Sample records for laevis function expression

  1. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

    PubMed Central

    Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A

    2007-01-01

    Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis. PMID:19279706

  2. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertz, L.M.; Catt, K.J.

    1991-10-01

    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNAmore » in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.« less

  3. Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis.

    PubMed

    Boorse, Graham C; Denver, Robert J

    2004-07-01

    Members of the corticotropin-releasing factor (CRF) family of peptides play pivotal roles in the regulation of neuroendocrine, autonomic, and behavioral responses to physical and emotional stress. In amphibian tadpoles, CRF-like peptides stimulate both thyroid and interrenal (adrenal) hormone secretion, and can thereby modulate the rate of metamorphosis. To better understand the regulation of expression and actions of CRF in amphibians we developed a homologous radioimmunoassay (RIA) for Xenopus laevis CRF (xCRF). We validated this RIA and tissue extraction procedure for the measurement of brain CRF content in tadpoles and juveniles. We show that the CRF-binding protein, which is highly expressed in X. laevis brain, is largely removed by acid extraction and does not interfere in the RIA. We analyzed CRF peptide content in five microdissected brain regions in prometamorphic tadpoles and juveniles. CRF was detected throughout the brain, consistent with its role as both a hypophysiotropin and a neurotransmitter/neuromodulator. CRF content was highest in the region of the preoptic area (POa) and increased in all brain regions after metamorphosis. Exposure to 4h of handling/shaking stress resulted in increased CRF peptide content in the POa in juvenile frogs. Injections of xCRF into prometamorphic tadpoles increased whole body corticosterone and thyroxine content, thus supporting findings in other anuran species that this peptide functions as both a corticotropin- and a thyrotropin (TSH)-releasing factor. Furthermore, treatment of cultured tadpole pituitaries with xCRF (100nM for 24h) resulted in increased medium content, but decreased pituitary content of TSHbeta-immunoreactivity. Our results support the view that CRF functions as a stress neuropeptide in X. laevis as in other vertebrates. Furthermore, we provide evidence for a dual hypophysiotropic action of CRF on the thyroid and interrenal axes in X. laevis as has been shown previously in other amphibian species.

  4. Probing the Xenopus laevis inner ear transcriptome for biological function

    PubMed Central

    2012-01-01

    Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors) facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome, thereby addressing the

  5. Dehydration triggers differential microRNA expression in Xenopus laevis brain.

    PubMed

    Luu, Bryan E; Storey, Kenneth B

    2015-11-15

    African clawed frogs, Xenopus laevis, although primarily aquatic, have a high tolerance for dehydration, being capable of withstanding the loss of up to 32-35% of total water body water. Recent studies have shown that microRNAs play a role in the response to dehydration by the liver, kidney and ventral skin of X. laevis. MicroRNAs act by modulating the expression of mRNA transcripts, thereby affecting diverse biochemical pathways. In this study, 43 microRNAs were assessed in frog brains comparing control and dehydrated (31.2±0.83% of total body water lost) conditions. MicroRNAs of interest were measured using a modified protocol which employs polyadenylation of microRNAs prior to reverse transcription and qPCR. Twelve microRNAs that showed a significant decrease in expression (to 41-77% of control levels) in brains from dehydrated frogs (xla-miR-15a, -150, -181a, -191, -211, -218, -219b, -30c, -30e, -31, -34a, and -34b) were identified. Genomic analysis showed that the sequences of these dehydration-responsive microRNAs were highly conserved as compared with the comparable microRNAs of mice (91-100%). Suppression of these microRNAs implies that translation of the mRNA transcripts under their control could be enhanced in response to dehydration. Bioinformatic analysis using the DIANA miRPath program (v.2.0) predicted the top two KEGG pathways that these microRNAs collectively regulate: 1. Axon guidance, and 2. Long-term potentiation. Previous studies indicated that suppression of these microRNAs promotes neuroprotective pathways by increasing the expression of brain-derived neurotrophic factor and activating anti-apoptotic pathways. This suggests that similar actions may be triggered in X. laevis brains as a protective response to dehydration. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. Gene expression analysis of the ovary of hybrid females of Xenopus laevis and X. muelleri

    PubMed Central

    2008-01-01

    Background Interspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females. Previous work has demonstrated a dramatic asymmetrical pattern of misexpression in hybrid males compared to the two parental species with relatively few genes misexpressed in comparisons of hybrids and the maternal species (X. laevis) and dramatically more genes misexpressed in hybrids compared to the paternal species (X. muelleri). In this work, we examine the gene expression pattern in hybrid females of X. laevis × X. muelleri to determine if this asymmetrical pattern of expression also occurs in hybrid females. Results We find a similar pattern of asymmetry in expression compared to males in that there were more genes differentially expressed between hybrids and X. muelleri compared to hybrids and X. laevis. We also found a dramatic increase in the number of misexpressed genes with hybrid females having about 20 times more genes misexpressed in ovaries compared to testes of hybrid males and therefore the match between phenotype and expression pattern is not supported. Conclusion We discuss these intriguing findings in the context of reproductive isolation and suggest that divergence in female expression may be involved in sterility of hybrid males due to the inherent sensitivity of spermatogenesis as defined by the faster male evolution hypothesis for Haldane's rule. PMID:18331635

  7. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    PubMed

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  8. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells

    PubMed Central

    Muñoz, Rosana; Edwards-Faret, Gabriela; Moreno, Mauricio; Zuñiga, Nikole; Cline, Hollis; Larraín, Juan

    2016-01-01

    Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2/3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2/3+ cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2/3+ neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is

  9. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Malbon, C.C.

    1987-05-01

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less

  10. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons.

    PubMed

    Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E

    2017-09-01

    A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.

  11. Transcriptome analysis identifies genes involved in sex determination and development of Xenopus laevis gonads.

    PubMed

    Piprek, Rafal P; Damulewicz, Milena; Kloc, Malgorzata; Kubiak, Jacek Z

    Development of the gonads is a complex process, which starts with a period of undifferentiated, bipotential gonads. During this period the expression of sex-determining genes is initiated. Sex determination is a process triggering differentiation of the gonads into the testis or ovary. Sex determination period is followed by sexual differentiation, i.e. appearance of the first testis- and ovary-specific features. In Xenopus laevis W-linked DM-domain gene (DM-W) had been described as a master determinant of the gonadal female sex. However, the data on the expression and function of other genes participating in gonad development in X. laevis, and in anurans, in general, are very limited. We applied microarray technique to analyze the expression pattern of a subset of X. laevis genes previously identified to be involved in gonad development in several vertebrate species. We also analyzed the localization and the expression level of proteins encoded by these genes in developing X. laevis gonads. These analyses pointed to the set of genes differentially expressed in developing testes and ovaries. Gata4, Sox9, Dmrt1, Amh, Fgf9, Ptgds, Pdgf, Fshr, and Cyp17a1 expression was upregulated in developing testes, while DM-W, Fst, Foxl2, and Cyp19a1 were upregulated in developing ovaries. We discuss the possible roles of these genes in development of X. laevis gonads. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Expressed ryanodine receptor can substitute for the inositol 1,4,5-trisphosphate receptor in Xenopus laevis oocytes during progesterone-induced maturation.

    PubMed

    Kobrinsky, E; Ondrias, K; Marks, A R

    1995-12-01

    Two structurally related forms of intracellular calcium release channels that can mediate the release of intracellular calcium have been identified: the ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate receptors (IP3R). Each channel responds to distinct pathways for activation. The IP3R is activated by IP3 and the RyR is thought to be activated by calcium or by another second messenger cADP ribose. It has been proposed that each type of channel subserves a specialized pool of intracellular calcium, and it is not understood why some cell types require more than one form of intracellular calcium release channel. The present study was designed to examine whether the RyR can substitute for the IP3R during oocyte maturation. IP3R expression was inhibited in Xenopus laevis oocytes using antisense oligonucleotides. These oocytes, with reduced levels of IP3R, demonstrated a marked delay in the time course of progesterone-induced maturation. The cloned skeletal muscle RyR1 was then expressed in X. laevis oocytes that were deficient in IP3R. Functional studies showed that the properties of the cloned RyR1, expressed in oocytes, were comparable to those of the native RyR1. X. laevis oocytes deficient in IP3R, but expressing RyR1, were able to undergo progesterone-induced maturation with a time course comparable to that seen in wild-type oocytes when caffeine was used to activate RyR and induce intracellular calcium release. These studies show that RyR1 can substitute for the IP3R as the intracellular calcium release channel required for Xenopus oocyte maturation and that intracellular calcium release is important for controlling the rate of progesterone-induced maturation.

  13. Expression of cardiac sarcolemmal Na sup + -Ca sup 2+ exchange activity in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longoni, S.; Coady, M.J.; Ikeda, T.

    1988-12-01

    Injection of Xenopus laevis oocytes with rabbit heart poly(A){sup +}RNA results in expression of Na{sup +} inside (Na{sub i}{sup +})-dependent Ca{sup 2+} uptake activity. The activity was measured by first loading the oocytes with Na{sup +} using nystatin and then incubating the oocytes in K{sup +} or Na{sup +} medium containing {sup 45}Ca. The expressed Na{sup +} gradient-dependent Ca{sup 2+} uptake was five to eight times that observed with water-injected oocytes or with poly(A){sup +}RNA-injected oocytes for which the Na{sup +} load step had been omitted. Induced activity was related to the amount of RNA injected and was insensitive tomore » nifedipine. Fractionation of the poly(A){sup +}RNA on a sucrose gradient determined that the active message had a size range between 3 and 8 kb. The properties of the Na{sup +} gradient-dependent Ca{sup 2+} uptake indicated that Na{sup +}-Ca{sup 2+} exchange activity had been expressed in X. laevis oocytes. The result may be useful for cloning and identifying the molecular component responsible for Na{sup +}-Ca{sup 2+} exchange.« less

  14. Isolation and Expression Profile of the Ca2+-Activated Chloride Channel-like Membrane Protein 6 Gene in Xenopus laevis

    PubMed Central

    Lee, Ra Mi; Ryu, Rae Hyung; Jeong, Seong Won; Oh, Soo Jin; Huang, Hue; Han, Jin Soo; Lee, Chi Ho; Lee, C. Justin; Jan, Lily Yeh

    2011-01-01

    To clone the first anion channel from Xenopus laevis (X. laevis), we isolated a calcium-activated chloride channel (CLCA)-like membrane protein 6 gene (CMP6) in X. laevis. As a first step in gene isolation, an expressed sequence tags database was screened to find the partial cDNA fragment. A putative partial cDNA sequence was obtained by comparison with rat CLCAs identified in our laboratory. First stranded cDNA was synthesized by reverse transcription polymerase-chain reaction (RT-PCR) using a specific primer designed for the target cDNA. Repeating the 5' and 3' rapid amplification of cDNA ends, full-length cDNA was constructed from the cDNA pool. The full-length CMP6 cDNA completed via 5'- and 3'-RACE was 2,940 bp long and had an open reading frame (ORF) of 940 amino acids. The predicted 940 polypeptides have four major transmembrane domains and showed about 50% identity with that of rat brain CLCAs in our previously published data. Semi-quantification analysis revealed that CMP6 was most abundantly expressed in small intestine, colon and liver. However, all tissues except small intestine, colon and liver had undetectable levels. This result became more credible after we did real-time PCR quantification for the target gene. In view of all CLCA studies focused on human or murine channels, this finding suggests a hypothetical protein as an ion channel, an X. laevis CLCA. PMID:21826170

  15. CONCENTRATION DEPENDENT ACCUMULATION OF [3H]-DELTAMETHRIN IN SODIUM CHANNEL N AV1.2 EXPRESSING XENOPUS LAEVIS OOCYTES.

    EPA Science Inventory

    Disruption of neuronal voltage-sensitive sodium channels (VSSCs) by pyrethroid insecticides such as deltamethrin (DLT) has been widely studied using Xenopus laevis oocytes transfected with VSSC. However, the extent of pyrethroid accumulation in VSSC-expressing oocytes is unknown....

  16. Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis

    PubMed Central

    Guselnikov, S.V.; Grayfer, L.; De Jesús Andino, F.; Rogozin, I.B.; Robert, J.; Taranin, A.V.

    2015-01-01

    The ITAM-bearing transmembrane signaling subunits (TSS) are indispensable components of activating leukocyte receptor complexes. The TSS-encoding genes map to paralogous chromosomal regions, which are thought to arise from ancient genome tetraploidization(s). To assess a possible role of tetraploidization in the TSS evolution, we studied TSS and other functionally linked genes in the amphibian species Xenopus laevis whose genome was duplicated about 40 MYR ago. We found that X. laevis has retained a duplicated set of sixteen TSS genes, all except one being transcribed. Furthermore, duplicated TCRα loci and genes encoding TSS-coupling protein kinases have also been retained. No clear evidence for functional divergence of the TSS paralogs was obtained from gene expression and sequence analyses. We suggest that the main factor of maintenance of duplicated TSS genes in X. laevis was a protein dosage effect and that this effect might have facilitated the TSS set expansion in early vertebrates. PMID:26170006

  17. Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution.

    PubMed

    Boorse, Graham C; Crespi, Erica J; Dautzenberg, Frank M; Denver, Robert J

    2005-11-01

    Several corticotropin-releasing factor (CRF) family genes have been identified in vertebrates. Mammals have four paralogous genes that encode CRF or the urocortins 1, 2, and 3. In teleost fishes, a CRF, urotensin I (a fish ortholog of mammalian urocortin 1) and urocortin 3 have been identified, suggesting that at least three of the four mammalian lineages arose in a common ancestor of modern bony fishes and tetrapods. Here we report the isolation of genes orthologous to mammalian urocortin 1 and urocortin 3 from the South African clawed frog, Xenopus laevis. We characterize the pharmacology of the frog peptides and show that X. laevis urocortin 1 binds to and activates the frog CRF1 and CRF2 receptors at picomolar concentrations. Similar to mammals, frog urocortin 3 is selective for the CRF2 receptor. Only frog urocortin 1 binds to the CRF-binding protein, although with significantly lower affinity than frog CRF. Both urocortin genes are expressed in brain, pituitary, heart, and kidney of juvenile frogs; urocortin 1 is also expressed in skin. We also identified novel urocortin sequences in the genomes of pufferfish, zebrafish, chicken, and dog. Phylogenetic analysis supports the view that four paralogous lineages of CRF-like peptides arose before the divergence of the actinopterygian and sarcopterygian fishes. Our findings show that the functional relationships among CRF ligands and binding proteins, and their anorexigenic actions mediated by the CRF2 receptor, arose early in vertebrate evolution.

  18. The synthetic gestagen levonorgestrel directly affects gene expression in thyroid and pituitary glands of Xenopus laevis tadpoles.

    PubMed

    Lorenz, Claudia; Opitz, Robert; Trubiroha, Achim; Lutz, Ilka; Zikova, Andrea; Kloas, Werner

    2016-08-01

    The synthetic gestagen levonorgestrel (LNG) was previously shown to perturb thyroid hormone-dependent metamorphosis in Xenopus laevis. However, so far the mechanisms underlying the anti-metamorphic effects of LNG remained unknown. Therefore, a series of in vivo and ex vivo experiments was performed to identify potential target sites of LNG action along the pituitary-thyroid axis of X. laevis tadpoles. Prometamorphic tadpoles were treated in vivo with LNG (0.01-10nM) for 72h and brain-pituitary and thyroid tissue was analyzed for marker gene expression. While no treatment-related changes were observed in brain-pituitary tissue, LNG treatment readily affected thyroidal gene expression in tadpoles including decreased slc5a5 and iyd mRNA expression and a strong induction of dio2 and dio3 expression. When using an ex vivo organ explant culture approach, direct effects of LNG on both pituitary and thyroid gland gene expression were detecTable Specifically, treatment of pituitary explants with 10nM LNG strongly stimulated dio2 expression and concurrently suppressed tshb expression. In thyroid glands, ex vivo LNG treatment induced dio2 and dio3 mRNA expression in a thyrotropin-independent manner. When thyroid explants were cultured in thyrotropin-containing media, LNG caused similar gene expression changes as seen after 72h in vivo treatment including a very strong repression of thyrotropin-induced slc5a5 expression. Concerning the anti-thyroidal activity of LNG as seen under in vivo conditions, our ex vivo data provide clear evidence that LNG directly affects expression of genes important for thyroidal iodide handling as well as genes involved in negative feedback regulation of pituitary tshb expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development.

    PubMed

    Seigfried, Franziska A; Dietmann, Petra; Kühl, Michael; Kühl, Susanne J

    2018-06-01

    The adhesion G protein-coupled receptor A2 (Adgra2) is a seven transmembrane receptor that has been described to be a regulator for angiogenesis in mice. Furthermore, the zebrafish ouchless mutant is unable to develop dorsal root ganglia through a disrupted trafficking of Adgra2. Besides RNA sequencing data, nothing is reported about Adgra2 in the south African crawled frog Xenopus laevis. In this study, we investigated for the first time the spatio-temporal expression of adgra2 during early Xenopus embryogenesis in detail. In silico approaches showed that the genomic adgra2 region as well as the Adgra2 protein sequence is highly conserved among different species including Xenopus. RT-PCR experiments confirmed that embryonic adgra2 expression is primarily detected at the beginning of neurulation and is then present throughout the whole Xenopus embryogenesis until stage 42. Whole mount in situ hybridization approaches visualized adgra2 expression in many tissues during Xenopus embryogenesis such as the cardiovascular system including the heart, the migrating neural crest cells and the developing eye including the periocular mesenchyme. Our results indicate a role of Adgra2 for embryogenesis and are a good starting point for further functional studies during early vertebrate development. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Expression analysis of some genes regulated by retinoic acid in controls and triadimefon-exposed embryos: is the amphibian Xenopus laevis a suitable model for gene-based comparative teratology?

    PubMed

    Di Renzo, Francesca; Rossi, Federica; Bacchetta, Renato; Prati, Mariangela; Giavini, Erminio; Menegola, Elena

    2011-06-01

    The use of nonmammal models in teratological studies is a matter of debate and seems to be justified if the embryotoxic mechanism involves conserved processes. Published data on mammals and Xenopus laevis suggest that azoles are teratogenic by altering the endogenous concentration of retinoic acid (RA). The expression of some genes (Shh, Ptch-1, Gsc, and Msx2) controlled by retinoic acid is downregulated in rat embryos exposed at the phylotypic stage to the triazole triadimefon (FON). In order to propose X. laevis as a model for gene-based comparative teratology, this work evaluates the expression of Shh, Ptch-1, Gsc, and Msx2 in FON-exposed X. laevis embryos. Embryos, exposed to a high concentration level (500 µM) of FON from stage 13 till 17, were examined at stages 17, 27, and 47. Stage 17 and 27 embryos were processed to perform quantitative RT-PCR. The developmental rate was never affected by FON at any considered stage. FON-exposed stage 47 larvae showed the typical craniofacial malformations. A significant downregulation of Gsc was observed in FON-exposed stage 17 embryos. Shh, Ptch-1, Msx2 showed a high fluctuation of expression both in control and in FON-exposed samples both at stages 17 and 27. The downregulation of Gsc mimics the effects of FON on rat embryos, showing for this gene a common effect of FON in the two vertebrate classes. The high fluctuation observed in the gene expression of the other genes, however, suggests that X. laevis at this stage has limited utility for gene-based comparative teratology. © 2011 Wiley-Liss, Inc.

  1. Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes.

    PubMed

    Minami, K; Gereau, R W; Minami, M; Heinemann, S F; Harris, R A

    1998-01-01

    Previous studies have demonstrated that ethanol and volatile anesthetics inhibit the function of some metabotropic (G protein-coupled) receptors, including the 5-hydroxytryptamine2 and muscarinic cholinergic receptors. The metabotropic glutamate receptors (mGluRs) show little sequence homology with most other metabotropic receptors and are important modulators of synaptic transmission in the mammalian central nervous system. It was of interest to determine drug actions on these receptors, and we investigated the effects of ethanol, halothane, the anesthetic compound F3 (1-chloro-1,2,2-trifluorocyclobutane), and the nonanesthetics F6 (1,2-dichlorohexafluorocyclobutane) and F8 (2,3-chlorooctafluorobutane) on the function of mGluR1 and mGluR5 expressed in Xenopus laevis oocytes. Halothane, F3, and ethanol inhibited mGluR5-induced Ca(2+)-dependent Cl- currents, yet pharmacologically relevant concentrations of these compounds had little effect on the glutamate-induced currents in the oocytes expressing mGluR1. F6 had inhibitory effects on both receptors, and F8 did not affect either mGluR1 or mGluR5 function. The protein kinase C (PKC) inhibitor GF109203X enhanced the glutamate-induced current, and the PKC activator phorbol-12-myristate-13-acetate inhibited this current in the oocytes expressing mGluR5, but these compounds had little effect on mGluR1 function. GF109203X abolished the inhibitory effects of halothane, F3, and ethanol on mGluR5s. Conversely, the phosphatase inhibitor calyculin A prolonged the action of halothane and ethanol. Furthermore, mutation of a PKC consensus site (Ser890) of mGluR5 abolished the inhibitory effects of halothane, F3, and ethanol. These results suggest that ethanol and volatile anesthetics inhibit mGluR5 because they promote PKC-mediated phosphorylation.

  2. CONCENTRATION DEPENDENT ACCUMULATION OF [3H]-DELTAMETHRIN IN XENOPUS LAEVIS OOCYTES.

    EPA Science Inventory

    Pyrethroid insecticides such as deltamethrin have been demonstrated to target and disrupt voltage-sensitive sodium channels (VSSCs). VSSCs were expressed in Xenopus laevis oocytes and used to study the effects of deltamethrin on VSSCs. This study evaluated the amount of deltameth...

  3. Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis

    PubMed Central

    Barnett, Chris; Yazgan, Oya; Kuo, Hui-Ching; Malakar, Sreepurna; Thomas, Trevor; Fitzgerald, Amanda; Harbour, Billy; Henry, Jonathan J.; Krebs, Jocelyn E.

    2012-01-01

    Williams Syndrome Transcription Factor (WSTF) is one of ~25 haplodeficient genes in patients with the complex developmental disorder Williams Syndrome (WS). WS results in visual/spatial processing defects, cognitive impairment, unique behavioral phenotypes, characteristic “elfin” facial features, low muscle tone and heart defects. WSTF exists in several chromatin remodeling complexes and has roles in transcription, replication, and repair. Chromatin remodeling is essential during embryogenesis, but WSTF’s role in vertebrate development is poorly characterized. To investigate the developmental role of WSTF, we knocked down WSTF in Xenopus laevis embryos using a morpholino that targets WSTF mRNA. BMP4 shows markedly increased and spatially aberrant expression in WSTF-deficient embryos, while SHH, MRF4, PAX2, EPHA4 and SOX2 expression are severely reduced, coupled with defects in a number of developing embryonic structures and organs. WSTF-deficient embryos display defects in anterior neural development. Induction of the neural crest, measured by expression of the neural crest-specific genes SNAIL and SLUG, is unaffected by WSTF depletion. However, at subsequent stages WSTF knockdown results in a severe defect in neural crest migration and/or maintenance. Consistent with a maintenance defect, WSTF knockdowns display a specific pattern of increased apoptosis at the tailbud stage in regions corresponding to the path of cranial neural crest migration. Our work is the first to describe a role for WSTF in proper neural crest function, and suggests that neural crest defects resulting from WSTF haploinsufficiency may be a major contributor to the pathoembryology of WS. PMID:22691402

  4. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis

    PubMed Central

    Yamada, Shigehito

    2016-01-01

    Abstract A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a “spike.” Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs’ limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus. PMID:27499877

  5. Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling

    PubMed Central

    Morin, Ryan D.; Chang, Elbert; Petrescu, Anca; Liao, Nancy; Griffith, Malachi; Kirkpatrick, Robert; Butterfield, Yaron S.; Young, Alice C.; Stott, Jeffrey; Barber, Sarah; Babakaiff, Ryan; Dickson, Mark C.; Matsuo, Corey; Wong, David; Yang, George S.; Smailus, Duane E.; Wetherby, Keith D.; Kwong, Peggy N.; Grimwood, Jane; Brinkley, Charles P.; Brown-John, Mabel; Reddix-Dugue, Natalie D.; Mayo, Michael; Schmutz, Jeremy; Beland, Jaclyn; Park, Morgan; Gibson, Susan; Olson, Teika; Bouffard, Gerard G.; Tsai, Miranda; Featherstone, Ruth; Chand, Steve; Siddiqui, Asim S.; Jang, Wonhee; Lee, Ed; Klein, Steven L.; Blakesley, Robert W.; Zeeberg, Barry R.; Narasimhan, Sudarshan; Weinstein, John N.; Pennacchio, Christa Prange; Myers, Richard M.; Green, Eric D.; Wagner, Lukas; Gerhard, Daniela S.; Marra, Marco A.; Jones, Steven J.M.; Holt, Robert A.

    2006-01-01

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization. PMID:16672307

  6. Expression, Purification, and Structural Insights for the Human Uric Acid Transporter, GLUT9, Using the Xenopus laevis Oocytes System

    PubMed Central

    Clémençon, Benjamin; Lüscher, Benjamin P.; Fine, Michael; Baumann, Marc U.; Surbek, Daniel V.; Bonny, Olivier; Hediger, Matthias A.

    2014-01-01

    The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies. PMID:25286413

  7. Lectins and substitution for helper function in anti-hapten responses in Xenopus laevis.

    PubMed

    Clothier, R H; James, H S; Ruben, L N; Balls, M

    1984-08-01

    Substitution by lectins for the carrier-priming requirement in thymus-dependent, antigen-binding responses in Xenopus laevis has been examined. Concanavalin A (Con A) was found to substitute for carrier priming in control, early-thymectomized and adult-thymectomized animals, but not in animals given a single, high dose of N-methyl-N-nitrosourea, which has a permanent effect on certain thymus-dependent functions in this species. Lipopolysaccharide and other lectins, such as peanut agglutinin and wheat germ agglutinin, were unable to substitute for carrier priming. These effects of Con A are discussed in terms of substitution via amplifier T cells or a helper T cell subset.

  8. Xenopus laevis and Emerging Amphibian Pathogens in Chile.

    PubMed

    Soto-Azat, Claudio; Peñafiel-Ricaurte, Alexandra; Price, Stephen J; Sallaberry-Pincheira, Nicole; García, María Pía; Alvarado-Rybak, Mario; Cunningham, Andrew A

    2016-12-01

    Amphibians face an extinction crisis with no precedence. Two emerging infectious diseases, ranaviral disease caused by viruses within the genus Ranavirus and chytridiomycosis due to Batrachochytrium dendrobatidis (Bd), have been linked with amphibian mass mortalities and population declines in many regions of the globe. The African clawed frog (Xenopus laevis) has been indicated as a vector for the spread of these pathogens. Since the 1970s, this species has been invasive in central Chile. We collected X. laevis and dead native amphibians in Chile between 2011 and 2013. We conducted post-mortem examinations and molecular tests for Ranavirus and Bd. Eight of 187 individuals (4.3 %) tested positive for Ranavirus: seven X. laevis and a giant Chilean frog (Calyptocephallela gayi). All positive cases were from the original area of X. laevis invasion. Bd was found to be more prevalent (14.4 %) and widespread than Ranavirus, and all X. laevis Bd-positive animals presented low to moderate levels of infection. Sequencing of a partial Ranavirus gene revealed 100 % sequence identity with Frog Virus 3. This is the first report of Ranavirus in Chile, and these preliminary results are consistent with a role for X. laevis as an infection reservoir for both Ranavirus and Bd.

  9. Hyperinnervation improves Xenopus laevis limb regeneration.

    PubMed

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Akira

    2018-01-15

    Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Evidence that the rabbit proton-peptide co-transporter PepT1 is a multimer when expressed in Xenopus laevis oocytes.

    PubMed

    Panitsas, Konstantinos-E; Boyd, C A R; Meredith, David

    2006-04-01

    To test whether the rabbit proton-coupled peptide transporter PepT1 is a multimer, we have employed a combination of transport assays, luminometry and site-directed mutagenesis. A functional epitope-tagged PepT1 construct (PepT1-FLAG) was co-expressed in Xenopus laevis oocytes with a non-functional but normally trafficked mutant form of the same transporter (W294F-PepT1). The amount of PepT1-FLAG cRNA injected into the oocytes was kept constant, while the amount of W294F-PepT1 cRNA was increased over the mole fraction range of 0 to 1. The uptake of [(3)H]-D: -Phe-L: -Gln into the oocytes was measured at pH(out) 5.5, and the surface expression of PepT1-FLAG was quantified by luminometry. As the mole fraction of injected W294F-PepT1 increased, the uptake of D: -Phe-L: -Gln decreased. This occurred despite the surface expression of PepT1-FLAG remaining constant, and so we can conclude that PepT1 must be a multimer. Assuming that PepT1 acts as a homomultimer, the best fit for the modelling suggests that PepT1 could be a tetramer, with a minimum requirement of two functional subunits in each protein complex. Western blotting also showed the presence of higher-order complexes of PepT1-FLAG in oocyte membranes. It should be noted that we cannot formally exclude the possibility that PepT1 interacts with unidentified Xenopus protein(s). The finding that PepT1 is a multimer has important implications for the molecular modelling of this protein.

  11. Expression and Function of Xmsx-2B in Dorso-Ventral Axis Formation in Gastrula Embryos.

    PubMed

    Onitsuka, I; Takeda, M; Maéno, M

    2000-11-01

    Msx is a homeodomain-containing transcriptional factor that plays an essential role in pattern formation in vertebrata and invertebrata embryos. In Xenopus laevis, two msx genes have been identified (Xmsx-1 and Xmsx-2). In the present study, we attempted to elucidate the expression and function of Xmsx-2B (formerly designated as Xhox7.1') in early embryogenesis. Whole mount in situ hybridization analyses showed that the expression pattern of Xmsx-2B at gastrula and neurula stages was very similar to that of Xmsx-1: the transcript of Xmsx-2B was observed in ventral and lateral sides of the embryo. At the tailbud stage, however, the expression pattern of Xmsx-2B in neural tissues was distinct from that of Xmsx-1. An RNA injection experiment revealed that, like BMP-4, Xmsx-2B has a strong ventralizing activity. In the Xmsx-2B -injected embryos, differentiation of axial structures such as the notochord, muscle, and neural tissue was completely suppressed, whereas alpha-globin mRNA, a blood cell marker, was highly expressed. Simultaneous injection of Xmsx-1 and Xmsx-2B RNAs showed that they function in an additive manner. It was also shown that coinjection of Xmsx-2B with a dominant-negative BMP-4 receptor (tBR), which can induce formation of secondary axis when injected alone in ventral blastomeres, suppressed secondary axis formation. Furthermore, Xmsx-2B also suppressed secondary axis formation, which was induced by a dominant-negative form of Xmsx-1 (VP16/msx-1). Therefore, like Xmsx-1, Xmsx-2B is a downstream nuclear factor of the BMP-4-derived ventralizing signal, and these two factors probably share the same target molecules. In conclusion, Xmsx-1 and Xmsx-2B function in dorso-ventral axis formation in early Xenopus laevis development.

  12. Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development.

    PubMed

    Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto

    2018-03-06

    The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, R D; Chang, E; Petrescu, A

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence betweenmore » the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.« less

  14. Distribution of the Hawaiian ghost crab, Ocypode laevis Dana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellows, D.P.

    1975-01-01

    The presence of a small breeding population of Ocypode laevis at Enewetak Atoll, Marshall Islands, is reported, and morphological and behavioral comparisons are made with the Hawaiian O. laevis. Previous distribution records for the species are discussed and corrected.

  15. Dehydration mediated microRNA response in the African clawed frog Xenopus laevis.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Storey, Kenneth B

    2013-10-25

    Exposure to various environmental stresses induces metabolic rate depression in many animal species, an adaptation that conserves energy until the environment is again conducive to normal life. The African clawed frog, Xenopus laevis, is periodically subjected to arid summers in South Africa, and utilizes entry into the hypometabolic state of estivation as a mechanism of long term survival. During estivation, frogs must typically deal with substantial dehydration as their ponds dry out and X. laevis can endure >30% loss of its body water. We hypothesize that microRNAs play a vital role in establishing a reversible hypometabolic state and responding to dehydration stress that is associated with amphibian estivation. The present study analyzes the effects of whole body dehydration on microRNA expression in three tissues of X. laevis. Compared to controls, levels of miR-1, miR-125b, and miR-16-1 decreased to 37±6, 64±8, and 80±4% of control levels during dehydration in liver. By contrast, miR-210, miR-34a and miR-21 were significantly elevated by 3.05±0.45, 2.11±0.08, and 1.36±0.05-fold, respectively, in the liver. In kidney tissue, miR-29b, miR-21, and miR-203 were elevated by 1.40±0.09, 1.31±0.05, and 2.17±0.31-fold, respectively, in response to dehydration whereas miR-203 and miR-34a were elevated in ventral skin by 1.35±0.05 and 1.74±0.12-fold, respectively. Bioinformatic analysis of the differentially expressed microRNAs suggests that these are mainly involved in two processes: (1) expression of solute carrier proteins, and (2) regulation of mitogen-activated protein kinase signaling. This study is the first report that shows a tissue specific mode of microRNA expression during amphibian dehydration, providing evidence for microRNAs as crucial regulators of metabolic depression. © 2013 Elsevier B.V. All rights reserved.

  16. Psf2 plays important roles in normal eye development in Xenopus laevis

    PubMed Central

    Walter, Brian E.; Perry, Kimberly J.; Fukui, Lisa; Malloch, Erica L.; Wever, Jason

    2008-01-01

    Purpose Psf2 (partner of Sld5 2) represents a member of the GINS (go, ichi, ni, san) heterotetramer [1] and functions in DNA replication as a “sliding clamp.” Previous in situ hybridization analyses revealed that Psf2 is expressed during embryonic development in a tissue-specific manner, including the optic cup (retina) and the lens [2]. This article provides an analysis of Psf2 function during eye development in Xenopus laevis. Methods A morpholino targeted to Psf2 mRNA was designed to knockdown Psf2 translation and was injected into specific embryonic cells during early cleavage stages in the frog, Xenopus laevis. Injected embryos were assayed for specific defects in morphology, cell proliferation, and apoptosis. Synthetic Psf2 RNA was also co-injected with the morpholino to rescue morpholino-mediated developmental defects. It is well known that reciprocal inductive interactions control the development of the optic cup and lens. Therefore, control- and morpholino-injected embryos were used for reciprocal transplantation experiments to distinguish the intrinsic role of Psf2 in the development of the optic cup (retina) versus the lens. Results Morpholino-mediated knockdown of Psf2 expression resulted in dosage-dependent phenotypes, which included microphthalmia, incomplete closure of the ventral retinal fissure, and retinal and lens dysgenesis. Defects were also observed in other embryonic tissues that normally express Psf2 including the pharyngeal arches and the otic vesicle, although other tissues that express Psf2 were not found to be grossly defective. Eye defects could be rescued by co-injection of synthetic Psf2 RNA. Examination of cell proliferation via an antibody against phospho-histone H3 S10P revealed no significant differences in the retina and lens following Psf2 knockdown. However, there was a significant increase in the level of apoptosis in retinal as well as forebrain tissues, as revealed by TUNEL (terminal deoxynucleotide transferase dUTP nick

  17. Cloning of an origin of DNA replication of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, S.; Taylor, J.H.

    1980-09-01

    DNA fragments of Xenopus laevis, the African frog, were cloned in the EcoRI site of the Eschrichia coli plasmid pACYC189 and tested for ability to initiate and complete replication of the recombinant plasmid when injected into unfertilized eggs of X. laevis. After measurement of the (/sup 3/H)-thymidine incorporation per egg for a number of recombinant plasmids, pSW14 and pSW9, which respectively contain a small segment (550 base pairs) and several kilobases of frog DNA, were selected for more extensive analysis. In spite of the small size of th segment in pSW14, it incorporates in 2 hr at least 3 timesmore » as much labeled thymidine as either pSW9 or the vector alone. To determine the number of replications of pSW14, a novel method was employed. The results showed that about 50% of the labeled, supercoiled DNA recovered from eggs after 4 hr was sensitive to EcoRI digestion, which indicates that most of the DNA that incorporated (/sup 3/H)thymidine had replicated twice during the 4 hr in the unfertilized eggs of X. laevis. We conclude the pSW14 has a functional origin in the Xenopus DNA segment.« less

  18. Regulation of Xenopus laevis DNA topoisomerase I activity by phosphorylation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiserman, H.B.; Ingebritsen, T.S.; Benbow, R.M.

    1988-05-03

    DNA topoisomerase I has been purified to electrophoretic homogeneity from ovaries of the frog Xenopus laevis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most purified fraction revealed a single major band at 110 kDa and less abundant minor bands centered at 62 kDa. Incubation of the most purified fraction with immobilized calf intestinal alkaline phosphatase abolished all DNA topoisomerase enzymatic activity in a time-dependent reaction. Treatment of the dephosphorylated X. laevis DNA topoisomerase I with a X. laevis casein kinase type II activity and ATP restored DNA topoisomerase activity to a level higher than that observed in the most purifiedmore » fraction. In vitro labeling experiments which employed the most purified DNA topoisomerase I fraction, (..gamma..-/sup 32/P)ATP, and the casein kinase type II enzyme showed that both the 110- and 62-kDa bands became phosphorylated in approximately molar proportions. Phosphoamino acid analysis showed that only serine residues became phosphorylated. Phosphorylation was accompanied by an increase in DNA topoisomerase activity in vitro. Dephosphorylation of DNA topoisomerase I appears to block formation of the initial enzyme-substrate complex on the basis of the failure of the dephosphorylated enzyme to nick DNA in the presence of camptothecin. The authors conclude that X. laevis DNA topoisomerase I is partially phosphorylated as isolated and that this phosphorylation is essential for expression of enzymatic activity in vitro. On the basis of the ability of the casein kinase type II activity to reactivate dephosphorylated DNA topoisomerase I, they speculate that this kinase may contribute to the physiological regulation of DNA topoisomerase I activity.« less

  19. Isolation and characterization of Xenopus laevis homologs of the mouse inv gene and functional analysis of the conserved calmodulin binding sites.

    PubMed

    Yasuhiko, Yukuto; Shiokawa, Koichiro; Mochizuki, Toshio; Asashima, Makoto; Yokoyama, Takahiko

    2006-04-01

    The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.

  20. Susceptibility of early life stages of Xenopus laevis to cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkovits, J.; Perez-Coll, C.S.; Cardellini, P.

    1997-02-01

    The susceptibility of Xenopus laevis to cadmium during different stages of development was evaluated by exposing embryos to cadmium concentrations ranging from 0.1 to 10 mg Cd{sup 2+}/L for 24, 48, and 72 h and assessing lethality and malformations. Susceptibility increased from the two blastomeres stage (stage 2) to stage 40, in which the 24-h LC100 was 1.13 mg Cd{sup 2+}/L, and resistance increased from this stage onward. Malformations occurred at all developmental stages evaluated, the most common being reduced size, incurvated axis, underdeveloped or abnormally developed fin, microcephaly, and microphtalmy. Scanning electron microscopy revealed changes in the ectodermal surfacemore » ranging from slightly vaulted cells to a severe reduction in the number of ciliated cells as the concentration of cadmium increased. The intraspecific variation evaluated in embryos (from four sets of parents) at seven developmental stages, expressed as the coefficient of variation of the LC100, ranged from 10 to 112% and reflects the capacity of Xenopus laevis to adapt to changing environmental conditions at different embryonic stages.« less

  1. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    PubMed

    Miyamoto, Kei; Suzuki, Ken-Ichi T; Suzuki, Miyuki; Sakane, Yuto; Sakuma, Tetsushi; Herberg, Sarah; Simeone, Angela; Simpson, David; Jullien, Jerome; Yamamoto, Takashi; Gurdon, J B

    2015-01-01

    Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.

  2. Prominin-1 Localizes to the Open Rims of Outer Segment Lamellae in Xenopus laevis Rod and Cone Photoreceptors

    PubMed Central

    Han, Zhou; Anderson, David W.

    2012-01-01

    Purpose. Prominin-1 expresses in rod and cone photoreceptors. Mutations in the prominin-1 gene cause retinal degeneration in humans. In this study, the authors investigated the expression and subcellular localization of xlProminin-1 protein, the Xenopus laevis ortholog of prominin-1, in rod and cone photoreceptors of this frog. Methods. Antibodies specific for xlProminin-1 were generated. Immunoblotting was used to study the expression and posttranslational processing of xlProminin-1 protein. Immunocytochemical light and electron microscopy and transgenesis were used to study the subcellular distribution of xlProminin-1. Results. xlProminin-1 is expressed and is subject to posttranslational proteolytic processing in the retina, brain, and kidney. xlProminin-1 is differently expressed and localized in outer segments of rod and cone photoreceptors of X. laevis. Antibodies specific for the N or C termini of xlProminin-1 labeled the open rims of lamellae of cone outer segments (COS) and the open lamellae at the base of rod outer segments (ROS). By contrast, anti–peripherin-2/rds antibody, Xper5A11, labeled the closed rims of cone lamellae adjacent to the ciliary axoneme and the rims of the closed ROS disks. The extent of labeling of the basal ROS by anti–xlProminin-1 antibodies varied with the light cycle in this frog. The entire ROS was also faintly labeled by both antibodies, a result that contrasts with the current notion that prominin-1 localizes only to the basal ROS. Conclusions. These findings suggest that xlProminin-1 may serve as an anti–fusogenic factor in the regulation of disk morphogenesis and may help to maintain the open lamellar structure of basal ROS and COS disks in X. laevis photoreceptors. PMID:22076989

  3. Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes.

    PubMed

    Parodi, Jorge; Ochoa-de la Paz, Lenin; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2012-10-01

    Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.

  4. Characterization of X-OCRL, a Xenopus laevis homologue of OCRL-1, the Lowe oculocerebrorenal syndrome candidate gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, D.S.; Nussbaum, R.L.

    1994-09-01

    The Lowe oculocerebrorenal syndrome (OCRL) is an X-linked disease characterized by congenital cataract, mental retardation, and renal tubular dysfunction. A candidate cDNA, OCRL-1, was identified by positional cloning and mutations in OCRL-1 have been detected in patients with Lowe syndrome. The OCRL-1 nucleotide sequence encodes a predicted protein of 968 amino acids and shares 51% amino acid identity with a human inositol polyphosphate-5-phosphatase. This suggests that the underlying defect in OCRL may be due to a defect in inositol phosphate metabolism. The isolation of OCRL-1 provides the opportunity to investigate its function through the use of animal model systems. Wemore » have isolated a partial cDNA clone encoding an OCRL-1 homologue, X-OCRL, from the South African clawed frog, Xenopus laevis. We used a portion of the human cDNA to screen a Xenopus laevis embryo cDNA library and isolated four positive clones. One clone, 42-5A, is a 650 bp insert with over 75% amino acid identity to the corresponding region of the human OCRL-1 sequence. 42-5A detects messenger RNA in adult Xenopus brain, stomach, small intestine, skin, muscle, lung, blood, and oviduct. X-OCRL messenger RNA is first detected during late gastrula and continues to be expressed throughout Xenopus development. In situ hybridization studies are underway to identify the cellular localization of X-OCRL expression in Xenopus embryos and adult tissues. We are especially interested in characterizing X-OCRL expression during formation of the amphibian lens since congenital cataracts are a constant feature of the human disease.« less

  5. METAMORPHIC INHIBITION OF XENOPUS LAEVIS BY SODIUM PERCHLORATE: EFFECTS ON DEVELOPMENT AND THYROID HISTOLOGY

    EPA Science Inventory

    The perchlorate anion inhibits thyroid hormone (TH) synthesis via inhibition of the sodium-iodide symporter. It is, therefore, a good model chemical to aid in the development of a bioassay to screen chemicals for effects on thyroid function. Xenopus laevis larvae were exposed to ...

  6. Xenopus laevis oocyte maturation is affected by metal chlorides.

    PubMed

    Marin, Matthieu; Slaby, Sylvain; Marchand, Guillaume; Demuynck, Sylvain; Friscourt, Noémie; Gelaude, Armance; Lemière, Sébastien; Bodart, Jean-François

    2015-08-01

    Few studies have been conducted using Xenopus laevis germ cells as oocytes, though these cells offer many advantages allowing both electrophysiological studies and morphological examination. Our aim was to investigate the effects of metal (cadmium, lead, cobalt and zinc) exposures using cell biology approaches. First, cell survival was evaluated with both phenotypical and electrophysiological approaches. Secondly, the effect of metals on oocyte maturation was assessed with morphological observations and electrophysiological recordings. From survival experiments, our results showed that metal chlorides did not affect cell morphology but strongly depolarized X. laevis oocyte resting potential. In addition, cadmium chloride was able to inhibit progesterone-induced oocyte maturation. By contrast, zinc, but also to a lesser extent cadmium, cobalt and lead, were able to enhance spontaneous oocyte maturation in the absence of progesterone stimulation. Finally, electrophysiological recordings revealed that some metal chlorides (lead, cadmium) exposures could disturb calcium signaling in X. laevis oocyte by modifying calcium-activated chloride currents. Our results demonstrated the high sensitivity of X. laevis oocytes toward exogenous metals such as lead and cadmium. In addition, the cellular events recorded might have a predictive value of effects occurring later on the ability of oocytes to be fertilized. Together, these results suggest a potential use of this cellular lab model as a tool for ecotoxicological assessment of contaminated fresh waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Expression of XNOA 36 in the mitochondrial cloud of Xenopus laevis oocytes.

    PubMed

    Vaccaro, M C; Wilding, M; Dale, B; Campanella, C; Carotenuto, R

    2012-08-01

    In Xenopus laevis oocytes a mitochondrial cloud (MC) is found between the nucleus and the plasma membrane at stages I-II of oogenesis. The MC contains RNAs that are transported to the future vegetal pole at stage II of oogenesis. In particular, germinal plasm mRNAs are found in the Message Transport Organiser (METRO) region, the MC region opposite to the nucleus. At stages II-III, a second pathway transports Vg1 and VegT mRNAs to the area where the MC content merges with the vegetal cortex. Microtubules become polarized at the sites of migration of Vg1 and VegT mRNAs through an unknown signalling mechanism. In early meiotic stages, the centrioles are almost completely lost with their remnants being dispersed into the cytoplasm and the MC, which may contain a MTOC to be used in the later localization pathway of the mRNAs. In mammals, XNOA 36 encodes a member of a highly conserved protein family and localises to the nucleolus or in the centromeres. In the Xenopus late stage I oocyte, XNOA 36 mRNA is transiently segregated in one half of the oocyte, anchored by a cytoskeletal network that contains spectrin. Here we found that XNOA 36 transcript also localises to the nucleoli and in the METRO region. XNOA 36 protein immunolocalization, using an antibody employed for the library immunoscreening that depicted XNOA 36 expression colonies, labels the migrating MC, the cytoplasm of stage I oocytes and in particular the vegetal cortex facing the MC. The possible role of XNOA 36 in mRNA anchoring to the vegetal cortex or in participating in early microtubule reorganization is discussed.

  8. Expression of the mammalian calcium signaling response to Trypanosoma cruzi in Xenopus laevis oocytes.

    PubMed

    Leite, M F; Moyer, M S; Andrews, N W

    1998-04-01

    Infective stages of the protozoan parasite Trypanosoma cruzi contain a soluble factor that induces elevation in the intracellular free Ca2+ concentration ([Ca2+]i) of mammalian cells. The process is pertussis toxin (PTx)-sensitive, and involves phospholipase C (PLC) activation, inositol 1,4,5-trisphosphate (IP3) formation and Ca2+ release from intracellular stores (Tardieux I, et al. J Exp Med 1994;179:1017-1022; Rodriguez A, et al. J Cell Biol 1995;129:1263-1273). We now report that a molecule exposed on the surface of the target cells is required to trigger the signaling cascade, and that a response with identical characteristics can be induced in Xenopus laevis oocytes injected with mRNA from normal rat kidney (NRK) fibroblasts. Xenopus oocytes do not show an endogenous response to the trypomastigote Ca2+ signaling factor, but a vigorous response in the form of a propagating Ca2+ wave is expressed after injection of NRK cell mRNA. As previously demonstrated for mammalian cells, the response is inhibited when injected oocytes are pretreated with PTx, implicating Galphai or Galphao trimeric G-proteins, and with thapsigargin, which depletes intracellular Ca2+ stores. Moreover, the [Ca2+]i transients triggered by the T. cruzi soluble factor in mRNA-injected oocytes are blocked by the same inhibitors of the parasite oligopeptidase B that abolish the [Ca2+]i response in NRK cells (Burleigh B, Andrews NW. J Biol Chem 1995;270:5172-5180; Burleigh BA et al. J Cell Biol 1997;136:609-620). The NRK mRNA fraction that induces expression of the [Ca2+]i response to the T. cruzi signaling factor contains messages from 1.5 to 2.0 kb, a size range consistent with the family of seven-transmembrane G-protein-coupled receptors.

  9. A transgenic reporter under control of an es1 promoter/enhancer marks wound epidermis and apical epithelial cap during tail regeneration in Xenopus laevis tadpole.

    PubMed

    Sato, Kentaro; Umesono, Yoshihiko; Mochii, Makoto

    2018-01-15

    Rapid wound healing and subsequent formation of the apical epithelial cap (AEC) are believed to be required for successful appendage regeneration in amphibians. Despite the significant role of AEC in limb regeneration, its role in tail regeneration and the mechanisms that regulate the wound healing and AEC formation are not well understood. We previously identified Xenopus laevis es1, which is preferentially expressed in wounded regions, including the AEC after tail regeneration. In this study we established and characterized transgenic Xenopus laevis lines harboring the enhanced green fluorescent protein (EGFP) gene under control of an es1 gene regulatory sequence (es1:egfp). The EGFP reporter expression was clearly seen in several regions of the embryo and then declined to an undetectable level in larvae, recapitulating the endogenous es1 expression. After amputation of the tadpole tail, EGFP expression was re-activated at the edge of the stump epidermis and then increased in the wound epidermis (WE) covering the amputation surface. As the stump started to regenerate, the EGFP expression became restricted to the most distal epidermal region, including the AEC. EGFP was preferentially expressed in the basal or deep cells but not in the superficial cells of the WE and AEC. We performed a small-scale pharmacological screening for chemicals that affected the expression of EGFP in the stump epidermis after tail amputation. The EGFP expression was attenuated by treatment with an inhibitor for ERK, TGF-β or reactive oxygen species (ROS) signaling. These treatments also impaired wound closure of the amputation surface, suggesting that the three signaling activities are required for es1 expression in the WE and successful wound healing after tail amputation. These findings showed that es1:egfp Xenopus laevis should be a useful tool to analyze molecular mechanisms regulating wound healing and appendage regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Exposure to butachlor causes thyroid endocrine disruption and promotion of metamorphosis in Xenopus laevis.

    PubMed

    Li, Shuying; Li, Meng; Wang, Qiangwei; Gui, Wenjun; Zhu, Guonian

    2016-06-01

    Butachlor is extensively applied in rice paddy ecosystem in china, and has been widespread contaminant in the aquatic environment. Here, Xenopus laevis was used for the evaluation of teratogenesis developmental toxicity, and disruption of thyroid system when exposure to different concentrations of butachlor by window phase exposure. Acute toxicity investigation shown that 96 h-LC50 value of butachlor was 1.424 mg L(-1) and 0.962 mg L(-1) for tadpoles (starting from stages 46/47) and embryos (starting from stages 8/9), respectively. Exposure to butachlor caused malformation, including abnormal eye, pericardial edema, enlarged proctodaeum and bent tail. Window phase exposure test indicated that butachlor significantly promote the contents of whole-body thyroid hormones (THs, T3 and T4) at higher levels, indicating thyroid endocrine disruption. At 7 days, exposure to butachlor up-regulated the mRNA expression of genes involved in THs synthesis and metabolism (tshα, tg, tpo and dio1) and THs receptors (trα and trβ). At 14 days, up-regulation of the mRNA expression of genes related to THs synthesis and metabolism (tshα, tshβ, tg, tpo, dio1, dio2 and ttr) and THs receptors (trβ) were also observed after the exposure to butachlor. At 21 days, butachlor up-regulated the mRNA expression of tshα, tg, tpo genes and down-regulated the mRNA expression of tshβ, tg, dio1, ttr and trα genes. These results showed that butachlor could change the mRNA expression of genes involved in the HPT axis and increase whole-body thyroid hormones levels of X. laevis tadpoles in a dose- and time-dependent manner, causing thyroid endocrine disruption and developmental toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A quantitative adverse outcome pathway model for thyroid axis disruption in Xenopus laevis tadpoles

    EPA Science Inventory

    The development of Xenopus laevis tadpoles is tightly controlled by the thyroid hormones tetraiodothyronine (T4) and triiodothyronine (T3). Toxicity testing efforts have shown that several compounds interfere with development in X. laevis tadpoles by disrupting the thyroid axis a...

  12. Expression of membrane targeted aequorin in Xenopus laevis oocytes.

    PubMed

    Daguzan, C; Nicolas, M T; Mazars, C; Leclerc, C; Moreau, M

    1995-08-01

    We described here a system for high level of expression of the calcium activated photoprotein aequorin. This protein has been targeted to the plasma membrane of Xenopus oocyte by nuclear microinjection of a plasmid containing a construction of a chimeric cDNA encoding a fusion protein composed of the photoprotein aequorin and the 5-HT1A receptor. The expression of this fusion protein is placed under the control of RSV promoter. Functional photoprotein was reconstituted in the oocyte by incubation with coelenterazine. The amount of photoprotein 24 h after nuclear microinjection of the plasmid was sufficient to trigger a detectable light emission following calcium entry. The efficiency of the expression is correlated with the dose of plasmid injected. Intracytoplasmic injection of the plasmid always failed in photoprotein expression. Targeting of the apoprotein was demonstrated by immunolocalization under confocal microscopy. In our experimental conditions, the apoprotein was always localized at the animal pole above the nucleus. We never observed expression and targeting to the plasma membrane of the vegetal pole. WE suggest that such expression might be of great interest for the study of numerous problems of developmental biology, in which calcium-dependent pathways are involved.

  13. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes.

    PubMed

    Liin, S I; Karlsson, U; Bentzen, B H; Schmitt, N; Elinder, F

    2016-09-01

    Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting the resting membrane potential in hippocampal and dorsal root ganglion neurones. Effects of fatty acids and fatty acid analogues on mouse dorsal root ganglion neurones and on the human KV 7.2/3 channel expressed in Xenopus laevis oocytes were studied using electrophysiology. Extracellular application of physiologically relevant concentrations of the polyunsaturated fatty acid docosahexaenoic acid hyperpolarized the resting membrane potential (-2.4 mV by 30 μm) and increased the threshold current to evoke action potentials in dorsal root ganglion neurones. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes, by shifting the conductance-vs.-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μm). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. These findings suggest that circulating polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty acids reduce neuronal excitability. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Analysis of thyroid hormone receptor {beta}A mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opitz, Robert; Lutz, Ilka; Nguyen, Ngoc-Ha

    2006-04-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors {alpha} (TR{alpha}) and {beta}A (TR{beta}A) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TR{alpha} gene expression whereas a marked up-regulation of TR{beta}A mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TR{beta}A mRNA in head and tail tissue withinmore » 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TR{beta}A mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TR{beta}A gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TR{beta}A expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TR{beta}A mRNA up-regulation. Results of this study suggest that TR{beta}A mRNA expression analysis could serve as a sensitive molecular testing approach to study

  15. XENOPUS LAEVIS: A CULTURING AND REARING PROTOCOL

    EPA Science Inventory

    Xenopus laevis are used extensively here at MED-Duluth as a model for assessing development toxicity to xenobiotics. As a result, a culturing system has been developed that provides eggs and tadpoles of consistent high quality for use by researchers at the facility. The methods ...

  16. Identification of a candidate CD5 homologue in the amphibian Xenopus laevis.

    PubMed

    Jürgens, J B; Gartland, L A; Du Pasquier, L; Horton, J D; Göbel, T W; Cooper, M D

    1995-11-01

    We identified a novel T cell Ag in the South African clawed toad (Xenopus laevis) by a mAb designated 2B1. This Ag is present in relatively high levels on most thymocytes, approximately 65% of splenocytes, 55% of PBL, and 65% of intestinal lymphocytes, but is rarely seen on IgM+ B cells in any of these tissues. Lymphocytes bearing the 2B1 Ag proliferate in response to stimulation with Con A or PHA, whereas the 2B1- lymphocytes are reactive to LPS. Biochemical analysis indicates that this Ag is a differentially phosphorylated glycoprotein of 71 to 82 kDa. The protein core of 64 kDa bears both N- and O-linked carbohydrate side chains. The amino-terminal protein sequence of the 2B1 Ag shares significant homology with both the macrophage scavenger receptor type 1 motif and the mammalian CD5/CD6 family. The biochemical characteristics and cellular distribution of the 2B1 Ag suggest that it represents the CD5 homologue in X. laevis. While T cells constitutively express this highly conserved molecule, Xenopus B cells acquire the CD5 homologue only when they are stimulated in the presence of T cells.

  17. Atomic force microscopy on plasma membranes from Xenopus laevis oocytes containing human aquaporin 4.

    PubMed

    Orsini, Francesco; Santacroce, Massimo; Cremona, Andrea; Gosvami, Nitya N; Lascialfari, Alessandro; Hoogenboom, Bart W

    2014-11-01

    Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4-M23) was expressed in the X. laevis oocytes following their injection with AQP4-M23 cRNA. AQP4-M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4-M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over-expressed AQP4-M23, the membranes from AQP4-M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher-order arrays of AQP4-M23. In addition, but only infrequently, AQP4-M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Xenopus laevis in Developmental and Molecular Biology.

    ERIC Educational Resources Information Center

    Dawid, Igor B.; Sargent, Thomas D.

    1988-01-01

    Discusses the advantages of Xenopus laevis as an experimental animal in the study of embryogenesis in vertebrates. Summarizes the contributions of this system to the analysis of ribosomal and 5S RNA genes, and the diverse and highly productive applications of the oocyte injection technology. (RT)

  19. Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2.

    PubMed

    Zhu, T; Chen, X Z; Steel, A; Hediger, M A; Smith, D E

    2000-05-01

    To examine the mechanism of inhibition of glycylsarcosine (GlySar) transport by quinapril and enalapril, and whether or not angiotensin converting enzyme (ACE) inhibitors are transported by PEPT2 as well as by PEPT1. Xenopus laevis oocytes were cRNA-injected with rat PEPT1 or PEPT2 and the transport kinetics of radiolabeled GlySar were studied in the absence and presence of quinapril and enalapril. The two-microelectrode voltage-clamp technique was also performed to probe the electrogenic uptake of captopril, quinapril and enalapril. Kinetic analyses demonstrated that quinapril inhibited the uptake of GlySar in a noncompetitive manner in Xenopus oocytes injected with PEPT1 or PEPT2 (Ki = 0.8 or 0.4 mM, respectively). In contrast, a competitive interaction was observed between GlySar and enalapril (Ki = 10.8 mM for PEPT1 or 4.3 mM for PEPT2). Most significantly, captopril and enalapril, but not quinapril, induced inwardly-directed currents in both PEPT1- and PEPT2-expressed oocytes. These results are unique in providing direct evidence for the substrate recognition and transport of some ACE inhibitors by the high- and low-affinity oligopeptide transporters. Our findings point to differences between PEPT1 and PEPT2 in their affinity to, rather than in their specificity for, ACE inhibitors.

  20. Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe

    PubMed Central

    Courant, Julien; Herrel, Anthony; Rebelo, Rui; Rödder, Dennis; Measey, G. John; Backeljau, Thierry

    2016-01-01

    Due to both deliberate and accidental introductions, invasive African Clawed Frog (Xenopus laevis) populations have become established worldwide. In this study, we investigate the geographic origins of invasive X. laevis populations in France and Portugal using the phylogeographic structure of X. laevis in its native South African range. In total, 80 individuals from the whole area known to be invaded in France and Portugal were analysed for two mitochondrial and three nuclear genes, allowing a comparison with 185 specimens from the native range. Our results show that native phylogeographic lineages have contributed differently to invasive European X. laevis populations. In Portugal, genetic and historical data suggest a single colonization event involving a small number of individuals from the south-western Cape region in South Africa. In contrast, French invasive X. laevis encompass two distinct native phylogeographic lineages, i.e., one from the south-western Cape region and one from the northern regions of South Africa. The French X. laevis population is the first example of a X. laevis invasion involving multiple lineages. Moreover, the lack of population structure based on nuclear DNA suggests a potential role for admixture within the invasive French population. PMID:26855879

  1. Pattern formation in early embryogenesis of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mglinets, V.A.

    1995-07-01

    Establishment of egg polarity, separation of germ layers, and the appearance of animal-vegetal, dorsoventral, and anteroposterior axes in Xenopus laevis embryos are considered. The control of these processes by gene coding for growth factors, protooncogens, and homeobox-containing genes is also been reviewed.

  2. Effects of nutritional factors on the growth and heterotrophic eicosapentaenoic acid production of diatom Nitzschia laevis

    NASA Astrophysics Data System (ADS)

    Cao, Xiaohong; Li, Songyao; Wang, Chunling; Lu, Meifang

    2008-08-01

    The effects of several nutritional factors on the growth and eicosapentaenoic acid (EPA) production of diatom Nitzschia laevis were studied. 4 LDM (quadrupled concentration of the nutrient salt) was the optimal concentration of nutrient salt for the growth and EPA production of N. laevis. The growth of N. laevis was inhibited when the glucose concentration was either lower than 10 gL-1 or higher than 15 gL-1. Both sodium nitrate and urea were good nitrogen sources for the growth and EPA production, while ammonium chloride seriously decreased the dry cell weight (DW) and the EPA content. Silicate seriously influenced the growth of N. laevis. The maximum DW of 2.34 gL-1 was obtained in the presence of 150 mgL-1 Na2SiO3·9H2O. The EPA content remained almost the same when the silicate concentration was lower than 150 mgL-1; however, higher silicate concentrations resulted in a steady decrease of EPA content. Low medium salinity (⩽29) did not seem to influence the DW of N. laevis, and high salinity resulted in a decrease of DW. The highest EPA content (4.08%) and yield (110 mgL-1) were observed at the salinity of 36 and 29, respectively.

  3. The cloning and characterization of a localized maternal transcript in Xenopus laevis whose zygotic counterpart is detected in the CNS.

    PubMed

    Reddy, B A; Kloc, M; Etkin, L D

    1992-12-01

    We have cloned a cDNA (xlan4) from a Xenopus laevis oocyte cDNA library whose cognate mRNA is localized in the animal pole region of full grown oocytes. The cDNA can be translated in vitro to produce a predicted size protein of 35 kDa and, is also expressed in E. coli as a fusion protein. The conceptual protein encoded by the xlan4 cDNA is 17.5% proline rich and possesses several PEST sequences found in proteins with short half-lives. The xlan4 mRNA is 2.6 kb and during early development its titer decreases until the neurula stage after which it begins to reaccumulate. Northern blots on dissected embryos and in situ hybridization revealed that the zygotic expression is limited to the dorsal axial structures consisting primarily of the CNS. UV irradiation of the vegetal pole region immediately following fertilization that produces ventralized embryos results in a loss of zygotic xlan4 expression. In the adult, xlan4 mRNA is limited primarily to the brain. The presence of this mRNA in animal pole region which contributes to the future neural cell lineages suggests that this gene product may function either in the specification of neural cell types or in a neural specific function.

  4. Assessment of laryngeal muscle and testicular cell types in Xenopus laevis (Anura Pipidae) inhabiting maize and non-maize growing areas of South Africa

    USGS Publications Warehouse

    Smith, E.E.; Du Preez, L.H.; Gentles, A.; Solomon, K.R.; Tandler, B.; Carr, J.A.; Van Der Kraak, G. L.; Kendall, R.J.; Giesy, J.P.; Gross, T.S.

    2005-01-01

    We tested the hypothesis that adult African clawed frogs (Xenopus laevis) inhabiting water bodies in maize-growing areas (MGA) of South Africa would exhibit differences in testicular structure compared to frogs from water bodies in non-maize-growing areas (NMGA) in the same locale. Adults of both sexes were collected during the autumn of 2002 in South Africa, and stereological analytical techniques were used to quantify the distribution of testicular cell types. In addition, total laryngeal mass was used as a gauge of secondary sex differences in animals from MGA and NMGA study sites. Evaluation of the total laryngeal mass revealed that there were no statistically significant differences between X. laevis of the same sex from the NMGA and MGA sites. Mean percent fractional-volume values for seminiferous tubule distribution of testicular cell types of mature X. laevis, ranged from 3-4% for spermatogonia, 26-28% for spermatocytes, 54-57% for spermatozoa, and 14-15% for other cells types. The mean percent volume for blood vessels ranged from 0.3-0.4%. These values did not differ significantly between frogs from NMGA and MGA areas. Collectively, these data demonstrated no differences in gonadal and laryngeal development in X. laevis collected in South Africa from MGA and NMGA areas and that there is little evidence for an effect of agricultural chemicals used in maize production functioning as endocrine disrupters in this species. Screening of X. laevis testes revealed a small incidence of Stage 1 testicular oocytes in adult male frogs collected from the NMGA (3%) and MGA (2%).

  5. Functional expression and characterization of a purine nucleobase transporter gene from Leishmania major.

    PubMed

    Sanchez, Marco A; Tryon, Rob; Pierce, Steven; Vasudevan, Gayatri; Landfear, Scott M

    2004-01-01

    Leishmania major, like all the other kinetoplastid protozoa, are unable to synthesize purines and rely on purine nucleobase and nucleoside acquisition across the parasite plasma membrane by specific permeases. Although, several genes have been cloned that encode nucleoside transporters in Leishmania and Trypanosoma brucei, much less progress has been made on nucleobase transporters, especially at the molecular level. The studies reported here have cloned and expressed the first gene for a L. major nucleobase transporter, designated LmaNT3. The LmaNT3 permease shows 33% identity to L. donovani nucleoside transporter 1.1 (LdNT1.1) and is, thus, a member of the equilibrative nucleoside transporter (ENT) family. ENT family members identified to date are nucleoside transporters, some of which also transport one or several nucleobases. Functional expression studies in Xenopus laevis oocytes revealed that LmaNT3 mediates high levels of uptake of hypoxanthine, xanthine, adenine and guanine. Moreover, LmaNT3 is an high affinity transporter with K(m) values for hypoxanthine, xanthine, adenine and guanine of 16.5 +/- 1.5, 8.5 +/- 0.6, 8.5 +/- 1.1, and 8.8 +/- 4.0 microM, respectively. LmaNT3 is, thus, the first member of the ENT family identified in any organism that functions as a nucleobase rather than nucleoside or nucleoside/nucleobase transporter.

  6. In vivo Assessment and Potential Diagnosis of Xenobiotics that Perturb the Thyroid Pathway: Proteomic Analysis of Xenopus laevis Brain Tissue following Exposure to Model T4 Inhibitors

    EPA Science Inventory

    As part of a multi-endpoint systems approach to develop comprehensive methods for assessing endocrine stressors in vertebrates, differential protein profiling was used to investigate expression profiles in the brain of an amphibian model (Xenopus laevis) following in vivo exposur...

  7. Three-dimensional reconstruction of the cranial and anterior spinal nerves in early tadpoles of Xenopus laevis (Pipidae, Anura).

    PubMed

    Naumann, Benjamin; Olsson, Lennart

    2018-04-01

    Xenopus laevis is one of the most widely used model organism in neurobiology. It is therefore surprising, that no detailed and complete description of the cranial nerves exists for this species. Using classical histological sectioning in combination with fluorescent whole mount antibody staining and micro-computed tomography we prepared a detailed innervation map and a freely-rotatable three-dimensional (3D) model of the cranial nerves and anterior-most spinal nerves of early X. laevis tadpoles. Our results confirm earlier descriptions of the pre-otic cranial nerves and present the first detailed description of the post-otic cranial nerves. Tracing the innervation, we found two previously undescribed head muscles (the processo-articularis and diaphragmatico-branchialis muscles) in X. laevis. Data on the cranial nerve morphology of tadpoles are scarce, and only one other species (Discoglossus pictus) has been described in great detail. A comparison of Xenopus and Discoglossus reveals a relatively conserved pattern of the post-otic and a more variable morphology of the pre-otic cranial nerves. Furthermore, the innervation map and the 3D models presented here can serve as an easily accessible basis to identify alterations of the innervation produced by experimental studies such as genetic gain- and loss of function experiments. © 2017 Wiley Periodicals, Inc.

  8. Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.

    PubMed

    Zhang, Kun; Wang, Jin

    2018-05-31

    The cell cycle is an indispensable process in proliferation and development. Despite significant efforts, global quantification and physical understanding are still challenging. In this study, we explored the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying the underlying landscape and flux. We uncovered the Mexican hat landscape of the Xenopus laevis embryonic cell cycle with several local basins and barriers on the oscillation path. The local basins characterize the different phases of the Xenopus laevis embryonic cell cycle, and the local barriers represent the checkpoints. The checkpoint mechanism of the cell cycle is revealed by the landscape basins and barriers. While landscape shape determines the stabilities of the states on the oscillation path, the curl flux force determines the stability of the cell cycle flow. Replication is fundamental for biology of living cells. We quantify the input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact, the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can identify the key elements for

  9. Aromatase, steroid-5-alpha-reductase type 1 and type 2 mRNA expression in gonads and in brain of Xenopus laevis during ontogeny.

    PubMed

    Urbatzka, R; Lutz, I; Kloas, W

    2007-01-01

    The key enzymes involved in the production of endogenous sex steroids are steroid-5-alpha-reductase and aromatase converting testosterone (T) into dihydrotestosterone (DHT) and into estradiol (E2), respectively. To gain more insights into the molecular mechanisms of sexual differentiation of amphibians, we determined the mRNA expression of steroid-5-alpha-reductase type1 (Srd5a1), type2 (Srd5a2) and aromatase (Aro) during ontogeny starting from the egg and ending after completion of metamorphosis in Xenopus laevis. Expression of all three enzymes was measured by means of semi-quantitative RT-PCR, determining for the first time Srd5a1 and Srd5a2 mRNA expression in amphibians. mRNA was analyzed in whole body homogenates from stage 12 to 48, while brain and gonads with kidney were studied separately from stage 48 to 66. Different ontogenetic mRNA expression patterns were observed for all genes analyzed, revealing early mRNA expression of Srd5a1 already in the egg at stage 12 whereas Srd5a2 and Aro was detected at stage 39. Sex-specific mRNA expressions of Srd5a2 and of Aro were determined in the gonads with kidney but not in brain. Srd5a2 was two-fold higher expressed in testes than in ovaries while Aro mRNA was ten-fold higher in ovaries. No gender-specific mRNA expression was observed for Srd5a1 in gonads and in brain. The ontogenetic patterns of Aro, Srd5a1 and Srd5a2 suggest that these genes are involved in sexual differentiation of gonads and brain already in early developmental stages. Especially in gonads Srd5a2 seems to be important for physiological regulation of testis development while Aro is associated with the development of ovaries.

  10. Prolonged in vivo imaging of Xenopus laevis.

    PubMed

    Hamilton, Paul W; Henry, Jonathan J

    2014-08-01

    While live imaging of embryonic development over long periods of time is a well established method for embryos of the frog Xenopus laevis, once development has progressed to the swimming stages, continuous live imaging becomes more challenging because the tadpoles must be immobilized. Current imaging techniques for these advanced stages generally require bringing the tadpoles in and out of anesthesia for short imaging sessions at selected time points, severely limiting the resolution of the data. Here we demonstrate that creating a constant flow of diluted tricaine methanesulfonate (MS-222) over a tadpole greatly improves their survival under anesthesia. Based on this result, we describe a new method for imaging stage 48 to 65 X. laevis, by circulating the anesthetic using a peristaltic pump. This supports the animal during continuous live imaging sessions for at least 48 hr. The addition of a stable optical window allows for high quality imaging through the anesthetic solution. This automated imaging system provides for the first time a method for continuous observations of developmental and regenerative processes in advanced stages of Xenopus over 2 days. Developmental Dynamics 243:1011-1019, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  11. Bisphenol A causes malformation of the head region in embryos of Xenopus laevis and decreases the expression of the ESR-1 gene mediated by Notch signaling.

    PubMed

    Imaoka, Susumu; Mori, Tomohiro; Kinoshita, Tsutomu

    2007-02-01

    Bisphenol A (BpA) is widely used in industry and dentistry. Its effects on the embryonic development of Xenopus laevis were investigated. Xenopus embryos at stage 10.5 were treated with BpA. Developmental abnormalities were observed at stage 35; malformation of the head region including eyes and scoliosis. The expression of several markers of embryonic development was investigated by reverse transcription-polymerase chain reaction (RT-PCR). The pan-neural marker SOX-2, the neural stem cell marker nrp-1, the mesodermal marker MyoD, and the endodermal marker sox17alpha, were used. Although the expression of marker genes was not changed by treatment with BpA, that of Pax-6, a key regulator of the morphogenesis of the eyes, was decreased by BpA. Pax-6 is a downstream factor of Notch signaling. So, the expression of a typical Notch-dependent factor, ESR-1, was investigated in the presence of BpA. The expression of ESR-1 was efficiently suppressed by BpA. In whole mount in situ hybridization (WISH), Pax-6 was expressed in the central nervous system and eyes. The expression was lost completely on treatment with BpA. The expression of ESR-1 in the central nervous system and eyes also disappeared with BpA treatment. Injection of the intracellular domain of Notch efficiently recovered ESR-1 expression in the presence of BpA although injection of a ligand for notch, Delta, did not. These results suggest that BpA decreased the expression of ESR-1 by disrupting the Notch signal.

  12. The first record of the slender sunfish Ranzania laevis from the Red Sea.

    PubMed

    Abu El-Regal, M A; El-Moselhy, K

    2013-11-01

    A female specimen of the slender sunfish Ranzania laevis of 600 mm total length was recorded for the first time from the Red Sea after being stranded on a shallow sandy bay at Hurghada beach (27° 06' 16″ N; 33° 50' 01″ E) on 13 May 2012. Ranzania laevis is believed to have migrated from the Indian Ocean as the nearest area where it was found is coastal waters of Oman. © 2013 The Fisheries Society of the British Isles.

  13. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis.

    PubMed

    Mawaribuchi, Shuuji; Takahashi, Shuji; Wada, Mikako; Uno, Yoshinobu; Matsuda, Yoichi; Kondo, Mariko; Fukui, Akimasa; Takamatsu, Nobuhiko; Taira, Masanori; Ito, Michihiko

    2017-06-15

    Genetic sex-determining systems in vertebrates include two basic types of heterogamety; XX (female)/XY (male) and ZZ (male)/ZW (female) types. The African clawed frog Xenopus laevis has a ZZ/ZW-type sex-determining system. In this species, we previously identified a W-specific sex (female)-determining gene dmw, and specified W and Z chromosomes, which could be morphologically indistinguishable (homomorphic). In addition to dmw, we most recently discovered two genes, named scanw and ccdc69w, and one gene, named capn5z in the W- and Z-specific regions, respectively. In this study, we revealed the detail structures of the W/Z-specific loci and genes. Sequence analysis indicated that there is almost no sequence similarity between 278kb W-specific and 83kb Z-specific sequences on chromosome 2Lq32-33, where both the transposable elements are abundant. Synteny and phylogenic analyses indicated that all the W/Z-specific genes might have emerged independently. Expression analysis demonstrated that scanw and ccdc69w or capn5z are expressed in early differentiating ZW gonads or testes, thereby suggesting possible roles in female or male development, respectively. Importantly, the sex-determining gene (SDG) dmw might have been generated after allotetraploidization, thereby indicating the construction of the new sex-determining system by dmw after species hybridization. Furthermore, by direct genotyping, we confirmed that diploid WW embryos developed into normal female frogs, which indicate that the Z-specific region is not essential for female development. Overall, these findings indicate that sex chromosome differentiation has started, although no heteromorphic sex chromosomes are evident yet, in X. laevis. Homologous recombination suppression might have promoted the accumulation of mutations and transposable elements, and enlarged the W/Z-specific regions, thereby resulting in differentiation of the W/Z chromosomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis

    NASA Technical Reports Server (NTRS)

    Doniach, T.; Phillips, C. R.; Gerhart, J. C.

    1992-01-01

    It has long been thought that anteroposterior (A-P) pattern in the vertebrate central nervous system is induced in the embryo's dorsal ectoderm exclusively by signals passing vertically from underlying, patterned dorsal mesoderm. Explants from early gastrulae of the frog Xenopus laevis were prepared in which vertical contact between dorsal ectoderm and mesoderm was prevented but planar contact was maintained. In these, four position-specific neural markers (engrailed-2, Krox-20, XlHbox 1, and XlHbox 6) were expressed in the ectoderm in the same A-P order as in the embryo. Thus, planar signals alone, following a path available in the normal embryo, can induce A-P neural pattern.

  15. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    NASA Technical Reports Server (NTRS)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  16. Functional Characterization of the 1,5-Benzodiazepine Clobazam and Its Major Active Metabolite N-Desmethylclobazam at Human GABAA Receptors Expressed in Xenopus laevis Oocytes

    PubMed Central

    Hammer, Harriet; Ebert, Bjarke; Jensen, Henrik Sindal; Jensen, Anders A.

    2015-01-01

    The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABAAR) subtypes α1β2γ2S, α2β2γ2S, α3β2γ2S, α5β2γ2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α1,2,3,5β2γ2S GABAARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold) as positive allosteric modulators at the α6β2δ GABAAR than at the α1,2,3,5β2γ2S receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non-selective modulation exerted by clobazam, N

  17. Metabolism of ribosomal proteins microinjected into the oocytes of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsurugi, K.; Motizuki, M.; Mitsui, K.

    1988-01-01

    When the total proteins from Xenopus laevis 60 S ribosomal subunits (TP60) were /sup 3/H-labeled in vitro and injected back into X. laevis oocytes, most /sup 3/H-TP60 are integrated into the cytoplasmic 60 S subunits via the nucleus during 16 h of incubation. In the oocytes whose rRNA synthesis is inhibited, /sup 3/H-TP60 are rapidly degraded with a half-life of 2-3 h. This degradation ceased as soon as rRNA synthesis was resumed, suggesting that ribosomal proteins unassociated with nascent rRNA are unstable in the oocytes. The degradation of /sup 3/H-TP60 in the absence of RNA synthesis was inhibited by iodoacetamide,more » a cysteine protease inhibitor, resulting in the accumulation of /sup 3/H-TP60 in the nucleus reaching about a threefold concentration in the cytoplasm. Considering the results with enucleated oocytes, we suggest that the X. laevis nucleus has a limited capacity to accumulate ribosomal proteins in an active manner but that those ribosomal proteins accumulated in excess over rRNA synthesis are degraded by a cysteine protease in the nucleus. By contrast, ribosomal proteins from Escherichia coli only equilibrate between the nucleus and the cytoplasm and are degraded by serine protease(s) in the cytoplasm without being integrated in the form of ribosomes in the nucleus.« less

  18. Phenolic sodium sulphates of Frankenia laevis L.

    PubMed

    Hussein, S A M

    2004-04-01

    Four new phenolic anionic conjugates have been isolated from the whole plant aqueous alcohol extract of Frankenia laevis L. Their structures were established, mainly on the basis of ESI-MS, 1D and 2D NMR spectroscopic evidence, as gallic acid-3-methyl ether-5-sodium sulphate, acetophenone-4-methyl ether-2-sodium sulphate, ellagic acid-3,3'-dimethyl ether-4,4'-di-sodium sulphate and ellagic acid-3-methyl ether-4-sodium sulphate.

  19. Essential roles of LEM-domain protein MAN1 during organogenesis in Xenopus laevis and overlapping functions of emerin.

    PubMed

    Reil, Michael; Dabauvalle, Marie-Christine

    2013-01-01

    Mutations in nuclear envelope proteins are linked to an increasing number of human diseases, called envelopathies. Mutations in the inner nuclear membrane protein emerin lead to X-linked Emery-Dreifuss muscular dystrophy, characterized by muscle weakness or wasting. Conversely, mutations in nuclear envelope protein MAN1 are linked to bone and skin disorders. Both proteins share a highly conserved domain, called LEM-domain. LEM proteins are known to interact with Barrier-to-autointegration factor and several transcription factors. Most envelopathies are tissue-specific, but knowledge on the physiological roles of related LEM proteins is still unclear. For this reason, we investigated the roles of MAN1 and emerin during Xenopus laevis organogenesis. Morpholino-mediated knockdown of MAN1 revealed that MAN1 is essential for the formation of eye, skeletal and cardiac muscle tissues. The MAN1 knockdown could be compensated by ectopic expression of emerin, leading to a proper organ development. Further investigations revealed that MAN1 is involved in regulation of genes essential for organ development and tissue homeostasis. Thereby our work supports that LEM proteins might be involved in signalling essential for organ development during early embryogenesis and suggests that loss of MAN1 may cause muscle and retina specific diseases. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Maitotoxin Is a Potential Selective Activator of the Endogenous Transient Receptor Potential Canonical Type 1 Channel in Xenopus laevis Oocytes

    PubMed Central

    Flores, Pedro L.; Rodríguez, Emma; Zapata, Estrella; Carbó, Roxana; Farías, José María; Martínez, Martín

    2017-01-01

    Maitotoxin (MTX) is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP). Several reports indicate that MTX is an activator of non-selective cation channels (NSCC) in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP) channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM) concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA) approach and the two-electrode voltage-clamp technique (TEVC). The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1) protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels. PMID:28672825

  1. Maitotoxin Is a Potential Selective Activator of the Endogenous Transient Receptor Potential Canonical Type 1 Channel in Xenopus laevis Oocytes.

    PubMed

    Flores, Pedro L; Rodríguez, Emma; Zapata, Estrella; Carbó, Roxana; Farías, José María; Martínez, Martín

    2017-06-25

    Maitotoxin (MTX) is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP). Several reports indicate that MTX is an activator of non-selective cation channels (NSCC) in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP) channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM) concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA) approach and the two-electrode voltage-clamp technique (TEVC). The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1) protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels.

  2. An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis.

    PubMed

    Buisson, Nicolas; Sirour, Cathy; Moreau, Nicole; Denker, Elsa; Le Bouffant, Ronan; Goullancourt, Aline; Darribère, Thierry; Bello, Valérie

    2014-12-01

    Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells. © 2014. Published by The Company of Biologists Ltd.

  3. Effects of tributyltin on metamorphosis and gonadal differentiation of Xenopus laevis at environmentally relevant concentrations.

    PubMed

    Shi, Huahong; Zhu, Pan; Guo, Suzhen

    2014-05-01

    Tributyltin (TBT), a well known endocrine disruptor, has high teratogenicity to embryos of amphibian (Xenopus tropicalis). An amphibian metamorphosis assay (AMA) and a complete AMA (CAMA) were conducted for TBT. In AMA, the body weight, the snout-to-vent length and the hind limb length of X. laevis tadpoles were decreased in tributyltin chloride (TBTCl; 12.5-200 ng/L) treatment groups after 7 days exposure. TBT greatly retarded the development of tadpoles, decreased the number of follicle and induced thyroid follicle cell hyperplasia after 19 days exposure. In CAMA, 10 and 100 ng/L TBTCl led to various malformations of gonad, including intersex, segmental aplasia and multiple ovary cavities of X. laevis following exposure from stages 46 to stage 66. The sex ratio was male-biased in TBT treatment groups. These results suggest that TBT delayed the metamorphosis, inhibited the growth of tadpoles and disrupted the gonadal differentiation of X. laevis at environmentally relevant concentrations.

  4. Spermatozoon structure and motility in the anuran Lepidobatrachus laevis.

    PubMed

    Waggener, W L; Carroll, E J

    1998-02-01

    Synthetic human gonadotropin releasing hormone (GnRH) injections were used for induction of spermatozoon release followed by cloacal lavage or mechanical stimulation of sperm release in Lepidobatrachus laevis. Light microscopic observations of Lepidobatrachus laevis spermatozoa indicated an acrosomal segment with a length of 4.1 microm delineated by an indentation, a nuclear region of 12.6 microm in length and a midpiece of 0.87 microm in length. The tail was 54.9 microm long by 1.35 microm wide with two lateral axial fibers and a central undulating membrane. At the electron microscopic level, the unusual tail had two complete axonemes that emanated from the distal centriole. The tail also contained two axial fibers 77 nm in diameter medial to the axonemes and was connected by an undulating membrane. An unusual accessory cell adherent to the head of the spermatozoon was noted in freshly obtained suspensions of spermatozoa. Spermatozoa with the accessory cell were motile and a subsequent loss of motility was correlated with the shedding of the accessory cell.

  5. Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranguren, Xabier L., E-mail: xabier.lopezaranguren@med.kuleuven.be; Beerens, Manu, E-mail: manu.beerens@med.kuleuven.be; Vandevelde, Wouter, E-mail: woutervandevelde@gmail.com

    Highlights: {yields} COUP-TFII deficiency in zebrafish affects arterio-venous EC specification. {yields} COUP-TFII is indispensable for lymphatic development in zebrafish. {yields} COUP-TFII knockdown in Xenopus disrupts lymphatic EC differentiation and migration. {yields} COUP-TFII's role in EC fate decisions is evolutionary conserved. -- Abstract: Transcription factors play a central role in cell fate determination. Gene targeting in mice revealed that Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII, also known as Nuclear Receptor 2F2 or NR2F2) induces a venous phenotype in endothelial cells (ECs). More recently, NR2F2 was shown to be required for initiating the expression of Prox1, responsible for lymphatic commitment ofmore » venous ECs. Small animal models like zebrafish embryos and Xenopus laevis tadpoles have been very useful to elucidate mechanisms of (lymph) vascular development. Therefore, the role of NR2F2 in (lymph) vascular development was studied by eliminating its expression in these models. Like in mice, absence of NR2F2 in zebrafish resulted in distinct vascular defects including loss of venous marker expression, major trunk vessel fusion and vascular leakage. Both in zebrafish and Xenopus the development of the main lymphatic structures was severely hampered. NR2F2 knockdown significantly decreased prox1 expression in zebrafish ECs and the same manipulation affected lymphatic (L)EC commitment, migration and function in Xenopus tadpoles. Therefore, the role of NR2F2 in EC fate determination is evolutionary conserved.« less

  6. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation.

    PubMed

    Yamane, Hitomi; Nishikawa, Akio

    2013-08-01

    During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.

  7. ITS rDNA sequences of Pomphorhynchus laevis (Zoega in Müller, 1776) and P. lucyi Williams and Rogers, 1984 (Acanthocephala: Palaeacanthocephala).

    PubMed

    Král'ová-Hromadová, Iva; Tietz, David F; Shinn, Andrew P; Spakulová, Marta

    2003-10-01

    The internal transcribed spacers (ITS-1 and ITS-2) of the ribosomal RNA gene of Pomphorhynchus laevis (Zoega in Müller, 1776) (Acanthocephala) isolated from various fish species across Central and Southern Europe were compared with those of P. lucyi Williams and Rogers, 1984 collected from the largemouth bass Micropterus salmonoides Boulenger from the USA. The nucleotide sequences of ITS regions of P. laevis from minnows Phoxinus phoxinus (L.) and chub Leuciscus cephalus (L.) from two distant localities in the Slovak Republic were found to be 100% identical. The ITS-1 and ITS-2 of P. laevis from chub from the Czech Republic and Italy were also mutually identical, but significantly different from Slovak worms (88.7% identity for ITS-1, 91.3% identity for ITS-2). A fifth sample collected from Barbus tyberinus Bonaparte from Italy was very similar to the sympatric Italian isolate from chub, possessing four nucleotide substitutions in ITS-1 (98.4% identity). The ITS rDNA sequences of P. lucyi differed significantly from those of P. laevis; the values of identity were 51.8-56.1% for ITS-1 and 63.1-65.3% for ITS-2, and were significantly higher than the range of P. laevis within-species variability. The results based on the ITS sequences confirmed the occurrence of strains in P. laevis from Continental Europe which are well defined by molecules but reveal only slight differences in their morphology.

  8. C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis.

    PubMed

    Moore, Kathryn B; Logan, Mary A; Aldiri, Issam; Roberts, Jacqueline M; Steele, Michael; Vetter, Monica L

    2018-05-01

    Neural basic helix-loop helix (bHLH) transcription factors promote progenitor cell differentiation by activation of downstream target genes that coordinate neuronal differentiation. Here we characterize a neural bHLH target gene in Xenopus laevis, vexin (vxn; previously sbt1), that is homologous to human c8orf46 and is conserved across vertebrate species. C8orf46 has been implicated in cancer progression, but its function is unknown. Vxn is transiently expressed in differentiating progenitors in the developing central nervous system (CNS), and is required for neurogenesis in the neural plate and retina. Its function is conserved, since overexpression of either Xenopus or mouse vxn expands primary neurogenesis and promotes early retinal cell differentiation in cooperation with neural bHLH factors. Vxn protein is localized to the cell membrane and the nucleus, but functions in the nucleus to promote neural differentiation. Vxn inhibits cell proliferation, and works with the cyclin-dependent kinase inhibitor p27Xic1 (cdkn1b) to enhance neurogenesis and increase levels of the proneural protein Neurog2. We propose that vxn provides a key link between neural bHLH activity and execution of the neurogenic program. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Biochemical study of prolactin binding sites in Xenopus laevis brain and choroid plexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muccioli, G.; Guardabassi, A.; Pattono, P.

    1990-03-01

    The occurrence of prolactin binding sites in some brain structures (telencephalon, ventral hypothalamus, myelencephalon, hypophysis, and choroid plexus) from Xenopus laevis (anuran amphibian) was studied by the in vitro biochemical technique. The higher binding values were obtained at the level of the choroid plexus and above all of the hypothalamus. On the bases of hormonal specificity and high affinity, these binding sites are very similar to those of prolactin receptors of classical target tissues as well as of those described by us in other structures from Xenopus. To our knowledge, the present results provide the first demonstration of the occurrencemore » of prolactin specific binding sites in Xenopus laevis choroid plexus cells.« less

  10. Chlorpyrifos exposure affects fgf8, sox9, and bmp4 expression required for cranial neural crest morphogenesis and chondrogenesis in Xenopus laevis embryos.

    PubMed

    Tussellino, Margherita; Ronca, Raffaele; Carotenuto, Rosa; Pallotta, Maria M; Furia, Maria; Capriglione, Teresa

    2016-10-01

    Chlorpyrifos (CPF) is an organophosphate insecticide used primarily to control foliage and soil-borne insect pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce dose-related abnormalities such as slower brain growth and cerebral cortex thinning. In lower vertebrates, for example, fish and amphibians, teratogenic activity of this compound is correlated with several anatomical alterations. Little is known about the effects of CPF on mRNA expression of genes involved in early development of the anatomical structures appearing abnormal in embryos. This study investigated the effects of exposure to different CPF concentrations (10, 15 and 20 mg/L) on Xenopus laevis embryos from stage 4/8 to stage 46. Some of the morphological changes we detected in CPF-exposed embryos included cranial neural crest cell (NCC)-derived structures. For this reason, we analyzed the expression of select genes involved in hindbrain patterning (egr2), cranial neural crest chondrogenesis, and craniofacial development (fgf8, bmp4, sox9, hoxa2 and hoxb2). We found that CPF exposure induced a reduction in transcription of all the genes involved in NCC-dependent chondrogenesis, with largest reductions in fgf8 and sox9; whereas, in hindbrain, we did not find any alterations in egr2 expression. Changes in the expression of fgf8, bmp4, and sox9, which are master regulators of several developmental pathways, have important implications. If these changes are confirmed to belong to a general pattern of alterations in vertebrates prenatally exposed to OP, they might be useful to assess damage during vertebrate embryo development. Environ. Mol. Mutagen. 57:589-604, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity.

    PubMed

    Fejtek, M; Souza, K; Neff, A; Wassersug, R

    1998-06-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  12. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity

    NASA Technical Reports Server (NTRS)

    Fejtek, M.; Souza, K.; Neff, A.; Wassersug, R.

    1998-01-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  13. An environmentally relevant endocrine-disrupting antiandrogen, vinclozolin, affects calling behavior of male Xenopus laevis.

    PubMed

    Hoffmann, Frauke; Kloas, Werner

    2010-09-01

    Vinclozolin (VIN) is an antiandrogenic model substance as well as a common fungicide that can affect the endocrine system of vertebrates. The objective of this study was to investigate how VIN affects mate calling behavior of South African clawed frogs (Xenopus laevis) and whether it is effective at environmentally relevant concentrations. Male X. laevis were injected with human chorionic gonadotropin (hCG) to stimulate their androgen-controlled mate calling behavior and were treated with VIN at concentrations of 10(-6), 10(-8) and 10(-10)M. VIN at 10(-6)M reduced calling activity. Furthermore, the vocalization composition of VIN-treated X. laevis was altered. The call types advertisement calls and chirping are uttered by reproductively active males, whereas the call types growling, ticking, and rasping indicate a sexually unaroused state of a male. VIN at any of the tested concentrations led to a decrease in utterance of calls, which indicate a sexually aroused state of the males, and an increase in relative proportions of calls, indicating a sexually unaroused state of the males. Additionally, the mean duration of clicks and the number of accentuated clicks during the advertisement calls decreased at all concentrations of VIN. No significant differences were observed in any other temporal or spectral calling parameters between the treatments. This study illustrates that exposure to the antiandrogen VIN might result in a reduced reproductive success by altering mate calling behavior of X. laevis. Moreover, it suggests that the behavioral parameters examined in this study can be used as sensitive biomarkers for detecting antiandrogenic endocrine disrupting compounds in amphibians. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Cortical Isolation from Xenopus laevis Oocytes and Eggs.

    PubMed

    Sive, Hazel L; Grainger, Robert M; Harland, Richard M

    2007-06-01

    INTRODUCTIONIn Xenopus laevis, the cortex is the layer of gelatinous cytoplasm that lies just below the plasma membrane of the egg. Rotation of the cortex relative to the deeper cytoplasm soon after fertilization is intimately linked to normal dorsal axis specification. The cortex can be dissected from the egg to analyze its composition and activity or to clone associated RNAs. This protocol describes a procedure for isolating the vegetal cortex of the fertilized egg.

  15. Parasites of the African clawed frog, Xenopus laevis, in southern California, U.S.A

    USGS Publications Warehouse

    Kuperman, Boris I.; Matey, Victoria E.; Fisher, Richard N.; Ervin, Edward L.; Warburton, Manna L.; Bakhireva, Ludmila; Lehman, Cynthia A.

    2004-01-01

    A total of 230 feral African clawed frogs, Xenopus laevis, from 3 localities in southern California were examined for parasites. The following species were found: 3 species of Protozoa, Nyctotherussp., Balantidium xenopodis, Protoopalina xenopodus; 2 species of Monogenea, Protopolystoma xenopodis, Gyrdicotylus gallieni; 1 species of Digenea, Clinostomum sp. (as metacercariae); 1 species of Cestoda, Cephalochlamys namaquensis; 2 species of Nematoda, Contracaecum sp. (as larvae), Eustrongylides sp. (as larvae); and 1 species of Acanthocephala, Acanthocephalus sp. (as cystacanth). Of these, the protozoans P. xenopodus and B. xenopodis, both monogeneans, and the cestode have an African origin. Contracaecum sp., Eustrongylides sp., and Acanthocephalus sp. have not been previously reported from X. laevis.

  16. Vocal communication between male Xenopus laevis.

    PubMed

    Tobias, Martha L; Barnard, Candace; O'Hagan, Robert; Horng, Sam H; Rand, Masha; Kelley, Darcy B

    2004-02-01

    This study focuses on the role of male-male vocal communication in the reproductive repertoire of the South African clawed frog, Xenopus laevis . Six male and two female call types were recorded from native ponds in the environs of Cape Town, South Africa. These include all call types previously recorded in the laboratory as well as one previously unidentified male call: chirping. The amount of calling and the number of call types increased as the breeding season progressed. Laboratory recordings indicated that all six male call types were directed to males; three of these were directed to both sexes and three were directed exclusively to males. Both female call types were directed exclusively to males. The predominant call type, in both field and laboratory recordings, was the male advertisement call. Sexual state affected male vocal behaviour. Male pairs in which at least one male was sexually active (gonadotropin injected) produced all call types, whereas pairs of uninjected males rarely called. Some call types were strongly associated with a specific behaviour and others were not. Clasped males always growled and clasping males typically produced amplectant calls or chirps; males not engaged in clasping most frequently advertised. The amount of advertising produced by one male was profoundly affected by the presence of another male. Pairing two sexually active males resulted in suppression of advertisement calling in one; suppression was released when males were isolated after pairing. Vocal dominance was achieved even in the absence of physical contact (clasping). We suggest that X. laevis males gain a reproductive advantage by competing for advertisement privileges and by vocally suppressing neighbouring males.

  17. A perchlorate sensitive iodide transporter in frogs

    PubMed Central

    Carr, Deborah L.; Carr, James A.; Willis, Ray E.; Pressley, Thomas A.

    2008-01-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na+/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na+-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na+/iodide symporter in Xenopus laevis, as well as Rana catesbeiana. PMID:18275962

  18. How does the Xenopus laevis embryonic cell cycle avoid spatial chaos?

    PubMed Central

    Gelens, Lendert; Huang, Kerwyn Casey; Ferrell, James E.

    2015-01-01

    Summary Theoretical studies have shown that a deterministic biochemical oscillator can become chaotic when operating over a sufficiently large volume, and have suggested that the Xenopus laevis cell cycle oscillator operates close to such a chaotic regime. To experimentally test this hypothesis, we decreased the speed of the post-fertilization calcium wave, which had been predicted to generate chaos. However, cell divisions were found to develop normally and eggs developed into normal tadpoles. Motivated by these experiments, we carried out modeling studies to understand the prerequisites for the predicted spatial chaos. We showed that this type of spatial chaos requires oscillatory reaction dynamics with short pulse duration, and postulated that the mitotic exit in Xenopus laevis is likely slow enough to avoid chaos. In systems with shorter pulses, chaos may be an important hazard, as in cardiac arrhythmias, or a useful feature, as in the pigmentation of certain mollusk shells. PMID:26212326

  19. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry

    PubMed Central

    Pai, Vaibhav P.; Vandenberg, Laura N.; Blackiston, Douglas; Levin, Michael

    2012-01-01

    Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V mem) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V mem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways. PMID:23346115

  20. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry.

    PubMed

    Pai, Vaibhav P; Vandenberg, Laura N; Blackiston, Douglas; Levin, Michael

    2012-01-01

    Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V(mem)) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V(mem). The ATP-sensitive K(+) channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.

  1. Identification of metalloprotease/disintegrins in Xenopus laevis testis with a potential role in fertilization.

    PubMed

    Shilling, F M; Krätzschmar, J; Cai, H; Weskamp, G; Gayko, U; Leibow, J; Myles, D G; Nuccitelli, R; Blobel, C P

    1997-06-15

    Proteins containing a membrane-anchored metalloprotease domain, a disintegrin domain, and a cysteine-rich region (MDC proteins) are thought to play an important role in mammalian fertilization, as well as in somatic cell-cell interactions. We have identified PCR sequence tags encoding the disintegrin domain of five distinct MDC proteins from Xenopus laevis testis cDNA. Four of these sequence tags (xMDC9, xMDC11.1, xMDC11.2, and xMDC13) showed strong similarity to known mammalian MDC proteins, whereas the fifth (xMDC16) apparently represents a novel family member. Northern blot analysis revealed that the mRNA for xMDC16 was only expressed in testis, and not in heart, muscle, liver, ovaries, or eggs, whereas the mRNAs corresponding to the four other PCR products were expressed in testis and in some or all somatic tissues tested. The xMDC16 protein sequence, as predicted from the full-length cDNA, contains a metalloprotease domain with the active-site sequence HEXXH, a disintegrin domain, a cysteine-rich region, an EGF repeat, a transmembrane domain, and a short cytoplasmic tail. To study a potential role for these xMDC proteins in fertilization, peptides corresponding to the predicted integrin-binding domain of each protein were tested for their ability to inhibit X. laevis fertilization. Cyclic and linear xMDC16 peptides inhibited fertilization in a concentration-dependent manner, whereas xMDC16 peptides that were scrambled or had certain amino acid replacements in the predicted integrin-binding domain did not affect fertilization. Cyclic and linear xMDC9 peptides and linear xMDC13 peptides also inhibited fertilization similarly to xMDC16 peptides, whereas peptides corresponding to the predicted integrin-binding site of xMDC11.1 and xMDC11.2 did not. These results are discussed in the context of a model in which multiple MDC protein-receptor interactions are necessary for fertilization to occur.

  2. Steroid exposure during larval development of Xenopus laevis affects mRNA expression of the reproductive pituitary-gonadal axis in a sex- and stage-dependent manner.

    PubMed

    Urbatzka, Ralph; Lorenz, Claudia; Wiedemann, Caterina; Lutz, Ilka; Kloas, Werner

    2014-03-01

    Steroids are known to influence the reproductive pituitary-gonadal axis in adult amphibians. Here, we studied the effects of hormones on pituitary and gonadal mRNA expression during the development of Xenopus laevis. Tadpoles at NF 58 (prometamorphosis) and at NF 66 (freshly metamorphosed) were exposed for three days to 17β-estradiol (E2), tamoxifen (TAM), testosterone (T), dihydrotestosterone (DHT) at 10(-7)M, and flutamide (FLU) at 10(-6)M. In both genders at NF 58 and 66, T and DHT decreased luteinizing hormone beta (lhβ), but increased follicle stimulating hormone beta (fshβ), while FLU induced lhβ specifically in males. In the testis steroidogenic genes (p450 side chain cleavage enzyme, p450scc; steroid acute regulatory protein, star) at NF 58 showed a similar pattern as for lhβ, while the response at NF 66 was only partially present. In females, TAM induced lhβ at NF 58, while E2 decreased lhβ and increased fshβ at NF 66. In the ovaries, no alterations were observed for the steroidogenic genes. Summarizing, gonadotropic and steroidogenic mRNA expression may indicate control of androgen level during testis differentiation in male tadpoles at NF 58. In females the non-responsiveness of steroidogenic genes could be a sign of gonadal quiescence during pre-pubertal stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Establishment of polarities in the oocyte of Xenopus laevis: the provisional axial symmetry of the full-grown oocyte of Xenopus laevis.

    PubMed

    Ubbels, G A

    1997-04-01

    We aimed at understanding of formation and function of the "Nieuwkoop Centre" in embryonic pattern formation. Discussed are data on genesis of cytoplasmic localizations in ovarian oocytes, transient modifications of cytoskeletal structures creating cytoplasmic asymmetries in fertilized eggs, the axis determining "vegetal cortical rotation" and fate of distinct cells, as shown by injection of specific molecular markers into particular blastomeres at specific times. Egg rotation and centrifugation suggested that sperm that gravity cooperate in symmetrization of the axially symmetrical anuran egg. After fertilization in space or in a fast rotating clinostate, axis formation and embryonic development were normal although the blastocoel was transiently abnormal. Normal tadpoles came back on Earth after ovulation, fertilization and culture in space. They metamorphosed normally and got healthy Earth-born F1 offspring. We conclude that neither sperm nor gravity are required for determination of the bilateral symmetry in the embryo of Xenopus laevis. In normal development sperm and gravity, either alone or in collaboration, may overrule an initial bilaterality inherent to, the full-grown oocyte, residing in some still unidentified component(s)/or mechanisms.

  4. Response of the gut neuroendocrine system of Leuciscus cephalus (L.) to the presence of Pomphorhynchus laevis Müller, 1776 (Acanthocephala).

    PubMed

    Bosi, G; Domeneghini, C; Arrighi, S; Giari, L; Simoni, E; Dezfuli, B S

    2005-04-01

    Immunohistochemical tests were applied to sections of intestine of uninfected and Pomphorhynchus laevis Muller-infected chub, Leuciscus cephalus (L.) using 15 different antisera. Nerve cell bodies and fibres immunoreactive (IR) to the anti-bombesin, -Cholecystokinin-8 (CCK-8), -galanin, -Gastrin-Releasing Peptide (-GRP), -Nitric Oxide Synthase (-NOS), -Substance P (-SP), and -Vasoactive Intestinal Peptide (-VIP) sera were observed in the myenteric plexus of uninfected chub. The density of nerve components immunoreactive to these antisera was high in the intestine of the infected fish, especially near the site of attachment. Moreover, numerous nerve fibres, immunoreactive to anti-bombesin, -GRP, -galanin, -SP, and -VIP sera, were encountered in the connective tissue capsule surrounding the bulb and proboscis of P. laevis. The occurrence of P. laevis in the chub gut significantly increased the number of endocrine cells per intestinal fold immunoreactive to galanin, met-enkephalin and leu-enkephalin antisera. CCK-8, Neuropeptide Y and glucagon-like immunoreactive cells were less numerous in the intestine of infected chub. A large number of cells in the tunica propria-submucosa of L. cephalus infected with P. laevis were immunoreactive to anti-serotonin and -leu-enkephalin sera.

  5. Effects of 17α-trenbolone and melengestrol acetate on Xenopus laevis growth, development, and survival.

    PubMed

    Finch, Bryson E; Blackwell, Brett R; Faust, Derek R; Wooten, Kimberly J; Maul, Jonathan D; Cox, Stephen B; Smith, Philip N

    2013-02-01

    The synthetic growth-promoting hormones trenbolone and melengestrol acetate have been detected in the environment near beef cattle feedlots and are reportedly transported via wind-borne particulate matter. Therefore, movement of synthetic hormones from beef cattle feedlots to water bodies via particulate matter is possible. Our objective was to evaluate potential effects of 17α-trenbolone (17α-TB), melengestrol acetate (MGA), and combinations of both on growth, development, and survival of Xenopus laevis larvae. On post-hatch day 2 (stage 33/34), X. laevis larvae were exposed to three nominal concentrations of 17α-TB (10, 100, and 500 ng/L), MGA (1, 10, and 100 ng/L), a combination of both (1/10, 10/100, and 100/500 ng/L MGA/17α-TB), frog embryo teratogenesis assay-Xenopus medium, or a solvent control. Significant increases in all X. laevis growth metrics were observed among larvae in the 1 ng/L MGA + 10 ng/L 17α-TB and 10 ng/L MGA + 100 ng/L 17α-TB treatments. Stage of development was increased among larvae in the 1 ng/L MGA + 10 ng/L 17α-TB treatment group and significantly decreased among those in the 500 ng/L 17α-TB treatment. Total body mass and snout-vent length of X. laevis larvae were significantly reduced in the 100 ng/L MGA and 100 ng/L MGA + 500 ng/L 17α-TB treatment groups. Larvae exposed to 500 ng/L 17α-TB had decreased total body mass, snout-vent length, and total length. In general, growth measurements decreased with increasing concentration of MGA, 17α-TB, or a combination of both. Survival among all treatments was not significantly different from controls. Amphibians exposed to MGA and 17α-TB in the environment may experience alterations in growth and development.

  6. In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles

    PubMed Central

    Bestman, Jennifer E.; Lee-Osbourne, Jane; Cline, Hollis T.

    2012-01-01

    We analyzed the function of neural progenitors in the developing CNS of Xenopus laevis tadpoles using in vivo time-lapse confocal microscopy to collect images through the tectum at intervals of 2 to 24 hours over 3 days. Neural progenitor cells were labeled with fluorescent protein reporters based on expression of endogenous Sox2 transcription factor. With this construct, we identified Sox2-expressing cells as radial glia and as a component of the progenitor pool of cells in the developing tectum that gives rise to neurons and other radial glia. Lineage analysis of individual radial glia and their progeny demonstrated that less than 10% of radial glia undergo symmetric divisions resulting in two radial glia, while the majority of radial glia divide asymmetrically to generate neurons and radial glia. Time-lapse imaging revealed the direct differentiation of radial glia into neurons. Although radial glia may guide axons as they navigate to superficial tectum, we find no evidence that radial glia function as a scaffold for neuronal migration at early stages of tectal development. Over three days, the number of labeled cells increased 20%, as the fraction of radial glia dropped and the proportion of neuronal progeny increased to approximately 60% of the labeled cells. Tadpoles provided with short-term visual enhancement generated significantly more neurons, with a corresponding decrease in cell proliferation. Together these results demonstrate that radial glial cells are neural progenitors in the developing optic tectum and reveal that visual experience increases the proportion of neurons generated in an intact animal. PMID:22113462

  7. Cloning and functional characterization of the Xenopus orthologue of the Treacher Collins syndrome (TCOF1) gene product.

    PubMed

    Gonzales, Bianca; Yang, Hushan; Henning, Dale; Valdez, Benigno C

    2005-10-10

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the TCOF1 gene, which encodes the nucleolar phosphoprotein treacle. We previously reported a function for mammalian treacle in ribosomal DNA gene transcription by its interaction with upstream binding factor. As an initial step in the development of a TCS model for frog the cDNA that encodes the Xenopus laevis treacle was cloned. Although the derived amino acid sequence shows a poor homology with its mammalian orthologues, Xenopus treacle has 11 highly homologous direct repeats near the center of the protein molecule similar to those present in its human, dog and mouse orthologues. Comparison of their amino acid compositions indicates conservation of predominant specific amino acid residues. Antisense-mediated down-regulation of treacle expression in X. laevis oocytes resulted in inhibition of rDNA gene transcription. The results suggest evolutionary conservation of the function of treacle in ribosomal RNA biogenesis in higher eukaryotes.

  8. THYROID AXIS INHIBITION IN XENOPUS LAEVIS: DEVELOPMENT OF AN AMPHIBIAN-BASED SCREENING ASSAY

    EPA Science Inventory

    In response to the initial EDSTAC recommendations, research was conducted on the development of a Xenopus laevis based tail resorption assay for evaluating thyroid axis disruption. These experiments highlighted key limitations associated with relying on tail resorption as a measu...

  9. Changes in hepatic levels of tyrosine aminotransferase messenger RNA during induction by hydrocortisone. [Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickol, J.M.; Lee, K.L.; Kenney, F.T.

    Messenger RNA specific for tyrosine aminotransferase was quantitated by microinjection into oocytes of Xenopus laevis. The heterologously translated enzyme was identified by specific immunoprecipitation and found to be identical with authentic aminotransferase by several criteria. The level of functional message present in rat liver increases during hydrocortisone induction, and this increase is directly proportional to the increased rate of synthesis of the enzyme. Kinetic analysis of the changes in tyrosine aminotransferase mRNA levels during induction and withdrawal indicates that the steroid does not affect the stability of the message, which has a half-life of approximately 1.2 h. Hydrocortisone, therefore, actsmore » to increase the rate of synthesis of the specific messenger by stimulating either its transcription or processing to functional mRNA.« less

  10. Localization, structure and polymorphism of two paralogous Xenopus laevis mitochondrial malate dehydrogenase genes.

    PubMed

    Tlapakova, Tereza; Krylov, Vladimir; Macha, Jaroslav

    2005-01-01

    Two paralogous mitochondrial malate dehydrogenase 2 (Mdh2) genes of Xenopus laevis have been cloned and sequenced, revealing 95% identity. Fluorescence in-situ hybridization (FISH) combined with tyramide amplification discriminates both genes; Mdh2a was localized into chromosome q3 and Mdh2b into chromosome q8. One kb cDNA probes detect both genes with 85% accuracy. The remaining signals were on the paralogous counterpart. Introns interrupt coding sequences at the same nucleotide as defined for mouse. Restriction polymorphism has been detected in the first intron of Mdh2a, while the individual variability in intron 6 of Mdh2b gene is represented by an insertion of incomplete retrotransposon L1Xl. Rates of nucleotide substitutions indicate that both genes are under similar evolutionary constraints. X. laevis Mdh2 genes can be used as markers for physical mapping and linkage analysis.

  11. Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development

    PubMed Central

    Fox, Catherine A.; Dowdle, Megan E.; Blaser, Susanne Imboden; Chung, Andy; Park, Sookhee

    2017-01-01

    The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented

  12. High yield expression and purification of equilibrative nucleoside transporter 7 (ENT7) from Arabidopsis thaliana.

    PubMed

    Girke, Christopher; Arutyunova, Elena; Syed, Maria; Traub, Michaela; Möhlmann, Torsten; Lemieux, M Joanne

    2015-09-01

    Equilibrative nucleoside transporters (ENTs) facilitate the import of nucleosides and their analogs into cells in a bidirectional, non-concentrative manner. However, in contrast to their name, most characterized plant ENTs act in a concentrative manner. A direct characterization of any ENT protein has been hindered due to difficulties in overexpression and obtaining pure recombinant protein. The equilibrative nucleoside transporter 7 from Arabidopsis thaliana (AtENT7) was expressed in Xenopus laevis oocytes to assess mechanism of substrate uptake. Recombinant protein fused to enhanced green fluorescent protein (eGFP) was expressed in Pichia pastoris to characterize its oligomeric state by gel filtration and substrate binding by microscale thermophoresis (MST). AtENT7 expressed in X. laevis oocytes works as a classic equilibrative transporter. The expression of AtENT7-eGFP in the P. pastoris system yielded milligram amounts of pure protein that exists as stable homodimers. The concentration dependent binding of purine and pyrimidine nucleosides to the purified recombinant protein, assessed by MST, confirmed that AtENT7-eGFP is properly folded. For the first time the binding of nucleobases was observed for AtENT7. The availability of pure recombinant AtENT7 will permit detailed kinetic and structural studies of this unique member of the ENT family and, given the functional similarity to mammalian ENTs, will serve as a good model for understanding the structural basis of translocation mechanism for the family. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development.

    PubMed

    Dehennaut, Vanessa; Lefebvre, Tony; Leroy, Yves; Vilain, Jean-Pierre; Michalski, Jean-Claude; Bodart, Jean-François

    2009-04-01

    Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I-V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.

  14. Population structure of the African Clawed Frog (Xenopus laevis) in maize-growing areas with atrazine application versus non-maize-growing areas in South Africa

    USGS Publications Warehouse

    Du Preez, L.H.; Solomon, K.R.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G. L.; Weldon, C.

    2005-01-01

    The herbicide atrazine has been suggested to cause gonadal deformities in frogs and could possibly impact on reproduction. Since the early 1960s, atrazine has been used in large amounts in maize production areas of South Africa. These areas overlap with populations of the African Clawed Frog (Xenopus laevis) that has a wide distribution in southern Africa and is found in most water-bodies including those where atrazine residues are detected. The aim of this study was to compare various attributes of individual- and population-level responses of X. laevis from maize-growing and non-maize-growing areas. Xenopus laevis were studied in three reference and five maize-growing sites. Sex ratio, snout-vent length, body-mass and age profiles were found to be similar for populations in maize-growing and non-maize-growing areas. Our mark-recapture data indicated that all sites had robust populations. There were no significant relationships between exposure to atrazine and any of the parameters investigated in populations of X. laevis.

  15. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis

    PubMed Central

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G. John; Lillo, Francesco; De Villiers, F. André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species’ native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great

  16. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    PubMed

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.

  17. PHENOBARBITAL AFFECTS THYROID HISTOLOGY AND LARVAL DEVELOPMENT IN THE AFRICAN CLAWED FROG XENOPUS LAEVIS

    EPA Science Inventory

    The abstract highlights our recent study to explore endocrine disrupting effects of phenobarbital in the African clawed frog, Xenopus laevis. In mammals, this chemical is known to induce the biotransforming enzyme UDP-glucuronosyltransferase (UDPGT) resulting in increased thyroid...

  18. Polystyrene nanoparticles affect Xenopus laevis development

    NASA Astrophysics Data System (ADS)

    Tussellino, Margherita; Ronca, Raffaele; Formiggini, Fabio; Marco, Nadia De; Fusco, Sabato; Netti, Paolo Antonio; Carotenuto, Rosa

    2015-02-01

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay- Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the "corona" effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  19. Glider and Vision: two new families of miniature inverted-repeat transposable elements in Xenopus laevis genome.

    PubMed

    Lepetit, D; Pasquet, S; Olive, M; Thézé, N; Thiébaud, P

    2000-01-01

    We have characterised from Xenopus laevis two new short interspersed repetitive elements, we have named Glider and Vision, that belong to the family of miniature inverted-repeat transposable elements (MITEs). Glider was first characterised in an intronic region of the alpha-tropomyosin (alpha-TM) gene and database search has revealed the presence of this element in 10 other Xenopus laevis genes. Glider elements are about 150 bp long and for some of them, their terminal inverted repeats are flanked by potential target-site duplications. Evidence for the mobility of Glider element has been provided by the presence/absence of one element at corresponding location in duplicated alpha-TM genes. Vision element has been identified in the promoter region of the cyclin dependant kinase 2 gene (cdk2) where it is boxed in a Glider element. Vision is 284bp long and is framed by 14-bp terminal inverted repeats that are flanked by 7-bp direct repeats. We have estimated that there are about 20,000 and 300 copies of Glider and Vision respectively scattered throughout the Xenopus laevis genome. Every MITEs elements but two described in our study are found either in 5' or in 3' regulatory regions of genes suggesting a potential role in gene regulation.

  20. Expression of Functional Human α6β2β3* Acetylcholine Receptors in Xenopus laevis Oocytes Achieved through Subunit Chimeras and Concatamers

    PubMed Central

    Kuryatov, Alexandre

    2011-01-01

    α6β2β3* acetylcholine receptors (AChRs) on dopaminergic neurons are important targets for drugs to treat nicotine addiction and Parkinson's disease. However, it has not been possible to efficiently express functional α6β2β3* AChRs in oocytes or transfected cells. α6/α3 subunit chimeras permit expression of functional AChRs and reveal that parts of the α6 M1 transmembrane domain and large cytoplasmic domain impair assembly. Concatameric subunits permit assembly of functional α6β2β3* AChRs with defined subunit compositions and subunit orders. Assembly of accessory subunits is limiting in formation of mature AChRs. A single linker between the β3 accessory subunit and an α4 or α6 subunit is sufficient to permit assembly of complex β3-(α4β2)(α6β2) or β3-(α6β2)(α4β2) AChRs. Concatameric pentamers such as β3-α6-β2-α4-β2 have been functionally characterized. α6β2β3* AChRs are sensitive to activation by drugs used for smoking cessation therapy (nicotine, varenicline, and cytisine) and by sazetidine. All these are partial agonists. (α6β2)(α4β2)β3 AChRs are most sensitive to agonists. (α6β2)2β3 AChRs have the greatest Ca2+ permeability. (α4β2)(α6β2)β3 AChRs are most efficiently transported to the cell surface, whereas (α6β2)2β3 AChRs are the least efficiently transported. Dopaminergic neurons may have special chaperones for assembling accessory subunits with α6 subunits and for transporting (α6β2)2β3 AChRs to the cell surface. Concatameric pentamers and pentamers formed from combinations of trimers, dimers, and monomers exhibit similar properties, indicating that the linkers between subunits do not alter their functional properties. For the first time, these concatamers allow analysis of functional properties of α6β2β3* AChRs. These concatamers should enable selection of drugs specific for α6β2β3* AChRs. PMID:20923852

  1. Developing Xenopus Laevis as a Model to Screen Drugs for Fragile X Syndrome

    DTIC Science & Technology

    2013-10-01

    several candidate treatments for Fragile X Syndrome have gone to clinical trials. Though promising, no treatment has yet been approved. This sad ...Xenopus laevis tadpoles. J Comp Neurol 520, 401-433. Dong, W., Lee, R.H., Xu, H., Yang, S., Pratt, K.G., Cao, V., Song , Y.K., Nurmikko, A., and

  2. Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis

    PubMed Central

    Duray, Alexis M.; Tembo, Maiwase; Beleny, David O.; Napolitano, Marc A.; Sauer, Monica L.; Wisner, Bennett W.

    2017-01-01

    Background The necessity of extracellular Ca2+ for fertilization and early embryonic development in the African clawed frog, Xenopus laevis, is controversial. Ca2+ entry into X. laevis sperm is reportedly required for the acrosome reaction, yet fertilization and embryonic development have been documented to occur in high concentrations of the Ca2+ chelator BAPTA. Here we sought to resolve this controversy. Methodology/principal finding Using the appearance of cleavage furrows as an indicator of embryonic development, we found that X. laevis eggs inseminated in a solution lacking added divalent cations developed normally. By contrast, eggs inseminated in millimolar concentrations of BAPTA or EGTA failed to develop. Transferring embryos to varying solutions after sperm addition, we found that extracellular Ca2+ is specifically required for events occurring within the first 30 minutes after sperm addition, but not after. We found that the fluorescently stained sperm were not able to penetrate the envelope of eggs inseminated in high BAPTA, whereas several had penetrated the vitelline envelope of eggs inseminated without a Ca2+ chelator, or with BAPTA and saturating CaCl2. Together these results indicate that fertilization does not occur in high concentrations of Ca2+ chelators. Finally, we found that the jelly coat includes >5 mM of readily diffusible Ca2+. Conclusions/Significance Taken together, these data are consistent with requirement of extracellular Ca2+ for fertilization. Based on our findings, we hypothesize that the jelly coat surrounding the egg acts as a reserve of readily available Ca2+ ions to foster fertilization in changing extracellular milieu. PMID:28114360

  3. Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity.

    PubMed

    Wolf, Sabine; Janzen, Annette; Vékony, Nicole; Martiné, Ursula; Strand, Dennis; Closs, Ellen I

    2002-06-15

    Member 4 of human solute carrier family 7 (SLC7A4) exhibits significant sequence homology with the SLC7 subfamily of human cationic amino acid transporters (hCATs) [Sperandeo, Borsani, Incerti, Zollo, Rossi, Zuffardi, Castaldo, Taglialatela, Andria and Sebastio (1998) Genomics 49, 230-236]. It is therefore often referred to as hCAT-4 even though no convincing transport activity has been shown for this protein. We expressed SLC7A4 in Xenopus laevis oocytes, but could not detect any transport activity for cationic, neutral or anionic amino acids or for the polyamine putrescine. In addition, human glioblastoma cells stably overexpressing a fusion protein between SLC7A4 and the enhanced green fluorescent protein (EGFP) did not exhibit an increased transport activity for l-arginine. The lack of transport activity was not due to a lack of SLC7A4 protein expression in the plasma membrane, as in both cell types SLC7A4-EGFP exhibited a similar subcellular localization and level of protein expression as functional hCAT-EGFP proteins. The expression of SLC7A4 can be induced in NT2 teratocarcinoma cells by treatment with retinoic acid. However, also for this endogenously expressed SLC7A4, we could not detect any transport activity for l-arginine. Our data demonstrate that the expression of SLC7A4 in the plasma membrane is not sufficient to induce an amino acid transport activity in X. laevis oocytes or human cells. Therefore, SLC7A4 is either not an amino acid transporter or it needs additional (protein) factor(s) to be functional.

  4. Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity.

    PubMed Central

    Wolf, Sabine; Janzen, Annette; Vékony, Nicole; Martiné, Ursula; Strand, Dennis; Closs, Ellen I

    2002-01-01

    Member 4 of human solute carrier family 7 (SLC7A4) exhibits significant sequence homology with the SLC7 subfamily of human cationic amino acid transporters (hCATs) [Sperandeo, Borsani, Incerti, Zollo, Rossi, Zuffardi, Castaldo, Taglialatela, Andria and Sebastio (1998) Genomics 49, 230-236]. It is therefore often referred to as hCAT-4 even though no convincing transport activity has been shown for this protein. We expressed SLC7A4 in Xenopus laevis oocytes, but could not detect any transport activity for cationic, neutral or anionic amino acids or for the polyamine putrescine. In addition, human glioblastoma cells stably overexpressing a fusion protein between SLC7A4 and the enhanced green fluorescent protein (EGFP) did not exhibit an increased transport activity for l-arginine. The lack of transport activity was not due to a lack of SLC7A4 protein expression in the plasma membrane, as in both cell types SLC7A4-EGFP exhibited a similar subcellular localization and level of protein expression as functional hCAT-EGFP proteins. The expression of SLC7A4 can be induced in NT2 teratocarcinoma cells by treatment with retinoic acid. However, also for this endogenously expressed SLC7A4, we could not detect any transport activity for l-arginine. Our data demonstrate that the expression of SLC7A4 in the plasma membrane is not sufficient to induce an amino acid transport activity in X. laevis oocytes or human cells. Therefore, SLC7A4 is either not an amino acid transporter or it needs additional (protein) factor(s) to be functional. PMID:12049641

  5. Effects of Cylindrospermopsis raciborskii strains (Woloszynska, 1912) Senayya & Subba Raju on the mobility of Daphnia laevis (Cladocera, Daphniidae).

    PubMed

    Restani, G C; Fonseca, A L

    2014-02-01

    Cylindrospermopsis raciborskii is a cyanobacterium distributed worldwide that is known to produce cyanotoxins. Some of the Brazilian strains can produce saxitoxins (STXs), which are classified as neurotoxins and can paralyze cladocerans .Daphnia laevis is a cladoceran with a wide distribution in the Americas and has been studied as a possible test-organism in toxicity bioassays. The present work tested the acute effect on D laevis mobility when fed a saxitoxin-producing (STX and neoSTX) C. raciborskii strain, CYRF-01, and compared the results with the effects of a non-toxic strain (NPCS-1). Neonates (6-24 hours after birth) were exposed to concentrations of C. raciborskii varying from 102 to 106 cells·mL-1 of each strain for up to three hours. The cladocerans were then transferred to a medium without toxic filaments for 24 hours. Only the organisms exposed to the STX-producing strain showed signs of the immobilization of swimming movements, confirming the effects of the toxins. There was a linear correlation between the time required to induce stopping the swimming movement, with a shorter time to needed to induce immobilization at a higher the concentration; this correlation was inverse to the time required to recover the swimming movements (longer at higher concentrations, p < 0.1). D. laevis is a tropical and subtropical species with great potential for use in toxicity tests for the detection of STXs, despite being native to and found in a great array of freshwater bodies. This is the first assay testing STX-producing and non-producing C. raciborskii strains on D. laevis, species that are both found in Brazilian ecosystems.

  6. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    PubMed

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweigert, S.E.; Carroll, D.

    1990-11-01

    Plasmid DNA substrates were X-irradiated and injected into the nuclei of Xenopus laevis oocytes. After incubation for 20 h, DNA was recovered from the oocytes and analyzed simultaneously for repair and for intermolecular homologous recombination by electrophoresis and bacterial transformation. Oocyte-mediated repair of DNA strand breaks was observed with both methods. Using a repair-deficient mutant Escherichia coli strain and its repair-proficient parent as hosts for the transformation assay, we also demonstrated that oocytes repaired oxidative-type DNA base damage induced by X-rays. X-irradiation of a circular DNA stimulated its potential to recombine with a homologous linear partner. Recombination products were detectedmore » directly by Southern blot hybridization and as bacterial transformant clones expressing two antibiotic resistance markers originally carried separately on the two substrates. The increase in recombination was dependent on X-ray dose. There is some suggestion that lesions other than double-strand breaks contribute to the stimulation of oocyte-mediated homologous recombination. In summary, oocytes have considerable capacity to repair X-ray-induced damage, and some X-ray lesions stimulate homologous recombination in these cells.« less

  8. Effects of depleted uranium on survival, growth, and metamorphosis in the african clawed frog (Xenopus laevis)

    USGS Publications Warehouse

    Mitchell, S.E.; Caldwell, C.A.; Gonzales, G.; Gould, W.R.; Arimoto, R.

    2005-01-01

    Embryos (stage 8-47, Nieuwkoop and Faber) of the African clawed frog (Xenopus laevis) were subjected to water-borne depleted uranium (DU) concentrations that ranged from 4.8 to 77.7 mg/Lusing an acute 96-h frog embryo teratogenesis assay-Xenopus (FETAX). In a chronic 64-d assay, X. laevis (from embryo through metamorphosis; stages 8-66) were subjected to concentrations of DU that ranged from 6.2 to 54.3 mg/L Our results indicate DU is a non teratogenic metal. No effects on mortality, malformations, or growth were observed in the 96-h FETAX with concentrations of DU that ranged from 4.8 to 77.7 mg/L From stage 8 to stage 47, X. laevis tadpoles do not actively feed and the gills are not well developed. Thus, uptake of DU was reduced despite exposure to elevated concentrations. The 64-d assay resulted in no concentration response for either mortality or malformations; however, a delay in metamorphosis was observed in tadpoles subjected to elevated DU concentrations (from 13.1 to 54.3 mg/L) compared to tadpoles in both the well-water control and reference. The delay in metamorphosis was likely due to increasing body burden of DU that ranged from 0.98 to 2.82 mg/kg. Copyright?? Taylor & Francis Inc.

  9. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen

    PubMed Central

    Sullivan, Kelly G.; Levin, Michael

    2016-01-01

    Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, we report results from a loss- and gain-of-function survey, using pharmacologic modulators of several neurotransmitter pathways to examine possible roles in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic, and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations including craniofacial defects, hyperpigmentation, muscle mispatterning, and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. PMID:27060969

  10. The polarization of the G-protein activated potassium channel GIRK5 to the vegetal pole of Xenopus laevis oocytes is driven by a di-leucine motif.

    PubMed

    Díaz-Bello, Beatriz; Rangel-García, Claudia I; Salvador, Carolina; Carrisoza-Gaytán, Rolando; Escobar, Laura I

    2013-01-01

    The G protein-coupled inwardly-rectifying potassium channels (known as GIRK or Kir3) form functional heterotetramers gated by G-βγ subunits. GIRK channels participate in heart rate modulation and neuronal postsynaptic inhibition in mammals. In Xenopus laevis oocytes, GIRK5 is a functional homomultimer. Previously, we found that phosphorylation of a tyrosine (Y16) at its N-terminus downregulates the surface expression of GIRK5. In this work, we elucidated the subcellular localization and trafficking of GIRK5 in oocytes. Several EGFP-GIRK5 chimeras were produced and an ECFP construct was used to identify the endoplasmic reticulum (ER). Whereas GIRK5-WT was retained in the ER at the animal pole, the phospho-null GIRK5-Y16A was localized to the vegetal pole. Interestingly, a construct with an N-terminal Δ25 deletion produced an even distribution of the channel in the whole oocyte. Through an alanine-scan, we identified an acidic cluster/di-leucine sorting-signal recognition motif between E17 and I22. We quantified the effect of each amino acid residue within this di-leucine motif in determining the distribution of GIRK5 to the animal and vegetal poles. We found that Y16 and I22 contributed to functional expression and were dominant in the polarization of GIRK5. We thus conclude that the N-terminal acidic di-leucine motif of GIRK5 determines its retention and polarized trafficking within Xl oocytes.

  11. The Polarization of the G-Protein Activated Potassium Channel GIRK5 to the Vegetal Pole of Xenopus laevis Oocytes Is Driven by a Di-Leucine Motif

    PubMed Central

    Díaz-Bello, Beatriz; Rangel-García, Claudia I.; Salvador, Carolina; Carrisoza-Gaytán, Rolando; Escobar, Laura I.

    2013-01-01

    The G protein-coupled inwardly-rectifying potassium channels (known as GIRK or Kir3) form functional heterotetramers gated by G-βγ subunits. GIRK channels participate in heart rate modulation and neuronal postsynaptic inhibition in mammals. In Xenopus laevis oocytes, GIRK5 is a functional homomultimer. Previously, we found that phosphorylation of a tyrosine (Y16) at its N-terminus downregulates the surface expression of GIRK5. In this work, we elucidated the subcellular localization and trafficking of GIRK5 in oocytes. Several EGFP-GIRK5 chimeras were produced and an ECFP construct was used to identify the endoplasmic reticulum (ER). Whereas GIRK5-WT was retained in the ER at the animal pole, the phospho-null GIRK5-Y16A was localized to the vegetal pole. Interestingly, a construct with an N-terminal Δ25 deletion produced an even distribution of the channel in the whole oocyte. Through an alanine-scan, we identified an acidic cluster/di-leucine sorting-signal recognition motif between E17 and I22. We quantified the effect of each amino acid residue within this di-leucine motif in determining the distribution of GIRK5 to the animal and vegetal poles. We found that Y16 and I22 contributed to functional expression and were dominant in the polarization of GIRK5. We thus conclude that the N-terminal acidic di-leucine motif of GIRK5 determines its retention and polarized trafficking within Xl oocytes. PMID:23717539

  12. Boric Acid Is Reproductively Toxic to Adult Xenopus laevis, but Not Endocrine Active.

    PubMed

    Fort, Douglas J; Fort, Troy D; Mathis, Michael B; Ball, R Wayne

    2016-11-01

    The potential reproductive and endocrine toxicity of boric acid (BA) in the African clawed frog, Xenopus laevis, was evaluated using a 30-day exposure of adult frogs. Adult female and male frogs established as breeders were exposed to a culture water control and 4 target (nominal) test concentrations [5.0, 7.5, 10.0, and 15 mg boron (B)/L, equivalent to 28.5, 42.8, 57.0, and 85.5 mg BA/L] using flow-through diluter exposure system. The primary endpoints measured were adult survival, growth (weight and snout-vent length [SVL]), necropsy data, reproductive fecundity, and development of progeny (F1) from the exposed frogs. Necropsy endpoints included gonad weight, gonado-somatic index (GSI), ovary profile (oocyte normalcy and stage distribution), sperm count, and dysmorphology. Endocrine endpoints included plasma estradiol (E2), testosterone (T), dihydrotestosteone (DHT), gonadal CYP 19 (aromatase), and gonadal 5α-reductase (5-AR). BA exposure to adult female X. laevis increased the proportion of immature oocytes (< stage II) in the ovaries of females, reduced sperm counts and increased sperm cell dysmorphology frequency in male frogs exposed to 15 mg B/L. No effects on the other general, developmental (F1), or endocrine endpoints were observed. Based on the results of the present study, the no observed adverse effects concentration (NOAEC) for the reproductive endpoints was 10 mg B/L; and 15 mg B/L for reproductive fecundity, F1 embryo larval development, and endocrine function. These results confirmed that although BA is capable of inducing reproductive toxicity at high concentrations, it is not an endocrine disrupting agent. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Lithobates catesbeianus (American Bullfrog) oocytes: a novel heterologous expression system for aquaporins

    PubMed Central

    2018-01-01

    ABSTRACT Xenopus laevis oocytes are a valuable tool for investigating the function of membrane proteins. However, regulations around the world, specifically in Brazil, render the import of Xenopus laevis frogs impractical, and, in some cases, impossible. Here, as an alternative, we evaluate the usefulness of the North American aquatic bullfrog Lithobates catesebeianus, which is commercially available in Brazil, for the heterologous expression of aquaporin (AQP) proteins. We have developed a method that combines a brief collagenase treatment and mechanical defolliculation for isolating individual oocytes from Lithobates ovaries. We find that they have a similar size, shape, and appearance to Xenopus oocytes and can tolerate and survive following injections with cRNA or water. Furthermore, surface biotinylation, western blot analysis, and measurements of osmotic water permeability (Pf) show that Lithobates oocytes can express AQPs to the plasma membrane and significantly increase the Pf of the oocytes. In fact, the Pf values are similar to historical values gathered from Xenopus oocytes. Due to the presence of a mercury sensitive cysteine (Cys or C) in the throat of the water channel, the Pf of oocytes expressing human (h) AQP1, hAQP1FLAG [FLAG, short protein tag (DYKDDDDK) added to the N-terminus of AQP1], hAQP8, and rat (r) AQP9 was inhibited with the mercurial compound p-chloromercuribenzene sulfonate (pCMBS), whereas AQPs lacking this Cys – hAQP1C189S mutant [residue Cys 189 was replaced by a serine (Ser or S)] and hAQP7 – were mercury insensitive. Contrary to previous studies with Xenopus oocytes, rAQP3 was also found to be insensitive to mercury, which is consistent with the mercury-sensitive Cys (Cys 11) being located intracellularly. Thus, we consider Lithobates oocytes to be a readily accessible system for the functional expression and study of membrane proteins for international researchers who do not currently have access to Xenopus oocytes. PMID

  14. The RNA-binding protein xCIRP2 is involved in apoptotic tail regression during metamorphosis in Xenopus laevis tadpoles.

    PubMed

    Eto, Ko; Iwama, Tomoyuki; Tajima, Tatsuya; Abe, Shin-ichi

    2012-10-01

    Frog metamorphosis induced by thyroid hormone (TH) involves not only cell proliferation and differentiation in reconstituted organs such as limbs, but also apoptotic cell death in degenerated organs such as tails. However, the molecular mechanisms directing the TH-dependent cell fate determination remain unclear. We have previously identified from newts an RNA-binding protein (nRBP) acting as the regulator governing survival and death in germ cells during spermatogenesis. To investigate the molecular events leading the tail resorption during metamorphosis, we analyzed the expression, the functional role in apoptosis, and the regulation of xCIRP2, a frog homolog of nRBP, in tails of Xenopus laevis tadpoles. At the prometamorphic stage, xCIRP2 protein is expressed in fibroblast, epidermal, nerve, and muscular cells and localized in their cytoplasm. When spontaneous metamorphosis progressed, the level of xCIRP2 mRNA remained unchanged but the amount of the protein decreased. In organ cultures of tails at the prometamorphic stage, xCIRP2 protein decreased before their lengths shortened during TH-dependent metamorphosis. The inhibition of calpain or proteasome attenuated the TH-induced decrease of xCIRP2 protein in tails, impairing their regression. These results suggest that xCIRP2 protein is downregulated through calpain- and proteasome-mediated proteolysis in response to TH at the onset of metamorphosis, inducing apoptosis in tails and thereby degenerating them. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis

    PubMed Central

    Bandín, Sandra; Morona, Ruth; González, Agustín

    2015-01-01

    Previous developmental studies of the thalamus (alar part of the diencephalic prosomere p2) have defined the molecular basis for the acquisition of the thalamic competence (preparttening), the subsequent formation of the secondary organizer in the zona limitans intrathalamica, and the early specification of two anteroposterior domains (rostral and caudal progenitor domains) in response to inducing activities and that are shared in birds and mammals. In the present study we have analyzed the embryonic development of the thalamus in the anuran Xenopus laevis to determine conserved or specific features in the amphibian diencephalon. From early embryonic stages to the beginning of the larval period, the expression patterns of 22 markers were analyzed by means of combined In situ hybridization (ISH) and immunohistochemical techniques. The early genoarchitecture observed in the diencephalon allowed us to discern the boundaries of the thalamus with the prethalamus, pretectum, and epithalamus. Common molecular features were observed in the thalamic prepatterning among vertebrates in which Wnt3a, Fez, Pax6 and Xiro1 expression were of particular importance in Xenopus. The formation of the zona limitans intrathalamica was observed, as in other vertebrates, by the progressive expression of Shh. The largely conserved expressions of Nkx2.2 in the rostral thalamic domain vs. Gbx2 and Ngn2 (among others) in the caudal domain strongly suggest the role of Shh as morphogen in the amphibian thalamus. All these data showed that the molecular characteristics observed during preparttening and patterning in the thalamus of the anuran Xenopus (anamniote) share many features with those described during thalamic development in amniotes (common patterns in tetrapods) but also with zebrafish, strengthening the idea of a basic organization of this diencephalic region across vertebrates. PMID:26321920

  16. Tissue Distribution of Enrofloxacin in African Clawed Frogs (Xenopus laevis) after Intramuscular and Subcutaneous Administration

    PubMed Central

    Felt, Stephen; Papich, Mark G; Howard, Antwain; Long, Tyler; McKeon, Gabriel; Torreilles, Stéphanie; Green, Sherril

    2013-01-01

    As part of an enrofloxacin pharmacokinetic study, concentrations of enrofloxacin and ciprofloxacin (metabolite) were measured in various tissues (brain, heart, kidney, liver, lung, and spleen) collected from treated (subcutaneous delivery, n = 3; intramuscular delivery, n = 3; untreated controls, n = 2) adult female Xenopus laevis by using HPLC. Enrofloxacin was rapidly absorbed after administration by either route and readily diffused into all sampled tissues. Enrofloxacin and ciprofloxacin were present in the tissue samples collected at 8 h. The highest average tissue concentrations for enrofloxacin were found in kidney, with the lowest concentrations in liver. Ciprofloxacin tissue concentrations paralleled but were always lower than those of enrofloxacin for all time points and tissues except brain and kidney. These results, together with previously published pharmacokinetic data and known minimal inhibitory concentrations of common pathogenic bacteria, provide a strong evidence-based rationale for choosing enrofloxacin to treat infectious diseases in X. laevis. PMID:23562103

  17. Tissue distribution of enrofloxacin in African clawed frogs (Xenopus laevis) after intramuscular and subcutaneous administration.

    PubMed

    Felt, Stephen; Papich, Mark G; Howard, Antwain; Long, Tyler; McKeon, Gabriel; Torreilles, Stéphanie; Green, Sherril

    2013-03-01

    As part of an enrofloxacin pharmacokinetic study, concentrations of enrofloxacin and ciprofloxacin (metabolite) were measured in various tissues (brain, heart, kidney, liver, lung, and spleen) collected from treated (subcutaneous delivery, n = 3; intramuscular delivery, n = 3; untreated controls, n = 2) adult female Xenopus laevis by using HPLC. Enrofloxacin was rapidly absorbed after administration by either route and readily diffused into all sampled tissues. Enrofloxacin and ciprofloxacin were present in the tissue samples collected at 8 h. The highest average tissue concentrations for enrofloxacin were found in kidney, with the lowest concentrations in liver. Ciprofloxacin tissue concentrations paralleled but were always lower than those of enrofloxacin for all time points and tissues except brain and kidney. These results, together with previously published pharmacokinetic data and known minimal inhibitory concentrations of common pathogenic bacteria, provide a strong evidence-based rationale for choosing enrofloxacin to treat infectious diseases in X. laevis.

  18. Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling

    PubMed Central

    2011-01-01

    Background Surgical removal of the lens from larval Xenopus laevis results in a rapid transdifferention of central corneal cells to form a new lens. The trigger for this process is understood to be an induction event arising from the unprecedented exposure of the cornea to the vitreous humour that occurs following lens removal. The molecular identity of this trigger is unknown. Results Here, we have used a functional transgenic approach to show that BMP signalling is required for lens regeneration and a microarray approach to identify genes that are upregulated specifically during this process. Analysis of the array data strongly implicates Wnt signalling and the Pitx family of transcription factors in the process of cornea to lens transdifferentiation. Our analysis also captured several genes associated with congenital cataract in humans. Pluripotency genes, in contrast, were not upregulated, supporting the idea that corneal cells transdifferentiate without returning to a stem cell state. Several genes from the array were expressed in the forming lens during embryogenesis. One of these, Nipsnap1, is a known direct target of BMP signalling. Conclusions Our results strongly implicate the developmental Wnt and BMP signalling pathways in the process of cornea to lens transdifferentiation (CLT) in Xenopus, and suggest direct transdifferentiation between these two anterior eye tissues. PMID:21896182

  19. EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis

    PubMed Central

    Li, Youe; Manaligod, Jose M.; Weeks, Daniel L.

    2009-01-01

    Background information. The BOR (branchio-oto-renal) syndrome is a dominant disorder most commonly caused by mutations in the EYA1 (Eyes Absent 1) gene. Symptoms commonly include deafness and renal anomalies. Results. We have used the embryos of the frog Xenopus laevis as an animal model for early ear development to examine the effects of different EYA1 mutations. Four eya1 mRNAs encoding proteins correlated with congenital anomalies in human were injected into early stage embryos. We show that the expression of mutations associated with BOR, even in the presence of normal levels of endogenous eya1 mRNA, leads to morphologically abnormal ear development as measured by overall otic vesicle size, establishment of sensory tissue and otic innervation. The molecular consequences of mutant eya1 expression were assessed by QPCR (quantitative PCR) analysis and in situ hybridization. Embryos expressing mutant eya1 showed altered levels of multiple genes (six1, dach, neuroD, ngnr-1 and nt3) important for normal ear development. Conclusions. These studies lend support to the hypothesis that dominant-negative effects of EYA1 mutations may have a role in the pathogenesis of BOR. PMID:19951260

  20. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Chun-Rui; Zhang, Delong; Slipchenko, Mikhail N.; Cheng, Ji-Xin; Hu, Bing

    2014-08-01

    The myelin sheath plays an important role as the axon in the functioning of the neural system, and myelin degradation is a hallmark pathology of multiple sclerosis and spinal cord injury. Electron microscopy, fluorescent microscopy, and magnetic resonance imaging are three major techniques used for myelin visualization. However, microscopic observation of myelin in living organisms remains a challenge. Using a newly developed stimulated Raman scattering microscopy approach, we report noninvasive, label-free, real-time in vivo imaging of myelination by a single-Schwann cell, maturation of a single node of Ranvier, and myelin degradation in the transparent body of the Xenopus laevis tadpole.

  1. Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts

    PubMed Central

    Maresca, Thomas J.; Freedman, Benjamin S.; Heald, Rebecca

    2005-01-01

    During cell division, condensation and resolution of chromosome arms and the assembly of a functional kinetochore at the centromere of each sister chromatid are essential steps for accurate segregation of the genome by the mitotic spindle, yet the contribution of individual chromatin proteins to these processes is poorly understood. We have investigated the role of embryonic linker histone H1 during mitosis in Xenopus laevis egg extracts. Immunodepletion of histone H1 caused the assembly of aberrant elongated chromosomes that extended off the metaphase plate and outside the perimeter of the spindle. Although functional kinetochores assembled, aligned, and exhibited poleward movement, long and tangled chromosome arms could not be segregated in anaphase. Histone H1 depletion did not significantly affect the recruitment of known structural or functional chromosomal components such as condensins or chromokinesins, suggesting that the loss of H1 affects chromosome architecture directly. Thus, our results indicate that linker histone H1 plays an important role in the structure and function of vertebrate chromosomes in mitosis. PMID:15967810

  2. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity.

    PubMed

    Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min

    2015-08-01

    Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.

  3. Comparative toxicity of methidathion and glyphosate on early life stages of three amphibian species: Pelophylax ridibundus, Pseudepidalea viridis, and Xenopus laevis.

    PubMed

    Güngördü, Abbas

    2013-09-15

    The assessments of pesticide toxicity on nontarget organisms have largely been focused on the determination of median lethal concentration (LC50) values using single/laboratory species. Although useful, these studies cannot describe the biochemical mechanisms of toxicity and also cannot explain the effects of pesticides on natural species. In this study, the toxic effects of glyphosate and methidathion were evaluated comparatively on early developmental stages of 3 anurans-2 natural (Pelophylax ridibundus, Pseudepidalea viridis) and 1 laboratory species (Xenopus laevis). The 96-h LC50 values for methidathion and glyphosate were determined as 25.7-19.6 mg active ingredient (AI)/L for P. viridis, 27.4-22.7 mg AI/L for P. ridibundus, and 15.3-5.05 mg AI/L for X. laevis tadpoles. Furthermore, as early signs of intoxication, glutathione S-transferase (GST), acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione reductase, lactate dehydrogenase, and aspartate aminotrasferase were assayed in 4-day-old tadpoles after 96-h pesticide exposure. The GST induction after 3.2mg AI/L methidathion exposure was determined to be 173%, 83%, and 38% of control, and the AChE inhibition for the same dose was determined to be 86%, 96%, and 30% of control for P. ridibundus, P. viridis, and X. laevis, respectively. Unlike the application of methidathion, all enzyme activities showed statistically significant increases on glyphosate exposure compared to controls. However, these increases in enzyme activities were not shown to be parallel with the increase of concentration. The levels of increases of GST and AChE were determined to be 111% and 31% for P. ridibundus, 13% and 51% for P. viridis, and 15% and 36% for X. laevis after 3.2mg AI/L glyphosate exposure, respectively. The findings of the study suggest that the most sensitive species to pesticide exposure is X. laevis. The selected biomarker enzymes AChE, CaE, and GST are useful in understanding the toxic mechanisms of these

  4. Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules.

    PubMed

    Seville, Rachel A; Nijjar, Sarbjit; Barnett, Mark W; Massé, Karine; Jones, Elizabeth A

    2002-04-01

    Vertebrate kidney organogenesis is characterised by the successive formation of the pronephros, the mesonephros and the metanephros. The pronephros is the first to form and is the functional embryonic kidney of lower vertebrates; although it is vestigial in higher vertebrates, it is a necessary precursor for the other kidney types. The Xenopus pronephros is a simple paired organ; each nephron consists of a single large glomus, one set of tubules and a single duct. The simple organisation of the pronephros and the amenability of Xenopus laevis embryos to manipulation make the Xenopus pronephros an attractive system in which to study organogenesis. It has been shown that pronephric tubules can be induced to form in presumptive ectodermal tissue by treatment with RA and activin. We have used this system in a subtractive hybridisation screen that resulted in the cloning of Xenopus laevis annexin IV (Xanx-4). Xanx-4 transcripts are specifically located to the developing pronephric tubules, and the protein to the luminal surface of these tubules. Temporal expression shows zygotic transcription is upregulated at the time of pronephric tubule specification and persists throughout pronephric development. The temporal and spatial expression pattern of Xanx-4 suggests it may have a role in pronephric tubule development. Overexpression of Xanx-4 yields no apparent phenotype, but Xanx-4 depletion, using morpholinos, produces a shortened, enlarged tubule phenotype. The phenotype observed can be rescued by co-injection of Xanx-4 mRNA. Although the function of annexins is not yet clear, studies have suggested a role for annexins in a number of cellular processes. Annexin IV has been shown to have an inhibitory role in the regulation of epithelial calcium-activated chloride ion conductance. The enlarged pronephric tubule phenotype observed may be attributed to incorrect modulation of exocytosis, membrane plasticity or ion channels and/or water homeostasis. In this study, we

  5. THYROID AXIS INHIBITION IN XENOPUS LAEVIS: DEVELOPMENT OF AN AMPHIBIAN-BASED SCREENING ASSAY FOR THYROID DISRUPTION

    EPA Science Inventory

    In response to the initial EDSTAC recommendations, research was conducted on the development of a Xenopus laevis based tail resorption assay for evaluating thyroid axis disruption. These experiments highlighted key limitations associated with reliance on tail resorption as a meas...

  6. Sucrose Transporter Localization and Function in Phloem Unloading in Developing Stems.

    PubMed

    Milne, Ricky J; Perroux, Jai M; Rae, Anne L; Reinders, Anke; Ward, John M; Offler, Christina E; Patrick, John W; Grof, Christopher P L

    2017-02-01

    How sucrose transporters (SUTs) regulate phloem unloading in monocot stems is poorly understood and particularly so for species storing high Suc concentrations. To this end, Sorghum bicolor SUTs SbSUT1 and SbSUT5 were characterized by determining their transport properties heterologously expressed in yeast or Xenopus laevis oocytes, and their in planta cellular and subcellular localization. The plasma membrane-localized SbSUT1 and SbSUT5 exhibited a strong selectivity for Suc and high Suc affinities in X. laevis oocytes at pH 5-SbSUT1, 6.3 ± 0.7 mm, and SbSUT5, 2.4 ± 0.5 mm Suc. The Suc affinity of SbSUT1 was dependent on membrane potential and pH. In contrast, SbSUT5 Suc affinity was independent of membrane potential and pH but supported high transport rates at neutral pH. Suc transport by the tonoplast localized SbSUT4 could not be detected using yeast or X. laevis oocytes. Across internode development, SUTs, other than SbSUT4, were immunolocalized to sieve elements, while for elongating and recently elongated internodes, SUTs also were detected in storage parenchyma cells. We conclude that apoplasmic Suc unloading from de-energized protophloem sieve elements in meristematic zones may be mediated by reversal of SbSUT1 and/or by uniporting SWEETs. Storage parenchyma localized SbSUT1 and SbSUT5 may accumulate Suc from the stem apoplasms of elongating and recently elongated internodes, whereas SbSUT4 may function to release Suc from vacuoles. Transiting from an apoplasmic to symplasmic unloading pathway as the stem matures, SbSUT1 and SbSUT5 increasingly function in Suc retrieval into metaphloem sieve elements to maintain a high turgor to drive symplasmic unloading by bulk flow. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Computational study of antimalarial pyrazole alkaloids from Newbouldia laevis.

    PubMed

    Mammino, Liliana; Bilonda, Mireille K

    2014-11-01

    Six pyrazole alkaloids of natural origin (isolated from Newbouldia laevis in DR Congo) that exhibit antimalarial activity-namely withasomnine, newbouldine, and their para-hydroxy and -methoxy derivatives-were investigated theoretically. The nitro derivatives of withasomnine and para-hydroxywithasomnine, which show enhanced antimalarial activity, were also studied in this manner. A thorough conformational study was performed in vacuo and in three solvents (chloroform, acetonitrile, and water) at different levels of theory (HF, DFT/B3LYP, and MP2) using different basis sets. Adducts with explicit water molecules were calculated at the HF level. Due to the rigidity of the pyrazole system and the benzene ring, the only factor that influences the energies of withasomnine and newbouldine is the relative orientation of the two ring systems; two orientations are equally preferred. The para-hydroxy and -methoxy derivatives show a preference for a planar orientation of the OH and OC bonds. The main stabilizing influence on the nitro derivative of para-hydroxywithasomnine is the intramolecular hydrogen bond between the two consecutive functional groups. The calculated adducts show the preferred arrangements of water molecules in the vicinity of the N atoms of the pyrazole system and, for the derivatives, also in the vicinity of the substituents on the benzene ring.

  8. Survival fraction and phenotype alterations of Xenopus laevis embryos at 3 Gy, 150 kV X-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carotenuto, Rosa; Tussellino, Margherita; Mettivier, Giovanni

    To determine the radiosensitivity of Xenopus laevis embryos, aquatic organism model, for toxicity studies utilizing X-rays at acute high dose levels, by analysing its survival fraction and phenotype alterations under one-exposure integral dose. We used the standard Frog Embryo Teratogenesis Assay Xenopus test during the early stages of X. laevis development. The embryos were harvested until st. 46 when they were irradiated. The radiation effects were checked daily for a week and the survival, malformations and growth inhibition were assessed. Sibling tadpoles as control organisms were used. Statistical analysis was performed to assess the extent of any damage. Irradiation was performedmore » with an X-ray tube operated at 150 kV. The tube containing the tadpoles was exposed to an air kerma of 3 Gy as measured in air with an in-beam ionization chamber. After one week, survival fraction of irradiated embryos was 58%, while for control embryos it was 81%. Hence, irradiation with 150 kV, 3 Gy X-rays produced a 23% decrease of survival in regard to unirradiated embryos. The 70% of the irradiated embryos showed an altered distribution of the skin pigmentation, in particular on the dorsal area and in the olfactory pits, where the pigment concentration increased by a factor 2. In conclusion exposure of X. laevis to 3 Gy, 150 kV X-rays induced a reduction of embryos survival and a significant modification of pigmentation. The authors think that X. laevis embryos, at st 46, is a suitable biological model for large scale investigations on the effects of ionizing radiation.« less

  9. Designation of the anterior/posterior axis in pregastrula Xenopus laevis.

    PubMed

    Lane, M C; Sheets, M D

    2000-09-01

    A new fate map for mesodermal tissues in Xenopus laevis predicted that the prime meridian, which runs from the animal pole to the vegetal pole through the center of Spemann's organizer, is the embryo's anterior midline, not its dorsal midline (M. C. Lane and W. C. Smith, 1999, Development 126, 423-434). In this report, we demonstrate by lineage labeling that the column 1 blastomeres at st. 6, which populate the prime meridian, give rise to the anterior end of the embryo. In addition, we surgically isolate and culture tissue centered on this meridian from early gastrulae. This tissue forms a patterned head with morphologically distinct ventral and dorsal structures. In situ hybridization and immunostaining reveal that the cultured heads contain the anterior tissues of all three germ layers, correctly patterned. Regardless of how we dissect early gastrulae along meridians running from the animal to the vegetal pole, both the formation of head structures and the expression of anterior marker genes always segregate with the prime meridian passing through Spemann's organizer. The prime meridian also gives rise to dorsal, axial mesoderm, but not uniquely, as specification tests show that dorsal mesoderm arises in fragments of the embryo which exclude the prime meridian. These results support the hypothesis that the midline that bisects Spemann's organizer is the embryo's anterior midline. Copyright 2000 Academic Press.

  10. Root iron uptake efficiency of Ulmus laevis and U. minor and their distribution in soils of the Iberian Peninsula

    PubMed Central

    Venturas, Martin; Fernández, Victoria; Nadal, Paloma; Guzmán, Paula; Lucena, Juan J.; Gil, Luis

    2014-01-01

    The calcifuge and calcicole character of wild plants has been related to nutrient availability shortages, including iron (Fe)-deficiency. Surprisingly, just a few studies examined the relation between root Fe uptake and plant distribution in different soil types. We assessed the root Fe acquisition efficiency of two Ulmus species with calcareous (Ulmus minor) and siliceous (U. laevis) soil distribution patterns in the Iberian Peninsula. Seedlings of both elm species were grown hydroponically with different Fe concentrations during 6 weeks. Plant physiological responses to Fe-limiting conditions were evaluated as were the ferric reductase activity and proton (H+) extrusion capacity of the roots. Iron deprived elm seedlings of both species were stunted and suffered severe Fe-chlorosis symptoms. After Fe re-supply leaf chlorophyll concentrations rose according to species-dependent patterns. While U. minor leaves and seedlings re-greened evenly, U. laevis did so along the nerves of new growing leaves. U. minor had a higher root ferric reductase activity and H+-extrusion capability than U. laevis and maintained a better nutrient balance when grown under Fe-limiting conditions. The two elm species were found to have different Fe acquisition efficiencies which may be related to their natural distribution in calcareous and siliceous soils of the Iberian Peninsula. PMID:24723927

  11. Paxillin and embryonic PolyAdenylation Binding Protein (ePABP) engage to regulate androgen-dependent Xenopus laevis oocyte maturation - A model of kinase-dependent regulation of protein expression.

    PubMed

    Miedlich, Susanne U; Taya, Manisha; Young, Melissa Rasar; Hammes, Stephen R

    2017-06-15

    Steroid-triggered Xenopus laevis oocyte maturation is an elegant physiologic model of nongenomic steroid signaling, as it proceeds completely independent of transcription. We previously demonstrated that androgens are the main physiologic stimulator of oocyte maturation in Xenopus oocytes, and that the adaptor protein paxillin plays a crucial role in mediating this process through a positive feedback loop in which paxillin first enhances Mos protein translation, ensued by Erk2 activation and Erk-dependent phosphorylation of paxillin on serine residues. Phosphoserine-paxillin then further augments Mos protein translation and downstream Erk2 activation, resulting in meiotic progression. We hypothesized that paxillin enhances Mos translation by interacting with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated Mos mRNA. Knockdown of ePABP phenocopied paxillin knockdown, with reduced Mos protein expression, Erk2 and Cdk1 activation, as well as oocyte maturation. In both Xenopus oocytes and mammalian cells (HEK-293), paxillin and ePABP constitutively interacted. Testosterone (Xenopus) or EGF (HEK-293) augmented ePABP-paxillin binding, as well as ePABP binding to Mos mRNA (Xenopus), in an Erk-dependent fashion. Thus, ePABP and paxillin work together in an Erk-dependent fashion to enhance Mos protein translation and promote oocyte maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. CELL SEGREGATION, MIXING, AND TISSUE PATTERN IN THE SPINAL CORD OF THE XENOPUS LAEVIS NEURULA

    PubMed Central

    Davidson, Lance A.; Keller, Raymond E.

    2014-01-01

    Background During Xenopus laevis neurulation, neural ectodermal cells of the spinal cord are patterned at the same time that they intercalate mediolaterally and radially, moving within and between two cell layers. Curious if these rearrangements disrupt early cell identities, we lineage-traced cells in each layer from neural plate stages to the closed neural tube, and used in situ hybridization to assay gene expression in the moving cells. Results Our biotin- and fluorescent labeling of deep and superficial cells reveals that mediolateral intercalation does not disrupt cell cohorts, in other words it is conservative. However, outside the midline notoplate, later radial intercalation does displace superficial cells dorsoventrally, radically disrupting cell cohorts. The tube roof is composed almost exclusively of superficial cells, including some displaced from ventral positions; gene expression in these displaced cells must now be surveyed further. Superficial cells also flank the tube’s floor, which is, itself, almost exclusively composed of deep cells. Conclusions Our data provide: 1) a fate map of superficial- and deep-cell positions within the Xenopus neural tube, 2) the paths taken to these positions, and 3) preliminary evidence of re-patterning in cells carried out of one environment and into another, during neural morphogenesis. PMID:23813905

  13. Urotensin II receptor (UTR) exists in hyaline chondrocytes: a study of peripheral distribution of UTR in the African clawed frog, Xenopus laevis.

    PubMed

    Konno, Norifumi; Fujii, Yuya; Imae, Haruka; Kaiya, Hiroyuki; Mukuda, Takao; Miyazato, Mikiya; Matsuda, Kouhei; Uchiyama, Minoru

    2013-05-01

    Urotensin II (UII) and UII-related peptide (URP) exhibit diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response through UII receptor (UTR), which is expressed in the central nervous system and peripheral tissues of fish and mammals. In amphibians, only UII has been identified. As the first step toward elucidating the actions of UII and URP in amphibians, we cloned and characterized URP and UTR from the African clawed frog Xenopus laevis. Functional analysis showed that treatment of UII or URP with Chinese hamster ovary cells transfected with the cloned receptor increased the intracellular calcium concentration in a concentration-dependent manner, whereas the administration of the UTR antagonist urantide inhibited UII- or URP-induced Ca(2+) mobilization. An immunohistochemical study showed that UTR was expressed in the splenocytes and leukocytes isolated from peripheral blood, suggesting that UII and URP are involved in the regulation of the immune system. UTR was also localized in the apical membrane of the distal tubule of the kidney and in the transitional epithelial cells of the urinary bladder. This result supports the view that the UII/URP-UTR system plays an important role in osmoregulation of amphibians. Interestingly, immunopositive labeling for UTR was first detected in the chondrocytes of various hyaline cartilages (the lung septa, interphalangeal joint and sternum). The expression of UTR was also observed in the costal cartilage, tracheal cartilages, and xiphoid process of the rat. These novel findings probably suggest that UII and URP mediate the formation of the cartilaginous matrix. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Accelerated Gene Evolution and Subfunctionalization in thePseudotetraploid Frog Xenopus Laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellsten, Uffe; Khokha, Mustafa K.; Grammar, Timothy C.

    2007-03-01

    Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization {approx} 40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication.

  15. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    PubMed

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  16. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    PubMed

    Schaffhauser, Daniel Felix; Patti, Monica; Goda, Tatsuro; Miyahara, Yuji; Forster, Ian Cameron; Dittrich, Petra Stephanie

    2012-01-01

    An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  17. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes

    PubMed Central

    Musa-Aziz, Raif; Boron, Walter F.; Parker, Mark D.

    2010-01-01

    The Xenopus laevis oocyte is a model system for the electrophysiological study of exogenous ion transporters. Three main reasons make the oocyte suitable for this purpose: (a) it has a large cell size (~1 mm diameter), (b) it has an established capacity to produce—from microinjected mRNAs or cRNAs—exogenous ion transporters with close-to-physiological post-translational modifications and actions, and (c) its membranes contain endogenous ion-transport activities which are usually smaller in magnitude than the activities of exogenously-expressed ion transporters. The expression of ion-transporters as green-fluorescent-protein fusions allows the fluorometric assay of transporter yield in living oocytes. Monitoring of transporter-mediated movement of ions such as Cl−, H+ (and hence base equivalents like OH−1 and HCO3−), K+, and Na+ is achieved by positioning the tips of ion-sensitive microelectrodes inside the oocyte and/or at the surface of the oocyte plasma membrane. The use of ion-sensitive electrodes is critical for studying net ion-movements mediated by electroneutral transporters. The combined use of fluorometry and electrophysiology expedites transporter study by allowing measurement of transporter yield prior to electrophysiological study and correlation of relative transporter yield with transport rates. PMID:20051266

  18. Environmental estrogens alter early development in Xenopus laevis.

    PubMed

    Bevan, Cassandra L; Porter, Donna M; Prasad, Anita; Howard, Marthe J; Henderson, Leslie P

    2003-04-01

    A growing number of environmental toxicants found in pesticides, herbicides, and industrial solvents are believed to have deleterious effects on development by disrupting hormone-sensitive processes. We exposed Xenopus laevis embryos at early gastrula to the commonly encountered environmental estrogens nonylphenol, octylphenol, and methoxychlor, the antiandrogen, p,p-DDE, or the synthetic androgen, 17 alpha-methyltestosterone at concentrations ranging from 10 nM to 10 microM and examined them at tailbud stages (approximately 48 hr of treatment). Exposure to the three environmental estrogens, as well as to the natural estrogen 17 beta-estradiol, increased mortality, induced morphologic deformations, increased apoptosis, and altered the deposition and differentiation of neural crest-derived melanocytes in tailbud stage embryos. Although neural crest-derived melanocytes were markedly altered in embryos treated with estrogenic toxicants, expression of the early neural crest maker Xslug, a factor that regulates both the induction and subsequent migration of neural crest cells, was not affected, suggesting that the disruption induced by these compounds with respect to melanocyte development may occur at later stages of their differentiation. Co-incubation of embryos with the pure antiestrogen ICI 182,780 blocked the ability of nonylphenol to induce abnormalities in body shape and in melanocyte differentiation but did not block the effects of methoxychlor. Our data indicate not only that acute exposure to these environmental estrogens induces deleterious effects on early vertebrate development but also that different environmental estrogens may alter the fate of a specific cell type via different mechanisms. Finally, our data suggest that the differentiation of neural crest-derived melanocytes may be particularly sensitive to the disruptive actions of these ubiquitous chemical contaminants.

  19. Comparison of morphological characters in Irish and English populations of the acanthocephalan Pomphorhynchus laevis (Müller, 1776).

    PubMed

    O'Mahony, E M; Kennedy, C R; Holland, C V

    2004-10-01

    Pomphorhynchus laevis is believed on ecological evidence to exist as three strains in the British Isles. However, the strains have never been shown to be capable of being distinguished using morphological characters. A morphological comparison was made between a sample of P. laevis from Salmo trutta in L. Feeagh in the west of Ireland and a sample from Leuciscus cephalus in R. Culm in the south of England. The length and width of the trunk, neck, bulb, proboscis and hooks were measured. The number of hooks per row, the number of rows and the positions of the stoutest and longest hooks were also recorded. A Principal Components Analysis based on the morphological measurements confirmed the separation of the two populations and showed that two characters successfully identified the populations: the position of the stoutest hook and the ratio of numbers of anterior to posterior hooks.

  20. Subcellular Metabolite and Lipid Analysis of Xenopus laevis Eggs by LAESI Mass Spectrometry

    PubMed Central

    Reschke, Brent R.; Henderson, Holly D.; Powell, Matthew J.; Moody, Sally A.; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis. PMID:25506922

  1. Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry.

    PubMed

    Shrestha, Bindesh; Sripadi, Prabhakar; Reschke, Brent R; Henderson, Holly D; Powell, Matthew J; Moody, Sally A; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis.

  2. Effect of metal ions on the activity of casein kinase II from Xenopus laevis.

    PubMed

    Gatica, M; Hinrichs, M V; Jedlicki, A; Allende, C C; Allende, J E

    1993-01-04

    Casein kinase II purified from the nuclei of Xenopus laevis oocytes as well as the recombinant alpha and beta subunits of the X. laevis CKII, produced in E. coli from the cloned cDNA genes, were tested with different divalent metal ions. The enzyme from both sources was active with either Mg2+, Mn2+, or Co2+. Optimal concentrations were 7-10 mM for Mg2+, 0.5-0.7 mM for Mn2+ and 1-2 mM for Co2+. In the presence of Mn2+ or Co2+ the enzyme used GTP more efficiently than ATP as a phosphate donor while the reverse was true in the presence of Mg2+. The apparent Km values for both nucleotide triphosphates were greatly decreased in the presence of Mn2+ as compared with Mg2+. Addition of Zn2+ (above 150 microM) to an assay containing the optimal Mg2+ ion concentration caused strong inhibition of both holoenzyme and alpha subunit. Inhibition of the holoenzyme by 400 microM Ni2+ could be reversed by high concentrations of Mg2+ but no reversal of this inhibition was observed with the alpha subunit.

  3. Regulation of the insulin-Akt signaling pathway and glycolysis during dehydration stress in the African clawed frog Xenopus laevis.

    PubMed

    Wu, Cheng-Wei; Tessier, Shannon N; Storey, Kenneth B

    2017-12-01

    Estivation is an adaptive stress response utilized by some amphibians during periods of drought in the summer season. In this study, we examine the regulation of the insulin signaling cascade and glycolysis pathway in the African clawed frog Xenopus laevis during the dehydration stress induced state of estivation. We show that in the brain and heart of X. laevis, dehydration reduces the phosphorylation of the insulin growth factor-1 receptor (IGF-1R), and this is followed by similar reductions in the phosphorylation of the Akt and mechanistic target of rapamycin (mTOR) kinase. Interestingly, phosphorylation levels of IGF-1R and mTOR were not affected in the kidney, and phosphorylation levels of P70S6K and the ribosomal S6 protein were elevated during dehydration stress. Animals under estivation are also susceptible to periods of hypoxia, suggesting that glycolysis may also be affected. We observed that protein levels of many glycolytic enzymes remained unchanged during dehydration; however, the hypoxia response factor-1 alpha (HIF-1α) protein was elevated by greater than twofold in the heart during dehydration. Overall, we provide evidence that shows that the insulin signaling pathway in X. laevis is regulated in a tissue-specific manner during dehydration stress and suggests an important role for this signaling cascade in mediating the estivation response.

  4. Budgett’s frog (Lepidobatrachus laevis): a new amphibian embryo for developmental biology

    PubMed Central

    Amin, Nirav M.; Womble, Mandy; Ledon-Rettig, Cris; Hull, Margaret; Dickinson, Amanda; Nascone-Yoder, Nanette

    2015-01-01

    The large size and rapid development of amphibian embryos has facilitated ground-breaking discoveries in developmental biology. Here, we describe the embryogenesis of the Budgett’s frog (Lepidobatrachus laevis), an unusual species with eggs that are over twice the diameter of laboratory Xenopus, and embryos that can tolerate higher temperatures to develop into a tadpole four times more rapidly. In addition to detailing their early development, we demonstrate that, like Xenopus, these embryos are amenable to explant culture assays and can express exogenous transcripts in a tissue-specific manner. Moreover, the steep developmental trajectory and large scale of Lepidobatrachus make it exceptionally well-suited for morphogenesis research. For example, the developing organs of the Budgett’s frog are massive compared to those of most model species, and are composed of larger individual cells, thereby affording increased subcellular resolution of early vertebrate organogenesis. Furthermore, we found that complete limb regeneration, which typically requires months to achieve in most vertebrate models, occurs in a matter of days in the Budgett’s tadpole, which substantially accelerates the pace of experimentation. Thus, the unusual combination of the greater size and speed of the Budgett’s frog model provides inimitable advantages for developmental studies—and a novel inroad to address the mechanisms of spatiotemporal scaling during evolution. PMID:26169245

  5. The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis.

    PubMed

    Kiem, Lena-Maria; Dietmann, Petra; Linnemann, Alexander; Schmeisser, Michael J; Kühl, Susanne J

    2017-03-01

    The Fezzin family member Nedd4-binding protein 3 (N4BP3) is known to regulate axonal and dendritic branching. Here, we show that n4bp3 is expressed in the neural tissue of the early Xenopus laevis embryo including the eye, the brain and neural crest cells. Knockdown of N4bp3 in the Xenopus anterior neural tissue results in severe developmental impairment of the eye, the brain and neural crest derived cranial cartilage structures. Moreover, we demonstrate that N4bp3 depletion leads to a significant reduction of both eye and brain specific marker genes and reduced neural crest cell migration. Finally, we demonstrate an impact of N4bp3 deficiency on cell apoptosis and proliferation. Our studies indicate that N4bp3 is required for early anterior neural development of vertebrates. This is in line with a study implicating that genetic disruption of N4BP3 in humans might be related to neurodevelopmental disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Budgett's frog (Lepidobatrachus laevis): A new amphibian embryo for developmental biology.

    PubMed

    Amin, Nirav M; Womble, Mandy; Ledon-Rettig, Cristina; Hull, Margaret; Dickinson, Amanda; Nascone-Yoder, Nanette

    2015-09-15

    The large size and rapid development of amphibian embryos has facilitated ground-breaking discoveries in developmental biology. Here, we describe the embryogenesis of the Budgett's frog (Lepidobatrachus laevis), an unusual species with eggs that are over twice the diameter of laboratory Xenopus, and embryos that can tolerate higher temperatures to develop into a tadpole four times more rapidly. In addition to detailing their early development, we demonstrate that, like Xenopus, these embryos are amenable to explant culture assays and can express exogenous transcripts in a tissue-specific manner. Moreover, the steep developmental trajectory and large scale of Lepidobatrachus make it exceptionally well-suited for morphogenesis research. For example, the developing organs of the Budgett's frog are massive compared to those of most model species, and are composed of larger individual cells, thereby affording increased subcellular resolution of early vertebrate organogenesis. Furthermore, we found that complete limb regeneration, which typically requires months to achieve in most vertebrate models, occurs in a matter of days in the Budgett's tadpole, which substantially accelerates the pace of experimentation. Thus, the unusual combination of the greater size and speed of the Budgett's frog model provides inimitable advantages for developmental studies-and a novel inroad to address the mechanisms of spatiotemporal scaling during evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The Midblastula Transition Defines the Onset of Y RNA-Dependent DNA Replication in Xenopus laevis

    PubMed Central

    Collart, Clara; Christov, Christo P.; Smith, James C.; Krude, Torsten

    2011-01-01

    Noncoding Y RNAs are essential for the initiation of chromosomal DNA replication in mammalian cell extracts, but their role in this process during early vertebrate development is unknown. Here, we use antisense morpholino nucleotides (MOs) to investigate Y RNA function in Xenopus laevis and zebrafish embryos. We show that embryos in which Y RNA function is inhibited by MOs develop normally until the midblastula transition (MBT) but then fail to replicate their DNA and die before gastrulation. Consistent with this observation, Y RNA function is not required for DNA replication in Xenopus egg extracts but is required for replication in a post-MBT cell line. Y RNAs do not bind chromatin in karyomeres before MBT, but they associate with interphase nuclei after MBT in an origin recognition complex (ORC)-dependent manner. Y RNA-specific MOs inhibit the association of Y RNAs with ORC, Cdt1, and HMGA1a proteins, suggesting that these molecular associations are essential for Y RNA function in DNA replication. The MBT is thus a transition point between Y RNA-independent and Y RNA-dependent control of vertebrate DNA replication. Our data suggest that in vertebrates Y RNAs function as a developmentally regulated layer of control over the evolutionarily conserved eukaryotic DNA replication machinery. PMID:21791613

  8. Purification of Xenopus laevis mitochondrial RNA polymerase and identification of a dissociable factor required for specific transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogenhagen, D.F.; Insdorf, N.F.

    1988-07-01

    The Xenopus laevis mitochondrial RNA (mtRNA) polymerase was purified to near homogeneity with an overall yield approaching 50%. The major polypeptides in the final fraction were a doublet of proteins of approximately 140 kilodaltons that copurified with the mtRNA polymerase activity. It appeared likely that the smaller polypeptide is a breakdown product of the larger one. The highly purified polymerase was active in nonspecific transcription but required a dissociable factor for specific transcription of X. laevis mtDNA. The factor could be resolved from mtRNA polymerase by hydrophobic chromatography and had a sedimentation coefficient of 3.0 S. The transcription factor elutedmore » from both the hydrophobic column and a Mono Q anion-exchange column as a single symmetrical peak. The mtRNA polymerase and this factor together are necessary and sufficient for active transcription from four promoters located in a noncoding region of the mtDNA genome between the gene for tRNA/sup Phe/ and the displacement loop.« less

  9. Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2.

    PubMed

    Barrett, M P; Tetaud, E; Seyfang, A; Bringaud, F; Baltz, T

    1995-12-15

    The gene encoding THT2, one of two hexose-transporter isoforms present in Trypanosoma brucei, has been expressed in both Xenopus laevis oocytes and a stably transfected line of Chinese hamster ovary (CHO) cells. The heterologously expressed gene encodes a protein with pharmacological and kinetic parameters similar to those of the hexose transporter measured in procyclic-culture-form trypanosomes. The substrate recognition of the THT2 transporter differed from that of the THT1 isoform, which is expressed only in bloodstream forms, in that: (i) it has a relatively high affinity for substrate with a Km of 59 microM for 2-deoxy-D-glucose (2-DOG) and a similar high affinity for D-glucose (compared with Km of 0.5 mM for 2-DOG in bloodstream forms); (ii) the affinity for 6-deoxy-D-glucose (6-DOG) is two orders of magnitude lower than that for D-glucose, whereas the bloodstream-form transporter recognizes D-glucose and its 6-DOG analogue with similar affinity; (iii) the bloodstream-form transporter, but not THT2, recognizes 3-fluoro-3-deoxy-D-glucose. D-Fructose-transport capacity and insensitivity to D-galactose was also found in THT2-expressing CHO cells and procyclic trypanosomes. We conclude from these cumulative results that the THT2 gene encodes the transporter responsible for hexose transport in procyclic trypanosomes. The transport of 2-DOG in procyclic organisms was inhibited by both the protonophore, carbonyl cyanide 4-trifluoromethoxy phenylhydrazone (FCCP), and KCN, suggesting a requirement for a protonmotive force. However, sensitivity to these reagents depended on the external substrate concentration, with uptake being unaffected at substrate concentrations higher than 2 mM. THT2 expressed in CHO cells behaved as a facilitated transporter, and was unaffected by FCCP or KCN over the whole substrate concentration range tested.

  10. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  11. Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo.

    PubMed

    Tassan, Jean-Pierre; Wühr, Martin; Hatte, Guillaume; Kubiak, Jacek

    2017-01-01

    Asymmetric cell divisions produce two daughter cells with distinct fate. During embryogenesis, this mechanism is fundamental to build tissues and organs because it generates cell diversity. In adults, it remains crucial to maintain stem cells. The enthusiasm for asymmetric cell division is not only motivated by the beauty of the mechanism and the fundamental questions it raises, but has also very pragmatic reasons. Indeed, misregulation of asymmetric cell divisions is believed to have dramatic consequences potentially leading to pathogenesis such as cancers. In diverse model organisms, asymmetric cell divisions result in two daughter cells, which differ not only by their fate but also in size. This is the case for the early Xenopus laevis embryo, in which the two first embryonic divisions are perpendicular to each other and generate two pairs of blastomeres, which usually differ in size: one pair of blastomeres is smaller than the other. Small blastomeres will produce embryonic dorsal structures, whereas the larger pair will evolve into ventral structures. Here, we present a speculative model on the origin of the asymmetry of this cell division in the Xenopus embryo. We also discuss the apparently coincident asymmetric distribution of cell fate determinants and cell-size asymmetry of the 4-cell stage embryo. Finally, we discuss the asymmetric furrowing during epithelial cell cytokinesis occurring later during Xenopus laevis embryo development.

  12. Entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, K.R.; Elinson, R.P.

    1988-05-01

    The body plan of Xenopus laevis can be respecified by briefly exposing early cleavage stage embryos to lithium. Such embryos develop exaggerated dorsoanterior structures such as a radial eye and cement gland. In this paper, we demonstrate that the enhanced dorsoanterior phenotype results from an overcommitment of mesoderm to dorsoanterior mesoderm. Histological and immunohistochemical observations reveal that the embryos have a greatly enlarged notochord with very little muscle tissue. In addition, they develop a radial, beating heart, suggesting that lithium also specifies anterior mesoderm and pharyngeal endoderm. Randomly oriented diametrically opposed marginal zone grafts from lithium-treated embryos, when transplanted intomore » ultraviolet (uv)-irradiated axis-deficient hosts, rescue dorsal axial structures. These transplantation experiments demonstrate that the entire marginal zone of the early gastrula consists of presumptive dorsal mesoderm. Vital dye marking experiments also indicate that the entire marginal zone maps to the prominent proboscis that is composed of chordamesoderm and represents the long axis of the embryo. These results suggest that lithium respecifies the mesoderm of Xenopus laevis embryos so that it differentiates into the Spemann organizer. We suggest that the origin of the dorsoanterior enhanced phenotypes generated by lithium and the dorsoanterior deficient phenotypes generated by uv irradiation are due to relative quantities of organizer. Our evidence demonstrates the existence of a continuum of body plan phenotypes based on this premise.« less

  13. Distribution of Single-Wall Carbon Nanotubes in the Xenopus laevis Embryo after Microinjection

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2016-01-01

    Single-wall carbon nanotubes (SWCNTs) are advanced materials with the potential for a myriad of diverse applications, including biological technologies and largescale usage with the potential for environmental impacts. SWCNTs have been exposed to developing organisms to determine their effects on embryogenesis, and results have been inconsistent arising, in part, from differing material quality, dispersion status, material size, impurity from catalysts, and stability. For this study, we utilized highly purified SWCNT samples with short, uniform lengths (145 ± 17 nm) well dispersed in solution. To test high exposure doses, we microinjected > 500 μg mL-1 SWCNT concentrations into the well-established embryogenesis model, Xenopus laevis, and determined embryo compatibility and sub-cellular localization during development. SWCNTs localized within cellular progeny of the microinjected cells, but heterogeneously distributed throughout the target-injected tissue. Co-registering unique Raman spectral intensity of SWCNTs with images of fluorescently labelled sub-cellular compartments demonstrated that even at the regions of highest SWCNT concentration, there were no gross alterations to sub-cellular microstructures, including filamentous actin, endoplasmic reticulum and vesicles. Furthermore, SWCNTs did not aggregate or localize to the perinuclear sub-cellular region. Combined, these results suggest that purified and dispersed SWCNTs are not toxic to X. laevis animal cap ectoderm and may be suitable candidate materials for biological applications. PMID:26510384

  14. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development.

    PubMed

    Morona, Ruth; González, Agustín

    2013-01-01

    The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. Copyright © 2012 Wiley Periodicals, Inc.

  15. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    PubMed

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. CD44 functions in Wnt signaling by regulating LRP6 localization and activation

    PubMed Central

    Schmitt, M; Metzger, M; Gradl, D; Davidson, G; Orian-Rousseau, V

    2015-01-01

    Wnt reception at the membrane is complex and not fully understood. CD44 is a major Wnt target gene in the intestine and is essential for Wnt-induced tumor progression in colorectal cancer. Here we show that CD44 acts as a positive regulator of the Wnt receptor complex. Downregulation of CD44 expression decreases, whereas CD44 overexpression increases Wnt activity in a concentration-dependent manner. Epistasis experiments place CD44 function at the level of the Wnt receptor LRP6. Mechanistically, CD44 physically associates with LRP6 upon Wnt treatment and modulates LRP6 membrane localization. Moreover, CD44 regulates Wnt signaling in the developing brain of Xenopus laevis embryos as shown by a decreased expression of Wnt targets tcf-4 and en-2 in CD44 morphants. PMID:25301071

  17. DNA polymerase gamma from Xenopus laevis. I. The identification of a high molecular weight catalytic subunit by a novel DNA polymerase photolabeling procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Insdorf, N.F.; Bogenhagen, D.F.

    1989-12-25

    DNA polymerase gamma has been purified over 10,000-fold from mitochondria of Xenopus laevis ovaries. We have developed a novel technique which specifically photolabels DNA polymerases. This procedure, the DNA polymerase trap, was used to identify a catalytic subunit of 140,000 Da from X. laevis DNA polymerase gamma. Additional catalytically active polypeptides of 100,000 and 55,000 Da were identified in the highly purified enzyme. These appear to be products of degradation of the 140,000-Da subunit. The DNA polymerase trap, which does not require large amounts of enzyme or renaturation from sodium dodecyl sulfate, is an alternative to the classic activity gel.

  18. Plasticity of lung development in the amphibian, Xenopus laevis

    PubMed Central

    Rose, Christopher S.; James, Brandon

    2013-01-01

    Summary Contrary to previous studies, we found that Xenopus laevis tadpoles raised in normoxic water without access to air can routinely complete metamorphosis with lungs that are either severely stunted and uninflated or absent altogether. This is the first demonstration that lung development in a tetrapod can be inhibited by environmental factors and that a tetrapod that relies significantly on lung respiration under unstressed conditions can be raised to forego this function without adverse effects. This study compared lung development in untreated, air-deprived (AD) and air-restored (AR) tadpoles and frogs using whole mounts, histology, BrdU labeling of cell division and antibody staining of smooth muscle actin. We also examined the relationship of swimming and breathing behaviors to lung recovery in AR animals. Inhibition and recovery of lung development occurred at the stage of lung inflation. Lung recovery in AR tadpoles occurred at a predictable and rapid rate and correlated with changes in swimming and breathing behavior. It thus presents a new experimental model for investigating the role of mechanical forces in lung development. Lung recovery in AR frogs was unpredictable and did not correlate with behavioral changes. Its low frequency of occurrence could be attributed to developmental, physical and behavioral changes, the effects of which increase with size and age. Plasticity of lung inflation at tadpole stages and loss of plasticity at postmetamorphic stages offer new insights into the role of developmental plasticity in amphibian lung loss and life history evolution. PMID:24337117

  19. Plasticity of lung development in the amphibian, Xenopus laevis.

    PubMed

    Rose, Christopher S; James, Brandon

    2013-12-15

    Contrary to previous studies, we found that Xenopus laevis tadpoles raised in normoxic water without access to air can routinely complete metamorphosis with lungs that are either severely stunted and uninflated or absent altogether. This is the first demonstration that lung development in a tetrapod can be inhibited by environmental factors and that a tetrapod that relies significantly on lung respiration under unstressed conditions can be raised to forego this function without adverse effects. This study compared lung development in untreated, air-deprived (AD) and air-restored (AR) tadpoles and frogs using whole mounts, histology, BrdU labeling of cell division and antibody staining of smooth muscle actin. We also examined the relationship of swimming and breathing behaviors to lung recovery in AR animals. Inhibition and recovery of lung development occurred at the stage of lung inflation. Lung recovery in AR tadpoles occurred at a predictable and rapid rate and correlated with changes in swimming and breathing behavior. It thus presents a new experimental model for investigating the role of mechanical forces in lung development. Lung recovery in AR frogs was unpredictable and did not correlate with behavioral changes. Its low frequency of occurrence could be attributed to developmental, physical and behavioral changes, the effects of which increase with size and age. Plasticity of lung inflation at tadpole stages and loss of plasticity at postmetamorphic stages offer new insights into the role of developmental plasticity in amphibian lung loss and life history evolution.

  20. Noggin4 is a long-range inhibitor of Wnt8 signalling that regulates head development in Xenopus laevis.

    PubMed

    Eroshkin, Fedor M; Nesterenko, Alexey M; Borodulin, Alexander V; Martynova, Natalia Yu; Ermakova, Galina V; Gyoeva, Fatima K; Orlov, Eugeny E; Belogurov, Alexey A; Lukyanov, Konstantin A; Bayramov, Andrey V; Zaraisky, Andrey G

    2016-03-14

    Noggin4 is a Noggin family secreted protein whose molecular and physiological functions remain unknown. In this study, we demonstrate that in contrast to other Noggins, Xenopus laevis Noggin4 cannot antagonise BMP signalling; instead, it specifically binds to Wnt8 and inhibits the Wnt/β -catenin pathway. Live imaging demonstrated that Noggin4 diffusivity in embryonic tissues significantly exceeded that of other Noggins. Using the Fluorescence Recovery After Photobleaching (FRAP) assay and mathematical modelling, we directly estimated the affinity of Noggin4 for Wnt8 in living embryos and determined that Noggin4 fine-tune the Wnt8 posterior-to-anterior gradient. Our results suggest a role for Noggin4 as a unique, freely diffusing, long-range inhibitor of canonical Wnt signalling, thus explaining its ability to promote head development.

  1. Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring.

    PubMed

    Mechkarska, Milena; Meetani, Mohammed; Michalak, Pawel; Vaksman, Zalman; Takada, Koji; Conlon, J Michael

    2012-09-01

    Peptidomic analysis was used to compare the distribution of host-defense peptides in norepinephrine-stimulated skin secretions from laboratory-generated female F1 hybrids of the common clawed frog Xenopus laevis (Daudin, 1802) and Mueller's clawed frog Xenopus muelleri (Peters, 1844) with the corresponding distribution in skin secretions from the parent species. A total of 18 peptides were identified in secretions from the hybrid frogs. Eleven peptides (magainin-1, magainin-2, CPF-1, CPF-3, CPF-4, CPF-5, CPF-6, CPF-7, XPF-1, XPF-2, and PGLa) were identified in secretions of both the hybrids and X. laevis. Four peptides (magainin-M1, XPF-M1, CPF-M1, and tigerinin-M1) were previously found in skin secretions of X. muelleri but magainin-M2 and CPF-M2 from X. muelleri were not detected. Three previously undescribed peptides (magainin-LM1, PGLa-LM1, and CPF-LM1) were purified from the secretions of the hybrid frogs that were not detected in secretions from either X. laevis or X. muelleri. Magainin-LM1 differs from magainin-2 from X. laevis by a single amino acid substitution (Gly(13)→Ala) but PGLa-LM1 and CPF-LM1 differ appreciably in structure from orthologs in the parent species. CPF-LM1 shows potent, broad-spectrum antimicrobial activity and is hemolytic. The data indicate that hybridization increases the multiplicity of skin host-defense peptides in skin secretions. As the female F1 hybrids are fertile, hybridization may represent an adaptive strategy among Xenopus species to increase protection against pathogenic microorganisms in the environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter.

    PubMed

    Bagchi, Rammyani; Salehin, Mohammad; Adeyemo, O Sarah; Salazar, Carolina; Shulaev, Vladimir; Sherrier, D Janine; Dickstein, Rebecca

    2012-10-01

    The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 μm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function.

  3. cis- and trans-acting elements of the estrogen-regulated vitellogenin gene B1 of Xenopus laevis.

    PubMed

    Wahli, W; Martinez, E; Corthésy, B; Cardinaux, J R

    1989-01-01

    Vitellogenin genes are expressed under strict estrogen control in the liver of female oviparous vertebrates. Gene transfer experiments using estrogen-responsive cells have shown that the 13 bp perfect palindromic element GGTCACTGTGACC found upstream of the Xenopus laevis vitellogenin gene A2 promoter mediates hormonal stimulation and thus, was called the estrogen-responsive element (ERE). In the Xenopus vitellogenin genes B1 and B2 there are two closely adjacent EREs with one or more base substitutions when compared to the consensus ERE GGTCANNNTGACC. On their own, these degenerated elements have only a low or no regulatory capacity at all but act together synergistically to form an estrogen-responsive unit (ERU) with the same strength as the perfect palindromic 13 bp element. Analysis of estrogen receptor binding to the gene B1 ERU revealed a cooperative interaction of receptor dimers to the two adjacent imperfect EREs which most likely explains the synergistic stimulation observed in vivo. Furthermore, a promoter activator element located between positions --113 and --42 of the gene B1 and functional in the human MCF-7 and the Xenopus B3.2 cells has been identified and shown to be involved in the high level of induced transcription activity when the ERE is placed at a distance from the promoter. Finally, a hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to characterize two additional novel cis-acting elements within the vitellogenin gene B1 promoter. One of them, a negative regulatory element (NRE), is responsible for repression of promoter activity in the absence of hormone. The second is related to the NF-I binding site and is required, together with the ERE, to mediate hormonal induction. Moreover, we detected three trans-acting activities in Xenopus liver nuclear extracts that interact with these regions and demonstrated that they participate in the regulation of the expression of the vitellogenin

  4. Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes.

    PubMed

    Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu

    2011-12-20

    The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.

  5. Functional expression of dental plaque microbiota.

    PubMed

    Peterson, Scott N; Meissner, Tobias; Su, Andrew I; Snesrud, Erik; Ong, Ana C; Schork, Nicholas J; Bretz, Walter A

    2014-01-01

    Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota.

  6. Functional expression of dental plaque microbiota

    PubMed Central

    Peterson, Scott N.; Meissner, Tobias; Su, Andrew I.; Snesrud, Erik; Ong, Ana C.; Schork, Nicholas J.; Bretz, Walter A.

    2014-01-01

    Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota. PMID:25177549

  7. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE PAGES

    Xue, Kai; Xie, Jianping; Zhou, Aifen; ...

    2016-05-06

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  8. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Kai; Xie, Jianping; Zhou, Aifen

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  9. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  10. Distribution of two species of sea snakes, Aipysurus laevis and Emydocephalus annulatus, in the southern Great Barrier Reef: metapopulation dynamics, marine protected areas and conservation

    NASA Astrophysics Data System (ADS)

    Lukoschek, V.; Heatwole, H.; Grech, A.; Burns, G.; Marsh, H.

    2007-06-01

    Aipysurus laevis and Emydocephalus annulatus typically occur in spatially discrete populations, characteristic of metapopulations; however, little is known about the factors influencing the spatial and temporal stability of populations or whether specific conservation strategies, such as networks of marine protected areas, will ensure the persistence of species. Classification tree analyses of 35 years of distribution data (90 reefs, surveyed 1-11 times) in the southern Great Barrier Reef (GBR) revealed that longitude was a major factor determining the status of A. laevis on reefs (present = 38, absent = 38 and changed = 14). Reef exposure and reef area were also important; however, these factors did not specifically account for the population fluctuations and the recent local extinctions of A. laevis in this region. There were no relationships between the status of E. annulatus (present = 16, absent = 68 and changed = 6) and spatial or physical variables. Moreover, prior protection status of reefs did not account for the distribution of either species. Biotic factors, such as habitat and prey availability and the distribution of predators, which may account for the observed patterns of distribution, are discussed. The potential for inter-population exchange among sea snake populations is poorly understood, as is the degree of protection that will be afforded to sea snakes by the recently implemented network of No-take areas in the GBR. Data from this study provide a baseline for evaluating the responses of A. laevis and E. annulatus populations to changes in biotic factors and the degree of protection afforded on reefs within an ecosystem network of No-take marine protected areas in the southern GBR.

  11. Rotation in Xenopus laevis embryos during the second cell cycle.

    PubMed

    Starodubov, Sergey M; Golychenkov, Vladimir A

    2009-01-01

    Using time-lapse video recording and comparing successive digital images, we found that 38% of Xenopus laevis embryos (n=118) exhibited rotation during the second cell cycle. This rotation, which we term the second rotation, started approximately during the appearance of the first cleavage furrow and proceeded clockwise or counterclockwise around the vertical axis. Rotations lasted for 5-30 minutes, i.e. up to the beginning of the third cell cycle. The mean rotation angle was 36.4 degrees, with a maximum rotation of 77 degrees. No mortality was observed among the embryos exhibiting rotation. The second rotation was observed to be similar to the well-known fertilization rotation which takes place during the first cell cycle. The possible nature and significance of the second rotation are discussed.

  12. Inverse Effects on Growth and Development Rates by Means of Endocrine Disruptors in African Clawed Frog Tadpoles ("Xenopus Laevis")

    ERIC Educational Resources Information Center

    Hackney, Zachary Carl

    2007-01-01

    Previous work on fish, frogs, and salamanders, showed the ability for estrogen (EE2) and anthropogenic endocrine disruptors to skew sex ratios and cause hermaphrodism. This study addressed the effects of estrogens on growth and development rates of African clawed frog tadpoles ("Xenopus laevis") during their gender determination stages. The…

  13. Functional Assessment of the Medicago truncatula NIP/LATD Protein Demonstrates That It Is a High-Affinity Nitrate Transporter1[W][OA

    PubMed Central

    Bagchi, Rammyani; Salehin, Mohammad; Adeyemo, O. Sarah; Salazar, Carolina; Shulaev, Vladimir; Sherrier, D. Janine; Dickstein, Rebecca

    2012-01-01

    The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 μm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function. PMID:22858636

  14. A ribosomal orphon sequence from Xenopus laevis flanked by novel low copy number repetitive elements.

    PubMed

    Guimond, A; Moss, T

    1999-02-01

    We have used a differential cloning approach to isolate ribosomal/non-ribosomal frontier sequences from Xenopus laevis. A ribosomal intergenic spacer sequence (IGS) was cloned and shown not to be physically linked with the ribosomal locus. This ribosomal orphon contained the IGS sequences found immediately downstream of the 28S gene and included an array of enhancer repetitions and a non-functional spacer promoter. The orphon sequence was flanked by a member of the novel 'Frt' low copy repetitive element family. Three individual Frt repeats were sequenced and all members of this family were shown to lie clustered at two chromosomal sites, one of which contained the ribosomal orphon. One of the Frt elements contained an insertion of 297 bp that showed extensive homology to sequences within at least three other Xenopus genes. Each homology region was flanked by members of the T2 family of short interspersed repetitive elements, (SINEs), and by its target insertion sequence, suggesting multiple translocation events. The data are discussed in terms of the evolution of the ribosomal gene locus.

  15. The Communicative Function of Sad Facial Expressions.

    PubMed

    Reed, Lawrence Ian; DeScioli, Peter

    2017-01-01

    What are the communicative functions of sad facial expressions? Research shows that people feel sadness in response to losses but it's unclear whether sad expressions function to communicate losses to others and if so, what makes these signals credible. Here we use economic games to test the hypothesis that sad expressions lend credibility to claims of loss. Participants play the role of either a proposer or recipient in a game with a fictional backstory and real monetary payoffs. The proposers view a (fictional) video of the recipient's character displaying either a neutral or sad expression paired with a claim of loss. The proposer then decided how much money to give to the recipient. In three experiments, we test alternative theories by using situations in which the recipient's losses were uncertain (Experiment 1), the recipient's losses were certain (Experiment 2), or the recipient claims failed gains rather than losses (Experiment 3). Overall, we find that participants gave more money to recipients who displayed sad expressions compared to neutral expressions, but only under conditions of uncertain loss. This finding supports the hypothesis that sad expressions function to increase the credibility of claims of loss.

  16. In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract.

    PubMed

    Habu, Josiah Bitrus; Ibeh, Bartholomew Okechukwu

    2015-03-14

    The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging capacity of bioactive metabolites present in Newbouldia laevis leaf extract. Chromatographic and spectrophotometric methods were used in the study and modified where necessary in the study. Bioactivity of the extract was determined at 10 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml and 400 μg/ml concentrations expressed in % inhibition. The yield of the ethanolic leaf extract of N.laevis was 30.3 g (9.93%). Evaluation of bioactive metabolic constituents gave high levels of ascorbic acid (515.53 ± 12 IU/100 g [25.7 mg/100 g]), vitamin E (26.46 ± 1.08 IU/100 g), saponins (6.2 ± 0.10), alkaloids (2.20 ± 0.03), cardiac glycosides(1.48 ± 0.22), amino acids and steroids (8.01 ± 0.04) measured in mg/100 g dry weight; moderate levels of vitamin A (188.28 ± 6.19 IU/100 g), tannins (0.09 ± 0.30), terpenoids (3.42 ± 0.67); low level of flavonoids (1.01 ± 0.34 mg/100 g) and absence of cyanogenic glycosides, carboxylic acids and aldehydes/ketones. The extracts percentage inhibition of DPPH, hydroxyl radical (OH.), superoxide anion (O2 .-), iron chelating, nitric oxide radical (NO), peroxynitrite (ONOO-), singlet oxygen (1O2), hypochlorous acid (HOCl), lipid peroxidation (LPO) and FRAP showed a concentration-dependent antioxidant activity with no significant difference with the controls. Though, IC50 of the extract showed significant difference only in singlet oxygen (1O2) and iron chelating activity when compared with the controls. The extract is a potential source of antioxidants/free radical scavengers having important metabolites which maybe linked to its ethno-medicinal use.

  17. Confocal Imaging of Early Heart Development in Xenopus laevis

    PubMed Central

    Kolker, Sandra J.; Tajchman, Urszula; Weeks, Daniel L.

    2013-01-01

    Xenopus laevis provides a number of advantages for studies on cardiovascular development. The embryos are fairly large, easy to obtain, and can develop at ambient temperature in simple buffer solutions. Although classic descriptions of heart development exist, the ability to use whole mount immunohistochemical methods and confocal microscopy may enhance the ability to understand both normal and experimentally perturbed cardiovascular development. We have started to examine the early stages of cardiac development in Xenopus, seeking to identify antibodies and fixatives that allow easy examination of the developing heart. We have used monoclonal antibodies (mAbs) raised against bovine cardiac troponin T and chicken tropomyosin to visualize cardiac muscle, a goat antibody recognizing bovine type VI collagen to stain the lining of vessels, and the JB3 mAb raised against chicken fibrillin which allows the visualization of a variety of cardiovascular tissues during early development. Results from embryonic stages 24–46 are presented. PMID:10644411

  18. Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications.

    PubMed

    Christensen, S; Pont-Kingdon, G; Carroll, D

    2000-01-01

    In the genome of the South African frog, Xenopus laevis, there are two complex families of transposable elements, Tx1 and Tx2, that have identical overall structures, but distinct sequences. In each family there are approximately 1500 copies of an apparent DNA-based element (Tx1D and Tx2D). Roughly 10% of these elements in each family are interrupted by a non-LTR retrotransposon (Tx1L and Tx2L). Each retrotransposon is flanked by a 23-bp target duplication of a specific D element sequence. In earlier work, we showed that the endonuclease domain (Tx1L EN) located in the second open reading frame (ORF2) of Tx1L encodes a protein that makes a single-strand cut precisely at the expected site within its target sequence, supporting the idea that Tx1L is a site-specific retrotransposon. In this study, we express the endonuclease domain of Tx2L (Tx2L EN) and compare the target preferences of the two enzymes. Each endonuclease shows some preference for its cognate target, on the order of 5-fold over the non-cognate target. The observed discrimination is not sufficient, however, to explain the observation that no cross-occupancy is observed - that is, L elements of one family have never been found within D elements of the other family. Possible sources of additional specificity are discussed. We also compare two hypotheses regarding the genome duplication event that led to the contemporary pseudotetraploid character of Xenopus laevis in light of the Tx1L and Tx2L data.

  19. Full-grown oocytes from Xenopus laevis resume growth when placed in culture

    PubMed Central

    Wallace, Robin A.; Misulovin, Ziva; Etkin, Laurence D.

    1981-01-01

    When most full-grown, follicle cell-invested oocytes from Xenopus laevis are placed in an appropriate culture medium, they resume growth and remain physiologically healthy for at least 2-3 weeks. Rates of growth by full-grown oocytes in vitro generally approximate and can even exceed the most rapid growth rate achieved by vitellogenic oocytes in vivo. Resumption of oocyte growth can be correlated with the loss of investing follicle cells, which under normal conditions appear to interfere with vitellogenin and nutrient access to the oocyte. The final size reached by the oocyte within the ovary is thus not an intrinsic property of the oocyte but is extrinsically imposed by the somatic environment. Images PMID:16593019

  20. Enteric neuromodulators and mucus discharge in a fish infected with the intestinal helminth Pomphorhynchus laevis.

    PubMed

    Bosi, Giampaolo; Shinn, Andrew Paul; Giari, Luisa; Sayyaf Dezfuli, Bahram

    2015-07-08

    In vertebrates, the presence of enteric worms can induce structural changes to the alimentary canal impacting on the neuroendocrine system, altering the proper functioning of the gastrointestinal tract and affecting the occurrence and relative density of endocrine cells (ECs). This account represents the first immunohistochemistry and ultrastructure-based study which documents the intimate relationship between the intestinal mucous cells and ECs in a fish-helminth system, investigating the potential effects of enteric neuromodulators on gut mucus secretion/discharge. A modified dual immunohisto- and histochemical staining technique was applied on intestinal sections from both infected and uninfected fish. Sections were incubated in antisera to a range of neuromodulators (i.e. leu-enkephalin, met-enkephalin, galanin and serotonin) and the glycoconjugate histochemistry of the mucous cells was determined using a subsequent alcian blue - periodic acid Schiff staining step. Dual fluorescent staining on sections prepared for confocal laser scanning microscopy and transmission electron microscopy were also used to document the relationship between ECs and mucous cells. From a total of 26 specimens of Squalius cephalus sampled from the River Paglia, 16 (i.e. 62 %) specimens were found to harbour an infection of the acanthocephalan Pomphorhynchus laevis (average intensity of infection 9.2 ± 0.8 parasites host(-1), mean ± standard error). When acanthocephalans were present, the numbers of mucous cells (most notably those containing acidic or mixed glycoconjugates) and ECs secreting leu-enkephalin, met-enkephalin, galanin, serotonin were significantly higher than those seen on sections from uninfected fish. The relationship between met-enkephalin-like or serotonin-like ECs and lectin DBA positive mucous cells was demonstrated through a dual fluorescent staining. The presence of tight connections and desmosomes between mucous and ECs in transmission electron

  1. KCNT1 gain-of-function in two epilepsy phenotypes is reversed by quinidine

    PubMed Central

    Milligan, Carol J.; Li, Melody; Gazina, Elena V.; Heron, Sarah E.; Nair, Umesh; Trager, Chantel; Reid, Christopher A.; Venkat, Anu; Younkin, Donald P.; Dlugos, Dennis J.; Petrovski, Slavé; Goldstein, David B.; Dibbens, Leanne M.; Scheffer, Ingrid E.; Berkovic, Samuel F; Petrou, Steven

    2014-01-01

    Objective Mutations in KCNT1 have been implicated in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and epilepsy of infancy with migrating focal seizures (EIMFS). More recently, a whole exome sequencing study of epileptic encephalopathies identified an additional de novo mutation in one proband with EIMFS. We aim to investigate the electrophysiological and pharmacological characteristics of hKCNT1 mutations and examine developmental expression levels. Methods Here we use a Xenopus laevis oocyte based automated two-electrode voltage-clamp assay. The effects of quinidine (100 and 300 µM) are also tested. Using quantitative RT-PCR, the relative levels of mouse brain mKcnt1 mRNA expression are determined. Results We demonstrate that KCNT1 mutations implicated in epilepsy cause a marked increase in function. Importantly, there was a significant group difference in gain-of-function between mutations associated with ADNFLE and EIMFS. Finally, exposure to quinidine significantly reduces this gain-of-function for all mutations studied. Interpretation These results establish direction for a targeted therapy and potentially exemplify a translational paradigm for in vitro studies informing novel therapies in a neuropsychiatric disease. PMID:24591078

  2. Astrocytes express functional TRPV2 ion channels.

    PubMed

    Shibasaki, Koji; Ishizaki, Yasuki; Mandadi, Sravan

    2013-11-15

    Thermosensitive transient receptor potential (thermo TRP) channels are important for sensory transduction. Among them, TRPV2 has an interesting characteristic of being activated by very high temperature (>52 °C). In addition to the heat sensor function, TRPV2 also acts as a mechanosensor, an osomosensor and a lipid sensor. It has been reported that TRPV2 is expressed in heart, intestine, pancreas and sensory nerves. In the central nervous system, neuronal TRPV2 expression was reported, however, glial expression and the precise roles of TRPV2 have not been determined. To explore the functional expression of TRPV2 in astrocytes, the expression was determined by histological and physiological methods. Interestingly, TRPV2 expression was detected in plasma membrane of astrocytes, and the astrocytic TRPV2 was activated by very high temperature (>50 °C) consistent with the reported characteristic. We revealed that the astrocytic TRPV2 was also activated by lysophosphatidylcholine, a known endogenous lipid ligand for TRPV2, suggesting that astrocytic TRPV2 might regulate neuronal activities in response to lipid metabolism. Thus, for the first time we revealed that TRPV2 is functionally expressed in astrocytes in addition to neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation

    PubMed Central

    Tang, Guo-Qing; Maxwell, E. Stuart

    2008-01-01

    The amphibian Xenopus provides a model organism for investigating microRNA expression during vertebrate embryogenesis and development. Searching available Xenopus genome databases using known human pre-miRNAs as query sequences, more than 300 genes encoding 142 Xenopus tropicalis miRNAs were identified. Analysis of Xenopus tropicalis miRNA genes revealed a predominate positioning within introns of protein-coding and nonprotein-coding RNA Pol II-transcribed genes. MiRNA genes were also located in pre-mRNA exons and positioned intergenically between known protein-coding genes. Many miRNA species were found in multiple locations and in more than one genomic context. MiRNA genes were also clustered throughout the genome, indicating the potential for the cotranscription and coordinate expression of miRNAs located in a given cluster. Northern blot analysis confirmed the expression of many identified miRNAs in both X. tropicalis and X. laevis. Comparison of X. tropicalis and X. laevis blots revealed comparable expression profiles, although several miRNAs exhibited species-specific expression in different tissues. More detailed analysis revealed that for some miRNAs, the tissue-specific expression profile of the pri-miRNA precursor was distinctly different from that of the mature miRNA profile. Differential miRNA precursor processing in both the nucleus and cytoplasm was implicated in the observed tissue-specific differences. These observations indicated that post-transcriptional processing plays an important role in regulating miRNA expression in the amphibian Xenopus. PMID:18032731

  4. Thyroid Hormone‐Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis

    PubMed Central

    Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun‐Bo; Ishizuya‐Oka, Atsuko

    2016-01-01

    Abstract In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real‐time reverse transcription‐polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up‐regulated during both natural and TH‐induced metamorphosis in a tissue‐specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up‐regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ‐secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH‐induced up‐regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028–1039 PMID:27870267

  5. CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes

    PubMed Central

    Nagel, G; Barbry, P; Chabot, H; Brochiero, E; Hartung, K; Grygorczyk, R

    2005-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) plays a crucial role in regulating fluid secretion by the airways, intestines, sweat glands and other epithelial tissues. It is well established that the CFTR is a cAMP-activated, nucleotide-dependent anion channel, but additional functions are often attributed to it, including regulation of the epithelial sodium channel (ENaC). The absence of CFTR-dependent ENaC inhibition and the resulting sodium hyperabsorption were postulated to be a major electrolyte transport abnormality in cystic fibrosis (CF)-affected epithelia. Several ex vivo studies, including those that used the Xenopus oocyte expression system, have reported ENaC inhibition by activated CFTR, but contradictory results have also been obtained. Because CFTR–ENaC interactions have important implications in the pathogenesis of CF, the present investigation was undertaken by our three independent laboratories to resolve whether CFTR regulates ENaC in oocytes and to clarify potential sources of previously reported dissimilar observations. Using different experimental protocols and a wide range of channel expression levels, we found no evidence that activated CFTR regulates ENaC when oocyte membrane potential was carefully clamped. We determined that an apparent CFTR-dependent ENaC inhibition could be observed when resistance in series with the oocyte membrane was not low enough or the feedback voltage gain was not high enough. We suggest that the inhibitory effect of CFTR on ENaC reported in some earlier oocyte studies could be attributed to problems arising from high levels of channel expression and suboptimal recording conditions, that is, large series resistance and/or insufficient feedback voltage gain. PMID:15746174

  6. Endocrine effects of 2,2{prime},4,4{prime}-tetrachlorobiphenyl in the African clawed frog (Xenopus laevis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diana, S.; Hansen, L.; Foley, G.

    1995-12-31

    Ortho-substituted polychlorinated biphenyls are known to exhibit estrogenic activity and, in some cases, to enhance excretion of tetraiodothyronine (T4), resulting in hypothyroxinemia in mammals. Since thyroxine activity is essential for amphibian metamorphosis, and amphibian sex determination can be altered or reversed by exposure to exogenous estrogens or androgens, the effects of exposure of larvae of the African clawed frog (Xenopus laevis) to 2,2{prime},4,4{prime}-tetrachlorobiphenyl (CB 47) were investigated. Eggs and larvae of X. laevis were exposed to nominal concentrations of CB 47 of 0.05 or 0.25 ppm (1 ppm was found to result in 100% mortality) throughout the period of larvalmore » development, and effects on rates of metamorphosis and body growth and on gonad morphology were determined. Stage of metamorphosis, body length and body weight did not differ between treatment and control groups, following exposure to these sub-lethal concentrations, at any time during larval development. Effects of exposure on gonad morphology will be discussed. The failure of CB 47 to delay or prevent metamorphosis under these conditions may be due to poor responsiveness of hepatic UDP-glucuronyl transferases to induction, or novel systems of thyroxine and/or PCB transport, metabolism and excretion in larval amphibians.« less

  7. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.

    PubMed

    Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C

    Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers <500 in each population. In 2010, only a single individual was captured at each locality and further searching failed to record any others in repeated sampling up to 2014. We conclude that both populations are now extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.

  8. Overland movement in African clawed frogs (Xenopus laevis): empirical dispersal data from within their native range.

    PubMed

    De Villiers, F André; Measey, John

    2017-01-01

    Dispersal forms are an important component of the ecology of many animals, and reach particular importance for predicting ranges of invasive species. African clawed frogs ( Xenopus laevis ) move overland between water bodies, but all empirical studies are from invasive populations with none from their native southern Africa. Here we report on incidents of overland movement found through a capture-recapture study carried out over a three year period in Overstrand, South Africa. The maximum distance moved was 2.4 km with most of the 91 animals, representing 5% of the population, moving ∼150 m. We found no differences in distances moved by males and females, despite the former being smaller. Fewer males moved overland, but this was no different from the sex bias found in the population. In laboratory performance trials, we found that males outperformed females, in both distance moved and time to exhaustion, when corrected for size. Overland movement occurred throughout the year, but reached peaks in spring and early summer when temporary water bodies were drying. Despite permanent impoundments being located within the study area, we found no evidence for migrations of animals between temporary and permanent water bodies. Our study provides the first dispersal kernel for X. laevis and suggests that it is similar to many non-pipid anurans with respect to dispersal.

  9. Modeling of DNA local parameters predicts encrypted architectural motifs in Xenopus laevis ribosomal gene promoter

    PubMed Central

    Roux-Rouquie, Magali; Marilley, Monique

    2000-01-01

    We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X.laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed. PMID:10982860

  10. Modeling of DNA local parameters predicts encrypted architectural motifs in Xenopus laevis ribosomal gene promoter.

    PubMed

    Roux-Rouquie, M; Marilley, M

    2000-09-15

    We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X. laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed.

  11. Studies of Xenopus laevis mitochondrial DNA: D-loop mapping and characterization of DNA-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairns, S.S.

    1987-01-01

    In X. laevis oocytes, mitochondrial DNA accumulates to 10/sup 5/ times the somatic cell complement, and is characterized by a high frequency of a triple-stranded displacement hoop structure at the origin of replication. To map the termini of the single strands, it was necessary to correct the nucleotide sequence of the D-loop region. The revised sequence of 2458 nucleotides contains 54 discrepancies in comparison to a previously published sequence. Radiolabeling of the nascent strands of the D-loop structure either at the 5' end or at the 3' end identifies a major species with a length of 1670 nucleotides. Cleavage ofmore » the 5' labeled strands reveals two families of ends located near several matches to an element, designated CSB-1, that is conserved in this location in several vertebrate genomes. Cleavage of 3' labeled strands produced one fragment. The unique 3' end maps to about 15 nucleotides preceding the tRNA/sup Pro/ gene. A search for proteins which may bind to mtDNA in this region to regulate nucleic acid synthesis has identified three activities in lysates of X. laevis mitochondria. The DNA-binding proteins were assayed by monitoring their ability to retard the migration of labeled double- or single-stranded DNA fragments in polyacrylamide gels. The DNA binding preference was determined by competition with an excess of either ds- or ssDNA.« less

  12. The colloidal thyroxine (T4) ring as a novel biomarker of perchlorate exposure in the African clawed frog Xenopus laevis

    USGS Publications Warehouse

    Hu, F.; Sharma, Bibek; Mukhi, S.; Patino, R.; Carr, J.A.

    2006-01-01

    The purpose of this study was to determine if changes in colloidal thyroxine (T4) immunoreactivity can be used as a biomarker of perchlorate exposure in amphibian thyroid tissue. Larval African clawed frogs (Xenopus laevis) were exposed to 0, 1, 8, 93, and 1131 ??g perchlorate/l for 38 and 69 days to cover the normal period of larval development and metamorphosis. The results of this study confirmed the presence of an immunoreactive colloidal T4 ring in thyroid follicles of X. laevis and demonstrated that the intensity of this ring is reduced in a concentration-dependent manner by perchlorate exposure. The smallest effective concentration of perchlorate capable of significantly reducing colloidal T4 ring intensity was 8 ??g perchlorate/l. The intensity of the immunoreactive colloidal T4 ring is a more sensitive biomarker of perchlorate exposure than changes in hind limb length, forelimb emergence, tail resorption, thyrocyte hypertrophy, or colloid depletion. We conclude that the colloidal T4 ring can be used as a sensitive biomarker of perchlorate-induced thyroid disruption in amphibians. ?? Copyright 2006 Oxford University Press.

  13. Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes

    PubMed Central

    Mondia, Jessica P.; Adams, Dany S.; Orendorff, Ryan D.; Levin, Michael; Omenetto, Fiorenzo G.

    2011-01-01

    Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed. PMID:21833375

  14. Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes.

    PubMed

    Mondia, Jessica P; Adams, Dany S; Orendorff, Ryan D; Levin, Michael; Omenetto, Fiorenzo G

    2011-08-01

    Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed.

  15. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis.

    PubMed

    Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping

    2016-06-02

    Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis.

  16. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis

    PubMed Central

    Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping

    2016-01-01

    Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis. PMID:27254593

  17. Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles.

    PubMed

    Ding, Qiang; Heller, Brigitte; Capuccino, Juan M V; Song, Bokai; Nimgaonkar, Ila; Hrebikova, Gabriela; Contreras, Jorge E; Ploss, Alexander

    2017-01-31

    Hepatitis E virus (HEV) is the leading cause of enterically transmitted viral hepatitis globally. Of HEV's three ORFs, the function of ORF3 has remained elusive. Here, we demonstrate that via homophilic interactions ORF3 forms multimeric complexes associated with intracellular endoplasmic reticulum (ER)-derived membranes. HEV ORF3 shares several structural features with class I viroporins, and the function of HEV ORF3 can be maintained by replacing it with the well-characterized viroporin influenza A virus (IAV) matrix-2 protein. ORF3's ion channel function is further evidenced by its ability to mediate ionic currents when expressed in Xenopus laevis oocytes. Furthermore, we identified several positions in ORF3 critical for its formation of multimeric complexes, ion channel activity, and, ultimately, release of infectious particles. Collectively, our data demonstrate a previously undescribed function of HEV ORF3 as a viroporin, which may serve as an attractive target in developing direct-acting antivirals.

  18. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  19. Partitioning of functional gene expression data using principal points.

    PubMed

    Kim, Jaehee; Kim, Haseong

    2017-10-12

    DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex

  20. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    PubMed

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2017-04-01

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Soybean kinome: functional classification and gene expression patterns

    PubMed Central

    Liu, Jinyi; Chen, Nana; Grant, Joshua N.; Cheng, Zong-Ming (Max); Stewart, C. Neal; Hewezi, Tarek

    2015-01-01

    The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean. PMID:25614662

  2. Transforming Growth Factor Beta (TGFβ) Is Produced by and Influences the Proliferative Response of Xenopus laevis Lymphocytes

    PubMed Central

    Haynes, Laura

    1993-01-01

    Both TGF/β2 and 5 have been described in the South African clawed frog Xenopus laevis and have been cloned from the tadpole-derived fibroblast cell line, XTC. Because TGFβ has such a profound inhibitory effect on the mammalian immune system, this study was performed to determine whether TGFβ: (a) has any in vitro effects on the growth of Xenopus lymphoblasts, and (b) is produced by mitogen-activated Xenopus lymphocytes. Following stimulation with mitogen or alloantigen, T lymphocytes from Xenopus secrete a T-cell growth factor (TCGF) that is functionally homologous to mammalian interleukin-2 (IL-2). Both recombinant human TGFβ1 and Xenopus TGFβ5 inhibit TCGF-induced proliferation of Xenopus splenic blasts and this inhibition can be reversed with anti-pan TGFβ antiserum. The Xenopus mitogen-induced saturated ammonium sulfate precipitated TCGF-containing supernatant (SAS TCGF SN) also contains latent TGFβ as assayed on mink lung fibroblasts and Xenopus splenic blasts, and experiments utilizing anti-TGFβ antiserum showed that only TGFβ5 is present in this supernatant. PMID:8281035

  3. Temperature-independent energy expenditure in early development of the African clawed frog Xenopus laevis.

    PubMed

    Nagano, Yatsuhisa; Ode, Koji L

    2014-08-01

    The thermal dissipation of activated eggs and embryos undergoing development from cleavage to the tailbud stage of the African clawed frog Xenopus laevis was measured as a function of incubation time at temperatures ranging from T = 288.2 K to 295.2 K, using a high-precision isothermal calorimeter. A23187-mediated activation of mature eggs induced stable periodic thermal oscillations lasting for 8-34 h. The frequency agreed well with the cell cycle frequency of initial cleavages at the identical temperature. In the developing embryo, energy metabolism switches from embryonic to adult features during gastrulation. The thermal dissipation after gastrulation fit well with a single modified Avrami equation, which has been used for modeling crystal-growth. Both the oscillation frequency of the activated egg and the growth rate of the embryo strongly depend on temperature with the same apparent activation energy of approximately 87 kJ mole(-1). This result suggests that early development proceeds as a single biological time, attributable to a single metabolic rate. A temperature-independent growth curve was derived by scaling the thermogram to the biological time, indicating that the amount of energy expenditure during each developmental stage is constant over the optimal temperature range.

  4. Nondestructive Imaging of Internal Structures of Frog (Xenopus laevis) Embryos by Shadow-Projection X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Yoneda, Ikuo; Nagai, Takeharu; Ueno, Naoto; Murakami, Kazuo

    1994-04-01

    Nondestructive high-resolution imaging of frog ( Xenopus laevis) embryos has been developed by X-ray microtomography. Shadow-projection X-ray microtomography with a brilliant fine focus laboratory X-ray source could image fine structures of Xenopus embryos which were embedded in paraffin wax. The imaging system enabled us to not only distinguish endoderm from ectoderm at the gastrula stage, but also to obtain a cross-section view of the tail bud embryo showing muscle, notochord and neural tube without staining. Furthermore, the distribution of myosin was also imaged in combination with whole-mount immunohistochemistry.

  5. Xenopus laevis - A success story in biological research in Space

    NASA Astrophysics Data System (ADS)

    Horn, E.

    A feature of sensory, neuronal and motor systems is the existence of a critical period during their development. Environmental modifications, in particular stimulus depri-vation, during this period of life affects development in a long-term manner. For gravity sensory systems, space flights offer the only opportunity for deprivation conditions. Studies in the amphibian Xenopus laevis presented the most complete picture. The presentation demonstrates the importance of Xenopus laevis as an ex-perimental model animal in the past and even for future research in Space. Studies are presented which range from fertilization in Space and anatomical studies during early development under weightlessness up to post-flight studies on the anatomy of the peripheral sense organ, the spinal motor activity and behavior. Gravity depriva-tion induces anatomical as well as behavioral and neurophysiological modifications, which are normalized either during flight (thickening of the blastocoel roof) or after reentry in 1g-conditions (swimming and reflex behavior, spinal motor activity). The physiological changes can be explained by mechanisms of physiological adaptation. However, the studies also revealed stages which were insensitive to gravity depriva-tion; they point to the existence of a critical period. Observations on morphological mal-formations are described which are reversible after termination of microgravity and which are linked to a depression of vestibular reflex behavior. They might be caused by a competition between dorsalization and ventralization inducing growth factors. This observation offers the possibility for a genetic approach in finding ba-sics for microgravity effects on the development of Xenopus, and in a general frame, on the development of vertebrates including men. At the present stage of research, it remains open whether adaptive processes during exposure to altered gravity or the existence of a critical period in vestibular development are responsible for

  6. Monovalent cation conductance in Xenopus laevis oocytes expressing hCAT-3.

    PubMed

    Gilles, Wolfgang; Vulcu, Sebastian D; Liewald, Jana F; Habermeier, Alice; Vékony, Nicole; Closs, Ellen I; Rupp, Johanna; Nawrath, Hermann

    2005-03-01

    hCAT-3 (human cationic amino acid transporter type three) was investigated with both the two-electrode voltage clamp method and tracer experiments. Oocytes expressing hCAT-3 displayed less negative membrane potentials and larger voltage-dependent currents than native or water-injected oocytes did. Ion substitution experiments in hCAT-3-expressing oocytes revealed a large conductance for Na+ and K+. In the presence of L-Arg, voltage-dependent inward and outward currents were observed. At symmetrical (inside/outside) concentrations of L-Arg, the conductance of the transporter increased monoexponentially with the L-Arg concentrations; the calculated Vmax and KM values amounted to 8.3 microS and 0.36 mM, respectively. The time constants of influx and efflux of [3H]L-Arg, at symmetrically inside/outside L-Arg concentrations (1 mM), amounted to 79 and 77 min, respectively. The flux data and electrophysiological experiments suggest that the transport of L-Arg through hCAT-3 is symmetric, when the steady state of L-Arg flux has been reached. It is concluded that hCAT-3 is a passive transport system that conducts monovalent cations including L-Arg. The particular role of hCAT-3 in the diverse tissues remains to be elucidated.

  7. Molecular cloning and functional expression of the K+ channel KV7.1 and the regulatory subunit KCNE1 from equine myocardium.

    PubMed

    Pedersen, Philip J; Thomsen, Kirsten B; Flak, Jon B; Tejada, Maria A; Hauser, Frank; Trachsel, Dagmar; Buhl, Rikke; Kalbfleisch, Theodore; DePriest, Michael Scott; MacLeod, James N; Calloe, Kirstine; Klaerke, Dan A

    2017-08-01

    The voltage-gated K + -channel K V 7.1 and the subunit KCNE1, encoded by the KCNQ1 and KCNE1 genes, respectively, are responsible for termination of the cardiac action potential. In humans, mutations in these genes can predispose patients to arrhythmias and sudden cardiac death (SCD). To characterize equine K V 7.1/KCNE1 currents and compare them to human K V 7.1/KCNE1 currents to determine whether K V 7.1/KCNE1 plays a similar role in equine and human hearts. mRNA encoding K V 7.1 and KCNE1 was isolated from equine hearts, sequenced, and cloned into expression vectors. The channel subunits were heterologously expressed in Xenopus laevis oocytes or CHO-K1 cells and characterized using voltage-clamp techniques. Equine K V 7.1/KCNE1 expressed in CHO-K1 cells exhibited electrophysiological properties that are overall similar to the human orthologs; however, a slower deactivation was found which could result in more open channels at fast rates. The results suggest that the equine K V 7.1/KCNE1 channel may be important for cardiac repolarization and this could indicate that horses are susceptible to SCD caused by mutations in KCNQ1 and KCNE1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis.

    PubMed

    Lukoschek, V; Waycott, M; Keogh, J S

    2008-07-01

    Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.

  9. Morphometric and genetic analysis of Arcella intermedia and Arcella intermedia laevis (Amoebozoa, Arcellinida) illuminate phenotypic plasticity in microbial eukaryotes.

    PubMed

    Porfírio-Sousa, Alfredo L; Ribeiro, Giulia M; Lahr, Daniel J G

    2017-04-01

    Testate amoebae are eukaryotic microorganisms characterized by the presence of an external shell (test). The shell morphology is used as a diagnostic character, but discordance between morphological and molecular data has been demonstrated in groups of arcellinids (Amoebozoa), one of the principal groups of testate amoebae. Morphology of the test is supposed to differentiate genera and species and it is applied in ecological, monitoring and paleontological studies. However, if phenotype does not reflect genotype, conclusions in these types of studies become severely impaired. The objective of this work is to evaluate the morphometrical and morphological variation of the closely related and morphologically similar taxa Arcella intermedia laevis Tsyganov and Mazei, 2006 and Arcella intermedia (Deflandre 1928) Tsyganov and Mazei, 2006 in nature and in cultured individuals and see how these are correlated with molecular data. Our results demonstrate that phenotypic plasticity in Arcella intermedia make morphological distinctions impossible in both taxa. Arcella intermedia and Arcella intermedia laevis are molecularly identical for SSU rDNA and a mitochondrial molecular marker (NAD9/7). We conclude that morphological techniques alone cannot identify phenotypic plasticity from natural populations. More work is clearly needed to better understand the morphological, morphometric and molecular variability in these organisms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Anticariogenic activity of the active fraction from Isertia laevis against S. mutans and S. sobrinus: comparison of two extraction methods.

    PubMed

    Téllez, Nohemí; Téllez, Mayra; Perdomo, Margarita; Alvarado, Andrea; Gamboa, Fredy

    2010-01-01

    Dental caries is considered a multi-factorial, infectious, chronic, localized, post-eruptive, transmissible disease that leads to the destruction of dental hard tissue. The recognition of Streptococcus mutans as the major bacterial species involved in dental caries has led to the implementation of prevention and control measures for eliminating or reducing it in oral cavity. The main goal of research on medicinal plants is the search for substances or compounds with antimicrobial activity. The aim of this study was to evaluate the antimicrobial activity of fractions obtained by two methods from Isertia laevis against S. mutans and S. sobrinus. The plant material was collected in Medina (Colombia), at an elevation of 550 meters above sea level. From the ethanol extract of leaves of I. laevis, fractions were obtained by two methods: extraction by column vacuum chromatography (CVC) and extraction by continuous liquid/liquid partitioning (CLLP). The evaluation of the antimicrobial activity of fractions against S. mutans and S. sobrinus was performed by well diffusion and bioautography assays. From the CVC technique, only the methanol and methanol-dichloromethane fractions showed activity against S. mutans and S. sobrinus, with a minimum inhibitory concentration of 2 mg/well. From the CLLP technique, only the dichloromethane fraction showed activity against both microorganisms, with a minimum inhibitory concentration of 1 mg/well. Compounds C1 and C2 were isolated from the three active fractions, and showed a minimum inhibitory concentration of 0.4 mg/well for S. mutans and S. sobrinus, with zones of inhibition measuring 6.5 and 6.2 mm, respectively. 1) the three active fractions of I. laevis showed activity against S. mutans and S. sobrinus, 2) compounds C1 and C2 were presen equally in the three active fractions showing activity against the two bacteria, 3) compounds C1 and C2 may be triterpenoid and/or steroidal saponin structures, and 4) the two extraction methods

  11. The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function.

    PubMed

    Faunes, Fernando; Gundermann, Daniel G; Muñoz, Rosana; Bruno, Renzo; Larraín, Juan

    2017-05-15

    Metamorphosis is a classic example of developmental transition, which involves important morphological and physiological changes that prepare the organism for the adult life. It has been very well established that amphibian metamorphosis is mainly controlled by Thyroid Hormone (TH). Here, we show that the heterochronic gene Lin28 is downregulated during Xenopus laevis metamorphosis. Lin28 overexpression before activation of TH signaling delays metamorphosis and inhibits the expression of TH target genes. The delay in metamorphosis is rescued by incubation with exogenous TH, indicating that Lin28 works upstream or parallel to TH. High-throughput analyses performed before any delay on metamorphosis or change in TH signaling showed that overexpression of Lin28 reduces transcript levels of several hormones secreted by the pituitary, including the Thyroid-Stimulating Hormone (TSH), and regulates the expression of proteins involved in TH transport, metabolism and signaling, showing that Lin28 disrupts TH function at different levels. Our data demonstrates that the role of Lin28 in controlling developmental transitions is evolutionary conserved and establishes a functional interaction between Lin28 and thyroid hormone function introducing a new regulatory step in perinatal development with implications for our understanding of endocrine disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Single olfactory organ associated with prosencephalic malformation and cyclopia in a Xenopus laevis tadpole.

    PubMed

    Magrassi, L; Graziadei, P P

    1987-06-02

    A cyclops Xenopus laevis tadpole with a single olfactory organ is described. At a stage comparable to 48, the telencephalon was severely atrophic and only the region where the olfactory fibres terminated appeared to have the cytoarchitecture of the olfactory bulb. In this animal the central nervous system (CNS) appeared normally developed only posterior to the preoptic area. The hypothesis of a diencephalic origin of the region where the olfactory fibres terminated is discussed in the light of our previous results of olfactory placode transplantation. By analogy between this case and other malformations (cyclopia, holoprosencephaly) in higher vertebrates and humans, the need is emphasized for a more precise anatomical description of the olfactory input in related malformations.

  13. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable sequence homology among introns.

    PubMed Central

    Loreni, F; Ruberti, I; Bozzoni, I; Pierandrei-Amaldi, P; Amaldi, F

    1985-01-01

    Ribosomal protein L1 is encoded by two genes in Xenopus laevis. The comparison of two cDNA sequences shows that the two L1 gene copies (L1a and L1b) have diverged in many silent sites and very few substitution sites; moreover a small duplication occurred at the very end of the coding region of the L1b gene which thus codes for a product five amino acids longer than that coded by L1a. Quantitatively the divergence between the two L1 genes confirms that a whole genome duplication took place in Xenopus laevis approximately 30 million years ago. A genomic fragment containing one of the two L1 gene copies (L1a), with its nine introns and flanking regions, has been completely sequenced. The 5' end of this gene has been mapped within a 20-pyridimine stretch as already found for other vertebrate ribosomal protein genes. Four of the nine introns have a 60-nucleotide sequence with 80% homology; within this region some boxes, one of which is 16 nucleotides long, are 100% homologous among the four introns. This feature of L1a gene introns is interesting since we have previously shown that the activity of this gene is regulated at a post-transcriptional level and it involves the block of the normal splicing of some intron sequences. Images Fig. 3. Fig. 5. PMID:3841512

  14. Employing conservation of co-expression to improve functional inference

    PubMed Central

    Daub, Carsten O; Sonnhammer, Erik LL

    2008-01-01

    Background Observing co-expression between genes suggests that they are functionally coupled. Co-expression of orthologous gene pairs across species may improve function prediction beyond the level achieved in a single species. Results We used orthology between genes of the three different species S. cerevisiae, D. melanogaster, and C. elegans to combine co-expression across two species at a time. This led to increased function prediction accuracy when we incorporated expression data from either of the other two species and even further increased when conservation across both of the two other species was considered at the same time. Employing the conservation across species to incorporate abundant model organism data for the prediction of protein interactions in poorly characterized species constitutes a very powerful annotation method. Conclusion To be able to employ the most suitable co-expression distance measure for our analysis, we evaluated the ability of four popular gene co-expression distance measures to detect biologically relevant interactions between pairs of genes. For the expression datasets employed in our co-expression conservation analysis above, we used the GO and the KEGG PATHWAY databases as gold standards. While the differences between distance measures were small, Spearman correlation showed to give most robust results. PMID:18808668

  15. Circular RNAs: analysis, expression and potential functions

    PubMed Central

    Salzman, Julia

    2016-01-01

    Just a few years ago, it had been assumed that the dominant RNA isoforms produced from eukaryotic genes were variants of messenger RNA, functioning as intermediates in gene expression. In early 2012, however, a surprising discovery was made: circular RNA (circRNA) was shown to be a transcriptional product in thousands of human and mouse genes and in hundreds of cases constituted the dominant RNA isoform. Subsequent studies revealed that the expression of circRNAs is developmentally regulated, tissue and cell-type specific, and shared across the eukaryotic tree of life. These features suggest important functions for these molecules. Here, we describe major advances in the field of circRNA biology, focusing on the regulation of and functional roles played by these molecules. PMID:27246710

  16. Effect of task-oriented activities on hand functions, cognitive functions and self-expression of elderly patients with dementia.

    PubMed

    Son, Bo-Young; Bang, Yo-Soon; Hwang, Min-Ji; Oh, Eun-Ju

    2017-08-01

    [Purpose] This study investigates the effects of task-oriented activities on hand function, cognitive function, and self-expression of the elderly with dementia, and then identify the influencing factors on self-expression in sub-factors of dependent variables. [Subjects and Methods] Forty elderly persons were divided into two groups: intervention group (n=20) and control group (n=20). The interventions were applied to the subjects 3 times a week, 50 minutes per each time, for a total of five weeks. We measured the jamar hand dynamometer test for grip strength, the jamar hydraulic pinch gauge test for prehension test, nine-hole pegboard test for coordination test, and Loewenstein Occupational Therapy Cognitive Assessment-Geriatric Population for cognitive function, and self-expression rating scale for self-expression test. [Results] The task-oriented activities promoted hand function, cognitive function (visual perception, spatial perception, visuomotor organization, attention & concentration) and self-expression of the elderly with early dementia, and the factors influencing the self-expression were cognitive function (visual perception) and hand function (coordination). The study showed that the task-oriented program enabled self-expression by improving hand function and cognitive function. [Conclusion] This study suggested that there should be provided the task-oriented program for prevention and treatment of the elderly with early dementia in the clinical settings and it was considered that results have a value as basic data that can be verified relationship of hand function, cognitive function, and self-expression.

  17. Effect of task-oriented activities on hand functions, cognitive functions and self-expression of elderly patients with dementia

    PubMed Central

    Son, Bo-Young; Bang, Yo-Soon; Hwang, Min-Ji; Oh, Eun-Ju

    2017-01-01

    [Purpose] This study investigates the effects of task-oriented activities on hand function, cognitive function, and self-expression of the elderly with dementia, and then identify the influencing factors on self-expression in sub-factors of dependent variables. [Subjects and Methods] Forty elderly persons were divided into two groups: intervention group (n=20) and control group (n=20). The interventions were applied to the subjects 3 times a week, 50 minutes per each time, for a total of five weeks. We measured the jamar hand dynamometer test for grip strength, the jamar hydraulic pinch gauge test for prehension test, nine-hole pegboard test for coordination test, and Loewenstein Occupational Therapy Cognitive Assessment-Geriatric Population for cognitive function, and self-expression rating scale for self-expression test. [Results] The task-oriented activities promoted hand function, cognitive function (visual perception, spatial perception, visuomotor organization, attention & concentration) and self-expression of the elderly with early dementia, and the factors influencing the self-expression were cognitive function (visual perception) and hand function (coordination). The study showed that the task-oriented program enabled self-expression by improving hand function and cognitive function. [Conclusion] This study suggested that there should be provided the task-oriented program for prevention and treatment of the elderly with early dementia in the clinical settings and it was considered that results have a value as basic data that can be verified relationship of hand function, cognitive function, and self-expression. PMID:28878462

  18. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    PubMed Central

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  19. Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros.

    PubMed

    Naylor, Richard W; Jones, Elizabeth A

    2009-11-01

    Previous studies have highlighted a role for the Notch signalling pathway during pronephrogenesis in the amphibian Xenopus laevis, and in nephron development in the mammalian metanephros, yet a mechanism for this function remains elusive. Here, we further the understanding of how Notch signalling patterns the early X. laevis pronephros anlagen, a function that might be conserved in mammalian nephron segmentation. Our results indicate that early phase pronephric Notch signalling patterns the medio-lateral axis of the dorso-anterior pronephros anlagen, permitting the glomus and tubules to develop in isolation. We show that this novel function acts through the Notch effector gene hrt1 by upregulating expression of wnt4. Wnt-4 then patterns the proximal pronephric anlagen to establish the specific compartments that span the medio-lateral axis. We also identified pronephric expression of lunatic fringe and radical fringe that is temporally and spatially appropriate for a role in regulating Notch signalling in the dorso-anterior region of the pronephros anlagen. On the basis of these results, along with data from previous publications, we propose a mechanism by which the Notch signalling pathway regulates a Wnt-4 function that patterns the proximal pronephric anlagen.

  20. Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling

    PubMed Central

    Square, Tyler; Jandzik, David; Cattell, Maria; Hansen, Andrew; Medeiros, Daniel Meulemans

    2016-01-01

    Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates. PMID:27677704

  1. Potential ecotoxic effects of polychlorinated biphenyls on Xenopus laevis.

    PubMed

    Qin, Zhan-Fen; Zhou, Jing-Ming; Cong, Lin; Xu, Xiao-Bai

    2005-10-01

    We examined potential ecotoxic effects of polychlorinated biphenyl (PCB)3, PCB5, Aroclor 1254, and Aroclor 1242 on Xenopus laevis. Tadpoles were exposed to PCBs from stage 46/47 (system of Nieuwkoop and Faber) to the completion of metamorphosis. We demonstrated, to our knowledge for the first time, forelimb malformations caused by PCBs (malformation rate, > 70%). The malformed forelimbs were fixed in the adduction-backward rotation position and could not move. Therefore, malformed male frogs were destined to have no offspring, because they could not grasp the females with their forelimbs to mate. Alcian blue-alizarin red double-staining indicated that the forelimb malformation resulted from the shoulder abnormality. Compared with the normal shoulder joint, the proximal humerus with the humerus inter-rotated 90 degrees in the abnormal shoulder joint. Moreover, testes from more than a third of male frogs with exposed to PCBs exhibited feminization to different degrees at gross morphology and histology, with fewer or abnormal spermatogonia and oocytes. Gonadal abnormalities would lead directly to reproductive dysfunction and population decline. These results suggest that PCBs have potentially ecotoxic effects on amphibian populations. We infer that PCBs could play roles in amphibian malformations and population declines, at least at sites that are polluted heavily with PCBs.

  2. Evaluation and Refinement of Euthanasia Methods for Xenopus laevis

    PubMed Central

    Torreilles, Stéphanie L; McClure, Diane E; Green, Sherril L

    2009-01-01

    The most common method of euthanasia for Xenopus species is by immersion in tricaine methane sulfonate solution (MS222). A wide range of doses of MS222 (0.5 to 5 g/L) have been recommended, but few reports describe dose–response testing, the time to loss of consciousness, or the reliability of euthanasia. The objective of this study is to evaluate the efficacy of immersing individual and groups of frogs in MS222 at concentrations ranging from 1 to 5 g/L for euthanasia and of 3 less-common methods: intracoelomic injection of MS222, intracoelomic injection of sodium pentobarbital with phenytoin, and ventral cutaneous application of benzocaine gel. Our results indicate that immersion for at least 1 h in a 5-g/L buffered solution of MS222, intracoelomic injection of 1100 mg/kg sodium pentobarbital with sodium phenytoin (equivalent to 0.3 mL solution per frog), or ventral cutaneous application of 182 mg/kg benzocaine (equivalent to a 2 cm × 1 mm of 20% benzocaine gel) is necessary to euthanize adult X. laevis and ensure complete cessation of the heartbeat without recovery. These doses are considerably higher than those previously recommended for this species. PMID:19807972

  3. Nucleosome Translational Position, Not Histone Acetylation, Determines TFIIIA Binding to Nucleosomal Xenopus laevis 5S rRNA Genes

    PubMed Central

    Howe, LeAnn; Ausió, Juan

    1998-01-01

    We sought to study the binding constraints placed on the nine-zinc-finger protein transcription factor IIIA (TFIIIA) by a histone octamer. To this end, five overlapping fragments of the Xenopus laevis oocyte and somatic 5S rRNA genes were reconstituted into nucleosomes, and it was subsequently shown that nucleosome translational positioning is a major determinant of the binding of TFIIIA to the 5S rRNA genes. Furthermore, it was found that histone acetylation cannot override the TFIIIA binding constraints imposed by unfavorable translational positions. PMID:9488430

  4. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis

    PubMed Central

    Pai, Vaibhav P.; Aw, Sherry; Shomrat, Tal; Lemire, Joan M.; Levin, Michael

    2012-01-01

    Uncovering the molecular mechanisms of eye development is crucial for understanding the embryonic morphogenesis of complex structures, as well as for the establishment of novel biomedical approaches to address birth defects and injuries of the visual system. Here, we characterize change in transmembrane voltage potential (Vmem) as a novel biophysical signal for eye induction in Xenopus laevis. During normal embryogenesis, a striking hyperpolarization demarcates a specific cluster of cells in the anterior neural field. Depolarizing the dorsal lineages in which these cells reside results in malformed eyes. Manipulating Vmem of non-eye cells induces well-formed ectopic eyes that are morphologically and histologically similar to endogenous eyes. Remarkably, such ectopic eyes can be induced far outside the anterior neural field. A Ca2+ channel-dependent pathway transduces the Vmem signal and regulates patterning of eye field transcription factors. These data reveal a new, instructive role for membrane voltage during embryogenesis and demonstrate that Vmem is a crucial upstream signal in eye development. Learning to control bioelectric initiators of organogenesis offers significant insight into birth defects that affect the eye and might have significant implications for regenerative approaches to ocular diseases. PMID:22159581

  5. Antioxidant metabolism in Xenopus laevis embryos is affected by stratospheric balloon flight.

    PubMed

    Rizzo, Angela M; Rossi, Federica; Zava, Stefania; Montorfano, Gigliola; Adorni, Laura; Cotronei, Vittorio; Zanini, Alba; Berra, Bruno

    2007-07-01

    To test the effects of low levels of radiation from space on living organisms, we flew Xenopus laevis embryos at different stages of development on a stratospheric balloon (BI.R.BA mission). After recovery, different parameters were analyzed to assess the effects of flight, with particular regard to oxidative stress damage. Because of failed temperature control during flight, the flight shielded embryos (FC) could not be used for biochemical or morphological comparisons. In contrast, the incubation conditions (i.e. temperature, containers, volumes) for the flight embryos (F) were parallel to those for the ground controls. Mortality data show that younger embryos (16 h) flown on the balloon (F) are more sensitive to radiation exposure than older ones (40 h and 6 days). Exposure during flight lowered the antioxidant potential in all embryos, particularly older ones. These preliminary data demonstrate that flight on a stratospheric balloon might affect antioxidant metabolism, though it is not yet possible to correlate these results with low radiation exposure during flight.

  6. Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate

    PubMed Central

    Hollar, Amy R.; Choi, Jinyoung; Grimm, Adam T.; Buchholz, Daniel R.

    2011-01-01

    Spadefoot toad species display extreme variation in larval period duration, due in part to evolution of thyroid hormone (TH) physiology. Specifically, desert species with short larval periods have higher tail tissue content of TH and exhibit increased responsiveness to TH. To address the molecular basis of larval period differences, we examined TH receptor (TR) expression across species. Based on the dual function model for the role of TR in development, we hypothesized that desert spadefoot species with short larval periods would have 1) late onset of TR expression prior to the production of endogenous TH and 2) higher TR levels when endogenous TH becomes available. To test these hypotheses, we cloned fragments of TRα and TRβ genes from the desert spadefoot toads Scaphiopus couchii and Spea multiplicata and their non-desert relative Pelobates cultripes and measured their mRNA levels in tails using quantitative PCR in the absence (premetamorphosis) or presence (natural metamorphosis) of TH. All species express TRα and TRβ from the earliest stages measured (from just after hatching), but S. couchii, which has the shortest larval period, had more TRα throughout development compared to P. cultripes, which has the longest larval period. TRβ mRNA levels were similar across species. Exogenous T3 treatment induced faster TH-response gene expression kinetics in S. couchii compared to the other species, consistent with its increased TRα mRNA expression and indicative of a functional consequence of more TRα activity at the molecular level. To directly test whether higher TRα expression may contribute to shorter larval periods, we overexpressed TRα via plasmid injection into tail muscle cells of the model frog Xenopus laevis and found an increased rate of muscle cell death in response to TH. These results suggest that increased TRα expression evolved in S. couchii and contribute to its higher metamorphic rates. PMID:21651912

  7. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.

    PubMed

    Richter, K; Mathes, V; Fronius, M; Althaus, M; Hecker, A; Krasteva-Christ, G; Padberg, W; Hone, A J; McIntosh, J M; Zakrzewicz, A; Grau, V

    2016-06-28

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.

  8. Improving membrane protein expression and function using genomic edits

    DOE PAGES

    Jensen, Heather M.; Eng, Thomas; Chubukov, Victor; ...

    2017-10-12

    Expression of membrane proteins often leads to growth inhibition and perturbs central metabolism and this burden varies with the protein being overexpressed. There are also known strain backgrounds that allow greater expression of membrane proteins but that differ in efficacy across proteins. Here, we hypothesized that for any membrane protein, it may be possible to identify a modified strain background where its expression can be accommodated with less burden. To directly test this hypothesis, we used a bar-coded transposon insertion library in tandem with cell sorting to assess genome-wide impact of gene deletions on membrane protein expression. The expression ofmore » five membrane proteins (CyoB, CydB, MdlB, YidC, and LepI) and one soluble protein (GST), each fused to GFP, was examined. We identified Escherichia coli mutants that demonstrated increased membrane protein expression relative to that in wild type. For two of the proteins (CyoB and CydB), we conducted functional assays to confirm that the increase in protein expression also led to phenotypic improvement in function. This study represents a systematic approach to broadly identify genetic loci that can be used to improve membrane protein expression, and our method can be used to improve expression of any protein that poses a cellular burden.« less

  9. Improving membrane protein expression and function using genomic edits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Heather M.; Eng, Thomas; Chubukov, Victor

    Expression of membrane proteins often leads to growth inhibition and perturbs central metabolism and this burden varies with the protein being overexpressed. There are also known strain backgrounds that allow greater expression of membrane proteins but that differ in efficacy across proteins. Here, we hypothesized that for any membrane protein, it may be possible to identify a modified strain background where its expression can be accommodated with less burden. To directly test this hypothesis, we used a bar-coded transposon insertion library in tandem with cell sorting to assess genome-wide impact of gene deletions on membrane protein expression. The expression ofmore » five membrane proteins (CyoB, CydB, MdlB, YidC, and LepI) and one soluble protein (GST), each fused to GFP, was examined. We identified Escherichia coli mutants that demonstrated increased membrane protein expression relative to that in wild type. For two of the proteins (CyoB and CydB), we conducted functional assays to confirm that the increase in protein expression also led to phenotypic improvement in function. This study represents a systematic approach to broadly identify genetic loci that can be used to improve membrane protein expression, and our method can be used to improve expression of any protein that poses a cellular burden.« less

  10. Broad Integration of Expression Maps and Co-Expression Networks Compassing Novel Gene Functions in the Brain

    PubMed Central

    Okamura-Oho, Yuko; Shimokawa, Kazuro; Nishimura, Masaomi; Takemoto, Satoko; Sato, Akira; Furuichi, Teiichi; Yokota, Hideo

    2014-01-01

    Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas. PMID:25382412

  11. In X. laevis embryos high levels of the anti-apoptotic factor p27BBP/eIF6 are stage-dependently found in BrdU and TUNEL-reactive territories.

    PubMed

    De Marco, N; Campanella, C; Carotenuto, R

    2011-05-01

    p27BBP/eIF6 (β4 binding protein/eukaryotic initiation factor 6) is a highly conserved protein necessary for cell life. In adult eIF6 mice, a 50% decrease in the protein levels in all tissues is accompanied by a reduction in cell proliferation only in the liver, fat cells and cultured fibroblasts. During X. laevis embryogenesis expression of p27BBP/eIF6 is abundant in high proliferative territories. However, in Xenopus cell proliferation appears unaffected following p27BBP/eIF6 over-expression or down-regulation. Indeed, p27BBP/eIF6 is an anti-apoptotic factor acting upstream of Bcl2 that reduces endogenous apoptosis. We studied p27BBP/eIF6 protein localization in wild type embryos and compared it to proliferation and apoptosis. At the beginning of embryogenesis, high levels of p27BBP/eIF6, proliferation and apoptosis overlap. In later development stages high proliferation levels are present in the same regions where higher p27BBP/eIF6 expression is observed, while apoptosis does not appear specifically concentrated in the same sites. The higher presence of p27BBP/eIF6 would appear related to an increased need of apoptosis control in the regions where cell death is essential for normal development.

  12. Utility and Limitations of Using Gene Expression Data to Identify Functional Associations

    PubMed Central

    Peng, Cheng; Shiu, Shin-Han

    2016-01-01

    Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets. PMID:27935950

  13. Characterization of SLCO5A1/OATP5A1, a Solute Carrier Transport Protein with Non-Classical Function

    PubMed Central

    Sebastian, Katrin; Detro-Dassen, Silvia; Rinis, Natalie; Fahrenkamp, Dirk; Müller-Newen, Gerhard; Merk, Hans F.; Schmalzing, Günther

    2013-01-01

    Organic anion transporting polypeptides (OATP/SLCO) have been identified to mediate the uptake of a broad range of mainly amphipathic molecules. Human OATP5A1 was found to be expressed in the epithelium of many cancerous and non-cancerous tissues throughout the body but protein characterization and functional analysis have not yet been performed. This study focused on the biochemical characterization of OATP5A1 using Xenopus laevis oocytes and Flp-In T-REx-HeLa cells providing evidence regarding a possible OATP5A1 function. SLCO5A1 is highly expressed in mature dendritic cells compared to immature dendritic cells (∼6.5-fold) and SLCO5A1 expression correlates with the differentiation status of primary blood cells. A core- and complex- N-glycosylated polypeptide monomer of ∼105 kDa and ∼130 kDa could be localized in intracellular membranes and on the plasma membrane, respectively. Inducible expression of SLCO5A1 in HeLa cells led to an inhibitory effect of ∼20% after 96 h on cell proliferation. Gene expression profiling with these cells identified immunologically relevant genes (e.g. CCL20) and genes implicated in developmental processes (e.g. TGM2). A single nucleotide polymorphism leading to the exchange of amino acid 33 (L→F) revealed no differences regarding protein expression and function. In conclusion, we provide evidence that OATP5A1 might be a non-classical OATP family member which is involved in biological processes that require the reorganization of the cell shape, such as differentiation and migration. PMID:24376674

  14. ( sup 125 I)Bolton-Hunter neuropeptide-Y-binding sites on folliculo-stellate cells of the pars intermedia of Xenopus laevis: A combined autoradiographic and immunocytochemical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rijk, E.P.; Cruijsen, P.M.; Jenks, B.G.

    1991-02-01

    It has previously been established that neuropeptide-Y (NPY) is a potent inhibitor of alpha MSH release from the pars intermedia of the amphibian Xenopus laevis. The location of binding sites for NPY in the pars intermedia of the pituitary has now been studied with light microscopic autoradiography, using a dispersed cell labeling method with the specific NPY receptor ligand ({sup 125}I)Bolton-Hunter NPY. The majority of radioactive labeling was associated with folliculo-stellate cells; the percentage of labeling as well as the mean number of grains were approximately 5 times higher for folliculo-stellate cells than for melanotropes. An excess of nonlabeled NPYmore » drastically reduced radiolabeling of folliculo-stellate cells, but had no effect on the degree of labeling of melanotropes. These results show that folliculo-stellate cells of X. laevis possess specific binding sites for NPY and indicate that NPY exerts its inhibitory action on the release of alpha MSH in an indirect fashion, by acting on the folliculo-stellate cells.« less

  15. Functional expression of cysteinyl leukotriene receptors on human platelets.

    PubMed

    Hasegawa, Shunji; Ichiyama, Takashi; Hashimoto, Kunio; Suzuki, Yasuo; Hirano, Reiji; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Normal peripheral blood leukocytes, such as basophils, eosinophils, B lymphocytes and monocytes/macrophages, have a cysteinyl leukotriene 1 (CysLT1) receptor, while the cysteinyl leukotriene 2 (CysLT2) receptor is expressed in cardiac Purkinje cells, endothelium, brain and leukocytes. However, it is unknown whether or not platelets express the CysLT1 or CysLT2 receptor. In this study we identify and characterize the biological function of the CysLT receptor of human platelets. We determined the CysLT1 or CysLT2 receptor mRNA expression in normal human platelets by RT-PCR and determined protein expression by Western blotting and flow cytometry. Moreover, we examined the effect of cysteinyl leukotrienes (CysLTs) in platelets on the induction of RANTES (Regulated on Activation, Normal T Expressed, and presumably Secreted). We also investigated whether the CysLT1 receptor antagonist pranlukast inhibits CysLT-induced RANTES release. In conclusion, we showed the functional expression of CysLT receptors on human platelets and demonstrated that CysLTs induced the release of significant amounts of RANTES, which suggests a novel role for human platelets in CysLT-mediated allergic inflammation.

  16. The progestin norethisterone affects thyroid hormone-dependent metamorphosis of Xenopus laevis tadpoles at environmentally relevant concentrations.

    PubMed

    Lorenz, Claudia; Krüger, Angela; Schöning, Viola; Lutz, Ilka

    2018-04-15

    Previously, levonorgestrel (LNG) has been shown to be an endocrine disruptor of the amphibian thyroid system. In the present study, we investigated whether anti-thyroidal effects are a common property of progestins other than LNG. Premetamorphic Xenopus laevis tadpoles were exposed to norethisterone (NET) and dienogest DIE (each at 0.1-10nM) and LNG (10nM) until completion of metamorphosis. LNG and NET at all concentrations caused a significant developmental retardation whereas DIE did not impair time to metamorphosis. In LNG and 10nM NET exposed animals, tsh mRNA levels increased considerably later than the developmental delay occurred and thyroid histopathology showed no signs of TSH-hyperstimulation. Instead, thyroid glands from these treatments appeared inactive in producing thyroid hormones. Thyroidal transcript levels of dio2 and dio3 were increased by treatments with LNG and NET at 1nM and 10nM, whereas iyd mRNA was reduced by LNG and 10nM NET. Expression of slc5α5 was not changed by any treatment. Effects of DIE differed from those induced by LNG and NET. No developmental delay was measurable; however, tshβ and dio2 mRNAs were increased in pituitary glands of tadpoles exposed to 1.0nM and 10nM DIE. Thyroid histopathology displayed no abnormalities and thyroidal mRNA expression of the genes analyzed (slc5α5, iyd, dio2, dio3) was not changed by DIE. Overall, our results provide evidence that the anti-thyroidal effects already known from LNG are also present in another progestin, namely NET, even at environmentally relevant concentrations. In conclusion we suggest that progestins do not only pose an environmental risk in terms of their impact on reproductive success of aquatic vertebrates, but also with respect to their anti-thyroidal properties affecting amphibian metamorphosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Calcium dependent current recordings in Xenopus laevis oocytes in microgravity

    NASA Astrophysics Data System (ADS)

    Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel

    2017-12-01

    Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.

  18. Gene expression links functional networks across cortex and striatum.

    PubMed

    Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J

    2018-04-12

    The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.

  19. Molecular analysis and functional expression of the human type E neuronal Ca2+ channel alpha 1 subunit.

    PubMed

    Schneider, T; Wei, X; Olcese, R; Costantin, J L; Neely, A; Palade, P; Perez-Reyes, E; Qin, N; Zhou, J; Crawford, G D

    1994-01-01

    A human brain alpha 1 Ca2+ channel subunit was cloned and expressed in Xenopus laevis oocytes. The open reading frame, encoding 2,312 amino acids, has high homology to the marine ray doe-1, the rat E-type, and the rabbit brain BII alpha 1 subunits. The amino and carboxy termini of this human.E-type alpha 1 subunit (alpha 1E) are most similar to the rabbit BII-1 splice variant, the remainder being colinear with the BII alpha 1 with the exception of two insertions, one of 43 amino acids in the C-terminus and another of 7 amino acids, found also in the rat alpha 1E, between domains II and III. Two potential Ca2+ binding sites are predicted from its primary structure. The expression of inward Ba2+ currents reveals voltage-dependent activation and inactivation measured by the cut-open oocyte vaseline-gap technique, with kinetics that correspond to that of a high-voltage-activated neuronal Ca2+ channel, and pharmacologic properties that resemble those of some low-voltage-activated neuronal Ca2+ currents. The human alpha 1E currents are insensitive to omega-conotoxin-GVIA (1 microM), omega-agatoxin-IVA (200 nM), a synthetic funnel web spider toxin (FTX, 20 microM), and Bay-K8644 (0.5 microM); they are inhibited 20% by high concentrations of methoxyverapamil and diltiazem, 65% by 0.1% crude funnel web spider venom and 100% by Ni2+ (IC50 = 30 nM). Single-channel records show a complex activity pattern with several apparent conductance states, the largest having a conductance of 14 pS.

  20. Dynein-Based Accumulation of Membranes Regulates Nuclear Expansion in Xenopus laevis Egg Extracts.

    PubMed

    Hara, Yuki; Merten, Christoph A

    2015-06-08

    Nuclear size changes dynamically during development and has long been observed to correlate with the space surrounding the nucleus, as well as with the volume of the cell. Here we combine an in vitro cell-free system of Xenopus laevis egg extract with microfluidic devices to systematically analyze the effect of spatial constraints. The speed of nuclear expansion depended on the available space surrounding the nucleus up to a threshold volume in the nanoliter range, herein referred to as the nuclear domain. Under spatial constraints smaller than this nuclear domain, the size of microtubule-occupied space surrounding the nucleus turned out to be limiting for the accumulation of membranes around the nucleus via the motor protein dynein, therefore determining the speed of nuclear expansion. This mechanism explains how spatial information surrounding the nucleus, such as the positioning of the nucleus inside the cell, can control nuclear expansion. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Comparative functional expression of nAChR subtypes in rodent DRG neurons.

    PubMed

    Smith, Nathan J; Hone, Arik J; Memon, Tosifa; Bossi, Simon; Smith, Thomas E; McIntosh, J Michael; Olivera, Baldomero M; Teichert, Russell W

    2013-01-01

    We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.

  2. Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark.

    PubMed

    Cutler, Christopher P; Maciver, Bryce; Cramb, Gordon; Zeidel, Mark

    2011-01-01

    The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5' and 3' RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill >  intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (P(f)) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species.

  3. Expression and function of Allergin-1 on human primary mast cells.

    PubMed

    Nagai, Kei; Tahara-Hanaoka, Satoko; Morishima, Yuko; Tokunaga, Takahiro; Imoto, Yoshimasa; Noguchi, Emiko; Kanemaru, Kazumasa; Imai, Masamichi; Shibayama, Shiro; Hizawa, Nobuyuki; Fujieda, Shigeharu; Yamagata, Kunihiro; Shibuya, Akira

    2013-01-01

    Mast cells (MC) play an important role in allergic and non-allergic immune responses. Activation of human MC is modulated by several cell surface inhibitory receptors, including recently identified Allergin-1 expressed on both human and mouse MC. Although Allergin-1 suppresses IgE-mediated, mast cell-dependent anaphylaxis in mice, the expression profile and function of Allergin-1 on human primary MC remains undetermined. Here, we established a seven-color flow cytometry method for assessing expression and function of a very small number of human primary MC. We show that Allergin-1S1, a splicing isoform of Allergin-1, is predominantly expressed on human primary MC in both bronchoalveolar lavage (BAL) fluid and nasal scratching specimens. Moreover, Allergin-1S1 inhibits IgE-mediated activation from human primary MC in BAL fluid. These results indicate that Allergin-1 on human primary MC exhibits similar characteristics as mouse Allergin-1 in the expression profile and function.

  4. Phytomonas: A non-pathogenic trypanosomatid model for functional expression of proteins.

    PubMed

    Miranda, Mariana R; Sayé, Melisa; Reigada, Chantal; Carrillo, Carolina; Pereira, Claudio A

    2015-10-01

    Phytomonas are protozoan parasites from the Trypanosomatidae family which infect a wide variety of plants. Herein, Phytomonas Jma was tested as a model for functional expression of heterologous proteins. Green fluorescent protein expression was evaluated in Phytomonas and compared with Trypanosoma cruzi, the etiological agent of Chagas' disease. Phytomonas was able to express GFP at levels similar to T. cruzi although the transgenic selection time was higher. It was possible to establish an efficient transfection and selection protocol for protein expression. These results demonstrate that Phytomonas can be a good model for functional expression of proteins from other trypanosomatids, presenting the advantage of being completely safe for humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Clinical investigations of receptive and expressive musical functions after stroke.

    PubMed

    Rosslau, Ken; Steinwede, Daniel; Schröder, C; Herholz, Sibylle C; Lappe, Claudia; Dobel, Christian; Altenmüller, Eckart

    2015-01-01

    There is a long tradition of investigating various disorders of musical abilities after stroke. These impairments, associated with acquired amusia, can be highly selective, affecting only music perception (i.e., receptive abilities/functions) or expression (music production abilities), and some patients report that these may dramatically influence their emotional state. The aim of this study was to systematically test both the melodic and rhythmic domains of music perception and expression in left- and right-sided stroke patients compared to healthy subjects. Music perception was assessed using rhythmic and melodic discrimination tasks, while tests of expressive function involved the vocal or instrumental reproduction of rhythms and melodies. Our approach revealed deficits in receptive and expressive functions in stroke patients, mediated by musical expertise. Those patients who had experienced a short period of musical training in childhood and adolescence performed better in the receptive and expressive subtests compared to those without any previous musical training. While discrimination of specific musical patterns was unimpaired after a left-sided stroke, patients with a right-sided stroke had worse results for fine melodic and rhythmic analysis. In terms of expressive testing, the most consistent results were obtained from a test that required patients to reproduce sung melodies. This implies that the means of investigating production abilities can impact the identification of deficits.

  6. Clinical investigations of receptive and expressive musical functions after stroke

    PubMed Central

    Rosslau, Ken; Steinwede, Daniel; Schröder, C.; Herholz, Sibylle C.; Lappe, Claudia; Dobel, Christian; Altenmüller, Eckart

    2015-01-01

    There is a long tradition of investigating various disorders of musical abilities after stroke. These impairments, associated with acquired amusia, can be highly selective, affecting only music perception (i.e., receptive abilities/functions) or expression (music production abilities), and some patients report that these may dramatically influence their emotional state. The aim of this study was to systematically test both the melodic and rhythmic domains of music perception and expression in left- and right-sided stroke patients compared to healthy subjects. Music perception was assessed using rhythmic and melodic discrimination tasks, while tests of expressive function involved the vocal or instrumental reproduction of rhythms and melodies. Our approach revealed deficits in receptive and expressive functions in stroke patients, mediated by musical expertise. Those patients who had experienced a short period of musical training in childhood and adolescence performed better in the receptive and expressive subtests compared to those without any previous musical training. While discrimination of specific musical patterns was unimpaired after a left-sided stroke, patients with a right-sided stroke had worse results for fine melodic and rhythmic analysis. In terms of expressive testing, the most consistent results were obtained from a test that required patients to reproduce sung melodies. This implies that the means of investigating production abilities can impact the identification of deficits. PMID:26124731

  7. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles

    PubMed Central

    Decker, Franziska; Oriola, David; Dalton, Benjamin

    2018-01-01

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. PMID:29323637

  8. Further Characterization of an Interleukin-2-1Ike Cytokine Produced by Xenopus Laevis T Lymphocytes

    PubMed Central

    Haynes, Laura

    1993-01-01

    A T-cell growth factor (TCGF) is produced by antigen- or mitogen-stimulated T lymphocytes from the South African clawed frog Xenopus laevis. This study further defines the physical and biological properties of this cytokine and demonstrates that TCGF is biochemically similar to mammalian interleukin-2 (IL-2). Biologically active TCGF eluted from SDS-PAGE displays a Mr of 16 kD and lectin-affinity chromatography indicates that the three-dimensionmal configuration of carbohydrates on TCGF and human IL-2 is similar. Secretion of TCGF is detectable 1 day after stimulation of splenocytes with the T-cell mitogen phytohemagglutinin (PHA) and peaks following 2 to 3 days of stimulation. Finally, despite the biological and physical similarities between Xenopus TCGF and mammalian IL-2, anti-human IL-2 monoclonal antibodies do not recognize Xenopus TCGF. PMID:8281036

  9. Exposure to 3,3',5-triiodothyronine affects histone and RNA polymerase II modifications, but not DNA methylation status, in the regulatory region of the Xenopus laevis thyroid hormone receptor βΑ gene.

    PubMed

    Kasai, Kentaro; Nishiyama, Norihito; Izumi, Yushi; Otsuka, Shunsuke; Ishihara, Akinori; Yamauchi, Kiyoshi

    2015-11-06

    Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Circular RNA Expression: Its Potential Regulation and Function.

    PubMed

    Salzman, Julia

    2016-05-01

    In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function. Copyright © 2016. Published by Elsevier Ltd.

  11. A role for FoxN3 in the development of cranial cartilages and muscles in Xenopus laevis (Amphibia: Anura: Pipidae) with special emphasis on the novel rostral cartilages

    PubMed Central

    Schmidt, Jennifer; Schuff, Maximilian; Olsson, Lennart

    2011-01-01

    The origin of morphological novelties is a controversial topic in evolutionary developmental biology. The heads of anuran larvae have several unique structures, including the supra- and infrarostral cartilages, the specialised structure of the gill basket (used for filtration), and novel cranial muscle arrangements. FoxN3, a member of the forkhead/winged helix family of transcription factors, has been implicated as important for normal craniofacial development in the pipid anuran Xenopus laevis. We have investigated the effects of functional knockdown of FoxN3 (using antisense oligonucleotide morpholino) on the development of the larval head skeleton and the associated cranial muscles in X. laevis. Our data complement earlier studies and provide a more complete account of the requirement of FoxN3 in chondrocranium development. In addition, we analyse the effects of FoxN3 knockdown on cranial muscle development. We show that FoxN3 knockdown primarily affects the novel skeletal structures unique to anuran larvae, i.e. the rostralia or the fine structure of the gill apparatus. The articulation between the infrarostral and Meckel's cartilage is malformed and the filigreed processes of the gill basket do not develop. Because these features do not develop after FoxN3 knockdown, the head morphology resembles that in the less specialised larvae of salamanders. Furthermore, the development of all cartilages derived from the neural crest is delayed and cranial muscle fibre development incomplete. The cartilage precursors initially condense in their proper position but later differentiate incompletely; several visceral arch muscles start to differentiate at their origin but fail to extend toward their insertion. Our findings indicate that FoxN3 is essential for the development of novel cartilages such as the infrarostral and other cranial tissues derived from the neural crest and, indirectly, also for muscle morphogenesis. PMID:21050205

  12. Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta.

    PubMed

    Seward, David J; Koh, Albert S; Boyer, James L; Ballatori, Nazzareno

    2003-07-25

    These studies identify an organic solute transporter (OST) that is generated when two novel gene products are co-expressed, namely human OSTalpha and OSTbeta or mouse OSTalpha and OSTbeta. The results also demonstrate that the mammalian proteins are functionally complemented by evolutionarily divergent Ostalpha-Ostbeta proteins recently identified in the little skate, Raja erinacea, even though the latter exhibit only 25-41% predicted amino acid identity with the mammalian proteins. Human, mouse, and skate OSTalpha proteins are predicted to contain seven transmembrane helices, whereas the OSTbeta sequences are predicted to have a single transmembrane helix. Human OSTalpha-OSTbeta and mouse Ostalpha-Ostbeta cDNAs were cloned from liver mRNA, sequenced, expressed in Xenopus laevis oocytes, and tested for their ability to functionally complement the corresponding skate proteins by measuring transport of [3H]estrone 3-sulfate. None of the proteins elicited a transport signal when expressed individually in oocytes; however, all nine OSTalpha-OSTbeta combinations (i.e. OSTalpha-OSTbeta pairs from human, mouse, or skate) generated robust estrone 3-sulfate transport activity. Transport was sodium-independent, saturable, and inhibited by other steroids and anionic drugs. Human and mouse OSTalpha-OSTbeta also were able to mediate transport of taurocholate, digoxin, and prostaglandin E2 but not of estradiol 17beta-d-glucuronide or p-aminohippurate. OSTalpha and OSTbeta were able to reach the oocyte plasma membrane when expressed either individually or in pairs, indicating that co-expression is not required for proper membrane targeting. Interestingly, OSTalpha and OSTbeta mRNAs were highly expressed and widely distributed in human tissues, with the highest levels occurring in the testis, colon, liver, small intestine, kidney, ovary, and adrenal gland.

  13. Cloning and functional characterization of inward-rectifying potassium (Kir) channels from Malpighian tubules of the mosquito Aedes aegypti

    PubMed Central

    Piermarini, Peter M.; Rouhier, Matthew F.; Schepel, Matthew; Kosse, Christin; Beyenbach, Klaus W.

    2013-01-01

    Inward-rectifying K+ (Kir) channels play critical physiological roles in a variety of vertebrate cells/tissues, including the regulation of membrane potential in nerve and muscle, and the transepithelial transport of ions in osmoregulatory epithelia, such as kidneys and gills. It remains to be determined whether Kir channels play similar physiological roles in insects. In the present study, we sought to 1) clone the cDNAs of Kir channel subunits expressed in the renal (Malpighian) tubules of the mosquito Aedes aegypti, and 2) characterize the electrophysiological properties of the cloned Kir subunits when expressed heterologously in oocytes of Xenopus laevis. Here, we reveal that three Kir subunits are expressed abundantly in Aedes Malpighian tubules (AeKir1, AeKir2B, and AeKir3); each of their full-length cDNAs was cloned. Heterologous expression of the AeKir1 or the AeKir2B subunits in Xenopus oocytes elicits inward-rectifying K+ currents that are blocked by barium. Relative to the AeKir2B-expressing oocytes, the AeKir1-expressing oocytes 1) produce larger macroscopic currents, and 2) exhibit a modulation of their conductive properties by extracellular Na+. Attempts to functionally characterize the AeKir3 subunit in Xenopus oocytes were unsuccessful. Lastly, we show that in isolated Aedes Malpighian tubules, the cation permeability sequence of the basolateral membrane of principal cells (Tl+ > K+ > Rb+ > NH4+) is consistent with the presence of functional Kir channels. We conclude that in Aedes Malpighian tubules, Kir channels contribute to the majority of the barium-sensitive transepithelial transport of K+. PMID:23085358

  14. Functional clustering of time series gene expression data by Granger causality

    PubMed Central

    2012-01-01

    Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425

  15. Activation of classical protein kinase C reduces the expression of human cationic amino acid transporter 3 (hCAT-3) in the plasma membrane.

    PubMed

    Rotmann, Alexander; Vékony, Nicole; Gassner, Davina; Niegisch, Günter; Strand, Dennis; Martiné, Ursula; Closs, Ellen I

    2006-04-01

    We have previously shown that activation of PKC (protein kinase C) results in internalization of hCAT-1 [human CAT-1 (cationic amino acid transporter 1)] and a decrease in arginine transport [Rotmann, Strand, Martiné and Closs (2004) J. Biol. Chem. 279, 54185-54192]. However, others found increased transport rates for arginine in response to PKC activation, suggesting a differential effect of PKC on different CAT isoforms. Therefore we investigated the effect of PKC on hCAT-3, an isoform expressed in thymus, brain, ovary, uterus and mammary gland. In Xenopus laevis oocytes and human U373MG glioblastoma cells, hCAT-3-mediated L-arginine transport was significantly reduced upon treatment with compounds that activate classical PKC. In contrast, inactive phorbol esters and an activator of novel PKC isoforms had no effect. PKC inhibitors (including the PKCalpha-preferring Ro 31-8280) reduced the inhibitory effect of the PKC-activating compounds. Microscopic analyses revealed a PMA-induced reduction in the cell-surface expression of fusion proteins between hCAT-3 and enhanced green fluorescent protein expressed in X. laevis oocytes and glioblastoma cells. Western-blot analysis of biotinylated surface proteins demonstrated a PMA-induced decrease in hCAT-3 in the plasma membrane, but not in total protein lysates. Pretreatment with a PKC inhibitor also reduced this PMA effect. It is concluded that similar to hCAT-1, hCAT-3 activity is decreased by PKC via reduction of transporter molecules in the plasma membrane. Classical PKC isoforms seem to be responsible for this effect.

  16. Activation of classical protein kinase C reduces the expression of human cationic amino acid transporter 3 (hCAT-3) in the plasma membrane

    PubMed Central

    Rotmann, Alexander; Vékony, Nicole; Gassner, Davina; Niegisch, Günter; Strand, Dennis; Martiné, Ursula; Closs, Ellen I.

    2005-01-01

    We have previously shown that activation of PKC (protein kinase C) results in internalization of hCAT-1 [human CAT-1 (cationic amino acid transporter 1)] and a decrease in arginine transport [Rotmann, Strand, Martiné and Closs (2004) J. Biol. Chem. 279, 54185–54192]. However, others found increased transport rates for arginine in response to PKC activation, suggesting a differential effect of PKC on different CAT isoforms. Therefore we investigated the effect of PKC on hCAT-3, an isoform expressed in thymus, brain, ovary, uterus and mammary gland. In Xenopus laevis oocytes and human U373MG glioblastoma cells, hCAT-3-mediated L-arginine transport was significantly reduced upon treatment with compounds that activate classical PKC. In contrast, inactive phorbol esters and an activator of novel PKC isoforms had no effect. PKC inhibitors (including the PKCα-preferring Ro 31-8280) reduced the inhibitory effect of the PKC-activating compounds. Microscopic analyses revealed a PMA-induced reduction in the cell-surface expression of fusion proteins between hCAT-3 and enhanced green fluorescent protein expressed in X. laevis oocytes and glioblastoma cells. Western-blot analysis of biotinylated surface proteins demonstrated a PMA-induced decrease in hCAT-3 in the plasma membrane, but not in total protein lysates. Pretreatment with a PKC inhibitor also reduced this PMA effect. It is concluded that similar to hCAT-1, hCAT-3 activity is decreased by PKC via reduction of transporter molecules in the plasma membrane. Classical PKC isoforms seem to be responsible for this effect. PMID:16332251

  17. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles.

    PubMed

    Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan

    2018-01-11

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.

  18. Xenopus laevis ribosomal protein genes: isolation of recombinant cDNA clones and study of the genomic organization.

    PubMed Central

    Bozzoni, I; Beccari, E; Luo, Z X; Amaldi, F

    1981-01-01

    Poly-A+ mRNA from Xenopus laevis oocytes, partially enriched for r-protein coding capacity has been used as starting material for preparing a cDNA bank in plasmid pBR322. The clones containing sequences specific for r-proteins have been selected by translation of the complementary mRNAs. Clones for six different r-proteins have been identified and utilized as probes for studying their genomic organization. Two gene copies per haploid genome were found for r-proteins L1, L14, S19, and four-five for protein S1, S8 and L32. Moreover a population polymorphism has been observed for the genomic regions containing sequences for r-protein S1, S8 and L14. Images PMID:6112733

  19. Novel CLCNKB mutations causing Bartter syndrome affect channel surface expression.

    PubMed

    Keck, Mathilde; Andrini, Olga; Lahuna, Olivier; Burgos, Johanna; Cid, L Pablo; Sepúlveda, Francisco V; L'hoste, Sébastien; Blanchard, Anne; Vargas-Poussou, Rosa; Lourdel, Stéphane; Teulon, Jacques

    2013-09-01

    Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance. © 2013 WILEY PERIODICALS, INC.

  20. Mitochondrial functions mediate cellulase gene expression in Trichoderma reesei.

    PubMed

    Abrahão-Neto, J; Rossini, C H; el-Gogary, S; Henrique-Silva, F; Crivellaro, O; el-Dorry, H

    1995-08-22

    We examined the effects of inhibition of mitochondrial functions on the expression of two nuclear genes encoding the extracellular cellobiohydrolase I (cbh1) and endoglucanase I (egl1) of the cellulase system of the filamentous fungus Trichoderma reesei. The cbh1 and egl1 transcripts are repressed at a low oxygen tension, and by glucose at a concentration known to repress mitochondrial respiration. The transcripts are also down-regulated by chemical agents known to dissipate the proton electrochemical gradient of the inner mitochondrial membrane and blocking of the electron-transport chain, such as DNP and KCN, respectively. These results suggest that expression of those transcripts is influenced by the physiological state of the mitochondria. In addition, heterologous gene fusion shows that the sensitivity of the expression of those transcripts to the functional state of the mitochondria is transcriptionally controlled through the 5'-flanking DNA sequence of those genes.

  1. The cysteine-rich domain regulates ADAM protease function in vivo.

    PubMed

    Smith, Katherine M; Gaultier, Alban; Cousin, Helene; Alfandari, Dominique; White, Judith M; DeSimone, Douglas W

    2002-12-09

    ADAMs are membrane-anchored proteases that regulate cell behavior by proteolytically modifying the cell surface and ECM. Like other membrane-anchored proteases, ADAMs contain candidate "adhesive" domains downstream of their metalloprotease domains. The mechanism by which membrane-anchored cell surface proteases utilize these putative adhesive domains to regulate protease function in vivo is not well understood. We address this important question by analyzing the relative contributions of downstream extracellular domains (disintegrin, cysteine rich, and EGF-like repeat) of the ADAM13 metalloprotease during Xenopus laevis development. When expressed in embryos, ADAM13 induces hyperplasia of the cement gland, whereas ADAM10 does not. Using chimeric constructs, we find that the metalloprotease domain of ADAM10 can substitute for that of ADAM13, but that specificity for cement gland expansion requires a downstream extracellular domain of ADAM13. Analysis of finer resolution chimeras indicates an essential role for the cysteine-rich domain and a supporting role for the disintegrin domain. These and other results reveal that the cysteine-rich domain of ADAM13 cooperates intramolecularly with the ADAM13 metalloprotease domain to regulate its function in vivo. Our findings thus provide the first evidence that a downstream extracellular adhesive domain plays an active role in regulating ADAM protease function in vivo. These findings are likely relevant to other membrane-anchored cell surface proteases.

  2. Biochemical effects of chlorpyrifos on two developmental stages of Xenopus laevis.

    PubMed

    Richards, Sean M; Kendall, Ron J

    2002-09-01

    Abstract-The effects of a 96-h static exposure to chlorpyrifos were examined in two developmental stages of larval Xenopus laevis (premetamorph and metamorph). Measures of effect included mortality, deformity, cholinesterase (ChE) activity, and DNA and protein concentration. All parameters indicated that metamorphs were more sensitive than were premetamorphs. For larvae exposed as premetamorphs, the median lethal concentration and median effective concentration were 14.6 mg/L and 1.71 mg/L; for those exposed as metamorphs, values were 0.56 mg/L and 0.24 mg/L, respectively. Cholinesterase activity was the most sensitive biochemical parameter. Exposure to chlorpyrifos at 0.01 mg/L caused significant decreases in the ChE activity of metamorphs; 0.1 mg/L significantly decreased premetamorph ChE activity. Metamorph DNA was significantly decreased at 0.1 mg/L; premetamorph DNA was not reduced until exposure to 1.0 mg/L. Whole-body protein was the least sensitive biochemical measure of effect. Premetamorphs did not experience a reduction in protein concentrations. Metamorph protein concentration was significantly decreased at 1.0 mg/L. Based on current surface water data, the most sensitive effect would not have a high probability (< or = 4.2%) of occurring in the environment.

  3. The Effect of Plasma Exposure on Tail Regeneration of Tadpoles Xenopus Laevis

    NASA Astrophysics Data System (ADS)

    June, Joyce; Rivie, Adonis; Ezuduemoih, Raphael; Menon, Jaishri; Martus, Kevin

    2014-03-01

    Wound healing requires a balanced combination of nutrients and growth factors for healing and tissue regeneration. The effect of plasma exposure on tail regeneration of tadpoles, Xenopus laevis is investigated. The exposure of the wound to the helium plasma immediately followed the amputation of 40% of the tail. Amputation of the tail initiates regeneration of spinal cord, muscle, notochord, skin and connective tissues. By 24 h, the wound was covered by wound epithelium and blastema was formed by day 5. There was increased angiogenesis in plasma exposed tail regenerate compared to the control following 5 d post amputation. Observed was an increase in NO production in the regenerate of plasma exposed tadpoles was derived from increased activity of nNOS and iNOS. Western blot analysis for vascular endothelial growth factor showed stronger bands for the protein in amputated tadpoles of both the groups. Analysis of the composition and characteristics of the plasma using optical emission spectroscopy indicates excited state species consisting of N2, N2+,and OH is present in the plasma. This study was supported, in part, by the NSF Grant 1040108.

  4. Rescue of protein expression defects may not be enough to abolish the pro-arrhythmic phenotype of long QT type 2 mutations.

    PubMed

    Perry, Matthew D; Ng, Chai Ann; Phan, Kevin; David, Erikka; Steer, Kieran; Hunter, Mark J; Mann, Stefan A; Imtiaz, Mohammad; Hill, Adam P; Ke, Ying; Vandenberg, Jamie I

    2016-07-15

    screen we used reduced temperature to rescue expression defects of mutant channels expressed in Xenopus laevis oocytes. Over half (∼56%) of Kv11.1 mutants exhibited functional gating defects that either dramatically reduced the amount of current contributing to cardiac action potential repolarization and/or reduced the amount of protective current elicited in response to premature depolarizations. Our data demonstrate that if pharmacological rescue of protein expression defects is going to have clinical utility in the treatment of LQTS2 then it will be important to assess the gating phenotype of LQTS2 mutations before attempting rescue. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  5. Testosterone Regulates Erectile Function and Vcsa1 Expression in the Corpora of Rats

    PubMed Central

    Chua, Rowena G.; Calenda, Giulia; Zhang, Xinhua; Siragusa, Joseph; Tong, Yuehong; Tar, Moses; Aydin, Memduh; DiSanto, Michael E.; Melman, Arnold; Davies, Kelvin P.

    2009-01-01

    Summary Vcsa1 plays an important role in the erectile physiology of the rat. We conducted experiments to determine if erectile function, testosterone levels and Vcsa1 expression were correlated. In orchiectomized rats, total testosterone in blood fell from an average of 4ng/ml to <0.04ng/ml. Erectile function was significantly lower compared to controls and Vcsa1 expression was significantly (>6-fold) decreased. Injection of orchiectomized animals with testosterone (2mg in 100ml sesame oil every 4 days for two weeks) restored average levels of testosterone to 2ng/ml, increased erectile function and significantly increased Vcsa1 expression. In isolated corporal cells there was testosterone dependent Vcsa1 expression. However, intracorporal injection of orchiectomized animals with a plasmid expressing Vcsa1 or its gene product Sialorphin (previously demonstrated to improve erectile function in old animals) gave no significant improvement in erectile function. Also, the ability of Sialorphin to reduce tension in corporal smooth muscle strips isolated from orchiectomized animals was impaired compared to controls. PMID:19428993

  6. Testosterone regulates erectile function and Vcsa1 expression in the corpora of rats.

    PubMed

    Chua, Rowena G; Calenda, Giulia; Zhang, Xinhua; Siragusa, Joseph; Tong, Yuehong; Tar, Moses; Aydin, Memduh; DiSanto, Michael E; Melman, Arnold; Davies, Kelvin P

    2009-05-06

    Vcsa1 plays an important role in the erectile physiology of the rat. We conducted experiments to determine if erectile function, testosterone levels and Vcsa1 expression were correlated. In orchiectomized rats, total testosterone in blood fell from an average of 4 ng/ml to <0.04 ng/ml. Erectile function was significantly lower compared to controls and Vcsa1 expression was significantly (>6-fold) decreased. Injection of orchiectomized animals with testosterone (2 mg in 100ml sesame oil every 4 days for 2 weeks) restored average levels of testosterone to 2 ng/ml, increased erectile function and significantly increased Vcsa1 expression. In isolated corporal cells there was testosterone dependent Vcsa1 expression. However, intracorporal injection of orchiectomized animals with a plasmid expressing Vcsa1 or its gene product Sialorphin (previously demonstrated to improve erectile function in old animals) gave no significant improvement in erectile function. Also, the ability of Sialorphin to reduce tension in corporal smooth muscle strips isolated from orchiectomized animals was impaired compared to controls.

  7. Human Eosinophils Express Functional CCR7

    PubMed Central

    Ueki, Shigeharu; Estanislau, Jessica; Weller, Peter F.

    2013-01-01

    Human eosinophils display directed chemotactic activity toward an array of soluble chemokines. Eosinophils have been observed to migrate to draining lymph nodes in experimental models of allergic inflammation, yet it is unknown whether eosinophils express CCR7, a key chemokine receptor in coordinating leukocyte trafficking to lymph nodes. The purpose of this study is to demonstrate expression of CCR7 by human eosinophils and functional responses to CCL19 and CCL21, the known ligands of CCR7. Human eosinophils were purified by negative selection from healthy donors. CCR7 expression of freshly purified, unstimulated eosinophils and of IL-5–primed eosinophils was determined by flow cytometry and Western blot. Chemotaxis to CCL19 and CCL21 was measured in transwell assays. Shape changes to CCL19 and CCL21 were analyzed by flow cytometry and microscopy. Calcium fluxes of fluo-4 AM–loaded eosinophils were recorded by flow cytometry after chemokine stimulation. ERK phosphorylation of CCL19- and CCL21-stimulated eosinophils was measured by Western blot and Luminex assay. Human eosinophils expressed CCR7 as demonstrated by flow cytometry and Western blots. Eosinophils exhibited detectable cell surface expression of CCR7. IL-5–primed eosinophils exhibited chemotaxis toward CCL19 and CCL21 in a dose-dependent fashion. Upon stimulation with CCL19 or CCL21, IL-5–primed eosinophils demonstrated dose-dependent shape changes with polarization of F-actin and exhibited calcium influxes. Finally, primed eosinophils stimulated with CCL19 or CCL21 exhibited increased phosphorylation of ERK in response to both CCR7 ligands. We demonstrate that human eosinophils express CCR7 and have multipotent responses to the known ligands of CCR7. PMID:23449735

  8. Functional assessment of SLC4A11, an integral membrane protein mutated in corneal dystrophies

    PubMed Central

    Loganathan, Sampath K.; Schneider, Hans-Peter; Morgan, Patricio E.; Deitmer, Joachim W.

    2016-01-01

    SLC4A11, a member of the SLC4 family of bicarbonate transporters, is a widely expressed integral membrane protein, abundant in kidney and cornea. Mutations of SLC4A11 cause some cases of the blinding corneal dystrophies, congenital hereditary endothelial dystrophy, and Fuchs endothelial corneal dystrophy. These diseases are marked by fluid accumulation in the corneal stroma, secondary to defective fluid reabsorption by the corneal endothelium. The role of SLC4A11 in these corneal dystrophies is not firmly established, as SLC4A11 function remains unclear. To clarify the normal function(s) of SLC4A11, we characterized the protein following expression in the simple, low-background expression system Xenopus laevis oocytes. Since plant and fungal SLC4A11 orthologs transport borate, we measured cell swelling associated with accumulation of solute borate. The plant water/borate transporter NIP5;1 manifested borate transport, whereas human SLC4A11 did not. SLC4A11 supported osmotically driven water accumulation that was electroneutral and Na+ independent. Studies in oocytes and HEK293 cells could not detect Na+-coupled HCO3− transport or Cl−/HCO3− exchange by SLC4A11. SLC4A11 mediated electroneutral NH3 transport in oocytes. Voltage-dependent OH− or H+ movement was not measurable in SLC4A11-expressing oocytes, but SLC4A11-expressing HEK293 cells manifested low-level cytosolic acidification at baseline. In mammalian cells, but not oocytes, OH−/H+ conductance may arise when SLC4A11 activates another protein or itself is activated by another protein. These data argue against a role of human SLC4A11 in bicarbonate or borate transport. This work provides additional support for water and ammonia transport by SLC4A11. When expressed in oocytes, SLC4A11 transported NH3, not NH3/H+. PMID:27558157

  9. Function and expression pattern of nonsyndromic deafness genes

    PubMed Central

    Hilgert, Nele; Smith, Richard J.H.; Van Camp, Guy

    2010-01-01

    Hearing loss is the most common sensory disorder, present in 1 of every 500 newborns. To date, 46 genes have been identified that cause nonsyndromic hearing loss, making it an extremely heterogeneous trait. This review provides a comprehensive overview of the inner ear function and expression pattern of these genes. In general, they are involved in hair bundle morphogenesis, form constituents of the extracellular matrix, play a role in cochlear ion homeostasis or serve as transcription factors. During the past few years, our knowledge of genes involved in hair bundle morphogenesis has increased substantially. We give an up-to-date overview of both the nonsyndromic and Usher syndrome genes involved in this process, highlighting proteins that interact to form macromolecular complexes. For every gene, we also summarize its expression pattern and impact on hearing at the functional level. Gene-specific cochlear expression is summarized in a unique table by structure/cell type and is illustrated on a cochlear cross-section, which is available online via the Hereditary Hearing Loss Homepage. This review should provide auditory scientists the most relevant information for all identified nonsyndromic deafness genes. PMID:19601806

  10. Functional characterization of a novel Brassica LEAFY homolog from Indian mustard: Expression pattern and gain-of-function studies.

    PubMed

    Dhakate, Priyanka; Tyagi, Shikha; Singh, Anupama; Singh, Anandita

    2017-05-01

    LEAFY plays a central role in regulation of flowering time and floral meristem identity in plants. Unfortunately, LFY function remains uncharacterized in agronomicaly important Brassicas. Herein, we illustrate fine-mapping of expression domains of LFY in 15 cultivars of 6 Brassica species and describe gain-of-function phenotypes in Arabidopsis and Brassica. We depict early flowering and altered fatty-acid composition in transgenic seed. The cDNA encoding BjuLFY (417aa) shared only 85% identity with reported homolog of B.juncea implying distinctness. Quantitative RT-PCR based coarse expression mapping of BjuLFY in tissue samples representing 3 time points at specific days after sowing (DAS), pre-flowering (30 DAS), flowering (75 DAS) and post-flowering (110 DAS), depicted an intense pulse of BjuLFY expression restricted to primary floral buds (75 DAS) which subsided in secondary floral buds (110 DAS); expression in root samples was also recorded implying neo-functionalization. Fine-mapping of expression during flowering confirmed tightly regulated LFY expression during early stages of bud development in 15 cultivars of 6 Brassica species implying functional conservation. Ectopic expression of BjuLFY in A. thaliana and B. juncea caused floral meristem defects and precocious flowering. B. juncea transgenics (T 1 ) over-expressing BjuLFY flowered 20days earlier produced normal flowers. GC-MS analysis of mature seed from Brassica transgenics showed an altered fatty-acid profile suggestive of seed maturation occurring at lower temperatures vis-à-vis control. Our findings implicate BjuLFY as a regulator of flowering in B. juncea and suggest its application in developing climate resilient crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system.

    PubMed

    Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim

    2005-11-01

    Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.

  12. Plant Cation-Chloride Cotransporters (CCC): Evolutionary Origins and Functional Insights

    PubMed Central

    Gilliham, Matthew

    2018-01-01

    Genomes of unicellular and multicellular green algae, mosses, grasses and dicots harbor genes encoding cation-chloride cotransporters (CCC). CCC proteins from the plant kingdom have been comparatively less well investigated than their animal counterparts, but proteins from both plants and animals have been shown to mediate ion fluxes, and are involved in regulation of osmotic processes. In this review, we show that CCC proteins from plants form two distinct phylogenetic clades (CCC1 and CCC2). Some lycophytes and bryophytes possess members from each clade, most land plants only have members of the CCC1 clade, and green algae possess only the CCC2 clade. It is currently unknown whether CCC1 and CCC2 proteins have similar or distinct functions, however they are both more closely related to animal KCC proteins compared to NKCCs. Existing heterologous expression systems that have been used to functionally characterize plant CCC proteins, namely yeast and Xenopus laevis oocytes, have limitations that are discussed. Studies from plants exposed to chemical inhibitors of animal CCC protein function are reviewed for their potential to discern CCC function in planta. Thus far, mutations in plant CCC genes have been evaluated only in two species of angiosperms, and such mutations cause a diverse array of phenotypes—seemingly more than could simply be explained by localized disruption of ion transport alone. We evaluate the putative roles of plant CCC proteins and suggest areas for future investigation. PMID:29415511

  13. Plant Cation-Chloride Cotransporters (CCC): Evolutionary Origins and Functional Insights.

    PubMed

    Henderson, Sam W; Wege, Stefanie; Gilliham, Matthew

    2018-02-06

    Genomes of unicellular and multicellular green algae, mosses, grasses and dicots harbor genes encoding cation-chloride cotransporters (CCC). CCC proteins from the plant kingdom have been comparatively less well investigated than their animal counterparts, but proteins from both plants and animals have been shown to mediate ion fluxes, and are involved in regulation of osmotic processes. In this review, we show that CCC proteins from plants form two distinct phylogenetic clades (CCC1 and CCC2). Some lycophytes and bryophytes possess members from each clade, most land plants only have members of the CCC1 clade, and green algae possess only the CCC2 clade. It is currently unknown whether CCC1 and CCC2 proteins have similar or distinct functions, however they are both more closely related to animal KCC proteins compared to NKCCs. Existing heterologous expression systems that have been used to functionally characterize plant CCC proteins, namely yeast and Xenopus laevis oocytes, have limitations that are discussed. Studies from plants exposed to chemical inhibitors of animal CCC protein function are reviewed for their potential to discern CCC function in planta. Thus far, mutations in plant CCC genes have been evaluated only in two species of angiosperms, and such mutations cause a diverse array of phenotypes-seemingly more than could simply be explained by localized disruption of ion transport alone. We evaluate the putative roles of plant CCC proteins and suggest areas for future investigation.

  14. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    PubMed

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF weremore » treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in

  16. The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1.

    PubMed

    Born, Nadine; Thiesen, Hans-Jürgen; Lorenz, Peter

    2014-01-01

    The Krüppel-associated box (KRAB) domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.

  17. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    PubMed

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  18. Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis

    PubMed Central

    1990-01-01

    Using double-barreled, Ca2(+)-sensitive microelectrodes, we have examined the characteristics of the Ca2+ release by inositol 1,4,5- trisphosphate (Ins(1,4,5)P3) in the various layers of Xenopus laevis eggs in which the organelles had been stratified by centrifugation. Centrifugation of living eggs stratifies the organelles yet retains them in the normal cytoplasmic milieu. The local increase in intracellular free Ca2+ in each layer was directly measured under physiological conditions using theta-tubing, double-barreled, Ca2(+)- sensitive microelectrodes in which one barrel was filled with the Ca2+ sensor and the other was filled with Ins(1,4,5)P3 for microinjection. The two tips of these electrodes were very close to each other (3 microns apart) enabling us to measure the kinetics of both the highly localized intracellular Ca2+ release and its subsequent removal in response to Ins(1,4,5)P3 injection. Upon Ins(1,4,5)P3 injection, the ER- enriched layer exhibited the largest release of Ca2+ in a dosage- dependent manner, whereas the other layers, mitochondria, lipid, and yolk, released 10-fold less Ca2+ in a dosage-independent manner. The removal of released Ca2+ took place within approximately 1 min. The sensitivity to Ins(1,4,5)P3 and the time course of intracellular Ca2+ release in the unstratified (unactivated) egg is nearly identical to that observed in the ER layer of the stratified egg. Our data suggest that the ER is the major organelle of the Ins(1,4,5)P3-sensitive Ca2+ store in the egg of Xenopus laevis. PMID:2324195

  19. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed Central

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-01-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver. PMID:9343392

  20. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-11-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver.

  1. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    PubMed

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  2. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells

    PubMed Central

    Kennedy, Allyson E.; Kandalam, Suraj; Olivares-Navarrete, Rene

    2017-01-01

    Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product. PMID:28957438

  3. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells.

    PubMed

    Kennedy, Allyson E; Kandalam, Suraj; Olivares-Navarrete, Rene; Dickinson, Amanda J G

    2017-01-01

    Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.

  4. Effect of Liver Disease on Hepatic Transporter Expression and Function.

    PubMed

    Thakkar, Nilay; Slizgi, Jason R; Brouwer, Kim L R

    2017-09-01

    Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Fertilization and development of eggs of the South African clawed toad, Xenopus laevis, on sounding rockets in space

    NASA Astrophysics Data System (ADS)

    Ubbels, Geertje A.; Berendsen, Willem; Kerkvliet, Sonja; Narraway, Jenny

    Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we inted to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.

  6. Fertilization and development of eggs of the South African clawed toad, Xenopus laevis, on sounding rockets in space.

    PubMed

    Ubbels, G A; Berendsen, W; Kerkvliet, S; Narraway, J

    1992-01-01

    Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.

  7. Human gingival fibroblasts express functional chemokine receptor CXCR6.

    PubMed

    Hosokawa, Y; Hosokawa, I; Ozaki, K; Nakae, H; Matsuo, T

    2009-06-01

    We have reported that CXCL16, a recently discovered transmembrane chemokine, is expressed in human gingival fibroblasts (HGF). However, it is not known whether HGF express CXCR6, the receptor for CXCL16, or CXCL16 affects HGF biology. We have shown that HGF expressed CXCR6 by reverse transcription-polymerase chain reaction and flow cytometric analysis. Moreover, we elucidated that tumour necrosis factor (TNF)-alpha and cytosine-guanine dinucleotide (CpG) DNA (Toll-like receptor-9 ligand) treatment enhanced CXCR6 expression by HGF. Interleukin (IL)-4, IL-13 and CpG DNA up-regulated CXCR6 expression by TNF-alpha-stimulated HGF. On the other hand, IL-1beta and interferon-gamma inhibited CXCR6 expression on TNF-alpha-treated HGF. CXCL16 treatment induced HGF proliferation and phosphorylation of extracellular regulated kinase (ERK) and protein kinase B (AKT) in HGF. In conclusion, HGF expressed CXCR6 functionally, because CXCL16 induced HGF proliferation and ERK and AKT phosphorylation in HGF. These results indicate that CXCL16 may play an important role in the pathogenesis and remodelling in periodontally diseased tissues.

  8. Human Naive T Cells Express Functional CXCL8 and Promote Tumorigenesis.

    PubMed

    Crespo, Joel; Wu, Ke; Li, Wei; Kryczek, Ilona; Maj, Tomasz; Vatan, Linda; Wei, Shuang; Opipari, Anthony W; Zou, Weiping

    2018-05-25

    Naive T cells are thought to be functionally quiescent. In this study, we studied and compared the phenotype, cytokine profile, and potential function of human naive CD4 + T cells in umbilical cord and peripheral blood. We found that naive CD4 + T cells, but not memory T cells, expressed high levels of chemokine CXCL8. CXCL8 + naive T cells were preferentially enriched CD31 + T cells and did not express T cell activation markers or typical Th effector cytokines, including IFN-γ, IL-4, IL-17, and IL-22. In addition, upon activation, naive T cells retained high levels of CXCL8 expression. Furthermore, we showed that naive T cell-derived CXCL8 mediated neutrophil migration in the in vitro migration assay, supported tumor sphere formation, and promoted tumor growth in an in vivo human xenograft model. Thus, human naive T cells are phenotypically and functionally heterogeneous and can carry out active functions in immune responses. Copyright © 2018 by The American Association of Immunologists, Inc.

  9. The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis.

    PubMed

    Perry, Kimberly J; Johnson, Verity R; Malloch, Erica L; Fukui, Lisa; Wever, Jason; Thomas, Alvin G; Hamilton, Paul W; Henry, Jonathan J

    2010-11-01

    G-protein-coupled receptors (GPCRs) represent diverse, multifamily groups of cell signaling receptors involved in many cellular processes. We identified Xenopus laevis GPR84 as a member of the A18 subfamily of GPCRs. During development, GPR84 is detected in the embryonic lens placode, differentiating lens fiber cells, retina, and cornea. Anti-sense morpholino oligonucleotide-mediated knockdown and RNA rescue experiments demonstrate GPR84's importance in lens, cornea, and retinal development. Examination of cell proliferation using an antibody against histone H3 S10P reveals significant increases in the lens and retina following GPR84 knockdown. Additionally, there was also an increase in apoptosis in the retina and lens, as revealed by TUNEL assay. Reciprocal transplantation of the presumptive lens ectoderm between uninjected controls and morpholino-injected embryos demonstrates that GPR84 is necessary in the retina for proper development of the retina, as well as other eye tissues including the lens and cornea. © 2010 Wiley-Liss, Inc.

  10. The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis

    PubMed Central

    Perry, Kimberly J.; Johnson, Verity R.; Malloch, Erica L.; Fukui, Lisa; Wever, Jason; Thomas, Alvin G.; Hamilton, Paul W.; Henry, Jonathan J.

    2010-01-01

    G-protein-coupled receptors (GPCRs) represent diverse, multifamily groups of cell signaling receptors involved in many cellular processes. We identified Xenopus laevis GPR84 as a member of the A18 subfamily of GPCRs. During development, GPR84 is detected in the embryonic lens placode, differentiating lens fiber cells, retina and cornea. Anti-sense morpholino oligonucleotide-mediated knockdown and RNA rescue experiments demonstrate GPR84’s importance in lens, cornea and retinal development. Examination of cell proliferation using an antibody against histone H3 S10P reveals significant increases in the lens and retina following GPR84 knockdown. Additionally, there was also an increase in apoptosis in the retina and lens, as revealed by TUNEL assay. Reciprocal transplantation of the presumptive lens ectoderm between uninjected controls and morpholino injected embryos demonstrates that GPR84 is necessary in the retina for proper development of the retina, as well as other eye tissues including the lens and cornea. PMID:20925114

  11. Skeletal advance and arrest in giant non-metamorphosing African clawed frog tadpoles (Xenopus laevis: Daudin)

    PubMed Central

    Kerney, Ryan; Wassersug, Richard; Hall, Brian K

    2010-01-01

    This study examines the skeletons of giant non-metamorphosing (GNM) Xenopus laevis tadpoles, which arrest their development indefinitely before metamorphosis, and grow to excessively large sizes in the absence of detectable thyroid glands. Cartilage growth is isometric; however, chondrocyte size is smaller in GNM tadpoles than in controls. Most cartilages stain weakly with alcian blue, and several cartilages are calcified (unlike controls). However, cartilages subjacent to periosteum-derived bone retain strong affinities for alcian blue, indicating a role for periosteum-derived bone in the retention of glycosaminoglycans during protracted larval growth. Bone formation in the head, limb, and axial skeletons is advanced in comparison with stage-matched controls, but arrests at various mid-metamorphic states. Both dermal and periosteum-derived bones grow to disproportionately large sizes in comparison to controls. Additionally, mature monocuspid teeth form in several GNM tadpoles. Advances in skeletal development are attributable to the old ages and large sizes of these tadpoles, and reveal unexpected developmental potentials of the pre-metamorphic skeleton. PMID:20402828

  12. Expression and purification of functional PDGF receptor beta.

    PubMed

    Shang, Qingbin; Zhao, Liang; Wang, Xiaojing; Wang, Meimei; Sui, Sen-Fang; Mi, Li-Zhi

    2017-07-29

    Platelet Derived Growth Factor receptors (PDGFRs), members of receptor tyrosine kinase superfamily, play essential roles in early hematopoiesis, angiogenesis and organ development. Dysregulation of PDGF receptor signaling under pathological conditions associates with cancers, vascular diseases, and fibrotic diseases. Therefore, they are attractive targets in drug development. Like any other membrane proteins with a single-pass transmembrane domain, the high-resolution structural information of the full-length PDGF receptors is still not resolved. It is caused, at least in part, by the technical challenges in the expression and purification of the functional, full-length PDGF receptors. Herein, we reported our experimental details in expression and purification of the full-length PDGFRβ from mammalian cells. We found that purified PDGFRβ remained in two different oligomeric states, presumably the monomer and the dimer, with basal kinase activity in detergent micelles. Addition of PDGF-B promoted dimerization and elevated kinase activity of the receptor, suggesting that purified receptors were functional. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cyclin D1 expression and facial function outcome after vestibular schwannoma surgery.

    PubMed

    Lassaletta, Luis; Del Rio, Laura; Torres-Martin, Miguel; Rey, Juan A; Patrón, Mercedes; Madero, Rosario; Roda, Jose Maria; Gavilan, Javier

    2011-01-01

    The proto-oncogen cyclin D1 has been implicated in the development and behavior of vestibular schwannoma. This study evaluates the association between cyclin D1 expression and other known prognostic factors in facial function outcome 1 year after vestibular schwannoma surgery. Sixty-four patients undergoing surgery for vestibular schwannoma were studied. Immunohistochemistry analysis was performed with anticyclin D1 in all cases. Cyclin D1 expression, as well as other demographic, clinical, radiologic, and intraoperative data, was correlated with 1-year postoperative facial function. Good 1-year facial function (Grades 1-2) was achieved in 73% of cases. Cyclin D1 expression was found in 67% of the tumors. Positive cyclin D1 staining was more frequent in patients with Grades 1 to 2 (75%) than in those with Grades 3 to 6 (25%). Other significant variables were tumor volume and facial nerve stimulation after tumor resection. The area under the receiver operating characteristics curve increased when adding cyclin D1 expression to the multivariate model. Cyclin D1 expression is associated to facial outcome after vestibular schwannoma surgery. The prognostic value of cyclin D1 expression is independent of tumor size and facial nerve stimulation at the end of surgery.

  14. Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark

    PubMed Central

    Cutler, Christopher P; MacIver, Bryce; Cramb, Gordon; Zeidel, Mark

    2012-01-01

    The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5′ and 3′ RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill >  intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (Pf) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species. PMID:22291652

  15. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.

    PubMed

    Carotenuto, Rosa; Petrucci, Tamara C; Correas, Isabel; Vaccaro, Maria C; De Marco, Nadia; Dale, Brian; Wilding, Martin

    2009-06-01

    In human red blood cells, protein 4.1 (4.1R) is an 80-kDa polypeptide that stabilizes the spectrin-actin network and anchors it to the plasma membrane. In non-erythroid cells there is a great variety of 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, which localize at various intracellular sites, including the nucleus. We studied protein 4.1R distribution in relation to beta-spectrin, actin and cytokeratin during Xenopus oogenesis. Immunoprecipitation experiments indicate that at least two isoforms of protein 4.1R are present in Xenopus laevis oocytes: a 56-kDa form in the cytoplasm and a 37-kDa form in the germinal vesicle (GV). Antibodies to beta-spectrin reveal two bands of 239 and 100 kDa in the cytoplasm. Coimmunoprecipitation experiments indicate that both the 37- and 56-kDa isoforms of protein 4.1R associate with the 100-kDa isoform of beta-spectrin. Moreover, the 56-kDa form coimmunoprecipitates with a cytokeratin of the same molecular weight. Confocal immunolocalization shows that protein 4.1R distribution is in the peripheral cytoplasm, in the mitochondrial cloud (MC) and in the GV of previtellogenic oocytes. In the cytoplasm of vitellogenic oocytes, a loose network of fibers stained by the anti-protein 4.1R antibody spreads across the cytoplasm. beta-Spectrin has a similar distribution. Protein 4.1R was found to colocalize with actin in the cortex of oocytes in the form of fluorescent dots. Double immunolocalization of protein 4.1R and cytokeratin depicts two separate networks that overlap throughout the whole cytoplasm. Protein 4.1R filaments partially colocalize with cytokeratin in both the animal and vegetal hemispheres. We hypothesize that protein 4.1R could function as a linker protein between cytokeratin and the actin-based cytoskeleton.

  16. Friend of GATA (FOG) Interacts with the Nucleosome Remodeling and Deacetylase Complex (NuRD) to Support Primitive Erythropoiesis in Xenopus laevis

    PubMed Central

    Mimoto, Mizuho S.; Christian, Jan L.

    2012-01-01

    Friend of GATA (FOG) plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC) development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD), but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect. PMID:22235346

  17. Multivariate Pattern Classification of Facial Expressions Based on Large-Scale Functional Connectivity.

    PubMed

    Liang, Yin; Liu, Baolin; Li, Xianglin; Wang, Peiyuan

    2018-01-01

    It is an important question how human beings achieve efficient recognition of others' facial expressions in cognitive neuroscience, and it has been identified that specific cortical regions show preferential activation to facial expressions in previous studies. However, the potential contributions of the connectivity patterns in the processing of facial expressions remained unclear. The present functional magnetic resonance imaging (fMRI) study explored whether facial expressions could be decoded from the functional connectivity (FC) patterns using multivariate pattern analysis combined with machine learning algorithms (fcMVPA). We employed a block design experiment and collected neural activities while participants viewed facial expressions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise). Both static and dynamic expression stimuli were included in our study. A behavioral experiment after scanning confirmed the validity of the facial stimuli presented during the fMRI experiment with classification accuracies and emotional intensities. We obtained whole-brain FC patterns for each facial expression and found that both static and dynamic facial expressions could be successfully decoded from the FC patterns. Moreover, we identified the expression-discriminative networks for the static and dynamic facial expressions, which span beyond the conventional face-selective areas. Overall, these results reveal that large-scale FC patterns may also contain rich expression information to accurately decode facial expressions, suggesting a novel mechanism, which includes general interactions between distributed brain regions, and that contributes to the human facial expression recognition.

  18. Multivariate Pattern Classification of Facial Expressions Based on Large-Scale Functional Connectivity

    PubMed Central

    Liang, Yin; Liu, Baolin; Li, Xianglin; Wang, Peiyuan

    2018-01-01

    It is an important question how human beings achieve efficient recognition of others’ facial expressions in cognitive neuroscience, and it has been identified that specific cortical regions show preferential activation to facial expressions in previous studies. However, the potential contributions of the connectivity patterns in the processing of facial expressions remained unclear. The present functional magnetic resonance imaging (fMRI) study explored whether facial expressions could be decoded from the functional connectivity (FC) patterns using multivariate pattern analysis combined with machine learning algorithms (fcMVPA). We employed a block design experiment and collected neural activities while participants viewed facial expressions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise). Both static and dynamic expression stimuli were included in our study. A behavioral experiment after scanning confirmed the validity of the facial stimuli presented during the fMRI experiment with classification accuracies and emotional intensities. We obtained whole-brain FC patterns for each facial expression and found that both static and dynamic facial expressions could be successfully decoded from the FC patterns. Moreover, we identified the expression-discriminative networks for the static and dynamic facial expressions, which span beyond the conventional face-selective areas. Overall, these results reveal that large-scale FC patterns may also contain rich expression information to accurately decode facial expressions, suggesting a novel mechanism, which includes general interactions between distributed brain regions, and that contributes to the human facial expression recognition. PMID:29615882

  19. Distributed Function Mining for Gene Expression Programming Based on Fast Reduction.

    PubMed

    Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou

    2016-01-01

    For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining.

  20. Expression and in vitro functional analyses of recombinant Gam1 protein

    PubMed Central

    Avila, Gustavo A.; Ramirez, Daniel H.; Hildenbrand, Zacariah L.; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2014-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1’s roles in viral replication. PMID:25450237

  1. Evidence against functionally significant aquaporin expression in mitochondria.

    PubMed

    Yang, Baoxue; Zhao, Dan; Verkman, A S

    2006-06-16

    Recent reports suggest the expression of aquaporin (AQP)-type water channels in mitochondria from liver (AQP8) (Calamita, G., Ferri, D., Gena, P., Liquori, G. E., Cavalier, A., Thomas, D., and Svelto, M. (2005) J. Biol. Chem. 280, 17149-17153) and brain (AQP9) (Amiry-Moghaddam, M., Lindland, H., Zelenin, S., Roberg, B. A., Gundersen, B. B., Petersen, P., Rinvik, E., Torgner, I. A., and Ottersen, O. P. (2005) FASEB J. 19, 1459-1467), where they were speculated to be involved in metabolism, apoptosis, and Parkinson disease. Here, we systematically examined the functional consequence of AQP expression in mitochondria by measurement of water and glycerol permeabilities in mitochondrial membrane preparations from rat brain, liver, and kidney and from wild-type versus knock-out mice deficient in AQPs -1, -4, or -8. Osmotic water permeability, measured by stopped-flow light scattering, was similar in all mitochondrial preparations, with a permeability coefficient P(f) approximately 0.009 cm/s. Glycerol permeability was also similar ( approximately 5 x 10(-6) cm/s) in the various preparations. HgCl(2) slowed osmotic equilibration comparably in mitochondria from wild-type and AQP-deficient mice, although the slowing was explained by altered mitochondrial size rather than reduced P(f). Immunoblot analysis of mouse liver mitochondria failed to detect AQP8 expression, with liver homogenates from wild-type/AQP8 null mice as positive/negative controls. Our results provide evidence against functionally significant AQP expression in mitochondria, which is consistent with the high mitochondrial surface-to-volume ratio producing millisecond osmotic equilibration, even when intrinsic membrane water permeability is not high.

  2. New autosomal recessive mutations in aquaporin-2 causing nephrogenic diabetes insipidus through deficient targeting display normal expression in Xenopus oocytes

    PubMed Central

    Leduc-Nadeau, Alexandre; Lussier, Yoann; Arthus, Marie-Françoise; Lonergan, Michèle; Martinez-Aguayo, Alejandro; Riveira-Munoz, Eva; Devuyst, Olivier; Bissonnette, Pierre; Bichet, Daniel G

    2010-01-01

    Aquaporin-2 (AQP2), located at the luminal side of the collecting duct principal cells, is a water channel responsible for the final concentration of urine. Lack of function, often occurring through mistargeting of mutated proteins, induces nephrogenic diabetes insipidus (NDI), a condition characterized by large urinary volumes. In the present study, two new mutations (K228E and V24A) identified in NDI-affected individuals from distinct families along with the already reported R187C were analysed in comparison to the wild-type protein (AQP2-wt) using Xenopus laevis oocytes and a mouse collecting duct cell-line (mIMCD-3). Initial data in oocytes showed that all mutations were adequately expressed at reduced levels when compared to AQP2-wt. K228E and V24A were found to be properly targeted at the plasma membrane and exhibited adequate functionality similar to AQP2-wt, as opposed to R187C which was retained in internal stores and was thus inactive. In coexpression studies using oocytes, R187C impeded the functionality of all other AQP2 variants while combinations with K228E, V24A and AQP2-wt only showed additive functionalities. When expressed in mIMCD-3 cells, forskolin treatment efficiently promoted the targeting of AQP2-wt at the plasma membrane (>90%) while K228E only weakly responded to the same treatment (∼20%) and both V24A and R187C remained completely insensitive to the treatment. We concluded that both V24A and K228E are intrinsically functional water channels that lack a proper response to vasopressin, which leads to NDI as found in both compound mutations studied (K228E + R187C and V24A + R187C). The discrepancies in plasma membrane targeting response found in both expression systems stress the need to evaluate such data using mammalian cell systems. PMID:20403973

  3. Enhancing biological relevance of a weighted gene co-expression network for functional module identification.

    PubMed

    Prom-On, Santitham; Chanthaphan, Atthawut; Chan, Jonathan Hoyin; Meechai, Asawin

    2011-02-01

    Relationships among gene expression levels may be associated with the mechanisms of the disease. While identifying a direct association such as a difference in expression levels between case and control groups links genes to disease mechanisms, uncovering an indirect association in the form of a network structure may help reveal the underlying functional module associated with the disease under scrutiny. This paper presents a method to improve the biological relevance in functional module identification from the gene expression microarray data by enhancing the structure of a weighted gene co-expression network using minimum spanning tree. The enhanced network, which is called a backbone network, contains only the essential structural information to represent the gene co-expression network. The entire backbone network is decoupled into a number of coherent sub-networks, and then the functional modules are reconstructed from these sub-networks to ensure minimum redundancy. The method was tested with a simulated gene expression dataset and case-control expression datasets of autism spectrum disorder and colorectal cancer studies. The results indicate that the proposed method can accurately identify clusters in the simulated dataset, and the functional modules of the backbone network are more biologically relevant than those obtained from the original approach.

  4. Downregulation of CXCR4 Expression and Functionality After Zoledronate Exposure in Canine Osteosarcoma.

    PubMed

    Byrum, M L; Pondenis, H C; Fredrickson, R L; Wycislo, K L; Fan, T M

    2016-07-01

    The establishment and progression of metastases remains the life-limiting factor for dogs diagnosed with osteosarcoma (OS). The pattern of metastases is likely regulated through interactions between chemokine receptors and chemokines, and perturbations in these signaling cascades responsible for cytoskeletal organization and directional migration have the potential to alter metastatic cell trafficking behaviors. Zoledronate will impair directional migration of OS cells through downregulation of chemokine (C-X-C motif) receptor 4 (CXCR4) expression and functionality. Nineteen archived tumor specimens and plasma from 20 dogs with OS. Prospectively, the expressions of CXCR4 were studied in OS cell lines and spontaneous tumor samples. The effect of zoledronate on CXCR4 expression and functionality was investigated by characterizing responses in 3 OS cell lines. In 19 OS specimens and 20 dogs with OS, changes in CXCR4 expression and circulating CXCR4 concentrations were characterized in response to zoledronate therapy respectively. All canine OS cells express CXCR4, and zoledronate reduces CXCR4 expression and functionality by 27.7% (P < .0001), through augmented proteasome degradation and reduced prenylation of heterotrimeric G-proteins in 33% of tumor cell lines evaluated. In OS-bearing dogs, zoledronate reduces CXCR4 expressions by 40% within the primary tumor compared to untreated controls (P = .03) and also decreases the circulating concentrations of CXCR4 in 18 of 20 dogs with OS. Zoledronate can alter CXCR4 expression and functionality in OS cells, and consequent perturbations in CXCR4 intracellular signaling cascades might influence patterns of metastases. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  5. Stressor and Glucocorticoid-Dependent Induction of the Immediate Early Gene Krüppel-Like Factor 9: Implications for Neural Development and Plasticity

    PubMed Central

    Bonett, Ronald M.; Hu, Fang; Bagamasbad, Pia; Denver, Robert J.

    2009-01-01

    Krüppel-like factor 9 (KLF9) is a thyroid hormone-induced, immediate early gene implicated in neural development in vertebrates. We analyzed stressor and glucocorticoid (GC)-dependent regulation of KLF9 expression in the brain of the frog Xenopus laevis, and investigated a possible role for KLF9 in neuronal differentiation. Exposure to shaking/confinement stressor increased plasma corticosterone (CORT) concentration, and KLF9 immunoreactivity in several brain regions, which included the medial amygdala and bed nucleus of the stria terminalis, anterior preoptic area (homologous to the mammalian paraventricular nucleus), and optic tectum (homologous to the mammalian superior colliculus). The stressor-induced KLF9 mRNA expression in the brain was blocked by pretreatment with the GC receptor antagonist RU486, or mimicked by injection of CORT. Treatment with CORT also caused a rapid and dose-dependent increase in KLF9 mRNA in X. laevis XTC-2 cells that was resistant to inhibition of protein synthesis. The action of CORT on KLF9 expression in XTC-2 cells was blocked by RU486, but not by the mineralocorticoid receptor antagonist spironolactone. To test for functional consequences of up-regulation of KLF9, we introduced a KLF9 expression plasmid into living tadpole brain by electroporation-mediated gene transfer. Forced expression of KLF9 in tadpole brain caused an increase in Golgi-stained cells, reflective of neuronal differentiation/maturation. Our results support that KLF9 is a direct, GC receptor target gene that is induced by stress, and functions as an intermediary in the actions of GCs on brain gene expression and neuronal structure. PMID:19036875

  6. PGC-1α dictates endothelial function through regulation of eNOS expression

    PubMed Central

    Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.

    2016-01-01

    Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955

  7. Insulin-like growth factor 1 regulation of proliferation and differentiation of Xenopus laevis myogenic cells in vitro.

    PubMed

    Miyata, Sairi; Yada, Tomotaka; Ishikawa, Natsuko; Taheruzzaman, Kazi; Hara, Ryohei; Matsuzaki, Takashi; Nishikawa, Akio

    2017-03-01

    To understand the mechanism of muscle remodeling during Xenopus laevis metamorphosis, we examined the in vitro effect of insulin-like growth factor 1 (IGF-1) on growth and differentiation of three different-fate myogenic cell populations: tadpole tail, tadpole dorsal, and young adult leg muscle. IGF-1 promoted growth and differentiation of both tail and leg myogenic cells only under conditions where these cells could proliferate. Inhibition of cell proliferation by DNA synthesis inhibitor cytosine arabinoside completely canceled the IGF-1's cell differentiation promotion, suggesting the possibility that IGF-1's differentiation-promotion effect is an indirect effect via IGF-1's cell proliferation promotion. IGF-1 promoted differentiation dose dependently with maximum effect at 100-500 ng/ml. RT-PCR analysis revealed the upregulation (11-fold) of ifg1 mRNA expression in developing limbs, suggesting that IGF-1 plays a role in promoting muscle differentiation during limb development. The combined effect of triiodo-L-thyronine (T 3 ) and IGF-1 was also examined. In adult leg cells, IGF-1 promoted growth and differentiation irrespective of the presence of T 3 . In larval tail cells, cell count was 76% lower in the presence of T 3 , and IGF-1 did not promote proliferation and differentiation in T 3 -containing medium. In larval dorsal cells, cell count was also lower in the presence of T 3 , but IGF-1 enhanced proliferation and differentiation in T 3 -containing medium. This result is likely due to the presence among dorsal cells of both adult and larval types (1:1). Thus, IGF-1 affects only adult-type myogenic cells in the presence of T 3 and helps accelerate dorsal muscle remodeling during metamorphosis.

  8. Koi herpesvirus encodes and expresses a functional interleukin-10.

    PubMed

    Sunarto, Agus; Liongue, Clifford; McColl, Kenneth A; Adams, Mathew M; Bulach, Dieter; Crane, Mark St J; Schat, Karel A; Slobedman, Barry; Barnes, Andrew C; Ward, Alister C; Walker, Peter J

    2012-11-01

    Koi herpesvirus (KHV) (species Cyprinid herpesvirus 3) ORF134 was shown to transcribe a spliced transcript encoding a 179-amino-acid (aa) interleukin-10 (IL-10) homolog (khvIL-10) in koi fin (KF-1) cells. Pairwise sequence alignment indicated that the expressed product shares 25% identity with carp IL-10, 22 to 24% identity with mammalian (including primate) IL-10s, and 19.1% identity with European eel herpesvirus IL-10 (ahvIL-10). In phylogenetic analyses, khvIL-10 fell in a divergent position from all host IL-10 sequences, indicating extensive structural divergence following capture from the host. In KHV-infected fish, khvIL-10 transcripts were observed to be highly expressed during the acute and reactivation phases but to be expressed at very low levels during low-temperature-induced persistence. Similarly, KHV early (helicase [Hel] and DNA polymerase [DNAP]) and late (intercapsomeric triplex protein [ITP] and major capsid protein [MCP]) genes were also expressed at high levels during the acute and reactivation phases, but only low-level expression of the ITP gene was detected during the persistent phase. Injection of khvIL-10 mRNA into zebrafish (Danio rerio) embryos increased the number of lysozyme-positive cells to a similar degree as zebrafish IL-10. Downregulation of the IL-10 receptor long chain (IL-10R1) using a specific morpholino abrogated the response to both khvIL-10 and zebrafish IL-10 transcripts, indicating that, despite the structural divergence, khvIL-10 functions via this receptor. This is the first report describing the characteristics of a functional viral IL-10 gene in the Alloherpesviridae.

  9. Functional expression of ionotropic glutamate receptors in the rabbit retinal ganglion cells.

    PubMed

    Chen, Yin-Peng; Chiao, Chuan-Chin

    2012-01-03

    It has been known that retinal ganglion cells (RGCs) with distinct morphologies have different physiological properties. It was hypothesized that different functions of RGCs may in part result from various expressions of N-methyl-d-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-isoxazole-4-propinoic acid (AMPA), and kainic acid (KA) receptors on their dendrites. In the present study, we aimed to characterize the functional expression of AMPA and NMDA receptors of morphologically identified RGCs in the wholemount rabbit retina. The agmatine (AGB) activation assay was used to reveal functional expression of ionotropic glutamate receptors after the RGCs were targeted by injecting Neurobiotin. To examine the excitability of these glutamate receptors in an agonist specific manner, the lower concentrations of AMPA (2 μM) and NMDA (100 μM) were chosen to examine G7 (ON-OFF direction selective ganglion cells) and G11 (alpha ganglion cells) types of RGCs. We found that less than 40% of G7 type RGCs had salient AGB activation when incubated with 2 μM AMPA or 100 μM NMDA. The G11 type RGCs also showed similar activation frequencies, except that all of the OFF subtype examined had no AGB permeation under the same AMPA concentration. These results suggest that RGCs with large somata (G7 and G11 types) may express various heterogeneous functional ionotropic glutamate receptors, thus in part rendering their functional diversity. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Microneedle-based analysis of the micromechanics of the metaphase spindle assembled in Xenopus laevis egg extracts

    PubMed Central

    Shimamoto, Yuta; Kapoor, Tarun M.

    2014-01-01

    SUMMARY To explain how micron-sized cellular structures generate and respond to forces we need to characterize their micromechanical properties. Here we provide a protocol to build and use a dual force-calibrated microneedle-based set-up to quantitatively analyze the micromechanics of a metaphase spindle assembled in Xenopus laevis egg extracts. This cell-free extract system allows for controlled biochemical perturbations of spindle components. We describe how the microneedles are prepared and how they can be used to apply and measure forces. A multi-mode imaging system allows tracking of microtubules, chromosomes and needle tips. This set-up can be used to analyze the viscoelastic properties of the spindle on time-scales ranging from minutes to sub-seconds. A typical experiment, along with data analysis, is also detailed. We anticipate that our protocol can be readily extended to analyze the micromechanics of other cellular structures assembled in cell-free extracts. The entire procedure can take 3-4 days. PMID:22538847

  11. Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets

    PubMed Central

    2011-01-01

    Background It is well established that PD-1 is expressed by follicular T cells but its function in regulation of human T helper cells has been unclear. We investigated the expression modality and function of PD-1 expressed by human T cells specialized in helping B cells. Results We found that PD-1-expressing T cells are heterogeneous in PD-1 expression. We identified three different PD-1-expressing memory T cell subsets (i.e. PD-1low (+), PD-1medium (++), and PD-1high (+++) cells). PD-1+++ T cells expressed CXCR5 and CXCR4 and were localized in the rim of germinal centers. PD-1+ or PD-1++ cells expressed CCR7 and were present mainly in the T cell area or other parts of the B cell follicles. Utilizing a novel antigen density-dependent magnetic sorting (ADD-MS) method, we isolated the three T cell subsets for functional characterization. The germinal center-located PD-1+++ T cells were most efficient in helping B cells and in producing IL-21 and CXCL13. Other PD-1-expressing T cells, enriched with Th1 and Th17 cells, were less efficient than PD-1+++ T cells in these capacities. PD-1+++ T cells highly expressed Ki-67 and therefore appear active in cell activation and proliferation in vivo. IL-2 is a cytokine important for proliferation and survival of the PD-1+++ T cells. In contrast, IL-21, while a major effector cytokine produced by the PD-1-expressing T helper cells, had no function in generation, survival, or proliferation of the PD-1-expressing helper T cells at least in vitro. PD-1 triggering has a suppressive effect on the proliferation and B cell-helping function of PD-1+++ germinal center T cells. Conclusion Our results revealed the phenotype and effector function of PD-1-expressing T helper cell subsets and indicate that PD-1 restrains the B cell-helping function of germinal center-localized T cells to prevent excessive antibody response. PMID:21914188

  12. Lymphatic function is regulated by a coordinated expression of lymphangiogenic and anti-lymphangiogenic cytokines

    PubMed Central

    Zampell, Jamie C.; Avraham, Tomer; Yoder, Nicole; Fort, Nicholas; Yan, Alan; Weitman, Evan S.

    2012-01-01

    Lymphangiogenic cytokines such as vascular endothelial growth factor-C (VEGF-C) are critically required for lymphatic regeneration; however, in some circumstances, lymphatic function is impaired despite normal or elevated levels of these cytokines. The recent identification of anti-lymphangiogenic molecules such as interferon-γ (IFN-γ), transforming growth factor-β1, and endostatin has led us to hypothesize that impaired lymphatic function may represent a dysregulated balance in the expression of pro/anti-lymphangiogenic stimuli. We observed that nude mice have significantly improved lymphatic function compared with wild-type mice in a tail model of lymphedema. We show that gradients of lymphatic fluid stasis regulate the expression of lymphangiogenic cytokines (VEGF-A, VEGF-C, and hepatocyte growth factor) and that paradoxically the expression of these molecules is increased in wild-type mice. More importantly, we show that as a consequence of T-cell-mediated inflammation, these same gradients also regulate expression patterns of anti-lymphangiogenic molecules corresponding temporally and spatially with impaired lymphatic function in wild-type mice. We show that neutralization of IFN-γ significantly increases inflammatory lymph node lymphangiogenesis independently of changes in VEGF-A or VEGF-C expression, suggesting that alterations in the balance of pro- and anti-lymphangiogenic cytokine expression can regulate lymphatic vessel formation. In conclusion, we show that gradients of lymphatic fluid stasis regulate not only the expression of pro-lymphangiogenic cytokines but also potent suppressors of lymphangiogenesis as a consequence of T-cell inflammation and that modulation of the balance between these stimuli can regulate lymphatic function. PMID:21940662

  13. Expression and in vitro functional analyses of recombinant Gam1 protein.

    PubMed

    Avila, Gustavo A; Ramirez, Daniel H; Hildenbrand, Zacariah L; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2015-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1's roles in viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Lectin from embryos and oocytes of Xenopus laevis. Purification and properties.

    PubMed

    Roberson, M M; Barondes, S H

    1982-07-10

    Soluble extracts of Xenopus laevis blastula stage embryos, oocytes, and adult liver contain lectin activities detected by agglutination of trypsinized, glutaraldehyde-fixed rabbit erythrocytes. Lectin from the embryos and oocytes was purified by affinity chromatography on a column derivatized with melibiose. Trace contaminants were removed either by preparative isoelectric focusing or by gel filtration. Based on its behavior on Sepharose 6B the purified oocyte lectin has an apparent molecular weight of approximately 480,000. On sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions there were two major bands with molecular weight ranges of about 43,000 and 45,000, with diffuse trails. Since the purified lectin contains about 20% saccharides by weight and since both bands are glycosylated, diffuseness might be due to variable glycosylation. Heterogeneity was indicated by isoelectric focusing in polyacrylamide gels, which showed four protein bands with isoelectric points ranging from 4.4 to 4.9. Lectins from both embryos and oocytes comprised about 1 to 2% of the total soluble protein and could not be distinguished by sodium dodecyl sulfate polyacrylamide gel electrophoresis. However, the specific hemagglutination activity of the purified oocyte lectin was, on the average, 7-fold higher. Levels in crude extracts of liver were 3 orders of magnitude lower than those from oocytes. The hemagglutination activities of the lectins from embryos, oocytes, and adult liver required Ca2+ and were blocked by similar concentrations of both alpha- and beta-galactosides.

  15. The Pharmacokinetics of Enrofloxacin in Adult African Clawed Frogs (Xenopus laevis)

    PubMed Central

    Howard, Antwain M; Papich, Mark G; Felt, Stephen A; Long, Charles T; McKeon, Gabriel P; Bond, Emmitt S; Torreilles, Stéphanie L; Luong, Richard H; Green, Sherril L

    2010-01-01

    Pharmacokinetics of enrofloxacin, a fluoroquinolone antibiotic, was determined in adult female Xenopus laevis after single-dose administration (10 mg/kg) by intramuscular or subcutaneous injection. Frogs were evaluated at various time points until 8 h after injection. Plasma was analyzed for antibiotic concentration levels by HPLC. We computed pharmacokinetic parameters by using noncompartmental analysis of the pooled concentrations (naive pooled samples). After intramuscular administration of enrofloxacin, the half-life was 5.32 h, concentration maximum was 10.85 µg/mL, distribution volume was 841.96 mL/kg, and area under the time–concentration curve was 57.59 µg×h/mL; after subcutaneous administration these parameters were 4.08 h, 9.76 µg/mL, 915.85 mL/kg, and 47.42 µg×h/mL, respectively. According to plasma pharmacokinetics, Xenopus seem to metabolize enrofloxacin in a manner similar to mammals: low levels of the enrofloxacin metabolite, ciprofloxacin, were detected in the frogs’ habitat water and plasma. At necropsy, there were no gross or histologic signs of toxicity after single-dose administration; toxicity was not evaluated for repeated dosing. The plasma concentrations reached levels considered effective against common aquatic pathogens and suggest that a single, once-daily dose would be a reasonable regimen to consider when treating sick frogs. The treatment of sick frogs should be based on specific microbiologic identification of the pathogen and on antibiotic susceptibility testing. PMID:21205443

  16. Aquaporins in the eye: Expression, function, and roles in ocular disease☆

    PubMed Central

    Schey, Kevin L.; Wang, Zhen; Wenke, Jamie L.; Qi, Ying

    2015-01-01

    Background All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. Scope of review This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. Major conclusions Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. General significance Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins. PMID:24184915

  17. The novel putative bile acid transporter SLC10A5 is highly expressed in liver and kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Carla F.; Godoy, Jose R.; Doering, Barbara

    2007-09-14

    Here we report the identification, cloning, and characterization of SLC10A5, which is a new member of Solute Carrier Family 10 (SLC10), also known as the 'sodium/bile acid cotransporter family'. Expression of SLC10A5/Slc10a5 was examined by quantitative real-time PCR and revealed its highest expression levels in liver and kidney in humans, rat and mouse. In rat liver and kidney, Slc10a5 expression was localized by in situ hybridization to hepatocytes and proximal tubules, respectively. A SLC10A5-FLAG fusion protein was expressed in HEK293 cells and showed an apparent molecular weight of 42 kDa after immunoprecipitation. When expressed in Xenopus laevis oocytes, the SLC10A5-FLAGmore » protein was detected in the oocyte's plasma membrane but showed no transport activity for taurocholate, cholate, estrone-3-sulfate, or dehydroepiandrosterone sulfate. As bile acid carriers are the most related carriers to SLC10A5 though, we strongly suppose that SLC10A5 is an orphan carrier with yet non-identified substrates.« less

  18. Development of the Larval Amphibian Growth and Development Assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile.

    PubMed

    Haselman, Jonathan T; Sakurai, Maki; Watanabe, Naoko; Goto, Yasushi; Onishi, Yuta; Ito, Yuki; Onoda, Yu; Kosian, Patricia A; Korte, Joseph J; Johnson, Rodney D; Iguchi, Taisen; Degitz, Sigmund J

    2016-12-01

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan's Ministry of Environment to support risk assessment. The assay is employed as a higher tiered approach to evaluate effects of chronic chemical exposure throughout multiple life stages in a model amphibian species, Xenopus laevis. To evaluate the utility of the initial LAGDA design, the assay was performed using a mixed mode of action endocrine disrupting chemical, benzophenone-2 (BP-2). X. laevis embryos were exposed in flow-through conditions to 0, 1.5, 3.0 or 6.0 mg l -1 BP-2 until 2 months post-metamorphosis. Overt toxicity was evident throughout the exposure period in the 6.0 mg l -1 treatment due to elevated mortality rates and observed liver and kidney pathologies. Concentration-dependent increases in severity of thyroid follicular cell hypertrophy and hyperplasia occurred in larval tadpoles indicating BP-2-induced impacts on the thyroid axis. Additionally, gonads were impacted in all treatments with some genetic males showing both testis and ovary tissues (1.5 mg l -1 ) and 100% of the genetic males in the 3.0 and 6.0 mg l -1 treatments experiencing complete male-to-female sex reversal. Concentration-dependent vitellogenin induction occurred in both genders with associated accumulations of protein in the livers, kidneys and gonads, which was likely vitellogenin and other estrogen-responsive yolk proteins. This is the first study that demonstrates the endocrine effects of this mixed mode of action chemical in an amphibian species and demonstrates the utility of the LAGDA design for supporting chemical risk assessment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Analytical expressions for the correlation function of a hard sphere dimer fluid

    NASA Astrophysics Data System (ADS)

    Kim, Soonho; Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.

  20. Analytical expression for the correlation function of a hard sphere chain fluid

    NASA Astrophysics Data System (ADS)

    Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.

  1. Ca2+-recruitment in tachykinin-induced contractions of gut smooth muscle from African clawed frog, Xenopus laevis and rainbow trout, Oncorhynchus mykiss.

    PubMed

    Johansson, Agot; Holmgren, Susanne

    2003-04-01

    Changes in intracellular Ca(2+) concentration control many essential cellular functions like the contraction of smooth muscle cells. The aim of this study was to investigate if the tachykinin substance P (SP) engages external Ca(2+)-sources, internal Ca(2+)-sources, or both in the contraction of the gastrointestinal smooth muscle of rainbow trout (Oncorhynchus mykiss) and the African clawed frog (Xenopus laevis). Strip preparations made of either longitudinal smooth muscle of proximal intestine or circular smooth muscle of cardiac stomach were mounted in organ baths and the tension was recorded via force transducers. Ca(2+)-free Ringer's solution containing the Ca(2+) chelating agent EGTA (2mM) abolished all spontaneous contractions. Exposure to SP in Ca(2+)-free solution decreased the response. Preparations were also treated with the Ca(2+)-ATPase inhibitor thapsigargin (10 microM) during 30 min. Thapsigargin reduced the effect of SP on intestinal longitudinal smooth muscle in rainbow trout and on stomach circular smooth muscle in the African clawed frog and to a less extent in the intestinal longitudinal smooth muscle. The results show that external Ca(2+) is of great importance, but is not the only source of Ca(2+) recruitment in SP-activation of gastrointestinal smooth muscle in rainbow trout and the African clawed frog.

  2. Functional evaluation of candidate ice structuring proteins using cell-free expression systems.

    PubMed

    Brödel, A K; Raymond, J A; Duman, J G; Bier, F F; Kubick, S

    2013-02-10

    Ice structuring proteins (ISPs) protect organisms from damage or death by freezing. They depress the non-equilibrium freezing point of water and prevent recrystallization, probably by binding to the surface of ice crystals. Many ISPs have been described and it is likely that many more exist in nature that have not yet been identified. ISPs come in many forms and thus cannot be reliably identified by their structure or consensus ice-binding motifs. Recombinant protein expression is the gold standard for proving the activity of a candidate ISP. Among existing expression systems, cell-free protein expression is the simplest and gives the fastest access to the protein of interest, but selection of the appropriate cell-free expression system is crucial for functionality. Here we describe cell-free expression methods for three ISPs that differ widely in structure and glycosylation status from three organisms: a fish (Macrozoarces americanus), an insect (Dendroides canadensis) and an alga (Chlamydomonas sp. CCMP681). We use both prokaryotic and eukaryotic expression systems for the production of ISPs. An ice recrystallization inhibition assay is used to test functionality. The techniques described here should improve the success of cell-free expression of ISPs in future applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Correlated gene expression and anatomical communication support synchronized brain activity in the mouse functional connectome.

    PubMed

    Mills, Brian D; Grayson, David S; Shunmugavel, Anandakumar; Miranda-Dominguez, Oscar; Feczko, Eric; Earl, Eric; Neve, Kim; Fair, Damien A

    2018-05-22

    Cognition and behavior depend on synchronized intrinsic brain activity that is organized into functional networks across the brain. Research has investigated how anatomical connectivity both shapes and is shaped by these networks, but not how anatomical connectivity interacts with intra-areal molecular properties to drive functional connectivity. Here, we present a novel linear model to explain functional connectivity by integrating systematically obtained measurements of axonal connectivity, gene expression, and resting state functional connectivity MRI in the mouse brain. The model suggests that functional connectivity arises from both anatomical links and inter-areal similarities in gene expression. By estimating these effects, we identify anatomical modules in which correlated gene expression and anatomical connectivity support functional connectivity. Along with providing evidence that not all genes equally contribute to functional connectivity, this research establishes new insights regarding the biological underpinnings of coordinated brain activity measured by BOLD fMRI. SIGNIFICANCE STATEMENT Efforts at characterizing the functional connectome with fMRI have risen exponentially over the last decade. Yet despite this rise, the biological underpinnings of these functional measurements are still largely unknown. The current report begins to fill this void by investigating the molecular underpinnings of the functional connectome through an integration of systematically obtained structural information and gene expression data throughout the rodent brain. We find that both white matter connectivity and similarity in regional gene expression relate to resting state functional connectivity. The current report furthers our understanding of the biological underpinnings of the functional connectome and provides a linear model that can be utilized to streamline preclinical animal studies of disease. Copyright © 2018 the authors.

  4. Parent emotional expressiveness and children's self-regulation: Associations with abused children's school functioning

    PubMed Central

    Haskett, Mary E.; Stelter, Rebecca; Proffit, Katie; Nice, Rachel

    2012-01-01

    Objective Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused children. Methods The sample included 92 physically abused children ages 4-7 and one of their parents (95.7% mothers). Parents completed a measure of their own emotional expressiveness, and parents and teachers provided reports of children's self-regulatory skills. Children's school functioning was measured by observations of playground aggression and teacher reports of aggression and classroom behavior. Results Parents’ expression of positive and negative emotions was associated with various aspects of children's self-regulation and functioning in the school setting. Links between self-regulation and children's school adjustment were robust; poor self-regulation was associated with higher aggression and lower cooperation and self-directed behavior in the classroom. There was minimal support for a mediating role of children's self-regulation in links between parent expressiveness and children's behavior. Practice implications Findings point to the relevance of parent emotional expressivity and children's self-regulatory processes in understanding physically abused children's functioning at the transition to school. Although further research is needed, findings indicate that increasing parental expression of positive emotion should be a focus in treatment along with reduction in negativity of abusive parents. Further, addressing children's self-regulation could be important in efforts to reduce aggression and enhance children's classroom competence. PMID:22565040

  5. Parent emotional expressiveness and children's self-regulation: associations with abused children's school functioning.

    PubMed

    Haskett, Mary E; Stelter, Rebecca; Proffit, Katie; Nice, Rachel

    2012-04-01

    Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused children. The sample included 92 physically abused children ages 4-7 and one of their parents (95.7% mothers). Parents completed a measure of their own emotional expressiveness, and parents and teachers provided reports of children's self-regulatory skills. Children's school functioning was measured by observations of playground aggression and teacher reports of aggression and classroom behavior. Parents' expression of positive and negative emotions was associated with various aspects of children's self-regulation and functioning in the school setting. Links between self-regulation and children's school adjustment were robust; poor self-regulation was associated with higher aggression and lower cooperation and self-directed behavior in the classroom. There was minimal support for a mediating role of children's self-regulation in links between parent expressiveness and children's behavior. Findings point to the relevance of parent emotional expressivity and children's self-regulatory processes in understanding physically abused children's functioning at the transition to school. Although further research is needed, findings indicate that increasing parental expression of positive emotion should be a focus in treatment along with reduction in negativity of abusive parents. Further, addressing children's self-regulation could be important in efforts to reduce aggression and enhance children's classroom competence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effects of dietary exposure of polycyclic musk HHCB on the metamorphosis of Xenopus laevis.

    PubMed

    Pablos, María Victoria; Jiménez, María Ángeles; San Segundo, Laura; Martini, Federica; Beltrán, Eulalia; Fernández, Carlos

    2016-06-01

    The compound 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[γ]-2-benzopyrane (HHCB; galaxolide, Chemical Abstracts Service number 1222-05-5) is a synthetic musk used extensively as a fragrance in many consumer products and classified as an emerging pollutant. The ecotoxicological information available for HHCB addresses exposure via water, but this compound is frequently adsorbed into particulate matter. The goal of the present study was to assess the effects of dietary exposure to several environmentally relevant HHCB concentrations adsorbed in food during Xenopus laevis metamorphosis. The authors sought to determine if such exposure to this synthetic musk resulted in histological changes in the thyroid gland in conjunction with changes in development (staging, timing to metamorphosis), body weight, and length. Developmental acceleration on day 14, together with hypertrophy of the thyroid follicular epithelium in tadpoles, suggested a possible agonistic effect of HHCB, which would have been compensated after metamorphosis by regulatory mechanisms to maintain homeostasis. Further research into the potential thyroid-related mechanisms of action of HHCB should be conducted. Environ Toxicol Chem 2016;35:1428-1435. © 2015 SETAC. © 2015 SETAC.

  7. Effect of chronic copper and pentachlorophenol exposure to early life stages of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, D.J.; Stover, E.L.

    1995-12-31

    An evaluation of the effects of low-level copper and pentachlorophenol exposure on various early life stages of the South African clawed frog, Xenopus laevis was performed using stage-specific and long-term continuous exposures. Stage-specific exposure experiments were conducted such that separate subsets of embryos and larvae from the same clutch were exposed to two toxicants, copper and pentachlorophenol, from 0 d to 4 d (standard Frog Embryo Teratagenesis Assay Xenopus [FETAX]), 4 d to 8 d, 8 d to 12 d, and 12 d to 16 d. Results from two separate concentration-response experiments indicated that sensitivity to either toxicant increased inmore » each successive time period. Continuous exposure studies conducted for 60 to 75 days indicated that copper, but not pentachlorophenol induced reduction deficiency malformations of the hind limb at concentrations as low as 0.05 mg/L. Pentachlorophenol concentrations as low as 0.5/{micro}g/L inhibited tail resorption. However, copper did not adversely affect the process of tail resorption. These results indicated that studies evaluating longer-term developmental processes are important in ecological hazard evaluation.« less

  8. Male-Male Clasping May Be Part of an Alternative Reproductive Tactic in Xenopus laevis

    PubMed Central

    Rhodes, Heather J.; Stevenson, Rachel J.; Ego, Courtney L.

    2014-01-01

    Male Xenopus laevis frogs have been observed to clasp other males in a sustained, amplectant position, the purpose of which is unknown. We examined three possible hypotheses for this counter-intuitive behavior: 1) clasping males fail to discriminate the sex of the frogs they clasp; 2) male-male clasping is an aggressive or dominant behavior; or 3) that males clasp other males to gain proximity to breeding events and possibly engage in sperm competition. Our data, gathered through a series of behavioral experiments in the laboratory, refute the first two hypotheses. We found that males did not clasp indiscriminately, but showed a sex preference, with most males preferentially clasping a female, but a proportion preferentially clasping another male. Males that clasped another male when there was no female present were less likely to “win” reproductive access in a male-male-female triad, indicating that they did not establish dominance through clasping. However, those males did gain proximity to oviposition by continued male-male clasping in the presence of the female. Thus, our findings are consistent with, but cannot confirm, the third hypothesis of male-male clasping as an alternative reproductive tactic. PMID:24849114

  9. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis

    PubMed Central

    Golding, Anne; Levin, Michael; Kaplan, David L.

    2016-01-01

    In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis) model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device’s observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies. PMID:27257960

  10. Functional modules by relating protein interaction networks and gene expression.

    PubMed

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  11. Functional modules by relating protein interaction networks and gene expression

    PubMed Central

    Tornow, Sabine; Mewes, H. W.

    2003-01-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317

  12. ADAM13 function is required in the 3 dimensional context of the embryo during cranial neural crest cell migration in Xenopus laevis

    PubMed Central

    Cousin, Hélène; Abbruzzese, Genevieve; McCusker, Catherine; Alfandari, Dominique

    2012-01-01

    The cranial neural crest (CNC) is a population of cells that arises from the lateral part of the developing brain, migrates ventrally and coordinates the entire craniofacial development of vertebrates. Many molecules are involved in CNC migration including the transmembrane metalloproteases ADAM13 and 19. We have previously shown that these ADAMs cleave a number of extracellular proteins and modify the transcription of a number of genes, and that both of these activities are important for cell migration. Here we show that the knock down of ADAM13 inhibits CNC migration in vivo but not in vitro, indicating that ADAM13 function is required in the 3-dimentional context of the embryo. We further show that the migration of CNC that do not express ADAM13 and ADAM19 can be rescued in vivo by co-grafting wild type CNC. Furthermore, the migration of CNC lacking ADAM13 can be rescued by mechanically separating the CNC from the surrounding ectoderm and mesoderm. Finally, we show that ADAM13 function is autonomous to CNC tissue, as the migration of morphant CNC can only be rescued by ADAM13 expression in the CNC and not the surrounding tissues. Together our results suggest that ADAM13 changes CNC interaction with the extracellular environment and that this change is necessary for their migration in vivo. PMID:22683825

  13. The pattern of expression of guanine nucleotide-binding protein β3 (GNB3) in the retina is conserved across vertebrate species

    PubMed Central

    Ritchey, Eric R.; Bongini, Rachel E.; Code, Kimberly A.; Zelinka, Christopher; Petersen-Jones, Simon; Fischer, Andy J.

    2010-01-01

    Guanine nucleotide-binding protein β3 (GNB3) is an isoform of the β subunit of the heterotrimeric G protein second messenger complex that is commonly associated with transmembrane receptors. The presence of GNB3 in photoreceptors, and possibly bipolar cells, has been confirmed in murine, bovine and primate retinas (Lee et al., 1992, Peng et al., 1992, Huang et al., 2003). Studies have indicated that a mutation in the GNB3 gene causes progressive retinopathy and globe enlargement (RGE) in chickens. The goals of this study were to 1) examine the expression pattern of GNB3 in wild-type and RGE mutant chickens, 2) characterize the types of bipolar cells that express GNB3 and 3) examine whether the expression of GNB3 in the retina is conserved across vertebrate species. We find that chickens homozygous for the RGE allele completely lack GNB3 protein. We find that the pattern of expression of GNB3 in the retina is highly conserved across vertebrate species, including teleost fish (Carassius auratus), frogs (Xenopus laevis), chickens (Gallus domesticus), mice (Mus musculata), guinea pigs (Cavia porcellus), dogs (Canis familiaris) and non-human primates (Macaca fasicularis). Regardless of the species, we find that GNB3 is expressed by Islet1-positive cone ON-bipolar cells and by cone photoreceptors. In some vertebrates, GNB3-immunoreactivity was observed in both rod and cone photoreceptors. A protein-protein alignment of GNB3 across different vertebrates, from fish to humans, indicates a high degree (>92%) of sequence conservation. Given that analogous types of retinal neurons express GNB3 in different species, we propose that the functions and the mechanisms that regulate the expression of GNB3 are highly conserved. PMID:20538044

  14. β Subunits Functionally Differentiate Human Kv4.3 Potassium Channel Splice Variants

    PubMed Central

    Abbott, Geoffrey W.

    2017-01-01

    The human ventricular cardiomyocyte transient outward K+ current (Ito) mediates the initial phase of myocyte repolarization and its disruption is implicated in Brugada Syndrome and heart failure (HF). Human cardiac Ito is generated primarily by two Kv4.3 splice variants (Kv4.3L and Kv4.3S, diverging only by a C-terminal, S6-proximal, 19-residue stretch unique to Kv4.3L), which are differentially remodeled in HF, but considered functionally alike at baseline. Kv4.3 is regulated in human heart by β subunits including KChIP2b and KCNEs, but their effects were previously assumed to be Kv4.3 isoform-independent. Here, this assumption was tested experimentally using two-electrode voltage-clamp analysis of human subunits co-expressed in Xenopus laevis oocytes. Unexpectedly, Kv4.3L-KChIP2b channels exhibited up to 8-fold lower current augmentation, 40% slower inactivation, and 5 mV-shifted steady-state inactivation compared to Kv4.3S-KChIP2b. A synthetic peptide mimicking the 19-residue stretch diminished these differences, reinforcing the importance of this segment in mediating Kv4.3 regulation by KChIP2b. KCNE subunits induced further functional divergence, including a 7-fold increase in Kv4.3S-KCNE4-KChIP2b current compared to Kv4.3L-KCNE4-KChIP2b. The discovery of β-subunit-dependent functional divergence in human Kv4.3 splice variants suggests a C-terminal signaling hub is crucial to governing β-subunit effects upon Kv4.3, and demonstrates the potential significance of differential Kv4.3 gene-splicing and β subunit expression in myocyte physiology and pathobiology. PMID:28228734

  15. β Subunits Functionally Differentiate Human Kv4.3 Potassium Channel Splice Variants.

    PubMed

    Abbott, Geoffrey W

    2017-01-01

    The human ventricular cardiomyocyte transient outward K + current ( I to ) mediates the initial phase of myocyte repolarization and its disruption is implicated in Brugada Syndrome and heart failure (HF). Human cardiac I to is generated primarily by two Kv4.3 splice variants (Kv4.3L and Kv4.3S, diverging only by a C-terminal, S6-proximal, 19-residue stretch unique to Kv4.3L), which are differentially remodeled in HF, but considered functionally alike at baseline. Kv4.3 is regulated in human heart by β subunits including KChIP2b and KCNEs, but their effects were previously assumed to be Kv4.3 isoform-independent. Here, this assumption was tested experimentally using two-electrode voltage-clamp analysis of human subunits co-expressed in Xenopus laevis oocytes. Unexpectedly, Kv4.3L-KChIP2b channels exhibited up to 8-fold lower current augmentation, 40% slower inactivation, and 5 mV-shifted steady-state inactivation compared to Kv4.3S-KChIP2b. A synthetic peptide mimicking the 19-residue stretch diminished these differences, reinforcing the importance of this segment in mediating Kv4.3 regulation by KChIP2b. KCNE subunits induced further functional divergence, including a 7-fold increase in Kv4.3S-KCNE4-KChIP2b current compared to Kv4.3L-KCNE4-KChIP2b. The discovery of β-subunit-dependent functional divergence in human Kv4.3 splice variants suggests a C-terminal signaling hub is crucial to governing β-subunit effects upon Kv4.3, and demonstrates the potential significance of differential Kv4.3 gene-splicing and β subunit expression in myocyte physiology and pathobiology.

  16. Evolved Escherichia coli strains for amplified, functional expression of membrane proteins.

    PubMed

    Gul, Nadia; Linares, Daniel M; Ho, Franz Y; Poolman, Bert

    2014-01-09

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins. © 2013.

  17. Reduction of XNkx2-10 expression leads to anterior defects and malformation of the embryonic heart.

    PubMed

    Allen, Bryan G; Allen-Brady, Kristina; Weeks, Daniel L

    2006-10-01

    Normal vertebrate heart development depends upon the expression of homeodomain containing proteins related to the Drosophila gene, tinman. In Xenopus laevis, three such genes have been identified in regions that will eventually give rise to the heart, XNkx2-3, XNkx2-5 and XNkx2-10. Although the expression domains of all three overlap in early development, distinctive differences have been noted. By the time the heart tube forms, there is little XNkx2-10 mRNA detected by in situ analysis in the embryonic heart while both XNkx2-3 and XNkx2-5 are clearly present. In addition, unlike XNkx2-3 and XNkx2-5, injection of XNkx2-10 mRNA does not increase the size of the embryonic heart. We have reexamined the expression and potential role of XNkx2-10 in development via oligonucleotide-mediated reduction of XNkx2-10 protein expression. We find that a decrease in XNkx2-10 leads to a broad spectrum of developmental abnormalities including a reduction in heart size. We conclude that XNkx2-10, like XNkx2-3 and XNkx2-5, is necessary for normal Xenopus heart development.

  18. Reduction of XNkx2-10 expression leads to anterior defects and malformation of the embryonic heart

    PubMed Central

    Allen, Bryan G.; Allen-Brady, Kristina; Weeks, Daniel L.

    2007-01-01

    Normal vertebrate heart development depends upon the expression of homeodomain containing proteins related to the Drosophila gene, tinman. In Xenopus laevis, three such genes have been identified in regions that will eventually give rise to the heart, XNkx2-3, XNkx2-5 and XNkx2-10. Although the expression domains of all three overlap in early development, distinctive differences have been noted. By the time the heart tube forms, there is little XNkx2-10 mRNA detected by in situ analysis in the embryonic heart while both XNkx2-3 and XNkx2-5 are clearly present. In addition, unlike XNkx2-3 and XNkx2-5, injection of XNkx2-10 mRNA does not increase the size of the embryonic heart. We have reexamined the expression and potential role of XNkx2-10 in development via oligonucleotide-mediated reduction of XNkx2-10 protein expression. We find that a decrease in XNkx2-10 leads to a broad spectrum of developmental abnormalities including a reduction in heart size. We conclude that XNkx2-10, like XNkx2-3 and XNkx2-5, is necessary for normal Xenopus heart development. PMID:16949797

  19. NKp44 expression, phylogenesis and function in non-human primate NK cells

    PubMed Central

    De Maria, Andrea; Ugolotti, Elisabetta; Rutjens, Erik; Mazza, Stefania; Radic, Luana; Faravelli, Alessandro; Koopman, Gerrit; Di Marco, Eddi; Costa, Paola; Ensoli, Barbara; Cafaro, Aurelio; Mingari, Maria Cristina; Moretta, Lorenzo; Heeney, Jonathan

    2009-01-01

    Molecular and functional characterization of the natural cytotoxicity receptor (NCR) NKp44 in species other than Homo sapiens has been elusive, so far. Here, we provide complete phenotypic, molecular and functional characterization for NKp44 triggering receptor on Pan troglodytes NK cells, the closest human relative, and the analysis of NKp44-genomic locus and transcription in Macaca fascicularis. Similar to H. sapiens, NKp44 expression is detectable on chimpanzee NK cells only upon activation. However, basal NKp44 transcription is 5-fold higher in chimpanzees with lower differential increases upon cell activation compared with humans. Upon activation, an overall 12-fold lower NKp44 gene expression is observed in P. troglodytes compared with H. sapiens NK cells with only a slight reduction in NKp44 surface expression. Functional analysis of ‘in vitro’ activated purified NK cells confirms the NKp44 triggering potential compared with other major NCRs. These findings suggest the presence of a post-transcriptional regulation that evolved differently in H. sapiens. Analysis of cynomolgus NKp44-genomic sequence and transcription pattern showed very low levels of transcription with occurrence of out-of-frame transcripts and no surface expression. The present comparative analysis suggests that NKp44-genomic organization appears during macaque speciation, with considerable evolution of its transcriptional and post-transcriptional tuning. Thus, NKp44 may represent an NCR being only recently emerged during speciation, acquiring functional relevance only in non-human primates closest to H. sapiens. PMID:19147838

  20. EvoCor: a platform for predicting functionally related genes using phylogenetic and expression profiles.

    PubMed

    Dittmar, W James; McIver, Lauren; Michalak, Pawel; Garner, Harold R; Valdez, Gregorio

    2014-07-01

    The wealth of publicly available gene expression and genomic data provides unique opportunities for computational inference to discover groups of genes that function to control specific cellular processes. Such genes are likely to have co-evolved and be expressed in the same tissues and cells. Unfortunately, the expertise and computational resources required to compare tens of genomes and gene expression data sets make this type of analysis difficult for the average end-user. Here, we describe the implementation of a web server that predicts genes involved in affecting specific cellular processes together with a gene of interest. We termed the server 'EvoCor', to denote that it detects functional relationships among genes through evolutionary analysis and gene expression correlation. This web server integrates profiles of sequence divergence derived by a Hidden Markov Model (HMM) and tissue-wide gene expression patterns to determine putative functional linkages between pairs of genes. This server is easy to use and freely available at http://pilot-hmm.vbi.vt.edu/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Coding rate and duration of vocalizations of the frog, Xenopus laevis.

    PubMed

    Zornik, Erik; Yamaguchi, Ayako

    2012-08-29

    Vocalizations involve complex rhythmic motor patterns, but the underlying temporal coding mechanisms in the nervous system are poorly understood. Using a recently developed whole-brain preparation from which "fictive" vocalizations are readily elicited in vitro, we investigated the cellular basis of temporal complexity of African clawed frogs (Xenopus laevis). Male advertisement calls contain two alternating components--fast trills (∼300 ms) and slow trills (∼700 ms) that contain clicks repeated at ∼60 and ∼30 Hz, respectively. We found that males can alter the duration of fast trills without changing click rates. This finding led us to hypothesize that call rate and duration are regulated by independent mechanisms. We tested this by obtaining whole-cell patch-clamp recordings in the "fictively" calling isolated brain. We discovered a single type of premotor neuron with activity patterns correlated with both the rate and duration of fast trills. These "fast-trill neurons" (FTNs) exhibited long-lasting depolarizations (LLDs) correlated with each fast trill and action potentials that were phase-locked with motor output-neural correlates of call duration and rate, respectively. When depolarized without central pattern generator activation, FTNs produced subthreshold oscillations and action potentials at fast-trill rates, indicating FTN resonance properties are tuned to, and may dictate, the fast-trill rhythm. NMDA receptor (NMDAR) blockade eliminated LLDs in FTNs, and NMDAR activation in synaptically isolated FTNs induced repetitive LLDs. These results suggest FTNs contain an NMDAR-dependent mechanism that may regulate fast-trill duration. We conclude that a single premotor neuron population employs distinct mechanisms to regulate call rate and duration.

  2. HD CAG-correlated gene expression changes support a simple dominant gain of function

    PubMed Central

    Jacobsen, Jessie C.; Gregory, Gillian C.; Woda, Juliana M.; Thompson, Morgan N.; Coser, Kathryn R.; Murthy, Vidya; Kohane, Isaac S.; Gusella, James F.; Seong, Ihn Sik; MacDonald, Marcy E.; Shioda, Toshi; Lee, Jong-Min

    2011-01-01

    Huntington's disease is initiated by the expression of a CAG repeat-encoded polyglutamine region in full-length huntingtin, with dominant effects that vary continuously with CAG size. The mechanism could involve a simple gain of function or a more complex gain of function coupled to a loss of function (e.g. dominant negative-graded loss of function). To distinguish these alternatives, we compared genome-wide gene expression changes correlated with CAG size across an allelic series of heterozygous CAG knock-in mouse embryonic stem (ES) cell lines (HdhQ20/7, HdhQ50/7, HdhQ91/7, HdhQ111/7), to genes differentially expressed between Hdhex4/5/ex4/5 huntingtin null and wild-type (HdhQ7/7) parental ES cells. The set of 73 genes whose expression varied continuously with CAG length had minimal overlap with the 754-member huntingtin-null gene set but the two were not completely unconnected. Rather, the 172 CAG length-correlated pathways and 238 huntingtin-null significant pathways clustered into 13 shared categories at the network level. A closer examination of the energy metabolism and the lipid/sterol/lipoprotein metabolism categories revealed that CAG length-correlated genes and huntingtin-null-altered genes either were different members of the same pathways or were in unique, but interconnected pathways. Thus, varying the polyglutamine size in full-length huntingtin produced gene expression changes that were distinct from, but related to, the effects of lack of huntingtin. These findings support a simple gain-of-function mechanism acting through a property of the full-length huntingtin protein and point to CAG-correlative approaches to discover its effects. Moreover, for therapeutic strategies based on huntingtin suppression, our data highlight processes that may be more sensitive to the disease trigger than to decreased huntingtin levels. PMID:21536587

  3. [The role of the serotonin system in the stress response of various cells

    NASA Technical Reports Server (NTRS)

    Belzhelarskaia, S. N.; Satton, F. F.; Sutton, F. (Principal Investigator)

    2003-01-01

    The recombinant mouse brain serotonin receptor (5HT1c) was used to study the response of plant cells and oocytes to a stress signal activated by the serotonin-serotonin receptor interaction and associated Ca2+ flow. Based on plant expression vectors, recombinant constructs were obtained to direct production of 5HT1c fused with the green fluorescent protein in plant cells. The mRNAs for hybrid proteins were synthesized in an in vitro transcription system. The expression and function of the hybrid protein and the function of the associated ion channels were electrophysiologically studied in Xenopus laevis oocytes injected with the hybrid mRNA. The hybrid protein was functional and changed the operation of the Ca2+ channel in oocytes. To study the expression of the hybrid constructs in plant cells, the in vitro transcription product was inoculated in tobacco leaves, which then fluoresced.

  4. Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs

    NASA Astrophysics Data System (ADS)

    Médoc, Vincent; Rigaud, Thierry; Motreuil, Sébastien; Perrot-Minnot, Marie-Jeanne; Bollache, Loïc

    2011-10-01

    Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite's transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host-parasite and predator-parasite links.

  5. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.

    PubMed

    Hänzi, Sara; Straka, Hans

    2017-01-15

    During the post-embryonic developmental growth of animals, a number of physiological parameters such as locomotor performance, dynamics and behavioural repertoire are adjusted to match the requirements determined by changes in body size, proportions and shape. Moreover, changes in movement parameters also cause changes in the dynamics of self-generated sensory stimuli, to which motion-detecting sensory systems have to adapt. Here, we examined head movements and swimming kinematics of Xenopus laevis tadpoles with a body length of 10-45 mm (developmental stage 46-54) and compared these parameters with fictive swimming, recorded as ventral root activity in semi-intact in vitro preparations. Head movement kinematics was extracted from high-speed video recordings of freely swimming tadpoles. Analysis of these locomotor episodes indicated that the swimming frequency decreased with development, along with the angular velocity and acceleration of the head, which represent self-generated vestibular stimuli. In contrast, neither head oscillation amplitude nor forward velocity changed with development despite the ∼3-fold increase in body size. The comparison between free and fictive locomotor dynamics revealed very similar swimming frequencies for similarly sized animals, including a comparable developmental decrease of the swimming frequency. Body morphology and the motor output rhythm of the spinal central pattern generator therefore develop concurrently. This study thus describes development-specific naturalistic head motion profiles, which form the basis for more natural stimuli in future studies probing the vestibular system. © 2017. Published by The Company of Biologists Ltd.

  6. EPConDB: a web resource for gene expression related to pancreatic development, beta-cell function and diabetes.

    PubMed

    Mazzarelli, Joan M; Brestelli, John; Gorski, Regina K; Liu, Junmin; Manduchi, Elisabetta; Pinney, Deborah F; Schug, Jonathan; White, Peter; Kaestner, Klaus H; Stoeckert, Christian J

    2007-01-01

    EPConDB (http://www.cbil.upenn.edu/EPConDB) is a public web site that supports research in diabetes, pancreatic development and beta-cell function by providing information about genes expressed in cells of the pancreas. EPConDB displays expression profiles for individual genes and information about transcripts, promoter elements and transcription factor binding sites. Gene expression results are obtained from studies examining tissue expression, pancreatic development and growth, differentiation of insulin-producing cells, islet or beta-cell injury, and genetic models of impaired beta-cell function. The expression datasets are derived using different microarray platforms, including the BCBC PancChips and Affymetrix gene expression arrays. Other datasets include semi-quantitative RT-PCR and MPSS expression studies. For selected microarray studies, lists of differentially expressed genes, derived from PaGE analysis, are displayed on the site. EPConDB provides database queries and tools to examine the relationship between a gene, its transcriptional regulation, protein function and expression in pancreatic tissues.

  7. Recovery of facial expressions using functional electrical stimulation after full-face transplantation.

    PubMed

    Topçu, Çağdaş; Uysal, Hilmi; Özkan, Ömer; Özkan, Özlenen; Polat, Övünç; Bedeloğlu, Merve; Akgül, Arzu; Döğer, Ela Naz; Sever, Refik; Çolak, Ömer Halil

    2018-03-06

    We assessed the recovery of 2 face transplantation patients with measures of complexity during neuromuscular rehabilitation. Cognitive rehabilitation methods and functional electrical stimulation were used to improve facial emotional expressions of full-face transplantation patients for 5 months. Rehabilitation and analyses were conducted at approximately 3 years after full facial transplantation in the patient group. We report complexity analysis of surface electromyography signals of these two patients in comparison to the results of 10 healthy individuals. Facial surface electromyography data were collected during 6 basic emotional expressions and 4 primary facial movements from 2 full-face transplantation patients and 10 healthy individuals to determine a strategy of functional electrical stimulation and understand the mechanisms of rehabilitation. A new personalized rehabilitation technique was developed using the wavelet packet method. Rehabilitation sessions were applied twice a month for 5 months. Subsequently, motor and functional progress was assessed by comparing the fuzzy entropy of surface electromyography data against the results obtained from patients before rehabilitation and the mean results obtained from 10 healthy subjects. At the end of personalized rehabilitation, the patient group showed improvements in their facial symmetry and their ability to perform basic facial expressions and primary facial movements. Similarity in the pattern of fuzzy entropy for facial expressions between the patient group and healthy individuals increased. Synkinesis was detected during primary facial movements in the patient group, and one patient showed synkinesis during the happiness expression. Synkinesis in the lower face region of one of the patients was eliminated for the lid tightening movement. The recovery of emotional expressions after personalized rehabilitation was satisfactory to the patients. The assessment with complexity analysis of sEMG data can be

  8. Fab is the most efficient format to express functional antibodies by yeast surface display.

    PubMed

    Sivelle, Coline; Sierocki, Raphaël; Ferreira-Pinto, Kelly; Simon, Stéphanie; Maillere, Bernard; Nozach, Hervé

    2018-04-30

    Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.

  9. P2Y12 expression and function in alternatively activated human microglia

    PubMed Central

    Ase, Ariel R.; Kinsara, Angham; Rao, Vijayaraghava T.S.; Michell-Robinson, Mackenzie; Leong, Soo Yuen; Butovsky, Oleg; Ludwin, Samuel K.; Séguéla, Philippe; Bar-Or, Amit; Antel, Jack P.

    2015-01-01

    Objective: To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. Methods: We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. Results: We demonstrated that compared to resting and classically activated (M1) human microglia, P2Y12 expression is increased under alternatively activated (M2) conditions. In response to ADP, the endogenous ligand of P2Y12, M2 microglia have increased ligand-mediated calcium responses, which are blocked by selective P2Y12 antagonism. P2Y12 antagonism was also shown to decrease migratory and inflammatory responses in human microglia upon exposure to nucleotides that are released during CNS injury; no effects were observed in human monocytes or macrophages. In situ experiments confirm that P2Y12 is selectively expressed on human microglia and elevated under neuropathologic conditions that promote Th2 responses, such as parasitic CNS infection. Conclusion: These findings provide insight into the roles of M2 microglia in the context of neuroinflammation and suggest a mechanism to selectively target a functionally unique population of myeloid cells in the CNS. PMID:25821842

  10. Can Automated Facial Expression Analysis Show Differences Between Autism and Typical Functioning?

    PubMed

    Borsos, Zsófia; Gyori, Miklos

    2017-01-01

    Exploratory analyses of emotional expressions using a commercially available facial expression recognition software are reported, from the context of a serious game for screening purposes. Our results are based on a comparative analysis of two matched groups of kindergarten-age children (high-functioning children with autism spectrum condition: n=13; typically developing children: n=13). Results indicate that this technology has the potential to identify autism-specific emotion expression features, and may play a role in affective diagnostic and assistive technologies.

  11. Actions of Hydrogen Sulfide on Sodium Transport Processes across Native Distal Lung Epithelia (Xenopus laevis)

    PubMed Central

    Erb, Alexandra; Althaus, Mike

    2014-01-01

    Hydrogen sulfide (H2S) is well known as a highly toxic environmental chemical threat. Prolonged exposure to H2S can lead to the formation of pulmonary edema. However, the mechanisms of how H2S facilitates edema formation are poorly understood. Since edema formation can be enhanced by an impaired clearance of electrolytes and, consequently, fluid across the alveolar epithelium, it was questioned whether H2S may interfere with transepithelial electrolyte absorption. Electrolyte absorption was electrophysiologically measured across native distal lung preparations (Xenopus laevis) in Ussing chambers. The exposure of lung epithelia to H2S decreased net transepithelial electrolyte absorption. This was due to an impairment of amiloride-sensitive sodium transport. H2S inhibited the activity of the Na+/K+-ATPase as well as lidocaine-sensitive potassium channels located in the basolateral membrane of the epithelium. Inhibition of these transport molecules diminishes the electrochemical gradient which is necessary for transepithelial sodium absorption. Since sodium absorption osmotically facilitates alveolar fluid clearance, interference of H2S with the epithelial transport machinery provides a mechanism which enhances edema formation in H2S-exposed lungs. PMID:24960042

  12. Functional role of Runx3 in the regulation of aggrecan expression during cartilage development.

    PubMed

    Wigner, Nathan A; Soung, Do Y; Einhorn, Thomas A; Drissi, Hicham; Gerstenfeld, Louis C

    2013-11-01

    Runx2 and Runx3 are known to be expressed in the growth plate during endochondral bone formation. Here we addressed the functional role of Runx3 as distinct from Runx2 by using two models of postnatal bone repair: fracture healing that proceeds by an endochondral process and marrow ablation that proceeds by only an intramembranous process. Both Runx2 and Runx3 mRNAs were differentially up regulated during fracture healing. In contrast, only Runx2 showed increased expression after marrow ablation. During fracture healing, Runx3 was expressed earlier than Runx2, was concurrent with the period of chondrogenesis, and coincident with maximal aggrecan expression a protein associated with proliferating and permanent cartilage. Immunohistological analysis showed Runx3 protein was also expressed by chondrocytes in vivo. In contrast, Runx2 was expressed later during chondrocyte hypertrophy, and primary bone formation. The functional activities of Runx3 during chondrocyte differentiation were assessed by examining its regulatory actions on aggrecan gene expression. Aggrecan mRNA levels and aggrecan promoter activity were enhanced in response to the over-expression of either Runx2 and Runx3 in ATDC5 chondrogenic cell line, while sh-RNA knocked down of each Runx protein showed that only Runx3 knock down specifically suppressed aggrecan mRNA expression and promoter activity. ChIP assay demonstrated that Runx3 interactions were selective to sites within the aggrecan promoter and were only observed during early periods of chondrogenesis before hypertrophy. Our studies suggest that Runx3 positively regulates aggrecan expression and suggest that its function is more limited to cartilage development than to bone. In aggregate these data further suggest that the various members of the Runx transcription factors are involved in the coordination of chondrocyte development, maturation, and hypertrophy during endochondral bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  13. The Sperm-surface glycoprotein, SGP, is necessary for fertilization in the frog, Xenopus laevis.

    PubMed

    Nagai, Keita; Ishida, Takuya; Hashimoto, Takafumi; Harada, Yuichirou; Ueno, Shuichi; Ueda, Yasushi; Kubo, Hideo; Iwao, Yasuhiro

    2009-06-01

    To identify a molecule involved in sperm-egg plasma membrane binding at fertilization, a monoclonal antibody against a sperm-surface glycoprotein (SGP) was obtained by immunizing mice with a sperm membrane fraction of the frog, Xenopus laevis, followed by screening of the culture supernatants based on their inhibitory activity against fertilization. The fertilization of both jellied and denuded eggs was effectively inhibited by pretreatment of sperm with intact anti-SGP antibody as well as its Fab fragment, indicating that the antibody recognizes a molecule on the sperm's surface that is necessary for fertilization. On Western blots, the anti-SGP antibody recognized large molecules, with molecular masses of 65-150 kDa and minor smaller molecules with masses of 20-28 kDa in the sperm membrane vesicles. SGP was distributed over nearly the entire surface of the sperm, probably as an integral membrane protein in close association with microfilaments. More membrane vesicles containing SGP bound to the surface were found in the animal hemisphere compared with the vegetal hemisphere in unfertilized eggs, but the vesicle-binding was not observed in fertilized eggs. These results indicate that SGP mediates sperm-egg membrane binding and is responsible for the establishment of fertilization in Xenopus.

  14. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  15. Emotional Expressivity and Emotion Regulation: Relation to Academic Functioning among Elementary School Children

    ERIC Educational Resources Information Center

    Kwon, Kyongboon; Hanrahan, Amanda R.; Kupzyk, Kevin A.

    2017-01-01

    We examined emotional expressivity (i.e., happiness, sadness, and anger) and emotion regulation (regulation of exuberance, sadness, and anger) as they relate to academic functioning (motivation, engagement, and achievement). Also, we tested the premise that emotional expressivity and emotion regulation are indirectly associated with achievement…

  16. Expression and function of methylthioadenosine phosphorylase in chronic liver disease.

    PubMed

    Czech, Barbara; Dettmer, Katja; Valletta, Daniela; Saugspier, Michael; Koch, Andreas; Stevens, Axel P; Thasler, Wolfgang E; Müller, Martina; Oefner, Peter J; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2013-01-01

    To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease. MTAP expression was analyzed by qRT-PCR, Western blot and immunohistochemical analysis. Levels of MTA were determined by liquid chromatography-tandem mass spectrometry. MTAP was downregulated in hepatocytes in murine fibrosis models and in patients with chronic liver disease, leading to a concomitant increase in MTA levels. In contrast, activated hepatic stellate cells (HSCs) showed strong MTAP expression in cirrhotic livers. However, also MTA levels in activated HSCs were significantly higher than in hepatocytes, and there was a significant correlation between MTA levels and collagen expression in diseased human liver tissue indicating that activated HSCs significantly contribute to elevated MTA in diseased livers. MTAP suppression by siRNA resulted in increased MTA levels, NFκB activation and apoptosis resistance, while overexpression of MTAP caused the opposite effects in HSCs. The anti-apoptotic effect of low MTAP expression and high MTA levels, respectively, was mediated by induced expression of survivin, while inhibition of survivin abolished the anti-apoptotic effect of MTA on HSCs. Treatment with a DNA demethylating agent induced MTAP and reduced survivin expression, while oxidative stress reduced MTAP levels but enhanced survivin expression in HSCs. MTAP mediated regulation of MTA links polyamine metabolism with NFκB activation and apoptosis in HSCs. MTAP and MTAP modulating mechanisms appear as promising prognostic markers and therapeutic targets for hepatic fibrosis.

  17. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2012-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions

  18. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2011-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions.

  19. Facial emotion recognition, socio-occupational functioning and expressed emotions in schizophrenia versus bipolar disorder.

    PubMed

    Thonse, Umesh; Behere, Rishikesh V; Praharaj, Samir Kumar; Sharma, Podila Sathya Venkata Narasimha

    2018-06-01

    Facial emotion recognition deficits have been consistently demonstrated in patients with severe mental disorders. Expressed emotion is found to be an important predictor of relapse. However, the relationship between facial emotion recognition abilities and expressed emotions and its influence on socio-occupational functioning in schizophrenia versus bipolar disorder has not been studied. In this study we examined 91 patients with schizophrenia and 71 with bipolar disorder for psychopathology, socio occupational functioning and emotion recognition abilities. Primary caregivers of 62 patients with schizophrenia and 49 with bipolar disorder were assessed on Family Attitude Questionnaire to assess their expressed emotions. Patients of schizophrenia and bipolar disorder performed similarly on the emotion recognition task. Patients with schizophrenia group experienced higher critical comments and had a poorer socio-occupational functioning as compared to patients with bipolar disorder. Poorer socio-occupational functioning in patients with schizophrenia was significantly associated with greater dissatisfaction in their caregivers. In patients with bipolar disorder, poorer emotion recognition scores significantly correlated with poorer adaptive living skills and greater hostility and dissatisfaction in their caregivers. The findings of our study suggest that emotion recognition abilities in patients with bipolar disorder are associated with negative expressed emotions leading to problems in adaptive living skills. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Prx-1 expression in Xenopus laevis scarless skin-wound healing and its resemblance to epimorphic regeneration.

    PubMed

    Yokoyama, Hitoshi; Maruoka, Tamae; Aruga, Akio; Amano, Takanori; Ohgo, Shiro; Shiroishi, Toshihiko; Tamura, Koji

    2011-12-01

    Despite a strong clinical need for inducing scarless wound healing, the molecular factors required to accomplish it are unknown. Although skin-wound healing in adult mammals often results in scarring, some amphibians can regenerate injured body parts, even an amputated limb, without it. To understand the mechanisms of perfect skin-wound healing in regenerative tetrapods, we studied the healing process in young adult Xenopus "froglets" after experimental skin excision. We found that the excision wound healed completely in Xenopus froglets, without scarring. Mononuclear cells expressing a homeobox gene, prx1, accumulated under the new epidermis of skin wounds on the limb and trunk and at the regenerating limb. In transgenic Xenopus froglets expressing a reporter for the mouse prx1 limb-specific enhancer, activity was seen in the healing skin and in the regenerating limb. Comparable activity did not accompany skin-wound healing in adult mice. Our results suggest that scarless skin-wound healing may require activation of the prx1 limb enhancer, and competence to activate the enhancer is probably a prerequisite for epimorphic regeneration, such as limb regeneration. Finally, the induction of this prx1 enhancer activity may be useful as a reliable marker for therapeutically induced scarless wound healing in mammals.

  1. Functional integration of the posterior superior temporal sulcus correlates with facial expression recognition.

    PubMed

    Wang, Xu; Song, Yiying; Zhen, Zonglei; Liu, Jia

    2016-05-01

    Face perception is essential for daily and social activities. Neuroimaging studies have revealed a distributed face network (FN) consisting of multiple regions that exhibit preferential responses to invariant or changeable facial information. However, our understanding about how these regions work collaboratively to facilitate facial information processing is limited. Here, we focused on changeable facial information processing, and investigated how the functional integration of the FN is related to the performance of facial expression recognition. To do so, we first defined the FN as voxels that responded more strongly to faces than objects, and then used a voxel-based global brain connectivity method based on resting-state fMRI to characterize the within-network connectivity (WNC) of each voxel in the FN. By relating the WNC and performance in the "Reading the Mind in the Eyes" Test across participants, we found that individuals with stronger WNC in the right posterior superior temporal sulcus (rpSTS) were better at recognizing facial expressions. Further, the resting-state functional connectivity (FC) between the rpSTS and right occipital face area (rOFA), early visual cortex (EVC), and bilateral STS were positively correlated with the ability of facial expression recognition, and the FCs of EVC-pSTS and OFA-pSTS contributed independently to facial expression recognition. In short, our study highlights the behavioral significance of intrinsic functional integration of the FN in facial expression processing, and provides evidence for the hub-like role of the rpSTS for facial expression recognition. Hum Brain Mapp 37:1930-1940, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    PubMed Central

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  3. Partially Redundant Enhancers Cooperatively Maintain Mammalian Pomc Expression Above a Critical Functional Threshold

    PubMed Central

    Lam, Daniel D.; de Souza, Flavio S. J.; Nasif, Sofia; Yamashita, Miho; López-Leal, Rodrigo; Meece, Kana; Sampath, Harini; Mercer, Aaron J.; Wardlaw, Sharon L.

    2015-01-01

    Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in

  4. Expression and Function of Methylthioadenosine Phosphorylase in Chronic Liver Disease

    PubMed Central

    Czech, Barbara; Dettmer, Katja; Valletta, Daniela; Saugspier, Michael; Koch, Andreas; Stevens, Axel P.; Thasler, Wolfgang E.; Müller, Martina; Oefner, Peter J.; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2013-01-01

    To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease. Design MTAP expression was analyzed by qRT-PCR, Western blot and immunohistochemical analysis. Levels of MTA were determined by liquid chromatography-tandem mass spectrometry. Results MTAP was downregulated in hepatocytes in murine fibrosis models and in patients with chronic liver disease, leading to a concomitant increase in MTA levels. In contrast, activated hepatic stellate cells (HSCs) showed strong MTAP expression in cirrhotic livers. However, also MTA levels in activated HSCs were significantly higher than in hepatocytes, and there was a significant correlation between MTA levels and collagen expression in diseased human liver tissue indicating that activated HSCs significantly contribute to elevated MTA in diseased livers. MTAP suppression by siRNA resulted in increased MTA levels, NFκB activation and apoptosis resistance, while overexpression of MTAP caused the opposite effects in HSCs. The anti-apoptotic effect of low MTAP expression and high MTA levels, respectively, was mediated by induced expression of survivin, while inhibition of survivin abolished the anti-apoptotic effect of MTA on HSCs. Treatment with a DNA demethylating agent induced MTAP and reduced survivin expression, while oxidative stress reduced MTAP levels but enhanced survivin expression in HSCs. Conclusion MTAP mediated regulation of MTA links polyamine metabolism with NFκB activation and apoptosis in HSCs. MTAP and MTAP modulating mechanisms appear as promising prognostic markers and therapeutic targets for hepatic fibrosis. PMID:24324622

  5. Vanilloid Receptor-1 (TRPV1) Expression and Function in the Vasculature of the Rat

    PubMed Central

    Czikora, Ágnes; Pásztor, Enikő T.; Dienes, Beatrix; Bai, Péter; Csernoch, László; Rutkai, Ibolya; Csató, Viktória; Mányiné, Ivetta S.; Pórszász, Róbert; Édes, István; Papp, Zoltán; Boczán, Judit

    2014-01-01

    Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1. PMID:24217926

  6. Cyclooxygenase Expression and Platelet Function in Healthy Dogs Receiving Low Dose Aspirin

    PubMed Central

    Dudley, Alicia; Thomason, John; Fritz, Sara; Grady, Jesse; Stokes, John; Wills, Robert; Pinchuk, Lesya; Mackin, Andrew; Lunsford, Kari

    2014-01-01

    Background Low dose aspirin is used to prevent thromboembolic complications in dogs, but some animals are non-responsive to the anti-platelet effects of aspirin (‘aspirin resistance’). Hypothesis/Objectives That low dose aspirin would inhibit platelet function, decrease thromboxane synthesis, and alter platelet cyclooxygenase (COX) expression. Animals Twenty-four healthy dogs Methods A repeated measures study. Platelet function (PFA-100® closure time, collagen/epinephrine), platelet COX-1 and COX-2 expression, and urine 11-dehydro-thromboxane B2 (11-dTXB2) was evaluated prior to and during aspirin administration (1 mg/kg Q24 hours PO, 10 days). Based on prolongation of closure times after aspirin administration, dogs were divided into categories according to aspirin responsiveness: responders, non-responders, and inconsistent responders. Results Low dose aspirin increased closure times significantly (62% by Day 10, P<0.001), with an equal distribution among aspirin responsiveness categories, 8 dogs per group. Platelet COX-1 mean fluorescent intensity (MFI) increased significantly during treatment, 13% on Day 3 (range, −29.7%–136.1%) (P=0.047) and 72% on Day 10 (range, −0.37–210.36%) (P<0.001). Platelet COX-2 MFI increased significantly by 34% (range, −29.2–270.4%) on Day 3 (P = 0.003) and 74% (range, −19.7–226.2%) on Day 10 (P<0.001). Urinary 11-dTXB2 concentrations significantly (P=0.005, P<0.001) decreased at both time points. There was no difference between aspirin responsiveness and either platelet COX expression or thromboxane production. Conclusions and Clinical Importance Low dose aspirin consistently inhibits platelet function in approximately one third of healthy dogs, despite decreased thromboxane synthesis and increased platelet COX expression in most dogs. Pre-treatment COX isoform expression did not predict aspirin resistance. PMID:23278865

  7. Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage

    PubMed Central

    D’Atri, L. P.; Etulain, J.; Rivadeneyra, L.; Lapponi, M. J.; Centurion, M.; Cheng, K.; Yin, H.; Schattner, M.

    2015-01-01

    Summary Background In addition to their key role in hemostasis, platelets and megakaryocytes also regulate immune and inflammatory responses, in part through their expression of Toll-like receptors (TLRs). Among the TLRs, TLR3 recognizes double-stranded (ds) RNA associated with viral infection. Thrombocytopenia is a frequent complication of viral infection. However, the expression and functionality of TLR3 in megakaryocytes and platelets is not yet well understood. Objective To study the expression and functionality of TLR3 in the megakaryocytic lineage. Methods and Results RT-PCR, flow cytometric, and immunofluorescence assays showed that TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets. Immunoblotting assays showed that stimulation of megakaryocytes with two synthetic agonists of TLR3, Poly(I:C) and Poly(A:U), activated the NF-κB, PI3K/Akt, ERK1/2, and p38 pathways. TLR3-megakaryocyte activation resulted in reduced platelet production in vitro and IFN-β release through the PI3K/Akt and NF-κB signaling pathways. TLR3 ligands potentiated the aggregation mediated by classical platelet agonists. This effect was also observed for ATP release, but not for P-selectin or CD40L membrane exposure, indicating that TLR3 activation was not involved in alpha granule release. In addition, TLR3 agonists induced activation of the NF-κB, PI3K/Akt, and ERK1/2 pathways in platelets. Reduction of platelet production and platelet fibrinogen binding mediated by Poly(I:C) or Poly(A:U) were prevented by the presence of an inhibitor of TLR3/dsRNA complex. Conclusions Our findings indicate that functional TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets, and suggest a potential role for this receptor in the megakaryo/thrombopoiesis alterations that occur in viral infections. PMID:25594115

  8. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    PubMed

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  9. The structure of a gene co-expression network reveals biological functions underlying eQTLs.

    PubMed

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology.

  10. Symptoms, visual function, and mucin expression of eyes with tear film instability.

    PubMed

    Shimazaki-Den, Seika; Dogru, Murat; Higa, Kazunari; Shimazaki, Jun

    2013-09-01

    We examined symptoms, tear stability, visual function, and conjunctival cytology in eyes with an unstable tear film (UTF), expressed as a short tear film breakup time without epithelial damage or low tear secretion, and compared the results with those from eyes with aqueous deficiency (AD) associated with epithelial damage, and healthy eyes. We divided the patients with ocular discomfort into 2 groups according to the breakup time, Schirmer value, and epithelial staining score: UTF group (≤5 seconds, >5 mm, and <3 points; 21 eyes of 21 patients) and AD group (≤5 seconds, ≤5 mm, and ≥3 points; 21 eyes of 21 patients). We examined all patients and 17 healthy subjects for symptoms, tear functions, tear film stability by tear film lipid layer interferometry and tear film analysis system, and functional visual acuity. Conjunctival impression cytology was performed to investigate changes in goblet cell density, squamous metaplasia, and messenger RNA expression of MUC5AC and MUC16. The symptom scores, tear film analysis system index, and functional visual acuity testing were significantly worse in the UTF and AD groups compared with those in the control group (P < 0.05). The messenger RNA expression levels of MUC5AC and MUC16 were significantly lower in UTF and AD eyes compared with those in the control eyes (P < 0.0001). An UTF itself can cause dry eye symptoms and visual disturbance comparable with those of AD dry eyes.

  11. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles.

    PubMed

    Dedrick, Rebekah M; Marinelli, Laura J; Newton, Gerald L; Pogliano, Kit; Pogliano, Joseph; Hatfull, Graham F

    2013-05-01

    Bacteriophages represent a majority of all life forms, and the vast, dynamic population with early origins is reflected in their enormous genetic diversity. A large number of bacteriophage genomes have been sequenced. They are replete with novel genes without known relatives. We know little about their functions, which genes are required for lytic growth, and how they are expressed. Furthermore, the diversity is such that even genes with required functions - such as virion proteins and repressors - cannot always be recognized. Here we describe a functional genomic dissection of mycobacteriophage Giles, in which the virion proteins are identified, genes required for lytic growth are determined, the repressor is identified, and the transcription patterns determined. We find that although all of the predicted phage genes are expressed either in lysogeny or in lytic growth, 45% of the predicted genes are non-essential for lytic growth. We also describe genes required for DNA replication, show that recombination is required for lytic growth, and that Giles encodes a novel repressor. RNAseq analysis reveals abundant expression of a small non-coding RNA in a lysogen and in late lytic growth, although it is non-essential for lytic growth and does not alter lysogeny. © 2013 Blackwell Publishing Ltd.

  12. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells.

    PubMed

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A

    2017-08-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na + ) and, indirectly, serum potassium (K + ) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ( 22 Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22 Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K + , the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22 Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.

  13. The functional organization of preschool-age children's emotion expressions and actions in challenging situations.

    PubMed

    Dennis, Tracy A; Cole, Pamela M; Wiggins, Crystal N; Cohen, Laura H; Zalewski, Maureen

    2009-08-01

    Although functional links between emotion and action are implied in emotion regulation research, there is limited evidence that specific adaptive actions for coping with a challenge are more probable when certain negative emotions are expressed. The current study examined this question among 3- and 4-year-olds (N = 113; M age = 47.84 months, SD = 6.19). Emotion expressions and actions were observed during 2 challenging tasks: children waited for a gift while the mother worked, and children worked alone to retrieve a prize from a locked box with the wrong key. Angry and happy expressions, compared with sad expressions, were associated with more actions. These actions varied with the nature of the task, reflecting appreciation of situational appropriateness. In addition, when waiting with the mother, happiness was associated with the broadest range of actions, whereas when working alone on the locked box, anger was associated with the broadest range of actions. Results are discussed in terms of the adaptive function of negative emotions and in terms of functional and dimensional models of emotion. Findings have implications for the development of emotion regulation and social-emotional competence. 2009 APA, all rights reserved.

  14. Mouse Insulin Cells Expressing an Inducible RIPCre Transgene Are Functionally Impaired

    PubMed Central

    Teitelman, Gladys; Kedees, Mamdouh

    2015-01-01

    We used cre-lox technology to test whether the inducible expression of Cre minimize the deleterious effect of the enzyme on beta cell function. We studied mice in which Cre is linked to a modified estrogen receptor (ER), and its expression is controlled by the rat insulin promoter (RIP). Following the injection of tamoxifen (TM), CreER- migrates to the nucleus and promotes the appearance of a reporter protein, enhanced yellow fluorescent protein (EYFP), in cells. Immunocytochemical analysis indicated that 46.6 ± 2.1% insulin cells of adult RIPCreER- EYFP expressed EYFP. RIPCreER-EYFP (+TM) mice were normoglycemic throughout the study, and their glucose tolerance test results were similar to control CD-1 mice. However, an extended exposure to reagents that stimulate insulin synthesis was detrimental to the survival of IN+EYFP+cells. The administration of an inhibitor of the enzyme dipeptidyl-peptidase (DPP4i), which prevents the cleavage of glucagon-like peptide (GLP-1), to adult RIPCreER-EYFP mice lead to a decrease in the percentage of IN+EYFP+ to 17.5 ± 1.73 and a significant increase in apoptotic cells in islets. Similarly, a 2-week administration of the GLP-1 analog exendin 4 (ex-4) induced an almost complete ablation of IN+ expressing a different reporter protein and a significant decrease in the beta cell mass and rate of beta cell proliferation. Since normal beta cells do not die when induced to increase insulin synthesis, our observations indicate that insulin cells expressing an inducible RIPCre transgene are functionally deficient. Studies employing these mice should carefully consider the pitfalls of the Cre-Lox technique. PMID:25533471

  15. Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii

    PubMed Central

    Hudson, Lauren E.; Fasken, Milo B.; McDermott, Courtney D.; McBride, Shonna M.; Kuiper, Emily G.; Guiliano, David B.; Corbett, Anita H.; Lamb, Tracey J.

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders. PMID:25391025

  16. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    PubMed

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  17. Attentional avoidance of fearful facial expressions following early life stress is associated with impaired social functioning.

    PubMed

    Humphreys, Kathryn L; Kircanski, Katharina; Colich, Natalie L; Gotlib, Ian H

    2016-10-01

    Early life stress is associated with poorer social functioning. Attentional biases in response to threat-related cues, linked to both early experience and psychopathology, may explain this association. To date, however, no study has examined attentional biases to fearful facial expressions as a function of early life stress or examined these biases as a potential mediator of the relation between early life stress and social problems. In a sample of 154 children (ages 9-13 years) we examined the associations among interpersonal early life stressors (i.e., birth through age 6 years), attentional biases to emotional facial expressions using a dot-probe task, and social functioning on the Child Behavior Checklist. High levels of early life stress were associated with both greater levels of social problems and an attentional bias away from fearful facial expressions, even after accounting for stressors occurring in later childhood. No biases were found for happy or sad facial expressions as a function of early life stress. Finally, attentional biases to fearful faces mediated the association between early life stress and social problems. Attentional avoidance of fearful facial expressions, evidenced by a bias away from these stimuli, may be a developmental response to early adversity and link the experience of early life stress to poorer social functioning. © 2016 Association for Child and Adolescent Mental Health.

  18. Effect of low-level copper and pentachlorophenol exposure on various early life stages of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, D.J.; Stover, E.L.

    1996-12-31

    An evaluation of the effects of low-level copper and pentachlorophenol exposure on various early life stages of the South African clawed frog, Xenopus laevis, was performed using stage-specific and long-term continuous exposures. Stage-specific exposure experiments were conducted such that separate subsets of embryos and larvae from the same clutch were exposed to two toxicants, copper and pentachlorphenol, from 0 d to 4 d (standard Frog Embryo Teratogenesis Assay--Xenopus [FETAX]), 4 d to 8 d, 8 d to 12 d, and 12 d to 16 d. Results from two separate concentration-response experiments indicated that sensitivity to either toxicant increased in eachmore » successive time period. Longer-term exposure studies conducted for 60 to 75 days indicated that copper, but not pentachlorophenol induced reduction deficiency malformations of the hind limb at concentrations as low as 0.05 mg/L. Pentachlorophenol concentrations as low as 0.5 {micro}g/L inhibited tail resorption. However, copper did not adversely affect the process of tail resorption. These results indicated that studies evaluating longer-term developmental processes are important in ecological hazard evaluation.« less

  19. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    PubMed

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  20. Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms

    USGS Publications Warehouse

    Jooste, A.M.; Du Preez, L.H.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G. L.; Solomon, K.R.

    2005-01-01

    The potential effects of atrazine on gonadal development in metamorphs and subadults of the African clawed frog (Xenopus laevis) were studied under conditions of natural photoperiod and temperatures in outdoor microcosms from August 2002 to June 2003 in South Africa. Triplicate 1100 L microcosms for each nominal concentration of 0.0, 1, 10, and 25 ??g of atrazine/L were used. Measured atrazine concentrations varied <25% throughout the study, and no atrazine was detected in the control microcosms. Tadpoles developed well at all concentrations. On the basis of histological examination of testes of recently metamorphosed stage 66 frogs, 57% of the individuals in the reference group exhibited testicular oocytes as compared with 57, 59, and 39% of the 1, 10, and 25 ??g/L atrazine groups, respectively. The average prevalence of testicular oocytes for all of the treatments including the controls was 54% in a single testis, while, in 35% of individuals, testicular oocytes were observed in both testes. The number of testicular oocytes per individual ranged from 0 to 58 with means of 9.5, 9.8, 8.5, and 11.1 for the 0.0, 1, 10, and 25 ??g of atrazine/L groups, respectively. Ten months after metamorphosis, another subset of juveniles was examined, and the maximum number of testicular oocytes observed was five in one animal. The presence of testicular oocytes was not related to exposure to atrazine and may be a natural phenomenon during ontogeny. ?? 2005 American Chemical Society.

  1. Changes in Oscillatory Dynamics in the Cell Cycle of Early Xenopus laevis Embryos

    PubMed Central

    Tsai, Tony Y.-C.; Theriot, Julie A.; Ferrell, James E.

    2014-01-01

    During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min) and the subsequent 11 cycles are short (∼30 min) and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development. PMID:24523664

  2. Automated Discovery of Functional Generality of Human Gene Expression Programs

    PubMed Central

    Gerber, Georg K; Dowell, Robin D; Jaakkola, Tommi S; Gifford, David K

    2007-01-01

    An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-κB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal “cross-talk,” and

  3. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.

    PubMed

    Gao, Jie; Li, Junling; Li, Bao-Jun; Yagil, Ezra; Zhang, Jianshe; Du, Shao Jun

    2014-01-01

    Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.

  4. Functional discovery via a compendium of expression profiles.

    PubMed

    Hughes, T R; Marton, M J; Jones, A R; Roberts, C J; Stoughton, R; Armour, C D; Bennett, H A; Coffey, E; Dai, H; He, Y D; Kidd, M J; King, A M; Meyer, M R; Slade, D; Lum, P Y; Stepaniants, S B; Shoemaker, D D; Gachotte, D; Chakraburtty, K; Simon, J; Bard, M; Friend, S H

    2000-07-07

    Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.

  5. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.

    PubMed

    Fukuzawa, Toshihiko

    2010-10-01

    Unusual light-reflecting pigment cells, "white pigment cells", specifically appear in the periodic albino mutant (a(p) /a(p)) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores.

  6. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis

    PubMed Central

    2010-01-01

    Unusual light-reflecting pigment cells, “white pigment cells”, specifically appear in the periodic albino mutant (ap/ap) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores. PMID:20859642

  7. Protease Activated Receptor-2 Expression and Function in Asthmatic Bronchial Smooth Muscle

    PubMed Central

    Gilbert, Guillaume; Carvalho, Gabrielle; Trian, Thomas; Ozier, Annaig; Gillibert-Duplantier, Jennifer; Ousova, Olga; Maurat, Elise; Thumerel, Matthieu; Quignard, Jean-François; Girodet, Pierre-Olivier; Marthan, Roger; Berger, Patrick

    2014-01-01

    Asthmatic bronchial smooth muscle (BSM) is characterized by structural remodeling associated with mast cell infiltration displaying features of chronic degranulation. Mast cell-derived tryptase can activate protease activated receptor type-2 (PAR-2) of BSM cells. The aims of the present study were (i) to evaluate the expression of PAR-2 in both asthmatic and non asthmatic BSM cells and, (ii) to analyze the effect of prolonged stimulation of PAR-2 in asthmatic BSM cells on cell signaling and proliferation. BSM cells were obtained from both 33 control subjects and 22 asthmatic patients. PAR-2 expression was assessed by flow cytometry, western blot and quantitative RT-PCR. Calcium response, transduction pathways and proliferation were evaluated before and following PAR-2 stimulation by SLIGKV-NH2 or trypsin for 1 to 3 days. Asthmatic BSM cells expressed higher basal levels of functional PAR-2 compared to controls in terms of mRNA, protein expression and calcium response. When PAR-2 expression was increased by means of lentivirus in control BSM cells to a level similar to that of asthmatic cells, PAR-2-induced calcium response was then similar in both types of cell. However, repeated PAR-2 stimulations increased the proliferation of asthmatic BSM cells but not that of control BSM cells even following lentiviral over-expression of PAR-2. Such an increased proliferation was related to an increased phosphorylation of ERK in asthmatic BSM cells. In conclusion, we have demonstrated that asthmatic BSM cells express increased baseline levels of functional PAR-2. This higher basal level of PAR-2 accounts for the increased calcium response to PAR-2 stimulation, whereas the increased proliferation to repeated PAR-2 stimulation is related to increased ERK phosphorylation. PMID:24551046

  8. A new sawshark, Pristiophorus laevis, from the Eocene of Antarctica with comments on Pristiophorus lanceolatus.

    PubMed

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A; Kriwet, Jürgen

    2017-01-01

    The highly fossiliferous Eocene deposits of the Antarctic Peninsula are among the most productive sites for fossil remains in the Southern Hemisphere and offer rare insights into high-latitude faunas during the Palaeogene. Chondrichthyans, which are represented by abundant isolated remains, seemingly dominate the marine assemblages. Eocene Antarctic sawsharks have only been known from few isolated rostral spines up to now, that were assigned to Pristiophorus lanceolatus . Here, we present the first oral teeth of a sawshark from the Eocene of Seymour Island and a re-evaluation of previously described Pristiophorus remains from Gondwana consisting exclusively of rostral spines. The holotype of Pristiophorus lanceolatus represents a single, abraded and insufficiently illustrated spine from the Oligocene of New Zealand. All other Cenozoic rostral spines assigned to this species are morphologically very indistinct and closely resemble those of living taxa. Consequently, we regard this species as dubious and introduce a new species, Pristiophorus laevis , based on oral teeth. The combination of dental characteristics of the new species makes it unique compared to all other described species based on oral teeth. Rostral spines from the Eocene of Seymour Island are assigned to this new species whereas those from other Cenozoic Gondwana localities remain ambiguous.

  9. A new sawshark, Pristiophorus laevis, from the Eocene of Antarctica with comments on Pristiophorus lanceolatus

    PubMed Central

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A.; Kriwet, Jürgen

    2017-01-01

    The highly fossiliferous Eocene deposits of the Antarctic Peninsula are among the most productive sites for fossil remains in the Southern Hemisphere and offer rare insights into high-latitude faunas during the Palaeogene. Chondrichthyans, which are represented by abundant isolated remains, seemingly dominate the marine assemblages. Eocene Antarctic sawsharks have only been known from few isolated rostral spines up to now, that were assigned to Pristiophorus lanceolatus. Here, we present the first oral teeth of a sawshark from the Eocene of Seymour Island and a re-evaluation of previously described Pristiophorus remains from Gondwana consisting exclusively of rostral spines. The holotype of Pristiophorus lanceolatus represents a single, abraded and insufficiently illustrated spine from the Oligocene of New Zealand. All other Cenozoic rostral spines assigned to this species are morphologically very indistinct and closely resemble those of living taxa. Consequently, we regard this species as dubious and introduce a new species, Pristiophorus laevis, based on oral teeth. The combination of dental characteristics of the new species makes it unique compared to all other described species based on oral teeth. Rostral spines from the Eocene of Seymour Island are assigned to this new species whereas those from other Cenozoic Gondwana localities remain ambiguous. PMID:28579693

  10. Embryonic wound healing by apical contraction and ingression in Xenopus laevis.

    PubMed

    Davidson, Lance A; Ezin, Akouavi M; Keller, Ray

    2002-11-01

    We have characterized excisional wounds in the animal cap of early embryos of the frog Xenopus laevis and found that these wounds close accompanied by three distinct processes: (1) the assembly of an actin purse-string in the epithelial cells at the wound margin, (2) contraction and ingression of exposed deep cells, and (3) protrusive activity of epithelial cells at the margin. Microsurgical manipulation allowing fine control over the area and depth of the wound combined with videomicroscopy and confocal analysis enabled us to describe the kinematics and challenge the mechanics of the closing wound. Full closure typically occurs only when the deep, mesenchymal cell-layer of the ectoderm is left intact; in contrast, when deep cells are removed along with the superficial, epithelial cell-layer of the ectoderm, wounds do not close. Actin localizes to the superficial epithelial cell-layer at the wound margin immediately after wounding and forms a contiguous "purse-string" in those cells within 15 min. However, manipulation and closure kinematics of shaped wounds and microsurgical cuts made through the purse-string rule out a major force-generating role for the purse-string. Further analysis of the cell behaviors within the wound show that deep, mesenchymal cells contract their apical surfaces and ingress from the exposed surface. High resolution time-lapse sequences of cells at the leading edge of the wound show that these cells undergo protrusive activity only during the final phases of wound closure as the ectoderm reseals. We propose that assembly of the actin purse-string works to organize and maintain the epithelial sheet at the wound margin, that contraction and ingression of deep cells pulls the wound margins together, and that protrusive activity of epithelial cells at the wound margin reseals the ectoderm and re-establishes tissue integrity during wound healing in the Xenopus embryonic ectoderm. Copyright 2002 Wiley-Liss, Inc.

  11. Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Huey; Shabbir, Arsalan; Molnar, Merced

    2007-03-30

    Multiple pseudogenes have been proposed for embryonic stem (ES) cell-specific genes, and their abundance suggests that some of these potential pseudogenes may be functional. ES cell-specific expression of Oct4 regulates stem cell pluripotency and self-renewing state. Although Oct4 expression has been reported in adult tissues during gene reprogramming, the detected Oct4 signal might be contributed by Oct4 pseudogenes. Among the multiple Oct4 transcripts characterized here is a {approx}1 kb clone derived from P19 embryonal carcinoma stem cells, which shares a {approx}87% sequence homology with the parent Oct4 gene, and has the potential of encoding an 80-amino acid product (designated asmore » Oct4P1). Adenoviral expression of Oct4P1 in mesenchymal stem cells promotes their proliferation and inhibits their osteochondral differentiation. These dual effects of Oct4P1 are reminiscent of the stem cell regulatory function of the parent Oct4, and suggest that Oct4P1 may be a functional pseudogene or a novel Oct4-related gene with a unique function in stem cells.« less

  12. [Recent Advances of Researches on Expression, Function and Regulation of CD22].

    PubMed

    Wu, Xiao-Jing; Shao, Zong-Hong

    2015-04-01

    CD22 is a type I transmembrane protein expressed on most mature B lymphocyte, and plays a significant role in signal transduction pathways. CD22 acts as a co-receptor of the B-cell receptor (BCR) that inhibits the BCR signaling by antigen-receptor interaction. The phosphorylation of CD22 can be triggered by cross-linking of CD22 with the BCR through antigen, then predominantly triggers the dephosphorylation and inactivation of downstream proteins and inhibit the BCR signaling. Autoimmune disease could be caused by the abnormal expression or dysfunction of CD22 which interrupts BCR signaling and then influences the quantity and function of B cells. The further study of the function and regulation of CD22 would help us understanding the pathogenesis of autoimmune disease and setting theoretical basis for its targeting treatment. In this article, the structure and expression of CD22, the ligands of CD22, the regulation of BCR and transmenbrane signaling, the effect of CD22 on B cells, and CD22 and autoimmune diseases were reviewed.

  13. Insulin-like growth factor-I regulates GPER expression and function in cancer cells.

    PubMed

    De Marco, P; Bartella, V; Vivacqua, A; Lappano, R; Santolla, M F; Morcavallo, A; Pezzi, V; Belfiore, A; Maggiolini, M

    2013-02-07

    Functional cross talk between insulin-like growth factor-I (IGF-I) system and estrogen signaling has been largely reported, although the underlying molecular mechanisms remain to be fully elucidated. As GPR30/GPER mediates rapid cell responses to estrogens, we evaluated the potential of IGF-I to regulate GPER expression and function in estrogen receptor (ER)α-positive breast (MCF-7) and endometrial (Ishikawa) cancer cells. We found that IGF-I transactivates the GPER promoter sequence and upregulates GPER mRNA and protein levels in both cells types. Similar data were found, at least in part, in carcinoma-associated fibroblasts. The upregulation of GPER expression by IGF-I involved the IGF-IR/PKCδ/ERK/c-fos/AP1 transduction pathway and required ERα, as ascertained by specific pharmacological inhibitors and gene-silencing. In both MCF-7 and Ishikawa cancer cells, the IGF-I-dependent cell migration required GPER and its main target gene CTGF, whereas the IGF-I-induced proliferation required both GPER and cyclin D1. Our data demonstrate that the IGF-I system regulates GPER expression and function, triggering the activation of a signaling network that leads to the migration and proliferation of cancer cells.

  14. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor

    PubMed Central

    Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L

    2015-01-01

    Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036

  15. Laminar shear stress regulates endothelial kinin B1 receptor expression and function: potential implication in atherogenesis

    PubMed Central

    Duchene, Johan; Cayla, Cécile; Vessillier, Sandrine; Scotland, Ramona; Yamashiro, Kazuo; Lecomte, Florence; Syed, Irfan; Vo, Phuong; Marrelli, Alessandra; Pitzalis, Costantino; Cipollone, Francesco; Schanstra, Joost; Bascands, Jean-Loup; Hobbs, Adrian J; Perretti, Mauro; Ahluwalia, Amrita

    2009-01-01

    OBJECTIVE The pro-inflammatory phenotype induced by low laminar shear stress (LSS) is implicated in atherogenesis. The kinin B1 receptor (B1R), known to be induced by inflammatory stimuli, exerts many pro-inflammatory effects including vasodilatation and leukocyte recruitment. We investigated whether low LSS is a stimulus for endothelial B1R expression and function. METHODS AND RESULTS Human and mouse atherosclerotic plaques expressed high level of B1R mRNA and protein. In addition, B1R expression was upregulated in the aortic arch (low LSS region) of ApoE-/- mice fed a high fat diet compared to vascular regions of high LSS and animals fed normal chow. Of interest, a greater expression of B1R was noticed in endothelial cells from regions of low LSS in aortic arch of ApoE-/- mice. B1R was also upregulated in human umbilical vein endothelial cells (HUVEC) exposed to low LSS (0-2dyn/cm2) compared to physiological LSS (6-10dyn/cm2): an effect similarly evident in murine vascular tissue perfused ex vivo. Functionally, B1R activation increased prostaglandin and CXCL5 expression in cells exposed to low, but not physiological, LSS. IL-1β and ox-LDL induced B1R expression and function in HUVECs, a response substantially enhanced under low LSS conditions and inhibited by blockade of NFκB activation. CONCLUSION Herein, we show that LSS is a major determinant of functional B1R expression in endothelium. Furthermore, whilst physiological high LSS is a powerful repressor of this inflammatory receptor, low LSS at sites of atheroma are associated with substantial upregulation, identifying this receptor as a potential therapeutic target. CONDENSED ABSTRACT Low laminar shear stress (LSS) underlies the pro-inflammatory processes in atherogenesis. Herein, we demonstrate that whilst physiological LSS represses inflammatory kinin B1 receptor (B1R) expression/function, low atherogenic LSS is associated with profound upregulation of both in atherosclerosis in both humans and animal

  16. High-throughput cloning and expression library creation for functional proteomics.

    PubMed

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-05-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dysregulation of chemokine receptor expression and function in leukocytes from ALS patients.

    PubMed

    Perner, Caroline; Perner, Florian; Stubendorff, Beatrice; Förster, Martin; Witte, Otto W; Heidel, Florian H; Prell, Tino; Grosskreutz, Julian

    2018-03-28

    Amyotrophic lateral sclerosis (ALS) is rapidly progressive adult-onset motor neuron disease characterized by the neurodegeneration of both upper and lower motor neurons in the cortex and the spinal cord; the majority of patients succumb to respiratory failure. Although the etiology is not yet fully understood, there is compelling evidence that ALS is a multi-systemic disorder, with peripheral inflammation critically contributing to the disease process. However, the full extent and nature of this immunological dysregulation remains to be established, particularly within circulating blood cells. Therefore, the aim of the present study was to identify dysregulated inflammatory molecules in peripheral blood cells of ALS patients and analyze for functional consequences of the observed findings. To this end, we employed flow cytometry-based screening to quantify the surface expression of major chemokine receptors and integrins. A significantly increased expression of CXCR3, CXCR4, CCL2, and CCL5 was observed on T cells in ALS patients compared to healthy controls. Intriguingly, the expression was even more pronounced in patients with a slow progressive phenotype. To further investigate the functional consequences of this altered surface expression, we used a modified Boyden chamber assay to measure chemotaxis in ALS patient-derived lymphocytes. Interestingly, chemoattraction with the CXCR3-Ligand IP10 led to upregulated migratory behavior of ALS lymphocytes compared to healthy controls. Taken together, our data provides evidence for a functional dysregulation of IP10-directed chemotaxis in peripheral blood cells in ALS patients. However, whether the chemokine itself or its receptor CXCR3, or both, could serve as potential therapeutic targets in ALS requires further investigations.

  18. Effects of endocrine-disrupting contaminants on amphibian oogenesis: methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro.

    PubMed Central

    Pickford, D B; Morris, I D

    1999-01-01

    There is currently little evidence of pollution-induced endocrine dysfunction in amphibia, in spite of widespread concern over global declines in this ecologically diverse group. Data regarding the potential effects of endocrine-disrupting contaminants (EDCs) on reproductive function in amphibia are particularly lacking. We hypothesized that estrogenic EDCs may disrupt progesterone-induced oocyte maturation in the adult amphibian ovary, and tested this with an in vitro germinal vesicle breakdown assay using defolliculated oocytes from the African clawed frog, Xenopus laevis. While a variety of natural and synthetic estrogens and xenoestrogens were inactive in this system, the proestrogenic pesticide methoxychlor was a surprisingly potent inhibitor of progesterone-induced oocyte maturation (median inhibitive concentration, 72 nM). This inhibitory activity was specific to methoxychlor, rather than to its estrogenic contaminants or metabolites, and was not antagonized by the estrogen receptor antagonist ICI 182,780, suggesting that this activity is not estrogenic per se. The inhibitory activity of methoxychlor was dose dependent, reversible, and early acting. However, washout was unable to reverse the effect of short methoxychlor exposure, and methoxychlor did not competitively displace [3H]progesterone from a specific binding site in the oocyte plasma membrane. Therefore, methoxychlor may exert its action not directly at the site of progesterone action, but downstream on early events in maturational signaling, although the precise mechanism of action is unclear. The activity of methoxychlor in this system indicates that xenobiotics may exert endocrine-disrupting effects through interference with progestin-regulated processes and through mechanisms other than receptor antagonism. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:10090707

  19. Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions.

    PubMed

    Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan

    2016-04-01

    DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.

  20. CIITA promoter I CARD-deficient mice express functional MHC class II genes in myeloid and lymphoid compartments.

    PubMed

    Zinzow-Kramer, W M; Long, A B; Youngblood, B A; Rosenthal, K M; Butler, R; Mohammed, A-U-R; Skountzou, I; Ahmed, R; Evavold, B D; Boss, J M

    2012-06-01

    Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood, but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B-cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.

  1. Expression and Function of Connexin 43 in Human Gingival Wound Healing and Fibroblasts

    PubMed Central

    Tarzemany, Rana; Jiang, Guoqiao; Larjava, Hannu; Häkkinen, Lari

    2015-01-01

    Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing

  2. Expression of versican 3'-untranslated region modulates endogenous microRNA functions.

    PubMed

    Lee, Daniel Y; Jeyapalan, Zina; Fang, Ling; Yang, Jennifer; Zhang, Yaou; Yee, Albert Y; Li, Minhui; Du, William W; Shatseva, Tatiana; Yang, Burton B

    2010-10-25

    Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities.

  3. A Systematic Survey of Expression and Function of Zebrafish frizzled Genes

    PubMed Central

    Nikaido, Masataka; Law, Edward W. P.; Kelsh, Robert N.

    2013-01-01

    Wnt signaling is crucial for the regulation of numerous processes in development. Consistent with this, the gene families for both the ligands (Wnts) and receptors (Frizzleds) are very large. Surprisingly, while we have a reasonable understanding of the Wnt ligands likely to mediate specific Wnt-dependent processes, the corresponding receptors usually remain to be elucidated. Taking advantage of the zebrafish model's excellent genomic and genetic properties, we undertook a comprehensive analysis of the expression patterns of frizzled (fzd) genes in zebrafish. To explore their functions, we focused on testing their requirement in several developmental events known to be regulated by Wnt signaling, convergent extension movements of gastrulation, neural crest induction, and melanocyte specification. We found fourteen distinct fzd genes in the zebrafish genome. Systematic analysis of their expression patterns between 1-somite and 30 hours post-fertilization revealed complex, dynamic and overlapping expression patterns. This analysis demonstrated that only fzd3a, fzd9b, and fzd10 are expressed in the dorsal neural tube at stages corresponding to the timing of melanocyte specification. Surprisingly, however, morpholino knockdown of these, alone or in combination, gave no indication of reduction of melanocytes, suggesting the important involvement of untested fzds or another type of Wnt receptor in this process. Likewise, we found only fzd7b and fzd10 expressed at the border of the neural plate at stages appropriate for neural crest induction. However, neural crest markers were not reduced by knockdown of these receptors. Instead, these morpholino knockdown studies showed that fzd7a and fzd7b work co-operatively to regulate convergent extension movement during gastrulation. Furthermore, we show that the two fzd7 genes function together with fzd10 to regulate epiboly movements and mesoderm differentiation. PMID:23349976

  4. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.

    PubMed

    Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L

    2016-02-04

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.

  5. A Functional and Regulatory Network Associated with PIP Expression in Human Breast Cancer

    PubMed Central

    Debily, Marie-Anne; Marhomy, Sandrine El; Boulanger, Virginie; Eveno, Eric; Mariage-Samson, Régine; Camarca, Alessandra; Auffray, Charles; Piatier-Tonneau, Dominique; Imbeaud, Sandrine

    2009-01-01

    Background The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. Principal Findings Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP−] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. Conclusions Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator. PMID:19262752

  6. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. © 2016 by The American Society of Hematology.

  7. Analysis of microRNA expression and function.

    PubMed

    Van Wynsberghe, Priscilla M; Chan, Shih-Peng; Slack, Frank J; Pasquinelli, Amy E

    2011-01-01

    Originally discovered in C. elegans, microRNAs (miRNAs) are small RNAs that regulate fundamental cellular processes in diverse organisms. MiRNAs are encoded within the genome and are initially transcribed as primary transcripts that can be several kilobases in length. Primary transcripts are successively cleaved by two RNase III enzymes, Drosha in the nucleus and Dicer in the cytoplasm, to produce ∼70 nucleotide (nt) long precursor miRNAs and 22 nt long mature miRNAs, respectively. Mature miRNAs regulate gene expression post-transcriptionally by imperfectly binding target mRNAs in association with the multiprotein RNA induced silencing complex (RISC). The conserved sequence, expression pattern, and function of some miRNAs across distinct species as well as the importance of specific miRNAs in many biological pathways have led to an explosion in the study of miRNA biogenesis, miRNA target identification, and miRNA target regulation. Many advances in our understanding of miRNA biology have come from studies in the powerful model organism C. elegans. This chapter reviews the current methods used in C. elegans to study miRNA biogenesis, small RNA populations, miRNA-protein complexes, and miRNA target regulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes.

    PubMed

    Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa

    2017-08-29

    Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/.

  9. Extending bicluster analysis to annotate unclassified ORFs and predict novel functional modules using expression data

    PubMed Central

    Bryan, Kenneth; Cunningham, Pádraig

    2008-01-01

    Background Microarrays have the capacity to measure the expressions of thousands of genes in parallel over many experimental samples. The unsupervised classification technique of bicluster analysis has been employed previously to uncover gene expression correlations over subsets of samples with the aim of providing a more accurate model of the natural gene functional classes. This approach also has the potential to aid functional annotation of unclassified open reading frames (ORFs). Until now this aspect of biclustering has been under-explored. In this work we illustrate how bicluster analysis may be extended into a 'semi-supervised' ORF annotation approach referred to as BALBOA. Results The efficacy of the BALBOA ORF classification technique is first assessed via cross validation and compared to a multi-class k-Nearest Neighbour (kNN) benchmark across three independent gene expression datasets. BALBOA is then used to assign putative functional annotations to unclassified yeast ORFs. These predictions are evaluated using existing experimental and protein sequence information. Lastly, we employ a related semi-supervised method to predict the presence of novel functional modules within yeast. Conclusion In this paper we demonstrate how unsupervised classification methods, such as bicluster analysis, may be extended using of available annotations to form semi-supervised approaches within the gene expression analysis domain. We show that such methods have the potential to improve upon supervised approaches and shed new light on the functions of unclassified ORFs and their co-regulation. PMID:18831786

  10. The E4 protein; structure, function and patterns of expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genomemore » amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1

  11. The vestibuloocular reflex of tadpoles (Xenopus laevis) after knock-down of the isthmus-related transcription factor XTcf-4.

    PubMed

    Horn, Eberhard R; El-Yamany, Nabil A; Gradl, Dietmar

    2013-02-15

    Development of the amphibian vestibular organ is regulated by molecular and neuronal mechanisms and by environmental input. The molecular component includes inductive signals derived from neural tissue of the hindbrain and from the surrounding mesoderm. The integrity of hindbrain patterning, on the other hand, depends on instructive signals from the isthmus organizer of the midbrain, including the transcription factor XTcf-4. If the development of the vestibular system depends on the integrity of the isthmus as the organizing centre, suppression of isthmus maintenance should modify vestibular morphology and function. We tested this hypothesis by downregulation of the transcription factor XTcf-4. 10 pmol l(-1) XTcf-4-specific antisense morpholino oligonucleotide was injected in one blastomere of two-cell-stage embryos of Xenopus laevis. For reconstitution experiments, 500 pg mRNA of the repressing XTcf-4A isoform or the activating XTcf-4C isoform were co-injected. Overexpression experiments were included using the same isoforms. Otoconia formation and vestibular controlled behaviour such as the roll-induced vestibuloocular reflex (rVOR) and swimming were recorded two weeks later. In 50% of tadpoles, downregulation of XTcf-4 induced (1) a depression of otoconia formation accompanied by a reduction of the rVOR, (2) abnormal tail development and (3) loop swimming behaviour. (4) All effects were rescued by co-injection of XTcf-4C but not, or only partially, by XTcf-4A. (5) Overexpression of XTcf-4A caused similar morphological and rVOR modifications as XTcf-4 depletion, while overexpression of XTcf-4C had no effect. Because XTcf-4C has been described as an essential factor for isthmus development, we postulate that the isthmus is strongly involved in vestibular development.

  12. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    PubMed

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  13. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro.

    PubMed

    Yamane, Hitomi; Ihara, Setsunosuke; Kuroda, Masaaki; Nishikawa, Akio

    2011-08-01

    Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.

  14. ATM-dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts

    PubMed Central

    Zhou, Tong; Chou, Jeff; Zhou, Yingchun; Simpson, Dennis A.; Cao, Feng; Bushel, Pierre R.; Paules, Richard S.; Kaufmann, William K.

    2013-01-01

    The relationships between profiles of global gene expression and DNA damage checkpoint functions were studied in cells from patients with ataxia telangiectasia (AT). Three telomerase-expressing AT fibroblast lines displayed the expected hypersensitivity to ionizing radiation (IR) and defects in DNA damage checkpoints. Profiles of global gene expression in AT cells were determined at 2, 6 and 24 h after treatment with 1.5 Gy IR or sham-treatment, and were compared to those previously recognized in normal human fibroblasts. Under basal conditions 160 genes or ESTs were differentially expressed in AT and normal fibroblasts, and these were associated by gene ontology with insulin-like growth factor binding and regulation of cell growth. Upon DNA damage, 1091 gene mRNAs were changed in at least two of the three AT cell lines. When compared with the 1811 genes changed in normal human fibroblasts after the same treatment, 715 were found in both AT and normal fibroblasts, including most genes categorized by gene ontology into cell cycle, cell growth and DNA damage response pathways. However, the IR-induced changes in these 715 genes in AT cells usually were delayed or attenuated in comparison to normal cells. The reduced change in DNA-damage-response genes and the attenuated repression of cell-cycle-regulated genes may account for the defects in cell cycle checkpoint function in AT cells. PMID:17699107

  15. Towards functional selectivity for α6β3γ2 GABAA receptors: a series of novel pyrazoloquinolinones

    PubMed Central

    Treven, Marco; Siebert, David C B; Holzinger, Raphael; Bampali, Konstantina; Fabjan, Jure; Varagic, Zdravko; Wimmer, Laurin; Steudle, Friederike; Scholze, Petra; Schnürch, Michael; Mihovilovic, Marko D

    2017-01-01

    Background and Purpose The GABAA receptors are ligand‐gated ion channels, which play an important role in neurotransmission. Their variety of binding sites serves as an appealing target for many clinically relevant drugs. Here, we explored the functional selectivity of modulatory effects at specific extracellular α+/β− interfaces, using a systematically varied series of pyrazoloquinolinones. Experimental Approach Recombinant GABAA receptors were expressed in Xenopus laevis oocytes and modulatory effects on GABA‐elicited currents by the newly synthesized and reference compounds were investigated by the two‐electrode voltage clamp method. Key Results We identified a new compound which, to the best of our knowledge, shows the highest functional selectivity for positive modulation at α6β3γ2 GABAA receptors with nearly no residual activity at the other αxβ3γ2 (x = 1–5) subtypes. This modulation was independent of affinity for α+/γ− interfaces. Furthermore, we demonstrated for the first time a compound that elicits a negative modulation at specific extracellular α+/β− interfaces. Conclusion and Implications These results constitute a major step towards a potential selective positive modulation of certain α6‐containing GABAA receptors, which might be useful to elicit their physiological role. Furthermore, these studies pave the way towards insights into molecular principles that drive positive versus negative allosteric modulation of specific GABAA receptor isoforms. PMID:29127702

  16. Comparative methods for the analysis of gene-expression evolution: an example using yeast functional genomic data.

    PubMed

    Oakley, Todd H; Gu, Zhenglong; Abouheif, Ehab; Patel, Nipam H; Li, Wen-Hsiung

    2005-01-01

    Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative methods to compare different models of gene-expression evolution in a maximum-likelihood framework. We find that expression of duplicated genes has evolved according to a nonphylogenetic model, where closely related genes are no more likely than more distantly related genes to share common expression patterns. These results are consistent with previous studies that found rapid evolution of gene expression during the history of yeast. The comparative methods presented here are general enough to test a wide range of evolutionary hypotheses using genomic-scale data from any organism.

  17. microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer.

    PubMed

    Yu, Hao; Lu, Yinhui; Li, Zhaofa; Wang, Qizhao

    2014-01-01

    microRNAs (miRNAs) are a class of small non-coding RNAs that are 18-25 nucleotides (nt) in length and negatively regulate gene expression post-transcriptionally. miRNAs are known to mediate myriad processes and pathways. While many miRNAs are expressed ubiquitously, some are expressed in a tissue specific manner. miR-133 is one of the most studied and best characterized miRNAs to date. Specifically expressed in muscles, it has been classified as myomiRNAs and is necessary for proper skeletal and cardiac muscle development and function. Genes encoding miR-133 (miR-133a-1, miR-133a-2 and miR-133b) are transcribed as bicistronic transcripts together with miR-1-2, miR-1-1, and miR-206, respectively. However, they exhibit opposing impacts on muscle development. miR-133 gets involved in muscle development by targeting a lot of genes, including SFR, HDAC4, cyclin D2 and so on. Its aberrant expression has been linked to many diseases in skeletal muscle and cardiac muscle such as cardiac hypertrophy, muscular dystrophy, heart failure, cardiac arrhythmia. Beyond the study in muscle, miR-133 has been implicated in cancer and identified as a key factor in cancer development, including bladder cancer, prostate cancer and so on. Much more attention has been drawn to the versatile molecular functions of miR-133, making it a truly valuable therapeutic gene in miRNA-based gene therapy. In this review, we identified and summarized the results of studies of miR-133 with emphasis on its function in human diseases in muscle and cancer, and highlighted its therapeutic value. It might provide researchers a new insight into the biological significance of miR-133.

  18. Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare).

    PubMed

    Ligaba, Ayalew; Katsuhara, Maki; Shibasaka, Mineo; Djira, Gemechis

    2011-02-01

    In one of the most important crops, barley (Hordeum vulgare L.), gene expression and physiological roles of most major intrinsic proteins (MIPs) remained to be elucidated. Here we studied expression of five tonoplast intrinsic protein isoforms (HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3 and HvTIP4;1), a NOD26-like intrinsic protein (HvNIP2;1) and a plasma membrane intrinsic protein (HvPIP2;1) by using the quantitative real-time RT-PCR. Five-day-old seedlings were exposed to abiotic stresses (salt, heavy metals and nutrient deficiency), abscisic acid (ABA) and gibberellic acid (GA) for 24 h. Treatment with 100 mM NaCl, 0.1 mM ABA and 1 mM GA differentially regulated gene expression in roots and shoots. Nitrogen and prolonged P-deficiency downregulated expression of most MIP genes in roots. Intriguingly, gene expression was restored to the values in the control three days after nutrient supply was resumed. Heavy metals (0.2 mM each of Cd, Cu, Zn and Cr) downregulated the transcript levels by 60-80% in roots, whereas 0.2 mM Hg upregulated expressions of most genes in roots. This was accompanied by a 45% decrease in the rate of transpiration. In order to study the physiological role of the MIPs, cDNA of three genes (HvTIP2;1, HvTIP2;3 and HvNIP2;1) have been cloned and heterologous expression was performed in Xenopus laevis oocytes. Osmotic water permeability was determined by a swelling assay. However, no water uptake activity was observed for the three proteins. Hence, the possible physiological role of the proteins is discussed. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping

    PubMed Central

    Kim, Christina K.; Miri, Andrew; Leung, Louis C.; Berndt, Andre; Mourrain, Philippe; Tank, David W.; Burdine, Rebecca D.

    2014-01-01

    Larval zebrafish offer the potential for large-scale optical imaging of neural activity throughout the central nervous system; however, several barriers challenge their utility. First, ~panneuronal probe expression has to date only been demonstrated at early larval stages up to 7 days post-fertilization (dpf), precluding imaging at later time points when circuits are more mature. Second, nuclear exclusion of genetically-encoded calcium indicators (GECIs) limits the resolution of functional fluorescence signals collected during imaging. Here, we report the creation of transgenic zebrafish strains exhibiting robust, nuclearly targeted expression of GCaMP3 across the brain up to at least 14 dpf utilizing a previously described optimized Gal4-UAS system. We confirmed both nuclear targeting and functionality of the modified probe in vitro and measured its kinetics in response to action potentials (APs). We then demonstrated in vivo functionality of nuclear-localized GCaMP3 in transgenic zebrafish strains by identifying eye position-sensitive fluorescence fluctuations in caudal hindbrain neurons during spontaneous eye movements. Our methodological approach will facilitate studies of larval zebrafish circuitry by both improving resolution of functional Ca2+ signals and by allowing brain-wide expression of improved GECIs, or potentially any probe, further into development. PMID:25505384

  20. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium.

    PubMed

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A; Pearson, Joanna F; Appleby, Peter A; Walker, Dawn; Eardley, Ian; Southgate, Jennifer

    2013-08-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.

  1. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  2. The Functional Organization of Preschool-Age Children’s Emotion Expressions and Actions in Challenging Situations

    PubMed Central

    Dennis, Tracy A.; Cole, Pamela M.; Wiggins, Crystal N.; Cohen, Laura H.; Zalewski, Maureen

    2010-01-01

    Although functional links between emotion and action are implied in emotion regulation research, there is limited evidence that specific adaptive actions for coping with a challenge are more probable when certain negative emotions are expressed. The current study examined this question among 3- and 4-year-olds (N = 113; M age = 47.84 months, SD = 6.19). Emotion expressions and actions were observed during 2 challenging tasks: children waited for a gift while the mother worked, and children worked alone to retrieve a prize from a locked box with the wrong key. Angry and happy expressions, compared with sad expressions, were associated with more actions. These actions varied with the nature of the task, reflecting appreciation of situational appropriateness. In addition, when waiting with the mother, happiness was associated with the broadest range of actions, whereas when working alone on the locked box, anger was associated with the broadest range of actions. Results are discussed in terms of the adaptive function of negative emotions and in terms of functional and dimensional models of emotion. Findings have implications for the development of emotion regulation and social–emotional competence. PMID:19653775

  3. Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia.

    PubMed

    Narayan, N; Morenos, L; Phipson, B; Willis, S N; Brumatti, G; Eggers, S; Lalaoui, N; Brown, L M; Kosasih, H J; Bartolo, R C; Zhou, L; Catchpoole, D; Saffery, R; Oshlack, A; Goodall, G J; Ekert, P G

    2017-04-01

    Enforced expression of microRNA-155 (miR-155) in myeloid cells has been shown to have both oncogenic or tumour-suppressor functions in acute myeloid leukaemia (AML). We sought to resolve these contrasting effects of miR-155 overexpression using murine models of AML and human paediatric AML data sets. We show that the highest miR-155 expression levels inhibited proliferation in murine AML models. Over time, enforced miR-155 expression in AML in vitro and in vivo, however, favours selection of intermediate miR-155 expression levels that results in increased tumour burden in mice, without accelerating the onset of disease. Strikingly, we show that intermediate and high miR-155 expression also regulate very different subsets of miR-155 targets and have contrasting downstream effects on the transcriptional environments of AML cells, including genes involved in haematopoiesis and leukaemia. Furthermore, we show that elevated miR-155 expression detected in paediatric AML correlates with intermediate and not high miR-155 expression identified in our experimental models. These findings collectively describe a novel dose-dependent role for miR-155 in the regulation of AML, which may have important therapeutic implications.

  4. Emotional expressivity and emotion regulation: Relation to academic functioning among elementary school children.

    PubMed

    Kwon, Kyongboon; Hanrahan, Amanda R; Kupzyk, Kevin A

    2017-03-01

    We examined emotional expressivity (i.e., happiness, sadness, and anger) and emotion regulation (regulation of exuberance, sadness, and anger) as they relate to academic functioning (motivation, engagement, and achievement). Also, we tested the premise that emotional expressivity and emotion regulation are indirectly associated with achievement through academic motivation and engagement. Participants included 417 elementary school students (Mage = 10 years; 52% female; 60% Black) and their teachers from a Midwestern metropolitan area. We used child and teacher questionnaires, and data were analyzed with structural equation modeling. Regarding emotionality, happiness was positively associated with multiple aspects of academic functioning whereas an inverse association was found for anger; sadness was not associated with academic functioning. Also, happiness and anger were indirectly related to achievement through academic engagement. Emotion regulation was positively associated with multiple aspects of academic functioning; it was also indirectly associated with achievement through engagement. Implications are discussed regarding how social and emotional learning programs in schools can further benefit from research on children's emotions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Human Urine Decreases Function and Expression of Type 1 Pili in Uropathogenic Escherichia coli

    PubMed Central

    Greene, Sarah E.; Hibbing, Michael E.; Janetka, James; Chen, Swaine L.

    2015-01-01

    ABSTRACT Uropathogenic Escherichia coli (UPEC) is the primary cause of community-acquired urinary tract infections (UTIs). UPEC bind the bladder using type 1 pili, encoded by the fim operon in nearly all E. coli. Assembled type 1 pili terminate in the FimH adhesin, which specifically binds to mannosylated glycoproteins on the bladder epithelium. Expression of type 1 pili is regulated in part by phase-variable inversion of the genomic element containing the fimS promoter, resulting in phase ON (expressing) and OFF (nonexpressing) orientations. Type 1 pili are essential for virulence in murine models of UTI; however, studies of urine samples from human UTI patients demonstrate variable expression of type 1 pili. We provide insight into this paradox by showing that human urine specifically inhibits both expression and function of type 1 pili. Growth in urine induces the fimS phase OFF orientation, preventing fim expression. Urine also contains inhibitors of FimH function, and this inhibition leads to a further bias in fimS orientation toward the phase OFF state. The dual effect of urine on fimS regulation and FimH binding presents a potential barrier to type 1 pilus-mediated colonization and invasion of the bladder epithelium. However, FimH-mediated attachment to human bladder cells during growth in urine reverses these effects such that fim expression remains ON and/or turns ON. Interestingly, FimH inhibitors called mannosides also induce the fimS phase OFF orientation. Thus, the transduction of FimH protein attachment or inhibition into epigenetic regulation of type 1 pilus expression has important implications for the development of therapeutics targeting FimH function. PMID:26126855

  6. DOT1L regulates dystrophin expression and is critical for cardiac function

    PubMed Central

    Nguyen, Anh T.; Xiao, Bin; Neppl, Ronald L.; Kallin, Eric M.; Li, Juan; Chen, Taiping; Wang, Da-Zhi; Xiao, Xiao; Zhang, Yi

    2011-01-01

    Histone methylation plays an important role in regulating gene expression. One such methylation occurs at Lys 79 of histone H3 (H3K79) and is catalyzed by the yeast DOT1 (disruptor of telomeric silencing) and its mammalian homolog, DOT1L. Previous studies have demonstrated that germline disruption of Dot1L in mice resulted in embryonic lethality. Here we report that cardiac-specific knockout of Dot1L results in increased mortality rate with chamber dilation, increased cardiomyocyte cell death, systolic dysfunction, and conduction abnormalities. These phenotypes mimic those exhibited in patients with dilated cardiomyopathy (DCM). Mechanistic studies reveal that DOT1L performs its function in cardiomyocytes through regulating Dystrophin (Dmd) transcription and, consequently, stability of the Dystrophin–glycoprotein complex important for cardiomyocyte viability. Importantly, expression of a miniDmd can largely rescue the DCM phenotypes, indicating that Dmd is a major target mediating DOT1L function in cardiomyocytes. Interestingly, analysis of available gene expression data sets indicates that DOT1L is down-regulated in idiopathic DCM patient samples compared with normal controls. Therefore, our study not only establishes a critical role for DOT1L-mediated H3K79 methylation in cardiomyocyte function, but also reveals the mechanism underlying the role of DOT1L in DCM. In addition, our study may open new avenues for the diagnosis and treatment of human heart disease. PMID:21289070

  7. Anisakid nematodes (Nematoda: Anisakidae) from the marine fishes Plectropomus laevis Lacépède (Serranidae) and Sphyraena qenie Klunzinger (Sphyraenidae) off New Caledonia, including two new species of Hysterothylacium Ward & Magath, 1917.

    PubMed

    Moravec, František; Justine, Jean-Lou

    2015-11-01

    Based on light and scanning electron microscopical studies, two new species of Hysterothylacium Ward & Magath, 1917 (Nematoda: Anisakidae) are described from the digestive tract of perciform fishes off New Caledonia: H. alatum n. sp. from Plectropomus laevis (Lacépède) (Serranidae) and H. sphyraenae n. sp. from Sphyraena qenie Klunzinger (Sphyraenidae). The former species (H. alatum) is mainly characterised by its large body (male 42.05 mm, gravid females 51.18-87.38 mm long), the shape of the dorsal lip, conspicuously broad cervical alae, a short caecum and a long ventricular appendix, the length of the spicules (925 µm), the number (25 pairs) and distribution of the genital papillae and the tail tip bearing numerous minute cuticular protuberances. The other species (H. sphyraenae) is mainly characterised by the presence of narrow lateral alae, a short caecum and a long ventricular appendix, the length (762-830 µm) and shape of the spicules, the number (37-38 pairs) and arrangement of the genital papillae, and by the tail tip which lacks any distinct cuticular projections visible under the light microscope. In addition, and unidentifiable at the species level, conspicuously large (45.71-66.10 mm long) larvae of Contracaecum Railliet & Henry, 1912, were found in the body cavity of P. laevis, which serves as a paratenic host for this parasite.

  8. Ovarian hyperstimulation syndrome in gonadotropin-treated laboratory South African clawed frogs (Xenopus laevis).

    PubMed

    Green, Sherril L; Parker, John; Davis, Corrine; Bouley, Donna M

    2007-05-01

    Ovarian hyperstimulation syndrome (OHS) is a rare but sometimes fatal iatrogenic complication of ovarian stimulation associated with the administration of exogenous gonadotropins to women undergoing treatment for infertility. Laboratory Xenopus spp are commonly treated with human chorionic gonadotropin (hCG) to stimulate ovulation and optimize the number of oocytes harvested for use in biomedical research. Here we report cases of OHS in 2 gonadotropin-treated laboratory Xenopus laevis. After receiving hCG, the frogs developed severe subcutaneous accumulation of fluid, coelomic distention, and whole-body edema and were unable to dive, although they continued to eat and swim. At postmortem examination, extensive subcutaneous edema was present; ascites and massive numbers of free-floating eggs were found in the coelomic cavity and in aberrant locations: around the heart-sac and adhered to the liver capsule. Whole-body edema, gross enlargement of the ovaries, ascites, and abdominal distention are findings comparable to those observed in women with OHS. The pathophysiology of OHS is thought to be related to hormonally induced disturbances of vasoactive mediators, one of which may be vascular endothelial growth factor secreted by theca and granulosa cells. We know of no other report describing OHSlike symptoms in gonadotropin-treated frogs, and the cases described here are 2 of the 3 we have observed at our respective institutions over the last 6 y. According to these results, OHS appears to be rare in gonadotropin-treated laboratory Xenopus. However, the condition should be included in the differential diagnosis for the bloated frog.

  9. Defective Cell Cycle Checkpoint Functions in Melanoma Are Associated with Altered Patterns of Gene Expression

    PubMed Central

    Kaufmann, William K.; Nevis, Kathleen R.; Qu, Pingping; Ibrahim, Joseph G.; Zhou, Tong; Zhou, Yingchun; Simpson, Dennis A.; Helms-Deaton, Jennifer; Cordeiro-Stone, Marila; Moore, Dominic T.; Thomas, Nancy E.; Hao, Honglin; Liu, Zhi; Shields, Janiel M.; Scott, Glynis A.; Sharpless, Norman E.

    2009-01-01

    Defects in DNA damage responses may underlie genetic instability and malignant progression in melanoma. Cultures of normal human melanocytes (NHMs) and melanoma lines were analyzed to determine whether global patterns of gene expression could predict the efficacy of DNA damage cell cycle checkpoints that arrest growth and suppress genetic instability. NHMs displayed effective G1 and G2 checkpoint responses to ionizing radiation-induced DNA damage. A majority of melanoma cell lines (11/16) displayed significant quantitative defects in one or both checkpoints. Melanomas with B-RAF mutations as a class displayed a significant defect in DNA damage G2 checkpoint function. In contrast the epithelial-like subtype of melanomas with wild-type N-RAS and B-RAF alleles displayed an effective G2 checkpoint but a significant defect in G1 checkpoint function. RNA expression profiling revealed that melanoma lines with defects in the DNA damage G1 checkpoint displayed reduced expression of p53 transcriptional targets, such as CDKN1A and DDB2, and enhanced expression of proliferation-associated genes, such as CDC7 and GEMININ. A Bayesian analysis tool was more accurate than significance analysis of microarrays for predicting checkpoint function using a leave-one-out method. The results suggest that defects in DNA damage checkpoints may be recognized in melanomas through analysis of gene expression. PMID:17597816

  10. Multiplexed quantitation of protein expression and phosphorylation based on functionalized soluble nanopolymers

    PubMed Central

    Pan, Li; Iliuk, Anton; Yu, Shuai; Geahlen, Robert L.; Tao, W. Andy

    2012-01-01

    We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity, and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events. PMID:23088311

  11. A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format.

    PubMed

    Xiao, Xiaodong; Chen, Yan; Mugabe, Sheila; Gao, Changshou; Tkaczyk, Christine; Mazor, Yariv; Pavlik, Peter; Wu, Herren; Dall'Acqua, William; Chowdhury, Partha Sarathi

    2015-01-01

    High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for

  12. The functional importance of sequence versus expression variability of MHC alleles in parasite resistance.

    PubMed

    Axtner, Jan; Sommer, Simone

    2012-12-01

    Understanding selection processes driving the pronounced allelic polymorphism of the major histocompatibility complex (MHC) genes and its functional associations to parasite load have been the focus of many recent wildlife studies. Two main selection scenarios are currently debated which explain the susceptibility or resistance to parasite infections either by the effects of (1) specific MHC alleles which are selected frequency-dependent in space and time or (2) a heterozygote or divergent allele advantage. So far, most studies have focused only on structural variance in co-evolutionary processes although this might not be the only trait subject to natural selection. In the present study, we analysed structural variance stretching from exon1 through exon3 of MHC class II DRB genes as well as genotypic expression variance in relation to the gastrointestinal helminth prevalence and infection intensity in wild yellow-necked mice (Apodemus flavicollis). We found support for the functional importance of specific alleles both on the sequence and expression level. By resampling a previously investigated study population we identified specific MHC alleles affected by temporal shifts in parasite pressure and recorded associated changes in allele frequencies. The allele Apfl-DRB*23 was associated with resistance to infections by the oxyurid nematode Syphacia stroma and at the same time with susceptibility to cestode infection intensity. In line with our expectation, MHC mRNA transcript levels tended to be higher in cestode-infected animals carrying the allele Apfl-DRB*23. However, no support for a heterozygote or divergent allele advantage on the sequence or expression level was detected. The individual amino acid distance of genotypes did not explain individual differences in parasite loads and the genetic distance had no effect on MHC genotype expression. For ongoing studies on the functional importance of expression variance in parasite resistance, allele

  13. Expression and functional studies of the GDNF family receptor-alpha3 (GFRα3) in the pancreas

    PubMed Central

    Nivlet, Laure; Herrmann, Joel; Martin, Delia Esteban; Meunier, Aline; Orvain, Christophe; Gradwohl, Gérard

    2018-01-01

    The generation of therapeutic β-cells from human pluripotent stem cells relies on the identification of growth factors that faithfully mimic pancreatic β-cell development in vitro. In this context, the aim of the study was to determine the expression and function of the Glial cell line derived neurotrophic factor receptor α 3 (GFRα3) and its ligand Artemin in islet cell development and function. GFRα3 and Artn expression were characterized by in situ hybridization, immunochemistry and qRT-PCR. We used GFRα3-deficient mice to study GFRα3 function and generated a transgenic mice overexpressing Artn in the embryonic pancreas to study Artn function. We found that GFRα3 is expressed at the surface of a subset of Ngn3-positive endocrine progenitors as well as of embryonic α- and β-cells, while Artn is found in the pancreatic mesenchyme. Adult β-cells lack GFRα3 but α-cells express the receptor. GFRα3 was also found in parasympathetic and sympathetic intra islets neurons as well as in glial cells in the embryonic and adult pancreas. The loss of GFRα3 or overexpression of Artn has no impact on Ngn3- and islet- cells formation and maintenance in the embryo. Islet organisation and innervation as well as glucose homeostasis is normal in GFRα3-deficient mice suggesting functional redundancy. PMID:26576643

  14. Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function.

    PubMed

    Therien, J P Daniel; Baenziger, John E

    2017-03-27

    Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.

  15. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  16. RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes

    PubMed Central

    Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa

    2017-01-01

    Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/. PMID:28850115

  17. Arousal and Expression of Anger: A Function of Locus of Control?

    ERIC Educational Resources Information Center

    Stockin, Bruce C.

    Although psychologists have been investigating locus of control for more than two decades, few studies have examined how locus of control interacts with affective variables. To investigate the function of locus of control on arousal patterns and expressions of anger, 120 college students (60 internals, 60 externals, as measured by Rotter's (1966)…

  18. Hand2 loss-of-function in Hand1-expressing Cells Reveals Distinct Roles In Epicardial And Coronary Vessel Development

    PubMed Central

    Barnes, Ralston M.; Firulli, Beth A.; VanDusen, Nathan J.; Morikawa, Yuka; Conway, Simon J.; Cserjesi, Peter; Vincentz, Joshua W.; Firulli, Anthony B.

    2011-01-01

    Rationale The bHLH transcription factors Hand1 and Hand2 are essential for embryonic development. Given their requirement for cardiogenesis, it is imperative to determine their impact on cardiovascular function. Objective Deduce the role of Hand2 within the epicardium. Method & Results We engineered a Hand1 allele expressing Cre recombinase. Cardiac Hand1 expression is largely limited to cells of the primary heart field, overlapping little with Hand2 expression. Hand1 is expressed within the septum transversum (ST) and the Hand1-lineage marks the proepicardial organ and epicardium. To examine Hand factor functional overlap, we conditionally deleted Hand2 from Hand1-expressing cells. Hand2 mutants display defective epicardialization and fail to form coronary arteries, coincident with altered ECM deposition and Pdgfr expression. Conclusion These data demonstrate a hierarchal relationship whereby transient Hand1 ST expression defines epicardial precursors that are subsequently dependent upon Hand2 function. PMID:21350214

  19. [Facial expressions of negative emotions in clinical interviews: The development, reliability and validity of a categorical system for the attribution of functions to facial expressions of negative emotions].

    PubMed

    Bock, Astrid; Huber, Eva; Peham, Doris; Benecke, Cord

    2015-01-01

    The development (Study 1) and validation (Study 2) of a categorical system for the attribution of facial expressions of negative emotions to specific functions. The facial expressions observed inOPDinterviews (OPD-Task-Force 2009) are coded according to the Facial Action Coding System (FACS; Ekman et al. 2002) and attributed to categories of basic emotional displays using EmFACS (Friesen & Ekman 1984). In Study 1 we analyze a partial sample of 20 interviews and postulate 10 categories of functions that can be arranged into three main categories (interactive, self and object). In Study 2 we rate the facial expressions (n=2320) from the OPD interviews (10 minutes each interview) of 80 female subjects (16 healthy, 64 with DSM-IV diagnosis; age: 18-57 years) according to the categorical system and correlate them with problematic relationship experiences (measured with IIP,Horowitz et al. 2000). Functions of negative facial expressions can be attributed reliably and validly with the RFE-Coding System. The attribution of interactive, self-related and object-related functions allows for a deeper understanding of the emotional facial expressions of patients with mental disorders.

  20. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host

    PubMed Central

    Salem, Hassan; Bauer, Eugen; Strauss, Anja S.; Vogel, Heiko; Marz, Manja; Kaltenpoth, Martin

    2014-01-01

    Despite the demonstrated functional importance of gut microbes, our understanding of how animals regulate their metabolism in response to nutritionally beneficial symbionts remains limited. Here, we elucidate the functional importance of the African cotton stainer's (Dysdercus fasciatus) association with two actinobacterial gut symbionts and subsequently examine the insect's transcriptional response following symbiont elimination. In line with bioassays demonstrating the symbionts' contribution towards host fitness through the supplementation of B vitamins, comparative transcriptomic analyses of genes involved in import and processing of B vitamins revealed an upregulation of gene expression in aposymbiotic (symbiont-free) compared with symbiotic individuals; an expression pattern that is indicative of B vitamin deficiency in animals. Normal expression levels of these genes, however, can be restored by either artificial supplementation of B vitamins into the insect's diet or reinfection with the actinobacterial symbionts. Furthermore, the functional characterization of the differentially expressed thiamine transporter 2 through heterologous expression in Xenopus laevis oocytes confirms its role in cellular uptake of vitamin B1. These findings demonstrate that despite an extracellular localization, beneficial gut microbes can be integral to the host's metabolic homeostasis, reminiscent of bacteriome-localized intracellular mutualists. PMID:25339726

  1. Delineation of Matriptase Protein Expression by Enzymatic Gene Trapping Suggests Diverging Roles in Barrier Function, Hair Formation, and Squamous Cell Carcinogenesis

    PubMed Central

    List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H.

    2006-01-01

    The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma. PMID:16651618

  2. Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis.

    PubMed

    List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H

    2006-05-01

    The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma.

  3. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    PubMed

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  4. Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat.

    PubMed

    Ohwatashi, Akihiko; Ikeda, Satoshi; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    Exercise has been considered to affect the functional recovery from central nervous damage. Neurotrophic factors have various effects on brain damage. However, the effects of exercise for expression of GDNF on functional recovery with brain damage are not well known. We investigated the difference in functional recovery between non-exercise and beam-walking exercise groups, and the expression of GDNF in both groups after photochemical infarction. Adult male Wistar rats (N = 64) were used. Animals were divided into two groups: non-exercise (N = 35), and beam-walking exercise (N = 29). All rats underwent surgical photochemical infarction. The rats of the beam-walking group were trained every day to walk on a narrow beam after a one-day recovery period and those of the non-exercise group were left to follow a natural course. Animals were evaluated for hind limb function every day using a beam-walking task with an elevated narrow beam. The number of GDNF-like immunoreactive cells in the temporal cortex surrounding the lesion was counted 1, 3, 5, and 7 days after the infarction. Functional recovery of the beam-walking exercise group was significantly earlier than that of the non-exercise group. At 3 days after infarction, the number of GDNF-positive cells in the temporal cortex surrounding the infarction was significantly increased in the beam-walking exercise group compared with that in the non-exercise group. In the exercise group, motor function was remarkably recovered with the increased expression of GDNF-like immunoreactive cells. Our results suggested that a rehabilitative approach increased the expression of GDNF and facilitated functional recovery from cerebral infarction.

  5. [Construction of rAAV2-GPIIb/IIIa vector and test of its expression and function in vitro].

    PubMed

    Wang, Kai; Peng, Jian-Qiang; Chen, Fang-Ping; Wu, Xiao-Bin

    2006-04-01

    This study was aimed to explore the possibility of rAAV2 vector-mediating gene therapy for Glanzmann' s thrombasthenia. The rAAV2-GPIIb/IIIa vector was constructed. The GPIIb/IIIa gene expression in mammal cell were examined by different methods, such as: detection of mRNA expression in BHK-21 cells after 24 hours of infection (MOI = 1 x 10(5) v.g/cell) was performed by RT-PCR; the relation between MOI and quantity of GPII6/IIIa gene expression was detected by FACS after 48 hours of infection; GPIIb/IIIa protein expression in BHK-21 cells after 48 hours of infection (MOI = 10(5) v x g/cell) was assayed by Western blot, GPIIb/IIIa protein expression on cell surface was detected by immunofluorescence, and the biological function of expressing product was determined by PAC-1 conjunct experiments. The results showed that GPIIb/IIIa gene expression in mRNA level could be detected in BHK-21 cells after 24 hours of infection at MOI = 1 x 10(5) v x g/cell and the GPIIb/IIIa gene expression in protein level could be detected in BHK-21 cells after 48 hours of infection at MOI = 1 x 10(5) v x g/cell. In certain range, quantity of GPIIb/IIIa gene expression increased with MOI, but overdose of MOI decreased quantity of GPIIb/IIIa gene expression. Activated product of GPIIb/IIIa gene expression could combined with PAC-I, and possesed normal biological function. In conclusion, rAAV2 vactor can effectively mediate GPIIb and GPIIIa gene expressing in mammal cells, and the products of these genes exhibit biological function. This result may provide a basis for application of rAAV2 vector in Glanzmann's thrombasthenia gene therapy in furture.

  6. Effects of BDNF-Transfected BMSCs on Neural Functional Recovery and Synaptophysin Expression in Rats with Cerebral Infarction.

    PubMed

    Zhang, Yongming; Qiu, Binghui; Wang, Jinbiao; Yao, Yi; Wang, Chunlin; Liu, Jiachuan

    2017-07-01

    The purpose of this study was to investigate the effects of brain-derived neurotrophic factor (BDNF)-transfected bone marrow mesenchymal stem cells (BMSCs) on neural functional recovery and synaptophysin expression in rats with cerebral infarction (CI). A total of 120 healthy Sprague Dawley rats were randomly divided into sham group, control group, and model group. Craniotomy was conducted and neurological function defect scoring was used to verify the model. BDNF containing recombinant plasmid was transfected into rat BMSCs, which was verified by flow cytometry and Western Blot. After injection of the transfected BMSCs, neural functional recovery of the CI rats and synaptophysin expression were measured. After the CI rat model was established, magnetic resonance (MR) imaging, 2, 3, 5- triphenyl tetrazolium chloride (TTC) staining, and the neurological function defect scoring determined the success of the model. CD34 (-), CD45 (-), CD29 (+), and CD90 (+) cells detected showed that the obtained BMSCs have high purity. BDNF protein was highly expressed in the BMSCs successfully transfected with the recombinant plasmid. Balance beam walking score, rotating bar walking score, and screen test score were significantly lower, while synaptophysin expression was higher in the BDNF model group than those in the non-BDNF model group and sham group with time extension. BDNF can increase synaptic plasticity and neurogenesis and have a promotional role in neural functional recovery and synaptophysin expression in rats with CI. BDNF-transfected BMSCs may therefore have better treatment efficacy for CI clinically.

  7. Eukaryotic expression, purification and structure/function analysis of native, recombinant CRISP3 from human and mouse

    NASA Astrophysics Data System (ADS)

    Volpert, Marianna; Mangum, Jonathan E.; Jamsai, Duangporn; D'Sylva, Rebecca; O'Bryan, Moira K.; McIntyre, Peter

    2014-02-01

    While the Cysteine-Rich Secretory Proteins (CRISPs) have been broadly proposed as regulators of reproduction and immunity, physiological roles have yet to be established for individual members of this family. Past efforts to investigate their functions have been limited by the difficulty of purifying correctly folded CRISPs from bacterial expression systems, which yield low quantities of correctly folded protein containing the eight disulfide bonds that define the CRISP family. Here we report the expression and purification of native, glycosylated CRISP3 from human and mouse, expressed in HEK 293 cells and isolated using ion exchange and size exclusion chromatography. Functional authenticity was verified by substrate-affinity, native glycosylation characteristics and quaternary structure (monomer in solution). Validated protein was used in comparative structure/function studies to characterise sites and patterns of N-glycosylation in CRISP3, revealing interesting inter-species differences.

  8. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries.

    PubMed

    Terrón-González, L; Medina, C; Limón-Mortés, M C; Santero, E

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance.

  9. Human cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral tissues.

    PubMed

    Vékony, N; Wolf, S; Boissel, J P; Gnauert, K; Closs, E I

    2001-10-16

    At least five distinct carrier proteins form the family of mammalian cationic amino acid transporters (CATs). We have cloned a cDNA containing the complete coding region of human CAT-3. hCAT-3 is glycosylated and localized to the plasma membrane. Transport studies in Xenopus laevis oocytes revealed that hCAT-3 is selective for cationic L-amino acids and exhibits a maximal transport activity similar to other CAT proteins. The apparent substrate affinity and sensitivity to trans-stimulation of hCAT-3 resembles most closely hCAT-2B. This is in contrast to rat and murine CAT-3 proteins that have been reported to display a very low activity and to be inhibited by neutral and anionic L-amino acids as well as D-arginine (Hosokawa, H., et al. (1997) J. Biol. Chem. 272, 8717-8722; Ito, K., and Groudine, M. (1997) J. Biol. Chem. 272, 26780-26786). Also, in adult rat and mouse, CAT-3 has been found exclusively in central neurons. Human CAT-3 expression is not restricted to the brain, in fact, by far the highest expression was found in thymus. Also in other peripheral tissues, hCAT-3 expression was equal to or higher than in most brain regions, suggesting that hCAT-3 is not a neuron-specific transporter.

  10. Diabetes mellitus reduces the function and expression of ATP-dependent K⁺ channels in cardiac mitochondria.

    PubMed

    Fancher, Ibra S; Dick, Gregory M; Hollander, John M

    2013-03-28

    Our goal was to determine the effects of type I diabetes mellitus on the function and expression of ATP-dependent K(+) channels in cardiac mitochondria (mitoKATP), composed of a pore-forming subunit (Kir6.1) and a diazoxide-sensitive sulphonylurea receptor (SUR1). We tested the hypothesis that diabetes reduces Kir6.1 and SUR1 expression as well as diazoxide-induced depolarization of mitochondrial membrane potential (ΔΨm). Male FVB mice were made diabetic for 5weeks with multiple low dose injections of streptozotocin. Cardiac mitochondria were separated into two populations: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). mitoKATP expression was determined via Western blot analysis of Kir6.1 and SUR1 proteins. mitoKATP function was determined by measuring ΔΨm with the potentiometric dye rhodamine 123. Diabetes reduced Kir6.1 and SUR1 expression in IFM by over 40% (p<0.05 for both). Similarly, diabetes reduced Kir6.1 expression in SSM by approximately 40% (p<0.05); however, SUR1 expression was unaffected. Opening mitoKATP with diazoxide (100μM) depolarized control IFM ΔΨm by 80% of the valinomycin maximum; diabetic IFM depolarized only 30% (p<0.05). Diazoxide-induced depolarization was much less in SSM (20-30%) and unaffected by diabetes. Our data indicate that diabetes reduces mitoKATP expression and function in IFM. These changes in mitoKATP may provide an opportunity to understand mechanisms leading to diabetic cardiomyopathy and loss of cardioprotective mechanisms in the diabetic heart. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies.

    PubMed

    Das, Bhabatosh; Kumari, Reena; Pant, Archana; Sen Gupta, Sourav; Saxena, Shruti; Mehta, Ojasvi; Nair, Gopinath Balakrish

    2014-12-01

    CTXΦ, a filamentous vibriophage encoding cholera toxin, uses a unique strategy for its lysogeny. The single-stranded phage genome forms intramolecular base-pairing interactions between two inversely oriented XerC and XerD binding sites (XBS) and generates a functional phage attachment site, attP(+), for integration. The attP(+) structure is recognized by the host-encoded tyrosine recombinases XerC and XerD (XerCD), which enables irreversible integration of CTXΦ into the chromosome dimer resolution site (dif) of Vibrio cholerae. The dif site and the XerCD recombinases are widely conserved in bacteria. We took advantage of these conserved attributes to develop a broad-host-range integrative expression vector that could irreversibly integrate into the host chromosome using XerCD recombinases without altering the function of any known open reading frame (ORF). In this study, we engineered two different arabinose-inducible expression vectors, pBD62 and pBD66, using XBS of CTXΦ. pBD62 replicates conditionally and integrates efficiently into the dif of the bacterial chromosome by site-specific recombination using host-encoded XerCD recombinases. The expression level of the gene of interest could be controlled through the PBAD promoter by modulating the functions of the vector-encoded transcriptional factor AraC. We validated the irreversible integration of pBD62 into a wide range of pathogenic and nonpathogenic bacteria, such as V. cholerae, Vibrio fluvialis, Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Gene expression from the PBAD promoter of integrated vectors was confirmed in V. cholerae using the well-studied reporter genes mCherry, eGFP, and lacZ. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Extracting Date/Time Expressions in Super-Function Based Japanese-English Machine Translation

    NASA Astrophysics Data System (ADS)

    Sasayama, Manabu; Kuroiwa, Shingo; Ren, Fuji

    Super-Function Based Machine Translation(SFBMT) which is a type of Example-Based Machine Translation has a feature which makes it possible to expand the coverage of examples by changing nouns into variables, however, there were problems extracting entire date/time expressions containing parts-of-speech other than nouns, because only nouns/numbers were changed into variables. We describe a method for extracting date/time expressions for SFBMT. SFBMT uses noun determination rules to extract nouns and a bilingual dictionary to obtain correspondence of the extracted nouns between the source and the target languages. In this method, we add a rule to extract date/time expressions and then extract date/time expressions from a Japanese-English bilingual corpus. The evaluation results shows that the precision of this method for Japanese sentences is 96.7%, with a recall of 98.2% and the precision for English sentences is 94.7%, with a recall of 92.7%.

  13. Hyperglycemia and Diabetes Downregulate the Functional Expression of TRPV4 Channels in Retinal Microvascular Endothelium

    PubMed Central

    Monaghan, Kevin; McNaughten, Jennifer; McGahon, Mary K.; Kelly, Catriona; Kyle, Daniel; Yong, Phaik Har

    2015-01-01

    Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months’ streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the

  14. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144.

    PubMed

    Fu, Xiaodong; Huang, Xiuwei; Li, Ping; Chen, Weiyu; Xia, Min

    2014-06-01

    Oxysterol is associated with the induction of endothelial oxidative stress and impaired endothelial function. Mitochondria play a central role in oxidative energy metabolism and the maintenance of proper redox status. The purpose of this study was to determine the effects and mechanisms of 7-ketocholesterol (7-KC) on isocitrate dehydrogenase 2 (IDH2) and its impact on endothelial function in both human aortic endothelial cells (HAECs) and C57BL/6J mice. HAECs treated with 7-KC showed significant reductions of IDH2 mRNA and protein levels and enzyme activity, leading to decreased NADPH concentration and an increased ratio of reduced-to-oxidized glutathione in the mitochondria. 7-KC induced the expression of a specific microRNA, miR-144, which in turn targets and downregulates IDH2. In silico analysis predicted that miR-144 could bind to the 3'-untranslated region of IDH2 mRNA. Overexpression of miR-144 decreased the expression of IDH2 and the levels of NADPH. A complementary finding is that a miR-144 inhibitor increased the mRNA and protein expression levels of IDH2. Furthermore, miR-144 level was elevated in HAECs in response to 7-KC. Anti-Ago1/2 immunoprecipitation coupled with a real-time polymerase chain reaction assay revealed that 7-KC increased the functional targeting of miR-144/IDH2 mRNA in HAECs. Infusion of 7-KC in vivo decreased vascular IDH2 expression and impaired vascular reactivity via miR-144. 7-KC controls miR-144 expression, which in turn decreases IDH2 expression and attenuates NO bioavailability to impair endothelial homeostasis. The newly identified 7-KC-miR-144-IDH2 pathway may contribute to atherosclerosis progression and provides new insight into 7-KC function and microRNA biology in cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  16. Functional expression of ionotropic purinergic receptors on mouse taste bud cells.

    PubMed

    Hayato, Ryotaro; Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2007-10-15

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 microm ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca(2+) imaging showed that similarly applied 1 mum ATP, 30 microm BzATP (a P2X(7) agonist), or 1 microm 2MeSATP (a P2Y(1) and P2Y(11) agonist) increased intracellular Ca(2+) concentration, but 100 microm UTP (a P2Y(2) and P2Y(4) agonist) and alpha,beta-meATP (a P2X agonist except for P2X(2), P2X(4) and P2X(7)) did not. RT-PCR suggested the expression of P2X(2), P2X(4), P2X(7), P2Y(1), P2Y(13) and P2Y(14) among the seven P2X subtypes and seven P2Y subtypes examined. Immunohistostaining confirmed the expression of P2X(2). The exposure of the basolateral membranes to 3 mm ATP for 30 min caused the uptake of Lucifer Yellow CH in a few TBCs per taste bud. This was antagonized by 100 microm PPADS (a non-selective P2 blocker) and 1 microm KN-62 (a P2X(7) blocker). These results showed for the first time the functional expression of P2X(2) and P2X(7) on TBCs. The roles of P2 receptor subtypes in the taste transduction, and the renewal of TBCs, are discussed.

  17. [Evaluation of anger expression, school functioning and a level of anxiety in children and adolescents with functional abdominal pain].

    PubMed

    Marczyńska, Paulina; Kowalkowska, Katarzyna; Kuczyńska, Renata; Czerwionka-Szaflarska, Mieczysława; Krogulska, Aneta

    Psychosocial conditions may have influence on the occurrence of functional abdominal pain. Anxiety, school-related difficulties and suppression of emotions negatively impact on the psychosocial condition of a child and could impede its treatment. The analysis of the psychosocial determinants of functioning of children and adolescents with functional abdominal pain. Meterial and methods: The study group comprised 58 patients (12 boys and 46 girls) from 9 to 17 years of age (av. 13.34±2.14 years) with functional abdominal pain, diagnosed according to the III Roman Criteria, and the control group of 58 healthy children in adequate age, of Bydgoszcz primary and secondary schools. The test method utilised The Anger Regulation and Expression Scale (SEG), The State-Trait Anxiety Inventory for Children (STAIC) and Me and My School Questionnaire. Analysing the results of scale SEG between the group of children with functional abdominal pain and healthy children, significant differences were observed in the scale of external anger (p=0.045). There were no differences between the group of children with functional abdominal pain and the comparative one in terms of Me and My School Inventory scale (p> 0.05). In the group of healthy adolescents, the average of motivation differed significantly from the result of the adolescents with functional abdominal pain (p=0.031). There were no differences between the group of children and adolescents with abdominal pain and the healthy ones in terms of the performance in STAIC scales (p>0.05). 1. Healthy children compared to children with functional abdominal pain more openly express negative emotions, such as anger and irritation, which can cause reduced tendency to the somatization of symptoms. 2. Symptoms of young people with functional abdominal pain intensify reluctance to fulfill school duties and heighten fear of school, depending on the speed of activation of the autonomic nervous system.

  18. The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors.

    PubMed

    Safi, Rachid; Bertrand, Stéphanie; Marchand, Oriane; Duffraisse, Marilyne; de Luze, Amaury; Vanacker, Jean-Marc; Maraninchi, Marie; Margotat, Alain; Demeneix, Barbara; Laudet, Vincent

    2004-02-01

    Neotenic amphibians such as the axolotl (Ambystoma mexicanum) are often unable to undergo metamorphosis under natural conditions. It is thought that neoteny represents a deviation from the standard course of amphibian ontogeny, affecting the thyroid axis at different levels from the central nervous system to peripheral organs. Thyroid hormone receptors (TRs) that bind the thyroid hormone (TH) T(3) have been described in axolotl. However, the full sequences of TR were needed to better characterize the TH response and to be able to assess their functional capacity at the molecular level. We report that each of the alpha and beta axolotl TRs bind both DNA and TH, and they activate transcription in response to TH in a mammalian cell-based transient transfection assay. Moreover, both TRs are expressed in axolotl tissues. Interestingly, each TR gene generates alternatively spliced isoforms, harboring partial or total deletions of the ligand-binding domain, which are expressed in vivo. Further, we found that in the axolotl, TH regulates the expression of stromelysin 3 and collagenase 3, which are TH target genes in Xenopus. Taken together, these results suggest that axolotl TRs are functional and that the molecular basis of neoteny in the axolotl is not linked to a major defect in TH response in peripheral tissues.

  19. Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions

    PubMed Central

    Lee, Daniel Y.; Jeyapalan, Zina; Fang, Ling; Yang, Jennifer; Zhang, Yaou; Yee, Albert Y.; Li, Minhui; Du, William W.; Shatseva, Tatiana; Yang, Burton B.

    2010-01-01

    Background Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3′UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. Methods and Findings Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3′UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3′UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3′UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3′UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3′UTR formed smaller tumors compared with cells transfected with a control vector. Conclusion Our results demonstrated that a 3′UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3′UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities. PMID:21049042

  20. Functional cDNA expression cloning: Pushing it to the limit

    PubMed Central

    OKAYAMA, Hiroto

    2012-01-01

    The 1970s and the following decade are the era of the birth and early development of recombinant DNA technologies, which have entirely revolutionized the modern life science by providing tools that enable us to know the structures of genes and genomes and to dissect their components and understand their functions at the molecular and submolecular levels. One major objective of the life sciences is to achieve molecular and chemical understandings of the functions of genes and their encoded proteins, which are responsible for the manifestation of all biological phenomena in organisms. In the early 1980s, I developed, together with Paul Berg, a new technique that enables the cloning of full-length complementary DNAs (cDNAs) on the basis of their functional expression in a given cell of interest. I review the development, application and future implications in the life sciences of this gene-cloning technique. PMID:22450538

  1. Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system.

    PubMed

    Zhao, G X; Dong, P P; Peng, R; Li, J; Zhang, D Y; Wang, J Y; Shen, X Z; Dong, L; Sun, J Y

    2016-01-01

    Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.

  2. Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy

    PubMed Central

    Rogers, Scott W.; Gahring, Lorise C.

    2012-01-01

    The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ. PMID:22666322

  3. The expression and function of epithelial membrane protein 1 in laryngeal carcinoma.

    PubMed

    Li, Hong; Zhang, Xiaowen; Jiang, Xuejun; Ji, Xu

    2017-01-01

    In this study, we compared the expression of epithelial membrane protein 1 (EMP1) on the steady-state mRNA level (by quantitative real-time PCR) and on the protein level (by western immunoblot and immunohistochemistry) in 51 pairs of laryngeal carcinoma tissues and matched cancer-free peritumor tissues, and we analyzed the correlation between EMP1 expression and different clinicopathological factors. Furthermore, we ectopically expressed EMP1 in human laryngeal carcinoma Hep-2 cells and examined the effects on cell viability, apoptosis, colonogenicity, and motility, by MTT assay, flow cytometry, colony formation assay and Transwell migration assay, respectively. EMP1 expression (on both the mRNA and protein levels) was significantly lower in the cancer tissues than in matched peritumor tissues (P<0.05). In laryngeal cancers, the level of EMP1 protein was correlated with histological grade (P<0.05), but not with age, gender, clinical stage, cancer subtype or lymph node metastasis (P>0.05). Functionally, ectopic expression of EMP1 in Hep-2 cells significantly reduced cell viability, colony formation, and migration, but enhanced apoptosis. Therefore, EMP1 is a tumor suppressor in laryngeal carcinoma. Boosting EMP1 expression in laryngeal carcinoma initiates multiple anticancer phenotypes and thus presents a promising therapeutic strategy for laryngeal cancer.

  4. Sex-dependent changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of maternal deprivation and adolescent cocaine exposure.

    PubMed

    Llorente-Berzal, Alvaro; Assis, María A; Rubino, Tiziana; Zamberletti, Erica; Marco, Eva M; Parolaro, Daniela; Ambrosio, Emilio; Viveros, María-Paz

    2013-08-01

    Early life stress has been associated with several psychiatric disorders, including drug addiction. Actually, maternal deprivation (MD) alters the endocannabinoid system, which participates in motivation and reward for drugs, including cocaine. At youth, the rate of cocaine abuse is alarmingly increasing. Herein, we have investigated the consequences of MD and/or adolescent cocaine exposure in brain CB1Rs and CB2Rs in immune tissues. Control and maternally deprived (24h on postnatal day, pnd, 9) male and female Wistar rats were administered cocaine (8mg/kg/day) or saline during adolescence (pnd 28-42). At adulthood, [(3)H]-CP-55,940 autoradiographic binding was employed for the analysis of CB1R density and CP-55,940-stimulated [(35)S]-GTPgammaS binding for CB1R functionality; CB2R expression was analyzed by Western blotting. Sex differences in CB1R expression and functionality were found, and MD induced important and enduring sex-dependent changes. In addition, the plastic changes induced by adolescent cocaine administration in brain CB1Rs were differentially influenced by early life events. MD increased spleen CB2R expression while adolescent cocaine administration attenuated this effect; cocaine exposure also diminished CB2R expression in bone marrow. Present findings provide evidence for changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of early life stress and adolescent cocaine exposure, and indicate functional interactions between both treatments, which in many regions differ between males and females. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Six related nucleoside/nucleobase transporters from Trypanosoma brucei exhibit distinct biochemical functions.

    PubMed

    Sanchez, Marco A; Tryon, Rob; Green, Joy; Boor, Ilja; Landfear, Scott M

    2002-06-14

    Purine nucleoside and nucleobase transporters are of fundamental importance for Trypanosoma brucei and related kinetoplastid parasites because these protozoa are not able to synthesize purines de novo and must salvage the compounds from their hosts. In the studies reported here, we have identified a family of six clustered genes in T. brucei that encode nucleoside/nucleobase transporters. These genes, TbNT2/927, TbNT3, TbNT4, TbNT5, TbNT6, and TbNT7, have predicted amino acid sequences that show high identity to each other and to TbNT2, a P1 type nucleoside transporter recently identified in our laboratory. Expression in Xenopus laevis oocytes revealed that TbNT2/927, TbNT5, TbNT6, and TbNT7 are high affinity adenosine/inosine transporters with K(m) values of <5 microm. In addition, TbNT5, and to a limited degree TbNT6 and TbNT7, also mediate the uptake of the nucleobase hypoxanthine. Ribonuclease protection assays showed that mRNA from all of the six members of this gene family are expressed in the bloodstream stage of the T. brucei life cycle but that TbNT2/927 and TbNT5 mRNAs are also expressed in the insect stage of the life cycle. These results demonstrate that T. brucei expresses multiple purine transporters with distinct substrate specificities and different patterns of expression during the parasite life cycle.

  6. Growth and fatbody cycles in feral populations of the African clawed frog, Xenopus laevis (Pipidae), in California with comments on reproduction

    USGS Publications Warehouse

    McCoid, M.J.; Fritts, T.H.

    1989-01-01

    Feral populations of the African clawed frog (Xenopus laevis) exist in several areas of southern California. By following the first cohort of progeny produced by African clawed frogs at a recently colonized site, data on the growth rates and age at first maturity were obtained in field conditions. Females reached maturity at an earlier age than males, grew faster than males, and attained body lengths up to 25% larger than males. Larger females were capable of producing larger numbers of eggs than small females and, therefore, had greater reproductive potential. The relatively stable ambient temperatures of southern California contributed to the possibility of reproduction of clawed frogs during all but the coolest periods of the year. Cycles detected in the mass of fatbodies suggested that nutrients were mobilized from fat prior to and during ovulation. The amount of fat in females varied widely, but fat in males tended to accumulate as the males grew during the study period.

  7. A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis.

    PubMed

    Bonfanti, Patrizia; Saibene, M; Bacchetta, R; Mantecca, P; Colombo, A

    2018-02-01

    Glyphosate is the active ingredient in broad-spectrum herbicide formulations used in agriculture, domestic area and aquatic weed control worldwide. Its market is growing steadily concurrently with the cultivation of glyphosate-tolerant transgenic crops and emergence of weeds less sensitive to glyphosate. Ephemeral and lentic waters near to agricultural lands, representing favorite habitats for amphibian reproduction and early life-stage development, may thus be contaminated by glyphosate based herbicides (GBHs) residues. Previous studies on larval anuran species highlighted increased mortality and growth effects after exposure to different GBHs in comparison to glyphosate itself, mainly because of the surfactants such as polyethoxylated tallow amine present in the formulations. Nevertheless, these conclusions are not completely fulfilled when the early development, characterized by primary organogenesis events, is considered. In this study, we compare the embryotoxicity of Roundup ® Power 2.0, a new GBH formulation currently authorized in Italy, with that of technical grade glyphosate using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Our results evidenced that glyphosate was not embryolethal and only at the highest concentration (50 mg a.e./L) caused edemas. Conversely, Roundup ® Power 2.0 exhibited a 96 h LC50 of 24.78 mg a.e./L and a 96 h EC50 of 7.8 mg a.e./L. A Teratogenic Index of 3.4 was derived, pointing out the high teratogenic potential of the Roundup ® Power 2.0. Specific concentration-dependent abnormal phenotypes, such as craniofacial alterations, microphthalmia, narrow eyes and forebrain regionalization defects were evidenced by gross malformation screening and histopathological analysis. These phenotypes are coherent with those evidenced in Xenopus laevis embryos injected with glyphosate, allowing us to hypothesize that the teratogenicity observed for Roundup ® Power 2.0 may be related to the improved efficacy in delivering

  8. MicroRNA-155 expression and function in AML: An evolving paradigm.

    PubMed

    Narayan, Nisha; Bracken, Cameron P; Ekert, Paul G

    2018-06-01

    Acute myeloid leukemia (AML) arises when immature myeloid blast cells acquire multiple, recurrent genetic and epigenetic changes that result in dysregulated proliferation. Acute leukemia is the most common form of pediatric cancer, with AML accounting for ~20% of all leukemias in children. The genomic aberrations that drive AML inhibit myeloid differentiation and activate signal transduction pathways that drive proliferation. MicroRNAs, a class of small (~22 nucleotide) noncoding RNAs that posttranscriptionally suppress the expression of specifically targeted transcripts, are also frequently dysregulated in AML, which may prove useful for the purposes of disease classification, prognosis, and future therapeutic approaches. MicroRNA expression profiles are associated with patient prognosis and responses to standard chemotherapy, including predicting therapy resistance in AML. miR-155 is the primary focus of this review because it has been repeatedly associated with poorer survival across multiple cohorts of adult and pediatric AML. We discuss some novel features of miR-155 expression in AML, in particular how the levels of expression can critically influence function. Understanding the role of microRNAs in AML and the ways in which microRNA expression influences AML biology is one means to develop novel and more targeted therapies. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  9. Different Expression Profiles Suggest Functional Differentiation Among Chemosensory Proteins in Nilaparvata lugens (Hemiptera: Delphacidae)

    PubMed Central

    Yang, Ke; He, Peng; Dong, Shuang-Lin

    2014-01-01

    Abstract Chemosensory proteins (CSPs) play various roles in insect physiology including olfaction and development. The brown planthopper, Nilaparvata lugens Stål , is one of the most notorious rice pests worldwide. The wing-from variation and annually long distance migration imply that olfaction would play a key role in N. lugens behavior. In this study, full-length cDNAs of nine CSPs were cloned by the rapid amplification of cDNA ends procedure, and their expression profiles were determined by the quantitative real-time Polymerase Chain Reaction (qPCR), with regard to developmental stage, wing-form, gender, and tissues of short-wing adult. These NlugCSP genes showed distinct expression patterns, indicating different roles they play. In particular, NlugCSP5 was long wing form biased and highly expressed in female wings among tissues; NlugCSP1 was mainly expressed in male adults and abdomen; NlugCSP7 was widely expressed in chemosensory tissues but little in the nonchemosensory abdomen. The function of NlugCSP7 in olfaction was further explored by the competitive fluorescence binding assay using the recombinant protein. However, the recombinant NlugCSP7 showed no obvious binding with all tested volatile compounds, suggesting that it may participate in physiological processes other than olfaction. Our results provide bases and some important clues for the function of NlugCSPs . PMID:25527582

  10. The social functions of the emotion of gratitude via expression.

    PubMed

    Algoe, Sara B; Fredrickson, Barbara L; Gable, Shelly L

    2013-08-01

    Recent theory posits that the emotion of gratitude uniquely functions to build a high-quality relationship between a grateful person and the target of his or her gratitude, that is, the person who performed a kind action (Algoe et al., 2008). Therefore, gratitude is a prime candidate for testing the dyadic question of whether one person's grateful emotion has consequences for the other half of the relational unit, the person who is the target of that gratitude. The current study tests the critical hypothesis that being the target of gratitude forecasts one's relational growth with the person who expresses gratitude. The study employed a novel behavioral task in which members of romantic relationships expressed gratitude to one another in a laboratory paradigm. As predicted, the target's greater perceptions of the expresser's responsiveness after the interaction significantly predicted improvements in relationship quality over 6 months. These effects were independent from perceptions of responsiveness following two other types of relationally important and emotionally evocative social interactions in the lab, suggesting the unique weight that gratitude carries in cultivating social bonds. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Functional expression of plant acetolactate synthase genes in Escherichia coli

    PubMed Central

    Smith, Julie K.; Schloss, John V.; Mazur, Barbara J.

    1989-01-01

    Acetolactate synthase (ALS; EC 4.1.3.18) is the first common enzyme in the biosynthetic pathways leading to leucine, isoleucine, and valine. It is the target enzyme for three classes of structurally unrelated herbicides, the sulfonylureas, the imidazolinones, and the triazolopyrimidines. A cloned ALS gene from the small cruciferous plant Arabidopsis thaliana has been fused to bacterial transcription/translation signals and the resulting plasmid has been used to transform Escherichia coli. The cloned plant gene, which includes sequences encoding the chloroplast transit peptide, is functionally expressed in the bacteria. It is able to complement genetically a strain of E. coli that lacks endogenous ALS activity. An ALS gene cloned from a line of Arabidopsis previously shown to be resistant to sulfonylurea herbicides has been similarly expressed in E. coli. The herbicide-resistance phenotype is expressed in the bacteria, as assayed by both enzyme activity and the ability to grow in the presence of herbicides. This system has been useful for purifying substantial amounts of the plant enzyme, for studying the sequence parameters involved in subcellular protein localization, and for characterizing the interactions that occur between ALS and its various inhibitors. Images PMID:16594052

  12. Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function.

    PubMed

    Irwin, D M

    1995-09-01

    Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants.

  13. Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis

    NASA Astrophysics Data System (ADS)

    Ubbels, Geertje A.; Brom, Tim G.

    The establishment of polarities during early embryogenesis is essential for normal development. Amphibian eggs are appropriate models for studies on embryonic pattern formation. The animal-vegetal axis of the axially symmetrical amphibian egg originates during oogenesis and foreshadows the main body axis of the embryo. The dorso-ventral polarity is epigenetically established before first cleavage. Recent experiments strongly suggest that in the monospermic eggs of the anuran Xenopus laevis both the cytoskeleton and gravity act in the determination of the dorso-ventral polarity. In order to test the role of gravity in this process, eggs will be fertilized under microgravity conditions during the SL-D1 flight in 1985. In a fully automatic experiment container eggs will be kept under well-defined conditions and artificially fertilized as soon as microgravity is reached; eggs and embryos at different stages will then be fixed for later examination. Back on earth the material will be analysed and we will know whether fertilization under microgravity conditions is possible. If so, the relation of the dorso-ventral axis to the former sperm entry point will be determined on the whole embryos; in addition eggs and embryos will be analysed cytologically.

  14. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  15. The dominant expression of functional human lactoferrin in transgenic cloned goats using a hybrid lactoferrin expression construct.

    PubMed

    Yu, Huiqing; Chen, Jianquan; Sun, Wei; Liu, Siguo; Zhang, Aimin; Xu, Xujun; Wang, Xuebin; He, Zhuzi; Liu, Guohui; Cheng, Guoxiang

    2012-10-31

    Human Lactoferrin (hLF) is an iron-binding protein with multiple physiological functions. As the availability of natural hLF is limited, alternative means of producing this biopharmaceutical protein have been extensively studied. Here we report on the dominant expression of recombinant human lactoferrin (rhLF) in transgenic cloned goats using a novel optimised construct made by fusing a 3.3 kb hLF minigene to the regulatory elements of the β-casein gene. The transgenic goat produced more than 30 mg/ml rhLF in its milk, and rhLF expression was stable during the entire lactation cycle. The rhLF purification efficiency from whole goat milk is approximately 70%, and its purity is above 98%. Compared with natural hLF, the rhLF from transgenic goats has similar biological characteristics including molecular mass, N-terminal sequence, isoelectric point, immunoreactivity and digestive stability. More importantly, the purified rhLF showed specific anti-tumour activity in the mouse model of melanoma experimental metastasis. Therefore, our study shows that the large-scale production of functional rhLF in transgenic goat milk could be an economical and promising source of human therapeutic use in the future. Copyright © 2012. Published by Elsevier B.V.

  16. Expression and functional roles of estrogen receptor GPR30 in human intervertebral disc.

    PubMed

    Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Yan, Feng; Chong, Beng H; Diwan, Ashish D

    2016-04-01

    Estrogen withdrawal, a characteristic of female aging, is associated with age-related intervertebral disc (IVD) degeneration. The function of estrogen is mediated by two classic nuclear receptors, estrogen receptor (ER)-α and -β, and a membrane bound G-protein-coupled receptor 30 (GPR30). To date, the expression and function of GPR30 in human spine is poorly understood. This study aimed to evaluate GPR30 expression in IVD, and its role in estrogen-related regulation of proliferation and apoptosis of disc nucleus pulposus (NP) cells. GPR30 expression was examined in 30 human adult NP and 9 fetal IVD. Results showed that GPR30 was expressed in NP cells at both mRNA and protein levels. In human fetal IVD, GPR30 protein was expressed in the NP at 12-14 weeks gestation, but was undetectable at 8-11 weeks. The effect of 17β-estradiol (E2) on GPR30-mediated proliferation and interleukin-1β (IL-1β)-induced apoptosis of NP cells was investigated. Cultured NP cells were treated with or without E2, GPR30 antagonist G36, and ER antagonist ICI 182,780. NP cell viability was tested by MTS assay. Apoptosis was determined by flow cytometry using fluorescence labeled annexin-V, TUNEL assay and immumnocytochemical staining of activated caspase-3. E2 enhanced cell proliferation and prevented IL-1β-induced cell death, but the effect was partially blocked by G36 and completely abrogated by a combination of ICI 182,780 and G36. This study demonstrates that GPR30 is expressed in human IVD to transmit signals triggering E2-induced NP cell proliferation and protecting against IL-1β-induced apoptosis. The effects of E2 on NP cells require both GPR30 and classic estrogen receptors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Pleiotrophin (PTN) Expression and Function and in the Mouse Mammary Gland and Mammary Epithelial Cells

    PubMed Central

    Rosenfield, Sonia M.; Bowden, Emma T.; Cohen-Missner, Shani; Gibby, Krissa A.; Ory, Virginie; Henke, Ralf T.; Riegel, Anna T.; Wellstein, Anton

    2012-01-01

    Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development. PMID:23077670

  18. Structural and functional conservation of CLEC-2 with the species-specific regulation of transcript expression in evolution.

    PubMed

    Wang, Lan; Ren, Shifang; Zhu, Haiyan; Zhang, Dongmei; Hao, Yuqing; Ruan, Yuanyuan; Zhou, Lei; Lee, Chiayu; Qiu, Lin; Yun, Xiaojing; Xie, Jianhui

    2012-08-01

    CLEC-2 was first identified by sequence similarity to C-type lectin-like molecules with immune functions and has been reported as a receptor for the platelet-aggregating snake venom toxin rhodocytin and the endogenous sialoglycoprotein podoplanin. Recent researches indicate that CLEC-2-deficient mice were lethal at the embryonic stage associated with disorganized and blood-filled lymphatic vessels and severe edema. In view of a necessary role of CLEC-2 in the individual development, it is of interest to investigate its phylogenetic homology and highly conserved functional regions. In this work, we reported that CLEC-2 from different species holds with an extraordinary conservation by sequence alignment and phylogenetic tree analysis. The functional structures including N-linked oligosaccharide sites and ligand-binding domain implement a structural and functional conservation in a variety of species. The glycosylation sites (N120 and N134) are necessary for the surface expression CLEC-2. CLEC-2 from different species possesses the binding activity of mouse podoplanin. Nevertheless, the expression of CLEC-2 is regulated with a species-specific manner. The alternative splicing of pre-mRNA, a regulatory mechanism of gene expression, and the binding sites on promoter for several key transcription factors vary between different species. Therefore, CLEC-2 shares high sequence homology and functional identity. However the transcript expression might be tightly regulated by different mechanisms in evolution.

  19. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miglio, Gianluca; Varsaldi, Federica; Lombardi, Grazia

    2005-12-30

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 {mu}g/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10more » U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.« less

  20. Lipopolysaccharide-Elicited TSLPR Expression Enriches a Functionally Discrete Subset of Human CD14+ CD1c+ Monocytes.

    PubMed

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Vastolo, Viviana; Petrosino, Giuseppe; Visconte, Feliciano; Raia, Maddalena; Scalia, Giulia; Loffredo, Stefania; Varricchi, Gilda; Galdiero, Maria Rosaria; Granata, Francescopaolo; Del Vecchio, Luigi; Portella, Giuseppe; Marone, Gianni

    2017-05-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine produced mainly by epithelial cells in response to inflammatory or microbial stimuli and binds to the TSLP receptor (TSLPR) complex, a heterodimer composed of TSLPR and IL-7 receptor α (CD127). TSLP activates multiple immune cell subsets expressing the TSLPR complex and plays a role in several models of disease. Although human monocytes express TSLPR and CD127 mRNAs in response to the TLR4 agonist LPS, their responsiveness to TSLP is poorly defined. We demonstrate that TSLP enhances human CD14 + monocyte CCL17 production in response to LPS and IL-4. Surprisingly, only a subset of CD14 + CD16 - monocytes, TSLPR + monocytes (TSLPR + mono), expresses TSLPR complex upon LPS stimulation in an NF-κB- and p38-dependent manner. Phenotypic, functional, and transcriptomic analysis revealed specific features of TSLPR + mono, including higher CCL17 and IL-10 production and increased expression of genes with important immune functions (i.e., GAS6 , ALOX15B , FCGR2B , LAIR1 ). Strikingly, TSLPR + mono express higher levels of the dendritic cell marker CD1c. This evidence led us to identify a subset of peripheral blood CD14 + CD1c + cells that expresses the highest levels of TSLPR upon LPS stimulation. The translational relevance of these findings is highlighted by the higher expression of TSLPR and CD127 mRNAs in monocytes isolated from patients with Gram-negative sepsis compared with healthy control subjects. Our results emphasize a phenotypic and functional heterogeneity in an apparently homogeneous population of human CD14 + CD16 - monocytes and prompt further ontogenetic and functional analysis of CD14 + CD1c + and LPS-activated CD14 + CD1c + TSLPR + mono. Copyright © 2017 by The American Association of Immunologists, Inc.