frozen tadpoles (120 sec), indicating that prey movement was an important factor in stimulating feeding behavior in larvae. Prey density does not have an effect on larval cannibalism. In cases in which preys are present at lower densities than that of larvae, a group of beetle larvae frequently fed on single prey. This feeding behavior, therefore, provides direct evidence of self-other recognition at the species level. Using two traps in one aquarium that allows the larvae to detect only prey smell, one containing tadpoles and another empty, the beetle larvae were attracted to the trap with tadpoles at high frequency, but not to the empty trap. In another experiment, the beetle larvae were not attracted to the trap containing a beetle larva. These results suggest that the larvae of D. sharpi sharpi are capable of recognizing prey scent, which enables the promotion of foraging behavior and the prevention of cannibalism.

  5. A checklist of longhorn beetles (Coleoptera: Cerambycidae) of Serbia.

    PubMed

    Ilić, Nastas; Ćurčić, Srećko

    2015-09-30

    A checklist of all taxa of the family Cerambycidae (longhorn beetles) from Serbia is presented. The checklist is based on compilation of data gathered both from authors and available literature published up to now. A total of 265 species and 92 subspecies belonging to 109 genera, 48 tribes, and six subfamilies are recorded for Serbia. However, the presence of 28 species listed in Serbia may be questionable. Known distribution and biology of Serbian taxa are provided. The diversity of the fauna of longhorn beetles in Serbia is compared with the surrounding areas in the Balkan Peninsula.

  6. Tree Diversity Mediates the Distribution of Longhorn Beetles (Coleoptera: Cerambycidae) in a Changing Tropical Landscape (Southern Yunnan, SW China)

    PubMed Central

    Meng, Ling-Zeng; Martin, Konrad; Weigel, Andreas; Yang, Xiao-Dong

    2013-01-01

    Longhorn beetles (Coleoptera : Cerambycidae) have been used to identify sites of high biological diversity and conservation value in cultivated landscapes, but were rarely studied in changing landscapes of humid tropics. This study was conducted in a region of southern Yunnan, China, which was dominated by natural rainforest until 30 years ago, but is successively transformed into commercial rubber monoculture plantations since that time. The objectives were to investigate longhorn beetle species diversity and distribution in the major land use types of this landscape and to estimate the effects of an expected expansion of rubber plantations on the longhorn beetle assemblages. The results showed that tree species diversity (181 species in total) and longhorn beetle diversity (220 species in total) were closely related with no significant differences between the tree and longhorn beetles assemblages shown by similarity distance analysis. There was a highly positive relationship between the estimated species richness of longhorn beetles and the number of tree species. Individual numbers of longhorn beetles and trees were also highly positive related at the sampling sites. Non-metric multidimensional scaling revealed that the degree of canopy coverage, succession age and tree diversity explained 78.5% of the total variation in longhorn beetle assemblage composition. Natural forest sites had significantly higher numbers of species and individuals than any other type of habitat. Although young rubber plantations bear the highest longhorn beetle diversity outside forests (half of the total number of longhorn beetle species recorded in total), they can not provide permanent habitats for most of these species, because they develop into closed canopy plantations with less suitable habitat conditions. Therefore, along with an expected expansion of rubber cultivation which largely proceeds at the expense of forest areas, the habitat conditions for longhorn beetles in this

  7. Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi

    Treesearch

    Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig

    2009-01-01

    In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....

  8. Development of a kairomone-based monitoring tool for the invasive redbay ambrosia beetle

    USDA-ARS?s Scientific Manuscript database

    The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-borer that vectors the fungal agent responsible for laurel wilt. This disease has had severe impact on forest ecosystems, and has spread to eight states in the southeastern US since the first detection of the beetle in Georg...

  9. Lightning Strike Simula tion for Studying Southern Pine Bark and Engraver Beetle Attacks

    Treesearch

    Mitchel C. Miller

    1983-01-01

    Endemic populations of the southern pine beetle (Dendroctonus frontalis Zimm.) and Ips spp. attacked loblolly pines (Pinus taeda L.) on which lightning strikes were simulated with detonating cord in the field. Southern pine beetles were reared in successive generations in these trees from fall 1981 through spring 1982; only

  10. A small-bolt method for screening tree protectants against bark beetles (coleoptera: curculionidae)

    Treesearch

    B.L. Strom; L.M. Roton

    2009-01-01

    A simple, small-bolt method was developed and refi ned for evaluating and screening treatments being considered as prophylactics against bark beetles (Coleoptera: Curculionidae: Scolytinae). Using this method, 4 insecticide products (3 active ingredients) were evaluated against the southern pine beetle, Dendroctonus frontalis Zimmermann, intermittently during a period...

  11. Wolbachia endosymbionts in haplodiploid and diploid scolytine beetles (Coleoptera: Curculionidae: Scolytinae).

    PubMed

    Kawasaki, Yuuki; Schuler, Hannes; Stauffer, Christian; Lakatos, Ferenc; Kajimura, Hisashi

    2016-05-19

    Haplodiploidy is a sex determination system in which fertilized diploid eggs develop into females and unfertilized haploid eggs develop into males. The evolutionary explanations for this phenomenon include the possibility that haplodiploidy can be reinforced by infection with endosymbiotic bacteria, such as Wolbachia. The subfamily Scolytinae contains species with haplodiploid and diploid sex determination systems. Thus, we studied the association with Wolbachia in 12 diploid and 11 haplodiploid scolytine beetles by analyzing wsp and multilocus sequence typing (MLST) of five loci in this endosymbiont. Wolbachia genotypes were compared with mitochondrial (COI) and nuclear (EF) genotypes in the scolytines. Eight of the 23 scolytine species were infected with Wolbachia, with haplodiploids at significantly higher rates than diploid species. Cloning and sequencing detected multiple infections with up to six Wolbachia strains in individual species. Phylogenetic analyses of wsp and five MLST genes revealed different Wolbachia strains in scolytines. Comparisons between the beetle and Wolbachia phylogenies revealed that closely related beetles were infected with genetically different Wolbachia strains. These results suggest the horizontal transmission of multiple Wolbachia strains between scolytines. We discuss these results in terms of the evolution of different sex determination systems in scolytine beetles. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Elaborate horns in a giant rhinoceros beetle incur negligible aerodynamic costs.

    PubMed

    McCullough, Erin L; Tobalske, Bret W

    2013-05-07

    Sexually selected ornaments and weapons are among nature's most extravagant morphologies. Both ornaments and weapons improve a male's reproductive success; yet, unlike ornaments that need only attract females, weapons must be robust and functional structures because they are frequently tested during male-male combat. Consequently, weapons are expected to be particularly costly to bear. Here, we tested the aerodynamic costs of horns in the giant rhinoceros beetle, Trypoxylus dichotomus. We predicted that the long, forked head horn would have three main effects on flight performance: increased body mass, an anterior shift in the centre of mass and increased body drag. We found that the horns were surprisingly lightweight, and therefore had a trivial effect on the male beetles' total mass and mass distribution. Furthermore, because beetles typically fly at slow speeds and high body angles, horns had little effect on total body drag. Together, the weight and the drag of horns increased the overall force required to fly by less than 3 per cent, even in the largest males. Because low-cost structures are expected to be highly evolutionarily labile, the fact that horns incur very minor flight costs may have permitted both the elaboration and diversification of rhinoceros beetle horns.

  13. Elaborate horns in a giant rhinoceros beetle incur negligible aerodynamic costs

    PubMed Central

    McCullough, Erin L.; Tobalske, Bret W.

    2013-01-01

    Sexually selected ornaments and weapons are among nature's most extravagant morphologies. Both ornaments and weapons improve a male's reproductive success; yet, unlike ornaments that need only attract females, weapons must be robust and functional structures because they are frequently tested during male–male combat. Consequently, weapons are expected to be particularly costly to bear. Here, we tested the aerodynamic costs of horns in the giant rhinoceros beetle, Trypoxylus dichotomus. We predicted that the long, forked head horn would have three main effects on flight performance: increased body mass, an anterior shift in the centre of mass and increased body drag. We found that the horns were surprisingly lightweight, and therefore had a trivial effect on the male beetles' total mass and mass distribution. Furthermore, because beetles typically fly at slow speeds and high body angles, horns had little effect on total body drag. Together, the weight and the drag of horns increased the overall force required to fly by less than 3 per cent, even in the largest males. Because low-cost structures are expected to be highly evolutionarily labile, the fact that horns incur very minor flight costs may have permitted both the elaboration and diversification of rhinoceros beetle horns. PMID:23486444

  14. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak

    USGS Publications Warehouse

    Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, José F.

    2017-01-01

    Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe

  15. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak

    PubMed Central

    Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, Jose F.

    2017-01-01

    Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce

  16. Species composition and succession in yellow pine stands following southern pine beetle outbreaks in Tennessee-preliminary results

    Treesearch

    Christopher M. Oswalt; Sonja N. Oswalt; Jason R. Meade

    2016-01-01

    The southern pine beetle (Dendroctonus frontalis) is a bark beetle that is native to the Southern United States, including Tennessee. The beetle is periodically epidemic and can cause high levels of mortalityduring epidemic years, particularly in dense or aging pine (Pinus spp.) stands. An epidemic outbreak of the Southern pine...

  17. Comparison of chemical attractants against dung beetles and application for rangeland and animal health

    USDA-ARS?s Scientific Manuscript database

    Dung beetles (Coleoptera: Scarabaeidae) play a major role in nutrient cycling, soil aeration, and biological control of pests and parasites that breed in manure. Habitat fragmentation, pesticide usage, and conventional agricultural practices threaten dung beetle diversity, and their conservation is ...

  18. Diversity and Seasonal Activity of Carrion Beetles (Coleoptera: Silphidae) in Northeastern Georgia

    Treesearch

    Michael D. Ulyshen; James L. Hanula

    2004-01-01

    The Family Silphidae is a small but widespread group of primarily necrophagous beetles. Approximately 175 species are found throughout the world with 30 of these in North America (Arnett and Thomas 2001, American Beetles Vol. 1: 269). Silphids have been the subject of many studies on behavior and ecology and have some forensic importance as well (Carvalho et al. 2000,...

  19. Use of Chemicals for Prevention and Control of Southern Pine Beetle Infestations

    Treesearch

    Ronald F. Billings

    2011-01-01

    The southern pine beetle (SPB) is a major threat to pine forests in the Southeastern United States, Mexico, and Central America. In concert with one or more species of southern pine engraver beetles, SPB also may attack and kill pines in residential, recreational, or urban settings. Different control strategies and tactics have been used over the years to try to...

  20. Repellent properties of the host compound 4-allylanisole to the southern pine beetle

    Treesearch

    Jane Leslie Hayes; Brian L. Strom; Larry M. Roton; Leonard L. Ingram

    1994-01-01

    The phenylpropanoid 4-allylanisole is a compound produced by loblolly pines (Pinus taeda L.), an abundant species in southern pine forests and a preferred host of southern pine beetle (Dendroctonus frontalis Zimmermann).Repellency of individual beetles was demonstrated in laboratory behavioral assays of D. frontalis and other scolytids.Inhibition was...

  1. Longhorned beetle (Coleoptera: Cerambycidae) diversity in a fragmented temperate forest landscape

    PubMed Central

    Pavuk, Daniel M

    2013-01-01

    Longhorned beetles (Coleoptera: Cerambycidae) are an important component of temperate forest ecosystems.  We trapped longhorned beetles in forests in northwest Ohio during 2008 to test the hypothesis that larger forests have greater species diversity than smaller forests.  Large forests had a significantly greater cerambycid species richness than small forests (t = 3.16. P = 0.02), and there was a significant relationship between forest size and cerambycid species richness. PMID:24627763

  2. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.

    PubMed

    Truong, Q T; Nguyen, Q V; Truong, V T; Park, H C; Byun, D Y; Goo, N S

    2011-09-01

    We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.

  3. Reflective Polyethylene Mulch Reduces Mexican Bean Beetle (Coleoptera: Coccinellidae) Densities and Damage in Snap Beans.

    PubMed

    Nottingham, L B; Kuhar, T P

    2016-08-01

    Mexican bean beetle, Epilachna varivestis Mulsant, is a serious pest of snap beans, Phaseolus vulgaris L., in the eastern United States. These beetles are intolerant to direct sunlight, explaining why individuals are typically found on the undersides of leaves and in the lower portion of the plant canopy. We hypothesized that snap beans grown on reflective, agricultural polyethylene (plastic mulch) would have fewer Mexican bean beetles and less injury than those grown on black plastic or bare soil. In 2014 and 2015, beans were seeded into beds of metallized, white, and black plastic, and bare soil, in field plots near Blacksburg, VA. Mexican bean beetle density, feeding injury, predatory arthropods, and snap bean yield were sampled. Reflected light intensity, temperature, and humidity were monitored using data loggers. Pyranometer readings showed that reflected light intensity was highest over metallized plastic and second highest over white plastic; black plastic and bare soil were similarly low. Temperature and humidity were unaffected by treatments. Significant reductions in Mexican bean beetle densities and feeding injury were observed in both metallized and white plastic plots compared to black plastic and bare soil, with metallized plastic having the fewest Mexican bean beetle life stages and injury. Predatory arthropod densities were not reduced by reflective plastic. Metallized plots produced the highest yields, followed by white. The results of this study suggest that growing snap beans on reflective plastic mulch can suppress the incidence and damage of Mexican bean beetle, and increase yield in snap beans. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Nitrogen Cycling Responses to Mountain Pine Beetle Disturbance in a High Elevation Whitebark Pine Ecosystem

    PubMed Central

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4 +) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks. PMID:23755166

  5. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    PubMed

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  6. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    USGS Publications Warehouse

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  7. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA

    Treesearch

    Jose F. Negron; Joel D. McMillin; John A. Anhold; Dave Coulson

    2009-01-01

    Extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality associated with a widespread severe drought and increased bark beetle (Coleoptera: Curculionidae, Scolytinae) populations occurred in Arizona from 2001 to 2004. A complex of Ips beetles including: the Arizona fivespined ips, Ips lecontei Swaine...

  8. Electrophysiological and olfactometer responses of two histerid predators to three pine bark beetle pheromones

    Treesearch

    William P. Shepherd; Brian T. Sullivan; Richard A. Goyer; Kier D. Klepzig

    2005-01-01

    We measured electrophysiological responses in the antennae of two predaceous hister beetles, Platysoma parallelum and Plegaderus transversus, exposes to racemic mixtures of primary aggregation pheromones of scolytid bark beetle prey, ipsenol, ipsdienol, and frontalin. No significant differences were found for either histerid...

  9. Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity.

    PubMed

    Kolařík, Miroslav; Hulcr, Jiri; Tisserat, Ned; De Beer, Wilhelm; Kostovčík, Martin; Kolaříková, Zuzana; Seybold, Steven J; Rizzo, David M

    2017-01-01

    Fungi in the genus Geosmithia (Ascomycota: Hypocreales) are frequent associates of bark beetles and woodborers that colonize hardwood and coniferous trees. One species, Geosmithia morbida, is an economically damaging invasive species. The authors surveyed the Geosmithia species of California and Colorado, USA, to (i) provide baseline data on taxonomy of Geosmithia and beetle vector specificity across the western USA; (ii) investigate the subcortical beetle fauna for alternative vectors of the invasive G. morbida; and (iii) interpret the community composition of this region within the emerging global biogeography of Geosmithia. Geosmithia was detected in 87% of 126 beetle samples obtained from 39 plant species. Twenty-nine species of Geosmithia were distinguished, of which 13 may be new species. Bark beetles from hardwoods, Cupressus, and Sequoia appear to be regular vectors, with Geosmithia present in all beetle gallery systems examined. Other subcortical insects appear to vector Geosmithia at lower frequencies. Overall, most Geosmithia have a distinct level of vector specificity (mostly high, sometimes low) enabling their separation to generalists and specialists. Plant pathogenic Geosmithia morbida was not found in association with any other beetle besides Pityophthorus juglandis. However, four additional Geosmithia species were found in P. juglandis galleries. When integrated with recent data from other continents, a global pattern of Geosmithia distribution across continents, latitudes, and vectors is emerging: of the 29 Geosmithia species found in the western USA, 12 have not been reported outside of the USA. The most frequently encountered species with the widest global distribution also had the broadest range of beetle vectors. Several Geosmithia spp. with very narrow vector ranges in Europe exhibited the similar degree of specialization in the USA. Such strong canalization in association could reflect an ancient origin of each individual association, or a

  10. A deficiency of the homeotic complex of the beetle Tribolium

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    In Drosophila, the establishment of regional commitments along most of the anterior/posterior axis of the developing embryo depends on two clusters of homeotic genes: the Antennapedia complex (ANT-C) and the bithorax complex (BX-C). The red flour beetle has a single complex (HOM-C) representing the homologues of the ANT-C and BX-C in juxtaposition. Beetles trans-heterozygous for two particular HOM-C mutations spontaneously generate a large deficiency, presumably by an exchange within the common region of two overlapping inversions. Genetic and molecular results indicate that this deficiency spans at least the interval between the Deformed and abdominal-A homologues. In deficiency homozygous embryos, all gnathal, thoracic and abdominal segments develop antennal appendages, suggesting that a gene(s) has been deleted that acts to distinguish trunk from head. There is no evidence that beetles have a homologue of the segmentation gene fushi tarazu of similar genomic location and function. On the basis of the genetic tractability, convenient genome size and organization of Tribolium, and its relatively long phylogenetic divergence from Drosophila (>300 million years), we have integrated developmental genetic and molecular analyses of the HOM-C. We isolated about 70 mutations in the complex representing at least six complementation groups. The homeotic phenotypes of adults and lethal embryos lead us to believe that these beetle genes are homologous with the Drosophila genes indicated in Fig. 1 (see text).

  11. A deficiency of the homeotic complex of the beetle Tribolium.

    PubMed

    Stuart, J J; Brown, S J; Beeman, R W; Denell, R E

    1991-03-07

    In Drosophila, the establishment of regional commitments along most of the anterior/posterior axis of the developing embryo depends on two clusters of homeotic genes: the Antennapedia complex (ANT-C) and the bithorax complex (BX-C). The red flour beetle has a single complex (HOM-C) representing the homologues of the ANT-C and BX-C in juxtaposition. Beetles trans-heterozygous for two particular HOM-C mutations spontaneously generate a large deficiency, presumably by an exchange within the common region of two overlapping inversions. Genetic and molecular results indicate that this deficiency spans at least the interval between the Deformed and abdominal-A homologues. In deficiency homozygous embryos, all gnathal, thoracic and abdominal segments develop antennal appendages, suggesting that a gene(s) has been deleted that acts to distinguish trunk from head. There is no evidence that beetles have a homologue of the segmentation gene fushi tarazu of similar genomic location and function. On the basis of the genetic tractability, convenient genome size and organization of Tribolium, and its relatively long phylogenetic divergence from Drosophila (>300 million years), we have integrated developmental genetic and molecular analyses of the HOM-C. We isolated about 70 mutations in the complex representing at least six complementation groups. The homeotic phenotypes of adults and lethal embryos lead us to believe that these beetle genes are homologous with the Drosophila genes indicated in Fig. 1 (see text).

  12. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks

    PubMed Central

    Donato, Daniel C.; Raffa, Kenneth F.; Turner, Monica G.

    2016-01-01

    Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes. PMID:27821739

  13. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks.

    PubMed

    Seidl, Rupert; Donato, Daniel C; Raffa, Kenneth F; Turner, Monica G

    2016-11-15

    Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes.

  14. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms.

    PubMed

    Chakravarthy, A K; Chandrashekharaiah, M; Kandakoor, Subhash B; Nagaraj, D N

    2014-05-01

    Red palm weevil and Rhinoceros beetle are the major pests inflicting severe damage to coconut palms. Due to ineffectiveness of the current management practices to control the two important pests on coconut, a study was conducted to know the attractiveness of red palm weevil and rhinoceros beetle to aggregation pheromone. Olfactometer studies indicated that the aggregation pheromone of red palm weevil and rhinoceros beetle attracted significantly more number of weevils (13.4 females and 7.6 male weevils) and beetles (6.5 male and 12.3 female beetles), respectively than control. Similarly, field studies found that both 750 and 1000 mg pheromone dosage lures of red palm weevil and rhinoceros beetle trapped significantly higher numbers of weevils (695.80 and 789 weevils, respectively) and beetles (98 and 108 beetles, respectively) in traps (P < 0.05), respectively. On an average (n = 6 field trials) 80-85% red palm weevil and 72-78% rhinoceros beetle population got trapped. Observations indicated activity of red palm weevil throughout the year and of rhinoceros beetle from September to March around Bangalore, South India. Pheromone traps for red palm weevil can be placed in fields from June to August and October to December and September to February for rhinoceros beetle. Population reductions of the two coleopteran pests by pheromone traps are compatible with mechanical and cultural management tools with cumulative effects.

  15. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce differentmore » results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.« less

  16. Effects of postfire salvage logging on deadwood-associated beetles.

    PubMed

    Cobb, T P; Morissette, J L; Jacobs, J M; Koivula, M J; Spence, J R; Langor, D W

    2011-02-01

    In Canada and the United States pressure to recoup financial costs of wildfire by harvesting burned timber is increasing, despite insufficient understanding of the ecological consequences of postfire salvage logging. We compared the species richness and composition of deadwood-associated beetle assemblages among undisturbed, recently burned, logged, and salvage-logged, boreal, mixed-wood stands. Species richness was lowest in salvage-logged stands, largely due to a negative effect of harvesting on the occurrence of wood- and bark-boring species. In comparison with undisturbed stands, the combination of wildfire and logging in salvage-logged stands had a greater effect on species composition than either disturbance alone. Strong differences in species composition among stand treatments were linked to differences in quantity and quality (e.g., decay stage) of coarse woody debris. We found that the effects of wildfire and logging on deadwood-associated beetles were synergistic, such that the effects of postfire salvage logging could not be predicted reliably on the basis of data on either disturbance alone. Thus, increases in salvage logging of burned forests may have serious negative consequences for deadwood-associated beetles and their ecological functions in early postfire successional forests. ©2010 Society for Conservation Biology.

  17. Attractant semiochemicals of the engraver beetle, Ips perturbatus, in south-central and interior Alaska.

    Treesearch

    Edward H. Holsten; Roger E. Burnside; Steven J. Seybold

    2000-01-01

    From 1996 through 1999, field tests of various engraver beetle (Ips perturbatus (Eichhoff)) semiochemicals in funnel traps were conducted in south-central and interior Alaska in stands of Lutz (Picea xlutzii Little) and white spruce (P.glauca (Moench) Voss). The European spruce beetle (I....

  18. Field Evaluation of Essential Oils for Reducing Attraction by the Japanese Beetle (Coleoptera: Scarabaeidae)

    USDA-ARS?s Scientific Manuscript database

    This study evaluated 47 commercial plant-derived essential oils individually or as blends for their potential as adult Japanese beetle (Popillia japonica Newman) repellents during 2003 to 2007. A bioassay procedure used traps to evaluate whether essential oils could repel beetles from Japanese beet...

  19. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling

    Treesearch

    Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron

    2013-01-01

    The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...

  20. Systematics of Fusaria associated with Ambrosia beetles

    USDA-ARS?s Scientific Manuscript database

    Here, I summarize research efforts directed at characterizing ambrosia beetle-associated fusaria, including the species responsible for avocado wilt in Israel (Mendel et al., Phytoparasitica 2012) and branch dieback in California (Eskalen et al., Pl. Dis. 2012). Our multilocus molecular phylogenetic...

  1. Mite predators of the southern pine beetle

    Treesearch

    John c. Moser

    1975-01-01

    Of 51 mites found with brood of the southern pine beetle, Dendroctonus frontalis zimmermann, and tested in the laboratory, four are primary candidates for use as natural control agents in reducing field infestations: Histiogaster arborsignis Woodring, Proctolaelaps dendroctoni Lindquist & Hunter, ...

  2. Gum spots in black cherry caused by natural attacks of peach bark beetle

    Treesearch

    Charles O. Rexrode

    1981-01-01

    Peach bark beetles, Phloeotribus liminaris (Harris), made abortive attacks on healthy black cherry, Prunus serotina Ehrh., trees. The beetle attacks caused five types of gum spots in the wood and a gummy exudate on the bark. The most extensive and common types of gum spot were single and multiple rows of interray gum spots that...

  3. How-To-Do-It. A Beetle, a Bur, and the Potato: An Introduction to Ecology.

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1983-01-01

    Describes how the interrelation of the potato beetle, the buffalo-bur, and the potato is used as an introduction to ecology. Methods of controlling the beetle and ecological principles illustrated in the interrelationship are discussed. (JN)

  4. Negative Impacts of Human Land Use on Dung Beetle Functional Diversity

    PubMed Central

    Barragán, Felipe; Moreno, Claudia E.; Escobar, Federico; Halffter, Gonzalo; Navarrete, Dario

    2011-01-01

    The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (<5 ha) in Los Tuxtlas, dung beetle functional richness was lower than in large rainforest fragments (>20 ha). Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed. PMID:21448292

  5. Negative impacts of human land use on dung beetle functional diversity.

    PubMed

    Barragán, Felipe; Moreno, Claudia E; Escobar, Federico; Halffter, Gonzalo; Navarrete, Dario

    2011-03-23

    The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (<5 ha) in Los Tuxtlas, dung beetle functional richness was lower than in large rainforest fragments (>20 ha). Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed.

  6. Influence of simulated weightlessness on the rate of anomalies of the flour beetle Tribolium confusum.

    PubMed

    Briegleb, W; Neubert, J; Schatz, A; Sinapius, F

    1975-01-01

    Experiments with Tribolium confusum showed that the morphological characteristics of the beetles are modified by simulated weightlessness (fast running clinostat). Because of possible side effects due to differences in fertility of inbred lines, the first experiments were made with a genetically heterogeneous stock. Thereafter experiments were confirmed with inbred beetles. For both stocks a rise of mainly wing anomalies resulted from rotation of whole cultures of beetles within horizontal tubes. The extent to which these anomalies are teratogenetic or genetic has not yet been analysed in detail.

  7. Transfer of a Pyemotes egg parastie phoretic on western pine bark beetles to the southern pine beetle

    Treesearch

    John C. Moser

    1981-01-01

    Pyemotes giganticus has the widest phoretic latitude of any known Pyemotes probably riding all scolytids and at least one tenebrionid beetle associate. The female heteromorph is not phoretic. The feeding latitude is narrow; the mite is known to feed only on scolytid eggs, and then reluctantly. Parasitism of a natural host,

  8. Does insecticide application in a winter oilseed rape field influence the abundance of pollen beetle Meligethes aeneus in nearby ornamental flowers and vegetables?

    PubMed

    Ahmed, Nur; Englund, Jan-Eric; Johansson, Eva; Åhman, Inger

    2013-11-01

    Pollen beetle is a pest that attacks oilseed rape as well as many other brassicaceous crops, garden vegetables and ornamental flowers. The present study was primarily carried out to investigate whether insecticide application in brassicaceous field crops might influence the abundance of pollen beetles in nearby private garden flowers and vegetables. At peak emergence of the new generation of pollen beetles, a significantly higher number of beetles were found in flowers, and in window traps, alongside untreated as opposed to alongside treated sections of the winter oilseed rape (WOSR) field. However, the type of flower played a role in the number of pollen beetles found in the flowers. The presence of pollen beetles in both ornamental and wild flowers was also significantly influenced by the direction of placement of the flowers. No pollen beetle, neither overwintering nor newly emerged, was observed in any of the brassicaceous vegetables placed along the field. The number of pollen beetles in the WOSR field strongly influenced the number of pollen beetles in nearby flowers of preference to the beetles, and insecticide treatment with Biscaya (thiacloprid) against pollen beetle in oilseed rape may thus help, indirectly, to protect nearby garden flowers from damage. © 2013 Society of Chemical Industry.

  9. Tree diversity mediates the distribution of longhorn beetles (Coleoptera: Cerambycidae) in a changing tropical landscape (southern Yunnan, SW China).

    PubMed

    Meng, Ling-Zeng; Martin, Konrad; Weigel, Andreas; Yang, Xiao-Dong

    2013-01-01

    Cerambycidae) have been used to identify sites of high biological diversity and conservation value in cultivated landscapes, but were rarely studied in changing landscapes of humid tropics. This study was conducted in a region of southern Yunnan, China, which was dominated by natural rainforest until 30 years ago, but is successively transformed into commercial rubber monoculture plantations since that time. The objectives were to investigate longhorn beetle species diversity and distribution in the major land use types of this landscape and to estimate the effects of an expected expansion of rubber plantations on the longhorn beetle assemblages. The results showed that tree species diversity (181 species in total) and longhorn beetle diversity (220 species in total) were closely related with no significant differences between the tree and longhorn beetles assemblages shown by similarity distance analysis. There was a highly positive relationship between the estimated species richness of longhorn beetles and the number of tree species. Individual numbers of longhorn beetles and trees were also highly positive related at the sampling sites. Non-metric multidimensional scaling revealed that the degree of canopy coverage, succession age and tree diversity explained 78.5% of the total variation in longhorn beetle assemblage composition. Natural forest sites had significantly higher numbers of species and individuals than any other type of habitat. Although young rubber plantations bear the highest longhorn beetle diversity outside forests (half of the total number of longhorn beetle species recorded in total), they can not provide permanent habitats for most of these species, because they develop into closed canopy plantations with less suitable habitat conditions. Therefore, along with an expected expansion of rubber cultivation which largely proceeds at the expense of forest areas, the habitat conditions for longhorn beetles in this region might decrease dramatically

  10. The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia.

    PubMed

    Ramle, M; Wahid, M B; Norman, K; Glare, T R; Jackson, T A

    2005-05-01

    The rhinoceros beetle, Oryctes rhinoceros, has emerged as a serious pest of oil palm since the prohibition of burning as a method for maintaining estate hygiene in the 1990s. The abundance of beetles is surprising given that the Malay peninsula was the site of first discovery of the Oryctes virus, which has been used to effect good as a biological control agent in other regions. A survey of adult beetles was carried out throughout Malaysia using pheromone traps. Captured beetles were examined for presence of virus using both visual/microscopic examination and PCR detection methods. The survey indicated that Oryctes virus was common in Malaysia among the adult beetles. Viral DNA analysis was carried out after restriction with HindIII enzyme and indicated at least three distinct viral genotypes. Bioassays were used to compare the viral strains and demonstrate that one strain (type B) is the most virulent against both larvae and adults of the beetle. Virus type B has been cultured and released into healthy populations where another strain (type A) forms the natural background. Capture and examination of beetles from the release site and surrounding area has shown that the spread and persistence of the applied virus strain is accompanied by a reduction in palm frond damage.

  11. Potential and realized feeding niches of neotropical hispine beetles (Chrysomelidae: Cassidinae, Cephaloleiini).

    PubMed

    Descampe, A; Meskens, C; Pasteels, J; Windsor, D; Hance, T

    2008-02-01

    Accurate descriptions of feeding habits are essential to understanding the evolution of dietary preferences and the high levels of diversification within the Chrysomelidae. Both primary observations and summaries suggest that the cassidine beetle tribe, Cephaloleiini, is a species-rich group of feeding specialists on monocot hosts. However, accurate host ranges are poorly defined for most hispine beetle species. To better document occurrence and feeding, we censused the Cephaloleiini associated with rolled leaves of five species of Marantaceae and six species of Heliconiaceae (Zingiberales) in lowland Central Panama. Additionally, we conducted choice and no-choice feeding tests on a subset of both the plants and beetles encountered in the censuses. Both types of data suggest that most species of Cephaloleiini feed on a greater variety of related plant species than has previously been reported.

  12. Cross-Resistance and Resistance Longevity as Induced by Bean Leaf Beetle, Cerotoma trifurcata and Soybean Looper, Pseudoplusia includens herbivory on Soybean

    PubMed Central

    Srinivas, P.; Danielson, Stephen D.; Smith, C. Michael; Foster, John E.

    2001-01-01

    Cross-resistance, and longevity of resistance, induced by the bean leaf beetle, Cerotoma trifurcata, was studied IN the soybean PI 227687 that exhibited induced response in earlier studies. Bean leaf beetle adults and soybean looper, Pseudoplusia includens, larvae were used to induce resistance and to determine beetle feeding preference. Beetles were collected from soybean fields 2 to 5 days prior to the feeding preference test. The level of cross-resistance induced by soybean looper herbivory to subsequent bean leaf beetle feeding was higher when compared to cross-resistance induced by bean leaf beetle herbivory against subsequent feeding by soybean looper. Further, herbivory by the bean leaf beetle also induced resistance against soybean looper feeding. In the longevity study, leaflets from treated plants were collected 5, 10, 12, 14, 16, 20 and 25 days after initiation of feeding. Pairwise comparisons of leaflets from plants treated by bean leaf beetle herbivory with untreated plants revealed that induced responses were highest 14 and lowest 25 days after initiation of feeding. On other sampling days, levels of induced response varied with the sampling day. PMID:15455065

  13. Geometric morphometrics analysis of the hind wing of leaf beetles: proximal and distal parts are separate modules.

    PubMed

    Ren, Jing; Bai, Ming; Yang, Xing-Ke; Zhang, Run-Zhi; Ge, Si-Qin

    2017-01-01

    The success of beetles is mainly attributed to the possibility to hide the hindwings under the sclerotised elytra. The acquisition of the transverse folding function of the hind wing is an important event in the evolutionary history of beetles. In this study, the morphological and functional variances in the hind wings of 94 leaf beetle species (Coleoptera: Chrysomelinae) is explored using geometric morphometrics based on 36 landmarks. Principal component analysis and Canonical variate analysis indicate that changes of apical area, anal area, and middle area are three useful phylogenetic features at a subtribe level of leaf beetles. Variances of the apical area are the most obvious, which strongly influence the entire venation variance. Partial least squares analysis indicates that the proximal and distal parts of hind wings are weakly associated. Modularity tests confirm that the proximal and distal compartments of hind wings are separate modules. It is deduced that for leaf beetles, or even other beetles, the hind wing possibly exhibits significant functional divergences that occurred during the evolution of transverse folding that resulted in the proximal and distal compartments of hind wings evolving into separate functional modules.

  14. Effects of pesticide applications and cultural controls on efficacy of control for adult Japanese beetles (Coleoptera: Scarabaeidae) on roses.

    PubMed

    Vitullo, Justin M; Sadof, Clifford S

    2007-02-01

    Cultural and chemical controls were evaluated to determine their ability to deter feeding by Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), on floribunda type roses, Rosa 'Acadia Sunrise'. Roses were arranged in field plots and exposed to resident adult beetle populations. Cultural controls were designed to block the feeding-induced aggregation response by manually removing beetles and/ or damaged blooms from rose plants. Azadirachtin, carbaryl, and imidacloprid were evaluated in field and laboratory trials. In no-choice laboratory assays, foliar applications of azadirachtin caused low rates of morbidity to adult beetles and were unable to deter feeding. Foliar-applied carbaryl and soil-applied imidacloprid caused high rates of morbidity and reduced feeding injury. In the field, foliar sprays of azadirachtin and carbaryl, deterred feeding on foliage under low beetle pressure (maximum of 29% defoliation in untreated controls), when applied weekly after first beetle flight or every 2 wk after 5% injury was reached. A single foliar application of these materials at the 5% injury level did not significantly reduce peak defoliation. Soil applications of imidacloprid also deterred foliar feeding in the field. Blooms were more difficult to protect with both foliar- and soil-applied insecticides with only weekly application of foliar insecticides providing significant reductions in bloom injury. Removing beetles and/or blooms provided marginally greater reductions in leaf and flower injury. This suggests that blocking the feeding-induced aggregation response of Japanese beetles can provide only modest levels of control in roses where both flowers and feeding-induced volatiles recruit beetles to plants.

  15. Scymnus (Neopullus) lady beetles from China

    Treesearch

    Michael E. Montgomery; Melody A. Keena

    2011-01-01

    In 1995, we found our first Scymnus (Neopullus) lady beetle in China (Neopullus is a subgenus of Scymnus, the largest genus in the family Coccinellidae). At that time there were just a few known species in the subgenus and very little was known of their biology. By the end of the project, 14...

  16. Parasitoids of the Southern Pine Beetle

    Treesearch

    C. Wayne Berisford

    2011-01-01

    Hymenopterous parasitoids make up a significant portion of the natural enemy complex associated with the southern pine beetle (SPB). Collectively, parasitoids can affect the growth of individual SPB infestations and area populations by reducing the survival rates of developing SPB larval/pupal broods. A substantial body of information on parasitoids has been...

  17. Approaches to control diseases vectored by ambrosia beetles in avocado and other American Lauraceae

    USDA-ARS?s Scientific Manuscript database

    Invasive ambrosia beetles and the plant pathogenic fungi they vector represent a significant challenge to North American agriculture, native and landscape trees. Ambrosia beetles encompass a range of insect species and they vector a diverse set of plant pathogenic fungi. Our lab has taken several bi...

  18. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone

    Treesearch

    Jacob M. Griffin; Monica G. Turner; Martin Simard

    2011-01-01

    Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...

  19. Evaluation of traps used to monitor southern pine beetle aerial populations and sex ratios

    Treesearch

    James T. Cronin; Jane L. Hayes; Peter Turchin

    2000-01-01

    Various kinds of traps have been employed to monitor and forecast population trends of the southern pine beetle (Dendroctonus frontalis Zimmermann; Coleoptera: Scolytidae), but their accuracy in assessing pine-beetle abundance and sex ratio in the field has not been evaluated directly.In trus study, we...

  20. Bark beetles and fungal associates colonizing white spruce in the Great Lakes region.

    Treesearch

    Kirsten E. Haberkern; Barbara L. Illman; Kenneth F. Raffa

    2002-01-01

    We examined the major bark beetles and associated fungi colonizing subcortical tissues of white spruce (Picea glauca (Moench) Voss) in the Great Lakes region. Trees were felled at one northwestern Wisconsin site in a preliminary study in 1997 and at 10 sites throughout northern Wisconsin, Minnesota, and Michigan in 1998. Fungal isolations were made from beetles...

  1. Walnut twig beetle (Coleoptera: Curculionidae: Scolytinae) Colonization of eastern black walnut nursery trees

    Treesearch

    Jackson Audley; William E. Klingeman; Albert Mayfield; Scott Myers; Adam Taylor

    2017-01-01

    Thousand cankers disease, caused by the invasive bark beetle Pityophthorus juglandis Blackman and an associ-ated fungal pathogen Geosmithia morbida M. .Kolank , E. Freeland, C. Utley, N. Tisserat, currently threatens the health of eastern black walnut (Juglans nigra L.) in North America. Both the beetle and pathogen have ex- panded beyond their native range via...

  2. Effect of downed trees on harvesting productivity and costs in beetle-killed stands

    Treesearch

    Yaejun Kim; Woodam Chung; Hee Han; Nathaniel M. Anderson

    2017-01-01

    The mountain pine beetle (Dendroctonus ponderosae) has affected millions of acres of forests in the Rocky Mountain region in the United States. This study quantified the difficulty of harvesting beetle-killed stands caused by downed trees. A detailed time study was conducted on a whole-tree clearcut harvest using a ground-based system in western Montana in August 2015...

  3. Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles

    Treesearch

    J.C. Nod; F.L. Hastings; A.S. Jones

    1990-01-01

    An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...

  4. The impact of overgrazing on dung beetle diversity in the Italian Maritime Alps.

    PubMed

    Negro, Matteo; Rolando, Antonio; Palestrini, Claudia

    2011-10-01

    Dung beetles (Coleoptera: Scarabaeidae) are undoubtedly the most typical and ecologically relevant insects of grazed alpine habitats because they provide valuable ecological services such as biological pest control and soil fertilization. Despite the great ecological contribution of these insects to pasture ecosystem functioning, little is known about their direct or indirect relationships with pastoral activities. The main aim of the study was to assess whether dung beetle diversity was influenced by different intensities of cattle grazing. Dung beetle communities of two adjacent alpine valleys within the Maritime Alps Natural Park (north-western Italian Alps), representing overgrazed and ungrazed pastures, were studied by pitfall trapping. A hierarchical design (three levels: valleys, transects, and replicates) was established for additive partitioning of γ-diversity and Indicator Species Analysis. Evenness and Shannon diversity were significantly higher at the ungrazed than at the overgrazed site because abundances were much more evenly distributed at the former than at the latter site (where one species was dominant over all the others). Dung beetle abundance and species richness of the overgrazed graminaceous pasture vegetation types were in most cases significantly lower than those of the ungrazed nongraminaceous vegetation type. In the additive partitioning of γ -diversity analysis relative to the whole study area, the randomization procedure indicated that the contribution of β to γ-diversity was significantly different from that expected by chance, suggesting that one or more environmental factors has intervened to change the partition of total diversity in the system considered. The analysis of the preferences and fidelity of species (Indicator Species Analysis) showed that only one species chose overgrazed pastures; all the others positively selected the ungrazed site, or the only ungrazed pasture vegetation type (Rumicetum alpini Beger) occurring at

  5. Wood-boring beetles associated with Acacia xanthophloea in Nairobi and Machakos Counties, Kenya

    PubMed Central

    Kirubi Thungu, Duncan; Wangu, Lucy; Kimani, Rachael

    2018-01-01

    Naivasha thorn tree, Acacia xanthophloea, is grown for foliage, timber, shade and rehabilitation of soils in areas with high water tables in Kenya. Its production is threatened by insect pests, which cause major losses. Very little is documented on wood-boring beetles which cause considerable economic damage to lumber used in a variety of applications, and little is known about their natural enemies in Kenya. We conducted the study to evaluate the occurrence of wood-boring beetles on A. xanthophloea in two different regions of Kenya. Infested wood samples of A. xanthophloea with fresh exit holes were collected from three sites in Kenyatta University (KU), Nairobi and Mitaboni in Machakos, Kenya. The samples were placed in clear plastic buckets and kept at ambient temperatures 23±2°C, 65±10% relative humidity and 12L: 12D in a laboratory where they were observed daily for adult emergence. Adult beetles were collected every three days for identification and data recording. The experiment was replicated four times and data collected twice a week for 6 months. Data on abundance was subjected to analysis of variance using SAS software. A total of 5,850 and 4,691 beetles were collected where 2,187 and 3,097 were Bostrichidae, accounting for 37% and 66% in KU and Mitaboni, respectively. A total of 12 bostrichid species was identified, including Sinoxylon ruficorne, S. doliolum, Xylion adustus, Xyloperthodes nitidipennis, Xyloperthella picea, Xylopsocus castanoptera, Lyctus brunneus, Heterbostrychus brunneus, Xylopsocus sp., and Dinoderus gabonicus. The most abundant species in KU was Xylion adustus with 1,915 beetles accounting for 88.4%, and Sinoxylon ruficorne in Mitaboni with 1,050 beetles accounting for 33.9% of the total. Sinoxylon ruficorne was only recorded in Mitaboni while only 2 specimens of D. gabonicus were found in KU. The mean number of exit holes on A. xanthophloea differed significantly between sites, which corresponded approximately to the amount of

  6. Wood-boring beetles associated with Acacia xanthophloea in Nairobi and Machakos Counties, Kenya.

    PubMed

    Kahuthia-Gathu, Ruth; Kirubi Thungu, Duncan; Wangu, Lucy; Kimani, Rachael

    2018-01-01

    Naivasha thorn tree, Acacia xanthophloea, is grown for foliage, timber, shade and rehabilitation of soils in areas with high water tables in Kenya. Its production is threatened by insect pests, which cause major losses. Very little is documented on wood-boring beetles which cause considerable economic damage to lumber used in a variety of applications, and little is known about their natural enemies in Kenya. We conducted the study to evaluate the occurrence of wood-boring beetles on A. xanthophloea in two different regions of Kenya. Infested wood samples of A. xanthophloea with fresh exit holes were collected from three sites in Kenyatta University (KU), Nairobi and Mitaboni in Machakos, Kenya. The samples were placed in clear plastic buckets and kept at ambient temperatures 23±2°C, 65±10% relative humidity and 12L: 12D in a laboratory where they were observed daily for adult emergence. Adult beetles were collected every three days for identification and data recording. The experiment was replicated four times and data collected twice a week for 6 months. Data on abundance was subjected to analysis of variance using SAS software. A total of 5,850 and 4,691 beetles were collected where 2,187 and 3,097 were Bostrichidae, accounting for 37% and 66% in KU and Mitaboni, respectively. A total of 12 bostrichid species was identified, including Sinoxylon ruficorne, S. doliolum, Xylion adustus, Xyloperthodes nitidipennis, Xyloperthella picea, Xylopsocus castanoptera, Lyctus brunneus, Heterbostrychus brunneus, Xylopsocus sp., and Dinoderus gabonicus. The most abundant species in KU was Xylion adustus with 1,915 beetles accounting for 88.4%, and Sinoxylon ruficorne in Mitaboni with 1,050 beetles accounting for 33.9% of the total. Sinoxylon ruficorne was only recorded in Mitaboni while only 2 specimens of D. gabonicus were found in KU. The mean number of exit holes on A. xanthophloea differed significantly between sites, which corresponded approximately to the amount of

  7. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    USGS Publications Warehouse

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  8. Building a Beetle: How Larval Environment Leads to Adult Performance in a Horned Beetle

    PubMed Central

    Reaney, Leeann T.; Knell, Robert J.

    2015-01-01

    The link between the expression of the signals used by male animals in contests with the traits which determine success in those contests is poorly understood. This is particularly true in holometabolous insects such as horned beetles where signal expression is determined during metamorphosis and is fixed during adulthood, whereas performance is influenced by post-eclosion feeding. We used path analysis to investigate the relationships between larval and adult nutrition, horn and body size and fitness-related traits such as strength and testes mass in the horned beetle Euoniticellus intermedius. In males weight gain post-eclosion had a central role in determining both testes mass and strength. Weight gain was unaffected by adult nutrition but was strongly correlated with by horn length, itself determined by larval resource availability, indicating strong indirect effects of larval nutrition on the adult beetle’s ability to assimilate food and grow tissues. Female strength was predicted by a simple path diagram where strength was determined by eclosion weight, itself determined by larval nutrition: weight gain post-eclosion was not a predictor of strength in this sex. Based on earlier findings we discuss the insulin-like signalling pathway as a possible mechanism by which larval nutrition could affect adult weight gain and thence traits such as strength. PMID:26244874

  9. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    USGS Publications Warehouse

    Paxton, Eben H.; Theimer, Tad C.; Sogge, Mark K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a well-studied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment.

  10. Sap beetle species (Coleoptera: Nitidulidae) visiting fresh wounds on healthy oaks during spring in Minnesota

    Treesearch

    Jennifer Juzwik; Thomas C. Skalbeck; Marc F. Newman

    2004-01-01

    Many species of sap beetles have been implicated as vectors of the oak wilt pathogen, (Ceratocystis fagacearum), but the species responsible for most aboveground transmission of the fungus is unknown. The abundance of adult sap beetle species inhabiting

  11. Interaction of insecticide and media moisture on ambrosia beetle (Coleoptera: Curculionidae) attacks on ornamental trees

    USDA-ARS?s Scientific Manuscript database

    Exotic ambrosia beetles, particularly Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford), are among the most economically damaging pests of ornamental trees in nurseries. Growers have had few tactics besides insecticide applications to reduce ambrosia beetle attacks but rec...

  12. The effect of time postexposure and sex on the horizontal transmission of Metarhizium brunneum conidia between Asian longhorned beetle (Coleoptera: Cerambycidae) mates.

    PubMed

    Ugine, Todd A; Peters, Kenlyn E; Gardescu, Sana; Hajek, Ann E

    2014-12-01

    A study using Metarhizium brunneum Petch fungal bands designed to improve delivery of conidia to adult Asian longhorned beetles, Anoplophora glabripennis (Motschulsky), was conducted to determine how a time delay between exposure to infective conidia and pairing of male and female beetles would affect the ability to successfully transfer lethal doses of conidia to a mate. We measured conidial load at the time of mate pairing (0, 4, 24, 48 h postexposure) and assessed its effect on beetle mortality. Conidial load per beetle decreased across the four sampling times, and there was no effect of beetle sex on conidial load. At all time periods postexposure, beetles that climbed across fungal bands carried enough conidia that at least some of their indirectly exposed mates died of mycosis. For indirectly exposed beetles, mortality decreased significantly as the time delay increased from 0 to 48 h, and this was independent of beetle sex. Median survival time was only 11.5 d for females indirectly exposed immediately after their mate had been exposed, but >3 wk when there was a 48-h delay before pairing. Generally, beetles exposed directly to fungal bands died faster than their indirectly exposed mates. In contrast to the pattern seen for indirectly exposed beetles, beetles exposed directly to fungal bands showed no change in survival times with a delay between exposure and pairing. Median survival times of exposed females and males were generally similar, at 10.5-12.5 d.

  13. Ginger and the beetle: Evidence of primitive pollination system in a Himalayan endemic alpine ginger (Roscoea alpina, Zingiberaceae)

    PubMed Central

    Shrestha, Mani; Dyer, Adrian G.; Li, Qing-Jun

    2017-01-01

    The Himalayan endemic alpine genus Roscoea, like other members of ginger family, exhibits the combination of floral traits that would fit pollination by long distant foragers such as bees, birds or flies. We studied the pollination biology of Roscoea alpina, observed potential floral visitors and determined their foraging behaviour, visitation frequency and pollination efficiency, to seek evidence in support of the pollination syndrome hypothesis. We also measured the floral spectra of R. alpina flowers to evaluate if signals fit with the currently known framework for observed floral visitors. We found that R. alpina have autonomous selfing and pollinator-mediated crossing, but lack apomixis. We observed that a beetle (Mylabris sp.), and a moth (Macroglossum nycteris) visit the flowers of R. alpina for pollen and nectar feeding respectively. Our field observations, the stigmatic pollen count and fruit set data indicated that the visit by the beetle was legitimate, while that of the moth was illegitimate. Emasculated flowers visited by beetles set as many fruits and seeds/fruit as auto-selfed and naturally pollinated flowers, while emasculated flowers excluded from beetle visits did not set fruit and seed; indicating that a single visit of a beetle to the flowers of R. alpina can facilitate pollination. We found that flower spectral signal of R. alpina does not fit typical spectra previously reported for beetle or bee-visited flowers. Our results suggest that, to ensure reproductive success in alpine habitat, R. alpina has evolved autonomous selfing as a predominant mode of reproduction, while beetle pollination would promote genetic diversity of this plant species. The visitation of beetles to the flowers of R. alpina, despite floral signal mismatch with the classically associated beetle vision, suggests that a different visual processing may operate in this plant-pollinator interaction at high altitudes. PMID:28723912

  14. Ginger and the beetle: Evidence of primitive pollination system in a Himalayan endemic alpine ginger (Roscoea alpina, Zingiberaceae).

    PubMed

    Paudel, Babu Ram; Shrestha, Mani; Dyer, Adrian G; Li, Qing-Jun

    2017-01-01

    The Himalayan endemic alpine genus Roscoea, like other members of ginger family, exhibits the combination of floral traits that would fit pollination by long distant foragers such as bees, birds or flies. We studied the pollination biology of Roscoea alpina, observed potential floral visitors and determined their foraging behaviour, visitation frequency and pollination efficiency, to seek evidence in support of the pollination syndrome hypothesis. We also measured the floral spectra of R. alpina flowers to evaluate if signals fit with the currently known framework for observed floral visitors. We found that R. alpina have autonomous selfing and pollinator-mediated crossing, but lack apomixis. We observed that a beetle (Mylabris sp.), and a moth (Macroglossum nycteris) visit the flowers of R. alpina for pollen and nectar feeding respectively. Our field observations, the stigmatic pollen count and fruit set data indicated that the visit by the beetle was legitimate, while that of the moth was illegitimate. Emasculated flowers visited by beetles set as many fruits and seeds/fruit as auto-selfed and naturally pollinated flowers, while emasculated flowers excluded from beetle visits did not set fruit and seed; indicating that a single visit of a beetle to the flowers of R. alpina can facilitate pollination. We found that flower spectral signal of R. alpina does not fit typical spectra previously reported for beetle or bee-visited flowers. Our results suggest that, to ensure reproductive success in alpine habitat, R. alpina has evolved autonomous selfing as a predominant mode of reproduction, while beetle pollination would promote genetic diversity of this plant species. The visitation of beetles to the flowers of R. alpina, despite floral signal mismatch with the classically associated beetle vision, suggests that a different visual processing may operate in this plant-pollinator interaction at high altitudes.

  15. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments

    PubMed Central

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil’s scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost. PMID:26694874

  16. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    PubMed

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  17. Heterorhabditis sp. (Nematoda: Heterorhabditidae): A Nematode Parasite Isolated from the Banded Cucumber Beetle Diabrotica balteata

    PubMed Central

    Creighton, C. S.; Fassuliotis, G.

    1985-01-01

    A nematode identified as Heterorhabditis sp. was discovered in June 1982 in larval cadavers of the banded cucumber beetle, Diabrotica balteata, in soil on wooded land. Effective beetle control (over 95%) was obtained when larvae were exposed to potted soil containing infective stage nematode juveniles or infected larval cadavers. The nematode was propagated in vivo on larvae of D. balteata, Diaphania nitidalis (the pickleworm), and Galleria mellonella (the greater wax moth). This Heterorhabditis sp. has promising potential as a biocontrol agent for the banded cucumber beetle. PMID:19294074

  18. Gallery productivity, emergence, and flight activity of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae)

    Treesearch

    M. Lake Maner; James Hanula; S. Kristine Braman

    2013-01-01

    Flight and emergence of the redbay ambrosia beetle, Xyleborus glabratus Eichhoff, were monitored from March 2011 through August 2012 using Lindgren funnel traps baited with manuka oil and emergence traps attached over individual beetle galleries on infested redbay (Persea borbonia (L.) Sprengel) trees. Of the 432 gallery entrances...

  19. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape?

    PubMed

    Grimbacher, Peter S; Stork, Nigel E

    2009-09-01

    There are surprisingly few studies documenting effects of tropical cyclones (including hurricanes and typhoons) on rainforest animals, and especially insects, considering that many tropical forests are frequently affected by cyclonic disturbance. Consequently, we sampled a beetle assemblage inhabiting 18 upland rainforest sites in a fragmented landscape in north-eastern Queensland, Australia, using a standardised sampling protocol in 2002 and again 12 months after the passage of Severe Tropical Cyclone Larry (March 2006). The spatial configuration of sites allowed us to test if the effects of a cyclone and those from fragmentation interact. From all insect samples we extracted 12,568 beetles of 382 species from ten families. Beetle species composition was significantly different pre-and post-cyclone although the magnitude of faunal change was not large with 205 species, representing 96% of all individuals, present in both sampling events. Sites with the greatest changes to structure had the greatest changes in species composition. At the site level, increases in woody debris and wood-feeding beetle (Scolytinae) counts were significantly correlated but changes in the percent of ground vegetation were not mirrored by changes in the abundance of foliage-feeding beetles (Chrysomelidae). The overall direction of beetle assemblage change was consistent with increasing aridity, presumably caused by the loss of canopy cover. Sites with the greatest canopy loss had the strongest changes in the proportion of species previously identified in the pre-cyclone study as preferring arid or moist rainforest environments. The magnitude of fragmentation effects was virtually unaltered by the passage of Cyclone Larry. We postulate that in the short-term the effects of cyclonic disturbance and forest fragmentation both reduce the extent of moist, interior habitat.

  20. Proceedings of a workshop on bark beetle genetics: current status of research. May 17-18, 1992, Berkeley, California

    Treesearch

    Jane L. Hayes; Jacqueline L. Robertson

    1992-01-01

    The Proceedings reports the results of a workshop focusing on the topic of bark beetle genetics. The workshop evolved because of the growing interest in this relatively unexplored area of bark beetle research. Workshop participants submitted brief descriptions of their views of the current status of bark beetle genetic research and needs for the future. Contributions...